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Abstract. Deep neural networks (DNNs) represent a powerful tech-
nique for assessing cryptographic security concerning side-channel analy-
sis (SCA) due to their ability to aggregate leakages automatically, render-
ing attacks more efficient without preprocessing. Despite their effective-
ness, DNNs are predominantly black-box algorithms, posing considerable
interpretability challenges. In this paper, we propose a novel technique
called Key Guessing Occlusion (KGO) that acquires a minimal set of
sample points required by the DNN for key recovery, which we call Oc-
cPoIs. These OccPoIs provide information about the areas of the traces
important to the DNN for retrieving the key, enabling evaluators to know
where to refine their cryptographic implementation. After obtaining the
OccPoIs, we first explore the leakages found in these OccPoIs to un-
derstand what the DNN is learning with first-order Correlation Power
Analysis (CPA). We show that KGO obtains relevant sample points that
have a high correlation with the given leakage model but also acquires
sample points that first-order CPA fails to capture. Furthermore, unlike
the first-order CPA in the masking setting, KGO obtains these OccPoIs
without knowing the shares or mask. Next, we employ the template at-
tack (TA) using the OccPoIs to investigate if KGO could be used as
a feature selection tool. We show that using the OccPoIs with TA can
recover the key for all the considered synchronized datasets and is con-
sistent even on datasets protected by first-order masking. Finally, KGO
also allows a more efficient attack than other feature selection techniques
on the first-order masking dataset called ASCADf.

Keywords: Side-channel Analysis · Neural Network · Deep Learning ·
Profiling attack · Explainability · Feature Importance · Feature Selection.
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1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that aims to extract
sensitive information from a system by observing its physical attributes. Pro-
filing SCA represents the worst-case security assumptions where the adversary
has access to two similar devices: the prototype (or clone) and the target (or
test) device. The adversary can manipulate or know the inputs and keys of the
prototype device but has no control or knowledge of the key in the target device.
The adversary can obtain traces (e.g., power or EM measurements) through an
oscilloscope and record the corresponding plaintext/ciphertext used for both de-
vices. The adversary’s goal is to obtain the secret key of the target device. In
recent years, the use of DNNs in profiling attacks has gained much attention as
it outperforms existing techniques without requiring the evaluator to conduct
arduous preprocessing on the traces before mounting the attack [8]. These net-
works can find the necessary sample points required for key recovery, even in
the presence of hiding countermeasures and masking countermeasures where the
secret information is split into multiple shares [8]. DNN can implicitly combine
these shares to retrieve the secret key of the target device. Since traces contain
both relevant and irrelevant sample points, an inherent question arises: What
features/sample points does a trained DNN use to obtain the secret key?

In this paper, we propose an algorithm that extracts the minimal number of
relevant sample points that a DNN would require to find the secret key. Our
proposed algorithm applies the technique commonly known as occlusion, which
involves replacing each sample point with a baseline value [36]. The goal of our
novel algorithm is twofold. First, we aim to identify the features relevant to the
DNN’s acquisition of the secret key and comprehend the DNN’s decision-making
process. Knowing which sample points are leaking is of utmost importance for
evaluators so that the designers can understand and rectify their cryptographic
implementation to ensure the system’s security. Second, we introduce our al-
gorithm as a feature selection tool to extract a smaller set of sample points.
Although DNNs have found great success in retrieving the key, finding a suc-
cessful model requires tremendous effort due to the numerous hyperparameters
involved. Significant time and processing power are needed, despite efforts made
to automate hyperparameters search [23,30]. Therefore, template attack remains
a popular choice among evaluators. While TA has no hyperparameters to tune4,
it has been demonstrated that extracting relevant points, also known as Points
of Interest (PoIs), can lead to significantly more effective attacks [12,20]. There-
fore, introducing our algorithm as a feature selection tool can aid the evaluation
of cryptographic implementations. In other words, we utilize the explainability
of DNN in the form of feature extraction to improve classical attacks like TA.

Our Contributions. Our main contributions can be summarized as follows:

4 Besides the choice of using the template attack or pooled template attack, the leakage
model, and the number of features.
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1. We present a novel algorithm called Key Guessing Occlusion (KGO) that
utilizes occlusion to identify the smallest set of PoIs necessary for the suc-
cessful key recovery by the DNN. We refer to this set of PoIs as OccPoIs.
Using the KGO method, we can determine how important certain features
are for a DNN to retrieve the correct key. Thus, our method provides valuable
insights to explain the DNN’s decision-making process.

2. We compare OccPoIs with leakage samples obtained from first-order correla-
tion power analysis with known key and mask. Our results show that while
the KGO method, in some cases, provides the PoIs with high correlation
with the leakage model, there are instances where KGO captures sample
points that the first-order CPA fails to detect (i.e., low correlation with the
leakage model). Moreover, unlike first-order CPA, KGO attains these PoIs
without knowledge of the mask. Finally, using KGO allows the evaluators to
protect areas of the cryptographic implementation exploited by DNNs but
not recognized by classical techniques.

3. We demonstrate the capability of KGO as a feature selection tool for TA and
compare it with other “classical” feature selection methods as well as other
DNN’s explainability methods like Saliency Map, LRP, and 1-Occlusion. We
show that utilizing the OccPoIs provided by KGO as a feature selection
tool enables us to recover the secret key for all datasets tested, indicating
that KGO is reliable when used as a feature selection tool. Furthermore,
we found that KGO could obtain better results for the first-order masking
dataset called ASCADf. In some cases, KGO obtains the minimum number
of sample points required to obtain the secret key and thus identify the
masking order. These results show KGO’s effectiveness as a feature selection
tool.

4. We explore the leakage profile of a dataset with first-order masking and
desynchronization protection by applying KGO. We visualize the OccPoIs
through the algorithm called 1-KGO to show that KGO obtains sample
points that evaluators may overlook when using other attribution-based
methods. As KGO is linked with guessing entropy, it allows visualization with
a human-interpretable context that none of the attribution-based methods
provides. This assures evaluators that the OccPoIs shown in the visualization
are leaking secret information.

