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Abstract
This paper describes a formalization of the specification and the algorithm of the cryptographic
scheme CRYSTALS-KYBER as well as the verification of its (1 − 𝛿)-correctness proof. During
the formalization, a problem in the correctness proof was uncovered. In order to amend this
issue, a necessary property on the modulus parameter of the CRYSTALS-KYBER algorithm
was introduced. This property is already implicitly fulfilled by the structure of the modulus
prime used in the number theoretic transform (NTT). The NTT and its convolution theorem
in the case of CRYSTALS-KYBER was formalized as well. The formalization was realized in
the theorem prover Isabelle.
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1. Introduction
With large-scale quantum computers all crypto systems based on RSA and Diffie-Hellmann
can be broken using Shor’s algorithm. Since recent developements in quantum computing
lead to believe that these feasible quantum computers are not too far off in the future,
methods for cryptography which are resistant even to attacks by quantum computers are
hot research topics. In the course of the standardization process initialized by the National
Institute of Standards and Technology (NIST), a variety of post-quantum crypto systems
have been designed. Most prominent are the so-called lattice-based crypto schemes. One
of these is the key encapsulation mechanism CRYSTALS-KYBER (abbreviated as Kyber
throughout this presentation) which was developed by Roberto Avanzi et al. [1] [2].

We have formalized the algorithms for key encapsulation, encryption and decryption
and verified the (1− 𝛿)-correctness in the theorem prover Isabelle. In the course of the
proof a necessary property on the modulus 𝑞 used in the Kyber specification parameters
has been found which was not explicitly mentioned in the papers [1] and [2] but follows
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indirectly from the choice of 𝑞 for the Number Theoretic Transform (NTT). Since
the chosen parameter 𝑞 fulfils this property, the proof remains valid. However, if the
parameters need to be changed in the future, it is important to keep both the property
for the (1− 𝛿)-correctness proof and the NTT in mind.

The NTT is a version of the Discrete Fourier Transform adapted to finite fields. In
order to refine the algorithm, the NTT on polynomials, as used in Kyber, as well as
its convolution theorem have been formalized. The use of the NTT in lattice-based
cryptography is described in [3] and its connection to nega-cyclic convolutions in [4]. This
leads to a refined and verified Kyber algorithm using the NTT for fast multiplication.

In [5] and [6], Meijers et al. announced a formalization of Kyber in EasyCrypt [7].
Furthermore, a post-quantum version of EasyCrypt called EasyPQC is being developed
as introduced in [8]. However, up to now there is no publication or accessible code for a
formalization of Kyber.

For this paper, Kyber was verified using the theorem prover Isabelle. In contrast
to other cryptographic verification tools like EasyCrypt, Isabelle is foundational and
everything is proved from the axioms of HOL. An introduction to Isabelle can be found
in [9] and [10].

In this paper, we discuss the formalization and verification of Kyber and its (1− 𝛿)-
correctness proof. First, we have a look at the specifications and parameters of Kyber
in Section 2. We elaborate on the representation of the ring Z𝑞[𝑥]/(𝑥𝑛 + 1) as a type
class in Isabelle. Since the formalization is independent from the actual parameters, in
Section 3 we look at the instantiation of our formalization with the values given in [1].
Next, we describe the formalization of the algorithms for compression, decompression,
key generation, encryption and decryption used in Kyber in Section 4. In Section 5
we prooceed with the verification of the (1 − 𝛿)-correctness proof of Kyber. Here, we
recognise a problem in the proof which we can solve by adding a property on the modulus
𝑞. This is discussed in Section 6. This newly found property is already fulfilled when
working in the NTT domain. The formalization of the NTT on polynomials and its
convolution theorem is analyzed in Section 7. In the end, we give a short outlook on
further research questions. The full formalization can be found in [11].

2. Formalizing the Specifications of Kyber
Let 𝑞 be a prime and 𝑛 a power of two, i.e., there is an 𝑛′ such that 𝑛 = 2𝑛′ . Let 𝑅𝑞

denote the ring Z𝑞[𝑥]/(𝑥𝑛 + 1). Note that 𝑥𝑛 + 1 is the 2𝑛′-th cyclotomic polynomial
which is irreducible over the integers Z, but reducible over the finite field Z𝑞.

When implementing the specifications of Kyber, one first has to think how to formalize
a quotient ring when factoring a polynomial ring with coeffiecients in a finite field by an
ideal generated by a cyclotomic polynomial, namely Z𝑞[𝑥]/(𝑥𝑛 + 1). There are various
concepts behind this construct which are not easy to formalise in Isabelle. Two main
features in Isabelle support abstaction over a context of assumptions for theorems: The
type class constraints (introduced in [12]) and explicit assumptions summarized in a
context called locale (introduced in [13]). To still be able to work over these complicated



spaces without too many premises, we chose to use type class constructs.
First of all, the existing formalization of the finite field uses the type class mod_ring

over a finite type. The modulus prime is encoded as the cardinality of the finite type. It
represents the residue classes of the ring Z𝑞 where 𝑞 is the cardinality of the finite type.

Polynomials can be easily constructed using the poly type constructor. The poly
constructor defines a polynomial to be a function from the natural numbers to the
coefficient space which is 0 almost everywhere. A polynomial 𝑝 in 𝑅[𝑥] is thus represented
by the function of coefficients 𝑓 : N −→ 𝑅 such that 𝑝 = ∑︀∞

𝑖=0 𝑓(𝑖)𝑥𝑖. Since 𝑝 has only
finitely many non-zero coefficients, 𝑓 is 0 almost everywhere. For example the polynomial
𝑝 = 𝑥2 + 2 is represented as the function 𝑓 with:

𝑓(𝑖) =

⎧⎪⎪⎨⎪⎪⎩
if 𝑖 = 0 then 2
if 𝑖 = 2 then 1
else 0

There is an alternative definition which defines polynomials using a list constructor
pCons. This allows the user to convert concrete polynomials to lists of coefficients and
vice versa. Continuing our example from above, the list correponding to 𝑝 = 𝑥2 + 2 is
[2, 0, 1]. However, when representing polynomials as lists, one has to be careful to always
reduce redundant zero coefficients in order to guarantee a unique representation. For
example, the list [2, 0, 1, 0, 0] also represents the polynomial 𝑝.

