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Abstract. We study satisfiability modulo the theory of finite fields and
give a decision procedure for this theory. We implement our procedure for
prime fields inside the cvc5 SMT solver. Using this theory, we construct
SMT queries that encode translation validation verification conditions
for various zero knowledge proof compilers applied to Boolean computa-
tions. We evaluate our procedure on these benchmarks. Our experiments
show that our implementation is superior to previous approaches (which
encode field arithmetic using integers or bit-vectors).

1 Introduction

Finite fields are critical to the design of recent cryptosystems. For instance, el-
liptic curve operations are defined in terms of operations in a finite field. Also,
Zero-Knowledge Proofs (ZKPs) and Multi-Party Computations (MPCs), pow-
erful tools for building secure and private systems, often require key properties
of the system to be expressed as operations in a finite field.

Field-based cryptosystems already safeguard everything from our money
to our privacy. Over 80% of our TLS connections, for example, use elliptic
curves [4, 68]. Private cryptocurrencies [34, 61, 90] built on ZKPs have billion-
dollar market capitalizations [46, 47]. And MPC protocols have been used to
operate auctions [17], facilitate sensitive cross-agency collaboration in the US
federal government [5], and compute cross-company pay gaps [8]. These systems
safeguard our privacy, assets, and government data. Their importance justifies
spending considerable effort to ensure that the systems are free of bugs that
could compromise the resources they are trying to protect; thus, they are prime
targets for formal verification.

However, verifying field-based cryptosystems is challenging, in part because
current automated verification tools do not reason directly about finite fields.
Many tools use Satisfiability Modulo Theories (SMT) solvers as a back-end [9, 29,
35, 94, 96]. SMT solvers [7, 10, 12, 20, 28, 37, 75, 78, 79] are automated reasoners
that determine the satisfiability of formulas in first-order logic with respect to one
or more background theories. They combine propositional search with specialized
reasoning procedures for these theories, which model common data types such
as Booleans, integers, reals, bit-vectors, arrays, algebraic datatypes, and more.
Since SMT solvers do not currently support a theory of finite fields, SMT-based
tools must encode field operations using another theory.
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There are two natural ways to represent finite fields using commonly sup-
ported theories in SMT, but both are ultimately inefficient. Recall that a finite
field of prime order can be represented as the integers with addition and multi-
plication performed modulo a prime p. Thus, field operations can be represented
using integers or bit-vectors: both support addition, multiplication, and mod-
ular reduction. However, both approaches fall short. Non-linear integer reason-
ing is notoriously challenging for SMT solvers, and bit-vector solvers perform
abysmally on fields of cryptographic size (hundreds of bits).

In this paper, we develop for the first time a direct solver for finite fields
within an SMT solver. We use well-known ideas from computer algebra (specifi-
cally, Gröbner bases [21] and triangular decomposition [6, 100]) to form the basis
of our decision procedure. However, we improve on this baseline in two impor-
tant ways. First, our decision procedure does not manipulate field polynomials
(i.e., those of form Xp −X). As expected, this results in a loss of completeness
at the Gröbner basis stage. However, surprisingly, this often does not matter.
Furthermore, completeness is recovered during the model construction algorithm
(albeit in a rather rudimentary way). This modification turns out to be crucial for
obtaining reasonable performance. Second, we implement a proof-tracing mech-
anism in the Gröbner basis engine, thereby enabling it to compute unsatisfiable
cores, which is also very beneficial in the context of SMT solving. Finally, we
implement all of this as a theory solver for prime-order fields inside the cvc5
SMT solver.

To guide research in this area, we also give a first set of QF_FF (quantifier-free,
finite field) benchmarks, obtained from the domain of ZKP compiler correctness.
ZKP compilers translate from high-level computations (e.g., over Booleans, bit-
vectors, arrays, etc.) to systems of finite field constraints that are usable by ZKPs.
We instrument existing ZKP compilers to produce translation validation [87] ver-
ification conditions, i.e. conditions that represent desirable correctness properties
of a specific compilation. We give these compilers concrete Boolean computa-
tions (which we sample at random), and construct SMT formulas capturing the
correctness of the ZKP compilers’ translations of those computations into field
constraints. We represent the formulas using both our new theory of finite fields
and also the alternative theory encodings mentioned above.

We evaluate our tool on these benchmarks and compare it to the approaches
based on bit-vectors, integers, and pure computer algebra (without SMT). We
find that our tool significantly outperforms the other solutions. Compared to the
best previous solution (we list prior alternatives in Section 7), it is 6× faster and
it solves 2× more benchmarks.

In sum, our contributions are:

1. a definition of the theory of finite fields in the context of SMT;
2. a decision procedure for this theory that avoids field polynomials and pro-

duces unsatisfiable cores;
3. the first public theory solver for this theory (implemented in cvc5); and
4. the first set of QF_FF benchmarks, which encode translation validation queries

for ZKP compilers on Boolean computations.
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In the rest of the paper, we discuss related work (§1.1), cover background
and notation (§2), define the theory of finite fields (§3), give a decision procedure
(§4), describe our implementation (§5), explain the benchmarks (§6), and report
on experiments (§7).

1.1 Related Work

There is a large body of work on computer algebra, with many algorithms imple-
mented in various tools [1, 18, 33, 39, 51, 54, 60, 74, 101, 102]. However, the focus
in this work is on quickly constructing useful algebraic objects (e.g., a Gröbner
basis), rather than on searching for a solution to a set of field constraints.

One line of recent work [56, 57] by Hader and Kovács considers SMT-oriented
field reasoning. One difference with our work is that it scales poorly with field
size because it uses field polynomials to achieve completeness. Furthermore, their
solver is not public.

Others consider verifying field constraints used in ZKPs. One paper surveys
possible approaches [98], and another considers proof-producing ZKP compila-
tion [26]. However, neither develops automated, general-purpose tools.

Still other works study automated reasoning for non-linear arithmetic over
reals and integers [3, 25, 27, 31, 49, 62–64, 72, 76, 97, 99]. A key challenge is
reasoning about comparisons. We work over finite fields and do not consider
comparisons because they are used for neither elliptic curves nor most ZKPs.

Further afield, researchers have developed techniques for verified algebraic
reasoning in proof assistants [15, 66, 77, 81], with applications to mathemat-
ics [19, 30, 53, 67] and cryptography [41, 42, 86, 92]. In contrast, our focus is on
fully automated reasoning about finite fields.

2 Background

2.1 Algebra

Here, we summarize algebraic definitions and facts that we will use; see [73,
Chapters 1 through 8] or [36, Part IV] for a full presentation.

Finite Fields A finite field is a finite set equipped with binary operations +
and × that have identities (0 and 1 respectively), have inverses (save that there
is no multiplicative inverse for 0), and satisfy associativity, commutativity, and
distributivity. The order of a finite field is the size of the set. All finite fields have
order q = pe for some prime p (called the characteristic) and positive integer e.
Such an integer q is called a prime power.