The presented results focus on unprotected or first-order protected (masking)
due to the nature of available datasets. The proposed approaches can be easily
applied to higher-order masking, but we leave this to future work. The source
code for our experiments can be accessed at an anonymous repository.5

Paper Organization. The structure of the paper is as follows. First, we provide
the notation and the necessary background on profiling attack and explainability
techniques used in Section 2. Next, we present related works on explainability
and feature selection in Section 3. Section 4 introduces the KGO algorithm to
obtain the relevant sample points. Section 5 provides the experimental settings
5 https://anonymous.4open.science/r/OccPoIs-7E0A/
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and datasets used. We explore the leakages in OccPoIs in Section 6 and in-
vestigate KGO as a feature selection tool for TA in Section 7. Subsequently,
Section 8 examines the use of KGO on desynchronized traces with a masking
countermeasure. We discuss the limitation of KGO in Section 9 and conclude our
work in Section 10. Appendix A provides information about the feature selection
techniques.

2 Background

2.1 Profiling Attacks

Notation and Terminology. We denote sets with calligraphic letters X . The
corresponding capital letter X denotes a random variable, and the bold capital
letter X denotes a random vector. We use the corresponding lowercase letters x
and x to represent the realizations of X and X, respectively. We use x[i] as the
ith entry of a vector x. A side-channel trace is defined as a vector t ∈ RD where
D is the number of sample points in a trace. Throughout this paper, we will
call t[i] a sample point or feature interchangeably. To denote a specific trace in a
dataset, we use the notation tj to denote jth trace in the set. Let Crypt represent
a cryptographic primitive with PT denoting some public variable (e.g., plaintext
or ciphertext). We denote k as a realization of the key byte candidate, taking
its value from the keyspace K and the correct key as k∗. The targeted sensitive
variable is the output of the cryptographic primitive, Z = Crypt(PT, k∗) with
Z taking values in Z = {s1, s2, . . . , s|Z|}.

Profiling attacks consist of two stages: the profiling and the attack phase. In
the profiling phase, the adversary builds a distinguisher F that takes a set of
profiling traces from the prototype device and returns a conditional probability
mass function Pr(Z|T = t). In the attack phase, a probability score is returned
from the distinguisher yi = F(ti) for each attack trace ti acquired from the
target device. Given a fixed number of attack traces Na, the log-likelihood score
is calculated for all key candidates k, sNa

(k) =
∑Na

i=1 log(y
i[zik]). Here, zik =

Crypt(pti, k) denotes the hypothetical sensitive value based on the key k with
the public variable pti that corresponds to the trace ti. Next, we sort the log-
likelihood scores of the keys in decreasing order and place them into a guessing
vector G = [G0, G1, . . . , G|K|−1]. The key corresponding to the score G0 is the
most likely candidate, and G|K|−1 is the score of the least likely candidate. The
index of the guessing vector G is called the rank of the key. The guessing entropy
GE is defined as the average rank of the correct key k∗ for a fixed number of
experiments. The attack is successful if GE = 0 (or some sufficiently small value).
The two common profiling attacks are the TA and the deep learning-based SCA
(DLSCA).

TA uses Bayes’ Theorem to build its distinguisher by assuming the condi-
tional probability Pr(T |Z = z) to be the multivariate Gaussian distribution [9].
On the other hand, DLSCA uses a DNN, fθ, as the distinguisher where F = fθ
with trainable weights θ. The most commonly used DNNs in SCA are Multilayer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs).
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2.2 Explainability Techniques for Feature Importance in DNNs

In this section, we review some techniques used to identify the importance of
features based on DNN in a side-channel setting. In particular, we focus on
attribution-based techniques, as they represent the common choice to examine
the importance of features.

In [14], Hettwer et al. proposed an attribution heatmap to visualize the rel-
evance of each sample point. This is done by calculating

r̄ =
1

Nattri

Nattri∑
j=1

rCk∗(tj , fθ), (1)

where Ck∗ ∈ |Z| is the output class of correct key and Nattri is the number of
traces used to obtain the relevance rCk∗ of the DNN fθ. The relevance rCk∗ can
be calculated in different ways. We present the three methods used in [14]. Here,
we did not consider using gradient input because it has been shown that un-
der certain circumstances, it is equivalent to Layer-wise Relevance Propagation
(LRP) [3].

Saliency Map The Saliency Map was first applied to side-channel traces in [16].
It was then extended into an attribution method [14]. The Saliency Map is
implemented so that each sample point’s relevance is computed by

rci =

∥∥∥∥∂fc(t)∂t[i]

∥∥∥∥
∞

, (2)

where fθ(t) = [f1(t), . . . , f|Z|(t)] is the output of the DNN, and c is the hypo-
thetical class considered. It represents how a small modification in the sample
points of the trace impacts the DNN’s prediction.

Layer-wise Relevance Propagation Another method used to calculate the
relevance rCk∗ is the LRP developed by Bach et al. [4]. This method provides
a relevant value to each neuron and layer of the DNN. The process starts from
the last layer and computes the relevant value layer-wise backward through the
following propagation rule:

r
(l)
i =

∑
j

zij∑
i′ zi′j + ϵ× sign(

∑
i′ zi′j)

r
(l+1)
j , (3)

where zij = a
(l)
i w

(l,l+1)
ij with a

(l)
i being the neuron i in layer j and w

(l,l+1)
ij being

the (i, j)-th weight between the layer l and l + 1. The value r
(l)
i denotes the

relevance associated with the ith neuron in layer l. The ϵ is applied to ensure
numerical stability. Therefore, one can obtain the relevance value of each sample
point in the trace and visualize it using Eq. (1).
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1-Occlusion Occlusion sensitivity analysis is developed by Zeiler and Vergus
to find the location of an image relevant to the DNN by systematically setting
areas of the input with grey input [36]. Subsequently, the authors of [14] applied
the 1-Occlusion approach on side-channel traces by setting exactly one sample
point to zero per time. The authors calculated the attribution of a single sample
point as

rci = fc(t)− fc(t[i] = 0), (4)

where c is the class and t[i] = v is the trace t whose ith sample point is replaced
with the value v. This is then applied to Eq. (1) for visualization.

Although explainability techniques applied to side-channel analysis show
some success in pinpointing the sample points that are leaking, there are times
when the visualization is not clear. For example, [16] shows that when DNN is
overfitting, the PoIs are not distinguishable. It was shown that to distinguish the
PoIs, it was necessary to retrain a neural network with early stopping. However,
it is still important to understand the decisions made by DNNs and how they
retrieve the secret key to protect against such attacks.