The most difficult part is to construct the quotient ring 𝑅𝑞. First, an equivalence
relation needs to be established for residue classes modulo 𝑥𝑛 + 1. Then, one can factor
out the equivalence relation using the command quotient_type as introduced in [14]. The
resulting structure inherits basic properties like the zero element, addition, subtraction
and multiplication from the original polynomial ring through lifting and transfer [15].

Vectors are implemented using a fixed finite type as an index set. Since Isabelle does
not allow dependent types, a separate finite type for indexing is used to encode the length
of a vector. This idea was introduced by Harrison in [16]. For example, when working
with vectors in Z𝑘, we use the type (int, ’k) vec, where ’k is a finite type with cardinality
exactly 𝑘 used for indexing the integer coefficients.

An important fact to note when dealing with formalizations is that the functions
translating between the different types always need to be stated explicitly. Often in the
mathematical literature, this distinction is blurred to enable a shorter presentation.

3. Formalizing the Parameters of Kyber
The parameters of Kyber in Table 1 are taken from [1]. Since the framework for the
specification of Kyber is formalized independently from the actual parameters, we can
instantiate the formalization with any parameters sufficing all required properties:

• 𝑛, 𝑛′, 𝑞, 𝑘, 𝑑𝑢, 𝑑𝑣, 𝑑𝑡 are positive integers
• 𝑛 = 2𝑛′ is a power of 2
• 𝑞 > 2 is an odd prime with 𝑞 mod 4 = 1



Table 1
Parameter set of Kyber in [1]

variable value context

𝑛 256 = 2𝑛′ degree of cyclotomic polynomial
𝑛′ 8 exponent of 2 in degree 𝑛
𝑞 7681 prime number, modulus
𝑘 3 dimension of vectors
𝑑𝑢 11 digits for encryption of 𝑢
𝑑𝑣 3 digits for encryption of 𝑣
𝑑𝑡 11 digits for key generation

This is especially of interest for eventual changes in the parameter set in the future.
Furthermore, different security level implementations use different parameters. For
example, the initial parameter of the modulus 𝑞 in [1] is 7681, but the newer specificaion
for the third round of the NIST standardization process [17] uses the modulus 3329.
Furthermore, different sizes 𝑘 of vectors define different security levels.

In our formalization, we instantiate the locale containing the Kyber algorithm and
proof of (1− 𝛿)-correctness with the parameter set given in Table 1. Unfortunately this
has been trickier than expected. The existing code generation for generating finite types
of a specific cardinality does not allow the user to instantiate this type for the type class
of prime cardinalities. Therefore, the type class with 7681 elements was instantiated
manually for prime cardinality.

4. Formalizing the Kyber Algorithm
The cryptographic scheme Kyber is divided in three algorithms: the key generation,
the encryption and the decryption. Using a randomly chosen input, the key generation
produces a public and secret key pair that are applied in the en- and decryption. In
order to discard some lower order bits to make the keys smaller, a compression and
decompression function is added. The compression function is also used to extract the
message in the decryption. For a clearer presentation, we omit explicit type casts when
they are unambiguous. For example, the embedding of integers in the reals or vice versa
has an explicit type cast. An important type cast that we will state explicitly is the cast
from an integer to the module 𝑅𝑞 which we denote as the function 𝑡𝑜_𝑚𝑜𝑑𝑢𝑙𝑒. In the
actual formalization, all type casts are stated.

4.1. Input to the Algorithm
The key generation requires an input 𝐴 ∈ 𝑅𝑘×𝑘

𝑞 , 𝑠 ∈ 𝑅𝑘
𝑞 and 𝑒 ∈ 𝑅𝑘

𝑞 which is chosen
randomly. 𝐴 is chosen uniformly at random from the finite set 𝑅𝑘×𝑘

𝑞 . This matrix
is part of the public key. For the secret key 𝑠 and the error term 𝑒, we define the
binomial distribution 𝛽𝜂. Choose 𝜂 values 𝑐𝑖 with 𝑃 (𝑐𝑖 = −1) = 𝑃 (𝑐𝑖 = 1) = 1/4 and
𝑃 (𝑐𝑖 = 0) = 1/2 and return the value 𝑥 = ∑︀𝜂

𝑖=1 𝑐𝑖. In Kyber, we use 𝜂 = 4 and thus: For



Table 2
Probability distribution of 𝛽𝜂 for 𝜂 = 4

𝑥 =
∑︀4

𝑖=1 𝑐𝑖 −4 −3 −2 −1 0 1 2 3 4
𝑃 (𝑥) 1

256
8

256
28

256
56

256
70

256
56

256
28

256
8

256
1

256

generating a polynomial in 𝑅𝑞 according to 𝛽𝜂, every coefficient is chosen independently
from 𝛽𝜂. Similarly, a vector is generated according to 𝛽𝜂 by independently choose all
entries according to 𝛽𝜂. Both 𝑠 and 𝑒 are generated according to 𝛽𝜂.

The sampled values 𝐴, 𝑠 and 𝑒 constitute an instance of the module-Learning-With-
Errors (module-LWE) problem which is defined in the following.

Definition 1 (Module-LWE). Given a uniformly random 𝐴 ∈ 𝑅𝑘×𝑘
𝑞 and 𝑠, 𝑒 ∈ 𝑅𝑘

𝑞 chosen
randomly according to the distribution 𝛽𝜂. Let 𝑏 = 𝐴𝑠+ 𝑒, then the (decision) module-
LWE problem asks to distinguish (𝐴, 𝑏) from uniformly random (𝐴′, 𝑏′) ∈ 𝑅𝑘×𝑘

𝑞 ×𝑅𝑘
𝑞 .