Up to isomorphism, the field of order q is unique and is denoted Fq, or F when
the order is clear from context. The fields Fqd for d > 1 are called extension fields
of Fq. In contrast, Fq may be called the base field. We write F ⊂ G to indicate
that F is a field that is isomorphic to the result of restricting field G to some
subset of its elements (but with the same operations). We note in particular that
Fq ⊂ Fqd . A field of prime order p is called a prime field.
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Polynomials For a finite field F and formal variables X1, . . . , Xk, F[X1, . . . , Xk]
denotes the set of polynomials in X1, . . . , Xk with coefficients in F. By taking
the variables to be in F, a polynomial f ∈ F[X1, . . . , Xk] can be viewed as a
function from Fk → F. However, by taking the variables to be in an extension
G of F, f can also be viewed as function from Gk → G.

For a set of polynomials S = {f1, . . . , fm} ⊂ Fq[X1, . . . , Xk], the set I =
{g1f1 + · · ·+ gmfm : gi ∈ Fq[X1, . . . , Xk]} is called the ideal generated by S and
is denoted ⟨f1, . . . , fm⟩ or ⟨S⟩. In turn, S is called a basis for the ideal I.

The variety of an ideal I in field G ⊃ F is denoted VG(I), and is the set
{x ∈ Gk : ∀f ∈ I, f(x) = 0}. That is, VG(I) contains the common zeros of
polynomials in I, viewed as functions over G. Note that for any set of polynomials
S that generates I, VG(I) contains exactly the common zeros of S in G. When
the space G is just F, we denote the variety as V(I). An ideal I that contains 1
contains all polynomials and is called trivial.

One can show that if I is trivial, then V(I) = ∅. However, the converse does
not hold. For instance, X2 + 1 ∈ F3[X] has no zeros in F3, but 1 ̸∈ ⟨X2 + 1⟩.
But, one can also show that I is trivial iff for all extensions G of F, VG(I) = ∅.

The field polynomial for field Fq in variable X is Xq −X. Its zeros are all of
Fq and it has no additional zeros in any extension of Fq. Thus, for an ideal I of
polynomials in F[X1, . . . , Xk] that contains field polynomials for each variable
Xi, I is trivial iff V(I) = ∅. For this reason, field polynomials are a common tool
for ensuring the completeness of ideal-based reasoning techniques [50, 56, 98].

Representation We represent Fp as the set of integers {0, 1, . . . , p− 1}, with the
operations + and × performed modulo p. The representation of Fpe with e > 1 is
more complex. Unfortunately, the set {0, 1, . . . , pe− 1} with + and × performed
modulo pe is not a field because multiples of p do not have multiplicative in-
verses. Instead, we represent Fpe as the set of polynomials in F[X] of degree
less than e. The operations + and × are performed modulo q(X), an irreducible
polynomial4 of degree e [73, Chapter 6]. There are pe such polynomials, and so
long as q(X) is irreducible, all (save 0) have inverses. Note that this definition
of Fpe generalizes Fp, and captures the fact that Fp ⊂ Fpe .

2.2 Ideal Membership

The ideal membership problem is to determine whether a given polynomial p is
in the ideal generated by a given set of polynomials D. We summarize definitions
and facts relevant to algorithms for this problem; see [32] for a full presentation.

Monomial Ordering In F[X1, . . . , Xk], a monomial is a polynomial of form Xe1
1 · · ·X

ek
k

with non-negative integers ei. A monomial ordering is a total ordering on mono-
mials such that for all monomials p, q, r, if p < q, then pr < qr.

The lexicographical ordering for monomials Xe1
1 · · ·X

ek
k orders them lexico-

graphically by the tuple (e1, . . . , ek). The graded-reverse lexicographical (grevlex)

4 Recall that an irreducible polynomial cannot be factored into two or more non-
constant polynomials.
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ordering is lexicographical by the tuple (e1 + · · · + ek,−ek, . . . ,−e1). With re-
spect to an ordering, lm(f) denotes the greatest monomial of a polynomial f ,
and lt(f) denotes its term.

Reduction For polynomials p and d, if lm(d) divides a term t of p, then we say
that p reduces to r modulo d (written p →d r) for r = p − t

lm(d)d. For a set of
polynomials D, we write p →D r if p →d r for some d ∈ D. Let →∗

D be the
transitive closure of →D. We define p ⇒D r to hold when p →∗

D r and there is
no r′ such that r →D r′.

Reduction is a sound—but incomplete—algorithm for ideal membership.
That is, one can show that p ⇒D 0 implies p ∈ ⟨D⟩, but the converse does
not hold in general.

Gröbner Bases Define the s-polynomial for polynomials p and q, by spoly(p, q) =
lcm(lm(p),lm(q))

lt(p) · q − lcm(lm(p),lm(q))
lt(q) · p. A Gröbner basis (GB) [21] is a set of poly-

nomials P characterized by the following equivalent conditions:

1. ∀p, p′ ∈ P , spoly(p, p′)⇒P 0 (closure under the reduction of s-polynomials)
2. ∀p ∈ ⟨P ⟩, p⇒P 0 (reduction is a complete test for ideal membership)

Gröbner bases are useful for deciding ideal membership. From the first charac-
terization, one can build algorithms for constructing a Gröbner basis for any
ideal [21]. Then, the second characterization gives an ideal membership test.
When P is a GB, the relation ⇒P is a function (i.e., →P is confluent), and it
can be efficiently computed [1, 21]; thus, this test is efficient.

A Gröbner basis engine takes a set of generators G for some ideal I and
computes a Gröbner basis for I. We describe the high-level design of such engines
here. An engine constructs a sequence of bases G0, G1, G2, . . . (with G0 = G)
until some Gi is a Gröbner basis. Each Gi is constructed from Gi−1 according to
one of three types of steps. First, for some p, q ∈ Gi−1 such that spoly(p, q)⇒Gi−1

r ̸= 0, the engine can set Gi = Gi−1 ∪ {r}. Second, for some p ∈ Gi−1 such that
p⇒Gi−1\{p} r ̸= p, the engine can set Gi = (Gi−1 \ {p}) ∪ {r}. Third, for some
p ∈ Gi−1 such that p ⇒Gi−1\{p} 0, the engine can set Gi = Gi−1 \ {p}. Notice
that all rules depend on the current basis; some add polynomials, and some
remove them. In general, it is unclear which sequence of steps will construct a
Gröbner basis most quickly: this is an active area of research [1, 18, 43, 45].

2.3 Zero Knowledge Proofs

Zero-knowledge proofs allow one to prove that some secret data satisfies a public
property, without revealing the data itself. See [95] for a full presentation; we
give a brief overview here. There are two parties: a verifier V and a prover P. V
knows a public instance x and asks P to show that it has knowledge of a secret
witness w satisfying a public predicate ϕ(x,w). To do so, P runs an efficient
(i.e., polytime in a security parameter λ) proving algorithm Prove(ϕ, x,w)→ π
and sends the resulting proof π to V. Then, V runs an efficient verification
algorithm Verify(ϕ, x, π)→ {0, 1} that accepts or rejects the proof. A system for
Zero-Knowledge Proofs of knowledge (ZKPs) is a (Prove,Verify) pair with:
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– completeness: If ϕ(x,w), then Pr[Verify(ϕ, x,Prove(ϕ, x,w)) = 0] ≤ negl(λ),5
– computational knowledge soundness [16]: (informal) a polytime adversary

that does not know w satisfying ϕ can produce an acceptable π with proba-
bility at most negl(λ).

