
Fiat-Shamir Security of FRI and Related SNARKs

Alexander R. Block1,2, Albert Garreta3,6, Jonathan Katz2, Justin Thaler1,5, Pratyush Ranjan Tiwari4,
and Michał Zając3

1Georgetown University, justin.thaler@georgetown.edu
2University of Maryland, {alexander.r.block,jkatz2}@gmail.com

3Nethermind, {albert,michal}@nethermind.io
4Johns Hopkins University, pratyush@cs.jhu.edu

5a16z crypto research
6Basque Center of Applied Mathematics (BCAM)

Thursday 15th February, 2024

Abstract

We establish new results on the Fiat-Shamir (FS) security of several protocols that are widely used in practice,
and we provide general tools for establishing similar results for others. More precisely, we: (1) prove the FS security
of the FRI and batched FRI protocols; (2) analyze a general class of protocols, which we call 𝛿-correlated, that use
low-degree proximity testing as a subroutine (this includes many “Plonk-like” protocols (e.g., Plonky2 and Redshift),
ethSTARK, RISC Zero, etc.); and (3) prove FS security of the aforementioned “Plonk-like” protocols, and sketch how
to prove the same for the others.

We obtain our first result by analyzing the round-by-round (RBR) soundness and RBR knowledge soundness of
FRI. For the second result, we prove that if a 𝛿-correlated protocol is RBR (knowledge) sound under the assumption
that adversaries always send low-degree polynomials, then it is RBR (knowledge) sound in general. Equipped with this
tool, we prove our third result by formally showing that “Plonk-like” protocols are RBR (knowledge) sound under
the assumption that adversaries always send low-degree polynomials. We then outline analogous arguments for the
remainder of the aforementioned protocols.

To the best of our knowledge, ours is the first formal analysis of the Fiat-Shamir security of FRI and widely deployed
protocols that invoke it.

1 Introduction
Succinct Non-interactive ARguments of Knowledge (SNARKs) and their zero-knowledge variants (zkSNARKs) are
a thriving field of study both in theory and practice. Allowing for fast verification of complex statements made by
untrusted parties, zkSNARKs have now been deployed in a myriad of applications. A popular paradigm for constructing
(zk)SNARKs is via the following two-step process: (1) construct a public-coin1 interactive protocol and (2) remove all
interaction using the Fiat-Shamir (FS) transformation [FS87], adding zero-knowledge as necessary.

Non-interactivity is essential in many applications of zkSNARKs. In general, interactive protocols are not publicly
verifiable and hence cannot be used in settings where anyone in the world should be able to verify the proof. There
are various proposals (e.g., [BBHR18b]) to render interactive protocols publicly verifiable using so-called randomness
beacons [Rab83] (i.e., publicly verifiable sources of random bits, such as contents blockchain block headers) and the
transaction-ordering functionality offered by public blockchains (which enable the public to verify that the prover sent a

1A protocol is public-coin if all messages sent by the verifier are sampled uniformly at random from a challenge space and are independent of all
prior prover and verifier messages.

1

message before it knew what the verifier’s response to that message would be). However, to the best of our knowledge,
such proposals have not been deployed at scale. They are also fraught with performance and security considerations; for
example, blockchain headers are at least somewhat biasable [PW18, BCG15], and splitting an interactive proof across
many blockchain blocks can substantially increase latency and fees.

Regardless, the Fiat-Shamir transformation is pervasive and has been used extensively in a variety of schemes
beyond zkSNARKs; e.g., signature schemes and non-interactive zero-knowledge [FS87, PS96, Mic00], inspiring a rich
line of research into understanding both its applicability and pitfalls. The FS transformation is typically modeled and
analyzed in the random oracle model (ROM) for security proofs. When using FS in practice, one then assumes that a
suitable concrete hash function (e.g., SHA256) is an adequate replacement for said random oracle.

However, there are surprisingly many open problems regarding specific applications of the FS transformation. In
particular, the FS transformation is not secure in general [Bar01, GK03, BDG+13], even in the random oracle model,
when applied to many-round protocols. Specifically, its use can lead to a loss in the number of “bits of security” that is
linear in the number of rounds 𝑟 of the protocol to which it is applied. Here, the number of bits of security roughly
refers to the logarithm of the amount of work an attacker has to do to succeed with probability close to 1.

Accordingly, the FS transformation is often applied to many-round protocols without formal security proofs for the
resulting SNARKs’ security. That is, the security analysis of these protocols is often provided only for their interactive
versions. Without further analysis, the security (measured in bits) lost via the FS transformation may be a factor equal
to the number of rounds of the protocol. Even a 30% loss in security would be devastating in practical deployments
(e.g., reducing the number of bits of security from 100 down to 70), and (more than) such a loss can occur even when
Fiat-Shamir is applied to protocols with just two rounds. There are also some works that claim FS-security of their
protocols, but in fact show this only under the assumption that certain many-round sub-protocols used in the overall
protocol are FS-secure [CMS19, COS20, KPV22].

In this work, we fill this gap in these security analyses and provide general tools for doing so for certain varieties
of protocols. Specifically, we show that for the protocols we are interested in, the security of the FS-transformed
protocol resembles the security of the interactive one (pre-FS) (or more precisely, what is currently known about the
interactive security). This adds to a recent fruitful line of work has introduced many tools to understand FS security of
many-round protocols. These include the notions of state-restoration soundness [BCS16], round-by-round soundness
[CCH+19], and (generalized) special soundness [CDS94, Wik21, AFK22]. Nonetheless, in the literature on SNARKs,
relatively few protocols are known to be FS-secure, despite the above tools existing. These include the GKR protocol
[GKR08, CCH+19] (or more generally, anything based on the sum-check protocol [LFKN92]), the GMW protocol and
other natural classes of “commit-and-open” protocols [HLR21], and any protocol satisfying the notion of (generalized)
special soundness [AFK22], which includes IPA/Bulletproofs [BCC+16, BBB+18]. Bulletproofs [BCC+16, BBB+18]
and Sonic [MBKM19] have separately been shown to be FS-secure in the algebraic group model [GT21].

In this introduction, we informally refer to protocols that experience little-to-no loss in the number of bits of security
when the FS transformation is applied in the random oracle model as FS-secure.

1.1 Our Results
We formally analyze and prove FS-security of the FRI protocol [BBHR18a] and of some protocols that have wide use in
practice which use low-degree proximity testing as a subroutine. For the latter, we build a general tool that allows us
to prove FS-security of a certain type of protocol, which we call a 𝛿-correlated IOP, by analyzing its round-by-round
soundness assuming an adversary sends low-degree polynomials. We formally apply this tool to “Plonk-like” protocols
such as Plonky2 [Polb], and we outline how the tool can be used on other constructions such as ethSTARK [Sta23].
In particular, we either formally prove or we outline a proof that the security of all these protocols, after applying the
Fiat-Shamir transformation, (nearly) matches what is known about its security when run interactively.

As mentioned, we focus on these protocols due to their current popularity. For example, FRI is currently used in
various Layer-2 Ethereum projects [Sta, Pola] to help secure hundreds of millions of dollars of assets [L2B]. Some
projects are deploying FRI with (at most) 80-bits (dYdX) or 96-bits (those using the SHARP prover) of interactive
security before the FS transformation is applied [BCI+20, Sta23, Sta]. More precisely, the best known attacks on these
interactive protocols have success probability 2−80 or 2−96. These attacks are conjectured to be optimal [Sta23], though
only partial results in this direction are known [BCI+20]. Similarly, Plonk-like protocols are utilized in a variety of

2

blockchain networks and Layer 2 Ethereum projects (e.g., [Min, Mat, Dus, =ni, Suc]),
When it comes to the FRI protocol, we do not address the gaps between the conjectured and known soundness of the

interactive protocol. We merely analyze the security of the FS-compiled protocol as a function of the security of the
interactive protocol.

1.2 Technical Details
In a nutshell, we formally establish the round-by-round (knowledge) soundness [CCH+19] of both FRI and several
protocols that rely on a form of low-degree proximity testing. For analyzing round-by-round (RBR) soundness, there is
a protocol state function that can either be “doomed” or not. The state of the protocol starts off as doomed whenever a
prover falsely claims that an input is valid. If at the end of interaction the state is doomed, the verifier rejects. The
protocol is said to be RBR sound if, whenever the state is doomed, the protocol is still doomed in the next round of
interaction, except with negligible probability, no matter what a prover does. RBR knowledge soundness is a similar
notion, except that in this case, the protocol always starts off in a doomed state, and after each round, except with
negligible probability, it remains doomed unless the prover knows a valid witness; see Section 2.1 for more discussion.

By establishing the round-by-round (knowledge) soundness of these protocols, we can then leverage the so-called
BCS transformation [BCS16], which (informally) compiles any interactive protocol2 into a (zk)SNARK via (a variant
of) the Fiat-Shamir transformation in the random oracle model. Applying the BCS transformation on a round-by-round
(knowledge) sound protocol preserves (knowledge) soundness (yielding a SNARK) [COS20, CMS19].3 In fact,
round-by-round soundness of the interactive protocol was even shown to imply that the BCS-transformed SNARK is
secure against quantum adversaries [CMS19]. Thus, we establish the Fiat-Shamir security of both FRI and the rest of
protocols via proving their round-by-round (knowledge) soundness.

1.2.1 Round-by-round Soundness of FRI

The FRI protocol [BBHR18a], which stands for Fast Reed-Solomon Interactive Oracle Proof of Proximity is a
logarithmic round interactive oracle proof. Briefly, an interactive oracle proof (IOP) [BCS16] is an interactive protocol
where the verifier is given oracle (i.e., query) access to the (long) prover messages, and an IOP of Proximity (IOPP) is
an IOP for proving proximity of a function to some pre-specified linear error-correcting code [BBHR18a]. The FRI
protocol proves that a function is close to the space of Reed-Solomon codewords [RS60] of a certain degree over some
pre-specified domain over a finite field. This protocol is both of theoretical and practical interest. On the theory side,
FRI gives a polylogarithmic-size proof for proving the proximity of messages to some pre-specified Reed-Solomon code,
which is an important primitive in many proof systems [BBHR18a]. On the practical side, FRI is used as a sub-protocol
in the design and construction of many SNARKs and has the benefit of being plausibly post-quantum secure due to its
avoidance of elliptic curve cryptography (and in fact, it follows from our results that FRI, when run non-interactively via
Fiat-Shamir, is unconditionally secure in the quantum random oracle model).

Despite intense interest from both theorists and practitioners, we are unaware of any formal security proof for FRI
under Fiat-Shamir.

Theorem 1.1 (Informally Stated; see Theorem 4.1). For finite field F, evaluation domain 𝐿 ⊂ F of size 2𝑛, constants
𝜌 ∈ (0, 1), 𝛿 ∈ (0, 1 − √𝜌), and positive integer ℓ, the FRI protocol has round-by-round (knowledge) soundness error

𝜀FRIrbr (F, 𝜌, 𝛿, 𝑛, ℓ) = max{𝑂 (22𝑛/(𝜌3/2 |F|)), (1 − 𝛿)ℓ }.

Establishing the round-by-round (knowledge) soundness of FRI is a crucial first step to establishing the Fiat-Shamir
security of FRI. In particular, given the round-by-round soundness of FRI, we can now apply the BCS transformation
[BCS16] to obtain a secure non-interactive argument in the random oracle model using FRI.

Corollary 1.2 (Informally Stated; see Corollary 4.3). For finite field F, evaluation domain 𝐿 ⊂ F of size 2𝑛, constants
𝜌 ∈ (0, 1), 𝛿 ∈ (0, 1 − √𝜌), and positive integer ℓ, given a random oracle with 𝜅-bits of output and query bound 𝑄 ≥ 1,

2More formally, the BCS transformation is applied to interactive oracle proofs [BCS16].
3Actually, [BCS16, CMS19] prove this for state-restoration soundness; however, subsequent works observed that round-by-round soundness is an

upper bound on state-restoration soundness [CCH+19, CMS19, COS20, KPV22].

3

compiling FRI with the BCS transformation yields a non-interactive argument in the random oracle model with adaptive
soundness error and knowledge error

𝜀FRIfs (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑄, 𝜅) = 𝑄𝜀FRIrbr (F, 𝜌, 𝛿, 𝑛, ℓ) +𝑂 (𝑄
2/2𝜅).

Moreover, the transformed non-interactive argument has adaptive soundness error and knowledge error Θ(𝑄 ·
𝜀FRIfs (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑄)) against 𝑂 (𝑄)-query quantum adversaries.

Extension to Batched FRI. In practice, it is common to run a Batched FRI protocol, which allows a prover to
simultaneously prove the 𝛿-correlated agreement4 of 𝑡 functions 𝑓1, . . . , 𝑓𝑡 by running the FRI protocol on the batched
function 𝐺 =

∑︁
𝑖 𝛼𝑖 𝑓𝑖 for randomly sampled 𝛼𝑖 provided by the verifier. We extend our analysis of FRI to this version of

Batched FRI and establish its round-by-round (knowledge) soundness.

Theorem 1.3 (Informally Stated, see Theorem 4.2). For finite field F, evaluation domain 𝐿 ⊂ F of size 2𝑛, constants
𝜌 ∈ (0, 1), 𝛿 ∈ (0, 1 − √𝜌), and positive integers ℓ, 𝑡, the Batched FRI protocol has round-by-round (knowledge)
soundness error

𝜀bFRIrbr (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑡) = max{𝑂 ((22𝑛)/(𝜌3/2 |F|)), (1 − 𝛿)ℓ }.

As before, establishing round-by-round soundness allows us to securely apply the BCS transformation, obtaining a
non-interactive argument in the random oracle model.

Corollary 1.4 (Informally Stated; see Corollary 4.4). For finite field F, evaluation domain 𝐿 ⊂ F of size 2𝑛, constants
𝜌 ∈ (0, 1), 𝛿 ∈ (0, 1 − √𝜌), and positive integers ℓ, 𝑡, given a random oracle with 𝜅-bits of output and query bound
𝑄 ≥ 1, compiling Batched FRI with the BCS transformation yields a non-interactive argument in the random oracle
model with adaptive soundness error and knowledge error

𝜀bFRIfs (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑡, 𝑄, 𝜅) = 𝑄 · 𝜀bFRIrbr (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑡) +𝑂 (𝑄
2/2𝜅).

Moreover, the transformed non-interactive argument has adaptive soundness error and knowledge error Θ(𝑄 ·
𝜀bFRIfs (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑡, 𝑄, 𝜅)) against 𝑂 (𝑄)-query quantum adversaries.

To the best of our knowledge, our results are the first to establish the security of non-interactive analogs of FRI and
Batched FRI in the random oracle model.

A Variant of Batched FRI. To save on communication costs, a variant of Batched FRI is sometimes used, where the
batched function 𝐺 has the form 𝐺 =

∑︁
𝑖 𝛼

𝑖−1 𝑓𝑖 , where 𝛼 is a randomly sampled challenge sent by the verifier. In both
the context of regular soundness and round-by-round soundness, this version of Batched FRI incurs some soundness
loss proportional to 𝑡. In particular, in Theorem 1.3, the round-by-round soundness error for this Batched FRI protocol
is 𝜀bFRIrbr (F, 𝜌, 𝛿, 𝑛, ℓ, 𝑡) = max{𝑂 ((22𝑛 · 𝑡)/(𝜌3/2 |F|)), (1 − 𝛿)ℓ }; see Section 5.2 for details.

Round-by-round Soundness Error versus Standard Soundness Error of FRI. Ben-Sasson et al. [BCI+20] give the
best known provable soundness bounds for (Batched) FRI; in fact, we leverage many tools from their results to show our
round-by-round soundness bounds. Roughly speaking, [BCI+20] show that the soundness error of (Batched) FRI is
𝜀1 + 𝜀2 + 𝜀3, where

𝜀1 = 𝑂 (22𝑛/(𝜌3/2 |F|)) 𝜀2 = 𝑂 ((2𝑛 · 𝑛√𝜌)/|F|) 𝜀3 = (1 − 𝛿)ℓ .

Then our RBR soundness bound for (Batched) FRI is given by max{𝜀1, 𝜀3}.

Round-by-round Knowledge Error. Both FRI and Batched FRI additionally have round-by-round knowledge error
[CMS19, COS20, KPV22] identical to the round-by-round soundness errors given in Theorems 1.1 and 1.3. The BCS
transformation preserves this type of knowledge soundness, yielding a SNARK. See Section 2.1 for more discussion.

4Informally speaking, functions have 𝛿-correlated agreement if they are all 𝛿-close to some pre-specified Reed-Solomon code and the agreement
set is the same among all functions; see Definition 3.2.

4

1.2.2 A General Tool for Proving RBR (Knowledge) Soundness

We go on to analyze proof systems that rely on the FRI protocol as a subroutine. To this end, we introduce a family of
IOPs which we call 𝛿-correlated IOPs, where 𝛿 ≥ 0 is a parameter. This family encompasses all of the aforementioned
protocols. In a nutshell, we say an IOP is 𝛿-correlated if the prover is supposed to send oracles to maps that are 𝛿-close
to low-degree polynomials in a correlated manner. Correlation here means that the domain where these maps agree
with low-degree polynomials is the same among all the maps. In a 𝛿-correlated IOP, during the verification phase, the
verifier: (1) checks some algebraic equalities involving some evaluations of these maps; and (2) verifies that all the
received oracles correspond indeed to 𝛿-correlated maps (we assume the verifier has another oracle to perform this
check). When 𝛿 = 0, a 𝛿-correlated IOPs can be seen as a subclass of RS-encoded IOPs [BCR+19, COS20]. We refer to
Appendix B for further comparison.

This points to a “recipe” for building a particular family of SNARKs: first, construct a 𝛿-correlated IOP; then,
instantiate the check for 𝛿-correlation using an interactive protocol, e.g., batched FRI [BCI+20]. This produces an
IOP as a result. Finally, use the aforementioned BCS transformation on this IOP to produce a non-interactive succinct
argument. If this argument is knowledge sound, one has obtained a SNARK. Figure 1 summarizes this construction.
It is immediate to see that the previously mentioned protocols (Plonky2, RISC Zero, ethSTARKs, etc.) are actual
instantiations of this construction.

𝛿-correlated IOP IOP SNARG/SNARK
IOPP for

𝛿-correlation
BCS

Transformation

Figure 1: A recipe for building a succinct non-interactive argument.

We then provide general results for proving that the resulting succinct non-interactive argument is knowledge sound.
Precisely, we prove the following:

1. RBR soundness of batched FRI. As a general result, we prove that the (batched) FRI protocol is RBR sound
and RBR knowledge sound. We remark that batched FRI can be used for checking 𝛿-correlated agreement of a
collection of maps [BCI+20].

2. From RBR knowledge when the adversary sends low degree polynomials, to general RBR knowledge.
Consider a 𝛿-correlated IOP Π, and suppose attackers always send oracles to low degree polynomials. We prove
that if Π is RBR (knowledge) sound under this assumption, then it is also RBR (knowledge) sound in general, and
that the soundness error only increases by a (relatively) small factor.

3. From a RBR knowledge sound 𝛿-correlated IOP to a RBR knowledge sound IOP. Again letΠ be a 𝛿-correlated
IOP. By using an interactive protocol ΠCA to check for 𝛿-correlation, Π can be turned into a regular IOP Πcompiled.
We prove that this compilation preserves RBR (knowledge) soundness, assuming ΠCA is RBR sound (not
necessarily RBR knowledge sound).

4. From a RBR knowledge sound IOP to a SNARK. We then apply the BCS compilation results from [BCS16] to
obtain a SNARK.

In conclusion, we show that given any succinct non-interactive argument constructed as in Figure 1 (using batched FRI
to check for 𝛿-correlation), one can show its knowledge soundness simply by proving RBR knowledge soundness of the
underlying 𝛿-correlated IOP under the assumption that the adversary is constrained to sending oracles to low-degree
polynomials. The latter can greatly simplify the analysis since it allows one to work with the simplicity of IOPs (as
opposed to arguments) and the convenient properties of polynomials.

Thus, our methods not only allow us to prove FS-security, they also remove the complexity of dealing with maps that
are close to low-degree polynomials when using FRI within a protocol. This allows us to analyze the interactive version
of these protocols in a similar way as when one studies Polynomial IOPs [BFS20], where, by definition, soundness is
only considered for adversaries that send low-degree polynomials.

5

According to our formalism, a 𝛿-correlated IOP where we constrain adversaries to always send low-degree
polynomials is in fact a 0-correlated IOP. Then, Item (2) above can be seen as a result that relates the RBR knowledge
soundness of a 𝛿-correlated IOP for 𝛿 = 0 and for 𝛿 > 0. Overall, our security results can be organized and depicted as
in Figure 2; see also Theorem 1.5.

RBR (knowledge)
sound 0-correlated

IOP

RBR (knowledge)
sound 𝛿-correlated

IOP

RBR (knowledge)
sound IOP

SNARG
(SNARK)

Our
Theorem

IOP(P) for 𝛿-correlation
+ Our results

BCS
Transform

Figure 2: Another recipe for building a SNARG/SNARK.

Theorem 1.5 (Informally Stated, see Theorem 4.6). Let ΠO
𝛿

be a 𝛿-correlated IOP, where O is an oracle for 𝛿-correlated
agreement. Let 0 < 𝜌, 𝜂 ≤ 1 and 𝛿 = 1−√𝜌 − 𝜂. Assume Π0 has RBR knowledge soundness with error 𝜀. Then Π𝛿 has
RBR knowledge soundness with error 𝜀/(2√𝜌𝜂).

Moreover, if Π′ is an IOP for testing 𝛿-correlated agreement in a Reed-Solomon code with RBR soundness error 𝜀′,
then the protocol Πcompiled obtained by replacing O in Π𝛿 with Π′ has RBR knowledge soundness with error

𝜀compiled = max{𝜀/(2√𝜌𝜂), 𝜀′}.

Finally, given a random oracle with 𝜅-bits of output and query bound 𝑄 ≥ 1, compiling Πcompiled with the BCS
transformation yields a succinct non-interactive argument in the random oracle model with knowledge error

𝑄 ·max{𝜀/(2√𝜌𝜂), 𝜀′} +𝑂 (𝑄2/2𝜅).

Remark 1.6. As we mentioned, the notion of 𝛿-correlated IOP is closely related to that of RS-encoded IOP from
[BCR+19, COS20]. The works of [BCR+19, COS20] also provide a method for compiling a RBR (knowledge) sound
RS-encoded IOP into RBR (knowledge sound IOPs); e.g., see [COS20, Theorem 8.2]. However, our result allows to
use a proximity parameter up to the Johnson bound, i.e., we can select 𝛿 = 1 − √𝜌 − 𝜂 for any arbitrarily small 𝜂 > 0,
while the compilation results from [BCR+19, COS20] constrain 𝛿 to be within the unique decoding radius 𝛿 <

1−𝜌
2 . On

the other hand, in some sense, RS-encoded IOPs encompass a wider class of protocols than 𝛿-correlated ones. See
Appendix B for further discussion.
Remark 1.7. Many security analyses of SNARKs obtained by combining Plonk-like protocols with so-called KZG
polynomial commitments [KZG10] can assume that an adversary always sends oracles to polynomials of appropriate
degree. Intuitively, this is due to the fact that the KZG polynomial commitment scheme ensures that a committed
function is indeed a polynomial of appropriate degree.

However, in our scenario, due to the usage of the FRI protocol instead of KZG, adversaries are only constrained to
sending (oracles to) maps that are close to polynomials of appropriate degree. This makes the soundness analysis of
our protocols more subtle. Indeed, as we mentioned, besides showing that FRI itself is RBR sound, most of our work
is concerned with reducing the analysis to the case when the adversary actually sends oracles to polynomials of the
appropriate degree.

1.2.3 Round-by-round Soundness of Specific 𝛿-correlated Proof Systems

We can apply all the tools developed so far to specific protocols whose construction follows the outline from Figures 1
and 2. In short, these are protocols resulting of compiling a 𝛿-correlated IOP into a succinct non-interactive protocol via
a protocol for 𝛿-correlated agreement and the BCS transformation. Thanks to Theorems 1.3 and 1.5, we can prove the
knowledge soundness of these protocols just by proving that the corresponding 0-correlated IOP has RBR knowledge
soundness. Recall that in a 0-correlated IOP, the adversary is assumed to always send oracles to low-degree polynomials.

Some of the protocols that fit into this framework are many “Plonk-like” proof systems that use FRI instead
of the KZG polynomial commitment scheme; Plonky2 [Polb], Redshift [KPV22], and RISC Zero [Tea23] are
examples. Here we use the term “Plonk-like” to loosely refer to protocols that use an interactive permutation argument

6

[Lip89, Lip90, BEG+94, ZGK+18, BCG+18] as a subroutine (we use the term “Plonk-like” because the Plonk SNARK
[GWC19] helped popularize the use of this permutation-checking procedure). Other protocols that fit in our framework
but are not “Plonk-like” are ethSTARK or DEEP-ALI [BGKS20].

We focus our attention mostly on Plonky2 since we believe that, among all these protocols in 0-correlated IOP form,
Plonky2 is the most involved to analyze. Indeed, Plonky2 was designed to be used over a small field (the 64-bit so-called
Goldilocks field). Because of this, some checks are repeated in parallel in order to increase its security. The task of
correctly designing these parallel repetitions is subtle, and indeed in Appendix C we describe an (arguably more natural)
variation of Plonky2 with dramatically less security than Plonky2 itself. To the best of our knowledge, this variation is
not used in practice—we are showcasing it here to illustrate a potential pitfall to be avoided.

Accordingly, we rigorously define a general “Plonk-like” 𝛿-correlated IOP, which captures many “Plonk-like”
protocols that rely on the FRI protocol. We denote this 𝛿-correlated IOP by OPlonky(𝛿). We then formally prove
that when 𝛿 = 0 (i.e., when adversaries are constrained to sending low-degree polynomials), OPlonky(0) has RBR
soundness and knowledge soundness. Together with our general results and our results on batched FRI, this proves in
particular that the SNARK version of Plonky2 is indeed knowledge sound (as well as all other “Plonk-like” protocols of
the form OPlonky(𝛿)). Adapting Theorem 1.5 to our abstraction OPlonky, we obtain the following result.

Theorem 1.8 (Informally Stated, see Lemmas 4.7 and 4.9). Let F be a finite field and K be a finite extension of F and let
𝐷 ⊆ F be an evaluation domain for maps. Let P = {𝑃1, . . . , 𝑃𝑘} be a list of 2𝑟 + ℓ-variate circuit constraint polynomials
over F for 𝑘, 𝑟, ℓ ≥ 1. For parameters 𝑛, 𝑡, 𝑢 ≥ 1, 𝑠 = ⌈𝑟/𝑢⌉, and 𝑚 ≥ 3, 𝜌 = (𝑛 + 1)/|𝐷 | ∈ (0, 1), 𝜂 ∈ (0,√𝜌/2𝑚)
and 𝛿 = 1 − √𝜌 − 𝜂, the protocol OPlonkyO , when the verifier is given an oracle O for 𝛿-correlated agreement in the
Reed-Solomon code RS[F, 𝐷, 𝑛 + 1], has round-by-round soundness error

𝜀
OPlonky,O
rbr

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂) = 1

2𝜂
√
𝜌
·max

{︃
𝑂

(︃(︃
𝑛(𝑟 + 𝑢)
|F|

)︃ 𝑡)︃
, 𝑂

(︃(︃
𝑘 + 𝑠𝑡
|F|

)︃ 𝑡)︃
,
𝑛 ·max{𝑢 + 1, 𝑑}

|K \ 𝐷 |

}︃
,

where 𝑑 = max𝑖{deg(𝑃𝑖)} and 𝐷 is an evaluation domain for RS codes. Moreover, when 𝛿 = 0 then we have

𝜀
OPlonky,O
rbr

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂) = max

{︃
𝑂

(︃(︃
𝑛(𝑟 + 𝑢)
|F|

)︃ 𝑡)︃
, 𝑂

(︃(︃
𝑘 + 𝑠𝑡
|F|

)︃ 𝑡)︃
,
𝑛 ·max{𝑢 + 1, 𝑑}

|K \ 𝐷 |

}︃
.

Remark 1.9. The parameter 𝑡 in Theorem 1.8 controls the number of times certain checks in OPlonky are performed “in
parallel”. In most Plonk-like protocols, one uses 𝑡 = 1 and a large field F to ensure an adequate security level. However,
some projects (e.g., Plonky2) currently feature a 64-bit field F, and use 𝑡 = 2 to increase security.

We show in this paper that, if done properly, the resulting FS-transformed protocol does achieve the targeted security
level. However, in Appendix C we explain that this result is surprisingly subtle: certain natural ways of implementing
the 𝑡-fold repetition actually result in RBR security (and, correspondingly, the post-FS security [AFK22]) that is much
lower than the one attained in Theorem 1.8. While (to our knowledge) all existing projects do implement the 𝑡-fold
repetition properly so as to ensure FS-security, we highlight this subtlety so that protocol designers continue to avoid
this potential pitfall.

We can instantiate the oracle O in Theorem 1.8 with Batched FRI and obtain the following result.

Theorem 1.10 (Informally Stated, see Theorem 4.10). Let F be a finite field, K be a finite extension of F, and 𝐷 ⊂ F∗.
Let P = {𝑃1, . . . , 𝑃𝑘} be a list of 2𝑟 + ℓ-variate circuit constraint polynomials over F for 𝑘, 𝑟, ℓ, 𝑛 ≥ 1. For integer
𝑢 ≥ 1, 𝑠 = ⌈𝑟/𝑢⌉, and parameters 𝜌, 𝜂 > 0, 𝛿 = 1 − √𝜌 − 𝜂, and 𝑁, 𝑞 ≥ 1, the protocol OPlonky composed with
Batched FRI (replacing O) has round-by-round soundness error:

𝜀
OPlonky
rbr

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂, 𝑁, 𝑞)
= max{𝜀OPlonky,O

rbr
(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂), 𝜀bFRIrbr (F, 𝐷, 𝜌, 𝛿, 𝑁, 𝑞)},

where 𝑑 = max𝑖{deg(𝑃𝑖)}.

Given the above protocol is a round-by-round sound IOP, as in Theorem 1.5, we can now apply the BCS transformation
to obtain a secure non-interactive argument in the random oracle model.

7

Corollary 1.11 (Informally Stated; see Corollary 7.6). Let F be a finite field, K be a finite extension of F, and 𝐷 ⊂ F∗.
Let P = {𝑃1, . . . , 𝑃𝑘} be a list of 2𝑟 + ℓ-variate circuit constraint polynomials over F for 𝑘, 𝑟, ℓ, 𝑛 ≥ 1. For integers
𝑢, 𝑡 ≥ 1, 𝑠 = ⌈𝑟/𝑢⌉, and parameters 𝜌, 𝜂 > 0, 𝛿 = 1−√𝜌 − 𝜂, and 𝑁, 𝑞 ≥ 1, given a random oracle with 𝜅-bits of output
and a query bound 𝑄 ≥ 1, using the BCS transformation to compile OPlonky composed with Batched FRI yields a
non-interactive argument in the random oracle model with adaptive soundness error and knowledge error

𝜀
OPlonky
fs

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂, 𝑁, 𝑞, 𝜅, 𝑄) = 𝑄𝜀
OPlonky
rbr

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂, 𝑁, 𝑞) +𝑂 (𝑄2/2𝜅),

where 𝑑 = max𝑖{deg(𝑃𝑖)}. Moreover, the the transformed non-interactive argument has adaptive soundness error and
knowledge error

Θ(𝑄 · 𝜀OPlonky
fs

(F,K, 𝐷, 𝑛, 𝑘, 𝑟, 𝑠, 𝑡, 𝑢, 𝑑, 𝜌, 𝜂, 𝑁, 𝑞, 𝜅, 𝑄))

versus 𝑂 (𝑄)-query quantum adversaries.

Remark 1.12. We stress that the above theorems do not imply anything for the original work of Plonk [GWC19], or any
other Plonk variants that utilize the so-called KZG polynomial commitment scheme [KZG10] as their low-degree test.
The tools we leverage to show Fiat-Shamir security of our protocols rely on the low-degree test also being an IOP or an
IOP of Proximity, which the KZG scheme is not. While it is likely one can extend our analysis to handle using the KZG
scheme, we do not explore that direction in this work.

RISC Zero and ethSTARK. When it comes to RISC Zero and ethSTARK, we sketch why their 0-correlated
formulations have RBR knowledge soundness, as opposed to fully formally proving these facts. We do that due to
brevity (since formally describing these protocols is a lengthy task), and because proving that these 0-correlated IOPs
are RBR knowledge sound is a relatively straightforward task, as our analysis of OPlonky indicates. Moreover, RISC
Zero’s whitepaper is in draft form at the moment of writing [Tea23]. We hope practitioners can follow the techniques
and ideas exposed in this paper to prove in a relatively simple way that their SNARKs are indeed FS-secure.

1.3 Additional Related Work
Concurrent Independent Work. As concurrent work, StarkWare has updated ethSTARK documentation to include a
proof of Fiat-Shamir security of FRI and ethSTARK [Sta23]. Their techniques can be seen as an instantiation of our
general framework. As pointed out in [Sta23, Remark 5], since our techniques are more general, they can be used
to prove FS security of many protocols (as demonstrated in this work). On the other hand, [Sta23] performs a more
fine-grained analysis of the later rounds of FRI and of the usage of grinding within it.

Fiat-Shamir. The Fiat-Shamir (FS) transform [FS87] has been studied and used extensively to remove interaction
from interactive protocols. While it is known that the FS transformation is secure when applied to sound protocols
with a constant number of rounds in the random oracle model (ROM) [FS87, PS96, AABN02], it is well-known
that there exist protocols that are secure under FS in the ROM but insecure for any concrete instantiation of the
random oracle [Bar01, GK03, BDG+13]. Furthermore, several natural classes of secure interactive protocols are
rendered insecure when applying FS (e.g., sequential repetition of a protocol and parallel repetition of certain protocols)
[CCH+19, Wik21, AFK22], and real-world implementations of FS are often done incorrectly, leading to vulnerabilities
[BPW12, DMWG23]. Despite this, Fiat-Shamir is widely deployed and is a critical component in the majority of
SNARG or SNARK constructions.

Recent work has extensively studied which protocols can be securely instantiated under Fiat-Shamir (either in
the ROM or using suitable hash-function families). As mentioned before, the general tools of state-restoration
soundness [BCS16], round-by-round soundness [CCH+19], and special soundness [CDS94, Wik21, AFK22] have
been introduced as soundness notions that “behave nicely” under Fiat-Shamir. Prior to these tools, a variety of
works [KRR17, CCRR18, HL18] circumvented the impossibility results of [BDG+13] by utilizing stronger hardness
assumptions to construct Fiat-Shamir compatible hash function families. Another line of work [GKR08, CMT12,
BCGT13, Tha13, BTVW14, WTs+18, Set20, RR20] follows the frameworks of Kilian [Kil92] and Micali [Mic94] to
compile interactive oracle proofs [BCS16] into efficient arguments and SNARKs via collision-resistant hash functions
[BCS16, Kil92] or in the random oracle model [BCS16, Mic94].