3 Related Works

Prior Works on Interpretability and Explainability. We first provide definitions
of interpretability and explainability to differentiate them [2]. Interpretability
describes transparent models where humans can easily interpret their decisions.
For example, decision trees provide interpretation based on the rules in which
it splits the data [7]. On the other hand, explainability encompasses techniques
used to explain black-box models like DNN as their decision-making process is
not interpretable by humans [7, 13]. Two main areas of explainability of DNNs
are understanding the DNN’s learning process during training and providing
post-hoc explanations to understand what a trained DNN has learned.

The field of explainability and interpretability in SCA has received very little
attention over the past few years as most of the works are focused on the diffi-
cult task of hyperparameter tuning [23,30]. Yet, some works exist on this topic.
In [18], Perin et al. provided a metric based on the Information Bottleneck theory
to visualize the information the DNN is learning for each epoch. This technique
is further improved to visualize how shares are processed for each layer during
training [19]. The authors of [27] tried to explain DNN through the technique
called Singular Vector Canonical Correlation Analysis (SVCCA) by training
with the same architecture between two different datasets and see how corre-
lated the weights of the same layers are. Wu et al. employed ablation to study
DNN processing of hiding countermeasures [32]. By randomly removing weights
or channels from specific layers, they found that early layers primarily process
Gaussian noise, while deeper layers handle more complex countermeasures like
desynchronization. Instead of exploring interpretability in terms of a discrimi-
native model, [34] designed a generative model by combining with a stochastic
attack using an autoencoder called Conditional Variational Autoencoder, which
provides equations of the leakage in the trace through the autoencoder’s weights.
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One crucial approach to explaining DNN is identifying which features are
important to the trained network. Zaid et al. provided a feature importance
technique by visualizing only the convolutional layers in a heatmap. They fur-
ther used weight visualization for MLP to understand which features are impor-
tant [35]. However, the visualization of the sample points here did not consider
the secret key in their analysis, and it only applies to CNN architecture. Wouters
et al. [28] then used gradient input to understand the impact of the filter size on
desynchronized traces. Yap et al. introduced a partially interpretable DNN by
utilizing the interpretable model named Truth Table Deep Convolutional Neural
Network (TTDCNN) [33]. This model provides rules to identify windows of PoIs
required to recover a secret key. While TTDCNN provides valuable insights into
the network’s behavior, it does not provide feature importance for every point.
The results from this approach are model-specific to TTDCNN and cannot be
generalized to other DNNs. To understand an adversary’s worst-case scenario, it
is crucial to comprehend what a general DNN has learned beyond just one spe-
cific model family. Thus, we must explore techniques that do not depend on the
DNN’s architecture (i.e., are model-agnostic). Other feature importance tech-
niques are also explored by Masure et al. [16], where the authors used a Saliency
Map (also known as Gradient Visualization) to visualize the importance of each
sample point. Hettwer et al. [14] further applied this technique using attribution
methods to include the class of the correct key into consideration. They also con-
sidered other feature importance techniques like LRP [4] and 1-Occlusion [36].
However, these methods did not directly consider the attack process of retriev-
ing the key. Therefore, this highlights a gap in our understanding of the sample
points required by any DNN to retrieve the secret key. Recently, Schamberger
et al. [25] introduced the concept of n-occlusion to examine how the window of
occlusion impacts key recovery. Furthermore, they extended their approach to
second-order occlusion by adding an extra window for datasets with first-order
masking. Their goal differs from ours. They seek to understand how various
occlusion windows impact performance and identify the most critical area. In
contrast, we aim to determine the minimum set of sample points required for a
trained DNN to recover the key using occlusion, believing that multiple sets can
enhance recovery.

Works on Feature Selection. Regarding the feature selection in SCA, early works
proposed using the sum of squared differences (SOSD) and the sum of squared
T-differences (SOST) to enhance the performance of TAs [9]. Zheng et al. further
compared SOSD and SOST with other techniques like Pearson Correlation [37].
They concluded that the Pearson Correlation is the best in general. Bhasin et al.
proposed another classical tool closely related to Pearson Correlation known as
Normalized Inter-Class Variance (NICV) to detect leakages without any public
variable [6]. However, it was stated that such a tool is not viable when primitives
are protected by higher-order masking. Furthermore, these works did not con-
sider using machine learning (ML) techniques for feature selection. [20] explored
using ML techniques for feature selection. The authors proposed using wrapper
and hybrid selection methods to find a subset of features for profiling attacks.
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Wrapper selection methods employ classifier algorithms such as linear support
vector machines while hybrid selection methods utilize both wrapper methods
and classical filter selection methods to select the relevant feature subset. The
authors showed that with enough tuning, ML techniques can outperform classi-
cal techniques. Picek et al. explored using ML models with information gain for
feature selection [21]. The works mentioned above conduct their experiments on
unprotected implementations. For masked implementation, Reparaz et al. pre-
sented a method for using mutual information to find tuples of sample points
before employing the multivariate differential power analysis (DPA) for key re-
covery [22]. Rioja et al. considered using metaheuristics known as Estimation of
Distribution Algorithms (EDAs) to help automate the selection of the PoIs in
both unprotected and masking settings [24].

Instead of working with the original sample points, feature extraction tech-
niques such as Principal Component Analysis (PCA) [15], Linear Discriminant
Analysis [26], and triplet network [31] transform and reduce the dimensionality
of the traces into relevant embeddings that consist of important leakage informa-
tion for a better attack. However, feature extraction techniques do not consider
the original traces (samples), and the evaluator may have difficulty knowing
where the leakage is coming from. Therefore, we shall focus on feature selection
methods.

4 Key Guessing Occlusion

As discussed in the introduction, relevant and irrelevant features exist in the
traces, and a DNN explicitly chooses the features to retrieve the secret key. Then
a natural question arises: What is the smallest set of features required by the DNN
for a successful key recovery? We highlight that we are not trying to find the
minimum number of points required to recover the secret key. This is trivial
where the number of points equals d+ 1 where d is the masking order. Instead,
we are trying to find the minimum number of sample points needed by the trained
DNN for a successful attack. In this section, we tackle this problem by presenting
our proposed method called Key Guessing Occlusion - KGO. KGO is a greedy
heuristic algorithm that provides a post-hoc explanation of the trained DNN.
The KGO algorithm gives the smallest set of features/sample points required
by the DNN to retrieve the secret key. This is done by occluding sample points
recursively so that the remaining sample points are necessary to attain GE = 0.
Furthermore, the proposed algorithm is model-agnostic and can be applied to
any DNN, regardless of its architecture.