– zero-knowledge [52]: (informal) π reveals nothing about w, other than its
existence.

ZKP applications are manifold. ZKPs are the basis of private cryptocurren-
cies such as Zcash and Monero, which have a combined market capitalization
of $2.80B as of 30 June 2022 [46, 47]. They’ve also been proposed for auditing
sealed court orders [48], operating private gun registries [65], designing privacy-
preserving middleboxes [55] and more [24, 58].

This breadth of applications is possible because implemented ZKPs are very
general: they support any ϕ checkable in polytime. However, ϕ must be first
compiled to a cryptosystem-compatible computation language. The most com-
mon language is a rank-1 constraint system (R1CS). In an R1CS C, x and w are
together encoded as a vector z ∈ Fm. The system C is defined by three matrices
A,B,C ∈ Fn×m; it is satisfied when Az ◦ Bz = Cz, where ◦ is the element-
wise product. Thus, the predicate can be viewed as n distinct constraints, where
constraint i has form (

∑
j Aijzj)(

∑
j Bijzj) − (

∑
j Cijzj) = 0. Note that each

constraint is a degree ≤ 2 polynomial in m variables that z must be a zero of.
For security reasons, F must be large: its prime must have ≈255 bits.

Encoding The efficiency of the ZKP scales quasi-linearly with n. Thus, it’s
useful to encode ϕ as an R1CS with a minimal number of constraints. Since
equisatifiability—not logical equivalence—is needed, encodings may introduce
new variables.

As an example, consider the Boolean computation a← c1 ∨ · · · ∨ ck. Assume
that c′1, . . . , c

′
k ∈ F are elements in z that are 0 or 1 such that ci ↔ (c′i = 1).

How can one ensure that a′ ∈ F (also in z) is 0 or 1 and a ↔ (a′ = 1)?
Given that there are k − 1 ORs, natural approaches use Θ(k) constraints. One
clever approach is to introduce variable x′ and enforce constraints x′(

∑
i c

′
i) = a′

and (1 − a′)(
∑

i c
′
i) = 0. If any ci is true, a′ must be 1 to satisfy the second

constraint; setting x′ to the sum’s inverse satisfies the first. If all ci are false, the
first constraint ensures a′ is 0. This encoding is correct when the sum does not
overflow; thus, k must be smaller than F’s characteristic.

Optimizations like this can be quite complex. Thus, ZKP programmers use
constraint synthesis libraries [14, 71] or compilers [13, 26, 82, 83, 85, 93, 103] to
generate an R1CS from a high-level description. Such tools support objects like
Booleans, fixed-width integers, arrays, and user-defined data-types. The correct-
ness of these tools is critical to the correctness of any system built with them.

2.4 SMT

We assume usual terminology for many-sorted first order logic with equality ([40]
gives a complete presentation). Let Σ be a many-sorted signature including a
5 f(λ) ≤ negl(λ) if for all c ∈ N, f(λ) = o(λ−c)
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Symbol Arity SMT-LIB Description

n ∈ {0, . . . , q − 1} F ffn The nth element of Fq

+ F× F→ F ff.add Addition in Fq

× F× F→ F ff.mul Multiplication in Fq

Fig. 1: Signature of the theory of Fq

sort Bool and symbol family ≈σ (abbreviated ≈) with sort σ × σ → Bool for all
σ in Σ. A theory is a pair T = (Σ, I), where Σ is a signature and I is a class of
Σ-interpretations. A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is
satisfied by some (resp., no) interpretation in I. Given a (set of) formula(s) S,
we write S |=T ϕ if every interpretationM∈ I that satisfies S also satisfies ϕ.

When using the CDCL(T ) framework for SMT, the reasoning engine for each
theory is encapsulated inside a theory solver. Here, we mention the fragment of
CDCL(T ) that is relevant for our purposes ([80] gives a complete presentation)).

The goal of CDCL(T ) is to check a formula ϕ for satisfiability. A core module
manages a propositional search over the propositional abstraction of ϕ and com-
municates with the theory solver. As the core constructs partial propositional
assignments for the abstract formula, the theory solver is given the literals that
correspond to the current propositional assignment. When the propositional as-
signment is completed (or, optionally, before), the theory solver must determine
whether its literals are jointly satisfiable. If so, it must be able to provide an in-
terpretation in I (which includes an assignment to theory variables) that satisfies
them. If not, it may indicate a strict subset of the literals which are unsatisfiable:
an unsatisfiable core. Smaller unsatisfiable cores usually accelerate the proposi-
tional search.

3 The Theory of Finite Fields

We define the theory TFq of the finite field Fq, for any order q. Its sort and
symbols are indexed by the parameter q; we omit q when clear from context.

The signature of the theory is given in Figure 1. It includes sort F, which
intuitively denotes the sort of elements of Fq and is represented in our proposed
SMT-LIB format as (_ FiniteField q). There is a constant symbol for each
element of Fq, and function symbols for addition and multiplication. Other finite
field operations (e.g., negation, subtraction, and inverses) naturally reduce to this
signature.

An interpretation M of TFq
must interpret: F as Fq, n ∈ {0, . . . , q − 1}

as the nth element of Fq in lexicographical order,6 + as addition in Fq, × as
multiplication in Fq, and ≈ as equality in Fq.

6 For non-prime Fpe , we use the lexicographical ordering of elements represented as
polynomials in Fp[X] modulo the Conway polynomial [84, 91] Cp,e(X). This repre-
sentation is standard [59].
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1 Function DecisionProcedure:
Input: A set of F-literals L in variables X
Output: UNSAT and a core C ⊆ L, or
Output: SAT and a model M : X→ F

2 P ← empty set; Wi ← fresh, ∀i;
3 for si ▷◁i ti ∈ L do
4 if ▷◁i = ≈ then P ← P ∪ {[[si]]− [[ti]]} ;
5 else if ▷◁i = ̸≈ then P ← P ∪ {Wi([[si]]− [[ti]])− 1} ;
6 B ← GB(P );
7 if 1⇒B 0 then return UNSAT, CoreFromTree() ;
8 m← FindZero(P );
9 if m = ⊥ then return UNSAT, L ;

10 else return SAT, {X 7→ z : (X 7→ z) ∈ m,X ∈ X} ;

Fig. 2: The decision procedure for Fq.

Note that in order to avoid ambiguity, we require that the sort of any constant
ffn must be ascribed. For instance, the nth element of Fq would be (as ffn
(_ FiniteField q)). The sorts of non-nullary function symbols need not be
ascribed: they can be inferred from their arguments.

4 Decision Procedure

Recall (§2.4) that a CDCL(T ) theory solver for F must decide the satisfiability of
a set of F-literals. At a high level, our decision procedure comprises three steps.
First, we reduce to a problem concerning a single algebraic variety. Second, we
use a GB-based test for unsatisfiability that is fast and sound, but incomplete.
Third, we attempt model construction. Figure 2 shows pseudocode for the deci-
sion procedure; we will explain it incrementally.