8

1.4 Organization
In Section 2, we give an overview of our main technical results. Section 3 contains the preliminaries for the rest of the
paper. Section 4 presents our main results in full detail. Section 5 formally discusses and proves our results related to FRI
and Batched FRI. In Section 6, we introduce a new notion for holographic interactive oracle proofs we call 𝛿-correlated
holographic interactive oracle proofs, a technical tool we use in Section 6. In Section 7 we formally describe and
establish the round-by-round soundness of OPlonky, utilize the tools in Section 6 to establish round-by-round soundness
of OPlonky composed with (Batched) FRI, and discuss several Plonk-like protocols affected by our analysis. Finally,
Section 8 discusses some future directions.

In Appendix A, we formally analyze the concrete security of the non-interactive FRI protocol under various parameter
settings, and in Appendix B we briefly discuss the relationship between 𝛿-correlated hIOPs and Reed-Solomon encoded
IOPs. In Appendix C we discuss a subtle variation of OPlonky that leads to a much larger RBR soundness error. This
variation has to do in the way some “parallel” checks are performed.

2 Technical Overview
Our main technical contributions are two-fold. First, formally proving the round-by-round (knowledge) soundness of
the FRI protocol. Second, building a general tool for proving RBR (knowledge) soundness of a family of protocols
that we call 𝛿-correlated IOPs, and actually proving or outlining a proof of this soundness property for some specific
protocols, like some “Plonk-type” protocols, which we summarize in a general protocol that we call OPlonky, and other
𝛿-correlated IOPs like ethSTARK. We give a high-level overview of these results here. In Section 2.1, we briefly discuss
round-by-round soundness and its relation to Fiat-Shamir; in Section 2.2, we give an overview of the round-by-round
soundness of FRI and Batched FRI; in Section 2.3, we introduce the concept of 𝛿-correlated IOP and prove our general
results about them; in Section 2.4, we give an overview of the round-by-round (knowledge) soundness of OPlonky; in
Section 2.5, we discuss how a similar analysis can be conducted for the ethSTARK protocol.

2.1 Round-by-round Soundness and Fiat-Shamir
Our tool of choice for establishing Fiat-Shamir security is round-by-round soundness [CCH+19]. Informally, a
public-coin interactive protocol for a language 𝐿 is round-by-round sound (RBR sound) if at any point during the
execution of the protocol, the protocol is in a well-defined state (depending on the protocol execution so far) and
some of these states are “doomed”, where being “doomed” means that no matter what message the prover sends, with
overwhelming probability over the verifier messages, the protocol remains “doomed”. A bit more formally, RBR
soundness error 𝜀 states that: (1) if 𝑥 ∉ 𝐿 the initial state of the protocol is “doomed”; (2) if the protocol is in a “doomed”
state during any non-final round of the protocol, then for any message sent by the prover, the protocol remains doomed
with probability at least 1 − 𝜀 over the verifier messages; and (3) if the protocol terminates in a “doomed” state, then the
verifier rejects. Chiesa et al. [CMS19] et al. extend RBR soundness to the notion of RBR knowledge soundness, which
roughly says that if (1) the protocol is in a “doomed” state during any round of interaction, and (2) every prover message
can force the protocol to leave this “doomed” state with probability at least 𝜀k (over the verifier randomness), then an
extractor can efficiently extract a witness (with probability 1) simply by examining the current protocol state and the
prover’s next message.

Canetti et al. [CCH+19] introduced RBR soundness as a tool for showing Fiat-Shamir security of interactive proofs
[GMR89] when used in conjunction with a suitable family of correlation intractable hash functions [CGH04]. In
particular, random oracles are correlation intractable when the set of “doomed” states of a protocol is sufficiently sparse;
i.e., for small enough RBR soundness error. RBR soundness readily extends to the language of interactive oracle
proofs (IOPs) [BCS16], and hence the Fiat-Shamir compiler result of [CCH+19] readily extends to IOPs, and can be
readily adapted to the random oracle model as well. However, applying this compiler to IOPs directly introduces some
undesirable effects: the constructed non-interactive argument would have proof lengths proportional to the length of the
oracle sent by the prover since the compiler of [CCH+19] does not compress prover messages in any way. This leads
to long proofs and long verification times, negating any succinct verification the IOP may have had. Moreover, the

9

transformation of [CCH+19] says nothing about the knowledge soundness of the resulting non-interactive argument,
even in the random oracle model.

While it is likely that, in the random oracle model, one could argue that the transformation of [CCH+19] retains
knowledge soundness if the underlying IOP is RBR knowledge sound, we do not prove this fact; moreover, the loss of
verifier succinctness is still an issue even if knowledge soundness is retained. Thus to circumvent the above issues, we
utilize the BCS transformation [BCS16] for IOPs. Informally, the BCS transformation first compresses oracles sent by
the prover using a Merkle tree [Mer] and then replaces any queries made by the verifier to prover oracles with additional
rounds of interaction where the verifier asks the prover its queries, and the prover responds with said queries and Merkle
authentication paths to verify consistency. It was shown that if an IOP is round-by-round sound then applying BCS to
this IOP gives a SNARK in the random oracle model [CMS19, COS20]. Thus showing the RBR soundness of FRI
and OPlonky allows us to readily show Fiat-Shamir security of these protocols under the BCS transformation in the
random oracle model, yielding our results. Thus in what follows, we give a high-level overview of the round-by-round
soundness proofs for both FRI and OPlonky.

2.2 Round-by-round Soundness of FRI
We give a high-level sketch of the round-by-round soundness of FRI in this section; for full details, see Section 5. As
previously stated, FRI is an interactive oracle proof of proximity for testing whether or not a polynomial specified by a
prover is “close to” a particular space of Reed-Solomon codewords. More formally, for finite field F, multiplicative
subgroup 𝐿0 ⊂ F∗ of size 𝑁 = 2𝑛, and degree bound 𝑑0 = 2𝑘 for 𝑘 ∈ N, RS := RS[F, 𝐿0, 𝑑0] ⊂ F𝑁 is the set of all
polynomials 𝑓 : 𝐿0 → F of degree at most 𝑑0 − 1, and the FRI protocol allows for a prover to succinctly prove to a
verifier that a function 𝐺0 : 𝐿0 → F is within some proximity bound 𝛿 of the RS code. That is, if a verifier accepts the
interaction, then the verifier is convinced that there exists 𝑓 ∈ RS such that Δ(𝐺0, 𝑓) < 𝛿𝑁 , where Δ is the Hamming
distance between 𝐺0 and 𝑓 (when viewing them as vectors in F𝑁). We say that such a 𝐺0 is 𝛿-close to RS; otherwise,
we say that 𝐺0 is 𝛿-far from RS (i.e., Δ(𝐺0, 𝑓) ≥ 𝛿𝑁 for all 𝑓 ∈ RS).

To achieve succinct verification, the FRI protocol first interactively compresses 𝐺0 during a folding phase,5
which proceeds as follows. First, the prover sends oracle 𝐺0 to the verifier. Next, the verifier samples 𝑥0

$← F
uniformly at random and sends it to the verifier. Now the prover defines new oracle 𝐺1 : 𝐿1 → F over the new domain
𝐿1 = (𝐿0)2 := {𝑧2 : 𝑧 ∈ 𝐿0} of size 𝑁/2, where for any 𝑠 ∈ 𝐿1, if 𝑠′, 𝑠′′ ∈ 𝐿0 are the square roots of 𝑠, then we have

𝐺1 (𝑠) = (𝑥0 − 𝑠′) (𝑠′′ − 𝑠′)−1𝐺0 (𝑠′′) + (𝑥0 − 𝑠′′) (𝑠′ − 𝑠′′)−1𝐺0 (𝑠′). (1)

Given 𝐺1, the prover and verifier now recursively engage in the above folding procedure with the function 𝐺1, where
the claim is that 𝐺1 is 𝛿-close to a new Reed-Solomon code RS[F, 𝐿1, 𝑑1] for 𝑑1 = 𝑑0/2; this recursion continues
until log(𝑑0) = 𝑘 folds have been done which results in prover oracles 𝐺0, 𝐺1, . . . , 𝐺𝑘−1 and verifier challenges
𝑥0, 𝑥1, . . . , 𝑥𝑘−1.

After the folding phase, the prover and verifier now engage in the query phase. During this phase, the prover sends a
constant value 𝐺𝑘 ∈ F to the verifier, and the verifier samples a random challenge 𝑠0

$← 𝐿0 and uses this point to check
the consistency of all pairs of functions 𝐺𝑖−1, 𝐺𝑖 for 𝑖 ∈ {1, . . . , 𝑘} as follows. The verifier first checks consistency of
𝐺0 and 𝐺1 using Eq. (1); in particular, if we set 𝑠1 = (𝑠0)2 and let 𝑡0 be the other square root of 𝑠1 (i.e., (𝑡0)2 = 𝑠1 and
𝑡0 ≠ 𝑠0), the verifier checks that 𝐺1 (𝑠1) is consistent with 𝐺0 (𝑠0) and 𝐺0 (𝑡0) via Eq. (1). This check is then performed
for every pair of functions 𝐺𝑖−1 and 𝐺𝑖 via Eq. (1) using challenge 𝑥𝑖−1 and 𝐺𝑖 (𝑠𝑖), 𝐺𝑖−1 (𝑠𝑖−1), and 𝐺𝑖−1 (𝑡𝑖−1), where
𝑠𝑖 = (𝑠𝑖−1)2 and 𝑡𝑖−1 ≠ 𝑠𝑖−1 is the other square root of 𝑠𝑖 . The verifier accepts if and only if all of these checks pass.
More generally, the verifier performs the above query phase (in parallel) ℓ ≥ 1 times, and outputs accept if and only if
all consistency checks pass.

To show round-by-round soundness of FRI, we first turn to the prior soundness analyses of FRI. Suppose that 𝐺0 is
𝛿-far from RS[F, 𝐿0, 𝑑0], then it turns out a malicious prover has two strategies for fooling the verifier: (1) “luck out” in
the sense that for 𝑥0

$←F sent by the verifier, the new function 𝐺1 is 𝛿-close to RS[F, 𝐿1, 𝑑1]; or (2) send some 𝐺′1 ≠ 𝐺1

that is 𝛿-close to RS[F, 𝐿1, 𝑑1]. Intuitively, strategy (2) never increases the probability the prover can fool the verifier
since even though 𝐺′1 is closer to the Reed-Solomon codespace, this improvement is offset by the fact that 𝐺1 and 𝐺′1

5[BBHR18a] refers to this as the commit phase. We view the term “folding phase” as more appropriate given the nature of the compression.

10

will differ at many different points. Thus the optimal prover strategy is to simply behave honestly by sending the correct
function during every round using Eq. (1), and hoping to “luck out” from the verifier challenge during that round.

2.2.1 FRI Round-by-round Soundness Overview

We adapt the above intuition for the round-by-round (RBR) soundness of FRI. Let 𝑃∗ be our (possibly malicious) prover.
Let 𝜀1 be the probability that 𝑃∗ “lucks out” as described above First, since 𝐺0 is assumed to be 𝛿-far, and moreover
𝐺0 is honestly sent to the verifier, the protocol, begins in a doomed state. Then if the verifier sends 𝑥0 such that 𝑃∗
“lucks out” and the function 𝐺1 is 𝛿-close, then we say the protocol is no longer in a doomed state. This happens with
probability at most 𝜀1.

Building on this, suppose the partial transcript so far consists of (𝐺0, 𝑥0) and suppose that this state is doomed; that
is, both 𝐺0 and 𝐺1 are 𝛿-far functions. Now the prover 𝑃∗ may send some function 𝐺′1 that may or may not be equal
to 𝐺1 (as given in Eq. (1)), and then the verifier responds with challenge 𝑥1. However, as described before, sending
𝐺′1 ≠ 𝐺1 doesn’t increase the probability that the prover fools the verifier, and we want the RBR soundness analysis to
reflect this as well. Thus we say that the current state of the protocol, given by (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1) is not doomed if and only

if 𝐺′1 = 𝐺1 and 𝑃∗ “lucks out” with the function 𝐺2 (again defined via Eq. (1) using 𝑥1 and 𝐺1). In other words, the
protocol remains in a doomed state if: (1) 𝐺′1 ≠ 𝐺1; or 𝐺2 is 𝛿-far (i.e., the prover didn’t “luck out”). Thus the protocol
leaves its doomed state with probability at most 𝜀1. This analysis generalizes to all rounds of the folding phase: given
any partial transcript (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺

′
𝑖−1, 𝑥𝑖−1) that is in a doomed state, if 𝑃∗ sends function 𝐺′

𝑖
and the verifier

sends challenge 𝑥𝑖 , then the protocol is no longer doomed if and only if (1) the prover “lucked out” and 𝐺𝑖+1 is 𝛿-close;
and (2) all 𝐺′

𝑗
= 𝐺 𝑗 for 𝑗 ∈ {1, . . . , 𝑖 − 1}. And again, the protocol is no longer doomed with probability at most 𝜀1.

To complete the RBR soundness analysis, we now consider the final round of the protocol, which consists of the
query phase. Suppose that the partial transcript for this round is given by (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺

′
𝑘−1, 𝑥𝑘−1) and suppose

the protocol is in a doomed state. At this point, 𝑃∗’s hands are tied: it must send a constant 𝐺𝑘 ∈ F to the verifier, and
the verifier then samples 𝑠 (1)0 , . . . , 𝑠

(ℓ)
0

$← 𝐿0 and performs its verification checks. Thus, the only way the protocol can
leave the doomed state is if all of the verifier checks pass; in particular, if a single check does not pass then the protocol
remains doomed (and, in fact, the verifier rejects). Let 𝜀2 denote the probability that a single verifier check passes; that
is, a single chain of checks depending on 𝑠

(1)
0 passes (i.e., computing the squares and square roots at every level, and

checking consistency across all levels with this check). Then the probability 𝑃∗ can leave the doomed state is exactly 𝜀2;
extending this to ℓ checks (which are performed uniformly and independently at random) gives us that the protocol
leaves the doomed state with probability at most 𝜀ℓ2. Considering the folding and query phases, the discussion above
shows that the FRI protocol has RBR soundness error 𝜀FRIrbr = max{𝜀1, 𝜀ℓ2}.

2.2.2 Batched FRI Round-by-round Soundness Overview

Extending the above analysis to Batched FRI is straightforward. Briefly, Batched FRI invokes FRI on a random linear
combination of 𝑡 functions 𝑓1, . . . , 𝑓𝑡 : 𝐿0 → F. In more detail, first the prover sends oracles 𝑓1, . . . , 𝑓𝑡 to the verifier,
then the verifier responds with random challenges 𝛼1, . . . , 𝛼𝑡 . The prover and verifier then engage in the FRI protocol
using function 𝐺0 =

∑︁
𝑖 𝛼𝑖 𝑓𝑖 .6 Finally, Batched FRI modifies the query phase of FRI to also check consistency between

𝑓𝑖 and 𝐺0 exactly via the equation 𝐺0 =
∑︁
𝑖 𝛼𝑖 𝑓𝑖 . Key to Batched FRI is that if all 𝑓𝑖 are 𝛿-close to RS[F, 𝐿0, 𝑑0], then

𝐺0 is also 𝛿-close, and if even one 𝑓 𝑗 is 𝛿-far, then with high probability 𝐺0 is also 𝛿-far.
The RBR soundness analysis of Batched FRI proceeds as follows. Let 𝑃∗ again denote our (possibly malicious)

prover. The protocol begins in a doomed state; namely, there exists at least one 𝑓 𝑗 that is 𝛿-far from RS[F, 𝐿0, 𝑑0].
Then 𝑃∗ honestly sends 𝑓1, . . . , 𝑓𝑡 to the verifier,7 and the verifier responds with 𝛼1, . . . , 𝛼𝑡

$← F sampled uniformly and
independently at random. Let 𝜀𝑡 be the probability that 𝐺0 is 𝛿-close given that there exists at least one 𝑓 𝑗 that is 𝛿-far,
where the probability is taken over the selection of 𝛼1, . . . , 𝛼𝑡 . Then we say the protocol is no longer in a doomed state
if and only if 𝐺0 is 𝛿-close; thus during this round, 𝑃∗ can leave the doomed state with probability at most 𝜀𝑡 . Now

6In practice to save on communication, only a single 𝛼 is sent and the linear combination is computed with 𝛼𝑖 = 𝛼𝑖−1, at the cost of an increased
soundness error; see Section 5.2 for details.

7This is necessary, if a malicious prover is allowed to send dishonest 𝑓 ∗1 , . . . , 𝑓
∗
𝑡 such that all are 𝛿-close, then the protocol reduces to the honest

prover analysis.

11

suppose that (𝑓0, . . . , 𝑓𝑡 , 𝛼1, . . . , 𝛼𝑡) is the current protocol state and that this state is doomed. The prover and verifier
now engage in FRI using some function 𝐺′0 constructed by 𝑃∗ as input. The observation here is that we can now invoke
the RBR soundness analysis of FRI directly, with the following slight change for the first round of FRI. Suppose 𝑃∗

sends 𝐺′0 to the verifier and the verifier responds with 𝑥0. Then the protocol is no longer in a doomed state if and only if
𝐺′0 = 𝐺0 and 𝐺1 is 𝛿-close, where 𝐺1 is defined via Eq. (1) with respect to the correct function 𝐺0. In particular, the
intuition behind the prover’s strategy remains the same: if 𝑃∗ sends some other 𝐺′0 ≠ 𝐺0, then the verifier is more likely
to detect this change when checking consistency of 𝐺′0 and 𝑓1, . . . , 𝑓𝑡 , so 𝑃∗ can only leaved the doomed state of the
protocol if it behaves honestly and “lucks out” with verifier challenge 𝑥0. Finally, we remark that the final round (i.e.,
the query phase) of Batched FRI with the additional checks between 𝑓1, . . . , 𝑓𝑡 and 𝐺′0 has the same RBR soundness
error 𝜀2 as with FRI. Thus the RBR soundness error of Batched FRI is 𝜀bFRIrbr = max{𝜀𝑡 , 𝜀1, 𝜀ℓ2}, where ℓ is the number
of times the verifier repeats the query phase.

2.2.3 Instantiating 𝜀1, 𝜀2, and 𝜀3

For the query phase, the best one can hope for is 𝜀2 = (1 − 𝛿) [BBHR18a, BKS18, BCI+20, Tha22]; for the folding
phase, there is a long line of work done towards improving the bounds on 𝜀1 [BBHR18a, BKS18, BCI+20]. In our work,
we utilize the best known provable bounds on 𝜀1 given by Ben-Sasson et al. [BCI+20], and note that any improvements
for 𝜀1 directly improve the round-by-round soundness error of FRI. In particular, we have 𝜀1 = 𝑂 (22𝑛/(𝜌 · |F|)),
where 𝜌 = 𝑑0/|𝐿0 | and |𝐿0 | = 2𝑛. This yields our stated round-by-round soundness error in Theorem 1.1. Finally,
[BCI+20] also show that 𝜀𝑡 = 𝜀1 for Batched FRI, which gives us Batched FRI round-by-round soundness error
𝜀bFRIrbr = max{𝜀1, 𝜀ℓ2}, yielding our stated round-by-round soundness error in Theorem 1.3. See Section 5 for a complete
discussion and proof of the round-by-round soundness of FRI and Batched FRI.

2.2.4 FRI Round-by-round Knowledge Overview

Recall that a protocol has round-by-round knowledge error 𝜀k if for any “doomed” state of the protocol, if every message
the prover can send will put the protocol in a non-“doomed” state with probability at least 𝜀k over the verifier randomness,
then an extractor can efficiently recover a witness (with probability 1) when given the current protocol state and the
prover’s next message. In the context of FRI, RBR knowledge soundness means we can extract a 𝛿-close function 𝐺,
and for Batched FRI we can extract 𝑡 functions 𝑓1, . . . , 𝑓𝑡 that are all 𝛿-close. For both FRI and Batched FRI, it turns
out we obtain RBR knowledge soundness more or less for free. Recall that both protocols have RBR soundness error
max{𝜀1, 𝜀ℓ2} from our discussion above. Then we claim that these protocols both have RBR knowledge error exactly
𝜀k = max{𝜀1, 𝜀ℓ2}.

We give an efficient extractor for the RBR knowledge soundness of FRI. First consider any intermediate round 𝑖 of
the folding phase of FRI (the analysis for Batched FRI is identical). Then the current protocol state is doomed and is
given by the transcript (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺

′
𝑖−1, 𝑥𝑖−1). Suppose that for any function 𝐺′

𝑖
sent by the prover, for 𝑥𝑖

$← F
sampled by the verifier, the protocol state (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺

′
𝑖
, 𝑥𝑖) is not doomed with probability at least 𝜀k. In

particular, this happens with probability at least 𝜀1 = 𝑂 (22𝑛/(𝜌 |F|)). Then our extractor, given (𝐺0, 𝑥0, 𝐺
′
1, 𝑥1, . . . , 𝐺

′
𝑖
)

simply reads and outputs the oracle 𝐺0. For the query phase, the analysis is identical: let the current protocol state
be doomed for transcript (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺

′
𝑘−1, 𝑥𝑘−1). Suppose for every 𝐺𝑘 ∈ F sent by the prover and verifier

challenges 𝑠0,1, . . . , 𝑠0,ℓ
$← 𝐿0, the protocol state (𝐺0, 𝑥0, 𝐺

′
1, 𝑥1, . . . , 𝐺𝑘 , (𝑠0, 𝑗) 𝑗≤ℓ) is not doomed with probability at

least 𝜀k. In particular, this happens with probability at least 𝜀ℓ2 = (1 − 𝛿)ℓ . Then our extractor again simply reads and
outputs oracle 𝐺0.

Now why should we expect 𝐺0 to be a 𝛿-close function? It turns out that by the choices of 𝜀1 and 𝜀2, if all prover
messages can leave the doomed state with the above probabilities, it unconditionally implies that 𝐺0 must be 𝛿-close
in both cases, a result shown by [BCI+20]. First, for any round of the folding, the function 𝐺′

𝑖
can leave the doomed

set if and only if 𝐺′
𝑖
= 𝐺𝑖 (i.e., it is computed as an honest prover would compute it) and 𝐺𝑖+1 is 𝛿-close. If 𝐺𝑖+1 is

𝛿-close with probability greater than 𝜀1 over the verifier randomness, then it unconditionally implies that 𝐺𝑖 must have
been 𝛿-close as well [BCI+20]. This then recursively applies to 𝐺𝑖−1, and so on, finally yielding that 𝐺0 must have
been 𝛿-close as well. [BCI+20] show that a similar result must hold for the query phase: if all verifier checks pass
with probability at least 𝜀ℓ2 during the query phase for any 𝐺𝑘 ∈ F sent by the prover, then 𝐺0 must be 𝛿-close as well.

12

Thus the RBR knowledge error of FRI is identical to the RBR soundness error. Finally, the above analysis proceeds
identically for Batched FRI as well; i.e., if during any round of folding or batching phase the prover can leave with
probability at least 𝜀1, then it unconditionally implies that 𝑓1, . . . , 𝑓𝑡 must be 𝛿-close functions. The Batched FRI query
phase is analogous.

2.3 Correlated IOPs and Round-by-round Knowledge Soundness
To conduct our security analysis beyond FRI, we formulate an abstract type of IOP which we call 𝛿-correlated IOP. This
is a notion related and inspired by that of Reed-Solomon Encoded IOPs [BCR+19, COS20] (see Appendix B for further
comparison). In a nutshell, when 𝛿 = 0, a 0-correlated IOP is an IOP where:

• The verifier has access to an oracle O that, given any number of maps 𝑓1, . . . , 𝑓𝑘 : 𝐷 → F, determines whether
each of the 𝑓𝑖 is the evaluation map of a polynomial of degree at most 𝑑, for any 𝑑 < |𝐷 |. Here 𝐷 is a subset of F,
called evaluation domain.
In other words, O determines whether the maps (or words) 𝑓𝑖 belong to the Reed-Solomon code RS[F, 𝐷, 𝑑 + 1].

• During the interactive phase, the prover sends oracle access to some maps 𝑔1, . . . , 𝑔𝑚 : 𝐷 → F (across several
rounds of interaction).

• In the last round of interaction, the verifier sends a field element 𝔷 ∈ K \ 𝐷 to the prover, and the prover replies
with values {︁

𝑔𝑖 (𝑘𝑖, 𝑗𝔷) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]
}︁

(2)

where 𝑘𝑖, 𝑗 are some pre-defined field elements and 𝑛𝑖 ≥ 1 are predefined positive integers. Here K is either F or a
field extension of F.
Importantly, each map 𝑔𝑖 appears at least once in the list Eq. (2).

• To decide whether to reject or accept the prover’s proof, the verifier:

– Check 1. Asserts that the values
{︁
𝑔𝑖 (𝑘𝑖, 𝑗𝔷) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]

}︁
satisfy certain polynomial equations.

– Check 2. Uses its oracle O to check that the following maps belong to RS[F, 𝐷, 𝑑]:

quotients :=

{︃
𝑔𝑖 (𝑋) − 𝑔𝑖 (𝑘𝑖, 𝑗𝔷)

𝑋 − 𝔷 | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]
}︃

(3)

When 𝛿 > 0, a 𝛿-correlated IOP has the exact same form as above, except that now O is an oracle for checking
𝛿-correlated agreement in RS[F, 𝐷, 𝑑 + 1] for any 𝑑 < |𝐷 |. A sequence of maps 𝑔1, . . . , 𝑔𝑚 : 𝐷 → F has 𝛿-correlated
agreement if there exists a subset 𝑆 ⊆ 𝐷 and polynomials 𝑞1, . . . , 𝑞𝑚 of degree ≤ 𝑑 such that 𝑔𝑖 coincides with 𝑞𝑖 on 𝑆,
for all 𝑖 ∈ [𝑚], and |𝑆 | ≥ (1 − 𝛿) |𝐷 |.

These type of IOP’s are interesting to us because several modern IOP’s can be understood as being built on
top of a 0-correlated or 𝛿-correlated IOP for 𝛿 > 0, e.g., all Plonk-type protocols that use FRI instead of KZG
[GWC19, KPV22, Polb], ethSTARK (or DEEP-ALI) [BGKS20, Sta23], RISC Zero [Tea23], etc.

One of our main results states the following:

• Result 1. If a 0-correlated IOP Π0 has round-by-round (RBR) soundness or knowledge 𝜀, then replacing 𝛿 = 0 by
a larger 𝛿 > 0 results in a 𝛿-correlated IOP with RBR soundness or knowledge ℓ𝜀, where ℓ is certain constant
related to list decodability of Reed-Solomon (RS) codes. Namely, ℓ is the maximum number of distinct RS
codewords that can be 𝛿-close to any given word.
Here, by “replacing 𝛿 = 0 by a larger 𝛿 > 0” we refer to the 𝛿-correlated IOP that results from taking Π0 and
replacing the verifier’s oracle for checking membership to RS[F, 𝐷, 𝑑 + 1] (so, checking 0-correlated agreement)
by an oracle that checks for 𝛿-correlated agreement in RS[F, 𝐷, 𝑑 + 1].

13

• Result 2. Given a 𝛿-correlated IOP Π with RBR soundness or knowledge 𝜀, and given a IOP or IOP of Proximity
ΠCA for checking 𝛿-correlated agreement, we can construct a new IOP (in the standard sense, i.e. an “uncorrelated
IOP”), call it Πcompiled, by replacing the oracle O with the protocol ΠCA. We show that, if ΠCA has RBR-soundness,
then Πcompiled has RBR (knowledge) soundness max{𝜀, 𝜀CA}.
Notice that, for RBR knowledge soundness, we don’t need ΠCA to have RBR knowledge soundness. It suffices for
Π to have RBR knowledge soundness, and for ΠCA to be RBR sound.

First, we explain how these results can be applied to existing protocols, and afterward we provide an intuitive
explanation of their proof.

Using the Above Results. In views of these results, one strategy for proving that an IOP Π has RBR soundness or
knowledge soundness is to, if possible, formulate the IOP as being a 𝛿-correlated IOP Π that has been compiled with
the method mentioned above. Then, prove that the corresponding 0-correlated IOP has RBR soundness or knowledge.
Once this is done, our results provide RBR knowledge and RBR soundness error bounds for the initial IOP Π. Figure 2
schematizes this workflow.

The latter task can suppose a significant simplification in comparison to analyzing the initial IOP Π directly. This
is because when 𝛿 = 0, the verifier in Π has an oracle for checking that the maps from the verifier’s Check 2 are
polynomials of low degree. This effectively forces the prover to send (oracles to) low degree polynomials throughout
the interaction, and to provide correct openings in its last message. As a consequence, and roughly speaking, our
methods allows to study the IOP as if it was a Polynomial IOP (PIOP), with the batched FRI part acting as a Polynomial
Commitment Scheme (PCS) used to compile the PIOP into an interactive argument. Note however that, formally, FRI
cannot be used as a PCS since it only guarantees 𝛿-closeness to low degree polynomials.

Later, we showcase how these methods can be used on “Plonk-type” protocols, and briefly discuss how to use them
on other protocols such as ethSTARK and RISC Zero.

Proof Sketch of Result 1. Let 𝛿 > 0 and let Π𝛿 be a 𝛿-correlated IOP, and let Π0 be the same IOP except that
the verifier has access to an oracle for 0-correlated agreement instead of 𝛿-correlated agreement (equivalently, it has
an oracle for checking membership to RS[F, 𝐷, 𝑑′ + 1], for any 𝑑′ < |𝐷 |). Suppose Π0 is RBR sound or has RBR
knowledge soundness with error 𝜀. We focus first on RBR soundness, and discuss RBR knowledge soundness later. Let
𝜏 be a partial transcript produced during some rounds of interaction between the prover and the verifier from Π𝛿 . For
ease of presentation, let us assume the prover simply sends maps to the verifier, as opposed to sending oracle access to
these maps. Let 𝑔1, . . . , 𝑔𝑘 be all prover’s maps in 𝜏 and write 𝜏 = 𝜏(𝑔1, . . . , 𝑔𝑘) to reflect that 𝜏 contains such maps.
Let 𝜏′ = 𝜏′ (𝑔′1, . . . , 𝑔′𝑘) be another partial transcript. We informally say 𝜏′ is a low-degree-partial transcript if all of the
maps 𝑔′1, . . . , 𝑔

′
𝑘

are codewords from RS[F, 𝐷, 𝑑 + 1]. We also say 𝜏′ has 𝛿-correlated agreement with 𝜏 if there is
𝑆 ⊆ 𝐷 such that 𝑔𝑖 coincides with 𝑔′

𝑖
on 𝑆, for all 𝑖 ∈ [𝑘], and |𝑆 | ≥ (1 − 𝛿) |𝐷 |.

Then we say that 𝜏 is “doomed” in Π𝛿 if and only if one of the following holds:

• All low-degree-partial transcripts 𝜏′ that are 𝛿-correlated with 𝜏 are doomed in Π0.

• 𝜏 is a complete transcript and Check 2 of the verifier fails, i.e. the maps quotients from Eq. (3) do not have
𝛿-correlated agreement in RS[F, 𝐷, 𝑑 + 1].

This defines the doomed states for Π𝛿 , i.e. the doomed states are those where the partial transcript so far is doomed.
Now it remains to prove that Π𝛿 has RBR soundness or (RBR knowledge soundness) with error 𝜀/(2√𝜌𝜂), with

respect to these doomed states. In what follows we say that a partial transcript is doomed in Π𝛿 or in Π0 depending on
whether it is doomed with respect to the doomed states of Π𝛿 or of Π0, respectively. By a 𝑗-round partial transcript we
mean a partial transcript where both prover and verifier have sent 𝑗 messages each.

Let 𝜏 be a 𝑖-partial transcript after that is doomed in Π𝛿 . By definition, all low-degree-partial transcripts that are
𝛿-correlated with 𝜏 are doomed in Π0. Let 𝑚 be a prover’s message for Round 𝑖 + 1. We want to show that the probability
that (𝜏, 𝑚, 𝑐) is not doomed in Π𝛿 is at most 𝜀/(2√𝜌𝜂), where the probability is taken over the verifier’s (𝑖 + 1)-th
message 𝑐. Assume (𝜏, 𝑚, 𝑐) is not doomed in Π𝛿 for some 𝑐. Then, by definition of the doomed states of Π𝛿 , there
is a low-degree-partial transcript 𝜈 that is 𝛿-correlated with (𝜏, 𝑚, 𝑐), and that is not doomed in Π0. This transcript

14

must have the form 𝜈 = (𝜏′, 𝑚′, 𝑐), where 𝜏′ is a 𝑖-round low-degree-partial transcript that is 𝛿-correlated with 𝜏. In
particular, 𝜏′ is doomed in Π0.

Since Π0 is RBR sound with error 𝜀, the fraction of challenges 𝑐 such that 𝜏′ is doomed in Π0 but (𝜏′, 𝑚′, 𝑐) is not,
is at most 𝜀. Thus the fraction of challenges 𝑐 such that 𝜏 is doomed in Π𝛿 but (𝜏, 𝑚, 𝑐) is not doomed in Π𝛿 is at most
ℓ𝜀, where ℓ is the number of 𝑖-round low-degree-partial transcripts 𝜏′ that are 𝛿-correlated with 𝜏. Using a lemma from
[Sta23] we bound ℓ by 1/(2√𝜌𝜂).

It remains to argue that doomed complete transcripts are rejected by the verifier. Let 𝜏 = 𝜏(𝑔1, . . . , 𝑔𝑚) be a doomed
complete partial transcript, and let quotients be as in Eq. (3). If the maps quotients do not have 𝛿-correlated agreement
in RS[F, 𝐷, 𝑑], then the verifier rejects, and we are done. Hence assume they do have 𝛿-correlated agreement. Thus, for
each 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛𝑖] we have that (𝑔𝑖 (𝑋) − 𝑔𝑖 (𝑘𝑖, 𝑗𝔷))/(𝑋 − 𝑘𝑖, 𝑗𝔷) agrees with a polynomial 𝑞𝑖, 𝑗 (𝑋) on a set 𝑆
(this set is the same for all 𝑖, 𝑗). In other words, 𝑔𝑖 (𝑋) agrees with the polynomial

𝑢𝑖, 𝑗 (𝑋) := 𝑞𝑖, 𝑗 (𝑋) (𝑋 − 𝑘𝑖, 𝑗𝔷) + 𝑔𝑖 (𝑘𝑖, 𝑗𝔷)

on 𝑆. Moreover, both 𝑔𝑖 and 𝑢𝑖, 𝑗 take the same value on 𝑋 = 𝑘𝑖, 𝑗𝔷, i.e. 𝑔𝑖 (𝑘𝑖, 𝑗𝔷) = 𝑢𝑖, 𝑗 (𝑘𝑖, 𝑗𝔷). Additionally, we have
|𝑆 | > (1 − 𝛿) |𝐷 |, and by how 𝛿 is chosen, (1 − 𝛿) |𝐷 | ≥ 𝑑 + 1. This makes 𝑢𝑖, 𝑗 (𝑋) the same among all 𝑗 ∈ [𝑛𝑖]. As
such we denote any 𝑢𝑖, 𝑗 (𝑋) simply as 𝑢𝑖 (𝑋).