There is a probabilistic reduction proof for the NP-hardness of the module-LWE by
Langlois and Stehlé in [18]. Using the hardness of the module-LWE, the key generation
of Kyber returns a public key and secret key pair where it is NP-hard to recover the
secret key from the public key alone. Note that this problem would be easy to solve
without the error term using the Euclidean Algorithm. Thus, the error term cannot be
reused but has to be chosen according to the distribution 𝛽𝜂 again. The random choices,
the module-LWE and its NP-hardness proof have not been formalized.

4.2. Compression and Decompression
The compression and decompression functions in Kyber are essential for smaller public
and secret keys and help obscuring the message. In the decryption, the message is also
extracted by a compression to one bit. In order to define these functions, we introduce a
positive integer 𝑑 with 2𝑑 < 𝑞. Thus, we have 𝑑 < ⌈𝑙𝑜𝑔2(𝑞)⌉. In this section, we write the
modulo operation with modulus 2𝑑 to mean the unique representant in {0, . . . , 2𝑑 − 1}.

When compressing a value 𝑥, we omit the least important bits and reduce the
representation of 𝑥 to 𝑑 bits. Decompression rescales to the modulus 𝑞. Compression
and decompression functions are defined for integers in the following way.

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥 =
⌈︃

2𝑑 · 𝑥
𝑞

⌋︃
mod 2𝑑

𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥 =
⌈︂
𝑞 · 𝑥
2𝑑

⌋︂
Note that the round function is defined as ⌈𝑥⌋ = ⌊𝑥 + 1

2⌋. The compression and
decompression functions are extended as functions over Z𝑞 by taking the unique



representant in {0, . . . , 𝑞 − 1}. We denote compression and decompression over
polynomials as 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦 and 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦 and over vectors as 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐
and 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐. They are defined to perform the compression or decompression
coefficient- and index-wise, respectively.

We call the value 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥)−𝑥 the compression error. The rounding
in the compression and decompression may introduce such a compression error. For
example, consider the values 𝑑 = 2 and 𝑞 = 5. Then, the compression of 2 is 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 2 =
⌈1.6⌋ mod 4 = 2 and 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 2 = ⌈2.5⌋ = 3. Here, the compression error is
𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 2)− 2 = 3− 2 = 1. Another reason for a compression error is
the modulo operation in the compression function. For example consider 𝑑 = 2 and 𝑞 = 11.
Then the compression of 10 is 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 10 = ⌈3.63⌋ mod 4 = 0 and 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 0 = 0.
Here, the compression error for integers is 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠2 10) − 10 = −10.
Interpreting this as a number over Z11, we get a compression error of 1.

4.3. Key Generation, Encryption and Decryption
We now want to state the actual algorithm. The algorithm for key generation is defined
in the following way using the compression depth 𝑑𝑡:

𝑘𝑒𝑦_𝑔𝑒𝑛 𝑑𝑡 𝐴 𝑠 𝑒 = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑡 (𝐴 · 𝑠+ 𝑒)

The output 𝑡 = 𝑘𝑒𝑦_𝑔𝑒𝑛 𝑑𝑡 𝐴 𝑠 𝑒 of key_gen together with the matrix 𝐴 constitutes
the public key, whereas the vector 𝑠 is the secret key. Together (𝐴, 𝑡) form an instance
of the module-LWE problem. The NP-hardness of the module-LWE states, that it is
hard to recuperate the secret key 𝑠 from the public key (𝐴, 𝑡). Therefore, the hardness of
module-LWE underlies the security of Kyber.

To encrypt a bitstring 𝑚̄ with at most 𝑛 bits, we consider the message polynomial
𝑚 ∈ 𝑅𝑞 obtained by 𝑚 = ∑︀𝑛−1

𝑖=0 𝑚̄(𝑖)𝑥𝑖. Thus, the message polynomial 𝑚 only has
coefficients in {0, 1}. We also need to generate another secret 𝑟 ∈ 𝑅𝑘

𝑞 together with errors
𝑒1 ∈ 𝑅𝑘

𝑞 and 𝑒2 ∈ 𝑅𝑞 according to the distribution 𝛽4. We then calculate the encryption
as the following:

𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑡 𝐴 𝑟 𝑒1 𝑒2 𝑑𝑡 𝑑𝑢 𝑑𝑣 𝑚 =
(𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑢 (𝐴𝑇 · 𝑟 + 𝑒1),
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦𝑑𝑣 ((𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑡 𝑡)𝑇 𝑟 + 𝑒2 + 𝑡𝑜_𝑚𝑜𝑑𝑢𝑙𝑒(⌈𝑞/2⌋) ·𝑚))

The encryption outputs the compressed values 𝑢 and 𝑣, i.e., (𝑢, 𝑣) =
𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑡 𝐴 𝑟 𝑒1 𝑒2 𝑑𝑡 𝑑𝑢 𝑑𝑣 𝑚. Using the secret key 𝑠, we can recover the message 𝑚
from 𝑢 and 𝑣 in the decryption function. We extract the message as the highest bit in
𝑣 − 𝑠𝑇𝑢 using the compression function with depth 1.

𝑑𝑒𝑐𝑟𝑦𝑝𝑡 𝑢 𝑣 𝑠 𝑑𝑢 𝑑𝑣 =
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦1 ((𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦𝑑𝑣 𝑣)− 𝑠𝑇 (𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑢 𝑢))



During the algorithms, the compression and decompression induce errors which should
not affect the correctness of the decryption result. This problem is investigated in the
(1− 𝛿)-correctness proof of Kyber. The following section describes a verification of this
proof in Isabelle.

5. Verifying the (1− 𝛿)-Correctness Proof of Kyber
To verify the (1− 𝛿)-correctness of the specification of Kyber in Isabelle, we look at the
following proof from [1]. The full formalization of the correctness proof can be found in
[11].