4.1 Algebraic Reduction

Let L = {ℓ1, . . . , ℓ|L|} be a set of literals. Each F-literal has the form ℓi = si ▷◁ ti
where s and t are F-terms and ▷◁ ∈ {≈, ̸≈}. Let X = {X1, . . . , Xk} denote the
free variables in L. Let E,D ⊆ {1, . . . , |L|} be the sets of indices corresponding to
equalities and disequalities in L, respectively. Let [[t]] ∈ F[X] denote the natural
interpretation of F-terms as polynomials in F[X] (Figure 3). Let PE ⊂ F[X]
be the set of interpretations of the equalities; i.e., PE = {[[si]] − [[ti]]}i∈E . Let
PD ⊂ F[X] be the interpretations of the disequalities; i.e., PD = {[[si]]− [[ti]]}i∈D.
The satisfiability of L reduces to whether V(⟨PE⟩)\

[⋃
p∈PD

V(⟨p⟩)
]
is non-empty.

To simplify, we reduce disequalities to equalities using a classic technique [89]:
we introduce a fresh variable Wi for each i ∈ D and define P ′

D as

P ′
D = {Wi([[si]]− [[ti]])− 1}i∈D
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Const t ∈ F
[[t]] = t

Var
[[Xi]] = Xi

Add
[[s]] = s′ [[t]] = t′

[[s+ t]] = s′ + t′
Mul

[[s]] = s′ [[t]] = t′

[[s× t]] = s′ × t′

Fig. 3: Interpreting F-terms as polynomials

Note that each p ∈ P ′
D has zeros for exactly the values of X where its analog in

PD is not zero. Also note that P ′
D ⊂ Fq[X

′], with X′ = X ∪ {Wi}i∈D.
We define P to be PE∪P ′

D (constructed in lines 2 to 6, Fig. 2) and note three
useful properties of P . First, L is satisfiable if and only if V(⟨P ⟩) is non-empty.
Second, for any P ′ ⊂ P , if V(⟨P ′⟩) = ∅, then {π(p) : p ∈ P ′} is an unsatisfiable
core, where π maps a polynomial to the literal it is derived from. Third, from
any x ∈ V(⟨P ⟩) one can immediately construct a model. Thus, our theory solver
reduces to understanding properties of the variety V(⟨P ⟩).

4.2 Incomplete Unsatisfiability and Cores

Recall (§2.2) that if 1 ∈ ⟨P ⟩, then V(⟨P ⟩) is empty. We can answer this ideal
membership query using a Gröbner basis engine (line 7, Fig. 2). Let GB be a
subroutine that takes a list of polynomials and computes a Gröbner basis for the
ideal that they generate, according to some monomial ordering. We use grevlex:
the ordering for which GB engines are typically most efficient [44]. We compute
GB(P ) and check whether 1⇒GB(P ) 0. If so, we report that V(⟨P ⟩) is empty. If
not, recall (§2.2) that V(⟨P ⟩) may still be empty; we proceed to attempt model
construction (lines 9 to 11, Fig. 2, described in the next subsection).

If 1 does reduce by the Gröbner basis, then identifying a subset of P which
is sufficient to reduce 1 yields an unsatisfiable core. To construct such a subset,
we formalize the inferences performed by the Gröbner basis engine as a calculus
for proving ideal membership.

Figure 4 presents IdealCalc: our ideal membership calculus. IdealCalc proves
facts of the form p ∈ ⟨P ⟩, where p is a polynomial and P is the set of generators
for an ideal. The G rule states that the generators are in the ideal. The Z rule
states that 0 is in the ideal. The S rule states that for any two polynomials in
the ideal, their s-polynomial is in the ideal too. The R↑ and R↓ rules state that
if p→q r with q in the ideal, then p is in the ideal if and only if r is.

The soundness of IdealCalc follows immediately from the definition of an ideal.
Completeness relies on the existence of algorithms for computing Gröbner bases
using only s-polynomials and reduction [21, 43, 45]. We prove both properties in
Appendix A.

Theorem 1 (IdealCalc Soundness). If there exists an IdealCalc proof tree with
conclusion p ∈ ⟨P ⟩, then p ∈ ⟨P ⟩.

Theorem 2 (IdealCalc Completeness). If p ∈ ⟨P ⟩, then there exists an IdealCalc
proof tree with conclusion p ∈ ⟨P ⟩.
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Z
0 ∈ ⟨P ⟩

G
p ∈ P

p ∈ ⟨P ⟩
R↑

r ∈ ⟨P ⟩ q ∈ ⟨P ⟩ p→q r

p ∈ ⟨P ⟩

S
p ∈ ⟨P ⟩ q ∈ ⟨P ⟩
spoly(p, q) ∈ ⟨P ⟩

R↓
p ∈ ⟨P ⟩ q ∈ ⟨P ⟩ p→q r

r ∈ ⟨P ⟩

Fig. 4: IdealCalc: a calculus for ideal membership

1 Function FindZero:
Input: A Gröbner basis B ⊂ F[X′]
Input: A partial map M : X′ → F (empty by default)
Output: A total map M : X′ → F or ⊥

2 if 1 ∈ ⟨B⟩ then return ⊥ ;
3 if |M | = |X′| then return M ;
4 for (X ′

i 7→ z) ∈ ApplyRule(B,M) do
5 r ← FindZero(GB(B ∪ {X ′

i − z}),M ∪ {X ′
i 7→ z});

6 if r ̸= ⊥ then return r;
7 return ⊥

Fig. 5: Finding common zeros for a Gröbner basis. After handling trivial cases,
FindZero uses ApplyRule to apply the first applicable rule from Figure 6.

By instrumenting a Gröbner basis engine and reduction engine, one can con-
struct IdealCalc proof trees. Then, for a conclusion 1 ∈ ⟨P ⟩, traversing the proof
tree to its leaves gives a subset P ′ ⊆ P such that 1 ∈ ⟨P ′⟩. The procedure
CoreFromTree (called in line 8, Fig. 2) performs this traversal, by accessing
a proof tree recorded by the GB procedure and the reductions. The proof of
Theorem 2 explains our instrumentation in more detail (Appendix A).

4.3 Completeness through Model Construction

As discussed, we still need a complete decision procedure for determining if
V(⟨P ⟩) is empty. We call this procedure FindZero; it is a backtracking search
for an element of V(⟨P ⟩). It also serves as our model construction procedure.

Figure 5 presents FindZero as a recursive search. It maintains two data struc-
tures: a Gröbner basis B and partial map M : X′ → F from variables to field
elements. By applying a branching rule (which we will discuss in the next para-
graph), FindZero obtains a disjunction of single-variable assignments X ′

i 7→ z,
which it branches on. FindZero branches on an assignment X ′

i 7→ z by adding it
to M and updating B to GB(B ∪ {X ′

i − z}).
Figure 6 shows the branching rules of FindZero. Each rule comprises an-

tecedents (conditions that must be met for the rule to apply) and a conclusion
(a disjunction of single-variable assignments to branch on). The Univariate rule
applies when B contains a polynomial p that is univariate in some variable X ′

i

that M does not have a value for. The rule branches on the univariate roots of
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Univariate
p ∈ B p ∈ F[X ′

i] X ′
i /∈M Z ← UnivariateZeros(p)∨
z∈Z(X

′
i 7→ z)

Triangular
Dim(⟨B⟩) = 0 X ′

i /∈M p← MinPoly(B,X ′
i) Z ← UnivariateZeros(p)∨

z∈Z(X
′
i 7→ z)

Exhaust ∨
z∈F

∨
X′

i /∈M (X ′
i 7→ z)

Fig. 6: Branching rules for FindZero.

p. The Triangular rule comes from work on triangular decomposition [70]. It ap-
plies when B is zero-dimensional.7 It computes a univariate minimal polynomial
p(X ′

i) in some unassigned variables X ′
i, and branches on the univariate roots of

p. The final rule Exhaust has no conditions and simply branches on all possible
values for all unassigned variables.