We have seen so far that 𝑔𝑖 (𝑋) agrees with the polynomial 𝑢𝑖 (𝑋) on 𝑆, for all 𝑖 ∈ [𝑚], and that 𝑔𝑖 (𝑘𝑖, 𝑗𝔷) = 𝑢𝑖 (𝑘𝑖, 𝑗𝔷),
for all 𝑖, 𝑗 . Thus 𝜏′ = 𝜏(𝑢1, . . . , 𝑢𝑚) is a low-degree partial transcript that is 𝛿-correlated with 𝜏. Since 𝜏 is a doomed
transcript and quotients have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑], we must have that 𝜏′ is doomed in Π0. Note
that 𝜏′ is a complete transcript, and so Π0’s verifier rejects it. Clearly, 𝜏′ passes the 0-correlated agreement check of
Π0’s verifier. Hence the first check of the verifier fails, i.e. the values

{︁
𝑢𝑖 (𝑘𝑖, 𝑗𝔷) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]

}︁
do not satisfy the

polynomial equations they are meant to satisfy. However, these values coincide with
{︁
𝑔𝑖 (𝑘𝑖, 𝑗𝔷) | 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛𝑖]

}︁
,

and so the verifier of Π𝛿 rejects 𝜏 because of the same reason: the values do not satisfy the polynomial equations they
need to satisfy. This proofs that Π𝛿 has the claimed RBR soundness error.

The proof that Π𝛿 has RBR knowledge soundness uses similar ideas. Precisely, suppose 𝜏 is a 𝑖-round partial
transcript, doomed in Π𝛿 . Let 𝑚 be a prover’s (𝑖 + 1)-th round message, and assume the probability (over the verifier’s
(𝑖 + 1)-th challenge 𝑐) that (𝜏, 𝑚, 𝑐) is not doomed is larger than 𝜀/(2√𝜌𝜂). Since, as we argued, there are at most
1/(2√𝜌𝜂) 𝑖-round low-degree-partial transcripts 𝜏′ that are 𝛿-correlated with 𝜏, there must exist at least one such
transcript 𝜏′ that is doomed in Π0, such that (𝜏′, 𝑚′, 𝑐) is not doomed in Π0 with probability larger than 𝜀. Then we can
use the RBR knowledge soundness of Π0 to extract a valid witness from 𝜏′.

Overall, we can build an extractor that, given 𝜏, computes all low-degree-partial transcripts 𝜏′ that are 𝛿-correlated
with 𝜏. This can be done in polynomial time using a method from [Sta23]. Then, for each such 𝜏′, the new extractor
uses the extractor of Π0 on 𝜏′, until a valid witness is found.

Proof Sketch of Result 2. The second general result stated above can be proved as follows: define a partial transcript
𝜏 for Πcompiled to be doomed if one of the following hold:

1. 𝜏 is a non-complete partial transcript corresponding to some rounds of Π, and 𝜏 is in a doomed state in Π.

2. 𝜏 is a partial transcript of the form 𝜏 = (𝜏1, 𝜏2), where 𝜏1 is a complete transcript of Π, and 𝜏2 is a (possibly
empty) partial transcript corresponding to some rounds of ΠCA, and either

(a) 𝜏2 is in a doomed state in ΠCA, or
(b) the verifier VΠ from Π would reject 𝜏1 due to Check 1 not passing.

We then prove that Πcompiled is RBR sound (or has RBR knowledge soundness) with respect to these doomed states,
with error max{𝜀, 𝜀CA}. As before, we discuss first RBR soundness, and later RBR knowledge.

The key observation is that if 𝜏 is a non-complete doomed partial transcript of Type 1 above, then it remains doomed
in the next round except with probability 𝜀, due to the RBR soundness of Π. A similar argument can be used for a
partial transcript of Type 2 of the form 𝜏 = (𝜏1, 𝜏2), with 𝜏2 ≠ ∅. The most noteworthy case is when 𝜏 is of Type 2 and
of the form 𝜏 = (𝜏1, ∅), i.e. the case when 𝜏 is exactly a complete transcript for Π. In this case, since 𝜏 is doomed, the
verifier VΠ in Π would reject 𝜏. Hence 𝜏 fails either Check 1 or Check 2 of VΠ. In the first case, the probability of

15

leaving the doomed state in Πcompiled is 0, since any partial transcript 𝜏′ = (𝜏′1, 𝜏′2) of Type 2 such that 𝜏′1 fails Check 1
of VΠ is doomed by definition. In the latter case, ΠCA is executed with input a set of words that do not have 𝛿-correlated
agreement. As such, ΠCA starts off in a doomed state, and so the probability that the state is not doomed in the next
round of interaction is at most 𝜀CA. This shows that Πcompiled is RBR sound with error max{𝜀, 𝜀CA}.

When it comes to RBR knowledge soundness, we make the following observations. First, we define doomed states
for Πcompiled as before, using the doomed states given by the RBR knowledge (as opposed to RBR soundness) for Π,
and the doomed states given by the RBR soundness for ΠCA. Now, let 𝜏 be a doomed partial transcript for Πcompiled.
Assume the probability 𝜃 that 𝜏 stops being doomed at the next round is larger than max{𝜀𝑘 , 𝜀CA}, where 𝜀𝑘 is the
RBR knowledge error of Π. Then, if 𝜏 is of Type 1, we can use the extractor given by the RBR knowledge of Π to
obtain a valid witness from 𝜏. On the other hand, we observe if 𝜃 > max{𝜀𝑘 , 𝜀CA} then 𝜏 = (𝜏1, 𝜏2) cannot be of Type
2 because:

• If 𝜏2 is in a doomed state in ΠCA, then by definition of RBR soundness, the probability that 𝜏2 is not doomed in
the next round of ΠCA is at most 𝜀CA.

• If 𝜏1 would be rejected by Π’s verifier due to Check 1 failing, then the partial transcript will be doomed at the next
round because of the same reason, and so in this case 𝜏 has probability 0 of not being doomed in the next round.

In other words, doomed partial transcripts of Type 2 are always doomed at the next round, except with probability at
most max{𝜀𝑘 , 𝜀CA}. Thus, we do not need to describe an extractor for this type of partial transcripts.
Remark 2.1. This approach yields better RBR soundness bounds than some prior known methods. For example, in
[KPV22] the authors introduce RedShift, a Plonk-like IOP. The authors obtain a RBR knowledge error (modulo FRI) for
RedShift which has a factor of the form, roughly, ℓ𝑚, where ℓ is the aforementioned “maximum list decoding set size”,
and 𝑚 is the number of oracles sent by the prover during the interactive phase. For RedShift, 𝑚 is set to 6, but similar
(though not fully identical) protocols such as Plonky2 [Polb] use 𝑚 ≥ 130. On the contrary, as we mention later in this
paper, with our method the factor ℓ𝑚 would be reduced to ℓ. We remark again that [KPV22] also does not obtain FS
security of their protocol, as that work does not analyze the FS security of FRI.

In Section 2.5 we also point out that, when applied to the ethSTARK protocol, our approach leads to a better
knowledge soundness than the one in [Sta23] (this improvement was already demonstrated in [Hab22]).

2.4 Round-by-round Knowledge of Plonk-like Protocols
We generalize and abstract Plonk-like protocols as a correlated IOP, which we call OPlonky, where again by “Plonk-like”
we specifically mean the interactive oracle proof abstractions underlying the protocols related to and built upon the
Plonk SNARK. The abstraction is inspired mostly on Plonky2 [Polb], which we believe to be one of the most general
Plonk-like IOP’s published currently.

The protocol OPlonky is an IOP for a Plonk-like relation RROPlonky (related to [GW]), which generalizes arithmetic
circuit satisfiability and seamlessly supports custom gates. Simplifying greatly, an instance of RROPlonky is characterized
by some multivariate polynomial equations 𝑃1 = 0, . . . , 𝑃𝑘 = 0, two integers n, r representing the dimensions of a
matrix (usually called execution trace), and a permutation 𝜎 : [𝑛] × [𝑟] → [𝑛] × [𝑟]. An input and witness pair (x,w)
satisfies such an instance if w is a 𝑛 × 𝑟 matrix of field elements, x is a vector of field elements, and

• The values in each row w𝑖 of w satisfy 𝑃1 (w𝑖) = . . . = 𝑃𝑘 (w𝑖) = 0.

• Certain pre-specified cells in w have the values x.

• The entries inw satisfy the copy constraints induced by 𝜎. More precisely,w(𝑖, 𝑗) = w𝜎 (𝑖, 𝑗) for all 𝑖, 𝑗 ∈ [𝑛] × [𝑟].

The IOP OPlonky proceeds in the following 4-round process. For the sake of presentation, we provide a greatly
simplified exposition.

1. Round 1. The prover sends 𝑟 polynomials 𝑎1 (𝑋), . . . , 𝑎𝑟 (𝑋) of degree < 𝑛 to the verifier as oracles. Each of
these polynomials is the result of interpolating the columns of w over a multiplicative subgroup 𝐻 of F or order 𝑛.
The verifier then replies with some random challenges.

16

2. Round 2. The prover uses the verifier randomness from the prior round, to construct and send oracle access to
so-called permutation polynomials 𝜋1 (𝑋), . . . , 𝜋𝑠 (𝑋) of degree less than 𝑛. These polynomials will later be used
to (again roughly) check that the copy constraints are satisfied. The verifier responds with a random challenge 𝛼.

3. Round 3. At this point, the goal of the prover is to convince the verifier that the polynomials

𝑄 𝑗 := 𝑃 𝑗 (𝑎1 (𝑋), . . . , 𝑎𝑟 (𝑋))

and certain polynomials of the form

𝛿𝑖 (𝑋) := 𝑅𝑖 (𝜋1 (𝑋), . . . , 𝜋𝑠 (𝑋))

vanish on 𝐻, where the 𝑅𝑖0 is certain multivariate polynomial. To this end, the prover batches these constraints
together by computing

𝑑 (𝑋) = 𝑄1 (𝑋) + 𝛼𝑄2 (𝑋) + . . . + 𝛼𝑘−1𝑄𝑘 (𝑋) + 𝛼𝑘𝛿1 (𝑋) + . . . + 𝛼𝑘+𝑠−1𝛿𝑠 (𝑋) (4)

and proving that 𝑑 (𝑋) vanishes in 𝐻. To do so, the prover sends the verifier oracle access to the polynomial
𝑞(𝑋) := 𝑑 (𝑋)/Z𝐻 (𝑋), where Z𝐻 (𝑋) is the vanishing polynomial of 𝐻.
The verifier replies with a random field element 𝔷.

4. Round 4. The prover replies with the values (𝑎𝑖 (𝔷))𝑖 , (𝜋 𝑗 (𝔷)) 𝑗 and 𝑞(𝔷).

5. Verification phase. The verifier performs two assertions. It accepts the proof if and only if both of them return
true.

• Assert whether 𝑞(𝔷)Z𝐻 (𝔷) = 𝑑 (𝔷), where the value 𝑑 (𝔷) is obtained by replacing 𝑋 by 𝔷 in Eq. (4), and
querying the oracles to 𝑎1 (𝑋), . . . , 𝑎𝑟 (𝑋), 𝜋1 (𝑋), . . . , 𝜋𝑠 (𝑋) .

• Use an oracle to assert whether the following set of words has 𝛿-correlated agreement in certain Reed-Solomon
code: {︄

𝑞(𝑋) − 𝑞(𝔷)
𝑋 − 𝔷 ,

(︃
𝑎𝑖 (𝑋) − 𝑞(𝔷)

𝑋 − 𝔷

)︃
𝑖

,

(︃
𝜋 𝑗 (𝑋) − 𝑞(𝔷)

𝑋 − 𝔷

)︃
𝑗

}︄
.

It is apparent from the description above that OPlonky is indeed a 𝛿-correlated IOP.
When compiled with the batched FRI protocol, OPlonkycompiled becomes almost identical to Plonky2’s IOP [Polb], a

general Plonk-like IOP based on the FRI protocol, with some similarities to Redshift [KPV22]. Alternatively, OPlonky
could also be compiled somehow with the KZG commitment scheme (which, in a sense, can act as a protocol for
0-correlated agreement). This would yield generalized versions of the original Plonk protocol and its variations (e.g.,
TurboPlonk). We leave this as future work.

2.4.1 Round-by-round Soundness of OPlonky

With the above observations in mind, we then go on to show that OPlonky with 𝛿 = 0 has RBR soundness and knowledge.
We now provide an intuitive idea of the proof, focusing on RBR soundness. To do so, we use the simplified description
of OPlonky provided above. As such, our analysis and resulting error bounds are also simplified.

We let OPlonkyO denote the OPlonky protocol where the verifier has oracle access to 0-correlated agreement oracle
O. To prove that OPlonkyO has RBR soundness and knowledge, we need to define a set of “doomed states” the protocol
can be in. See Section 2.1 for intuition on RBR soundness and knowledge. As a general rule, we will always set the
state to “doomed” if the prover has sent the verifier an oracle to a map that is not a polynomial of appropriate degree. As
argued in Section 2.3, in this scenario it is impossible for a malicious prover to “recover” and eventually convince the
verifier, since the verifier will detect the dishonesty when using O in its Check 2. Moreover, by similar reasons, we can
also assume that the prover provides correct openings as its last message.

Next we describe the rest of scenarios in which we set the state to “doomed”, and analyse the probabilities of
“recovering”, i.e., of not being in a doomed set in the next round. We proceed in a round-by-round fashion.

17

• Given an input x for the relation RROPlonky, if x is not in the language LRROPlonky
induced by RROPlonky, we set the

state to “doomed”.

• Now assume that, at the end of Round 1, it is not possible for the prover to compute polynomials 𝜋1 (𝑋), . . . , 𝜋𝑠 (𝑋)
of degree < 𝑛 such that all the polynomials 𝛿𝑖 (𝑋) vanish on 𝐻. Then we set the state to “doomed”.
We see that, if the state was doomed before Round 1, then the chances of receiving verifier randomness such that
the state is not doomed at the end of Round 1 are, roughly, rn/|F|. This probability comes from the soundness of
permutation checking procedure used in Plonk and many other protocols.

• Now suppose that, right at the end of Round 2, the polynomial 𝑑 (𝑋) does not vanish on Z𝐻 (𝑋). Then we set the
state to “doomed”.
In this case, the probability of starting Round 2 in a doomed state and finishing it in a non-doomed state is at
most, roughly, (𝑘 + 𝑠)/|F|. This is deduced by taking an arbitrary 𝑥 ∈ 𝐻 and looking at the equality 𝑑 (𝑥) = 0 as a
polynomial equation on 𝛼. This equation either has degree ≈ 𝑘 + 𝑠 (on 𝛼), or it is identically zero. However, we
see that if Round 2 started in a doomed state, then 𝑅(𝑥) = 0 is not identically zero for at least one 𝑥 ∈ 𝐻. Hence,
there are at most ≈ 𝑘 + 𝑠 distinct values of 𝛼 such that 𝑑 (𝑥) = 0 for all 𝑥 ∈ 𝐻.

• Finally, suppose that right at the end of Round 3, one has 𝑞(𝔷)Z𝐻 (𝔷) ≠ 𝑑 (𝔷). Then we set the state to “doomed”.
On this occasion, the probability of ending Round 3 in a non-doomed state, if the state was previously doomed, is
at most, roughly, max 𝑗 {deg 𝑃 𝑗 } · 𝑛/|F|.8 This is because either 𝑞(𝑋)𝑍𝐻 (𝑋) − 𝑑 (𝑋) is the zero polynomial (as it
should be), or it is a polynomial of degree max 𝑗 {deg 𝑃 𝑗 }𝑛, and 𝔷 is a root to it. We then see that if the protocol is
in a doomed state when Round 3 starts, then 𝑞(𝑋)𝑍𝐻 (𝑋) − 𝑑 (𝑋) is a nonzero polynomial. Notice as well that if
the protocol ends in a doomed state as per our definition, then the verifier rejects.

The above argument, at a high-level, establishes the round-by-round security of the 0-correlated hIOP OPlonkyO ;
complete details are given in Sections 6 and 7.

Round-by-round Knowledge of RISC Zero. RISC Zero [Tea23] is similar to the Plonky2 protocol. More precisely,
and modulo technicalities, it can be thought of as being built on top of OPlonky with the addition that RISC Zero
implements a lookup argument [GW20] in the same round as the permutation check is performed. We believe that
similar methods as the ones exposed in the previous section can be used to establish the RBR knowledge soundness of
RISC Zero, and thus, the knowledge soundness of the Fiat-Shamir transformed version of RISC Zero. Since RISC
Zero’s whitepaper is in draft form at the moment of writing, we leave formally proving this claim as an open task.

2.5 Round-by-round Knowledge of ethSTARK
We begin by discussing the ethSTARK protocol ΠethSTARK [Sta23], which is a close variation of the DEEP-ALI protocol
[BGKS20]. We briefly provide a rough overview of the protocol; see [Sta23] for complete details.

Description of the protocol InΠethSTARK, first the honest prover sends oracle access to a list of degree ≤ 𝑑 polynomials
𝑓1, . . . , 𝑓𝑚 that interpolate the columns of a so-called Algebraic Intermediate Representation (AIR) instance over
a multiplicative subgroup 𝐻 of a field F (simply put, these polynomials encode the witness). Supposedly, these
polynomials are such that certain maps of the form

𝑄𝑖 (𝑋, 𝑓1 (𝑔𝑖,1𝑋), . . . , 𝑓𝑚 (𝑔𝑖,𝑚𝑋))
𝑍𝐻𝑖
(𝑋) , 𝑖 ∈ 𝐼, (5)

are polynomials of low-degree. Here, each 𝑄𝑖 (𝑋,𝑌1, . . . , 𝑌𝑚) is a pre-specified (𝑚 + 1)-variate polynomial; the 𝑔𝑖, 𝑗 ’s
are field elements; 𝑍𝐻𝑖

(𝑋) is the vanishing polynomial of a subgroup 𝐻𝑖 of 𝐻; and 𝐼 is a list of indices.

8This is not entirely accurate; for precise bounds, see Theorem 4.6.

18

The verifier replies with 2|𝐼 | random elements 𝑟1, 𝑟 ′1, . . . , 𝑟 |𝐼 | , 𝑟
′
|𝐼 | from a field extension K of F. As its second

message, the honest prover sends oracle access to low degree polynomials 𝑞1 (𝑋), . . . , 𝑞𝑘 (𝑋) such that∑︂
𝑖∈𝐼
(𝑟𝑖 + 𝑟 ′𝑖𝑋𝑐𝑖)

𝑄𝑖 (𝑋, 𝑓1 (𝑔𝑖,1𝑋), . . . , 𝑓𝑚 (𝑔𝑖,𝑚𝑋))
𝑍𝐻𝑖
(𝑋) =

𝑘∑︂
𝑗=1

𝑋 𝑗−1𝑞 𝑗 (𝑋 𝑘) (6)

where the 𝑐𝑖’s are pre-agreed positive integers such that that each summand on the left-hand side of Eq. (6) has the
same degree, and 𝑘 is a conveniently pre-agreed positive integer. The reason why the prover sends 𝑘 polynomials
𝑞1 (𝑋), . . . , 𝑞𝑘 (𝑋) instead of just one polynomial 𝑞(𝑋) that equals the left-hand side of Eq. (6) is because the degree of
𝑞(𝑋) would be “too large”, and hence it is “split” into low degree polynomials.

The verifier replies with a field element 𝔷 uniformly sampled in a large subset 𝑆 of K. The honest prover replies with
evaluations {︁

𝑓1 (𝑔𝑖, 𝑗𝔷), . . . , 𝑓𝑚 (𝑔𝑖, 𝑗𝔷), 𝑞1 (𝔷), . . . , 𝑞𝑘 (𝔷) | 𝑖 ∈ 𝐼, 𝑗 ∈ [𝑚]} . (7)

Then, the verifier checks that Eq. (6) holds after replacing 𝑋 by 𝔷 (using the purported evaluations in Eq. (7)), and it
engages with the prover in the batched FRI protocol to verify that the following maps have 𝛿-correlated agreement in an
appropriate Reed-Solomon code:{︃

𝑓 𝑗 (𝑋) − 𝑓 𝑗 (𝑔𝑖, 𝑗𝔷)
𝑋 − 𝑔𝑖, 𝑗𝔷

| 𝑖 ∈ 𝐼, 𝑗 ∈ [𝑚]
}︃ ⋃︂ {︃

𝑞𝑡 (𝑋) − 𝑞𝑡 (𝔷)
𝑋 − 𝔷 | 𝑡 ∈ [𝑘]

}︃
. (8)

RBR knowledge soundness of the protocol It is clear that ΠethSTARK is the compilation of a 𝛿-correlated IOP
using the batched FRI protocol for 𝛿-correlated agreement. Thus, one can prove that ΠethSTARK has RBR (knowledge)
soundness by showing that the underlying 𝛿-correlated IOP has RBR (knowledge) soundness when 𝛿 = 0. Once this
is done, we obtain as a consequence that compiling ΠethSTARK with Merkle-tree commitments and the Fiat-Shamir
transformation (i.e., the BCS transform) yields a knowledge sound succinct non-interactive argument, i.e., a SNARK.

Here, the “underlying 𝛿-correlated IOP” is precisely the protocol ΠethSTARK without applying batched FRI. Instead,
we assume the verifier has an oracle that allows for checking 𝛿-correlated agreement of the maps that are batched
together in batched FRI. These are the quotient polynomials in Eq. (8).

As we mentioned, due to our results (Theorem 1.5), it suffices to analyse the RBR knowledge soundness when
𝛿 = 0. This corresponds to the case when the verifier has an oracle for checking that the maps of Eq. (8) are low-degree
polynomials. Note that if the maps in Eq. (8) have 0-correlated agreement, then so do all the (oracles to) maps sent by
the adversary during the protocol execution. This is because if a map of the form (ℎ(𝑋) − 𝑦)/(𝑋 − 𝑧) for constants
𝑦, 𝑧 agree with a polynomial 𝑞(𝑋) on a set 𝑆, then ℎ(𝑋) agrees with the polynomial 𝑞(𝑋) (𝑋 − 𝑧) + 𝑦 on the same
set 𝑆. Moreover, for any map ℎ(𝑋) sent by the prover there is a map of the form (ℎ(𝑋) − 𝑦)/(𝑋 − 𝑧) in the list of
Eq. (8). Hence we only need consider adversaries that send (oracles to) low-degree polynomials. Moreover, the check
for 0-correlated agreement also forces the prover to provide correct openings for Eq. (7).

We say that a 1-round partial transcript is doomed if the left-hand side of Eq. (6) is not a polynomial of appropriate
degree. We say that a 2-round partial transcript is doomed if Eq. (6) does not hold for the received challenge 𝔷. Clearly,
if a 1-round partial transcript is doomed, then a 2-round partial transcript is doomed except with probability 𝑑′/|𝑆 |,
where 𝑑′ is the degree of the polynomial equation obtained from Eq. (6) after multiplying it by 𝑍𝐻 (𝑋) on each side.
Also clearly, any doomed 2-round partial transcript is eventually rejected by the verifier, no matter how it is completed,
since Eq. (6) does not hold for 𝑋 = 𝔷. Finally, if 𝑓1 (𝑋), . . . , 𝑓𝑚 (𝑋) do not “encode a valid witness”, then by how the
AIRs are constructed, not all maps in Eq. (5) are polynomials of appropriate degree. Then we claim there are at most
|K|2 |𝐼 |−1 tuples (𝑟1, 𝑟 ′1, . . . , 𝑟 |𝐼 | , 𝑟 ′|𝐼 |) such that the right-hand side of Eq. (6) is a polynomial of appropriate degree. If
the claim is true, then an incorrect initial message 𝑓1 (𝑋), . . . , 𝑓𝑚 (𝑋) leads to a doomed state after Round 1 except with
probability 1/|K|. To prove the claim, consider the expression∑︂

𝑖∈𝐼
(𝑟𝑖 + 𝑟 ′𝑖𝑋𝑐𝑖)𝑄𝑖 (𝑋, 𝑓1 (𝑔𝑖,1𝑋), . . . , 𝑓𝑚 (𝑔𝑖,𝑚𝑋))

𝑍𝐻 (𝑋)
𝑍𝐻𝑖
(𝑋) (9)

where we view 𝑍𝐻 (𝑋)/𝑍𝐻𝑖
(𝑋) as a polynomial since 𝑍𝐻𝑖

(𝑋) divides 𝑍𝐻 (𝑋). Then the right-hand side of Eq. (6) is
a polynomial of appropriate degree if and only if Eq. (9) vanishes on 𝐻. The latter means that for each 𝑥 ∈ 𝐻, the

19

elements (𝑟1, 𝑟 ′1, . . . , 𝑟 |𝐼 | , 𝑟 ′|𝐼 |) form a solution to the equation∑︂
𝑖∈𝐼
(𝑟𝑖 + 𝑟 ′𝑖𝑥𝑐𝑖)𝑄𝑖 (𝑥, 𝑓1 (𝑔𝑖,1𝑥), . . . , 𝑓𝑚 (𝑔𝑖,𝑚𝑥))

𝑍𝐻 (𝑥)
𝑍𝐻𝑖
(𝑥) = 0

on the variables {𝑟𝑖 , 𝑟 ′𝑖 | 𝑖 ∈ 𝐼}. Unless the right-hand side of the equation is identically zero, there are at most |K|2 |𝐼 |−1
such solutions. On the other hand, if for all 𝑥 ∈ 𝐻 the right-hand side of the equation was identically zero, then each
of the maps Eq. (5) would be polynomials of appropriate degree (recall that the adversary is constrained to sending
low-degree polynomials), contradicting the assumption that 𝑓1 (𝑋), . . . , 𝑓𝑚 (𝑋) encode an incorrect witness. This proves
the claim.

It follows that, in its 0-correlated form, ΠethSTARK has RBR soundness and RBR knowledge soundness with error

𝜀0 := max{1/|K|, 𝑑′/|𝑆 |}.

Then, due to the results from Sections 2.2 and 2.3, ΠethSTARK (as an IOP) has RBR (knowledge) soundness

𝜀 := max{ℓ/|K|, ℓ𝑑′/|𝑆 |, 𝜀bFRIrbr }

where ℓ = 1/(2√𝜌𝜂) (here 𝜌 and 𝜂 are parameters related to the RS codes used within the protocol), and 𝜀bFRIrbr is the
RBR soundness error of batched FRI.
Remark 2.2. This analysis can be used to derive a knowledge soundness error for ΠethSTARK that slightly improves the
one from [Sta23]. This improvement is already demonstrated in [Hab22]. Using the notation of Theorem 4 in [Sta23],
the improved knowledge soundness error is

ℓ

|K| + ℓ
dmax + 2h + a

|K| − a · |𝐷 | − |H0 |
+ 𝜀FRI.

Precisely, the improvement consists in having the factor ℓ in the second summand, instead of ℓ2.

2.6 From Round-by-round Soundness to Fiat-Shamir Security
As stated in Section 2.1, we utilize the BCS transformation for IOPs due to Ben-Sasson et al. [BCS16] to compile our
round-by-round sound IOPs into secure non-interactive protocols in the random oracle model. At a high level, the
transformation works by first compressing oracles sent by the prover with a Merkle tree [Mer]; i.e., instead of sending
oracle 𝑓 to the verifier, the prover sends 𝑀 𝑓 , where 𝑀 𝑓 is the root of the Merkle tree with leaves corresponding to 𝑓

(in some canonical way). Then whenever the verifier would query oracle 𝑓 at position 𝑖, instead the prover provides
the verifier with pair (𝑓 (𝑖), 𝜋𝑖), where 𝜋𝑖 is the Merkle authentication path for proving that 𝑓 (𝑖) is consistent with 𝑀 𝑓 .
Finally, once the IOP is transformed in this way, it is then compressed using Fiat-Shamir to obtain a non-interactive
protocol.

Ben-Sasson et al. showed that applying the BCS transformation to an IOP yields a secure non-interactive protocol in
the random oracle model if the IOP satisfied a notion of soundness called state-restoration soundness, which roughly
says that the IOP remains secure even if the prover is allows to rewind the verifier to any prior state at most 𝑏 times
for some upper bound 𝑏 ≥ 1; see [BCS16] for full details. However, it is known that round-by-round soundness is an
upper bound on state-restoration soundness: in particular, if a protocol has state-restoration soundness error 𝜀sr (𝑏)
and round-by-round soundness error 𝜀rbr, then 𝜀sr (𝑏) ≤ 𝑏𝜀rbr [CMS19, COS20, KPV22]. Moreover, Chiesa et al.
[CMS19, COS20] showed that if an IOP is both round-by-round sound and round-by-round knowledge sound, then the
BCS transformed IOP is both (adaptively) sound and (adaptively) knowledge sound versus both classical and quantum
adversaries in the random oracle model.

Applying BCS to FRI and Batched FRI directly gives us a SNARK in the random oracle model, establishing the
Fiat-Shamir security for FRI and Batched FRI (i.e., Corollary 1.4). Similarly, for OPlonkyO , we replace the 𝛿-correlated
oracle O with the Batched FRI protocol, leveraging our 𝛿-correlated IOP techniques to obtain a round-by-round sound
IOP. Then again applying BCS to OPlonky composed with Batched FRI gives us a SNARK in the random oracle model,
establishing the Fiat-Shamir security of OPlonky composed with Batched FRI (i.e., Corollary 1.11). Finally, our results
allow us to obtain FS security for a variety of Plonk-like protocols; see Section 7.3 for details.

20

3 Preliminaries
For any positive integer 𝑚, we let [𝑚] denote the set {1, . . . , 𝑚}. Throughout this work, we let F denote a finite field of
prime 𝑝 elements and let F∗ := F \ {0} denote the multiplicative group of F. Moreover, we let F[𝑋] denote the set of all
univariate polynomials with coefficients in F and indeterminate 𝑋 , and we let F≤𝑘 [𝑋] denote the set of all univariate
polynomials of degree at most 𝑘 . Given a subset 𝑆 ⊆ F, by ZS (𝑋) we denote the vanishing polynomial on 𝑆, which is
defined as ZS (𝑋) :=

∏︁
𝑠∈𝑆 (𝑋 − 𝑠). We say that 𝐿 ⊆ F∗ is a multiplicative subgroup if it is closed under multiplication;

i.e., if 𝑥, 𝑦 ∈ 𝐿 then 𝑥 · 𝑦 ∈ 𝐿. Given 𝜔 ∈ F, we let ⟨𝜔⟩ := {1, 𝜔, 𝜔2, . . . , 𝜔𝑝−1} denote the multiplicative subgroup
of F∗ generated by 𝜔. When 𝑛 = |⟨𝜔⟩|, we say that 𝜔 is a 𝑛-th primitive root of unity and sometimes denote such a
root of unity as 𝜔𝑛. For any finite set 𝑆, we let 𝑠 $← 𝑆 denote the process of sampling an element of 𝑆 uniformly and
independently at random. Finally, for two finite sets 𝐴, 𝐵 , we let 𝐴𝐵 denote the set of maps of the form 𝑓 : 𝐵 → 𝐴.
When given some fixed ordering of 𝐵, we sometimes view 𝑓 as the vector (𝑎1, . . . , 𝑎 |𝐵 |) where 𝑓 (𝑏𝑖) = 𝑎𝑖 ∈ 𝐴 for
𝑏𝑖 ∈ 𝐵. We refer to 𝑓 ∈ 𝐴𝐵 indistinctly as a word, a vector, or a map. In the latter case we use functional notation such
as 𝑓 (𝑋) and 𝑓 (𝑎), 𝑎 ∈ 𝐴.

For two vectors 𝑢, 𝑣 ∈ F𝑛, we let Δ(𝑢, 𝑣) denote the relative Hamming distance between 𝑢 and 𝑣, defined
as Δ(𝑢, 𝑣) := |{𝑢𝑖 ≠ 𝑣𝑖 | 𝑖 ∈ [𝑛]}| /𝑛. Moreover, for a set of vectors 𝑆 ⊂ F𝑛 and any vector 𝑢 ∈ F𝑛, we define
Δ(𝑢, 𝑆) = Δ(𝑆, 𝑢) := min𝑣∈𝑆{Δ(𝑢, 𝑣)}. For 𝛿 ∈ (0, 1), we say that 𝑢 is 𝛿-far from 𝑆 if Δ(𝑢, 𝑆) ≥ 𝛿; otherwise, we say
that 𝑢 is 𝛿-close to 𝑆. Equivalently, 𝑢 is 𝛿-far from 𝑆 if Δ(𝑢, 𝑣) ≥ 𝛿 for all 𝑣 ∈ 𝑆, and 𝑢 is 𝛿-close to 𝑆 if there exists
𝑣∗ ∈ 𝑆 such that Δ(𝑢, 𝑣∗) < 𝛿.

3.1 Reed-Solomon Codes
Reed-Solomon codes [RS60], or RS codes in short, are an extremely well-studied and widely used class of linear error
correcting codes. In our case, we shall consider RS codes parameterized by a finite field F, a multiplicative subgroup
𝐿 ⊆ F∗, and a degree bound 𝑑 ∈ N. The code RS[F, 𝐿, 𝑑] is defined as

RS[F, 𝐿, 𝑑] :=
{︂
(𝑓 (𝑧))𝑧∈𝐿 ∈ F |𝐿 | | 𝑓 ∈ F[𝑋], deg(𝑓) < 𝑑

}︂
.

In other words, RS[F, 𝐿, 𝑑] consists of vectors in F |𝐿 | , where each vector is defined as the evaluation of a polynomial in
F[𝑋] of degree less than 𝑑 at all points in 𝐿 (in some canonical ordering). Note that RS[F, 𝐿, 𝑑] in F |𝐿 | of dimension 𝑑.
Throughout this work, we assume that |𝐿 | = 2𝑛, 𝑑 = 2𝑘 are integer powers of two with 𝑘 ≤ 𝑛/2. The rate of the RS
code is defined as 𝜌 := 𝑑/|𝐿 | = 2−(𝑛−𝑘) . For our purposes, we require some additional structure on the subgroup 𝐿; in
particular, we require that 𝑥 ∈ 𝐿 ⇐⇒ 𝜔𝑖

𝑘
· 𝑥 ∈ 𝐿 for all 𝑖 ∈ [𝑘 − 1] where 𝜔𝑘 is a primitive 𝑘-th root of unity in F. For

ease of presentation, we refer to such a subgroup as a smooth multiplicative subgroup.
We say that RS[F, 𝐿, 𝑑] is (𝛿, ℓ)-list decodable if for all 𝑢 ∈ F |𝐿 | there are at most ℓ codewords in RS[F, 𝐿, 𝑑] that

are within relative Hamming distance at most 𝛿 from 𝑢.