The complete KGO methodology is illustrated in Algorithm 1 The algorithm
uses a while loop and a flag to generate the smallest list of relevant sample
points that the trained DNN fθ needs to recover the correct key. We visualize
one iteration of the while loop in Figure 1. In each while loop iteration, the
algorithm first randomly shuffles queue uniformly and initializes indexrd as the
empty set. Then, it iterates through the indices in queue. For each sample point
spt in queue, the algorithm sets it to the baseline value in all traces (Lines 8
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Algorithm 1 Key Guessing Occlusion (KGO)
Input:
Attack traces Dattack,
Threshold, λ,
Trained DNN fθ.
Output:
A set of OccPoIs indexOccPoI .

1: procedure KGO(Dattack, λ, fθ)
2: flag = False
3: queue = [0, . . . , D − 1]
4: while flag == False do
5: flag = True
6: queue = shuffle(queue)
7: indexrd = {}
8: for i ∈ [0, . . . , D − 1] do
9: spt = queue[i].
10: Initialize toriginal with zeros of length |Dattack|.
11: for all j ∈ {0, . . . , |Dattack|} do
12: Obtain the jth attack trace: t = Dattack[j]
13: Keep the original trace value toriginal[j] = t[spt].
14: Replace sample point spt with 0: t[spt] = 0.
15: end for
16: Run attack phase to obtain GE by using the updated traces Dattack on DNN fθ.
17: if GE ≥ λ then
18: Add spt into indexrd.
19: for all j ∈ {0, . . . , |Dattack|} do
20: Obtain the jth attack trace: t = Dattack[j]
21: Replace sample point spt with its original value: t[spt] = toriginal[j].
22: flag = False.
23: end for
24: end if
25: end for
26: queue = indexrd.
27: end while
28: indexOccPoI = indexrd

29: return indexOccPoI .
30: end procedure

to 15) and runs the attack phase using the trained DNN fθ with the perturbed
traces to obtain GE (Line 16). Here, we set the baseline value to 0, although it
can be set to other values like the sample-wise mean of the trace. As shown later
in Section 7, the baseline value of 0 attains better results than the sample-wise
mean. Therefore, we will use 0 as the baseline value unless otherwise stated.
Next, the algorithm then checks if the resulting GE is greater than or equal to a
threshold λ (Lines 17 to 24). If GE ≥ λ, the original value of the sample point spt
is restored in the traces because it is essential for the DNN to retrieve the correct
key at the moment. If GE < λ, the sample point spt is not currently useful for
the DNN in recovering the key, and it remains 0 throughout the algorithm. In
this paper, we shall set λ = 1.

After one while loop iteration, we obtain a set of sample points indexrd. We
notice that some of the sample points in indexrd could still be further removed
after one iteration. This could be due to the order in which the sample points
are occluded. Irrelevant sample points positioned behind the sample point spt
could add noise to the traces and result in GE ≥ λ for that iteration. However,
the same sample point spt may no longer be necessary for the DNN to recover
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Fig. 1: Pictorial illustration of KGO algorithm (Lines 6 to 24 of Algorithm 1)

the key in the next iteration. Therefore, we fix queue to be the set of sample
points indexrd for the next round of occlusion (Line 26). The algorithm will exit
the while loop when all the sample points in queue are required by the DNN
to recover the secret key. In other words, none of the sample points in queue,
when being occluded, will result in GE < λ. This will cause the flag to be
fixed as True and exit the while loop. Since all the sample points will result in
GE ≥ λ in the last round, the indexrd will contain the same elements as queue.
Therefore, we fix the set of relevant sample points indexrd as indexOccPoIs and
return indexOccPoIs as output (line 28). We shall call this set of relevant sample
points obtained by the KGO algorithm, indexOccPoI , as the Occluded Points of
Interest - OccPoIs.

Note that there might be more than one smallest set of relevant sample
points that the DNN could use to recover the correct key. The sample point
may not be necessary to the DNN at the moment when it was occluded, as the
DNN could still use other sample points to retrieve the secret key. Therefore,
the sample points not selected by KGO might still contain leakages. Instead, the
proposed method uses the occlusion technique to reveal one set of sample points
relevant to the DNN for retrieving the secret key. Furthermore, we have tried
queue = [0, . . . , D − 1] without shuffling. We see that KGO could favor sample
points at the end of the trace. To ensure a uniform selection of sample points
throughout the traces, we randomly shuffle the queue for each iteration (Line
6). Given the time complexity of running the DNN on the attack traces as M ,
the time complexity of the KGO algorithm is O(D ∗ |Z|lg|Z|+D ∗M).
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To gauge the importance of each of the OccPoIs, we propose to use the
following algorithm called 1-Key Guessing Occlusion (1-KGO):
1. For all the attack traces t, we set the value t[spt] = 0 for all sample points

spt that are not OccPoIs.
2. Given a OccPoI sptOccPoI , we set the value t[sptOccPoI ] = 0 for all attack

traces t, and run attack phase to obtain the guessing entropy GE using the
updated traces on the DNN fθ.

3. Keep GE corresponding to OccPoI sptOccPoI .
4. Set the original value of t[sptOccPoI ] back to the trace.
5. Repeat steps 2 to 4 for all OccPoIs.

The metric for measuring the contribution of each OccPoI in key recovery is
GE provided by 1-KGO. The greater the GE value of an OccPoI, the larger its
contribution toward retrieving the secret key through the DNN. We highlight
that since all these sample points are OccPoIs, none of them will result in GE < 1
when occluded.

5 Experimental Setting

5.1 Datasets

We utilize widely employed public datasets: Chipwhispherer (CW), ASCAD (AS-
CADf and ASCADr), and AES_HD. We consider datasets running the Advanced
Encryption Standard (AES) and focus on attacking a single byte of the secret
key. Furthermore, we examine two common hypothetical leakage models used in
DLSCA: the Identity (ID) and the Hamming Weight (HW) leakage models.