Using the module-LWE problem as in Definition 1, distinguishing between uniformly
random samples and samples generated by a module-LWE instance in the key generation
and encryption is NP-hard. Thus distinguishing the random values 𝑐𝑡, 𝑐𝑢 and 𝑐𝑣 from
[1, Theorem 1] and the compression errors of 𝑡, 𝑢 and 𝑣, respectively, is also NP-hard.
Since the module-LWE and its hardness asumption have not been formalized yet, we
only consider 𝑐𝑡, 𝑐𝑢 and 𝑐𝑣 to be the absolute value of the compression errors.

𝑐𝑡 = ‖𝑡− 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑡 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑣𝑒𝑐𝑑𝑡 𝑡)‖∞

Note that the "norm" ‖ · ‖∞ in [1] is defined to be slightly different than one would
expect: Instead of using a regular modulo operation, we define the recentered operation
mod± to be the representative with smallest norm. That means 𝑎̄ := (𝑎 mod± 𝑞) is the
unique element with −𝑞/2 < 𝑎̄ ≤ 𝑞/2 such that 𝑎̄ ≡ 𝑎 mod 𝑞. As 𝑞 is an odd number
in our case, we get that 𝑎 mod± 𝑞 ∈ {−𝑞+1

2 , . . . , 𝑞−1
2 }. Using this recentered modulo

operation, we define the function ‖ · ‖∞ on polynomials as:

𝑝 =
deg 𝑝∑︁
𝑖=1

𝑝𝑖 · 𝑥𝑖 ↦−→ ‖𝑝‖∞ = max
𝑖∈{0,...,deg 𝑝}

|𝑝𝑖 mod± 𝑞|

Analogously, for vectors 𝑣 ∈ 𝑅𝑘
𝑞 we define:

‖𝑣‖∞ = max
𝑖∈{1,...,𝑘}

‖𝑣𝑖‖∞

Unfortunately with the recentering one looses the absolute homogeneity, i.e., for a scalar
𝑠 and vector 𝑣 only

‖𝑠 · 𝑣‖∞ ≤ |𝑠| · ‖𝑣‖∞ (1)
holds with an inequality instead of equality. For example consider the case 𝑞 = 3, 𝑠 = 2
and 𝑣 = (2). We then have the strict inequality:

‖2 · (2)‖∞ = |2 · (2) mod± 3| = 1 < 2 = |2| · |2 mod± 3| = |2| · ‖(2)‖∞

The ‖ ·‖∞ function is not a norm, but is positive definite and fulfils the triangle inequality.
This is not explicitly mentioned in the Kyber paper [1] and indeed poses a problem in
the proof of the following theorem.

We state the correctness theorem for Kyber, which is formalized in [11]:



Theorem 5.1. Given 𝐴 ∈ 𝑅𝑘×𝑘
𝑞 , 𝑠, 𝑟, 𝑒, 𝑒1 ∈ 𝑅𝑘

𝑞 , 𝑒2 ∈ 𝑅𝑞 and the message 𝑚 ∈ 𝑅𝑞 with
coefficients in {0, 1} and setting:

• 𝑡 = 𝑘𝑒𝑦_𝑔𝑒𝑛 𝑑𝑡 𝐴 𝑠 𝑒 as the output of the key generation
• (𝑢, 𝑣) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑡 𝐴 𝑟 𝑒1 𝑒2 𝑑𝑡 𝑑𝑢 𝑑𝑣 𝑚 as the output of the encryption
• 𝑐𝑡, 𝑐𝑢 and 𝑐𝑣 as the absolute value of the compression errors of 𝑡, 𝑢 and 𝑣, respectively

If ‖𝑒𝑇 𝑟 + 𝑒2 + 𝑐𝑣 − 𝑠𝑇 𝑒1 + 𝑐𝑇
𝑡 𝑟 − 𝑠𝑇 𝑐𝑢‖∞ < ⌈𝑞/4⌋, then the decryption algorithm returns

the original message 𝑚:
𝑑𝑒𝑐𝑟𝑦𝑝𝑡 𝑢 𝑣 𝑠 𝑑𝑢 𝑑𝑣 = 𝑚

A crypto system is correct, if it always returns the original message. However, in our
case, we have a failure probability and can only state the (1 − 𝛿)-correctness. This is
defined in the following:

Definition 2 ((1 − 𝛿)-correctness). Let 𝑘𝑒𝑦_𝑔𝑒𝑛, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 constitute a
cryptographic algorithm where the 𝑘𝑒𝑦_𝑔𝑒𝑛 outputs a public key 𝑝𝑘 and a secret key 𝑠𝑘.
Then the cryptographic algorithm is (1− 𝛿)-correct, if and only if:

P[𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑠𝑘, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑘,𝑚)) | (𝑝𝑘, 𝑠𝑘)← 𝑘𝑒𝑦_𝑔𝑒𝑛] ≥ 1− 𝛿

We have that Kyber is (1− 𝛿)-correct if and only if the message is always returned
correctly when assuming the inequality:

‖𝑒𝑇 𝑟 + 𝑒2 + 𝑐𝑣 − 𝑠𝑇 𝑒1 + 𝑐𝑇
𝑡 𝑟 − 𝑠𝑇 𝑐𝑢‖∞ < ⌈𝑞/4⌋

Using Theorem 5.1, we deduce the (1− 𝛿)-correctness of Kyber.

Corollary. Let 𝛿 = P
[︁
‖𝑒𝑇 𝑟 + 𝑒2 + 𝑐𝑣 − 𝑠𝑇 𝑒1 + 𝑐𝑇

𝑡 𝑟 − 𝑠𝑇 𝑐𝑢‖∞ ≥ ⌈𝑞/4⌋
]︁
. Then Kyber is

(1− 𝛿)-correct.

The formalization of the proof of Theorem 5.1 can be found in [11]. One problem
encountered during the formalization was that ‖ · ‖∞ is not a norm. This is not explicitly
mentioned in the Kyber paper [1] and indeed poses a problem in the proof which we
will discuss in greater detail in the next section. In short: We cannot follow that
𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦1 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠_𝑝𝑜𝑙𝑦1 𝑚) = 0 in the last step of the correctness proof
unless 𝑞 ≡ 1 mod 4.