Theorem 3.1 (Johnson bound). For every 𝜂 ∈ (0, 1 − √𝜌), the code RS[F, 𝐿, 𝑑] is (1 − √𝜌 − 𝜂, 1/(2𝜂√𝜌))-list
decodable.

A key notion we make use of in our work (both implicitly and explicitly) is that of correlated agreement with the
Reed-Solomon code.

Definition 3.2 (Correlated agreement [BCI+20, Sta23]). Let 𝑉 = RS[F, 𝐿, 𝑑] and 𝑊 = {𝑤1, . . . , 𝑤𝑘}, 𝑤𝑘 ∈ F𝐿 be a
sequence of maps. Let 𝛿 ∈ (0, 1). We say 𝑊 has 𝛿−correlated agreement with 𝑉 if there exists 𝑆 ⊆ 𝐿, called set of
agreement, such that |𝑆 |/|𝐿 | ≥ 1 − 𝛿 and there exists 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 such that 𝑤𝑖 agrees with 𝑣𝑖 on 𝑆. In this case we
say that 𝑊 and {𝑣1, . . . , 𝑣𝑘} have 𝛿-correlated agreement on 𝑆.

We say 𝑆 is a maximal agreement domain if no set strictly containing 𝑆 is an agreement domain.

Another technical tool we utilize is a so-called correlated agreement list decoder.

Lemma 3.3 (Correlated agreement list decoder [Sta23]). Let 𝑉 = RS[K, 𝐿, 𝑑] and 𝑊 = {𝑤1, . . . , 𝑤𝑘}, 𝑤𝑘 ∈ F |𝐿 |
be a sequence of vectors. Let 𝜌 = 𝑑/|𝐿 | and let 𝛿 = 1 − √𝜌 − 𝜂 for some 𝜂 > 0. Then there exists a randomized

21

algorithm running in expected time polynomial in 1/𝜌, 1/𝜂, 𝑘, log |K| that outputs a list S = {𝑆1, . . . , 𝑆ℓ } of all maximal
𝛿-correlated agreement sets of density at least 1 − 𝛿, and ℓ ≤ 1/2𝜂√𝜌. Additionally, for each 𝑆𝑖 and 𝑤 𝑗 ∈ 𝑊 , the
element 𝑣𝑖, 𝑗 ∈ 𝑉 that agrees with 𝑤 𝑗 on 𝑆𝑖 is uniquely defined.

3.2 Interactive Oracle Proofs
A relation R is a subset of pairs (x;w) ∈ {0, 1}∗ × {0, 1}∗. The strings x are called inputs, statements, or instances,
and the strings w are called witnesses. To each relation R there corresponds a language 𝐿R ⊆ {0, 1}∗ consisting of all
statements x such that (x,w) ∈ R for some w. An indexed relation is a set of triples (i,x;w). Intuitively, the index i
is fixed at setup time, and each i determines a relation Ri := {(x,w) | (i,x,w) ∈ R}. For example, in the indexed
relation of satisfiable arithmetic circuit, the index i is a description of a circuit, the statement i is the value taken by the
“public” wires in the circuit, and the witness w is the value taken by the remaining “private” wires.

Given a map 𝑓 ∈ 𝐴𝐵 for some sets 𝐴, 𝐵, we denote by ⟦ 𝑓 ⟧ an oracle to the map 𝑓 . This is a hypothetical algorithm
that takes elements 𝑎 ∈ 𝐴 as input, and outputs 𝑓 (𝑎) instantaneously. Given a vector of maps 𝑓 = (𝑓1, . . . , 𝑓𝑛), where
𝑓𝑖 ∈ 𝐴

𝐵𝑖

𝑖
for some sets 𝐴𝑖 , 𝐵𝑖 for all 𝑖, we let ⟦ 𝑓 ⟧ := (⟦ 𝑓1⟧, . . . , ⟦ 𝑓𝑛⟧).

Definition 3.4 ((Holographic) Interactive Oracle Proofs (hIOP)). A 𝜇-round interactive oracle proof for a relation R is
a tuple of interactive algorithms Π = (P,V) such that:

• For x ∈ 𝐿R and w such that (x,w) ∈ R, before the start of the protocol, P receives both (x,w) as input and V
receives x as input.

• P(x,w) and V(x) exchange 2𝜇(x) + 1 messages, where P sends the first and last message, and during any round
of interaction P sends message 𝑚𝑖 and V receives oracle access to 𝑚𝑖 via ⟦𝑚𝑖⟧. After P sends 𝑚𝜇 (x)+1, V either
accepts or rejects.

We require the following properties to hold:

• 𝛿-Completeness: for all (x,w) ∈ R, we have

Pr [⟨P(w),V⟩(x) = 1] ≥ 𝛿,

where ⟨P(w),V⟩(x) denotes the output of P and V interacting on common input x where P is additionally given
w as input, and the above probability holds over the random coins of V. If 𝛿 = 1 for all x then the protocol is
perfectly complete.

• 𝜖-Soundness: for any x ∉ 𝐿R and any unbounded interactive algorithm P∗, we have

Pr [⟨P∗,V⟩(x) = 1] ≤ 𝜖,

where the probability is taken over the random coins of V.

We say that Π is public-coin if all messages sent by V are independent uniform random strings of some bounded length
and the output of V does not depend on any secret state.

A 𝜇-round holographic IOP for an indexed relation R is a tuple of interactive algorithms Π = (Ind,P,V) such that:

• The indexer Ind is a deterministic non-interactive polynomial-time algorithm that on input an index i outputs an
encoding Ind(i).

• For any fixed i, P′ (·) := P(Ind(i), ·), and V′ (·) := V⟦Ind(i)⟧, the tuple (P′,V′) is a 𝜇(i,x)-round IOP for the
relation Ri with 𝛿(i) completeness and 𝜖 (i) soundness.

Remark 3.5. In this work, we assume that the computation of Ind(i) is always carried out by a trusted party. Furthermore,
all (h)IOPs in this work are assumed to be public-coin.

Also important in this work is the notion of an IOP of Proximity (IOPP) [BBHR18a]. Since we are only concerned
about proximity to the space of Reed-Solomon codewords, we define an IOPP with respect to these codes.

22

Definition 3.6 (IOP of Proximity (IOPP) for Reed-Solomon Codes). Let RS denote the space RS[F, 𝐿, 𝑑] ⊂ F |𝐿 | of
Reed-Solomon codewords with evaluation domain 𝐿 over finite field F and degree bound 𝑑. A 𝜇-round interactive oracle
proof of proximity for RS is a pair of interactive algorithms (P,V) is a 𝜇-round IOP with the following modifications:

• First message format: the first prover message 𝑓0 : 𝐿 → F is a purported codeword of RS.

• Perfect Completeness: Pr[⟨P,V⟩ = 1 | Δ(𝑓0,RS) = 0] = 1.

• 𝜖-Soundness: For any unbounded P∗, Pr[⟨P∗,V⟩ = 1 | Δ(𝑓0,RS) ≥ 𝛿] ≤ 𝜖 .

Definition 3.7 (Honest Verifier Zero-Knowledge). We say that an IOP (P,V) for relationR has 𝑧-statistical honest-verifier
zero-knowledge if there exists a probabilistic polynomial-time simulator algorithm 𝑆 such that for every (x,w) ∈ R, the
distribution 𝑆(x) is 𝑧(x)-close to the distribution View⟨P(w) ,V⟩ (x) (V(x)). Here, we let View⟨P(w) ,V⟩ (x) (V(x)) denote
the random variable denoting all values the V queries from oracles provided by P, along with any messages from P that
V reads in full, during the interaction ⟨P(w),V⟩(x).

Definition 3.8. Let 𝐻 ⊆ F and 𝑑 ≥ 0. An indexed (F, 𝐻, 𝑑)-polynomial oracle relation [CBBZ22] R is an indexed
relation where for each (i,x,w) ∈ R, the index i and input x may contain oracles to codewords from RS[F, 𝐻, 𝑑], and
the actual codewords corresponding to these oracles are contained in w.

Remark 3.9. Note that the notion indexed polynomial oracle relations generalizes indexed relations and “standard”
relations. For technical reasons, most of our results are stated for indexed polynomial oracle relations. Correspondingly,
they also apply for simple indexed relations or relations. The notion of (h)IOP’s for indexed relations generalizes
naturally to the notion of (h)IOP’s for indexed (F, 𝐻, 𝑑)-polynomial oracle relations.

Definition 3.10 (Correlated Agreement). Let 0 ≤ 𝛿 < 1. By the 𝛿-correlated agreement relation for RS[F, 𝐻, 𝑑] we
refer to the following indexed (F, 𝐻, 𝑑)-polynomial oracle relation:

CoAgg :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎛⎜⎝
i

x

w

⎞⎟⎠ =
⎛⎜⎝
(F, 𝐷, 𝑑, 𝛿, 𝑟)
(⟦ 𝑓𝑖⟧)𝑖∈[𝑟]
(𝑓𝑖)𝑖∈[𝑟]

⎞⎟⎠
|︁|︁|︁|︁|︁|︁|︁|︁|︁
𝑟, 𝛿 ≥ 0, 𝜌 = 𝑑/|𝐻 |,
𝑓𝑖 ∈ F𝐻 ∀𝑖 ∈ [𝑟],
(𝑓𝑖)𝑖∈[𝑟] has 𝛿-correlated

agreement with RS[F, 𝐻, 𝑑]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Given 0 ≤ 𝛿0 < 1, we denote by CoAgg(𝛿0) the subset of CoAgg whose proximity parameter in the index is 𝛿 = 𝛿0.
Notice that, when 𝛿 = 0, the relation CoAgg(0) requires that the witness maps (𝑓𝑖)𝑖∈[𝑟] are all codewords from
RS[F, 𝐻, 𝑑].

Definition 3.11 (Oracles for relations). Let R be an indexed relation. By oracle for R we denote a hypothetical black-box
algorithm OR that, on input arbitrary (i,x) where i is a valid index of R, and x is an arbitrary input, instantly outputs
whether x ∈ LRi

or not.

3.3 Round-by-round Soundness and Knowledge
We recall the notions of round-by-round soundness [CCH+19] and round-by-round knowledge [CMS19] for interactive
protocols. For round-by-round soundness, we use a definition due to Holmgren [Hol19]. This equivalent definition
formulates round-by-round soundness in terms of a “doomed set” of partial transcripts (as opposed to using a “state
function” for partial transcripts). For round-by-round knowledge, we modify the original definition from [CMS19] in an
analogous way.

Before we continue, we need to introduce some terminology. Given i, a complete transcript for an input i is a sequence
of the form (x, 𝑚1, 𝑐1, . . . , 𝑚𝜇, 𝑐𝜇, 𝑚𝜇+1), where the 𝑚𝑖’s and 𝑐𝑖’s are, respectively, prover’s and verifier’s messages
while interacting during the execution of protocol Π on input i,x (and a witness for the prover). A partial transcript is a
suffix of a complete transcript. A 𝑖-round partial transcript is a partial transcript of the form (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖).
Throughout the paper we let C𝑖 denote the set of all potential verifier’s challenges at Round 𝑖.

23

Definition 3.12 (Round-by-Round Soundness). A (public-coin) holographic IOP Π = (Ind,P,V) for an indexed relation
R has round-by-round soundness with error 𝜀 if for all index i there exists a (not necessarily efficiently computable)

“doomed set” D(i) of partial and complete transcripts such that the following properties hold:

1. If x ∉ LRi
, then (x, ∅) ∈ D(i), where ∅ denotes the empty transcript.

2. For any complete transcript 𝜏, if (x, 𝜏) ∈ D(i) then 𝑉 Ind(i) (x, 𝜏) = reject.

3. If 𝑖 ∈ [𝜇] and (x, 𝜏) is a (𝑖 − 1)-round partial transcript such that (x, 𝜏) ∈ D(i), then for every potential prover
next message 𝑚, it holds that

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D(i)] ≤ 𝜀(i).

Definition 3.12 naturally extends to hPIOP’s for indexed polynomial oracle relations.
The following notion was introduced in [CMS19] using the concept of a “state function”. Here, following the

definition above, we formulate it using a doomed set of partial transcripts.

Definition 3.13 (Round-by-Round Knowledge). A (public-coin) holographic IOP Π for an indexed relation R has
round-by-round knowledge with error 𝜀k if there exists a polynomial-time extractor Ext and for all i there exists a (not
necessarily efficiently computable) “doomed set” D(i) of partial and complete transcripts such that:

• (x, ∅) ∈ D(i) for all possible input x, regardless of whether x ∈ LRi
or not.

• For any possible input x and any complete transcript (x, 𝜏), if (x, 𝜏) ∈ D(i) then 𝑉 Ind(i) (x, 𝜏) = reject.

• If 𝑖 ∈ [𝜇] and (x, 𝜏) is a (𝑖 − 1)-round partial transcript such that (x, 𝜏) ∈ D(i), then for every potential prover
next message 𝑚, it holds that, if

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D(i)] > 𝜀k (i),

then Ext(i,x, 𝜏, 𝑚) outputs a valid witness for x.

3.4 The BCS Transformation for IOPs
The BCS transformation [BCS16] turns any IOP Π = (P,V) into a non-interactive argument. Informally speaking, this
is achieved by giving access to P and V to a random oracle 𝜌. Then, every time that P would send to V oracle access to
a map 𝑚 : 𝑆 → {0, 1}∗, instead it sends the Merkle tree root of the vector (𝑚(𝑠))𝑠∈𝑆 , using 𝜌 as the “hash function”.
Then, when V wants to query 𝑚 at some point 𝑠 ∈ 𝑆, the prover sends the value 𝑚(𝑠) to V, along with a Merkle tree path
certifying that 𝑚(𝑠) is a correct opening. Finally, to protocol is made non-interactive via the Fiat-Shamir transformation
using the random oracle 𝜌. We refer to [BCS16] for a formal description of this transformation.

It turns out that applying the BCS construction to a round-by-round sound IOP Π with round-by-round knowledge
soundness yields a SNARK; i.e., a succinct non-interactive argument of knowledge [CMS19]. Moreover, if Π is zero-
knowledge, then so is the resulting SNARK. Specifically, BCS compiles round-by-round sound IOPs into non-interactive
random oracle proofs.

Definition 3.14 (Non-Interactive Random Oracle Proofs [BCS16]). A non-interactive random oracle proof for a relation
R is a pair of probabilistic oracle algorithms (P,V) such that

• Completeness: for every (x,w) ∈ R and 𝜆 ∈ N, we have

Pr [V𝜌 (x, 𝜋) = 1 | 𝜌 ←U(𝜆), 𝜋 ← P𝜌 (x,w)] = 1.

• 𝜖-Soundness: For every x ∉ 𝐿R, 𝑄-query P̃, and 𝜆 ∈ N, we have

Pr
[︂
V𝜌 (x, 𝜋) = 1 | 𝜌 ←U(𝜆), 𝜋 ← P̃𝜌

]︂
≤ 𝜖 (x, 𝑄, 𝜆).

24

Here,U(𝜆) denotes the uniform distribution over all functions 𝜌 : {0, 1}∗ → {0, 1}𝜆, and 𝜌 ← U(𝜆) is the random
oracle.

We say that (P,V) is a proof of knowledge with error 𝜖k if there exists a PPT extractor algorithm E such that for
every x, 𝑄-query P̃. and 𝜆 ∈ N, we have

Pr
[︂(︂
x,EP̃ (x, 1𝑄, 1𝜆)

)︂
∈ R

]︂
≥ Pr

[︄
V𝜌 (x, 𝜋) = 1

|︁|︁|︁|︁ 𝜌 ←U(𝜆)
𝜋 ← P̃𝜌

]︄
− 𝜖k (x, 𝑄, 𝜆).

Finally, we say that (P,V) has 𝑧-statistical zero-knowledge (in the explicitly programmable random oracle model)
if there exists a probabilistic polynomial-time simulator S such that for every (x,w) ∈ R, 𝜆 ∈ N, and unbounded
distinguisher 𝐷, the following holds:|︁|︁|︁|︁|︁Pr

[︄
𝐷𝜌[𝜇] (𝜋) = 1

|︁|︁|︁|︁ 𝜌 ←U(𝜆)
(𝜋, 𝜇) ← S𝜌 (x)

]︄
− Pr

[︄
𝐷𝜌 (𝜋) = 1

|︁|︁|︁|︁ 𝜌 ←U(𝜆)
𝜋 ← P𝜌 (x,w)

]︄ |︁|︁|︁|︁|︁ ≤ 𝑧(x, 𝜆).

Here, 𝜌[𝜇] (𝑥) = 𝜇(𝑥) if 𝜇(𝑥) is defined and 𝜌[𝜇] (𝑥) = 𝜌(𝑥) otherwise.

Below we state a “meta” theorem which captures all the relevant properties of the BCS transformation that we utilize
in this work.

Theorem 3.15 ([BCS16, CMS19, COS20]). There exists a polynomial-time transformation BCS such that for every
relation R, random oracleH : {0, 1}∗ → {0, 1}𝜅 , and random oracle query bound 𝑄 ∈ N, if (P,V) is a public-coin
IOP for R with

• proofs of length ℓ(x);

• verifier query complexity 𝑞(x);

• round-by-round soundness error 𝜀rbr (x);

• round-by-round knowledge error 𝜀rbr−k (x); and

• 𝑧(x)-statistical honest-verifier zero-knowledge,

then (P,V) := BCSH (P,V) is a non-interactive random oracle proof system for R with

• adaptive soundness error 𝜀fs (x, 𝑄, 𝜅) = 𝑄𝜀rbr (x) + 3(𝑄2 + 1)/2𝜅 and adaptive knowledge error 𝜀fs−k (x, 𝑄, 𝜅) =
𝑄𝜀rbr−k (x) + 3(𝑄2 + 1)/2𝜅 against 𝑄-query adversaries;

• adaptive soundness error 𝜀qfs (x, 𝑄, 𝜅) = Θ(𝑄 · 𝜀fs (x)) and adaptive knowledge error 𝜀qfs−k (x, 𝑄, 𝜅) = Θ(𝑄 ·
𝜀fs−k (x)) against 𝑄 −𝑂 (𝑞(x) log(ℓ(x)))-query quantum adversaries; and

• statistical zero-knowledge 𝑧′ (x, 𝜅) := 𝑧(x) + 4ℓ(x)/2𝜅/4.

Moreover, the above results also hold if R is an indexed relation and (Ind,P,V) is a holographic public-coin IOP for R
with the same complexities.

Remark 3.16 (Prover Time, Verifier Time, and Proof Lengths). Ben-Sasson et al. [BCS16] also give a detailed analysis
of the time complexities of P and V under the transformation, along with the size of the non-interactive proof. We omit
these details as we are mainly concerned with soundness in this work; see [BCS16] for complete details.

3.5 The Plonk SNARK
Plonk [GWC19] is a pre-processing SNARK with a universal structured reference string (SRS). Plonk improves on its
predecessor Sonic [MBKM19] mainly on prover efficiency metrics. The improvements come from the more direct
arithmetization of a circuit compared to [MBKM19].

25

Plonk’s Arithmetization. Plonk’s constraint system captures arithmetic circuits with fan-in two and unlimited fan
out. Assuming 𝑛 gates in the circuit and 𝑚 wires. The constraint system has two constituents: V = (a, b, c), where
a, b, c ∈ [𝑚]𝑛 and are respectively the left input, right input and output sequence for the gates; the second constituent is
a list of selector vectors Q = (𝑞𝐿 , 𝑞𝑅, 𝑞𝑂, 𝑞𝑀 , 𝑞𝐶) ∈ (F𝑛)5. Every constraint in Plonk is then viewed as the following
equality:

𝑞𝐿 · 𝑥a + 𝑞𝑅 · 𝑥b + 𝑞𝑂 · 𝑥c + 𝑞𝑀 · 𝑥a · 𝑥b + 𝑞𝑐 = 0

Here 𝑥𝑎, 𝑥𝑏, 𝑥𝑐 are wire values for the corresponding gates with labels 𝑎, 𝑏, and 𝑐. Such equations capture addition
and multiplication gates with ease. For example, a multiplication gate computing 𝑥c = 𝑥a𝑥b, take 𝑞𝑀 = 1, 𝑞𝑂 = −1 and
𝑞𝐿 = 𝑞𝑅 = 𝑞𝐶 = 0.

With the above abstraction, any NP relation can then be converted into a corresponding algebraic circuit where
each gate is modeled using Plonk constraints {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑠𝑒𝑙𝑠𝑖)}𝑖∈[𝑛] . All the constraints can then be compiled into the
following equation:

(𝑄𝑙 · 𝐴 +𝑄𝑟 · 𝐵 +𝑄𝑜 · 𝐶 +𝑄𝑚 · 𝐴 · 𝐵 +𝑄𝑐) (𝑋) = 0

Here, the witness to the NP relation is encoded by polynomials 𝐴, 𝐵, 𝐶, and the polynomial 𝑄 represents the circuit.

Plonk Over Polynomials. Given the described constraint system, pre-processing in Plonk defines univariate
polynomials 𝑞𝐿 (𝑋), 𝑞𝑅 (𝑋), 𝑞𝑂 (𝑋), 𝑞𝑀 (𝑋), 𝑞𝐶 (𝑋)) ∈ Z𝑝 that satisfy the following equalities:

𝑞𝐿
(︁
𝜔𝑖𝑛

)︁
= 𝑞𝐿𝑖 𝑞𝑅

(︁
𝜔𝑖𝑛

)︁
= 𝑞𝑅𝑖

𝑞𝑂
(︁
𝜔𝑖𝑛

)︁
= 𝑞𝑂𝑖

𝑞𝑀
(︁
𝜔𝑖𝑛

)︁
= 𝑞𝑀𝑖

𝑞𝐶
(︁
𝜔𝑖𝑛

)︁
= 𝑞𝐶𝑖

for 𝑖 ∈ [𝑛]. Where 𝜔𝑛 is the 𝑛-th primitive root of unity. The circuit constraints explained above capture gates within
the circuit. However, the circuit wiring (which gate is connected where) still needs to be checked. For this purpose,
Plonk uses the following permutation-based argument: if the wire values are copied correctly across gate inputs/outputs
in the circuit, then permuting the corresponding values in the resulting polynomial shouldn’t change it. The circuit
wiring/“copying” is captured by the relationships between indices {𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖}. If the correct wire values are copied, there
exists a permutation 𝜎 : [3𝑛] → [3𝑛] can be decomposed into 𝑚 cycles where the 𝑗-th cycle involves all the positions
where the 𝑗-th variable should be copied. This permutation is then transformed into 3 polynomials S𝜎1

, S𝜎2
, S𝜎3

, that
define “permutation identities”, that use two additional scalars 𝛽, 𝛾 ∈ Z𝑝 :

𝑝𝑒𝑟𝑚 − 𝑖𝑑𝑠𝜎𝛽,𝛾 (A(𝑋),B(𝑋),C(𝑋),Z(𝑋))

This defines two polynomials that should vanish over the subgroupH𝑛. Details about the permutation argument
are presented later in Definition 7.1. For now, it suffices to assume that if the polynomials 𝐴, 𝐵, 𝐶 are honestly
generated from a satisfying assignment to the constraint system C, then the polynomial 𝑍 of degree <= 𝑛 that satisfies
𝑝𝑒𝑟𝑚 − 𝑖𝑑𝑠𝜎𝛽,𝛾 can be computed efficiently.

Polynomial Commitments. A batched version of [KZG10] commitments is utilized for polynomial commitments.
The homomorphism allows for efficient batch openings. The commitment to polynomial 𝑞𝐿 is 𝜓𝑞𝐿 , and similarly
𝜓𝑞𝑅 , 𝜓𝑞𝑂 , 𝜓𝑞𝑀 , 𝜓𝑞𝐶 , 𝜓𝑆𝜎1

, 𝜓𝑆𝜎2
, 𝜓𝑆𝜎3

are polynomial commitments to the respective polynomials that part of Plonk’s
public parameters.

At a high level, the prover commits to polynomials 𝐴, 𝐵, 𝐶 since they represent a valid witness. The prover than
convinces the verifier that the witness polynomials satisfy the circuit constraints across the subgroupH𝑛. This can be
checked by using the constraints with the witness polynomials and dividing by the subgroup’s vanishing polynomial
𝑍H𝑛

. Consequently, the prover commits to the quotient 𝑇 of this division and evaluates all committed points at a
challenge point 𝜉. The verifier later checks whether 𝑍H𝑛

(𝜉).𝑇 (𝜉) matches the evaluations of the constraint identities
on 𝜉. This ensures that the polynomial division was exact. This is guaranteed by the knowledge soundness of the
polynomial commitment scheme and the Schwartz-Zippel lemma.

26

3.5.1 Plonk Variations

How (the polynomial IOP underlying) Plonk arithmetizes circuits into constraints is termed “Plonkish arithmetization”.
The following are some other proof systems that follow the same arithmetization approach.

• HyperPlonk [CBBZ22]: In Plonk, the prover uses commitments to polynomials 𝑞𝐿 , 𝑞𝑅, and 𝑞𝑂 (among others) to
convince the verifier that these indeed encode a valid computation of the circuit in question C. While in univariate
Plonk, the prover’s encoding utilizes a cyclic subgroup of F, HyperPlonk instead uses the boolean hypercube for
the encoding. This change eliminates the need for an FFT during proof generation and uses a sum-check protocol
[LFKN92] instead: shaving off a log(𝑠) (for 𝑠 being the size of the circuit C) factor in the prover’s asymptotic
runtime. Furthermore, it also facilitates the use of custom gates of a much higher degree. Any function used
multiple times in a circuit can be a custom gate 𝐺 : F𝑙 → F. For example, the S-box in a block cipher can be
efficiently implemented as a custom gate. A circuit C with a custom gate 𝐺 can be represented as C[𝐺].
A recent work of Setty, Thaler, and Wahby [STW23] shows that earlier SNARKs that were originally described
for R1CS, such as Spartan [Set20], extend easily to Plonkish arithmetization and, in fact, a generalization of
Plonkish arithmetization they call Customizable Constraint Systems (CCS).

• Plonky2 [Polb]: Plonky2 is a proof system proposed with recursive composition as the main goal. The key change
it makes to Plonk is switching out [KZG10] commitments for a polynomial commitment scheme based on FRI. It
makes more changes to support custom gates using techniques from a syntax improvement on Plonk [GW]. It
also uses FRI with “grinding”, which requires every prover to compute a proof-of-work solution using some
randomness and their commitment from the FRI commit phase as input. Plonky2 uses the Domain Extending for
Eliminating Pretenders (DEEP) [BGKS20] variant of FRI, where the verifier samples a single point 𝑧 outside the
domain 𝐷 on which codewords are evaluated and asks the prover for the value at 𝑧 of the interpolating polynomial.
At a high level, using this technique “forces” the prover to choose one codeword from a list of “pretenders” that
are close to the target codeword.

• RedShift [KPV22]: This proof system follows a similar approach to Plonky2, using FRI-based polynomial
commitments with Plonkish arithmetization. However, RedShift uses FRI to build a primitive they call list
polynomial commitment (LPC). Instead of the prover claiming that it committed to a particular polynomial 𝑓 and
then convincing the verifier that this polynomial is within the unique decoding radius of a valid Reed-Solomon
codeword, using LPC a prover claims are about some polynomial 𝑓 ′ within list-decoding radius of 𝑓 . LPC
is a relaxation of a polynomial commitment scheme where the prover commits to the evaluations of one of
the polynomials in a 𝛿-radius around a valid RS codeword. RedShift then converts the LPC to a polynomial
commitment scheme to come up with a transparent Plonkish SNARK. This proof system predates Plonky2, and
hence, the FRI-based polynomial commitment approach from here is generalized in Plonky2.

4 Our Results
In this section, we formally state all of our results.

4.1 Round-by-round Soundness of FRI and Batched FRI
We formally present the FRI IOPP algorithm in Algorithm 1. The following theorem captures the round-by-round
soundness of FRI.

Theorem 4.1. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | =
2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), and function 𝐺0 : 𝐿0 → F that is
𝛿-far from RS[F, 𝐿0, 𝑑0], Algorithm 1 has round-by-round soundness error

𝜀FRIrbr := 𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
.

27

We extend the above theorem to the Batched FRI protocol, a variant of Algorithm 1 where the prover first sends 𝑡
oracles 𝑓1, . . . , 𝑓𝑡 to the verifier, and the verifier replies with 𝛼1, . . . , 𝛼𝑡

$← F. The prover and verifier then engage in the
FRI protocol for polynomial 𝐺0 =

∑︁
𝑖 𝛼𝑖 𝑓𝑖 . The following theorem captures the round-by-round soundness of Batched

FRI.

Theorem 4.2. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 =

𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), and functions
𝑓
(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2 such that at least one 𝑓

(0)
𝑖

that is 𝛿-far from RS(0) , the Batched FRI protocol has
round-by-round soundness error

𝜀bFRIrbr := 𝜀bFRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
.

Fiat-Shamir Security of FRI and Batched FRI. Given Theorems 4.1 and 4.2, we can apply the BCS transformation,
with its guarantees stated in Theorem 3.15, to transform both FRI and Batched FRI into SNARKs in the random oracle
model. The following corollaries capture this result.

Corollary 4.3 (FS Security of FRI). Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size
2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂),
random oracleH : {0, 1}∗ → {0, 1}𝜅 , query bound 𝑄 ∈ N, and function 𝐺0 : 𝐿0 → F that is 𝛿-far from RS[F, 𝐿0, 𝑑0],
compiling Algorithm 1 with Theorem 3.15 gives a non-interactive random oracle proof with adaptive soundness error
and knowledge error

𝜀FRIfs := 𝜀FRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅) = 𝑄 · 𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) + 3(𝑄2 + 1)
2𝜅

.

Moreover, if 𝛾 := 𝛾(F, 𝐿0, 𝜌, 𝛿, ℓ) denotes the length of a FRI proof for parameters F, 𝐿0, 𝜌, 𝛿, ℓ, then the above
non-interactive random oracle proof has adaptive soundness error and knowledge error

𝜀FRIfs−q := 𝜀FRIfs−q (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅) = Θ(𝑄 · 𝜀FRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅))

against quantum adversaries that can make at most 𝑄 −𝑂 (ℓ · log(𝛾)) queries.

Corollary 4.4 (FS Security of Batched FRI). Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of
size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂),
random oracleH : {0, 1}∗ → {0, 1}𝜅 , query bound 𝑄 ∈ N, and functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2 such that

at least one 𝑓
(0)
𝑖

is 𝛿-far from RS[F, 𝐿0, 𝑑0], compiling Batched FRI with Theorem 3.15 gives a non-interactive random
oracle proof with adaptive soundness error and knowledge error

𝜀bFRIfs := 𝜀bFRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡, 𝑄, 𝜅) = 𝑄 · 𝜀bFRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡) + 3(𝑄2 + 1)
2𝜅

.

Moreover, if 𝛾 := 𝛾(F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡) denotes the length of a Batched FRI proof for parameters F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, then the
above non-interactive random oracle proof has adaptive soundness error and knowledge error

𝜀bFRIfs−q := 𝜀bFRIfs−q (F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, 𝑄, 𝜅) = Θ(𝑄 · 𝜀bFRIfs (F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, 𝑄, 𝜅))

against quantum adversaries that can make at most 𝑄 −𝑂 (ℓ · log(𝛾)) queries.

Remark 4.5. A variety of works (e.g., [BCI+20, Sta23]) make conjectures about the security of the FRI and Batched
FRI protocols. We similarly adapt our above results when assuming these conjectured security bounds; see Section 5.5
for details.

28

4.2 Correlated IOPs
A key technical tool we introduce is the notion of a 𝛿-correlated (holographic) interactive oracle proof, or 𝛿-correlated
hIOP in short. A 𝛿-correlated hIOP is an hIOP for indexed (F, 𝐻, 𝑑)-polynomial oracle relations, where we fix some
0 ≤ 𝛿 < 1 and assume the verifier has an oracle OCoAgg(𝛿) for the correlated agreement relation CoAgg(𝛿) (see
Definition 3.10). Furthermore, we assume that the final offline verification process consists of: (1) checking that the
oracles sent by the prover satisfy a certain polynomial equation on a random point 𝔷 (not necessarily from 𝐻); and (2)
using OCoAgg(𝛿) to check that the maps corresponding to certain oracles have correlated agreement in RS[F, 𝐻, 𝑑]
(see Definition 6.1 for details). We denote such a protocol as ΠOCoAgg(𝛿) .

Given a 𝛿-correlated hIOP, our first main result is showing that given a round-by-round sound 0-correlated hIOP,
when replacing the oracle OCoAgg(0) with another suitable IOP, results in a new hIOP that is also round-by-round
sound.

Theorem 4.6. Let ΠOCoAgg(0) = (Ind,P,VOCoAgg(0)) be a 𝜇-round 0-correlated hIOP for an indexed (F, 𝐷, 𝑑)-
polynomial oracle relation R. Let 0 < 𝛿 < 1−√𝜌, where 𝜌 = 𝑑/|𝐷 |, and let ΠCA be a IOPP for 𝛿-correlated agreement
in RS[F, 𝐷, 𝑑]. Let 𝜂 > 0 be such that 𝛿 = 1 − √𝜌 − 𝜂. Assume ΠCA is RBR sound with error 𝜀CA. Then the following
hold:

• Suppose that ΠOCoAgg(0) is RBR sound with error 𝜀rbr−s. Then there exists a hIOP Π for R with RBR soundness
error

𝜀′ (i) := max

{︃
𝜀rbr−s (i)
2𝜂
√
𝜌

, 𝜀CA (iCA)
}︃
,

where iCA = (F, 𝐷, 𝑑, 𝛿, 𝑁), and 𝑁 is the number of words whose 𝛿-correlated agreement is checked in the last
verification check of ΠOCoAgg(𝛿) .

• Suppose 𝜇(i,x) ≥ 1 for all i,x and ΠOCoAgg(0) has RBR knowledge error 𝜀rbr−k, then Π has RBR knowledge
error

max

{︃
𝜀rbr−k (i)
2𝜂
√
𝜌

, 𝜀CA (iCA)
}︃
,

where iCA has the same meaning as in above.

The proof of the above theorem relies on two technical lemmas. The first lemma states that if you have a
round-by-round sound 0-correlated hIOP when given access to OCoAgg(0), then when given access to OCoAgg(𝛿) for
𝛿 > 0, the same hIOP is now 𝛿-correlated and is round-by-round sound (with some loss in the soundness error).

Lemma 4.7. LetΠOCoAgg(0) = (Ind,P,VOCoAgg(0)) be a 𝜇-round 0-correlated hIOP for an indexed (F, 𝐷, 𝑑)-polynomial
oracle relation R. Let 𝛿 = 1 − √𝜌 − 𝜂. The following hold:

• Suppose that ΠOCoAgg(0) is RBR sound with error 𝜀rbr−s. Then ΠOCoAgg(𝛿) has RBR soundness error
𝜀rbr−s (i)/(2𝜂

√
𝜌).