ChipWhisperer (CW). The ChipWhisperer dataset provides a standard com-
parison base for evaluating different algorithms [17]. The dataset we considered
runs the unprotected AES-128 implementation on the ChipWhisperer CW308
Target. We denote this dataset as CW throughout this paper. This dataset tar-
gets the first byte in the first round of the AES substitution box, Sbox(pt⊕ k∗),
with a fixed key k∗. The dataset consists of 10000 traces. We use 8000 traces for
profiling and 2000 traces for the attack. We use the full 2000 attack traces to
run the KGO algorithm.

ASCAD. The ASCAD dataset is a first-order masked AES implementation on
an 8-bit AVR microcontroller (ATMega8515) [5]. We target the third byte of the
first round AES substitution box, which we denote as Sbox(pt3 ⊕ k∗3) where pt3
is the third plaintext byte and k∗3 is the third byte of the first round key. The
dataset contains two versions known as ASCADf and ASCADr. ASCADf consists
of fixed key traces, while ASCADr contains random key traces for profiling and
a fixed key for the attack phase. For ASCADf and ASCADr, we use 45000 traces
for profiling. In the attack phase, we use 10000 attack traces for ASCADf and
100000 attack traces for ASCADr. Since running KGO is time-consuming, we
consider 55000 attack traces for ASCADr when applying the KGO algorithm.
This is also because the number of traces required by our trained DNN to attain
GE = 0 is less than 55000.
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AES_HD. The AES_HD is an unprotected AES hardware implementation
dataset executed on an FPGA in a round-based architecture. We target the
last round leakage Sbox−1(ct15 ⊕ k∗15)⊕ ct11 where cti is the ith ciphertext byte
and k∗15 is the 15th byte of the last round secret key. We consider the extended
version but only use 45000 traces for the profiling phase and 20000 traces out
of the 50000 for the attack phase. For the KGO algorithm, we use 10000 attack
traces to obtain the relevant points.

DNN Architecture and Training Setting. We use automated hyperparameter
search tools like [29] and random search for the various datasets to find successful
DNNs. Exceptionally, for the AES_HD dataset, we consider the architecture
proposed by Zaid et al. [35]. We train our DNNs using the categorical cross-
entropy loss. For more details of the DNNs’ architecture that we considered, we
refer readers to our weblink6. We ran our experiments on one Nvidia GeForce
GTX 970 together with four Intel Core i5-4460 running at 3.2GHz with one
thread each. Since we aim to understand which sample points are important to
the DNN when retrieving the correct key, all the DNNs we analyze successfully
retrieve the secret key. This means that we examine DNNs that are trained and
can obtain GE = 0 during the attack phase.

6 KGO’s Explainability of DNN

6.1 Understanding the Number of OccPoIs

The OccPoIs are sample points the DNN considers necessary for obtaining the
secret key. Let ω represent the number of OccPoIs that KGO deems relevant
for key recovery as acquired by Algorithm 1. Table 1 presents the number of
sample points ω and the total number of sample points for different datasets. As
observed from Table 1, DNNs require a very small number of sample points to
recover the key successfully. In the best case, KGO demonstrates that the DNN
could retrieve the key with the number of sample points equal to the order of
the leakage. For example, the CW and AES_HD datasets are unprotected and
require one sample point for key recovery.

Table 1: The number of OccPoIs ω obtained by KGO.
CW ASCADf ASCADr AES_HD

Total number of sample points 5000 700 1400 1250

ω 1 5 6 1

6 https://github.com/yap231995/OccPoIs
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(a) Correlation for different leakage mod-
els vs. OccPoIs.

(b) CPA on the sample point 4922 using
leakage model HW (Sbox(pt⊕ k)) for all
keys k concerning the number of traces.

Fig. 2: CPA in CW (HW).

6.2 Validating Leakage within OccPoIs

Next, we aim to validate what leakages the OccPoIs contain and (hopefully)
glimpse into how a DNN could obtain the secret information through the sample
points attained with KGO. To validate the leakages that the OccPoIs contain,
we apply CPA to these sample points using only the attack traces. Since the
results are similar (and due to limited space), we present results for CW and
ASCADf only. We demonstrate that KGO is still effective even in low SNR
settings with AES_HD and for the random key dataset (ASCADr). We show
these in Supplementary Material B.

Unprotected Setting

ChipWhisperer (CW). First, we explore the leakage of OccPoIs for CW with the
HW leakage model. Figure 2a shows that only one OccPoI is chosen by KGO.
This OccPoI is the sample point 4922. It is highly correlated to the target hypo-
thetical sensitive variable HW (Sbox(PT ⊕k∗)) (see Figure 2b). This shows that
DNN could pinpoint sample points with a high correlation to the hypothetical
sensitive variable Z to recover the key.

Next, we examine the leakage of OccPoI for CW trained with the ID leakage
model and find that, unlike in the previous case, the OccPoI located at sample
point 1365 has a very low correlation. The DNN can recover the key with just
the sample point 1365, as KGO ensures that GE = 0.

We want to check if this OccPoI deemed by DNN as relevant is leaking in
other leakage models like Most Significant Bit (MSB) or Least Significant Bit
(LSB). We are also considering the leakage pt ⊕ k∗, as Figure 3a suggests that
some sample points in the area consist of that leakage. However, from Figure 4,
we observe that none of the CPA attempts with the corresponding leakage models
could recover the secret key.

We highlight that this OccPoI is situated near sample points that have a
high correlation with the target hypothetical sensitive variable Sbox(pt ⊕ k∗)
(see Figure 3). This suggests that the sample point 1365 is indeed leaking some
secret information, but we cannot find such information with the leakage model
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(a) Correlation for different leakage mod-
els vs. OccPoIs.

(b) CPA on the sample point 1365 using
leakage model Sbox(pt⊕k) for all keys k
concerning the number of traces.

Fig. 3: CPA in CW (ID).

(a) HW (Sbox(pt⊕ k∗)). (b) MSB(Sbox(pt⊕ k∗)).

(c) LSB(Sbox(pt⊕ k∗)). (d) pt⊕ k∗.

Fig. 4: CPA on the sample point 1365 using different leakage models concerning
the number of traces for the CW dataset (ID).

used in CPA above. Yet, the DNN can use this sample point for key recovery.
This shows that the DNN can extract complex information about the secret
key from this sample point to recover the key that first-order CPA failed to
capture.7 Certain important sample points could be missed, especially when the
traces consist of multiple different leakages and when an evaluator does not have
a good leakage model. KGO discloses which sample points the DNN could use
for key recovery. Since we have already explored the OccPoIs for both HW and
ID leakage model for the CW dataset, and most works with DNNs consider only
the ID leakage model [23,35], we shall focus on the ID leakage model for the rest
of the experiments.