Another painful step in the proof was to ensure that all calculations are conform with
the residue classes modulo the polynomial 𝑥𝑛 + 1. Indeed, in Isabelle the type casting is
explicit, so one always has to channel through all type casts. Especially, one always has
to show that the implications hold independently from the representative chosen from a
residue class. In some cases, we also presume natural embeddings and isomorphisms to
hold in pen-and-paper proofs which have to be stated explicitly in Isabelle (for example
the 𝑡𝑜_𝑚𝑜𝑑𝑢𝑙𝑒 function mentioned in the previous section). Thus, formalizations are
much more verbose.

Before we can start the proof of Theorem 5.1, we need to show an auxiliary lemma on
the estimation of the compression error.



Lemma 5.2. Let 𝑥 be an element of Z𝑞 and 𝑥′ = 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥) its image
under compression and decompression with 2𝑑 < 𝑞. Then we have:

|𝑥′ − 𝑥 mod± 𝑞| ≤ ⌈𝑞/2𝑑+1⌋

Proof. Let 𝑥 be the representative in {0, . . . , 𝑞 − 1}. Then consider two cases, namely
𝑥 < ⌈𝑞 − 𝑞

2𝑑+1 ⌉ and 𝑥 ≥ ⌈𝑞 − 𝑞
2𝑑+1 ⌉. These cases arise from the distinction whether

the modulo reduction in the definition of the compression function is triggered or not.
Indeed, we have 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥 = ⌈2𝑑

𝑞 𝑥⌋ mod 2𝑑 where 2𝑑

𝑞 𝑥 < 2𝑑, but ⌈2𝑑

𝑞 𝑥⌋ = 2𝑑 if and
only if 𝑥 ≥ ⌈𝑞 − 𝑞

2𝑑+1 ⌉. In the latter case, the modulo operation in the compression
function is activated and returns 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑑 𝑥 = 0. In the following, we will abbreviate
the compression function by 𝑐𝑜𝑚𝑝 and the decompression function by 𝑑𝑒𝑐𝑜𝑚𝑝.

Case 1: Let 𝑥 < ⌈𝑞 − 𝑞
2𝑑+1 ⌉. Then the modulo reduction in the compression function

𝑐𝑜𝑚𝑝𝑑 𝑥 = ⌈2𝑑

𝑞 𝑥⌋ mod 2𝑑 = ⌈2𝑑

𝑞 𝑥⌋ is not triggered. Thus we get:

|𝑥′ − 𝑥| = |𝑑𝑒𝑐𝑜𝑚𝑝𝑑 (𝑐𝑜𝑚𝑝𝑑 𝑥)− 𝑥| =

=
⃒⃒⃒⃒
⃒𝑑𝑒𝑐𝑜𝑚𝑝𝑑 (𝑐𝑜𝑚𝑝𝑑 𝑥)− 𝑞

2𝑑
· 𝑐𝑜𝑚𝑝𝑑 𝑥+ 𝑞

2𝑑
· 𝑐𝑜𝑚𝑝𝑑 𝑥−

𝑞

2𝑑
· 2𝑑

𝑞
· 𝑥
⃒⃒⃒⃒
⃒ ≤

≤
⃒⃒⃒⃒
𝑑𝑒𝑐𝑜𝑚𝑝𝑑 (𝑐𝑜𝑚𝑝𝑑 𝑥)− 𝑞

2𝑑
· 𝑐𝑜𝑚𝑝𝑑 𝑥

⃒⃒⃒⃒
+ 𝑞

2𝑑
·
⃒⃒⃒⃒
⃒𝑐𝑜𝑚𝑝𝑑 𝑥−

2𝑑

𝑞
· 𝑥
⃒⃒⃒⃒
⃒ =

=
⃒⃒⃒⃒⌈︂
𝑞

2𝑑
· 𝑐𝑜𝑚𝑝𝑑 𝑥

⌋︂
− 𝑞

2𝑑
· 𝑐𝑜𝑚𝑝𝑑 𝑥

⃒⃒⃒⃒
+ 𝑞

2𝑑
·
⃒⃒⃒⃒
⃒
⌈︃

2𝑑

𝑞
· 𝑥
⌋︃
− 2𝑑

𝑞
· 𝑥
⃒⃒⃒⃒
⃒ ≤

≤ 1
2 + 𝑞

2𝑑
· 1

2 = 𝑞

2𝑑+1 + 1
2

Since 𝑥′ − 𝑥 is an integer, we also get:

|𝑥′ − 𝑥| ≤
⌊︂

𝑞

2𝑑+1 + 1
2

⌋︂
=
⌈︂

𝑞

2𝑑+1

⌋︂
Therefore also |𝑥′ − 𝑥| ≤ ⌊𝑞/2⌋ such that the 𝑚𝑜𝑑± operation does not change the
outcome. Finally for this case, we get

|𝑥′ − 𝑥 mod± 𝑞| ≤
⌈︂

𝑞

2𝑑+1

⌋︂
Case 2: Let 𝑥 ≥ ⌈𝑞− 𝑞

2𝑑+1 ⌉. Then the modulo operation in the compression results in
the compression to zero, i.e., 𝑐𝑜𝑚𝑝𝑑 𝑥 = 0. Using the assumption on 𝑥, we get:

|𝑥′ − 𝑥 mod± 𝑞| = |𝑑𝑒𝑐𝑜𝑚𝑝𝑑 0− 𝑥 mod± 𝑞| =
= | − 𝑥 mod± 𝑞| = | − 𝑥+ 𝑞| ≤

≤
⃒⃒⃒⃒⌈︂
𝑞 − 𝑞

2𝑑+1

⌉︂
− 𝑞

⃒⃒⃒⃒
=
⌊︂

𝑞

2𝑑+1

⌋︂
≤
⌈︂

𝑞

2𝑑+1

⌋︂



The proof of Theorem 5.1 proceeds as follows. Given 𝐴, 𝑠, 𝑟, 𝑒, 𝑒1, 𝑒2 and the message
𝑚, we calculate 𝑡, 𝑢 and 𝑣 using the key generation and encryption algorithm. We define
𝑡̃, 𝑢̃ and 𝑣 to be the decompressed values of 𝑡, 𝑢 and 𝑣, respectively. With the compression
errors 𝑐𝑡, 𝑐𝑢 and 𝑐𝑣, we get the equations:

𝑡̃ = 𝐴𝑠+ 𝑒+ 𝑐𝑡

𝑢̃ = 𝐴𝑇 𝑟 + 𝑒1 + 𝑐𝑢

𝑣 = 𝑡̃
𝑇
𝑟 + 𝑒2 + ⌈𝑞/2⌋ ·𝑚+ 𝑐𝑣

This leads to the calculation in the decryption:

𝑣 − 𝑠𝑇 𝑢̃ = 𝑒𝑇 𝑟 + 𝑒2 + 𝑐𝑣 + 𝑐𝑇
𝑡 𝑟 − 𝑠𝑇 𝑒1 − 𝑠𝑇 𝑐𝑢 + ⌈𝑞/2⌋ ·𝑚

We accumulate all error terms in a new variable 𝑤:

𝑤 := 𝑒𝑇 𝑟 + 𝑒2 + 𝑐𝑣 + 𝑐𝑇
𝑡 𝑟 − 𝑠𝑇 𝑒1 − 𝑠𝑇 𝑐𝑢

and get ‖𝑤‖∞ < ⌈𝑞/4⌋ from the assumptions.
Now, we need to show that 𝑚′ := 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑢, 𝑣, 𝑠) is indeed the original message

𝑚. We consider the value of 𝑣 − 𝑠𝑇 𝑢̃, its compression with 𝑑 = 1, namely 𝑚′, and the
decompressed value 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠1 𝑚

′. Since the compression depth is 1, we get 𝑚′ ∈ {0, 1}.
Thus:

𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠1 𝑚
′ = ⌈𝑞/2 ·𝑚′⌋ = ⌈𝑞/2⌋ ·𝑚′

Using Lemma 5.2, it follows that:

‖𝑤 + ⌈𝑞/2⌋(𝑚−𝑚′)‖∞ = ‖𝑣 − 𝑠𝑇 𝑢̃− 𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠1 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠1 (𝑣 − 𝑠𝑇 𝑢̃))‖∞ ≤ ⌈𝑞/4⌋

Using the triangle inequality on ‖ · ‖∞, we calculate

‖⌈𝑞/2⌋(𝑚−𝑚′)‖∞ = ‖𝑤 + ⌈𝑞/2⌋(𝑚−𝑚′)− 𝑤‖∞ ≤
≤ ‖𝑤 + ⌈𝑞/2⌋(𝑚−𝑚′)‖∞ + ‖𝑤‖∞ <

< ⌈𝑞/4⌋+ ⌈𝑞/4⌋ = 2⌈𝑞/4⌋

It remains to show that we can indeed deduce 𝑚 = 𝑚′ which concludes the proof of
Theorem 5.1. According to the last step from the proof of (1− 𝛿)-correctness in [1], this
follows directly for any odd prime 𝑞. However, therein lies a hidden problem. Indeed, for
𝑞 ≡ 3 mod 4, we cannot conclude the proof with this argument. In the next section, we
discuss why we can only deduce this step under the assumption that 𝑞 ≡ 1 mod 4.

6. Additional Property 𝑞 ≡ 1 mod 4
Consider the following: Given the inequality ‖⌈𝑞/2⌋ · (𝑚−𝑚′)‖∞ < 2 · ⌈𝑞/4⌋ we need to
show that indeed 𝑚 = 𝑚′. We prove this statement by contradiction. Assume that there



exists a coefficient of 𝑚−𝑚′ that is different from zero. Since 𝑚 and 𝑚′ are polynomials
with coefficients in {0, 1}, a non-zero coefficient can either be 1 or −1. Then we get

‖⌈𝑞/2⌋ · (𝑚−𝑚′)‖∞ = |⌈𝑞/2⌋ · (±1) mod± 𝑞| = . . .

For all numbers greater than 2, all primes are odd numbers. Thus we have ⌈𝑞/2⌋ =
(𝑞 + 1)/2. We continue our calculation:

· · · =
⃒⃒⃒⃒
𝑞 + 1

2 mod± 𝑞

⃒⃒⃒⃒
=
⃒⃒⃒⃒−𝑞 + 1

2

⃒⃒⃒⃒
= 𝑞 − 1

2 = 2 · 𝑞 − 1
4 = . . .

since the 𝑚𝑜𝑑± operation reduces 𝑞+1
2 to the representative −𝑞+1

2 . Now we need to relate
𝑞−1

4 to ⌈𝑞/4⌋. We have two cases:
Case 1: For 𝑞 ≡ 1 mod 4 we indeed get the equality 𝑞−1

4 = ⌈𝑞/4⌋ that we need. In
this case we have

‖⌈𝑞/2⌋ · (𝑚−𝑚′)‖∞ = 2 · ⌈𝑞/4⌋
which is a contradiction to our assumption.

Case 2: For 𝑞 ≡ 3 mod 4 we get the strict inequality 𝑞−1
4 < 𝑞+1

4 = ⌈𝑞/4⌋ resulting in

‖⌈𝑞/2⌋ · (𝑚−𝑚′)‖∞ < 2 · ⌈𝑞/4⌋

which is no contradiction to the assumption. Indeed in this case we cannot deduce
𝑚 = 𝑚′, since it is possible that a coefficient of 𝑚−𝑚′ is non-zero.