• Suppose that ΠOCoAgg(0) has RBR knowledge with error 𝜀rbr−k. Then ΠOCoAgg(𝛿) has RBR knowledge error
𝜀rbr−k (i)/(2𝜂

√
𝜌),

The second lemma then states that when one replaces the oracle OCoAgg(𝛿) in the above hIOP with another
round-by-round sound IOP for 𝛿-correlated agreement, then the resulting composed protocol remains round-by-round
sound.

Lemma 4.8. Assume the notation and hypotheses of Theorem 4.6. Then there exists a hIOP Πcompiled (see Definition 6.2)
for R with the following properties:

• Suppose ΠOCoAgg(𝛿) has RBR soundness error 𝜀rbr−s, 𝛿 . Then Πcompiled has RBR soundness error

max
{︁
𝜀rbr−s, 𝛿 (i), 𝜀CA (iCA)

}︁
.

29

• Suppose ΠOCoAgg(𝛿) has RBR knowledge soundness error 𝜀rbr−k, 𝛿 . Then Πcompiled has RBR knowledge soundness
error

max
{︁
𝜀rbr−k, 𝛿 (i), 𝜀CA (iCA)

}︁
.

4.3 A Plonk-like Protocol Abstraction OPlonky

Building upon the 𝛿-correlated hIOP framework, we introduce a 𝛿-correlated hIOP we call OPlonky, which abstracts
the polynomial IOPs underlying many of the variants of Plonk. This generalization is inspired in part by Plonky2 [Polb].
Our main technical result is establishing the round-by-round soundness of OPlonky(0) := OPlonkyOCoAgg(0) , where we
assume the verifier has oracle access to the 0-correlated agreement oracle OCoAgg(0).

Lemma 4.9. The 0-correlated agreement encoded hIOP OPlonky(0) has RBR soundness and RBR knowledge with the
same error 𝜀, where, for all index i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t) and any potential input x we have, for n = |𝐻 |:

𝜀(i) = max
𝑖∈[3]
{𝜀𝑖 (i)} , 𝜀1 (i) :=

(︃
3n(r′ + u)
|F|

)︃t
,

𝜀2 (i) :=
(︃
|P | + (s + 2)t − 1

|F|

)︃t
, 𝜀3 (i) := max{deg(𝑃 𝑗) 𝑗∈[| P |] , u + 1}

n

|K \ 𝐷 | .

Given the above lemma and our results about 𝛿-correlated hIOPs, we arrive at our main theorem for OPlonky; that
is, compiling OPlonkyOCoAgg(𝛿) with the Batched FRI protocol.

Theorem 4.10. Let F be a finite field, 𝐷 ⊆ F∗ a smooth multiplicative subgroup of F of order 2𝑛, and 𝐻 a subgroup of
𝐷 of order n. Let 𝑚 ≥ 3, 𝛿 = 1 − √𝜌 − 𝜂 for some 𝜂 ∈ (0,√𝜌/2𝑚), and let Plonky2hIOP be the hIOP obtained from
OPlonky(𝛿) after compiling it with the Batched FRI protocol (see Definition 6.2). Then Plonky2hIOP is RBR sound
and has RBR knowledge. For each i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t) and all 𝑞 ≥ 1, the error in both cases is given by

𝜀
OPlonky
rbr

(i, 𝑞) =max

{︄(︃
𝜀𝑖 (i)
2𝜂
√
𝜌

)︃
𝑖∈[3]

, 𝜀bFRIrbr (F, 𝐷, 𝜌, 𝛿, 𝑁, 𝑞)
}︄
,

where 𝑁 is the total number of codewords that are batched together in the batched FRI protocol, 𝜀bFRIrbr is the RBR
soundness error of 𝜀bFRIrbr (which equals its RBR knowledge error, see Theorem 5.11) and

𝜀1 (i) :=
(︃
3n(r′ + u)
|F|

)︃t
, 𝜀2 (i) :=

(︃
|P | + (s + 2)t − 1

|F|

)︃t
, 𝜀3 (i) := max{deg(𝑃 𝑗) 𝑗∈[| P |] , u + 1}

n

|K \ 𝐷 | .

5 Round-by-round Soundness of the FRI Protocol
We now turn to analyzing the round-by-round soundness of the original FRI IOPP protocol of Ben-Sasson et al.
[BBHR18a]. We present the protocol in Algorithm 1 (at the end of this section) and prove the following theorem.

Theorem 4.1. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | =
2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), and function 𝐺0 : 𝐿0 → F that is
𝛿-far from RS[F, 𝐿0, 𝑑0], Algorithm 1 has round-by-round soundness error

𝜀FRIrbr := 𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
.

To prove Theorem 4.1, we need to define a suitable doomed set D then bound the probability the prover can “leave”
D during any round of the protocol. We will define our doomed set D in two steps. First, we consider the set of
transcripts that are “doomed” in any round 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} of the protocol (i.e., the Folding Phase), which we will
denote as D𝑘 . Then, we consider the set of complete transcripts that are “doomed” for round 𝑖 = 𝑘 of the protocol (i.e.,
the Query Phase), which we will denote asDf . TakingD = D𝑘 ∪Df gives us our final doomed set. Given this doomed

30

set, we can suitably bound the probability that any (possibly malicious) prover 𝑃∗ can send a message that constructs a
transcript that is not in the set D, which establishes round-by-round soundness of Algorithm 1.

Before proceeding, we introduce some notation. For index 𝑖 ∈ {0, 1, . . . , 𝑘}, we define RS(𝑖) := RS[F, 𝐿𝑖 , 𝑑𝑖],
where 𝐿0 ⊂ F∗ is a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝐿𝑖 := {𝑧2 : 𝑧 ∈ 𝐿𝑖−1}, and 𝑑𝑖 = 𝑑𝑖−1/2. Note
that for every 𝑖 ∈ [𝑘], 𝐿𝑖 is a smooth multiplicative subgroup if size 2𝑛−𝑖 . For function 𝑓 : 𝐿𝑖 → F and 𝑥 ∈ F, we define
a so-called “algebraic hash function” [BKS18] 𝐻𝑥 [𝑓] : 𝐿𝑖+1 → F as

𝐻𝑥 [𝑓] (𝑠) :=
(𝑥 − 𝑠′)
(𝑠′′ − 𝑠′) · 𝑓 (𝑠

′′) + (𝑥 − 𝑠′′)
(𝑠′ − 𝑠′′) · 𝑓 (𝑠

′) (10)

𝑠′, 𝑠′′ ∈ 𝐿𝑖 , 𝑠′ ≠ 𝑠′′, (𝑠′)2 = (𝑠′′)2 = 𝑠 ∈ 𝐿𝑖+1.

This algebraic hash function 𝐻𝑥 has the useful property that 𝑓 ∈ RS(𝑖) then 𝐻𝑥 [𝑓] ∈ RS(𝑖+1) for any 𝑥. It also has
the additional nice property that for arbitrary 𝐺𝑖 : 𝐿𝑖 → F and 𝐺𝑖+1 = 𝐻𝑥 [𝐺𝑖], then 𝐺𝑖 and 𝐺𝑖+1 will pass all verifier
checks during the Query Phase of the protocol, so long as 𝑑𝑖+1 > 1 [Tha22].

We now proceed with defining our doomed setsD𝑘 and Df . We begin by analyzing the rounds 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}
of Algorithm 1, which correspond to the Folding Phase. First note that by definition for any 𝑥 ∉ L we have (𝑥, ∅) ∈ D.
Now for round 𝑖 = 0, we view the oracle 𝐺0, which is already given to the verifier before the start of the protocol, as
being sent to the verifier during this round. It is assumed that 𝐺0 is 𝛿-far from RS(0) and the prover honestly sends
(𝐺0 (𝑧))𝑧∈𝐿0

to the verifier. The verifier then responds with random challenge 𝑥0
$← F. Let 𝜏0 := (𝐺0 (𝑧))𝑧∈𝐿0

∥𝑥0
denote the partial transcript of the protocol so far.

Looking ahead to the Query Phase, the verifier will check consistency of oracles 𝐺0 and 𝐺∗1, where 𝐺∗1 was the
oracle sent by the prover during round 𝑖 = 1. The verifier checks consistency as follows. First, it samples 𝑠0 ← 𝐿0 and
computes 𝑠1 = (𝑠0)2. Since 𝐿0 is a smooth multiplicative subgroup of order 2𝑛, there also exists 𝑠′0 ≠ 𝑠0 such that
(𝑠′0)2 = 𝑠1; i.e., 𝑠′0 is the other square root of 𝑠1. The verifier then obtains points 𝑞0 = 𝐺0 (𝑠0) and 𝑞′0 = 𝐺0 (𝑠′0) and
𝑞1 = 𝐺∗1 (𝑠1). Now the consistency check the verifier performs is exactly given by Eq. (10): using (𝑠0, 𝑞0), (𝑠′0, 𝑞′0), and
challenge 𝑥0, the verifier computes the right hand side of Eq. (10) and checks if it is equal to 𝑞1; if not, the verifier rejects.
Notice that if 𝐺∗1 = 𝐻𝑥0 [𝐺0] for any 𝐺0, then 𝐺∗1 passes all verifier checks with probability 1 so long as 𝑑1 = 𝑑0/2 > 1.
Notice also that if 𝑑1 = 1, then the verifier expects 𝐺1 ∈ F to be sent, not an oracle; however, 𝐻𝑥0 [𝐺0] may not be a
constant function, so the verifier checks may fail in this case. This turns out to be crucial for soundness of the Query
Phase.

Now if 𝐻𝑥0 [𝐺0] is 𝛿-close to RS(1) , then the malicious prover can send 𝐺∗1 = 𝐻𝑥0 [𝐺0] and behave honestly for the
rest of the protocol and break soundness; however, this is unlikely to happen by the following lemma.

Lemma 5.1 ([BCI+20, Theorems 5.1]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛,
𝑑0 = 2𝑘 , and 𝜌 = 2−(𝑛−𝑘) . For all 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)] and 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), and any 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}, if
𝐺𝑖 : 𝐿𝑖 → F is 𝛿-far from RS(𝑖) then

Pr
𝑥

$←F

[︂
Δ(𝐻𝑥 [𝐺𝑖],RS(𝑖+1)) ≤ 𝛿

]︂
<
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
. (11)

In other words, it is unlikely that folding a function that is 𝛿-far from RS(𝑖) results in a function that is 𝛿-close to
RS(𝑖+1) . Intuitively, this tells us that for our doomed set D we want (𝑥, 𝜏0) ∈ D if and only if 𝐻𝑥0 [𝐺0] is 𝛿-far from
RS(1) ; equivalently, (𝑥, 𝜏0) ∉ D if 𝐻𝑥0 [𝐺0] is 𝛿-close to RS(1) . However, round 𝑖 = 0 is a special case of the protocol
since we assume that 𝐺0 is honestly sent by any prover (malicious or not). For rounds 𝑖 ∈ [𝑘 − 1], a malicious prover
𝑃∗ does not have this restriction and thus can send an arbitrary oracle 𝐺∗

𝑖
during round 𝑖. To define the doomed set D

for these rounds, we intuitively want to ensure the following: if (𝑥, 𝜏𝑖−1) ∈ D and (𝑥, 𝜏𝑖) ∉ D, then the prover 𝑃∗ can
behave honestly for the remainder of the protocol and 𝑉 (𝑥, 𝜏) = 1 for the complete transcript (with good probability).

Consider round 𝑖 = 1 and let 𝐺∗1 be the oracle sent by the prover 𝑃∗ and let 𝐺1 = 𝐻𝑥0 [𝐺0] be the message that
would be sent by the honest prover. In this case, for 𝜏1 = 𝜏0∥(𝐺∗1 (𝑧))𝑧 ∥𝑥1, we intuitively want (𝑥, 𝜏1) ∉ D if and only if
𝑃∗ can behave honestly for the remainder of the protocol and pass all verifier checks during the Query Phase. This
happens if and only if 𝐺2 = 𝐻𝑥1 [𝐺1] and 𝐺∗1 = 𝐺1. Note that if 𝐺∗1 ≠ 𝐺1, it is possible for some of the verifier checks
during the Query Phase to fail; however, if 𝐺∗1 = 𝐺1, then all verifier checks with 𝐺∗1 will pass. We inductively extend
this analysis to any round 𝑖 ∈ [𝑘 − 1] (i.e., the Folding Phase, where 𝑑𝑖 > 1) via the following lemma.

31

Lemma 5.2. Let 𝑥 ∉ L, F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , and ℓ ∈ N
be the inputs to the FRI protocol. Let 𝑚 ≥ 3 be an integer and 𝛿, 𝜂 > 0 such that 𝜂 <

√
𝜌/(2𝑚) and 𝛿 < 1 − √𝜌 − 𝜂.

Let 𝐺0 : 𝐿0 → F be 𝛿-far from RS(0) given to the prover as input. For 𝑖 ∈ {1, . . . , 𝑘 − 1}, let 𝐺𝑖 := 𝐻𝑥𝑖−1 [𝐺𝑖−1]
denote the oracle sent by an honest prover 𝑃, let 𝐺∗

𝑖
: 𝐿𝑖 → F be some oracle sent by (possibly malicious) prover 𝑃∗,

and let 𝑥𝑖 denote the corresponding challenge sent by the verifier during round 𝑖 of the protocol, with 𝐺∗0 = 𝐺0. Let
𝜏𝑖 := 𝜏𝑖−1∥(𝐺∗𝑖 (𝑧))𝑧∈𝐿𝑖 ∥𝑥𝑖 for 𝐿𝑖 := {𝑧2 : 𝑧 ∈ 𝐿𝑖−1}. Define set D𝑘 as follows:

1. (𝑥, ∅) ∈ D𝑘;

2. (𝑥, 𝜏0) ∈ D𝑘 if and only if 𝐺1 = 𝐻𝑥0 [𝐺0] is 𝛿-far from RS(1) ;

3. For 𝑖 ∈ {1, . . . , 𝑘}, (𝑥, 𝜏𝑖) ∈ D𝑘 if and only if ∃ 𝑗 ∈ [𝑖] such that 𝐺∗
𝑗
≠ 𝐻𝑥 𝑗−1 [𝐺 𝑗−1] or 𝐻𝑥𝑖 [𝐺𝑖] is 𝛿-far from

RS(𝑖+1) .

If (𝑥, 𝜏𝑖−1) ∈ D𝑘 , then for any oracle 𝐺∗
𝑖
: 𝐿𝑖 → F sent by (possibly malicious) prover 𝑃∗, we have

Pr
𝑥𝑖

$←F
[(𝑥, 𝜏𝑖) ∉ D𝑘] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
.

Proof. We show the special case of 𝑖 = 0 then show 𝑖 ∈ {1, . . . , 𝑘 − 1} by induction. For 𝑖 = 0, we have (𝑥, ∅) ∈ D𝑘
by definition; also note that Δ(𝐺0,RS

(0)) ≥ 𝛿 by assumption. Let 𝜏0 = (𝐺0 (𝑧))𝑧∈𝐿0
∥𝑥0 for 𝑥0

$← F. By definition
of D𝑘 , we know that (𝑥, 𝜏0) ∈ D𝑘 if and only if Δ(𝐺1,RS

(1)) ≥ 𝛿 for 𝐺1 := 𝐻𝑥0 [𝐺0]; note we also assume that
𝐺∗0 = 𝐺0 for 𝑃∗’s message. Equivalently, we have that (𝑥, 𝜏0) ∉ D𝑘 if and only if Δ(𝐺1,RS

(1)) < 𝛿. Noting that
Pr[Δ(𝐺1,RS

(1)) < 𝛿] ≤ Pr[Δ(𝐺1,RS
(1)) ≤ 𝛿] for 𝑥0

$← F, Lemma 5.1 gives us

Pr
𝑥0

$←F
[(𝑥, 𝜏0) ∉ D𝑘] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
.

For 𝑖 = 1, by round-by-round soundness we assume that (𝑥, 𝜏0) ∈ D𝑘 . By definition, this implies 𝐺1 is 𝛿-far from
RS(1) . Let 𝐺∗1 : 𝐿1 → F be the oracle sent by 𝑃∗ during this round, and let 𝑥1

$← F be the corresponding verifier
challenge. Setting 𝜏1 = 𝜏0∥(𝐺∗1 (𝑧))𝑧∈𝐿1

∥𝑥1, by definition we know that (𝑥, 𝜏1) ∈ D𝑘 if and only if 𝐺∗1 ≠ 𝐺1 or
𝐺2 := 𝐻𝑥1 [𝐺1] is 𝛿-far from RS(2) . Equivalently, we have that (𝑥, 𝜏1) ∉ D𝑘 if and only if 𝐺∗1 = 𝐺1 and 𝐺2 is 𝛿-close to
RS(2) . Observe that if 𝐺∗1 ≠ 𝐺1 then (𝑥, 𝜏1) ∈ D𝑘 with probability 1, which implies that (𝑥, 𝜏1) ∉ D𝑘 with probability
0. Thus assume that 𝐺∗1 = 𝐺1. Now by Lemma 5.1, we have

Pr
𝑥1

$←F
[(𝑥, 𝜏1) ∉ D𝑘 | 𝐺∗1 = 𝐺1] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
,

which implies

Pr
𝑥1

$←F
[(𝑥, 𝜏1) ∉ D𝑘] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
.

For the induction step, let 𝜏𝑖 = 𝜏𝑖−1∥(𝐺∗𝑖 (𝑧))𝑧∈𝐿𝑖 ∥𝑥𝑖 for 𝑖 ∈ [𝑘 − 1]. By round-by-round soundness, we assume that
(𝑥, 𝜏𝑖) ∈ D𝑘 . This implies that either ∃ 𝑗 ∈ [𝑖] such that 𝐺∗

𝑗
≠ 𝐺 𝑗 = 𝐻𝑥 𝑗−1 [𝐺 𝑗−1] or 𝐺𝑖+1 = 𝐻𝑥𝑖 [𝐺𝑖] is 𝛿-far from

RS(𝑖+1) . Let 𝐺∗
𝑖+1 : 𝐿𝑖+1 → F be the oracle sent by 𝑃∗ and let 𝑥𝑖+1

$← F be the corresponding verifier message and let
𝜏𝑖+1 = 𝜏𝑖 ∥(𝐺∗𝑖+1 (𝑧))𝑧 ∥𝑥𝑖+1. As before, suppose that there exists 𝑗 ∈ [𝑖] such that 𝐺∗

𝑗
≠ 𝐺 𝑗 . This implies that there

exists 𝑗 ∈ [𝑖 + 1] such that 𝐺∗
𝑗
≠ 𝐺 𝑗 . In this case, we have that Pr[(𝑥, 𝜏𝑖+1) ∉ D𝑘] = 0. For the other case, suppose

that for all 𝑗 ∈ [𝑖] we have that 𝐺∗
𝑗
= 𝐺 𝑗 . Now if 𝐺∗

𝑖
≠ 𝐺𝑖 , we again have that (𝑥, 𝜏𝑖+1) ∈ D𝑘 with probability 1 by

definition. Thus suppose that 𝐺∗
𝑖
= 𝐺𝑖 . Then by Lemma 5.1, we have

Pr
𝑥𝑖+1

$←F
[(𝑥, 𝜏𝑖+1) ∉ D | 𝐺∗𝑗 = 𝐺 𝑗 ∀ 𝑗 ∈ [𝑖 + 1]] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
,

32

which again implies

Pr
𝑥𝑖+1

$←F
[(𝑥, 𝜏𝑖+1) ∉ D] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
.

□

Lemma 5.2 characterizes the round-by-round soundness of Algorithm 1 for all rounds 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} of
the Folding Phase of the protocol. In the final round 𝑖 = 𝑘 of the protocol, the prover sends constant 𝐺∗

𝑘
= 𝐶 ∈ F to

the verifier; in particular, this message is not an oracle and is read by 𝑉 in full. The verifier then samples a query
set (𝑠0,1, . . . , 𝑠0,ℓ) where 𝑠0, 𝑗

$← 𝐿0 for every 𝑗 ∈ [ℓ] and queries the oracles 𝐺0, 𝐺
∗
1, . . . , 𝐺

∗
𝑘−1 to perform some

consistency checks. For the purposes of round-by-round soundness, we assume that the verifier sends these queries to
the prover 𝑃∗ as well. This gives us a final transcript of (𝑥, 𝜏𝑘) for 𝜏𝑘 = 𝜏𝑘−1∥𝐺∗𝑘 ∥(𝑠0,1, . . . , 𝑠0,ℓ). Note that we are
interpreting the entire Query Phase of Algorithm 1 as a single round in our analysis. This does not change the analysis
because

1. Each verifier challenge 𝑠0, 𝑗 is sampled uniformly and independently at random, so it can sample them all at once;
and

2. The verifier can compute all 𝑠𝑖, 𝑗 , 𝑠′𝑖, 𝑗 for all 𝑖 ∈ {0, 1, . . . , 𝑘} and 𝑗 ∈ [ℓ] given (𝑠0,1, . . . , 𝑠0,ℓ). Moreover, given
these points, the verifier can perform all oracle queries and all consistency checks at once.

Algorithm 1 is presented as-is for clarity. We characterize the round-by-round soundness of the Query Phase of
Algorithm 1 with the following lemma.

Lemma 5.3. Let 𝑥 ∉ L, F be a finite field, 𝐿0 ⊆ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , and
ℓ ∈ N be the inputs to the FRI protocol and let 𝑚 ≥ 3 and 𝛿, 𝜂 > 0 such that 𝜂 <

√
𝜌/(2𝑚) and 𝛿 < 1 − √𝜌 − 𝜂.

Let 𝜏𝑘−1 be the partial transcript such that (𝑥, 𝜏𝑘−1) ∈ D𝑘 for D𝑘 defined in Lemma 5.2. Let 𝐺∗
𝑘
= 𝐶 ∈ F be a

constant sent by 𝑃∗ and 𝑠0, 𝑗
$← 𝐿0 for 𝑗 ∈ [ℓ] be the corresponding verifier queries. Define set Df as follows: for

𝜏𝑘 := 𝜏𝑘−1∥𝐺∗𝑘 ∥(𝑠0,1, . . . , 𝑠0,ℓ), (𝑥, 𝜏𝑘) ∈ Df if and only if there exists 𝑖 ∈ [𝑘], 𝑗 ∈ [ℓ] such that 𝐺∗
𝑖
(𝑠𝑖, 𝑗) ≠ ˜︁𝑄𝑖−1 (𝑥𝑖−1),

where

• 𝑠𝑖, 𝑗 = (𝑠𝑖−1, 𝑗)2 ∈ 𝐿𝑖 ,

• ˜︁𝑄𝑖−1, 𝑗 (𝑋) is a linear polynomial obtained via Lagrange interpolation on the set {(𝑠𝑖−1, 𝑗 , 𝑞𝑖−1, 𝑗), (𝑠′𝑖−1, 𝑗 , 𝑞′𝑖−1, 𝑗)},
where 𝑠′

𝑖−1, 𝑗 ≠ 𝑠𝑖−1, 𝑗 such that (𝑠′
𝑖−1, 𝑗)2 = 𝑠𝑖, 𝑗 , and 𝑞𝑖−1, 𝑗 = 𝐺∗

𝑖−1 (𝑠𝑖−1, 𝑗), 𝑞′𝑖−1, 𝑗 = 𝐺∗
𝑖−1 (𝑠′𝑖−1, 𝑗).

Finally, define D = D𝑘 ∪ Df . If (𝑥, 𝜏𝑘−1) ∈ D then for any 𝐺∗
𝑘
= 𝐶 ∈ F sent by 𝑃∗, we have

Pr
𝑠0,1 ,...,𝑠0,ℓ

$←𝐿0

[(𝑥, 𝜏𝑘) ∉ D] ≤ (
√
𝜌 + 𝜂)ℓ ≤ (1 − 𝛿)ℓ .

The proof of Lemma 5.3 relies on the following lemma due to [BCI+20].

Lemma 5.4 ([BCI+20, Claim 8.5]). For 𝛿-far oracle 𝐺0, arbitrary oracles 𝐺∗
𝑖
: 𝐿𝑖 → F for 𝑖 ∈ [𝑘 − 1], and

𝐺∗
𝑘
∈ RS(𝑘) ⊂ F, we have

Pr
𝑠0

$←𝐿0

[𝑉 of Algorithm 1 accepts] ≤ √𝜌 + 𝜂.

Proof of Lemma 5.3. Suppose that (𝑥, 𝜏𝑘−1) ∈ D and 𝐺∗
𝑘
∈ F is sent by 𝑃∗ during the final round of the protocol.

By assumption, we know that Δ(𝐺∗0,RS
(0)) ≥ 𝛿 for 𝐺∗0 = 𝐺0; we also know that 𝐺∗

𝑘
∈ RS(𝑘) since RS(𝑘) is the

space of all constant-degree polynomials. Since (𝑥, 𝜏𝑘−1) ∈ D, we also know that there exists index 𝑖 ∈ [𝑘] such that
𝐺∗
𝑖
≠ 𝐻𝑥𝑖−1 [𝐺𝑖−1] (as defined in Lemma 5.2) or 𝐻𝑥𝑖 [𝐺𝑖] is 𝛿-far from RS(𝑖+1) . Then by Lemma 5.4, the probability the

verifier accepts a single set of challenges induced by 𝑠0,1
$← 𝐿0 is at most √𝜌 − 𝜂 ≤ (1 − 𝛿) by definition of 𝜂. Noting

that the ℓ challenges are sampled independently and uniformly at random, this implies that the probability the verifier
accepts all challenges induced by 𝑠0,1, . . . , 𝑠0,ℓ is at most (1 − 𝛿)ℓ . This implies that (𝑥, 𝜏𝑘) ∉ D with probability at
most (√𝜌 + 𝜂)ℓ ≤ (1 − 𝛿)ℓ , as desired. □ □

33

Given Lemmas 5.2 and 5.3, we can now prove Theorem 4.1.

Proof of Theorem 4.1. Let D be the set defined in Lemma 5.3. By Lemma 5.2, we know that for any partial
transcript (𝑥, 𝜏𝑖−1) ∈ D for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} (where 𝜏−1 := ∅), we know that (𝑥, 𝜏𝑖) ∉ D with probability at most
[(𝑚 + 1/2)7 · |𝐿0 |2]/[3𝜌3/2 · |F|], where 𝜏𝑖 = 𝜏𝑖−1∥(𝐺∗𝑖 (𝑧))𝑧∈𝐿𝑖 ∥𝑥𝑖 for prover message 𝐺∗

𝑖
and verifier message 𝑥𝑖 . By

Lemma 5.3, for any partial transcript (𝑥, 𝜏𝑘−1) ∈ D, we know that (𝑥, 𝜏𝑘) ∉ D with probability at most (1 − 𝛿)ℓ , where
𝜏𝑘 = 𝜏𝑘−1∥𝐺∗𝑘 ∥(𝑠0,1, . . . , 𝑠0,ℓ) for prover message 𝐺∗

𝑘
∈ F and verifier message (𝑠0,1, . . . , 𝑠0,ℓ). The result immediately

follows: for any 𝑖 ∈ {0, 1, . . . , 𝑘} if (𝑥, 𝜏𝑖−1) ∈ D then (𝑥, 𝜏𝑖) ∉ D with probability at most 𝜀FRIrbr , where

𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
.

□

5.1 Round-by-round Soundness of FRI in the Unique Decoding Radius
Theorem 4.1 holds for all 𝛿 ∈ (0, 1 − √𝜌 − 𝜂) where 𝜂 =

√
𝜌/(2𝑚) for integer 𝑚 ≥ 3 and 𝜌 is the rate of the

Reed-Solomon code RS(0) . However, we can also consider restricting 𝛿 to the unique decoding radius of RS(0) , namely
𝛿 ∈ (0, (1 − 𝜌)/2]. In this case, we are able to get tighter bounds on the round-by-round soundness error of the FRI
IOPP.

Corollary 5.5. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | =
2−(𝑛−𝑘) , and ℓ ∈ Z+. For any 𝛿 ∈ (0, (1− 𝜌)/2] and function 𝐺0 : 𝐿0 → F that is 𝛿-far from RS[F, 𝐿0, 𝑑0], Algorithm 1
has round-by-round soundness error

𝜀FRIrbr := 𝜀FRIrbr (F, 𝐿0, 𝛿, ℓ) = max

{︃
|𝐿0 |
|F| , (1 − 𝛿)

ℓ

}︃
.

The analysis of round-by-round soundness for Corollary 5.5 is identical to the analysis of Theorem 4.1. The new
bound from the unique decoding regime follows from an improvement of Lemma 5.1 in the unique decoding regime.

Lemma 5.6 ([BCI+20, Theorem 4.1]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛,
𝑑0 = 2𝑘 , and 𝜌 = 2−(𝑛−𝑘) . For all 𝛿 ∈ (0, (1 − 𝜌)/2] and any 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}, if 𝐺𝑖 : 𝐿𝑖 → F is 𝛿-far from RS(𝑖)

then

Pr
𝑥

$←F

[︂
Δ(𝐻𝑥 [𝐺𝑖],RS(𝑖+1)) ≤ 𝛿

]︂
<
|𝐿0 |
|F| . (12)

5.2 Round-by-round Soundness of Batched FRI
A variant of the FRI protocol is the so-called Batched FRI protocol. In this protocol, the prover 𝑃 is given 𝑡 ≥ 2

functions 𝑓
(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F and needs to prove to the verifier 𝑉 that 𝑓 (0)

𝑖
∈ RS[F, 𝐿0, 𝑑0] for all 𝑖 ∈ [𝑡]. Naïvely,

the prover and verifier can simply run 𝑡 instances of Algorithm 1, but this is wasteful. Instead, the Batched FRI protocol
does the following:

1. 𝑃 sends 𝑉 oracle access to 𝑓
(0)
𝑖

for all 𝑖 ∈ [𝑡].

2. 𝑉 samples 𝛼1, . . . , 𝛼𝑡
$← F to 𝑃.

3. 𝑃 and 𝑉 run Algorithm 1 on the function 𝐺0 (𝑋) :=
∑︁
𝑖∈[𝑡] 𝛼𝑖 · 𝑓

(0)
𝑖
(𝑋).

In other words, Batched FRI has one additional round of interaction to obtain the function 𝐺0, then runs Algorithm 1 on
this function.

Notice that if 𝑓
(0)
𝑖
∈ RS[F, 𝐿0, 𝑑0] for all 𝑖, then 𝐺0 ∈ RS[F, 𝐿0, 𝑑0], so Batched FRI has the same completeness

properties of Algorithm 1. The soundness guarantee of Batched FRI is that if at least one 𝑓
(0)
𝑖∗ is 𝛿-far fromRS[F, 𝐿0, 𝑑0],

34

then the verifier rejects with high probability [BKS18, BCI+20, Tha22]. Key to the soundness guarantee is arguing that
if there is some 𝑖∗ such that 𝑓

(0)
𝑖∗ is 𝛿-far, then with high probability the function 𝐺0 is also 𝛿-far from RS[F, 𝐿0, 𝑑0].

We use this same guarantee to extend the round-by-round soundness analysis of Algorithm 1 to Batched FRI and prove
the following theorem.

Theorem 4.2. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 =

𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), and functions
𝑓
(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2 such that at least one 𝑓

(0)
𝑖

that is 𝛿-far from RS(0) , the Batched FRI protocol has
round-by-round soundness error

𝜀bFRIrbr := 𝜀bFRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
.

Proof. Recall that Batched FRI is Algorithm 1 with one more round of communication between the prover and the
verifier. Moreover, if 𝐺0 is 𝛿-far from RS[F, 𝐿0, 𝑑0], then we are exactly in the same analysis as Theorem 4.1. Hence
we analyze the first round of interaction of Batched FRI.

Towards round-by-round soundness, let 𝜏batch := {(𝑓 (0)𝑖
(𝑧))𝑧∈𝐿0

}∥(𝛼1, . . . , 𝛼𝑡) denote the partial transcript of
Batched FRI after the prover sends oracles 𝑓

(0)
𝑖

to the verifier and the verifier responds with challenges 𝛼1, . . . , 𝛼𝑡 . We
define the set Dbatch as follows: for 𝑥 ∉ L (i.e., at least one 𝑓

(0)
𝑖

is 𝛿-far from RS[F, 𝐿0, 𝑑0])

1. (𝑥, ∅) ∈ Dbatch; and

2. (𝑥, 𝜏batch) ∈ Dbatch if and only if 𝐺0 :=
∑︁
𝑖 𝛼𝑖 𝑓

(0)
𝑖

is 𝛿-far from RS[F, 𝐿0, 𝑑0].

By definition, we have (𝑥, ∅) ∈ Dbatch, which tells us that at least one 𝑓
(0)
𝑖

is 𝛿-far from RS[F, 𝐿0, 𝑑0]. Now over
the sampling of 𝛼1, . . . , 𝛼𝑡

$← F, we want to bound the probability that (𝑥, 𝜏batch) ∉ D; in other words, we bound the
probability that 𝐺0 is 𝛿-close to RS(0) := RS[F, 𝐿0, 𝑑0] given that at least one 𝑓

(0)
𝑖

is 𝛿-far. This probability is exactly
given by the following lemma.

Lemma 5.7 ([BCI+20, Theorem 7.4]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 ,
and 𝜌 = 2−(𝑛−𝑘) . For all 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)] and 𝛿 ∈ (0, 1 − √𝜌 − 𝜂) and functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for

𝑡 ≥ 2, if at least one 𝑓𝑖 is 𝛿-far from RS(0) then

Pr
𝛼1 ,...,𝛼𝑡

$←F

[︂
Δ(𝐺0,RS

(0)) < 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖 𝑓

(0)
𝑖

]︂
≤ (𝑚 + 1/2)

7 · |𝐿0 |2

3𝜌3/2 · |F|
.

The above lemma immediately establishes the probability that (𝑥, 𝜏batch) ∉ Dbatch conditioned on (𝑥, ∅) ∈ Dbatch;
namely:

Pr
𝛼1 ,...,𝛼𝑡

$←F
[(𝑥, 𝜏batch) ∉ Dbatch] ≤

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
.

Now define doomed set D′ := D ∪ Dbatch where D is defined in Lemma 5.3. Then clearly (𝑥, ∅) ∈ D′ and
(𝑥, 𝜏batch) ∉ D′f with the same probability as above. Finally, assume that (𝑥, 𝜏batch) ∈ D′. This implies that the
prover and verifier now engage in Algorithm 1 on a function 𝐺0 that is 𝛿-far from RS(0) , which is identical to the
round-by-round soundness analysis of of Algorithm 1. Hence taking a max of the above probability and the probability
stated in Theorem 4.1 gives us our final bound. □

5.2.1 Round-by-round Soundness of Batched FRI in the Unique Decoding Regime

Much like Corollary 5.5, we can refine Theorem 4.2 in the unique decoding regime 𝛿 < (1 − 𝜌)/2 via the following
refinement of Lemma 5.7.