7 Note that CPA is used under a known key setting to understand the OccPoIs pro-
vided by KGO and one should not consider KGO as a competing technique.
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First-order Masked Setting Next, we apply KGO to masked datasets. For
comparison, we run correlation with the same leakage model used in [11] for the
ASCAD datasets.

ASCADf. First, we observe the OccPoIs obtained through KGO for the ASCADf
dataset. There are 5 OccPoIs that the DNN considers important for key recovery.
Namely, sample points 149, 168, 179, 515, and 516. Figure 5a shows that the Oc-
cPoIs are situated where the shares are primarily leaking. These points consists
of leakage of the shares Sbox(pt3⊕k∗3)⊕r and r (see Figure 5b). All sample points
have a high correlation with Sbox(pt3⊕k∗3)⊕r while sample points 149, 168, and
179 have a high correlation with r. We also note that these points contain leak-
ages from Sbox(pt3 ⊕ k∗3)⊕ rout and rout (see Figure 5c). Sample points 168 and
516 have the highest correlation with Sbox(pt3⊕k∗3)⊕rout compared to the other
keys, while sample points 1491, 68, and 179 have a high correlation with rout.
However, we cannot determine whether the DNN used both leakages or only one
of these leakages at these sample points. This remains an open question. Still,
these OccPoIs are required by the DNN to recover the key when the rest of the
sample points are set to 0. This highlights that these OccPoIs do indeed contain
leakages used by the DNN to recover the key. Note that the correlation results
are obtained with the knowledge of mask, while KGO does not need mask values
to acquire these OccPoIs.

(a) Correlation for different leakage mod-
els vs. OccPoIs for ASCADf.

(b) CPA of Sbox(pt3 ⊕ k∗
3)⊕ r and r on

OccPoIs for ASCADf.

(c) CPA of Sbox(pt3⊕k∗
3)⊕rout and rout

on OccPoIs for ASCADf.

Fig. 5: Explainability of DNN for AES_HD and ASCADf.
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Table 2: NTGE of the TA when using various feature selection techniques.
CW ASCADf ASCADr AES_HD

SOSD 3 > 10k (GE = 2) > 100k (GE = 103) 2623
SOST 9 > 10k (GE = 68) > 100k (GE = 51) 2718

CPA (first-order) 11 > 10k (GE = 67) > 100k (GE = 162) 2809
CPA (multi.) - 367 7184 -

Saliency 9 > 10k (GE = 248) > 100k (GE = 210) 3515
LRP 8 > 10k (GE = 100) 50061 2265

1-Occlusion 18 > 10k (GE = 162) > 100k (GE = 7) 3381
KGO 10 313 42991 6176

7 Exploitation of OccPoIs with the Template Attack

Since the number of OccPoIs is much smaller than the total number of sample
points and DNN could recover the secret key from these sample points, we ask
whether these could be used as features to improve classical SCAs like TA. We
compare KGO with classical feature selection methods like SOSD, SOST, and
Pearson Correlation (denoted as CPA throughout this section). Since KGO is
an explainability technique, we also compare it with other explainability tech-
niques used with DNNs to extract relevant sample points. These explainability
techniques are the attribution-based methods such as Saliency Map, LRP, and
1-Occlusion. For simplicity, we will call both these attribution-based explainabil-
ity techniques and classical feature selection methods feature selection methods
unless it is necessary to differentiate between them.

Experimental Results. We select the top ω sample points from the other feature
selection techniques indicated to compare with KGO.8 The number of sample
points ω selected by KGO can be found in Table 1 in Section 6. Throughout
the paper, we use the library called INNvestigate [1] to apply the Saliency Map
and LRP. In our experiments, we apply first-order CPA for all datasets and
normalized multivariate second-order CPA with the multiplication of sample
points as the combining function for the protected datasets with masking order
1 like ASCADf and ASCADr. We denote the first-order CPA as CPA (first-order)
and the multivariate second-order CPA as CPA (multi.).

We present the number of traces TA requires to obtain GE = 0, also known
as NTGE, when applying the corresponding feature selection technique for each
dataset in Table 2. We observe that the OccPoIs obtained through KGO can
successfully recover the key for all datasets. While SOSD obtained the best
NTGE for the CW dataset and LRP obtained the best results for AES_HD,
KGO obtained competitive results with second-order CPA for ASCADf. We ob-
serve that for both Saliency and 1-Occlusion, we obtain GE = 0 for unprotected
datasets, but GE did not converge at all for the first-order masking implementa-
tion - ASCADf and ASCADr. With LRP, we reach GE = 0 for the unprotected

8 For feature selection that requires a known key setting (i.e., CPA and KGO), we
follow the assumption from [37].
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dataset and ASCADr but fail to break the target for ASCADf. In other words,
KGO obtains stable results compared with all other tested explainability meth-
ods, especially when used on datasets protected with first-order masking. This
demonstrates that the OccPoIs obtained through KGO are applicable as a fea-
ture selection tool for TA on synchronized traces, especially for implementation
with first-order masking.

Averaging over Multiple DNNs. To verify the consistency of our results, we run a
random search with the hyperparameters search space reported in our weblink9to
find 10 DNNs that could recover the secret key successfully. Then, we run the
KGO algorithm on these DNNs. We apply TA with the corresponding feature
selection techniques for each model using the same number of features that KGO
attained. We provide results for the ASCADf dataset as it obtains the best result.
We have tried finding more DNNs with ASCADr with the same hyperparameters
space. Unfortunately, we could not find more DNNs that managed to recover the
secret key. Table 3 illustrates the number of successful attempts, the average GE,
and the average NTGE obtained. The GE is averaged over 10 attempts (each
attempt corresponds to one DNN), while the NTGE is averaged over the total
number of successful attempts to recover the key with TA. We found that out of
10 models, 9 models have their OccPoIs leading to secret key recovery using TA.
This shows that DNNs can pinpoint leakages within the traces to recover the
secret and, in some instances, use a more complex leakage model. The average
NTGE for 9 models is 2198, which is relatively close to CPA (multi.) of 1873.9.
We emphasize that although CPA (multi.) recovers the secret key in all 10 cases
and obtains the best NTGE, it is in a known mask setting while KGO is in an
unknown mask setting.