Consider this short exapmle: Let 𝑞 = 7 (≡ 3 mod 4, thus we are in case 2), 𝑚 = 0
and 𝑚′ = 1. In this case, the inequality of the assumption holds

‖⌈𝑞/2⌋ · (𝑚−𝑚′)‖∞ = 3 < 4 = 2 · ⌈𝑞/4⌋

but 𝑚 ̸= 𝑚′.
Therefore Theorem 5.1 only holds if the modulus 𝑞 fulfils the property 𝑞 ≡ 1 mod 4.
In the specification of Kyber, concrete values for the variables of the system are

given. However, for different security levels or implementations different values for the
parameters in Kyber are used. For example in the status report of the third round in
the post-quantum crypotography standardization process by the National Institute for
Standards and Technology [17], the modulus 𝑞 is chosen to be 3329, whereas in the first
paper about Kyber [1] and the specification and documentations paper [2], the modulus
was chosen as 𝑞 = 7681. Considering possible changes to these variables, it is important
to enable the verified proof to cover all possible cases.

During the proof, we encountered a problem for arbitrary primes 𝑞. In the last step
of the correctness proof, the homogeneity of the redefined function ‖ · ‖∞ is assumed.
Unfortunately, by the recentering of the infinity norm using the 𝑚𝑜𝑑± definition instead
of the regular modulo operation, the property of homogeneity was lost. This causes the
problem that we cannot deduce that the message 𝑚 and its computed output of the
decryption 𝑚′ are indeed the same for arbitrary primes. For the primes chosen in the
specifications [1], [2] and [17] however, this implication is indeed true because they fulfil
the property 𝑞 ≡ 1 mod 4.



Indeed, the modulus 𝑞 is chosen according to a much more rigid scheme: In order
to implement the multiplication to compute faster, the Number Theoretic Transform
(NTT) is used. In the case of Kyber, the NTT is computed on 𝑅𝑞 = Z𝑞[𝑥]/(𝑥𝑛 + 1). The
requirement for NTT on the modulus 𝑞 is:

𝑞 ≡ 1 mod 𝑛

For 𝑞 = 7681 we have 7681 = 30 · 256 + 1, whereas for 𝑞 = 3329 we get 3329 = 13 · 256 + 1.
Since 𝑛 is a power of 2, we can automatically infer the property 𝑞 ≡ 1 mod 4.

We will have a more thorough look at the number theoretic transform used in Kyber
in the next section.

7. NTT and the Convolution Theorem
The number theoretic transform is used to speed up the multiplication on Z𝑞[𝑥]/(𝑥𝑛+1) =
𝑅𝑞 and is based on the concepts of the Discrete Fourier Transform. An introduction to
the use of the NTT for lattice-based cryptography can be found in [3] or for the special
case of the CRYSTALS suite in [19]. The NTT as a nega-cyclic convolution is described
in [4].

The standard multiplication for 𝑓 = ∑︀𝑛−1
𝑘=0 𝑓𝑘𝑥

𝑘 and 𝑔 = ∑︀𝑛−1
𝑘=0 𝑔𝑘𝑥

𝑘 in 𝑅𝑞 is given by:

𝑓 · 𝑔 =
𝑛−1∑︁
𝑘=0

⎛⎝𝑛−1∑︁
𝑗=0

(−1)𝑘−𝑗 div 𝑛𝑓𝑗𝑔𝑘−𝑗 mod 𝑛

⎞⎠𝑥𝑘

Thus, multiplication is done using 𝒪(𝑛2) multiplications on coefficients. Unlike
multiplication, addition is calculated in 𝒪(𝑛) since addition is done entry-wise.
Therefore, the most expensive part of calculations in the Kyber crypto algorithms
is the multiplication. Using a smarter way to multiply will make the calculations in
Kyber faster.

The usual NTT requires the field Z𝑞 to have a 𝑛-th root of unity, that is an element
𝜔 with 𝜔𝑛 = 1. This can be achieved by setting 𝑞 ≡ 1 mod 𝑛. However, since we work
over the quotient ring 𝑍𝑞[𝑥]/(𝑥𝑛 + 1), we have to consider the nega-cyclic property that
𝑥𝑛 ≡ −1 mod 𝑥𝑛 + 1 instead of the cyclic properties required by the NTT. Moreover,
Kyber uses a “twisted” alternative which is easier to implement but requires the existence
of a 2𝑛-th root of unity.

Considering all the constraints mentioned above, let 𝜓 be a 2𝑛-th root of unity in 𝑅𝑞.
Then we define the nega-cyclic twisted NTT on 𝑅𝑞 as used in Kyber as the following.

Definition 3 (NTT). Let 𝑓 = ∑︀𝑛−1
𝑘=0 𝑓𝑘𝑥

𝑘 ∈ 𝑅𝑞, then the NTT of 𝑓 is defined by:

𝑁𝑇𝑇 (𝑓) =
𝑛−1∑︁
𝑘=0

⎛⎝𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑘+1)

⎞⎠𝑥𝑘

The inverse transform is scaled by the factor of 𝑛−1 and is given by the following.



Definition 4 (inverse NTT). Let 𝑓 = ∑︀𝑛−1
𝑘=0 𝑔𝑘𝑥

𝑘 ∈ 𝑅𝑞 be in the image of the NTT,
then the inverse NTT of 𝑓 is defined by:

𝑖𝑛𝑣𝑁𝑇𝑇 (𝑓) =
𝑛−1∑︁
𝑘=0

𝑛−1

⎛⎝𝑛−1∑︁
𝑗=0

𝑔𝑗𝜓
−𝑘(2𝑗+1)

⎞⎠𝑥𝑘

We formalized a proof of correctness of the NTT and its inverse.

Theorem 7.1. Let 𝑓 be a polynomial in 𝑅𝑞 and 𝑔 a polynomial in NTT domain. Then
𝑁𝑇𝑇 and 𝑖𝑛𝑣𝑁𝑇𝑇 are inverses:

𝑖𝑛𝑣𝑁𝑇𝑇 (𝑁𝑇𝑇 (𝑓)) = 𝑓 and 𝑁𝑇𝑇 (𝑖𝑛𝑣𝑁𝑇𝑇 (𝑔)) = 𝑔

Proof. We show the equality for every coefficient. Here, 𝑝𝑘 denotes the coefficient of 𝑥𝑘

in the polynomial 𝑝.