35

Lemma 5.8 ([BCI+20, Theorem 7.4]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛,
𝑑0 = 2𝑘 , and 𝜌 = 2−(𝑛−𝑘) . For all 𝛿 ∈ (0, (1 − 𝜌)/2] and functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2, if at least one

𝑓
(0)
𝑖

is 𝛿-far from RS(0) then

Pr
𝛼1 ,...,𝛼𝑡

$←F

[︂
Δ(𝐺0,RS

(0)) < 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖 𝑓

(0)
𝑖

]︂
≤ |𝐿0 |
|F| .

Applying Lemma 5.8 in the proof of Theorem 4.2 gives us the following corollary.

Corollary 5.9. Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | =
2−(𝑛−𝑘) , and ℓ ∈ Z+. For any 𝛿 ∈ (0, (1 − 𝜌)/2] and functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2 such that at least one

𝑓
(0)
𝑖

is 𝛿-far from RS(0) , the Batched FRI protocol has round-by-round soundness error

𝜀bFRIrbr := 𝜀bFRIrbr (F, 𝐿0, 𝛿, ℓ, 𝑡) = max

{︃
|𝐿0 |
|F| , (1 − 𝛿)

ℓ

}︃
.

5.2.2 Communication-saving Batched FRI

As mentioned in Section 2.2, in practice Batched FRI often saves on communication complexity during the batched
phase by having the verifier send a single 𝛼 to batch the functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 . The batching is then performed as

𝐺0 =
∑︁
𝑖 𝛼

𝑖−1 · 𝑓 (0)
𝑖

. While this saves a factor of 𝑡 finite field elements in communication complexity, it comes at a cost
of a factor 𝑡 blow-up in the soundness error, as characterized by the following lemma.

Lemma 5.10 ([BCI+20, Theorem 6.2]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of
size 2𝑛, 𝑑0 = 2𝑘 , and 𝜌 = 2−(𝑛−𝑘) . For all 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)] and 𝛿 ∈ (0, 1 − √𝜌 − 𝜂) and functions
𝑓
(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2, if at least one 𝑓𝑖 is 𝛿-far from RS(0) then

Pr
𝛼

$←F

[︂
Δ(𝐺0,RS

(0)) < 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖−1 𝑓 (0)

𝑖

]︂
≤ (𝑚 + 1/2)

7 · |𝐿0 |2 · (𝑡 − 1)
3𝜌3/2 · |F|

.

Moreover, for 𝛿 ≤ (1 − 𝜌)/2, we have

Pr
𝛼

$←F

[︂
Δ(𝐺0,RS

(0)) < 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖−1 𝑓 (0)

𝑖

]︂
≤ |𝐿0 | · (𝑡 − 1)

|F| .

Thus using powers of 𝛼 for Batched FRI directly incurs a 𝑂 (𝑡) blow-up in the round-by-round soundness error of
the protocol.

5.3 Round-by-round Knowledge Soundness of FRI
In this section, we show that the round-by-round knowledge error of FRI is identical to the round-by-round soundness
error we established in Theorem 4.1 and Corollary 5.5.

Theorem 5.11. For doomed set D defined in Lemma 5.3, Algorithm 1 has round-by-round knowledge error

𝜀FRIrbr−k (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) := 𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ)

for parameters F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ and 𝜀FRIrbr defined in Theorem 4.1. Moreover, for doomed set D′ defined in Section 5.2,
Batched FRI has round-by-round knowledge error

𝜀bFRIrbr−k (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡) := 𝜀bFRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡)

for parameters F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡 and 𝜀bFRIrbr defined in Theorem 4.2.

36

Proof. Let D be the doomed set defined in Lemma 5.3. We focus first on the Folding Phase of Algorithm 1. Let
𝑖 ∈ {0, 1, . . . , 𝑘 − 1} be the current round of the Folding Phase and let 𝜏𝑖−1 be the partial transcript so far such that
(𝑥, 𝜏𝑖−1) ∈ D. By definition of D, we have that either 𝐻𝑥𝑖−1 [𝐺𝑖−1] is 𝛿-far from RS(𝑖) or there exists 𝑗 ∈ [𝑖 − 1] such
that 𝐺∗

𝑗
≠ 𝐻𝑥 𝑗−1 [𝐺 𝑗−1]. Suppose that for any prover message 𝐺∗

𝑖
: 𝐿𝑖 → F, it holds that

Pr
𝑥𝑖

$←F
[(𝑥, 𝜏𝑖−1∥(𝐺∗𝑖 (𝑧))𝑧∈𝐿𝑖 ∥𝑥𝑖) ∉ D] > 𝜀FRIrbr .

First of all, this implies that 𝐺∗
𝑗
= 𝐻𝑥 𝑗−1 [𝐺 𝑗−1] for all 𝑗 ∈ [𝑖] else the above expression does not hold. Thus we have

that 𝐺∗
𝑖
= 𝐺𝑖 = 𝐻𝑥𝑖−1 [𝐺𝑖−1]; moreover, we have that 𝐺𝑖−1 is 𝛿-far from RS(𝑖−1) . Rewriting the above probability, we

have that

Pr
𝑥𝑖

$←F
[Δ(𝐺𝑖 ,RS(𝑖)) ≤ 𝛿 | Δ(𝐺𝑖−1,RS(𝑖−1)) > 𝛿] > 𝜀FRIrbr .

This is clearly a contradiction with Lemma 5.1, and thus it must hold that either the above probability is at most 𝜀 or that
𝐺𝑖−1 is 𝛿-close to RS(𝑖−1) . The first case contradicts our assumption, so we turn to the second case. We now have that
𝐺𝑖−1 is 𝛿-close to RS(𝑖−1) , which implies that (𝑥, 𝜏𝑖−1) ∉ D. Now this argument repeats for all 𝐺 𝑗 for 𝑗 ∈ [𝑖], which
implies that 𝐺0 is 𝛿-close to RS(0) . Thus if we give our extractor the partial transcript 𝜏𝑖−1 and oracle 𝐺∗

𝑖
, the extractor

simply outputs the first oracle 𝐺0 contained in 𝜏𝑖−1, which is 𝛿-close to RS(0) , showing knowledge in this case.
For partial transcript 𝜏𝑘−1 such that (𝑥, 𝜏𝑘−1) ∈ D, suppose that for all 𝐺∗

𝑘
∈ F that the prover can send, it holds that

Pr
𝑠0,1 ,...,𝑠0ℓ

$←𝐿0

[(𝑥, 𝜏𝑘−1∥𝐺∗𝑘 ∥(𝑠0,1, . . . , 𝑠0,ℓ)) ∉ D] > 𝜀FRIrbr .

This implies that with probability at least 𝜀FRIrbr , the verifier of Algorithm 1 accepts. By the contrapositive of Lemma 5.4,
this implies that either 𝐺∗

𝑘
∉ RS(𝑘) or 𝐺0 is a 𝛿-close oracle. By definition of the protocol, we know that RS(𝑘) = F

and that the prover sends 𝐺∗
𝐾
∈ F to the verifier. Thus it must hold that 𝐺0 is a 𝛿-close oracle. Hence the extractor for

this round and transcript again simply reads the first oracle message sent by the prover and outputs this as its witness.
Finally, notice that the proof for Batched FRI proceeds identically as above with one more case to take into account a
contradiction with Lemma 5.7. This completes the proof. □

5.4 Non-interactive FRI in the Random Oracle Model
Finally, using the BCS transformation and its guarantees given in Theorem 3.15, we establish the Fiat-Shamir security
of both FRI (Algorithm 1) and Batched FRI in the random oracle model. The results are stated below.

Corollary 4.3 (FS Security of FRI). Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of size
2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂),
random oracleH : {0, 1}∗ → {0, 1}𝜅 , query bound 𝑄 ∈ N, and function 𝐺0 : 𝐿0 → F that is 𝛿-far from RS[F, 𝐿0, 𝑑0],
compiling Algorithm 1 with Theorem 3.15 gives a non-interactive random oracle proof with adaptive soundness error
and knowledge error

𝜀FRIfs := 𝜀FRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅) = 𝑄 · 𝜀FRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ) + 3(𝑄2 + 1)
2𝜅

.

Moreover, if 𝛾 := 𝛾(F, 𝐿0, 𝜌, 𝛿, ℓ) denotes the length of a FRI proof for parameters F, 𝐿0, 𝜌, 𝛿, ℓ, then the above
non-interactive random oracle proof has adaptive soundness error and knowledge error

𝜀FRIfs−q := 𝜀FRIfs−q (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅) = Θ(𝑄 · 𝜀FRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑄, 𝜅))

against quantum adversaries that can make at most 𝑄 −𝑂 (ℓ · log(𝛾)) queries.

37

Corollary 4.4 (FS Security of Batched FRI). Let F be a finite field, 𝐿0 ⊂ F∗ be a smooth multiplicative subgroup of
size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | = 2−(𝑛−𝑘) , and ℓ ∈ Z+. For any integer 𝑚 ≥ 3, 𝜂 ∈ (0,√𝜌/(2𝑚)), 𝛿 ∈ (0, 1 − √𝜌 − 𝜂),
random oracleH : {0, 1}∗ → {0, 1}𝜅 , query bound 𝑄 ∈ N, and functions 𝑓

(0)
1 , . . . , 𝑓

(0)
𝑡 : 𝐿0 → F for 𝑡 ≥ 2 such that

at least one 𝑓
(0)
𝑖

is 𝛿-far from RS[F, 𝐿0, 𝑑0], compiling Batched FRI with Theorem 3.15 gives a non-interactive random
oracle proof with adaptive soundness error and knowledge error

𝜀bFRIfs := 𝜀bFRIfs (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡, 𝑄, 𝜅) = 𝑄 · 𝜀bFRIrbr (F, 𝐿0, 𝜌, 𝛿, 𝑚, ℓ, 𝑡) + 3(𝑄2 + 1)
2𝜅

.

Moreover, if 𝛾 := 𝛾(F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡) denotes the length of a Batched FRI proof for parameters F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, then the
above non-interactive random oracle proof has adaptive soundness error and knowledge error

𝜀bFRIfs−q := 𝜀bFRIfs−q (F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, 𝑄, 𝜅) = Θ(𝑄 · 𝜀bFRIfs (F, 𝐿0, 𝜌, 𝛿, ℓ, 𝑡, 𝑄, 𝜅))

against quantum adversaries that can make at most 𝑄 −𝑂 (ℓ · log(𝛾)) queries.

Note that the security we obtain in Corollaries 4.3 and 4.4 depends on the values of 𝜀FRIrbr and 𝜀bFRIrbr , respectively. In
particular, in the unique decoding radius we can apply Corollaries 5.5 and 5.9 to obtain better security in Corollaries 4.3
and 4.4, and otherwise apply Theorems 4.1 and 4.2 when considering 𝛿 > (1 − 𝜌)/2.

5.5 Conjectured Security of FRI
The error (1− 𝛿)ℓ is the best one can hope for in the FRI Query Phase, and for the Folding Phase the best known provable
security bounds for FRI and Batched FRI beyond the unique decoding radius are exactly given by Lemmas 5.1, 5.7
and 5.10. However, many implemented and deployed versions of FRI are running at parameters obtained by assuming
certain conjectured security bounds for FRI and Batched FRI [BCI+20, Sta23]. These conjectured security bounds
roughly assume that the best-known attacks against FRI (a so-called “interpolation attack”) are, in fact, optimal. We do
not make or claim any progress on the state of these conjectures; however, we state them here and show how they affect
the round-by-round soundness errors of FRI and Batched FRI.

We state two conjectures here. The first conjecture appears in the best known provable security bounds for FRI due
to Ben-Sasson et al. [BCI+20], which we restate in a different way to fit our results.

Conjecture 5.12 ([BCI+20]). Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛, 𝑑0 = 2𝑘 ,
and 𝜌 = 2−(𝑛−𝑘) . There exists constants 𝑐1 and 𝑐2 such that for all 𝜂 > 0 and any 𝛿 ≤ 1 − 𝜌 − 𝜂, for any function
𝐺𝑖 : 𝐿𝑖 → F that is 𝛿-far from RS(𝑖) we have

Pr
𝑥

$←F

[︂
Δ(𝐻𝑥 [𝐺𝑖],RS(𝑖+1)) ≤ 𝛿

]︂
≤ |𝐿0 |𝑐2
(𝜌𝜂)𝑐1 · |F| .

Moreover, for any 𝑓1, 𝑓2, . . . , 𝑓𝑡 : 𝐿0 → F such that at least one 𝑓 𝑗 is 𝛿-far from RS(0) , we have

Pr
𝛼1 ,...,𝛼𝑡

$←F

[︂
Δ(𝐺0,RS

(0)) ≤ 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖 𝑓𝑖

]︂
≤ |𝐿0 |𝑐2
(𝜌𝜂)𝑐1 · |F| ;

Pr
𝛼

$←F

[︂
Δ(𝐺0,RS

(0)) ≤ 𝛿 | 𝐺0 =
∑︂

𝑖
𝛼𝑖−1 𝑓𝑖

]︂
≤ 𝑡 · |𝐿0 |𝑐2
(𝜌𝜂)𝑐1 · |F| .

Ben-Sasson et al. [BCI+20] state that “To the best of our knowledge, nothing contradicts setting 𝑐1 = 𝑐2 = 2”, and
when F has characteristic larger than 𝑑0 similarly state that they “are not aware of anything contradicting 𝑐1 = 𝑐2 = 1”.
However, they do note that if F has characteristic 2 (e.g., |F| = 2𝑚 for 𝑚 ≥ 1) then 𝑐1 = 𝑐2 = 1 is impossible due to an
attack given in [BGKS20]. Thus one can appropriately adjust Lemmas 5.1, 5.7 and 5.10 using Conjecture 5.12 to obtain
better soundness guarantees in Theorems 4.1 and 4.2.

The second conjecture we state for round-by-round soundness of FRI is distilled from a (non-explicit) conjecture
made in the ethSTARK documentation (See [Sta23, Section 5.9.1]) about the soundness of a small variant of FRI. While

38

this conjecture is more aggressive than Conjecture 5.12, again the best known attacks do not contradict this conjecture.
For context, we go over the ethSTARK conjecture here.

The ethSTARK conjecture about a variant of FRI is actually a conjecture made about a “Toy Problem Protocol”.
This Toy Problem Protocol operates as follows. Fix 𝜌 to be a positive constant and fix 𝐿 to be a multiplicative subgroup
of a finite field F of size 2𝑘/𝜌, where 𝑘 ≥ 0. Then this toy protocol operates as follows:

• First a prover sends oracle access to some function 𝑓 : 𝐿0 → F (e.g., purported to be an RS codeword).

• Next the verifier samples 𝛼 $← F and sends it to the prover.

• The prover and verifier run FRI with respect to the new function 𝑔(𝑥) = (𝑓 (𝑥) − 𝛼)/𝑥.

Now the actual ethSTARK conjecture relates this toy problem to the ethSTARK IOP which invokes FRI. The actual
conjecture is informally stated as follows.

Conjecture 5.13 (ethSTARK Conjecture, Informal). If a 𝑇-time malicious prover attacks the toy problem over finite
field F, rate 𝜌, and 𝑘 ≥ 0, and succeeds with probability 𝜖 , then the ethSTARK IOP invoking FRI over F, 𝜌, and 𝑘 can
be attacked in time 𝑇 with success probability 𝜖 .

Conversely, if a 𝑇-time malicious prover attacks the ethSTARK IOP using FRI over finite field F, rate 𝜌, and 𝑘 ≥ 0,
and succeeds with probability 𝜖 , then the toy problem with finite field F, rate 𝜌, and 𝑘 can be attacked in time 𝑇 with
success probability 𝜖 .

We remark that key to the above conjecture and the toy problem is that FRI is not being applied on the function 𝑓

but rather a function 𝑔 derived from 𝑓 in a randomized manner by the verifier. Moreover, this also occurs in the case of
Batched FRI as well: the prover sends multiple 𝑓1, . . . , 𝑓𝑡 and the verifier sends 𝛼1, . . . , 𝛼𝑡 , and the prover and verifier
engage in Batched FRI on the functions 𝑔𝑖 (𝑥) = (𝑓𝑖 (𝑥) − 𝛼𝑖)/𝑥.

The above conjecture posits that soundness error of the toy problem characterizes the soundness error of commonly
deployed FRI-based SNARKs. The following conjecture essentially states that known attacks on the toy problem are
optimal. A conjecture in this vein is implicit in [Sta23].

Conjecture 5.14. Let F be a finite field, 𝐿0 ⊂ F∗ a smooth multiplicative subgroup of size 2𝑛. For any 𝜌 ∈ (0, 1− 1/|F|),
𝑑0 = 𝜌 · |𝐿0 |, and any 𝛿 ≤ 1 − 𝜌, running the toy problem on function 𝑓 : 𝐿0 → F that is 𝛿-far from RS(0) has
round-by-round soundness error

max

{︃
1

|F| , (1 − 𝛿)
ℓ

}︃
.

If the toy problem applied FRI to 𝑓 itself, rather than to 𝑔, then over some fields there are known attacks that would
contradict the Conjecture 5.14 (in particular, the 1/|F| term would need to increase) [BGKS20, Section 3.1].

5.6 Concrete Security Analysis of Non-interactive FRI
Having established the Non-Interactive security of (Batched) FRI, we are interested in analyzing the concrete bits of
security of this protocol under various parameter settings, including those used in practice. As this concrete security
analysis is somewhat involved and of a different flavor the the rest of the paper, we refer the reader to Appendix A for the
complete analysis.

39

5.7 FRI-IOPP Description

Algorithm 1: FRI-IOPP
Input: Finite field F, smooth multiplicative subgroup 𝐿0 ⊂ F∗ of size 2𝑛, degree bound 𝑑0 = 2𝑘 , and ℓ ∈ N.
𝑃 has function 𝐺0 : 𝐿0 → F and 𝑉 has oracle (𝐺0 (𝑧))𝑧∈𝐿0

.
Output: The verifier 𝑉 outputs accept or reject.

1 foreach 𝑖 ∈ [𝑘] do // Fold Phase
2 𝑉 sends 𝑥𝑖−1

$← F to 𝑃.
3 𝑃 and 𝑉 set 𝑑𝑖 := 𝑑𝑖−1/2 and 𝐿𝑖 := {𝑧2 : 𝑧 ∈ 𝐿𝑖−1}.
4 𝑃 computes unique bi-variate polynomial 𝑄𝑖−1 (𝑋,𝑌) such that

1. deg𝑋 (𝑄𝑖−1) = 1;
2. deg𝑌 (𝑄𝑖−1) < 𝑑𝑖; and
3. 𝐺𝑖−1 (𝑟) = 𝑄𝑖−1 (𝑟, 𝑟2) for all 𝑟 ∈ 𝐿𝑖−1.

5 𝑃 defines 𝐺𝑖 (𝑌) := 𝑄𝑖−1 (𝑥𝑖−1, 𝑌).
6 if 𝑖 = 𝑘 then
7 𝑃 sends 𝐺𝑘 = 𝐶 ∈ F to 𝑉 .
8 else
9 𝑃 sends oracle (𝐺𝑖 (𝑧))𝑧∈𝐿𝑖 to 𝑉 .

10 forall 𝑗 ∈ [ℓ] do // Query Phase; processed in parallel
11 𝑉 samples 𝑠0, 𝑗

$← 𝐿0.
12 foreach 𝑖 ∈ [𝑘] do
13 𝑉 computes 𝑠𝑖, 𝑗 = (𝑠𝑖−1, 𝑗)2 and 𝑠′

𝑖−1, 𝑗 ≠ 𝑠𝑖−1, 𝑗 such that (𝑠′
𝑖−1, 𝑗)2 = 𝑠𝑖, 𝑗 .

14 𝑉 queries and obtains 𝑞𝑖−1, 𝑗 = 𝐺𝑖−1 (𝑠𝑖−1, 𝑗) and 𝑞′
𝑖−1, 𝑗 = 𝐺𝑖−1 (𝑠′𝑖−1, 𝑗).

15 𝑉 computes linear polynomial ˜︁𝑄𝑖−1, 𝑗 (𝑋) via Lagrange interpolation on the set
{(𝑠𝑖−1, 𝑗 , 𝑞𝑖−1, 𝑗), (𝑠′𝑖−1, 𝑗 , 𝑞′𝑖−1, 𝑗)}.

16 𝑉 checks that 𝐺𝑖 (𝑠𝑖, 𝑗) = ˜︁𝑄𝑖−1, 𝑗 (𝑥𝑖−1) by querying 𝐺𝑖 .
17 if 𝐺𝑖 (𝑠𝑖, 𝑗) ≠ ˜︁𝑄𝑖−1, 𝑗 (𝑥𝑖−1) then
18 𝑉 outputs reject.

19 𝑉 outputs accept.

40

6 𝛿-Correlated Holographic IOPs
In this section we introduce a specific type of hIOP for indexed (F, 𝐷, 𝑑)-polynomial oracle relations. In this type
of hIOP, we fix 0 ≤ 𝛿 < 1 and assume the verifier has an oracle OCoAgg(𝛿) for the correlated agreement relation
CoAgg(𝛿) (defined in Definition 3.10). Furthermore, we assume that the verifier’s final verification process consists of:
(1) checking that the oracles sent by the prover satisfy a certain polynomial equation on a random point 𝔷 (not necessarily
from 𝐷); and (2) using OCoAgg(𝛿) to check that the maps corresponding to certain oracles have correlated agreement
in RS[F, 𝐷, 𝑑] (see Definition 6.1 for details). We call this type of hIOP a 𝛿-correlated hIOP and denote such a protocol
as ΠOCoAgg(𝛿) . Given a 𝛿-correlated hIOP ΠOCoAgg(𝛿) , one can consider variations of it by changing the parameter 𝛿.

The main result of this section is a general result that proves that if a 0-correlated hIOP ΠOCoAgg(0) has RBR
soundness error 𝜀rbr−s or RBR knowledge error 𝜀rbr−k, then, for any 𝛿 > 0, the 𝛿-correlated hIOP ΠOCoAgg(𝛿) has RBR
soundness or RBR knowledge with errors 𝜀rbr−s/(2𝜂

√
𝜌) or 𝜀rbr−k/(2𝜂

√
𝜌), respectively, where 𝛿 = 1 − √𝜌 − 𝜂, 𝜌 is

the rate of the RS code RS[F, 𝐷, 𝑑], and 𝜂 > 0 is a parameter.
Furthermore, we also prove that if ΠOCoAgg(𝛿) has RBR soundness and RBR knowledge errors 𝜀′rbr−s and 𝜀′rbr−k,

respectively, then one can replace the oracle OCoAgg(𝛿) from ΠOCoAgg(𝛿) with an IOPP ΠCA for 𝛿-correlated agreement
(e.g., FRI) and the resulting protocol Πcompiled remains RBR sound and RBR knowledge sound so long as ΠCA is RBR
sound. Furthermore, we also prove that if ΠOCoAgg(𝛿) has RBR soundness and RBR knowledge errors 𝜀′rbr−s and
𝜀′rbr−k, respectively, then one can replace the oracle OCoAgg(𝛿) from ΠOCoAgg(𝛿) with an IOPP ΠCA for 𝛿-correlated
agreement (e.g. batched FRI) and the resulting protocol Πcompiled remains RBR sound and RBR knowledge sound as
long as ΠCA is RBR sound. In particular, it is not required that ΠCA is RBR knowledge sound to guarantee that Πcompiled

is RBR knowledge sound, as long as Π is RBR knowledge sound and ΠCA is RBR sound. More formally, we show
that the protocol Πcompiled has RBR soundness and RBR knowledge errors max{𝜀′rbr−s, 𝜀CA} and max{𝜀′rbr−k, 𝜀CA},
respectively, where 𝜀CA is the RBR soundness of ΠCA.

As discussed in the introductory Section 1.2.2, our results can be used to “streamline” proving that some types of
SNARGs have knowledge soundness by:

• Formulating the SNARG as being built on top of a 0-correlated hIOP ΠOCoAgg(0) ;

• Proving that ΠOCoAgg(0) has RBR soundness and RBR knowledge;

• Using our results (Theorem 4.6) to obtain a compiled hIOP with RBR soundness and RBR knowledge; and

• Using the BCS transformation [BCS16] (i.e., Theorem 3.15) to obtain the final knowledge sound SNARG, i.e. the
final SNARK.

As we will see later, both Plonky2 (and some of its variations), and ethSTARK can be analyzed in this manner.
Our notion of 𝛿-correlated hIOP takes inspiration, and is related to, the notion of Reed-Solomon encoded IOP’s

[COS20]; see Appendix B for a discussion. Before giving our definition, we introduce the following notation. Let Π be
a hIOP for an indexed (F, 𝐷, 𝑑)-polynomial oracle relation. Given a (possibly partial) transcript (x, 𝜏) generated during
the interaction of a (possibly malicious) prover and the verifier, let ⟦Words(x, 𝜏)⟧ be all the oracles appearing in (x, 𝜏),
and let Words(x, 𝜏) be the words from F𝐷 behind these oracles (i.e., the full descriptions of these oracles). We fix 𝐷 to
be a smooth multiplicative subgroup of F∗ of order 𝑑 = 2𝑣/𝜌 for some rate 0 < 𝜌 < 1 and 𝑣 ≥ 0, and generated by an
element 𝜔. This defines the RS code RS[F, 𝐷, 𝑑].

Definition 6.1 (𝛿-correlated hIOP). Let 0 ≤ 𝛿 < 1, and let R be an indexed (F, 𝐷, 𝑑)-polynomial oracle relation (as
defined in Definition 3.8). We say a hIOP Π is 𝛿-correlated if:

• The verifier has access to an oracle OCoAgg(𝛿) for the 𝛿-correlated agreement relation CoAgg(𝛿). As such, we
use the notation VOCoAgg(𝛿) to refer to such a verifier.

• For all (i,x,w) ∈ R:

– In the last round of interaction between P(Ind(i),x,w) and VInd(i) ,OCoAgg(𝛿) (x), the verifier sends a field
element 𝔷, uniformly sampled in a subset of F or a field extension of F, and the honest prover replies with the

41

values

Evals(x, 𝜏, 𝔷) := (𝑤(𝜔𝑘𝑤,1𝔷), . . . , 𝑤(𝜔𝑘𝑤,𝑛𝑤 𝔷) | 𝑤 ∈ Words(x, 𝜏)),

where 𝜏 is the transcript so far, and

𝜅 := {𝑘𝑤,𝑖 | 𝑤 ∈ Words(x, 𝜏), 𝑖 ∈ [𝑛𝑤]}

is a fixed set of integers (which is output by Ind).
– To decide whether to accept or reject a proof, VInd(i) ,OCoAgg(𝛿) (x) makes the following two checks:

∗ Check 1. Assert whether the received values Evals(𝜏, 𝔷) are a root to certain multivariate polynomial
𝐹i,x,𝜏 (which depends on i,x, 𝜏).

∗ Check 2. Assert whether the maps

quotients(x, 𝜏, 𝔷) :=
{︃
𝑤(𝑋) − 𝑤(𝜔𝑘𝑤, 𝑗 𝔷)

𝑋 − 𝜔𝑘𝑤, 𝑗 𝔷
| 𝑤 ∈ Words(x, 𝜏), 𝑗 ∈ [𝑛𝑤]

}︃
have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑 − 1] by using the oracle OCoAgg(𝛿) on the oracles to such
maps.

We will use the notation ΠOCoAgg(𝛿) when referring to a 𝛿-correlated hIOP.

We now turn to our main theorem of this section.

Theorem 4.6. Let ΠOCoAgg(0) = (Ind,P,VOCoAgg(0)) be a 𝜇-round 0-correlated hIOP for an indexed (F, 𝐷, 𝑑)-
polynomial oracle relation R. Let 0 < 𝛿 < 1−√𝜌, where 𝜌 = 𝑑/|𝐷 |, and let ΠCA be a IOPP for 𝛿-correlated agreement
in RS[F, 𝐷, 𝑑]. Let 𝜂 > 0 be such that 𝛿 = 1 − √𝜌 − 𝜂. Assume ΠCA is RBR sound with error 𝜀CA. Then the following
hold:

• Suppose that ΠOCoAgg(0) is RBR sound with error 𝜀rbr−s. Then there exists a hIOP Π for R with RBR soundness
error

𝜀′ (i) := max

{︃
𝜀rbr−s (i)
2𝜂
√
𝜌

, 𝜀CA (iCA)
}︃
,

where iCA = (F, 𝐷, 𝑑, 𝛿, 𝑁), and 𝑁 is the number of words whose 𝛿-correlated agreement is checked in the last
verification check of ΠOCoAgg(𝛿) .

• Suppose 𝜇(i,x) ≥ 1 for all i,x and ΠOCoAgg(0) has RBR knowledge error 𝜀rbr−k, then Π has RBR knowledge
error

max

{︃
𝜀rbr−k (i)
2𝜂
√
𝜌

, 𝜀CA (iCA)
}︃
,

where iCA has the same meaning as in above.

We prove Theorem 4.6 in two steps. First, given the RBR soundness (knowledge) of ΠOCoAgg(0) , we show that
the 𝛿-correlated hIOP ΠOCoAgg(𝛿) has RBR soundness (or knowledge) error 𝜀rbr−s (i)/2𝜂

√
𝜌 (or 𝜀rbr−k (i)/2𝜂

√
𝜌).

Afterward, we use ΠCA to compile ΠOCoAgg(𝛿) into a hIOP with the RBR soundness (and/or RBR knowledge) claimed
in the theorem.

Given i and x, we let PartTr𝑖 (i,x) be the set of partial transcripts (x, 𝜏) where, using the index i, the prover and
the verifier have exchanged each 𝑖 messages, and the prover is about to move (i.e., it is about to send a message to the
verifier). We convene that PartTr0 (i,x) = {(x)}.

Lemma 4.7. LetΠOCoAgg(0) = (Ind,P,VOCoAgg(0)) be a 𝜇-round 0-correlated hIOP for an indexed (F, 𝐷, 𝑑)-polynomial
oracle relation R. Let 𝛿 = 1 − √𝜌 − 𝜂. The following hold:

42

• Suppose that ΠOCoAgg(0) is RBR sound with error 𝜀rbr−s. Then ΠOCoAgg(𝛿) has RBR soundness error
𝜀rbr−s (i)/(2𝜂

√
𝜌).

• Suppose that ΠOCoAgg(0) has RBR knowledge with error 𝜀rbr−k. Then ΠOCoAgg(𝛿) has RBR knowledge error
𝜀rbr−k (i)/(2𝜂

√
𝜌),

Proof. We begin by introducing some terminology. Fix and index and input pair (i,x). For ease of presentation we
denote P(Ind(i),x,w) and VInd(i) ,OCoAgg(𝛿) (x) simply by P and VOCoAgg(𝛿) . Given a (possibly partial) transcript
(x, 𝜏) generated during the interaction of (a possibly malicious) P and VOCoAgg(𝛿) , we let PolyTr(x, 𝜏) be the set of
partial transcripts x, 𝜏′ such that

• All words in Words(x, 𝜏′) are codewords from RS[F, 𝐷, 𝑑].

• The words in Words(x, 𝜏) have 𝛿-correlated agreement RS[F, 𝐷, 𝑑] with the words in Words(x, 𝜏′).

We agree that PolyTr(x) = {(x)}. We first prove the claim on the RBR soundness of ΠOCoAgg(𝛿) . Assume x ∉ LRi
.

Let A be a malicious prover. Let D0 (i) be a doomed set for ΠOCoAgg(0) , with respect to which ΠOCoAgg(0) has RBR
soundness 𝜀rbr−s (i). Define a new doomed set D𝛿 (i) as follows:

• (x, ∅) ∈ D𝛿 (i) if and only if (x, ∅) ∈ D0 (i).

• D𝛿 (i) contains all partial transcripts (x, 𝜏) ∈ PartTr𝑖 (i,x) such that (x, 𝜏′) ∈ D0 (i) for all (x, 𝜏′) ∈
PolyTr(x, 𝜏).

Formally:

D𝛿 (i) :=
{︄
(x, 𝜏)

|︁|︁|︁|︁|︁ ∃ 𝑖 = 0, . . . , 𝜇(i,x) such that 𝜏 ∈ PartTr𝑖 (i,x),
∀ (x, 𝜏′) ∈ PolyTr(x, 𝜏) we have (x, 𝜏′) ∈ D0 (i)

}︄
,

We will prove that ΠOCoAgg(𝛿) is RBR sound (respectively, has RBR knowledge) with the errors claimed in the statement
of the lemma, with respect to the doomed set D𝛿 (i).

Indeed, suppose first that 𝜏 is a complete transcript andVOPlonky(𝛿) accepts 𝜏. We will prove that then (x, 𝜏) ∉ D𝛿 (i).
This will imply that all complete transcripts in D𝛿 (i) are rejected by VOPlonky(𝛿) , which is one of the clauses in the
definition of RBR soundness and RBR knowledge soundness.

Let Words(x, 𝜏) = {𝑤1, . . . , 𝑤𝐾 } and let Evals(x, 𝜏, 𝔷) be the prover’s last message, containing, purportedly, the
values 𝑤(𝜔𝑘𝑤, 𝑗 𝔷) for each 𝑤 ∈ Words(𝜏) and each 𝑗 ∈ [𝑛𝑤]. Suppose that the words

quotients(x, 𝜏, 𝔷)

have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑 − 1] on a set 𝑆. We claim that then Words(x, 𝜏) have 𝛿-correlated agreement
in RS[F, 𝐷, 𝑑]. Moreover, we claim that then there exists a list 𝑈 (x, 𝜏) := {𝑢𝑤 | 𝑤 ∈ Words(x, 𝜏)} of polynomials of
degree < 𝑑 such that each 𝑢𝑤 agrees with 𝑤 on 𝑆, and moreover 𝑤(𝜔𝑘𝑤, 𝑗 𝔷) = 𝑢𝑤 (𝜔𝑘𝑤, 𝑗 𝔷), for all 𝑤 ∈ Words(x, 𝜏) and
𝑗 ∈ [𝑛𝑤].

To prove these claims, note that, for all 𝑤 ∈ Words(x, 𝜏) and 𝑗 ∈ [𝑛𝑤], there exists a polynomial 𝑞𝑤, 𝑗 (𝑋) of degree
< 𝑑 such that

𝑤(𝑋) = (𝑋 − 𝜔𝑘𝑤, 𝑗 𝔷)𝑞𝑤, 𝑗 (𝑋) + 𝑤(𝜔𝑘𝑤, 𝑗 𝔷)
on the set 𝑆. Denote the right-hand side polynomial by 𝑣𝑤, 𝑗 (𝑋). Notice that since |𝑆 | ≥ (1 − 𝛿) |𝐷 |, we have |𝑆 | ≥ 𝑑,
since (1 − 𝛿) |𝐷 | > 𝑑 if and only if (1 − 𝛿) = √𝜌 + 𝜂 > 𝜌. Hence any two polynomials of degree smaller than
𝑑 agreeing on 𝑆 must be identical. It follows that for each 𝑤 ∈ Words(x, 𝜏) and any two 𝑗 , 𝑗 ′ ∈ [𝑛𝑤], we have
𝑣𝑤, 𝑗 (𝑋) = 𝑣𝑤, 𝑗′ (𝑋) as polynomials. Hence for each 𝑤 ∈ Words(x, 𝜏) there exists a degree < 𝑑 polynomial 𝑢𝑤 (𝑋)
such that 𝑢𝑤 (𝑋) = 𝑣𝑤, 𝑗 (𝑋) for all 𝑗 ∈ [𝑛𝑤]. Let 𝑈 (x, 𝜏) = {𝑢𝑤 (𝑋) | 𝑤 ∈ Words(x, 𝜏)} be the collection of all these
polynomials.