FindZero’s ApplyRule sub-routine applies the first rule in Figure 6 whose con-
ditions are met. The other subroutines (GB [21, 43, 45], Dim [11], MinPoly [2],
and UnivariateZeros [88]) are commonly implemented in computer algebra li-
braries. Dim, MinPoly , and UnivariateZeros run in (randomized) polytime.

Theorem 3 (FindZero Correctness). If V(⟨B⟩) = ∅ then FindZero returns
⊥; otherwise, it returns a member of V(⟨B⟩). (Proof: Appendix B)

Correctness and Efficiency The branching rules achieve a careful balance be-
tween correctness and efficiency. The Exhaust rule is always applicable, but a
full exhaustive search over a large field is unreasonable (recall: ZKPs operate of
≈255-bit fields). The Triangular and Univariate rules are important alternatives
to exhaustion. They create a far smaller set of branches, but apply only when
the variety has dimension zero or the basis has a univariate polynomial.

As an example of the importance of Univariate, consider the univariate system
X2 = 2, in a field where 2 is not a perfect square (e.g., F7). X2 − 2 is already a
(reduced) Gröbner basis, and it does not contain 1, so FindZero applies. With
the Univariate rule, FindZero computes the univariate zeros of X2− 2 (there are
none) and exits. Without it, the Exhaust rule creates |F| branches.

7 The dimension of an ideal is a natural number that can be efficiently computed from
a Gröbner basis. If the dimension is zero, then one can efficiently compute a minimal
polynomial in any variable X, given a Gröbner basis [2, 70].
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As an example of when Triangular is critical, consider

X1 +X2 +X3 +X4 +X5 = 0

X1X2 +X2X3 +X3X4 +X4X5 +X5X1 = 0

X1X2X3 +X2X3X4 +X3X4X5 +X4X5X1 +X5X1X2 = 0

X1X2X3X4 +X2X3X4X5 +X3X4X5X1 +X4X5X1X2 +X5X1X2X3 = 0

X1X2X3X4X5 = 1

in F394357 [70]. The system is unsatisfiable, it has dimension 0, and its ideal
does not contain 1. Moreover, our solver computes a (reduced) Gröbner basis
for it that does not contain any univariate polynomials. Thus, Univariate does
not apply. However, Triangular does, and with it, FindZero quickly terminates.
Without Triangular, Exhaust would create at least |F| branches.

In the above examples, Exhaust performs very poorly. However, that is not
always the case. For example, in the system X1+X2 = 0, using Exhaust to guess
X1, and then using the univariate rule to determine X2 is quite reasonable. In
general, Exhaust is a powerful tool for solving underconstrained systems. Our
experiments will show that despite including Exhaust, our procedure performs
quite well on our benchmarks. We reflect on its performance in Section 8.

Field polynomials: a road not taken By guaranteeing completeness through (po-
tential) exhaustion, we depart from prior work. Typically, one ensures complete-
ness by including field polynomials in the ideal (§2.2). Indeed, this is the approach
suggested [98] and taken [57] by prior work. However, field polynomials induce
enormous overhead in the Gröbner basis engine because their degree is so large.
The result is a procedure that is only efficient for tiny fields [57]. In our experi-
ments, we compare our system’s performance to what it would be if it used field
polynomials.8 The results confirm that deferring completeness to FindZero is far
superior for our benchmarks.

5 Implementation

We have implemented our decision procedure for prime fields in the cvc5 SMT
solver [7] as a theory solver. It is exposed through cvc5’s SMT-LIB, C++, Java,
and Python interfaces. Our implementation comprises ≈2k lines of C++. For the
algebraic sub-routines of our decision procedure (§4), it uses CoCoALib [1]. To
compute unsatisfiable cores (§4.2), we inserted hooks into CoCoALib’s Gröbner
basis engine (17 lines of C++).

Our theory solver makes sparse use of the interface between it and the rest
of the SMT solver. It acts only once a full propositional assignment has been
constructed. It then runs the decision procedure, reporting either satisfiability
(with a model) or unsatisfiability (with an unsatisfiable core).
8 We add field polynomials to our procedure on line 2, Figure 2. This renders our ideal

triviality test (lines 7 and 8) complete, so we can eliminate the fallback to FindZero.
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6 Benchmark Generation

Recall that one motivation for this work is to enable translation validation for
compilers to field constraint systems (R1CSs) used in zero-knowledge proofs
(ZKPs). Our benchmarks are SMT formulas that encode translation validation
queries for compilers from Boolean computations to R1CS. At a high level, each
benchmark is generated as follows.

1. Sample a Boolean formula Ψ in v variables with t non-variable terms.
2. Compile Ψ to R1CS using ZoKrates [38], CirC [83], or ZoK-CirC [83].
3. Optionally remove some constraints from the R1CS.
4. Construct a formula ϕ in QF_FF that tests the soundness (all assignments

satisfying the R1CS agree with Ψ) or determinism (the inputs uniquely de-
termine the output) of the R1CS.

5. Optionally encode ϕ in QF_BV, in QF_NIA, or as (Boolean-free) F-equations.

Through step 3, we construct SMT queries that are satisfiable, unsatisfiable, and
of unknown status. Through step 5, we construct queries solvable using bit-vector
reasoning, integer reasoning, or a stand-alone computer algebra system.

6.1 Examples

We describe our benchmark generator in full and give the definitions of soundness
and determinism in Appendix C. Here, we give three example benchmarks. Our
examples are based on the Boolean formula Ψ(x1, x2, x3, x4) = x1 ∨x2 ∨x3 ∨x4.
Our convention is to mark field variables with a prime, but not Boolean variables.
Using the technique from Section 2.3, CirC compiles this formula to the two-
constraint system: i′s′ = r′ ∧ (1 − r′)s′ = 0 where s′ ≜

∑3
i=0 x

′
i. Each Boolean

input xi corresponds to field element x′
i and r′ corresponds to the result of Ψ .

Soundness An R1CS is sound if it ensures the output r′ corresponds to the value
of Ψ (when given valid inputs). Concretely, our system is sound if the following
formula is valid:

∀i.(x′
i = 0 ∨ x′

i = 1) ∧ (x′
i = 1 ⇐⇒ xi)︸ ︷︷ ︸

inputs are correct

∧ i′s′ = r′ ∧ (1− r′)s′ = 0︸ ︷︷ ︸
constraints hold

=⇒
(r′i = 0 ∨ r′i = 1) ∧ (r′i = 1 ⇐⇒ Ψ)︸ ︷︷ ︸

output is correct

where Ψ and s′ are defined as above. This is an UNSAT benchmark, because the
formula is valid.
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Determinism An R1CS is deterministic if the values of the inputs uniquely
determine the value of the output. To represent this in a formula, we use two
copies of the constraint system: one with primed variables, and one with double-
primed variables. Our example is deterministic if the following formula is valid:

∀i.(x′
i = x′′

i )︸ ︷︷ ︸
inputs agree

∧ i′s′ = r′ ∧ (1− r′)s′ = 0 ∧ i′′s′′ = r′′ ∧ (1− r′′)s′′ = 0︸ ︷︷ ︸
constraints hold for both systems

=⇒
r′ = r′′︸ ︷︷ ︸

outputs agree

Unsoundness Removing constraints from the system can give a formula that is
not valid (a SAT benchmark). For example, if we remove (1−r′)s′ = 0, then the
soundness formula is falsified by {xi 7→ ⊤, x′

i 7→ 1, r′ 7→ 0, i′ 7→ 0}.