𝑖𝑛𝑣𝑁𝑇𝑇 (𝑁𝑇𝑇𝑓))𝑘 = 𝑛−1

⎛⎝𝑛−1∑︁
𝑖=0

⎛⎝𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑖+1)

⎞⎠𝜓−𝑘(2𝑖+1)

⎞⎠ =

= 𝑛−1
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗−𝑘

(︃
𝑛−1∑︁
𝑖=0

𝜓(𝑗−𝑘)(2𝑖)
)︃

= . . .

We want to compute the geometric sum ∑︀𝑛−1
𝑖=0 (𝜓2(𝑗−𝑘))𝑖. If 𝑗 = 𝑘, then the whole sum

collapses to a sum over ones, reulting in 𝑛. But if 𝑗 ̸= 𝑘, we get
𝑛−1∑︁
𝑖=0

(𝜓2(𝑗−𝑘))𝑖 = 𝜓2(𝑗−𝑘)𝑛 − 1
𝜓2(𝑗−𝑘) − 1

= 0

using that 𝜓 is a 𝑛-th root of unity, that is 𝜓𝑛 = 1. We continue our calculation:

· · · = 𝑛−1
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗−𝑘(if 𝑗 = 𝑘 then 𝑛 else 0) = 𝑛−1𝑛𝑓𝑘 = 𝑓𝑘

This finishes the first inversion property.
The proof of the second property proceeds similarly, but with inverted roles of 𝜓 and

𝜓−1.

Using this transformation, we can reduce multiplications to compute within 𝒪(𝑛 log(𝑛))
using a fast version of the NTT. To apply the NTT to the Kyber algorithms, we need
the convolution theorem. It states that multiplication of two polynomials in 𝑅𝑞 can be
done index-wise over the NTT domain.

Theorem 7.2. Let 𝑓 and 𝑔 be two polynomials in 𝑅𝑞. Let (·) denote the multiplication
of polynomials in 𝑅𝑞 and (⊙) the coefficient-wise multiplication of two polynomials in the
NTT domain. Then the convolution theorem states:

𝑁𝑇𝑇 (𝑓 · 𝑔) = 𝑁𝑇𝑇 (𝑓)⊙𝑁𝑇𝑇 (𝑔)



Proof. We show the equality for every coefficient. Again, 𝑝𝑘 denotes the coefficient of 𝑥𝑘

in the polynomial 𝑝.

𝑁𝑇𝑇 (𝑓 · 𝑔)𝑘 =
𝑛−1∑︁
𝑖=0

⎛⎝𝑛−1∑︁
𝑗=0

(−1)𝑖−𝑗 div 𝑛𝑓𝑗𝑔𝑖−𝑗 mod 𝑛

⎞⎠𝜓𝑖(2𝑘+1) =

=
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑘+1)

(︃
𝑛−1∑︁
𝑖=0

(−1)𝑖−𝑗 div 𝑛𝜓𝑖(2𝑘+1)𝜓−𝑗(2𝑘+1)𝑔𝑖−𝑗 mod 𝑛

)︃
= . . .

Using 𝜓𝑛−1 = −1, we can deduce that (−1)𝑖−𝑗 div 𝑛𝜓(𝑖−𝑗)(2𝑘+1) = 𝜓(𝑖−𝑗 mod 𝑛)(2𝑘+1) and
thus our calculation continues:

. . . =
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑘+1)

(︃
𝑛−1∑︁
𝑖=0

𝜓(𝑖−𝑗 mod 𝑛)(2𝑘+1)𝑔𝑖−𝑗 mod 𝑛

)︃
=

=
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑘+1)

(︃
𝑛−1∑︁
𝑖′=0

𝜓𝑖′(2𝑘+1)𝑔𝑖′

)︃
=

=

⎛⎝𝑛−1∑︁
𝑗=0

𝑓𝑗𝜓
𝑗(2𝑘+1)

⎞⎠ · (︃𝑛−1∑︁
𝑖′=0

𝜓𝑖′(2𝑘+1)𝑔𝑖′

)︃
=

= 𝑁𝑇𝑇 (𝑓)𝑘 ·𝑁𝑇𝑇 (𝑔)𝑘

where we reindex the sum over 𝑖 to a sum over 𝑖− 𝑗 mod 𝑛 using the cyclic property of
the modulo function. This shows that multiplication is indeed performed coefficient-wise
on the NTT domain.

Together with Theorem 7.1 this yields the fast multiplication formula in Kyber.

Theorem 7.3. Let 𝑓 and 𝑔 be two polynomials in 𝑅𝑞. Let (·) denote the multiplication
of polynomials in 𝑅𝑞 and ⊙ the coefficient-wise multiplication of two polynomials in the
NTT domain. Then multiplication in 𝑅𝑞 can be computed by:

𝑓 · 𝑔 = 𝑖𝑛𝑣𝑁𝑇𝑇 (𝑁𝑇𝑇 (𝑓)⊙𝑁𝑇𝑇 (𝑔))

The formalization of the NTT for Kyber went relatively smoothly since it is based on
the formalization of the standard NTT by Ammer in [20]. The only minor hindrances
were the conversion between the types and working with representatives over 𝑅𝑞 as well
as the rewriting of huge sums.

8. Conclusion
In this presentation, we described the formalization of the CRYSTALS-KYBER key-
generation, encryption and decryption algorithms and verified the proof of (1 − 𝛿)-
correctness under the assumption 𝑞 ≡ 1 mod 4. As Kyber was designed to compute fast
multiplications using the NTT, the property 𝑞 ≡ 1 mod 4 is obtained from the necessary



requirements for the NTT. Therefore, the formalization of the NTT and its convolution
theorem were inspected.

Building on these results, the current algorithm formalization can still be extended
by the formalization of the module-LWE assumptions and the sampling techniques for
random choice or other refinement steps. It would also be very interesting to formalize
the hardness results of the module-LWE that Kyber is building upon.
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