Table 3: TA performance for multiple DNNs that successfully recover the secret
key using various explainability techniques on ASCADf.

No. successful attempts Average GE Average NTGE

SOSD 1 5.00 4293.00
SOST 0 20.05 -

CPA (first-order) 0 8.94 -
CPA (multi.) 10 0 1873.90

Saliency 0 65.78 -
LRP 0 38.34 -

1-Occlusion 0 44 -
KGO 9 5.00 2198.56

Zero-valued Occlusion vs. Sample-wise Mean-valued Occlusion. Here, we explore
the setting when we occlude the datasets with the sample-wise mean value in-
stead of zero. Table 4 depicts the number of successful attempts, the average
9 https://github.com/yap231995/OccPoIs/blob/main/Architecure_and_
Hyperparameter_SearchSpace_considered.pdf
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(a) Correlation concerning sample points
for ASCADf.

(b) 1-KGO on all the sets of OccPoIs at-
tained for ASCADf.

Fig. 6: Explainability of DNN for extended KGO on ASCADf.

GE, and the average NTGE obtained when the sample-wise mean is used as oc-
clusion value within KGO. We see that 8 out of 10 TA attempts on the OccPoIs
provided by KGO with sample-wise mean-value successfully recover the key, one
less than with the zero-valued occlusion (see Table 3). Furthermore, the average
GE is 10.5, which is higher than those found when the occlusion value is zero
(when GE = 5). However, we highlight that the average NTGE is lower than
those found with CPA (multi.). It is not obvious why this is the case; we leave
it for future work.

Table 4: TA performance for multiple DNNs that successfully recover key using
various explainability techniques on ASCADf (KGO with mean-value).

No. successful attempts Average GE Average NTGE

Saliency 0 88.44 -
LRP 0 43.44 -

1-Occlusion 0 37.83 -
KGO with sample-wise mean value 8 10.50 1075.25

Extending KGO by Applying it Multiple Times. To give a more detailed picture
of what features a DNN uses to recover the key, we apply an extended version
of KGO in the following manner. First, we apply KGO on all the sample points
(i.e., queue = [0, . . . , D− 1] in Algorithm 1) and obtain the first set of OccPoIs,
indexOccPoI . We keep these in OccPoIall = indexOccPoI . If the trained DNN
attains GE < 1 on sample points [0, . . . , D − 1] \ OccPoIall, we apply KGO
again to obtain another set of OccPoIs, indexOccPoI . Then, we add the OccPoIs
to OccPoIall (i.e., OccPoIall = OccPoIall ∪ indexOccPoI . We repeat this step
until the trained DNN attains GE ≥ 1 on sample points [0, . . . , D−1]\OccPoIall.

Since KGO with zero occlusion value allows us to have a higher chance of
obtaining OccPoIs such that we recover the key successfully, we run the extended
KGO with zero occlusion value. We ran extended KGO on ASCADf and obtained
two disjoint sets of OccPoIs. We obtained ω = 6 for the first set of OccPoIs and
ω = 17 for the second set of OccPoIs. In total, we recover 23 OccPoIs. Figure 6
provides the location of these OccPoIs on top of the correlation of the leakages
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(a) OccPoIs set 0 (b) OccPoIs set 0

(c) OccPoIs set 1 (d) OccPoIs set 1

Fig. 7: CPA on the OccPoIs acquired from applying extended KGO.

and the 1-KGO on all the sets of OccPoIs. We also provide a zoom-in of the
leakages constituting OccPoIs in Figure 7.

We observe similar results as above: the DNN uses OccPoIs where leakages
can be justified with first-order CPA but also OccPoIs for which we do not know
what the leakage models are. However, applying the extended KGO provides a
more complete picture of the leakage location that the DNN exploits. Next, we
apply TA on OccPoIsall and both sets of OccPoIs individually. The results are
provided in Table 5. We observe that the best performances are reached using
OccPoIs obtained from KGO. We also notice that when we combine both sets of
OccPoIs (i.e., OccPoIsall), the NTGE increases. This suggests that the DNN
also learns a function that combines different OccPoIs to recover the key more
efficiently than TA.

Table 5: TA NTGE when using extended KGO on the DNN with various ex-
plainability techniques.

OccPoIsall OccPoIs set 0 OccPoIs set 1

ω 23 6 17

SOSD 987 > 10k (GE = 7) > 10k (GE = 3)
SOST 4057 > 10k (GE = 113) > 10k (GE = 1)

CPA (first-order) > 10k (GE = 24) > 10k (GE = 33) > 10k (GE = 12)
CPA (multi.) 2327 423 1486

Saliency > 10k (GE = 12) > 10k (GE = 241) > 10k (GE = 79)
LRP > 10k (GE = 12) > 10k (GE = 166) > 10k (GE = 56)

1-Occlusion > 10k (GE = 12) > 10k (GE = 205) > 10k (GE = 37)
KGO 987 332 836
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8 Traces with Desynchronization

In this section, we explore OccPoIs in desynchronized datasets and visualize
them using the 1-KGO algorithm. To find the locations that are leaking for
desynchronized traces, one could resynchronize them and apply CPA or Signal-
to-Noise ratio (SNR) to observe any leakage. However, resynchronizing the traces
is tedious. Therefore, it is desirable to have a tool that can observe which sam-
ple points are leaking without any additional analysis. For an unprotected case
with sufficient traces, an evaluator can obtain the PoIs without resynchroniz-
ing the traces [10]. However, for implementations that are protected by both
desynchronization and masking, it is necessary to resynchronize the trace to
identify the PoIs [10]. Instead, we hope to find the positions where the leakages
are through the explainability methods. Although Masure et al. explored the use
of the Saliency Map in an unprotected dataset and showed that the desynchro-
nization is observable [16], to the best of our knowledge, no works have explored
the use of explainability techniques to visualize leakages in datasets protected
by both desynchronization and masking.