7 Experiments

Our experiments show that our approach:

1. scales well with the size of F (unlike a BV-based approach),
2. would scale poorly with the size of F if field polynomials were used,
3. benefits from unsatisfiable cores, and
4. substantially outperforms all reasonable alternatives.

Our test bed is a cluster with Intel Xeon E5-2637 v4 CPUs. Each run is
limited to one physical core, 8GB memory, and 300s.

Throughout, we generate benchmarks for two correctness properties (sound-
ness and determinism), three different ZKP compilers, and three different sta-
tuses (sat, unsat, and unknown). We vary the field size, encoding, number of
inputs, and number of terms, depending on the experiment. We evaluate our
cvc5 extension, Bitwuzla (commit 27f6291), and z3 (version 4.11.2).

7.1 Comparison with Bit-Vectors

Since bit-vector solvers scale poorly with bit-width, one would expect the effec-
tiveness of a BV encoding of our properties to degrade as the field size grows. To
validate this, we generate BV-encoded benchmarks for varying bit-widths and
evaluate state-of-the-art bit-vector solvers on them. Though our applications of
interest use b = 255, we will see that the BV-based approach does not scale to
fields this large. Thus, for this set of experiments we use b ∈ {5, 10, . . . , 60}, and
we sample formulas with 4 inputs and 8 intermediate terms.

Figure 7a shows performance of three bit-vector solvers (cvc5 [7], Bitwu-
zla [78], and z3 [75]) and our F solver as a cactus plot; Table 1 splits the solved
instances by property and status. We see that even for these small bit-widths,
the field-based approach is already superior. The bit-vector solvers are more
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Fig. 7: The performance of field-based and BV-based approaches (with various
BV solvers) when the field size ranges from 5 to 60 bits.

determinism soundness total
system unsat unk. sat unsat unk. sat timeout memout solved

bv-bitwuzla 4 16 29 28 32 36 71 0 145
bv-cvc5 5 11 36 25 25 29 78 7 131
bv-z3 5 9 14 25 25 29 100 9 107
ff-cvc5 36 36 36 36 36 36 0 0 216

all benchmarks 36 36 36 36 36 36 216

Table 1: Solved small-field benchmarks by tool, property, and status.

competitive on the soundness benchmarks, since these benchmarks include only
half as many field operations as the determinism benchmarks.

For our benchmarks, Bitwuzla is the most efficient BV solver. We further
examine the time that it and our solver take to solve the 9 benchmarks they can
both solve at all bit-widths. Figure 7b plots the total solve time against b. While
the field-based solver’s runtime is nearly independent of field size, the bit-vector
solvers slow down substantially as the field grows.

In sum, the BV approach scales poorly with field size and is already inferior
on fields of size at least 240.

7.2 The Cost of Field Polynomials

Recall that our decision procedure does not use field polynomials (§4.3), but our
implementation optionally includes them (§5). In this experiment, we measure
the cost they incur. We use propositional formulas in 2 variables with 4 terms,
and we take b ∈ {4, . . . , 12}, and include SAT and unknown benchmarks.
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Fig. 8: Solve times, with and without field polynomials. The field size varies from
4 to 12 bits. The benchmarks are all SAT or unknown.

Figure 8a compares the performance of our tool with and without field poly-
nomials. For many benchmarks, field polynomials cause a slowdown greater than
100×. To better show the effect of the field size, we consider the solve time for
the SAT benchmarks, at varying values of b. Figure 8b shows how solve times
change as b grows: using field polynomials causes exponential growth. For UN-
SAT benchmarks, both configurations complete within 1s. This is because (for
these benchmarks) the GB is just {1} and CoCoA’s GB engine is good at dis-
covering that (and exiting) without considering the field polynomials.

This growth is predictable. GB engines can take time exponential (or worse)
in the degree of their inputs. A simple example illustrates this fact: consider
computing a Gröbner basis with X2b −X and X2 −X. The former reduces to
0 modulo the latter, but the reduction takes 2b − 1 steps.

7.3 The Benefit of UNSAT Cores

Section 4.2 describes how we compute unsatisfiable (UNSAT) cores in the F
solver by instrumenting our Gröbner basis engine. In this experiment, we mea-
sure the benefit of doing so. We generate Boolean formulas with 2, 4, 6, 8, 10,
and 12 variables; and 20, 21, 22, 23, 24, 25, 26, and 27 intermediate terms, for
a 255-bit field. We vary the number of intermediate terms widely in order to
generate benchmarks of widely variable difficulty. We configure our solver with
and without GB instrumentation.

Figure 9a shows the results. For many soundness benchmarks, the cores cause
a speedup of more than 10×. As expected, only the soundness benchmarks ben-
efit. Soundness benchmarks have non-trivial boolean structure, so the SMT core
makes many queries to the theory solver. Returning good UNSAT cores shrinks
the propositional search space, reduces the number of theory queries, and thus
reduces solve time. However, determinism benchmarks are just a conjunction
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Fig. 9: The performance of alternative algebra-based approaches.

of theory literals, so the SMT core makes only one theory query. For them,
returning a good UNSAT core has no benefit—but also induces little overhead.

7.4 Comparison to Pure Computer Algebra

In this experiment, we compare our SMT-based approach (which integrates
computer-algebra techniques into SMT) against a stand-alone use of computer-
algebra. We encode the Boolean structure of our formulas in Fp (see Appendix C.4).
When run on such an encoding, our SMT solver makes just one query to its field
solver, so it cannot benefit from the search optimizations present in CDCL(T ).
For this experiment, we use the same benchmark set as the last.

Figure 9b compares the pure F approach with our SMT-based approach.
For benchmarks that encode soundness properties, the SMT-based approach is
clearly dominant. The intuition here is is that computer algebra systems are not
optimized for Boolean reasoning. If a problem has non-trivial Boolean structure,
a cooperative approach like SMT has clear advantages. SMT’s advantage is less
pronounced for determinism benchmarks, as these manifest as a single query to
the finite field solver; still, in this case, our encoding seems to have some benefit
much of the time.

7.5 Main Experiment

In our main experiment, we compare our approach against all reasonable alter-
natives: a pure computer-algebra approach (§7.4), a BV approach with Bitwuzla
(the best BV solver on our benchmarks, §7.1), an NIA approach with cvc5 and
z3, and our own tool without UNSAT cores (§7.3). We use the same benchmark
set as the last experiment; this uses a 255-bit field.