Now notice that, for all 𝑤 ∈ Words(x, 𝜏) and 𝑗 ∈ [𝑛𝑤],

𝑢𝑤 (𝜔𝑘𝑤, 𝑗 𝔷) = 𝑣𝑤, 𝑗 (𝜔𝑘𝑤, 𝑗 𝔷) = (𝜔𝑘𝑤, 𝑗 𝔷 − 𝜔𝑘𝑤, 𝑗 𝔷)𝑞𝑤, 𝑗 (𝜔𝑘𝑤, 𝑗 𝔷) + 𝑤𝑖 (𝜔𝑘𝑤, 𝑗 𝔷) = 𝑤𝑖 (𝜔𝑘𝑤, 𝑗 𝔷).

43

Hence 𝑈 (x, 𝜏) satisfies our claims.
It follows that if V accepts (x, 𝜏), then Words(x, 𝜏) has 𝛿-correlated agreement in RS[F, 𝐻, 𝑑] on a set 𝑆, and that

the purported openings Evals(x, 𝜏, 𝔷) sent by A are also purported openings of the polynomials in 𝑈 (x, 𝜏, 𝔷). Let
𝜏′ be the transcript obtained from (x, 𝜏) by replacing ⟦𝑤⟧ with ⟦𝑢⟧, for all 𝑤 ∈ Words(x, 𝜏). Then the verifier in
ΠOCoAgg(𝛿) accepts (x, 𝜏′), since

1. the polynomial openings in the prover’s last message do not change, so the first of the verifier’s check passes; and

2. the openings are still valid, and so all words in quotients(x, 𝜏′, 𝔷) are actually codewords from RS[F, 𝐷, 𝑑], and
so the second verifier check also passes.

Moreover, because of this and because all words in quotients(x, 𝜏′, 𝔷) are codewords from RS[F, 𝐷, 𝑑], the transcript
(x, 𝜏′) is also accepted by the verifier of ΠOCoAgg(0) .

We conclude that (x, 𝜏′) ∉ D0, since by assumption ΠOCoAgg(0) is RBR sound with respect to the set D0. This
proves that (x, 𝜏) ∉ D𝛿 , as needed.

To prove that ΠOCoAgg(𝛿) is RBR sound with the claimed errors we are left to prove that, for all 𝑖 ∈ [𝜇(i,x)] and all
(x, 𝜏𝑖−1) ∈ PartTr𝑖−1 (i,x), if (x, 𝜏𝑖−1) ∈ D𝛿 (i), then for any of A’s 𝑖-round message 𝑚𝑖 we have

Pr
𝑐𝑖
[(x, 𝜏𝑖−1, 𝑚𝑖 , 𝑐𝑖) ∉ D𝛿 (i)] ≤

𝜀rbr−s (i)
2𝜂
√
𝜌

. (13)

To prove this, fix (x, 𝜏𝑖−1) ∈ D𝛿 (i). Observe that if (x, 𝜏𝑖−1, 𝑚𝑖 , 𝑐𝑖) ∉ D𝛿 (i), then by definition of D𝛿 (i), there is
(x, 𝜏′

𝑖−1, 𝑚
′
𝑖
, 𝑐𝑖) ∈ PolyTr(x, 𝜏𝑖−1, 𝑚𝑖) such that (x, 𝜏′

𝑖−1, 𝑚
′
𝑖
, 𝑐𝑖) ∉ D0 (i). However, since (x, 𝜏𝑖−1) ∈ D𝛿 (i), we have

(x, 𝜏′
𝑖−1) ∈ D0 (i). Hence

Pr
𝑐𝑖
[(x, 𝜏𝑖−1, 𝑚𝑖 , 𝑐𝑖) ∉ D𝛿 (i)]

≤
∑︂

(x,𝜏′
𝑖−1 ,𝑚

′
𝑖
) ∈PolyTr(x,𝜏𝑖−1 ,𝑚𝑖)

Pr
𝑐𝑖

[︁
(x, 𝜏′𝑖−1, 𝑚′𝑖 , 𝑐𝑖) ∉ D0 (i)

]︁
≤ |PolyTr(x, 𝜏𝑖−1, 𝑚𝑖) | · 𝜀rbr−s (i).

(14)

Thus it suffices to show that |PolyTr(x, 𝜏𝑖−1, 𝑚𝑖) | ≤ 1/2𝜂√𝜌. To prove this, it is enough to show that the total number
of lists of codewords 𝑈 from RS[F, 𝐷, 𝑑] that agree with Words(x, 𝜏𝑖−1, 𝑚𝑖) on a set 𝑆 ⊆ 𝐷 with |𝑆 | ≥ (1 − 𝛿) |𝐷 | is at
most 1/2𝜂√𝜌. To prove the latter we use the “correlated agreement list decoder” lemma (Lemma 3.3). This lemma
yields that the words in Words(x, 𝜏𝑖−1, 𝑚𝑖) have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑] on at most 1/2𝜂√𝜌 different
maximal sets of density 1 − 𝛿. Next we use this fact to derive our desired claim. By our choice of parameters, and
as argued previously, any set 𝑆 ⊆ 𝐷 with |𝑆 | ≥ (1 − 𝛿) |𝐷 | has at least 𝑑 elements. Hence, for each word 𝑤 from
Words(x, 𝜏𝑖−1, 𝑚𝑖) there is a unique codeword 𝑢𝑤,𝑆 of degree at most 𝑑 agreeing with 𝑤 on 𝑆. It follows that for any set
𝑆 with |𝑆 | ≥ (1 − 𝛿) |𝐷 | on which the maps Words(x, 𝜏𝑖−1, 𝑚𝑖) have 𝛿-correlated agreement, there is a unique list of
codewords 𝑈𝑆, (x,𝜏𝑖−1 ,𝑚𝑖) agreeing (component-wise) with Words(x, 𝜏𝑖−1, 𝑚𝑖) on 𝑆. Moreover, for any two such sets
𝑆1, 𝑆2 with 𝑆1 ⊆ 𝑆2, we have𝑈𝑆1 , (𝜏𝑖−1 ,𝑚𝑖) = 𝑈𝑆2 , (x,𝜏𝑖−1 ,𝑚𝑖) , by uniqueness and since the polynomials in𝑈𝑆2 , (x,𝜏𝑖−1 ,𝑚𝑖)
agree component-wise with Words(x, 𝜏𝑖−1, 𝑚𝑖) on 𝑆1. In conclusion, the total number of lists of codewords 𝑈 that
agree component-wise with Words(x, 𝜏𝑖−1, 𝑚𝑖) on a set 𝑆 ⊆ 𝐷 with |𝑆 | ≥ (1− 𝛿) |𝐷 | is equal to the number of maximal
sets on which Words(x, 𝜏𝑖−1, 𝑚𝑖) has 𝛿-correlated agreement in RS[F, 𝐷, 𝑑]. As we observed before, this number is at
most 1/2𝜂√𝜌, as needed. This completes the proof that ΠOCoAgg(𝛿) has RBR soundness with error 1/2𝜂√𝜌𝜀rbr−s (i).

Next we prove that ΠOCoAgg(𝛿) has RBR knowledge with error 1/2𝜂√𝜌𝜀rbr−k (i). Let D0,ks be a doomed set with
respect to which ΠOCoAgg(0) has RBR knowledge with error 𝜀rbr−k. Let Ext0 be the corresponding extractor algorithm.
Given an index i, define a doomed set for ΠOCoAgg(𝛿) similarly as before:

D𝛿,ks (i) :=
{︄
(x, 𝜏)

|︁|︁|︁|︁|︁ ∃ 𝑖 = 0, . . . , 𝜇(i,x) such that 𝜏 ∈ PartTr𝑖 (i,x),
∀ (x, 𝜏′) ∈ PolyTr(x, 𝜏) we have (x, 𝜏′) ∈ D0,ks (i)

}︄
,

We will prove that ΠOCoAgg(𝛿) has RBR knowledge with respect to this set, with the claimed error. To this end, fix
an index i and an input x. First note that the exact same arguments as in our RBR analysis yield that all transcripts

44

(x, 𝜏) ∈ D𝛿,ks (i) are rejected by the verifier. Moreover, by definition, D𝛿,ks (i) contains all transcripts of the form (x),
for any input x (independently of whether x ∈ LRi

or not). Now fix a round number 𝑖 ∈ [𝜇(i,x)], a partial transcript
(x, 𝜏) ∈ D𝛿,ks (i), and a prover’s next message 𝑚𝑖 . Assume

Pr
𝑐𝑖
[(x, 𝜏, 𝑚𝑖 , 𝑐𝑖) ∉ D𝛿,ks (i)] >

𝜀rbr−k (i)
2𝜂
√
𝜌

. (15)

We claim that then there is (x, 𝜏′, 𝑚′
𝑖
) ∈ PolyTr(x, 𝜏, 𝑚𝑖) such that

Pr
𝑐𝑖
[(x, 𝜏′, 𝑚′𝑖 , 𝑐𝑖) ∉ D0,ks (i)] > 𝜀rbr−k (i).

Assuming the claim is true, then by our assumptions on the RBR knowledge ofΠOCoAgg(0) , we have that Ext0 (i,x, 𝜏′, 𝑚′𝑖)
outputs a witness w such that (i,x,w) ∈ R. In views of this, we define an extractor Ext𝛿 for ΠOCoAgg(𝛿) that, given an
index i and a (possibly partial) transcript (x, 𝜏, 𝑚) proceeds as follows:

1. Computes PolyTr(x, 𝜏, 𝑚) using the list decoder algorithm from Lemma 3.3.

2. Runs Ext0 (i,x, 𝜏′, 𝑚′) for all (x, 𝜏′, 𝑚′) ∈ PolyTr(x, 𝜏, 𝑚).

3. If any of the outputs produced by Ext0 is not a “fail” flag, Ext𝛿 outputs it. Otherwise Ext𝛿 outputs “fail”.

Assuming our claim is true, we have that Ext𝛿 successfully outputs a valid witness whenever Eq. (15) holds for some
𝑖 ∈ [𝜇].

Next we argue that Ext𝛿 runs in polynomial time. Indeed, due to Lemma 3.3, Step 1 runs in time polynomial on
1/𝜌, 1/𝜂, 𝑀, log F, where 𝑀 is the number of words in (x, 𝜏, 𝑚). Step 2 runs in polynomial time because Ext0 runs in
polynomial time on |i|, |x| and |PolyTr(x, 𝜏, 𝑚) | ≤ 1

2𝜂
√
𝜌

as argued previously. Step 3 also runs in polynomial time
since R was implicitly assumed to be in the complexity class NP.

We are left to prove the claim made above. For this, assume to the contrary that

Pr
𝑐𝑖
[(x, 𝜏′, 𝑚′𝑖 , 𝑐𝑖) ∉ D0,ks (i)] ≤ 𝜀rbr−k (i) for all (x, 𝜏′, 𝑚′𝑖) ∈ PolyTr(x, 𝜏, 𝑚𝑖). (16)

By the above assumption and similarly as in Eq. (14), we have

Pr
𝑐𝑖
[(x, 𝜏, 𝑚𝑖 , 𝑐𝑖) ∉ D𝛿,ks (i)]

≤
∑︂

(x,𝜏′
𝑖−1 ,𝑚

′
𝑖
) ∈PolyTr(x,𝜏𝑖−1 ,𝑚𝑖)

Pr
𝑐𝑖

[︁
(x, 𝜏′𝑖−1, 𝑚′𝑖 , 𝑐𝑖) ∉ D0,ks (i)

]︁
≤|PolyTr(x, 𝜏𝑖−1, 𝑚𝑖) | · 𝜀rbr−k (i) ≤

𝜀rbr−k (i)
2𝜂
√
𝜌

.

However, this contradicts the assumption in Eq. (15), and so Eq. (16) cannot be true. This completes the proof of our
claim and of the theorem. □

Next we describe how to use a IOPP for the 𝛿-correlated agreement relation CoAgg(𝛿) to compile a 𝛿-correlated
hIOP into a standard hIOP. Afterwards, we analyse the RBR security of this compilation.

Definition 6.2 (Compilation of a 𝛿-correlated hIOP into a plain hIOP using a IOPP for correlated agreement). Let
ΠOCoAgg(𝛿) = (Ind,P,VOCoAgg(𝛿)) be a 𝜇-round 𝛿-correlated hIOP for an indexed (F, 𝐷, 𝑑)-polynomial oracle relation
R, where 0 < 𝛿 < 1 − √𝜌 and 𝜌 = 𝑑/|𝐷 |. Let ΠCA = (IndCA,PCA,VCA) be a IOPP for the 𝛿-correlated agreement
relation CoAgg(𝛿) in RS[F, 𝐷, 𝑑]. Define a hIOP Πcompiled = (Indcompiled,Pcompiled,Vcompiled) for R as follows:

• On input i, Indcompiled outputs Ind(i) and the index iCA = (F, 𝐷, 𝑑, 𝛿, 𝑁) for ΠCA, where 𝑁 is the number of
words being checked for 𝛿-correlated agreement at the end of ΠOCoAgg(𝛿) .

45

• Let (i,x,w) ∈ R. Denote Pcompiled (Indcompiled (i),x,w) by Pcompiled and V
Indcompiled (i)
compiled

(x) by Vcompiled. We make
an analogous notation abuse for the provers and verifiers of ΠOCoAgg(𝛿) and ΠCA.
During the interactive phase:

1. First, Pcompiled and Vcompiled simulate the 𝜇(i,x) rounds of the interactive phase of P and V (the prover and
verifier of ΠOCoAgg(𝛿)).
After that, Vcompiled replies with an empty “dummy” message.9

2. Let Evals(𝔷) be the last message sent by Pcompiled in the previous phase, and letW be the words on which V
would call the oracle OCoAgg(𝛿) during its final decision process.

3. Next, Pcompiled and Vcompiled simulate the interactive phase between PCA and VCA, with index, input and
witness, respectively, iCA = (F, 𝐷, 𝑑, 𝛿, |W|), xCA = ⟦W⟧, and wCA =W.10

• Finally, given i,x and a complete transcript 𝜏 for Πcompiled, Vcompiled accepts if and only if VCA at the end of Step
3 above, and Check 1 of V from Definition 6.1 would pass, i.e., if 𝐹i,x,𝜏 (Evals(𝔷)) = 0.

Note that, given an index i and an input x, a complete transcript (x, 𝜏) of the interaction between Pcompiled and
Vcompiled consists of 2(𝜇(i,x) + 1) + 2𝜇CA (iCA,xCA) + 1 messages in total.

In what follows, given a (possibly partial) transcript (x, 𝜏), we will use the notation xCA andW with the same
meaning as above, without referring to (x, 𝜏), which will be clear from the context.

Lemma 4.8. Assume the notation and hypotheses of Theorem 4.6. Then there exists a hIOP Πcompiled (see Definition 6.2)
for R with the following properties:

• Suppose ΠOCoAgg(𝛿) has RBR soundness error 𝜀rbr−s, 𝛿 . Then Πcompiled has RBR soundness error

max
{︁
𝜀rbr−s, 𝛿 (i), 𝜀CA (iCA)

}︁
.

• Suppose ΠOCoAgg(𝛿) has RBR knowledge soundness error 𝜀rbr−k, 𝛿 . Then Πcompiled has RBR knowledge soundness
error

max
{︁
𝜀rbr−k, 𝛿 (i), 𝜀CA (iCA)

}︁
.

Proof. Fix an index i and an input x. Let 𝜇(i,x) and 𝜇CA (iCA,xCA) be the number of rounds in the interactive phase
of ΠOCoAgg(𝛿) and in ΠCA, respectively. For simplicity, in what follows, we denote these by 𝜇 and 𝜇CA.

Given a partial transcript (x, 𝜏) ∈ PartTr𝑖 (i,x) for Πcompiled, with 𝑖 > 𝜇(i,x) + 1, let (x, 𝜏) [: 𝜇 + 2] be the
partial transcript corresponding to the first 𝜇 + 1 rounds in (x, 𝜏), i.e. (x, 𝜏) [: 𝜇 + 2] is the prefix of (x, 𝜏) such that
(x, 𝜏) [: 𝜇 + 2] ∈ PartTr𝜇+1 (i,x), which corresponds to the messages exchanged during the simulation of ΠOCoAgg(𝛿) .
Similarly, we let (x, 𝜏) [𝜇 + 2 :] be the suffix of (x, 𝜏) corresponding to all rounds including and after the round 𝜇 + 2, so
that (x, 𝜏) is the concatenation of (x, 𝜏) [: 𝜇 + 2] and (x, 𝜏) [𝜇 + 2 :]. The transcript (x, 𝜏) [𝜇 + 2 :] contains messages
exchanged during the simulation of ΠCA.

Assume ΠOCoAgg(𝛿) is RBR sound with respect to the set D(i) and ΠCA is RBR sound with respect to the set
DCA (iCA). We define a new doomed set Dcompiled (i) for Πcompiled as follows:

• For all 𝑖 ∈ [𝜇] and (x, 𝜏) ∈ PartTr𝑖 (i,x) we let (x, 𝜏) ∈ Dcompiled (i) if and only if (x, 𝜏) ∈ D(i).

• For (x, 𝜏) ∈ PartTr𝜇+1 (i,x), we let (x, 𝜏) ∈ Dcompiled (i) if and only if the partial transcript (x, 𝜏′) obtained
from (x, 𝜏) by removing the last prover and last (dummy) verifier message belongs to Dcompiled (i).

• Let 𝜇 + 2 ≤ 𝑖 ≤ 𝜇 + 1 + 𝜇CA and let (x, 𝜏) ∈ PartTr𝑖 (i,x). Intuitively, we include (x, 𝜏) in Dcompiled (i) if and
only the suffix (x, 𝜏) [𝜇 + 2 :] of (x, 𝜏) corresponding to the messages exchanged durng the simulation of IOPP
ΠCA is in ΠCA’s doomed set DCA, or if the first check of ΠOCoAgg(𝛿) ’s verifier V failed.

9This is just a technicality so that, at each round of interaction, both the prover and the verifier send a message
10The verifier constructs ⟦W⟧ with the oracles sent by Pcompiled so far and with Evals(𝔷) .

46

More formally, let 𝔷 be the last nonempty challenge sent by V in the partial transcript (x, 𝜏) [: 𝜇 + 2] and let
Evals(𝔷) be the last message sent by P in (x, 𝜏) [: 𝜇 + 2]. We say (x, 𝜏) passes Check 1 of V if the elements
Evals(𝜏) are a root to the multivariate polynomial 𝐹i,x,𝜏 from Check 1 in Definition 6.1.
Then we let (x, 𝜏) ∈ Dcompiled (i) if and only if (x, 𝜏) does not pass Check 1 of V, or if (xCA, (x, 𝜏) [𝜇 + 2 :]) ∈
DCA (iCA),

Next we show that Πcompiled has the claimed RBR soundness with respect to the doomed set Dcompiled (i). Indeed,
assume first that (x, 𝜏) is a complete transcript for Πcompiled and (x, 𝜏) ∈ Dcompiled. We claim that then Vcompiled

rejects (x, 𝜏). Indeed, if (xCA, (x, 𝜏) [𝜇 + 2 :]) ∈ DCA (iCA), then Vcompiled rejects (x, 𝜏) because VCA would reject the
complete transcript (xCA, (x, 𝜏) [𝜇 + 2 :]) for ΠCA, given that ΠCA has RBR soundness with respect to DCA (iCA). On
the other hand, if (x, 𝜏) does not pass Check 1 of V, then Vcompiled rejects (x, 𝜏) because Vcompiled also performs Check
1, i.e. it asserts whether the elements Evals(𝔷) are a root to 𝐹i,x, (x,𝜏) [:𝜇+2] . This proves our claim.

Next, notice that, by definition, (x, ∅) ∈ Dcompiled (i) for all i and all x ∉ LRi
. Hence, we are left with proving Item

3 in the definition of RBR soundness.
To this end, let 𝑖 ∈ [𝜇 + 1 + 𝜇CA] and (x, 𝜏) ∈ PartTr𝑖−1 (i,x) be such that (x, 𝜏) ∈ Dcompiled (i). Let 𝑚𝑖 be any

Pcompiled’s potential 𝑖-th message. Denote

𝑃𝑖 := Pr
𝑐𝑖
[(x, 𝜏, 𝑚𝑖 , 𝑐𝑖) ∉ Dcompiled (i)],

where the probability is taken uniformly over all potential Vcompiled’s challenges at round 𝑖. If 𝑖 ≤ 𝜇, then 𝑃𝑖 ≤ 𝜀rbr−s, 𝛿 (i)
by the assumption on the RBR soundness of ΠOCoAgg(𝛿) . If 𝑖 = 𝜇 + 1, then (x, 𝜏, 𝑚𝑖 , 𝜏) ∈ Dcompiled (i) by definition of
Dcompiled. It follows that 𝑃𝜇+1 = 0.

Assume 𝑖 > 𝜇 + 2. If (x, 𝜏) does not pass Check 1 of V, then by definition (x, 𝜏, 𝑚𝑖 , 𝑐𝑖) also does not pass Check
1. Hence in this case 𝑃𝑖 = 0. Alternatively, if it does pass Check 1 of V, but (xCA, (x, 𝜏) [𝜇 + 2 :]) ∈ DCA (iCA),
then 𝑃𝑖 ≤ 𝜀CA (iCA) due to the RBR soundness of ΠCA. It remains to analyze the case 𝑖 = 𝜇 + 2, which corresponds
to the scenario where the last prover message in (x, 𝜏) is Evals(𝔷), and 𝑚𝑖 = 𝑚𝜇+2 is the first message sent by
PCA. By assumption, (x, 𝜏) ∈ Dcompiled (i), and so by definition of Dcompiled the verifier V of ΠOCoAgg(𝛿) rejects the
transcript (x, 𝜏), which is a complete transcript for the protocol ΠOCoAgg(𝛿) . Then, by definition of correlated hIOP
(Definition 6.1) either (x, 𝜏) fails V’s Check 1, or it fails Check 2. In the first case, we have 𝑃𝑖 = 0 due to the same
reasons as before. In the second case, the words xCA =W do not have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑]. Hence
xCA ∉ CoAgg(𝛿). Consequently, (xCA, ∅) ∈ DCA (iCA), and then since ΠCA has RBR soundness 𝜀CA (i) w.r.t. DCA,
we obtain that (xCA, 𝑚𝑖 , 𝑐𝑖) ∈ DCA except with probability 𝜀CA. Then by definition of Dcompiled we have 𝑃𝑖 ≤ 𝜀CA (i).
Thus Πcompiled has RBR soundness w.r.t. the set Dcompiled, with error 𝜀rbr−s,compiled := max{𝜀rbr−s, 𝛿 , 𝜀CA (iCA)}.

Now assume ΠOCoAgg(𝛿) has RBR knowledge w.r.t. a set D′, with error 𝜀rbr−k, 𝛿 . We define D′compiled (i) in the
exact same manner as Dcompiled (i), using D′ rather than D. We will prove that Πcompiled has RBR knowledge w.r.t. this
set, with error max

{︁
𝜀rbr−k, 𝛿 (i), 𝜀CA (i)

}︁
.

Indeed, first notice that if (x, 𝜏) ∈ D′compiled (i) is a complete transcript, then Vcompiled rejects (x, 𝜏) by the same
reasons as in our analysis of the RBR soundness of Πcompiled. Additionally, all transcripts of the form (x, ∅) belong
to D′compiled (i) by definition (because they belong to D′ (i)), and so the first two clauses in the definition of RBR
knowledge hold.

Next, we prove that the third clause also holds. To this end, let Ext be the extractors given by the RBR knowledge of
ΠOCoAgg(𝛿) . Let 𝜀rbr−k,compiled (i) := max{𝜀rbr−k, 𝛿 (i), 𝜀CA (i)}. Let 𝑖 ∈ [𝜇 + 1 + 𝜇CA], and let 𝜏 ∈ PartTr𝑖−1 (i,x) be
such that (x, 𝜏) ∈ D′compiled (i). Define 𝑚𝑖 and 𝑃𝑖 as before, and suppose 𝑖 < 𝜇 + 1 and 𝑃𝑖 > 𝜀rbr−k,compiled (i). Since
𝜀rbr−k,compiled (i) > 𝜀rbr−k, 𝛿 (i), by definition of RBR knowledge, Ext(i,x, 𝜏, 𝑚𝑖) is a valid witness for the pair (i,x).

If 𝑖 = 𝜇 + 1, then as we already saw, 𝑃𝑖 = 0, and so there is nothing to analyse in this case. If 𝑖 ≥ 𝜇 + 2, then
by definition of D′compiled (i), and as we saw previously, we have that either (x, 𝜏) does not pass Check 1 of V, in
which case 𝑃𝑖 = 0, or xCA = ⟦W⟧ does not have 𝛿-correlated agreement in RS[F, 𝐷, 𝑑]. In the latter case, we have
Pr𝑐𝑖 [(xCA, 𝑚𝑖 , 𝑐𝑖) ∉ DCA] ≤ 𝜀CA (iCA), and so 𝑃𝑖 ≤ 𝜀CA (iCA) by definition of D′compiled (i). Hence, for 𝑖 ≥ 𝜇 + 2,
there is never the need to use an extractor because 𝑃𝑖 ≤ 𝜀rbr−k,compiled (i). This completes the proof that Πcompiled has
RBR knowledge with error 𝜀rbr−k,compiled (i). □

Given Lemmas 4.7 and 4.8, Theorem 4.6 directly follows.

47

7 Plonk-like Protocols
In this section, we use the 𝛿-correlated hIOP framework we built in Section 6 to establish the round-by-round soundness
of our Plonk-like protocol abstraction we call OPlonky.

Throughout this section we let F be a finite field, 𝐷 ⊆ F∗ a multiplicative subgroup of F, called evaluation domain,
and 𝐻 a subgroup of 𝐷 of order n, generated by an element 𝜔. We also let 𝜌 = n/|𝐷 | and we fix 0 ≤ 𝛿 < 1−√𝜌. Given
a polynomial 𝑞(𝑋) ∈ F[𝑋] (or 𝑞(𝑋) ∈ K[𝑋] for some field extension K of F), we often treat 𝑞(𝑋) indistinctly as a
polynomial, and as a word from F𝐷 (i.e., as its restriction on 𝐷), and vice-versa.

7.1 A 𝛿-correlated hIOP for the Permutation Relation
In this section we formulate a general version of permutation IOP that underlies part of the Plonk SNARK [GWC19]
as a 𝛿-correlated hIOP. As we will see, this is a key component in Plonk-like hIOP’s. The generalized formulation
we present is inspired, in part, by Plonky2’s variation on the permutation argument [Polb]. We begin by defining a
permutation relation, and then we describe an IOP for this relation, which we denote as ΠRRPerm

(𝛿).

Definition 7.1 (Permutation Relation). Let r, u ∈ N, and let 𝜎 : [rn] → [rn] be a permutation. Let 𝑎𝑖 , 𝑏𝑖 ∈ F[𝑋] be
polynomials of degree < n for all 𝑖 ∈ [r].

For each 0 ≤ 𝑖 ≤ n − 1 and 0 ≤ 𝑗 ≤ r − 1 define vectors 𝒂, 𝒃 ∈ Frn as

𝒂 ((𝑗−1)n+𝑖) := 𝑎 𝑗 (𝜔𝑖), 𝒃 ((𝑗−1)n+𝑖) := 𝑏 𝑗 (𝜔𝑖). (17)

We say that (𝑎1, . . . , 𝑎𝑟) = 𝜎(𝑏1, . . . , 𝑏𝑟) if 𝒂𝑖 = 𝒃𝜎 (𝑖) for all 𝑖 ∈ [rn]. For example, when r = 1, then 𝑎1 = 𝜎(𝑏1) if
and only if 𝑎1 (𝜔𝑖) = 𝑏1 (𝜔𝜎 (𝑖)) for all 𝑖 ∈ [n].

We define RRPerm as the following indexed (F, 𝐷, n)-polynomial oracle relation:

RRPerm :={︄(︁
(r, 𝜎), (⟦𝑎𝑖⟧, ⟦𝑏𝑖⟧)𝑖∈[r] ; (𝑎𝑖 , 𝑏𝑖)𝑖∈[r]

)︁ |︁|︁|︁|︁|︁ (𝑎1, . . . , 𝑎r) = 𝜎(𝑏1, . . . , 𝑏r)
𝑎𝑖 , 𝑏𝑖 ∈ RS[F, 𝐷, n] for all 𝑖 ∈ [r]

}︄
.

Above, the tuple (r, 𝜎) is an index, (⟦𝑎𝑖⟧, ⟦𝑏𝑖⟧)𝑖∈[r] is an input , and (𝑎𝑖 , 𝑏𝑖)𝑖∈[r] is a witness.

Before describing a 𝛿-correlated hIOP ΠRRPerm
(𝛿) for this relation, we begin by introducing some terminology and

notation. Let L𝑖 (𝑋) be the 𝑖-th element of a Lagrange basis for the elements (𝜔, . . . , 𝜔n), so that L𝑖 (𝜔 𝑗) = 0 if 𝑗 ≠ 𝑖

and L𝑖 (𝜔𝑖) = 1. Define two sets of polynomials Sidj, S𝜎j, for j ∈ [r], as follows:

Sid1 (𝑋) := 𝑘1𝑋,

...

Sidr (𝑋) := 𝑘r𝑋,

S𝜎1 (𝑋) :=
∑︁n
𝑖=1 𝜎

∗ (𝑖)L𝑖 (𝑋),
...

S𝜎r (𝑋) :=
∑︁n
𝑖=1 𝜎

∗ ((r − 1)n + 𝑖)L𝑖 (𝑋),
(18)

where 𝑘1, . . . , 𝑘r ∈ F are such that 𝑘1𝐻, . . . , 𝑘r𝐻 are pairwise different (and hence disjoint) cosets of 𝐻. The map
𝜎∗ : [rn] → ⋃︁r

𝑖=1 𝑘𝑖𝐻 is the bĳection that results from composing the permutation 𝜎 : [rn] → [rn] and the natural
bĳection between [rn] and

⋃︁r
𝑖=1 𝑘𝑖𝐻. More precisely,

𝜎∗ ((𝑗 − 1)n + 𝑖) = 𝑘 𝑗𝜔
𝑖 . (19)

for all 𝑗 , 𝑖 with 1 ≤ 𝑗 ≤ r − 1 and 0 ≤ 𝑖 ≤ n − 1.

7.1.1 Description of ΠRRPerm
(𝛿)

We now describe the 𝛿-correlated hIOP ΠRRPerm
(𝛿) for the relation RRPerm. To do so, we define a tuple of algorithms

(IndRRPerm
,PRRPerm

,VOCoAgg(𝛿)
RRPerm

) as follows. Given a triple (i,x,w) ∈ RRPerm:

48

Indexer. IndRRPerm
(i) outputs

(︁
i, u, (S𝑖𝑑 𝑗 , S𝜎 𝑗) 𝑗∈[r]

)︁
. Here u ≥ 0 is a parameter whose use will become apparent later

on.

Online phase.

Prover’s Message 1. As its first message, PRRPerm
(IndRRPerm

(i),x,w) sends an empty string.
Verifier’s Message 1. The verifier sends two uniformly sampled field elements 𝛽, 𝛾 ∈ F.
Prover’s Message 2. The prover computes degree< n polynomials (𝑓 𝑗 , 𝑔 𝑗) 𝑗∈[r] and two polynomials 𝑓 (𝑋), 𝑔(𝑋)

such that
𝑓 𝑗 (𝜔𝑖) := 𝑎 𝑗 (𝜔𝑖) + 𝛽Sidj (𝜔𝑖) + 𝛾, 𝑔 𝑗 (𝜔𝑖) := 𝑏 𝑗 (𝜔𝑖) + 𝛽S𝜎j (𝜔𝑖) + 𝛾

for all 𝑖 ∈ [n], and

𝑓 (𝑋, 𝛽, 𝛾) = 𝑓 (𝑋) :=
∏︂
𝑗∈[r]

𝑓 𝑗 (𝑋), 𝑔(𝑋, 𝛽, 𝛾) = 𝑔(𝑋) :=
∏︂
𝑗∈[r]

𝑔 𝑗 (𝑋). (20)

Now PRRPerm
computes a degree < n polynomial z(𝑋) such that z(𝜔) = 1, and for each 𝑖 ∈ {2, . . . , n},

z(𝜔𝑖) =
∏︂

1≤ 𝑗<𝑖

𝑓 (𝜔 𝑗)
𝑔(𝜔 𝑗) . (21)

If some element 𝑔(𝜔 𝑗) is zero, then P aborts. In the present context, z(𝑋) is sometimes called a permutation
polynomial. Note that if z(𝑋) is well-defined then the following equality holds:

z(𝑋) 𝑓 (𝑋) = z(𝜔𝑋)𝑔(𝑋). (22)

Note that if r is large, then z(𝑋) 𝑓 (𝑋) can have degree up to (r + 1)n, which could end up being too large.
To avoid this, the prover splits 𝑓 (𝑋) and 𝑔(𝑋) in the constraint of Eq. (22) into s := ⌈r/u⌉ factors as follows:
For each 𝑖 ∈ [s], PRRPerm

computes

�̄� 𝑖 (𝑋, 𝛽, 𝛾) = �̄� 𝑖 (𝑋) :=
u𝑖∏︂

𝑗=u(𝑖−1)+1
𝑓 𝑗 (𝑋)

𝑔𝑖 (𝑋, 𝛽, 𝛾) = 𝑔𝑖 (𝑋) :=
u𝑖∏︂

𝑗=u(𝑖−1)+1
𝑔 𝑗 (𝑋)

(23)

Note that 𝑓 (𝑋) = �̄� 1 (𝑋) · · · �̄� s (𝑋) and 𝑔(𝑋) = 𝑔1 (𝑋) · · · 𝑔s (𝑋). Additionally, PRRPerm
computes polynomi-

als 𝜋1 (𝑋), . . . , 𝜋s−1 (𝑋) of degree less than n such that, for all 𝑖 ∈ [n],

𝜋1 (𝜔𝑖) = z(𝜔𝑖) �̄� 1 (𝜔𝑖)𝑔1 (𝜔𝑖)−1,
𝜋 𝑗 (𝜔𝑖) = 𝜋 𝑗−1 (𝜔𝑖) �̄� 𝑗 (𝜔𝑖)𝑔 𝑗 (𝜔𝑖)−1 for 𝑗 = 2, . . . , s − 1.