We investigate the ASCADf and ASCADr datasets with desynchronization
levels of 50 and 100. We present the results for ASCADf (i.e., ASCADf_desync50
and ASCADf_desync100), as both datasets provide similar observations. To ob-
serve how much contribution each OccPoI has toward retrieving the secret key,
we apply 1-KGO. Both 1-KGO and Saliency Map results are provided in Fig-
ure 8 for ASCADf_desync50 and ASCADf_desync100. We observe that the
number of OccPoIs is still relatively small compared to the total number of
samples. There are only 32 OccPoIs for ASCADf_desync50 and 60 OccPoIs for
ASCADf_desync100 out of the 700 sample points. Most sample points acquired
by KGO and Saliency Map are similar. However, some sample points with a rel-
atively low relevance value in the Saliency Map are considered crucial by KGO.
For instance, the sample point 4 is picked up by KGO for ASCADf_desync50
(the first sample point in Figure 8b), and the sample points around 300 in
ASCADf_desync100, would be overlooked if relying solely on Saliency Maps.
Therefore, this highlights the potential for false security when using the Saliency
Map. This discrepancy arises likely because attribution-based methods provide
feature importance that lacks context specific to the key recovery task. In con-
trast, KGO offers confidence in identifying necessary OccPoIs by incorporating
the attack phase.

9 Limitations

Although the KGO algorithm helps find the minimal set of features that the
DNN requires to retrieve the key, there is still a trade-off regarding time. The
total time to run the KGO algorithm is presented in Table 6.

If we consider KGO as a feature selection technique instead of just an ex-
plainability technique, the drawback of this technique is the inability to choose
the number of sample points. Even so, the number of OccPoIs acquired by KGO
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(a) Saliency Map for AS-
CADf_desync50.

(b) 1-KGO of DNN for AS-
CADf_desync50.

(c) Saliency Map for AS-
CADf_desync100.

(d) 1-KGO of DNN for AS-
CADf_desync100.

Fig. 8: Explainability of DNN for ASCADf with desynchronization.

Table 6: Time taken to run KGO.
CW ASCADf ASCADr AES_HD

Time Taken (hrs) 26.3 21.3 227.7 44.9

is small compared to the total number of sample points in the traces. This means
that using the OccPoIs still increases the efficiency of TA. Another drawback is
that KGO only gives importance to a very small set of points, unlike other ex-
plainability techniques, which give different importance to all the sample points.
Furthermore, it does not mean the sample points are not leaking if KGO does not
consider them. There might be more than one minimal set in which the DNN
manages to recover the secret key. Despite that, knowing at least one set of
points needed by the DNN to obtain the secret key through the KGO algorithm
allows evaluators to know which areas require further protection to increase the
security of the cryptographic implementation.

10 Conclusion and Future Work

In this paper, we propose a novel explainability technique called KGO. KGO
obtains a set of relevant sample points (OccPoIs) that are necessary for DNN
to retrieve the secret key. We can observe what kind of leakage these OccPoIs
contain so the DNN can recover the key. Some of these OccPoIs are highly
correlated to the hypothetical leakage model, while others cannot be detected
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by CPA. Next, we show that KGO could be used as a feature selection tool for
TA on synchronized traces. Moreover, our approach obtains competitive results
for ASCADf. Overall, we have shown that the TA performance is consistent
when using KGO as a feature selection tool. Lastly, we demonstrated that KGO
could be used on desynchronized traces to visualize the leakages even when the
implementation is protected by first-order masking. In addition, since the attack
phase is integrated within KGO, it assures evaluators that KGO’s identified
areas are genuinely leaking sensitive information, which is a key advantage over
other attribution-based methods. For future work, one direction could be to
speed up the algorithm to find more sets of OccPoIs. One could also study how
to incorporate the attack phase into the attribution-based methods to provide
importance for every sample point that gives human-interpretable context.
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A Feature Selection

In this section, we recall classical feature selection techniques used in SCA. Let
x be a single sample point in the trace.

SOSD. Gierlichs et al. [12] defined the sum of squared differences (SOSD) as

SOSD(x, y) =

|Z|∑
i,j=1,
j>i

(x̄yi
− x̄yj

)2

where x̄yi
is the mean of the sample point under the class yi.

SOST. Gierlichs et al. further introduced the normalized version called the sum
of squared T-differences (SOST):

SOST (x, y) =

|Z|∑
i,j=1,
j>i

(
x̄yi − x̄yj√
σ2
yi

nyi
+

σ2
yj

nyj

)2

where σ2
yi

is the variance of the sample point x under the class yi and nyi
is the

total number of traces in class yi.

Pearson Correlation. Pearson Correlation is used in the classical non-profiling
attack CPA and is calculated as

Pearson(x, y) =

∑N
i=1(x

i − x̄)(yi − ȳ)√∑N
i=1(x

i − x̄)2
√∑N

i=1(y
i − ȳ)2

,

where N denotes the number of traces used.

B Validating Leakage within OccPoIs for AES_HD and
ASCADr

AES_HD. For AES_HD, despite the low SNR, KGO finds one OccPoI at sample
point 969. This sample point is highly correlated to the hypothetical leakage
model Sbox−1(ct15 ⊕ k∗15)⊕ ct11 among all the other keys (see Figure 9a). KGO
leak concerning CPA validates vulnerability even on low-SNR FPGA datasets.
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(a) CPA concerning sample points for
AES_HD.

(b) Correlation of different leakage models vs.
OccPoIs for ASCADr.

(c) CPA of pt3⊕k∗
3 ⊕ rin and rin on OccPoIs

for ASCADr.

Fig. 9: CPA for AES_HD and ASCADr.

ASCADr. Next, in ASCADr, we observe 6 OccPoIs extracted by KGO: 445, 699,
880, 914, 988, and 1318. The sample point 445 consists of leakage on pt3⊕k∗3⊕rin
while the sample points 699, 880, 914, and 1318 consist of the leakage rin (see
Figure 9b). However, we note that CPA cannot distinguish the leakages of pt3⊕
k∗3 ⊕ rin among other keys (see sample point 445 in Figure 9c). Despite that, the
DNN uses this point to retrieve the key. Furthermore, the sample point 988 does
not correlate highly with pt3 ⊕ k∗3 ⊕ rin and rin. From Figure 9b, sample point
988 is not correlated highly with any of the abstract leakage models tested, yet
the DNN requires this sample point to obtain the secret key. This suggests that
the DNN could extract complex leakage information from the sample point 988,
which could come from higher-order leakage or other abstract leakage models.