Figure 10 shows the results as a cactus plot. Table 2 shows the number of
solved instances for each system, split by property and status. Bitwuzla quickly
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determinism soundness total
system unsat unk. sat unsat unk. sat timeout memout solved

bv-bitwuzla 7 8 16 34 52 52 127 568 169
ff-cvc5 94 78 78 135 137 137 168 37 659
ff-cvc5-nocore 94 78 78 123 125 136 193 37 634
nia-cvc5 1 29 41 8 25 46 714 0 150
nia-z3 2 30 55 66 70 73 568 0 296
pureff-cvc5 84 74 75 6 15 10 532 68 264

all benchmarks 144 144 144 144 144 144 864

Table 2: Solved benchmarks by tool, property, and status.

runs out of memory on most of the benchmarks. A pure computer-algebra ap-
proach outperforms Bitwuzla and cvc5’s NIA solver. The NIA solver of z3 does
a bit better, but our field-aware SMT solver is the best by far. Moreover, its best
configuration uses UNSAT cores. Comparing the total solve time of ff-cvc5 and
nia-z3 on commonly solved benchmarks, we find that ff-cvc5 reduces total solve
time by 6×. In sum, the techniques we describe in this paper yield a tool that
substantially outperforms all alternatives on our benchmarks.

8 Discussion and Future Work

We’ve presented a basic study of the potential of an SMT theory solver for finite
fields based on computer algebra. Our experiments have focused on translation
validation for ZKP compilers, as applied to Boolean input computations. The
solver shows promise, but much work remains.

As discussed (Sec. 5), our implementation makes limited use of the interface
exposed to a theory solver for CDCL(T ). It does no work until a full propositional
assignment is available. It also submits no lemmas to the core solver. Exploring
which lightweight reasoning should be performed during propositional search
and what kinds of lemmas are useful is a promising direction for future work.
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Our model construction (Sec. 4.3) is another weakness. Without univariate
polynomials or a zero-dimensional ideal, it falls back to exhaustive search. If a
solution over an extension field is acceptable, then there are Θ(|F|d) solutions,
so an exhaustive search seems likely to quickly succeed. Of course, we need a
solution in the base field. If the base field is closed, then every solution is in the
base field. Our fields are finite (and thus, not closed), but for our benchmarks,
they seem to bear some empirical resemblance to closed fields (e.g., the GB-based
test for an empty variety never fails, even though it is theoretically incomplete).
For this reason, exhaustive search may not be completely unreasonable for our
benchmarks. Indeed, our experiments show that our procedure is effective on our
benchmarks, including for SAT instances. However, the worst-case performance
of this kind of model construction is clearly abysmal. We think that a more
intelligent search procedure and better use of ideas from computer algebra [6, 69]
would both yield improvement.

Theory combination is also a promising direction for future work. The bench-
marks we present here are in the QF_FF logic: they involve only Booleans and finite
fields. Reasoning about different fields in combination with one another would
have natural applications to the representation of elliptic curve operations inside
ZKPs. Reasoning about datatypes, arrays, and bit-vectors in combination with
fields would also have natural applications to the verification of ZKP compilers.
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A Proofs of IdealCalc Properties

We prove IdealCalc’s soundness (Theorem 1) and completeness (Theorem 2).

A.1 Soundness

Proof. Let T be a proof tree with conclusion f ∈ ⟨P ⟩. We will show that f ∈ ⟨P ⟩.
It suffices to show that for each inference in T , the conclusion of that inference
holds. We prove this by induction on T . There is one case for each inference rule
in IdealCalc.

The conclusions of the Z and G rules hold immediately. For S, spoly(p, q) =
p · lm(q)−q · lm(p). Since p, q are in ⟨P ⟩ (by inductive hypothesis), and spoly(p, q)
is a combination of them, it is too. For R↓, r = p− q′q for some q′. Since p, q are
in ⟨P ⟩ (by inductive hypothesis), and r is a combination of them, it is too. For
R↑, p = q′q+ r for some q′. Since r, q are in ⟨P ⟩ (by inductive hypothesis), and p
is a combination of them, it is too. This completes the induction, and our proof.

A.2 Completeness

Proof. Let f be a member of ⟨P ⟩. We will show that there exists an IdealCalc
proof tree that shows f ∈ ⟨P ⟩.

We start with an existing algorithm (inIdeal) for determining whether f ∈
⟨P ⟩ [23]. Figure 11 shows inIdeal and its sub-routines. Buchberger showed that
“buchberger” terminates and returns a Gröbner basis B such that ⟨B⟩ = ⟨P ′⟩ [22].
He also showed that for a Gröbner basis B, reduce(f,B) is deterministic and re-
turns 0 iff f ∈ ⟨B⟩ [23]. In sum, inIdeal is correctly determines ideal membership.

http://ceur-ws.org/Vol-3185/extended9913.pdf
https://zinc.matterlabs.dev/
https://zokrates.github.io/
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fn inIdeal(f, P ):
B ← buchberger(P )

1: return reduce(f,B) = 0

fn reduce(f,G):
while ∃ term t ∈ f and g ∈ G s.t. lm(g) | t:

2: f ← f − t
lm(g)

g
return f

fn buchberger(P ′):
Q← unordered pairs from P ′

while Q not empty:
(p, q)← pop Q

3: s← reduce(spoly(p, q), P ′)
if s = 0: continue
for g ∈ P ′: add (s, g) to Q
add s to P ′

return P ′

Fig. 11: The inIdeal(f, P ) algorithm for testing whether f ∈ ⟨P ⟩. We instrument it
to build IdealCalc proof trees. Then, its correctness as a test for ideal membership
implies the completeness of IdealCalc.

By augmenting inIdeal, we prove that the IdealCalc calculus is complete. We
augment inIdeal to produce a proof tree that concludes f ∈ ⟨P ⟩, when inIdeal
returns true. We introduce a global map M from polynomials to proofs that
they are in ⟨P ⟩. Each entry of M contains the key polynomial p, a rule kind k
(e.g, G, Z, . . . ) and a finite sequence of antecedent polynomials, p1, . . . , pk. We
denote the entry p 7→ (k, p1, . . . , pk). The entry represents the inference that if
each pi ∈ ⟨P ⟩, then p ∈ ⟨P ⟩, by k. An entry is valid if M contains a valid entry
for all antecedent polynomials. If an entry for p is valid, then a simple recursion
extracts a proof tree for p ∈ ⟨P ⟩ from M .

First, we describe the modifications to ensure that the Gröbner basis poly-
nomials are provably in ⟨P ⟩. At the beginning of inIdeal, for each g ∈ P , we add
g 7→ (G) to M . For each spoly(p, q) call (line 3), we add spoly(p, q) 7→ (S, p, q). For
each reduction step (line 2) called from buchberger (line 3), we add f ′ 7→ (R↓, f, g)
to M , where f ′ denotes the new value of the variable f . Each of these modifica-
tions add entries whose antecedents already have valid entries in M . Thus, for
every execution of buchberger’s loop, and all g ∈ P ′, M contains a valid entry
that shows g is in ⟨P ⟩.

Now, we ensure that f is provably in ⟨P ⟩. Before inIdeal calls reduce (line 1),
we add 0 7→ (Z) to M . For each reduction step (line 2) called from buchberger
(line 1), we add f 7→ (R↑, f

′, g), where f ′ denotes the new value of the variable
f . If reduce returns 0, a backwards induction over the loop of reduce shows that
every value f takes has a valid entry in M . Thus, the original value of f has a
valid entry in M , and we can construct an IdealCalc proof that f ∈ ⟨P ⟩ whenever
inIdeal returns true.

B Proof of Correctness for FindZero

We prove that FindZero is correct (Theorem 3).

Proof. It suffices to show that for each branching rule that results in
∨

j(Xij−rj),

V(⟨B⟩) ⊂
⋃
j

V(⟨B ∪ {Xij − rj}⟩)
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First, consider an application of Univariate with univariate p(Xi). Fix z ∈
V(⟨B⟩). z is a zero of p, so for some j, rj = z and z ∈ V(⟨B ∪ {Xi − z}⟩).

Next, consider an application of Triangular to variable Xi with minimal poly-
nomial p(Xi). By the definition of minimal polynomial, any zero z of ⟨B⟩ has a
value for Xi that is a root of p. Let that root be r. Then, z ∈ V(⟨B ∪ {Xi − z}⟩).

Finally, consider an application of Exhaust. The desired property is immedi-
ate.

C Benchmark Generation

Recall that one motivation for this work is to enable the verification of field
constraint systems used in zero-knowledge proofs (ZKPs). Recall (§2.3) that
ZKPs consume rank-1 constraint systems (R1CSs). Thus, we craft benchmarks
which test the correctness of R1CSs produced by ZKP compilers. In this work,
we only consider the behavior of ZKP compilers on Boolean computations.

At a high level, our benchmark generator: samples a random propositional
formula, compiles it to an R1CS C using a compiler, and then builds an SMT
formula that tests a correctness property of C. We implement our generator in
≈1.1k lines of Rust, building on the CirC compiler infrastructure’s intermediate
representation and SMT backend [83]. Our implementation is public with an
open-source license.9

C.1 Correctness Properties

We obtain a constraint system C by inputting a propositional formula Ψ(x1, . . . , xm)
to an R1CS compiler. The compiler outputs:

– C
– a map from each xi to a variable Xi in C
– Y : a variable in C that represents the value of Ψ .

We construct formulas that test two correctness properties of this output:
soundness and determinism.

Soundness An R1CS encoding C of a propositional formula Ψ is sound if all
solutions of C correspond to valid solutions of Ψ . More precisely, the encoding is
sound if the following holds:

(
C ∧

∧
i

Xi ∈ {0, 1}
)

=⇒ (Y ∈ {0, 1} ∧ (Y = 1 ⇐⇒ Ψ(X1 = 1, . . . , Xm = 1)))

9 [redacted ]
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Determinism A constraint system C is deterministic if the output is uniquely
determined by the inputs. More precisely, let C′ be a copy of C with primed
variables. Then C is deterministic if the following holds:(

C ∧ C′ ∧
∧
i

Xi = X ′
i

)
=⇒ Y = Y ′

Soundness is important because it is a kind of functional correctness property
for C: it relates C to its claimed specification Ψ . Determinism is weaker: if C
is non-deterministic, it cannot be sound for any specification. Determinism is
interesting because it can be tested without the specification Ψ .

C.2 Formula Distribution

We sample from a distribution of propositional formulas parameterized by:
– v: the number of input variables
– t: the number of intermediate terms
– p: a parameter for a geometric distribution
– O: a set of fixed-arity and variadic Boolean operators

Our sampler constructs a propositional formula Ψ in variables x1, . . . , xv. In
each step i, it maintains a set Ti of intermediate terms. T0 is empty, and each
Ti+1 is obtained by adding a single term to Ti. For steps i ∈ [1, v], the added
term is xi; thus, Tv = {x1, . . . , xv}. For steps i ∈ [v + 1, v + t− 1], we sample a
uniformly random operator o ∈ O, independently sample terms s1, . . . , sk from
Ti (as described next), and add o(s1, . . . , sk). If o has fixed arity, then k is that
arity; otherwise, k = 2 + g, where g is drawn from the geometric distribution
parameterized by p. We sample random elements from Ti = {t1, . . . , ti} according
to a discrete, weighted distribution where element ti has weight i2. The ti are
ordered first by the number of intermediate terms they’re already children of
and second by the number of the step in which they were added; thus, the least-
used term that is oldest is most likely to be selected. Finally, in step v + t, all
the elements of Tv+t−1 that have not been used already are combined using a
uniformly random variadic operator from O.

For our experiments, we set O = {¬,↔,→,∨,∧},10 p = 0.7, and the RNG
seed to 0.

C.3 Compilers

We consider three compilers. First is the ZoKrates reference compiler [38, 104],
which compiles from an eponymous language to R1CS. It supports a wide va-
riety of types, including Booleans. To interact with this compiler, we encode
our propositional formula as a ZoKrates program. Second is CirC [83]: a com-
piler infrastructure for circuits that can produce R1CS. For this compiler, we
encode our propositional formula directly using CirC’s IR. Third is the CirC-
based ZoKrates compiler, ZoKCirC [83]. For this compiler, we once again encode
our propositional formula as a ZoKrates program.
10 We omit ⊕ because one compiler [38, 104] does not directly support it.
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C.4 Non-F encodings

A rank-1 constraint system C can be directly represented in the QF_FF logic.
To our knowledge, our work introduces the first SMT solver which can handle
such queries directly. However, prior to our work, one could handle such queries
by representing field arithmetic using other SMT theories, or by mapping the
Boolean structure into the finite field, and then using a computer algebra system.

Thus, for comparative purposes, we consider alternate encodings of our for-
mulas based on: bit-vectors (BV), non-linear integer arithmetic (NIA), and pure
field arithmetic (PureFF). In our BV encoding, we represent prime field ele-
ments as bit-vectors of width w (with w = 2⌈log2 p⌉) and compute the unsigned
remainder modulo p after each operation. In our NIA enocding, we represent
prime field elements as integers and compute the remainder modulo p after each
operation. In the PureFF encoding, we map the Boolean structure of our SMT
formula into Fp. We represent false as 0, true as 1, Boolean variables as field
variables with the requirement that they are equal to 0 or 1, ∧ as multiplication,
¬x as 1−x, and the rest of the propositional operators accordingly. This results
in a formula which is just a conjunction of Fp-literals: it can be solved using a
stand-alone decision procedure for Fp (i.e., without an SMT solver).

C.5 SAT benchmarks

If the compilers we use are correct, soundness and determinism will hold, and
our formulas will be unsatisfiable. To ensure that our benchmark set has some
SAT formulas, we inject potential bugs in one of two ways. The first way is to
remove the final constraint from C. All of our compilers use the final constraint
to relate the output variable Xo to the rest of the constraint system, so omitting
it yields a non-deterministic and unsound system. The second way is to remove a
random constraint from C; this is not guaranteed to compromise the correctness
of the constraint system. In sum, dropping no constraints, the last constraint, or
a random constraint produces benchmarks that are respectively: unsatisfiable,
satisfiable, and unknown.

C.6 Field Size

The final parameter in benchmark generation is b: the number of bits in the
field modulus p. Generally, our generator sets the modulus to be the least prime
greater than 2b−1. There is one exception: for b = 255, it uses the BLS 12-
381 elliptic curves scalar field modulus.11 This specific field is used in industrial
deployments of ZKPs [61].

11 p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
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