(24)

P then sends ⟦𝑧⟧, ⟦𝜋1⟧, . . . , ⟦𝜋s−1⟧ to V.
Additionally, P computes11

𝛿1 (𝑋) := (𝜋1 (𝑋)𝑔1 (𝑋) − z(𝑋) �̄� 1 (𝑋))/ZH (𝑋)
𝛿2 (𝑋) := (𝜋2 (𝑋)𝑔2 (𝑋) − 𝜋1 (𝑋) �̄� 2 (𝑋))/ZH (𝑋)

. . .

𝛿s (𝑋) := (z(𝜔𝑋)𝑔s (𝑋) − 𝜋s−1 (𝑋) �̄� s (𝑋))/ZH (𝑋).

Notice that each 𝛿𝑖 (𝑋) corresponds to a polynomial of degree at most un. Now, for each 𝛿𝑖 , the prover
computes u codewords (𝛿𝑖 𝑗 (𝑋)) 𝑗∈[u] from RS[F, 𝐷, n] so that 𝛿𝑖 =

∑︁
𝑗∈[u] 𝑋

𝑗𝛿𝑖 𝑗 (𝑋). Then the prover
sends (⟦ 𝑓𝑖 𝑗⟧)𝑖∈[s], 𝑗∈[u] to the verifier.

11Recall that ZH (𝑋) is the vanishing polynomial on the set 𝐻.

49

Verifier’s Decision. The verifier constructs oracles (using the oracles it already has access to) to the words (𝛿𝑖 (𝑋))𝑖∈[s] .
Then it uses OCoAgg(𝛿) to determine whether these words have 𝛿-correlated agreement in RS[F, 𝐷, n]. The
verifier accepts if and only if this check is successful.

Remark 7.2 (Recovering Plonk’s original permutation IOP). Plonk’s original permutation hIOP can be recovered from
ΠRRPerm

(𝛿) by letting 𝛿 = 0, and specializing the parameters r and u to r = 3, and u = 1 (which leads to s = 1).
Here we argue that the protocol ΠRRPerm

(𝛿) is a 𝛿-correlated hIOP (as per Definition 6.1). Indeed, the only part of
the protocol that requires our inspection is the verifier’s decision phase. This is because the definition of 𝛿-correlated
hIOP requires the verifier use the oracle OCoAgg(𝛿) on a list of words of the form (𝑤(𝑋) − 𝑎)/(𝑋 − 𝜉) for some words
𝑤(𝑋) and some field elements 𝑎, 𝜉. However, in our formulation of ΠRRPerm

(𝛿), the verifier uses OCoAgg(𝛿) on the list
of words (𝛿𝑖 (𝑋))𝑖∈[s] . This is in fact not a discrepancy, since each word 𝛿𝑖 (𝑋) can be written in the required manner,
e.g. by letting ZH (𝑋) = (𝑋 − 𝜔)ZH

′ (𝑋) for some polynomial ZH
′ (𝑋) and then writing

𝛿𝑖 (𝑋) =
ZH (𝑋) 𝛿𝑖 (𝑋)

ZH
′ (𝑋) − 0
𝑋 − 𝜔 .

Hence, ΠRRPerm
(𝛿) fits the definition of 𝛿-correlated hIOP.

7.2 A 𝛿-correlated hIOP for TurboPlonk’s and Plonky2’s Relation
In this section we describe the 𝛿-correlated hIOP OPlonky(𝛿). This is an hIOP for a indexed (F, 𝐷, n)-polynomial
oracle relation RROPlonky, which we formulate next. We let an index i of RROPlonky be a tuple of the form
(P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t), where r, r′, ℓ, t are positive integers, and

• P is a list of (2r + ℓ)-variate polynomials 𝑃𝑖 = 𝑃𝑖 (𝑋1, . . . , 𝑋r, 𝑌1, . . . , 𝑌r, 𝑍1, . . . , 𝑍ℓ) with coefficients in F, for
𝑖 ∈ [|P|].

• Q is a list of ℓ vectors (sel1, . . . , selℓ) ∈ (Fn)ℓ . We call these selector vectors.

• r′ ≤ r. Intuitively speaking, execution traces have size n × r and r′ is the number of columns in it whose entries
are subject to “permutation constraints”.

• 𝜎 is a permutation 𝜎 : [r′n] → [r′n].

• A subset PI ⊂ [rn] indicating, intuitively speaking, the location of the public inputs in an execution trace.

• t is a parameter that, roughly, controls the number that certain checks are performed.
Usually, t = 1, but Plonky2 sets t = 2 to account for usage of a small field.

An execution trace for such an index i is a vector w ∈ Fnr. For intuitive purpose, it may be helpful to think of w as a
n × r matrix whose entry (𝑖, 𝑗) is w(𝑖−1)r+ 𝑗 for all 𝑖 ∈ [n] and 𝑗 ∈ [r]. Such a trace is said to satisfy i if both conditions
below hold:

1. (Index’s circuit constraint satisfaction) For all 𝑗 ∈ [|P|] and all 𝑖 ∈ [n − 1],

𝑃 𝑗 (w(𝑖−1)r+1, . . . ,w𝑖r,w𝑖r+1, . . . ,w(𝑖+1)r, sel1𝑖 , . . . , selℓ𝑖) = 0 (25)

2. (Index’s copy constraint satisfaction) For all 𝑖 ∈ [rn],

w𝑖 = w𝜎 (𝑖) . (26)

We say that the public part of an execution trace w ∈ Fnr is the vector formed by the entries {w𝑖 | 𝑖 ∈ PI}. We denote
the vector formed by these entries by w(pi) .

50

Then we define the indexed relation RROPlonky can as:

RROPlonky :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(i,x,w)

|︁|︁|︁|︁|︁|︁|︁|︁|︁|︁
i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t),
x ∈ F |PI | , w ∈ Frn,
w satisfies i,

x = w(pi) .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Remark 7.3 (Routable and advice wires). Following Plonky2 [Polb], in RROPlonky we allow to have an execution trace
w ∈ Frn were the values in some columns are not subject to any copy constraint. Following the terminology in [Polb],
such columns are called advice wires, while the rest of the columns are called routable wires.

The number of columns that are not exempt from these constraints is precisely r′. For simplicity, we always assume
that w is set up in a way that its first r′ columns are routable wires, and the remaining columns are advice wires.
Accordingly, we consider permutations 𝜎 : [r′n] → [r′n] rather than 𝜎 : [rn] → [rn].
Remark 7.4 (Enforcing public inputs). The clause x = w(pi) from RROPlonky can be “absorbed” in the circuit satisfaction
and copy constraints (see for example [GW]). With this in mind, we will always assume that, given (i,x) if a witness w
satisfies both the circuit and copy constraints of given by i, then w(pi) = x.

In Section 7.3.2 we briefly discuss how this relation generalizes Plonk’s [GWC19], Redshift’s [KPV22], TurboPlonk’s
[GW] relation, and how it is, essentially, a formalization of Plonky2’s [Polb] relation.

7.2.1 Description of the hIOP

We proceed to describe a 𝛿-correlated hIOP for the relation RROPlonky. We denote such protocol as OPlonky(𝛿) =
(IndPlonky,POPlonky,V

OCoAgg(𝛿)
OPlonky

).
The protocol works as follows for each triple (i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t),x,w) ∈ RROPlonky.

7.2.2 Indexer

The algorithm IndPlonky receives i as input and outputs

IndPlonky (i) = (i, (sel 𝑗 (𝑋)) 𝑗∈[ℓ] , (𝑆idj (𝑋), 𝑆𝜎j(𝑋)) 𝑗∈[r′] ,K, u, t),

where

• The sel 𝑗 (𝑋) are polynomials defined as sel 𝑗 (𝑋) =
∑︁n
𝑖=1 sel 𝑗 ,𝑖L𝑖 (𝑋), for each 𝑗 ∈ [ℓ].

• The 𝑆idj (𝑋), 𝑆𝜎j (𝑋) are the polynomials output by RRPerm’s indexer (see Eq. (18)) on input (r′, 𝜎).

• K is a finite field extension of F.

• u, t are positive integers.

7.2.3 Online Phase

For convenience we denote POPlonky (IndPlonky (i),x,w) by POPlonky and denote V
IndPlonky (i) ,OCoAgg(𝛿)
OPlonky

(x) by VOPlonky.
We emphasize again that for most Plonk-type IOPs, the parameter t = 1, and that in Plonky2 one has t = 2 to account for
the usage of a small field.

Prover’s message 1 POPlonky computes a1 (𝑋), . . . , ar (𝑋) as a 𝑗 (𝑋) =
∑︁n
𝑖=1w(𝑗−1)n+𝑖L𝑖 (𝑋) for each 𝑗 ∈ [r]. It then

sends oracles ⟦a1 (𝑋) |𝐷⟧, . . . , ⟦ar (𝑋) |𝐷⟧ to VOPlonky, where a𝑖 (𝑋) |𝐷 denotes the word from F𝐷 obtained by
restricting a𝑖 (𝑋) on 𝐷.

51

Permutation argument part (Verifier’s challenge 1 and Prover’s message 2) For t times in parallel, POPlonky and
VOPlonky execute the online phase of the permutation proof ΠRRPerm

for the triple

(i′,x′,w′) =
(︁
(r′, 𝜎), (⟦a𝑖⟧, ⟦a𝑖⟧)𝑖∈[r′] , (a𝑖 , a𝑖)𝑖∈[r′]

)︁
.

The indexer IndRRPerm
is not called since both PRRPerm

and VRRPerm
already have access to IndRRPerm

(i′) =

(i′, u, (𝑆idj (𝑋), 𝑆𝜎j(𝑋)) 𝑗∈[r′]). Only the interactive phase is executed, and VOPlonky does not execute the decision
phase when the interactive phase is over.
At the end of each of the t executions of the interactive phase, VOPlonky has received oracles

(⟦z𝑘⟧, ⟦𝜋𝑘,1⟧, . . . , ⟦𝜋𝑘, (s−1)⟧)

for each 𝑘 ∈ [t]. Let (𝛽𝑘 , 𝛾𝑘) be the verifier’s challenges on each of the executions.
For each 𝑘 ∈ [t], we denote by (�̄� 𝑘𝑖 (𝑋))𝑖∈[s] the polynomials in Eq. (23) computed with the challenges 𝛽𝑘 , 𝛾𝑘 .

Verifier’s challenge 2 VOPlonky samples random challenges 𝛼1, . . . , 𝛼t and sends them to POPlonky.

Prover’s message 3 POPlonky computes polynomials (u𝑘1 ,𝑘2 (𝑋), d𝑘 (𝑋), q𝑘 (𝑋))𝑘1 ,𝑘2 ,𝑘∈[t] as follows (see Remark 7.5
and Appendix C for an intuition of why this polynomial is constructed as it is):

u𝑘1 ,𝑘2 (𝑋) :=
(︁
�̄� 𝑘11 (𝑋)z𝑘1 (𝑋) − 𝜋𝑘1 ,1 (𝑋)𝑔𝑘11 (𝑋)

)︁
𝛼𝑘2

+∑︁s
𝑗=2

(︂
�̄� 𝑘1 𝑗 (𝑋)𝜋𝑘1 , 𝑗−1 (𝑋) − 𝜋𝑘1 , 𝑗 (𝑋)𝑔𝑘1 𝑗 (𝑋)

)︂
𝛼
𝑗

𝑘2

+
(︁
�̄� 𝑘1s (𝑋)𝜋𝑘1 ,s−1 (𝑋) − z𝑘1 (𝜔𝑋)𝑔𝑘1s (𝑋)

)︁
𝛼s+1
𝑘2

+(z𝑘1 (𝑋) − 1)L1 (𝑋)𝛼s+2
𝑘2

.

d𝑘 (𝑋) :=
∑︂

𝑗∈[| P |]
𝛼
𝑗−1
𝑘

𝑃 𝑗 (a1 (𝑋), . . . , ar (𝑋), a1 (𝜔𝑋), . . . , ar (𝜔𝑋), sel1 (𝑋), . . . , selℓ (𝑋))

+𝛼 | P |−1
𝑘

(︂
u1,𝑘 (𝑋) + 𝛼s+2

𝑘 u2,𝑘 (𝑋) + . . . + 𝛼 (t−1) (s+2)𝑘
ut,𝑘

)︂
.

q𝑘 (𝑋) := d𝑘 (𝑋)/ZH (𝑋).

(27)

Then POPlonky splits the polynomials q𝑘 (𝑋) into degree 𝑛 polynomials q𝑘,1 (𝑋), . . . , q𝑘,𝑣 (𝑋), so that q𝑘 (𝑋) =∑︁𝑣
𝑖=1 𝑋

𝑛𝑖𝑃𝑘,𝑣 (𝑋) and sends oracle access to these to VOPlonky.

Verifier’s challenge 3 VOPlonky samples a challenge 𝔷 ∈ K \ 𝐷 and sends it to P.

Prover’s message 4 POPlonky replies with the evaluations(︁
a 𝑗 (𝔷), a 𝑗 (𝜔𝔷), q𝑘, 𝑗′′ (𝔷), 𝜋𝑘𝑖 (𝔷), z𝑘 (𝔷), z𝑘 (𝜔𝔷), sel 𝑗′ (𝔷), Sidj (𝔷), S𝜎j (𝔷)

)︁
for all 𝑗 ∈ [r], 𝑗 ′ ∈ [ℓ], 𝑗 ′′ ∈ [𝑣]𝑘 ∈ [t], 𝑖 ∈ [s − 1].

7.2.4 Verifier’s Decision

Check 1 For each 𝑘 ∈ [t], VOPlonky computes ZH (𝔷), 𝑞𝑘 (𝔷), and d𝑘 (𝔷) with the purported polynomial openings

(a 𝑗 (𝔷), a 𝑗 (𝜔𝔷), S𝜎j (𝔷), q𝑘, 𝑗′ (𝔷), 𝜋𝑘𝑖 (𝔷), z𝑘 (𝔷), z𝑘 (𝜔𝔷)) 𝑗∈[r], 𝑗′∈[𝑣],𝑘∈[t],𝑖∈[s−1] .

Then it checks that d𝑘 (𝔷) = q𝑘 (𝔷)ZH (𝔷). If this check fails, VOPlonky rejects the proof.

Check 2 Given a word 𝑚 : 𝐿 → K and 𝔷 ∈ K, 𝑦 ∈ K, define quotient(𝑚, 𝔷, 𝑦) := 𝑚(𝑋)−𝑦
𝑋−𝔷 .

52

VOPlonky uses its OCoAgg(𝛿) on the input

xCA := (⟦quotient(a(𝑋), 𝔷, a 𝑗 (𝔷))⟧, ⟦quotient(a(𝜔𝑋), 𝔷, a 𝑗 (𝜔𝔷))⟧,
⟦quotient(q𝑘 (𝑋), 𝔷, q𝑘, 𝑗′′ (𝔷))⟧, ⟦quotient(𝜋𝑘𝑖 (𝑋), 𝔷, 𝜋𝑘𝑖 (𝔷))⟧,
⟦quotient(z𝑘 (𝑋), 𝔷, z𝑘 (𝔷))⟧, ⟦quotient(z𝑘 (𝑋), 𝔷, z𝑘 (𝜔𝔷))⟧
⟦quotient(sel 𝑗′ (𝑋), 𝔷, sel 𝑗′ (𝔷))⟧, ⟦quotient(Sidj (𝑋), 𝔷, Sidj (𝔷))⟧
⟦quotient(S𝜎j (𝑋), 𝔷, S𝜎j (𝔷))⟧) 𝑗∈[r], 𝑗′∈[ℓ], 𝑗′′∈[𝑣],𝑘∈[t],𝑖∈[s−1]

(28)

and the index iCA := (F, 𝐷, n, 𝛿, |xCA |). If OCoAgg(𝛿) rejects, then VOPlonky rejects the proof.

If all checks above pass, then VOPlonky accepts. This completes the description of OPlonky(𝛿).
Remark 7.5 (Explaining the parameter t). As we mentioned, the parameter t roughly controls the number of times that
certain checks are performed in OPlonky(𝛿). We see in Lemma 4.9 that the security of OPlonky(𝛿) can be substantially
increased by increasing t. Thus, t may be useful, for example, when one is aiming to work over a small field F. This
is precisely the case with Plonky2 [Polb], where |F| ≈ 264. Setting t = 2 endows Plonky2 with a security of roughly
m/2128, where m here is, roughly, the constraint size.

It is important to note that there are subtleties in the way this is achieved. For example, notice that the first round of
OPlonky(𝛿) is performed in parallel t times. On the other hand, the second round is not repeated t times in parallel, and
instead a more involved procedure is taken.

This is crucial: if for example one simply repeated the second round in parallel (see Appendix C for the details),
and set t = 2, then the resulting protocol would only have ≈ m/|F| RBR soundness and RBR knowledge soundness.
Moreover, when compiled into a SNARK, one could apply the attack from [AFK22], which would break the soundness
property of the SNARK with probability ≈ m/|F|. This is an attack on the Fiat-Shamir transformation of the parallel
repetition of interactive proofs. We provide more details in Appendix C.

7.3 RBR Soundness and Knowledge of OPlonky
Now that we have described OPlonky(𝛿), we can take any IOPP ΠCA for the 𝛿-correlated agreement relation CoAgg(𝛿)
(e.g. batched FRI), and compile OPlonky(𝛿) into a hIOP for the relation RROPlonky as per Definition 6.2. Recall that,
essentially, this entails replacing the verifier’s call to OCoAgg(𝛿) by an execution of ΠCA. The resulting hIOP, which
we denote by Plonky2hIOP, is essentially an abstraction of Plonky2’s succinct interactive argument.

We proceed to prove that Plonky2hIOP is RBR sound and has RBR knowledge. To do so, we follow the general
technique from Section 6 and first prove that OPlonky(0) is RBR sound and has RBR knowledge. Then we obtain RBR
soundness and knowledge of Plonky2hIOP by applying Theorem 4.6.

We fix i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t) to be a valid index for RROPlonky and w ∈ (Fn)r.

Lemma 4.9. The 0-correlated agreement encoded hIOP OPlonky(0) has RBR soundness and RBR knowledge with the
same error 𝜀, where, for all index i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t) and any potential input x we have, for n = |𝐻 |:

𝜀(i) = max
𝑖∈[3]
{𝜀𝑖 (i)} , 𝜀1 (i) :=

(︃
3n(r′ + u)
|F|

)︃t
,

𝜀2 (i) :=
(︃
|P | + (s + 2)t − 1

|F|

)︃t
, 𝜀3 (i) := max{deg(𝑃 𝑗) 𝑗∈[| P |] , u + 1}

n

|K \ 𝐷 | .

Proof. Fix an index i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t), and potential input x and witnesses w ∈ Frn. For each of the notions
of RBR soundness and knowledge we define four sets (Ds

𝑖
(i))𝑖=0,...,3 and (Dk

𝑖
(i))𝑖=0,...,3. We let:

• Ds
0 (i) consist of all transcripts of the form (x, ∅), for x ∉ LRROPlonky ,i,

• Dk
0 (i) consist of all transcripts of the form (x, ∅) for any possible x, including those not in LRROPlonky ,i.

• We set Ds
𝑖
(i) = Dk

𝑖
(i) for all 𝑖 ∈ [3]. Among other transcripts (which we describe later) we include in each

Ds
𝑖
(i) = Dk

𝑖
(i) all transcripts after the 𝑖-round where the prover did not send an oracle to a codeword from

RS[F, 𝐷, n] when it was supposed to.

53

Now, let (𝛽𝑖 , 𝛾𝑖)𝑖∈[t] ∈ F2t be a first prover’s challenge. Let (x, 𝜏1) be partial transcript after one round of interaction, so
that 𝜏1 = ((a𝑖 (𝑋),)𝑖∈[r] , (𝛽𝑖 , 𝛾𝑖)𝑖∈[t]). We define Ds

1 (i) = Dk
1 (i) to consist of all (x, 𝜏1) such that one of the following

holds.
• For some 𝑘 ∈ [t] there do not exist polynomials z(𝑋), 𝜋1 (𝑋), . . . , 𝜋s−1 (𝑋) of degree at most n with

𝛿1𝑘 (𝑋) := 𝜋1 (𝑋)𝑔1 (𝜏1𝑘 , 𝑋) − z(𝑋) �̄� 1 (𝜏1𝑘 , 𝑋)
𝛿2𝑘 (𝑋) := 𝜋2 (𝑋)𝑔2 (𝜏1𝑘 , 𝑋) − 𝜋1 (𝑋) �̄� 2 (𝜏1𝑘 , 𝑋)

. . .

𝛿s𝑘 (𝑋) := z(𝜔𝑋)𝑔s (𝜏1𝑘 , 𝑋) − 𝜋s−1 (𝑋) �̄� s (𝜏1𝑘 , 𝑋)
𝛿s+1,𝑘 (𝑋) := z(𝑋) (L1 (𝑋) − 1) = 0.

(29)

• There exists some 𝑗 ∈ [|P|] such that the word

𝑃 𝑗 (𝜏1) := 𝑃 𝑗 (a1 (𝑋), . . . , ar (𝑋), a1 (𝜔𝑋), . . . , ar (𝜔𝑋), sel1 (𝑋), . . . , selℓ (𝑋)) (30)

does not vanish on 𝐻.
Next, let (𝛼𝑖)𝑖∈[t] ∈ Ft and let

𝜏2 = (𝜏1, (z𝑘 (𝑋), 𝜋𝑘𝑖 (𝑋))𝑘∈[t],𝑖∈[s−1] , (𝛼𝑘)𝑘∈[t])
be a partial transcript after the second round of interaction. We define Ds

2 (i) = Dk
2 (i) to consist of all (x, 𝜏2) such that

for some 𝑘 ∈ [t] the word d𝑘 (𝑋) does not vanish on 𝐻, where d𝑘 (𝑋) is defined as in Eq. (27).
Finally, let 𝔷 ∈ K and let 𝜏3 = (𝜏2, (q𝑘 (𝑋))𝑘∈[t] , 𝔷) be a partial transcript after three rounds of interaction. We define

Ds
3 (i) = Dk

3 (i) to consist of all (x, 𝜏3) such that d𝑘 (𝔷) ≠ q𝑘 (𝔷)ZH (𝔷) for some 𝑘 ∈ [t]. Then, we take

Ds (i) =
3⋃︂
𝑖=0

Ds
𝑖 (i), Dk (i) =

3⋃︂
𝑖=0

Dk
𝑖 (i)

as doomed sets. We will prove that OPlonky(0) is RBR sound and has RBR knowledge with the same error, when
using these doomed sets, respectively.

Since Ds
𝑖
(i) = Dk

𝑖
(i) for all 𝑖 ∈ [3], we denote the latter by D𝑖 (i).

Indeed, we begin by analyzing the RBR soundness of OPlonky(0). Let us start with an arbitrary input x (not
necessarily outside of LRROPlonky ,i. Note first that VOPlonky rejects any complete transcript (x, 𝜏) ∈ D3 (i), since we
defined D3 (i) to consists precisely of those transcripts that fail one of the two checks performed by VOPlonky. Now
taking 𝑖 ∈ [3] and (x, 𝜏) ∈ Ds

𝑖−1 (i), define

𝜀𝑖 (i) := max
𝑚𝑖

Pr
𝑐𝑖
[(x, 𝜏, 𝑚𝑖 , 𝑐𝑖) ∉ Ds

𝑖 (i)] .

It follows that VOPlonky (0) is RBR sound with error 𝜀(i) = max𝑖∈[3]{𝜀𝑖 (i)}.
We claim that 𝜀𝑖 (i) satisfies the bound in the lemma. Indeed, let 𝜏1, 𝜏2, 𝜏3 be as above. We bound first 𝜀2 (i) and

𝜀3 (i), and address 𝜀1 (i) afterward. For 𝑖 = 2, 3, we observe, in general, that if (x, 𝜏𝑖−1) contains oracles to a word that
is not a codeword, when it was supposed to be so, then (x, 𝜏𝑖) ∈ D𝑖 (i) with probability 1. Hence we assume that all
messages sent by the prover are polynomials of appropriate degree.

We begin with 𝜀2 (i). For each 𝑥 ∈ 𝐻, consider the following polynomial on 𝛼:

d(x,𝜏1 ,𝑥) (𝛼) :=
∑︂

𝑗∈[| P |]
𝛼 𝑗−1𝑃 𝑗 (a1 (𝑥), . . . , ar (𝑥), a1 (𝜔𝑥), . . . , ar (𝜔𝑥), sel1 (𝑥), . . . , selℓ (𝑥))

+𝛼 | P |−1
(︂
u1 (𝛼) + 𝛼s+2u2 (𝛼) + . . . + 𝛼 (t−1) (s+2)ut (𝛼)

)︂
.

u𝑖 (𝛼) :=
(︁
�̄� 𝑖1 (𝑥)z𝑖 (𝑥) − 𝜋𝑖,1 (𝑥)𝑔𝑖1 (𝑥)

)︁
𝛼

+∑︁s−1
𝑗=2

(︂
�̄� 𝑖 𝑗 (𝑥)𝜋𝑖, 𝑗−1 (𝑥) − 𝜋𝑖, 𝑗 (𝑥)𝑔𝑖 𝑗 (𝑥)

)︂
𝛼 𝑗

+
(︁
�̄� 𝑘1s (𝑥)𝜋𝑖,s−1 (𝑥) − z𝑖 (𝜔𝑥)𝑔𝑖s (𝑥)

)︁
𝛼s+1

+(z𝑖 (𝑥) − 1)L1 (𝑥)𝛼s+2.

54

Then (x, 𝜏2) ∉ D2 (i) if and only if dx,𝜏1 ,𝑥 (𝛼 𝑗) = 0 for all 𝑗 ∈ [t] and all 𝑥 ∈ 𝐻. However, if (x, 𝜏1) ∈ D1 (i),
then either the polynomial 𝑃 𝑗 (𝜏1) (see Eq. (30)) does not vanish on 𝐻, or, for some 𝑘 ∈ [t] and 𝑖 ∈ [s + 1], 𝛿𝑖,𝑘 (𝑋)
(𝑖 ∈ [s + 1], see Eq. (29)) does not vanish on 𝐻. It follows that there exists 𝑥 ∈ 𝐻 such that dx,𝜏1 ,𝑥 (𝛼) is a nonzero
polynomial on 𝛼. This polynomial has degree at most |P | + (s + 2)t − 1, and so the probability of sampling a random
𝛼 ∈ F that is a root of dx,𝜏1 ,𝑥 (𝛼) is at most

𝜀2 (i) ≤ (|P| + (s + 2)t − 1)/|F|.

It follows that 𝜀2 (i) is at most the t-th power of this probability.
Next we bound 𝜀3 (i). Suppose (x, 𝜏2) ∈ D2 (i) but (x, 𝜏3) ∉ D3 (i). Since, as we discussed, all the words in xCA

must be polynomials of degree less than n, we have that the purported openings in the prover’s last message are correct
openings. Moreover, we have that d𝑘 (𝔷) = q𝑘 (𝔷)ZH (𝔷) for all 𝑘 ∈ [t]. However, since (x, 𝜏2) ∈ D2 (i), there is 𝑘 ∈ [t]
such that d𝑘 (𝑋) does not vanish on 𝐻. This implies that dk (𝑋) −q𝑘 (𝑋)zH (𝑋) is a nonzero polynomial of degree at most

max{nmax{deg(𝑃 𝑗) 𝑗∈[| P |]}, n(u + 1)}.

Hence, there are at most this number of possible challenges 𝔷 such that (x, 𝜏3) ∉ D3 (i).
We proceed to bound 𝜀1 (i). Towards also proving RBR knowledge later, on this occasion assume x is an arbitrary

input, possibly in LRROPlonky ,i. Assume (x, 𝜏1) ∉ D1 (i). Then, all (oracles of) the words sent by the prover are actual
codewords from RS[F, 𝐷, n], and for all 𝑖 ∈ [s + 1] and 𝑘 ∈ [t], 𝛿𝑖,𝑘 (𝑋) vanishes on 𝐻. Moreover, 𝑃𝑘 (𝜏1) vanishes on
𝐻 as well.

Given 𝛽, 𝛾 ∈ F, define

𝐹 (𝛽, 𝛾) = (�̄� 𝑗 (𝑋, 𝛽, 𝛾)) 𝑗∈[s] , 𝐺 (𝛽, 𝛾) = (𝑔 𝑗 (𝑋, 𝛽, 𝛾)) 𝑗∈[s]

where the �̄� 𝑗 and 𝑔 𝑗 are defined as in Eq. (23).
Let E be the event that the first verifier challenge (𝛽𝑘 , 𝛾𝑘)𝑘∈[t] is such that for all 𝑘 ∈ [t] and all 𝑣(𝑋) ∈

𝐹 (𝛽, 𝛾) ∪ 𝐺 (𝛽, 𝛾) we have 𝑣(𝑥) ≠ 0 for all 𝑥 ∈ 𝐻.
We claim that, if E holds, then 𝛿𝑖,𝑘 (𝑋) vanishes on 𝐻 for all 𝑖 ∈ [s + 1], 𝑘 ∈ [t] if and only if each one of the pairs

(𝛽𝑘 , 𝛾𝑘) is a root to the following polynomial on 𝛽, 𝛾:∏︂
𝑥∈𝐻, 𝑗∈[s]

�̄� 𝑗 (𝑥, 𝛽, 𝛾) −
∏︂

𝑥∈𝐻, 𝑗∈[s]
𝑔 𝑗 (𝑥, 𝛽, 𝛾). (31)

It is a well known property of the Plonk permutation argument that if Eq. (31) is the zero polynomial, then the
polynomials a1 (𝑋), . . . , ar (𝑋) are the result of interpolating a witness w that satisfies the copy constraints of Eq. (26)
in i, namely w𝑖 = w𝜎 (𝑖) for all 𝑖 ∈ [rn].

Recall that, from our assumptions, we deduced that 𝑃𝑘 (𝜏1) vanishes on 𝐻 for all 𝑘 ∈ [t]. Hence w satisfies the
constraints of Eq. (30). Notice that this implies x = w(pi) since, as pointed out in Remark 7.4, we assume that public
inputs are “enforced” by the circuit and copy constraints. Thus, either w does not satisfy the copy constraints of
Eq. (26), i.e., w𝑖 ≠ w𝜎 (𝑖) for some 𝑖, or (i,x,w) ∈ RROPlonky. In the former case, the polynomial of Eq. (31) is a
nonzero bivariate polynomial with each variable having degree at most r′n. Hence, it has at most r′n|F| roots (𝛽, 𝛾).
We conclude that, if x ∉ LRROPlonkyi

then Eq. (31) is a nonzero polynomial and

𝜀1 (i) ≤
(︃
r′n

|F| Pr[E] + (1 − Pr[E])
)︃t
,

where Pr[E] is the probability of event E occurring. On the other hand, each �̄� 𝑗 (𝑥, 𝛽, 𝛾) and 𝑔 𝑗 (𝑥, 𝛽, 𝛾) is the product
of u linear polynomials on the variables 𝛽, 𝛾. Such a linear polynomial has at most |F| roots, and so there are at most
2nsu|F| pairs (𝛽, 𝛾) that make event E not hold. Then

Pr[E] ≥ 1 − 2nsu

|F|

55

and so

𝜀1 (i) ≤
(︃
r′n

|F| +
2nsu

|F|

)︃t
≤

(︃
3n(r′ + u)
|F|

)︃t
.

This completes our proof of the RBR soundness of OPlonky(0).
We now prove that OPlonky(0) has RBR knowledge with error 𝜀(i) (with the bounds stated in the lemma). We

define 𝜀𝑖 exactly as before, using the doomed set Ds
0 (i) as the 0-th set, instead of Dk

0 (i).
From the arguments provided while estimating 𝜀1 (x) above, we deduce that ifPr𝑐1 [(x, 𝜏1) ∉ Dk

1 (i)] > 𝜀(i) ≥ 𝜀1 (i),
then w must satisfy both the copy constraints of Eq. (26) and the constraints of Eq. (25). Hence an extractor that has
access to ⟦a1 (𝑋)⟧, . . . , ⟦ar (𝑋)⟧ can recover a witness w such that (i,x,w) ∈ RROPlonky (the witness is taken to be the
vector formed by the evaluations of each a𝑖 (𝑋) on all of 𝐻).

Now, for 𝑖 = 2, 3 and any (x, 𝜏) ∈ Ds
𝑖−1 (i), notice that by definition it is never the case that

max
𝑚𝑖

Pr
𝑐𝑖
[(x, 𝜏, 𝑚𝑖 , 𝑐𝑖) ∉ Dk

𝑖 (i)] > 𝜀(i) ≥ 𝜀𝑖 (i).

In the case when 𝑖 = 1, if i ∉ LRROPlonky ,i, then also max𝑚1
Pr𝑐1 [(x, 𝑚1, 𝑐1) ∉ Dk

1 (i)] > 𝜀(i) ≥ 𝜀1 (i). This completes
the proof of the lemma. □

Theorem 4.10. Let F be a finite field, 𝐷 ⊆ F∗ a smooth multiplicative subgroup of F of order 2𝑛, and 𝐻 a subgroup of
𝐷 of order n. Let 𝑚 ≥ 3, 𝛿 = 1 − √𝜌 − 𝜂 for some 𝜂 ∈ (0,√𝜌/2𝑚), and let Plonky2hIOP be the hIOP obtained from
OPlonky(𝛿) after compiling it with the Batched FRI protocol (see Definition 6.2). Then Plonky2hIOP is RBR sound
and has RBR knowledge. For each i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t) and all 𝑞 ≥ 1, the error in both cases is given by

𝜀
OPlonky
rbr

(i, 𝑞) =max

{︄(︃
𝜀𝑖 (i)
2𝜂
√
𝜌

)︃
𝑖∈[3]

, 𝜀bFRIrbr (F, 𝐷, 𝜌, 𝛿, 𝑁, 𝑞)
}︄
,

where 𝑁 is the total number of codewords that are batched together in the batched FRI protocol, 𝜀bFRIrbr is the RBR
soundness error of 𝜀bFRIrbr (which equals its RBR knowledge error, see Theorem 5.11) and

𝜀1 (i) :=
(︃
3n(r′ + u)
|F|

)︃t
, 𝜀2 (i) :=

(︃
|P | + (s + 2)t − 1

|F|

)︃t
, 𝜀3 (i) := max{deg(𝑃 𝑗) 𝑗∈[| P |] , u + 1}

n

|K \ 𝐷 | .

Proof. This is a direct consequence of combining Lemma 4.9 and Theorem 4.6. □

In Appendix C we discuss an a natural variation of OPlonky which is significantly less sound than the actual
protocol.

7.3.1 Turning Plonky2hIOP into a SNARK

Next, we apply the BCS construction to Plonky2hIOP and Theorem 3.15, proving that the final non-interactive succinct
argument Plonky2 is an argument of knowledge.

Corollary 7.6. Let F be a finite field, 𝐻 ⊆ F∗ a smooth multiplicative subgroup of F of order 2𝑛, let 𝛿 = 1 − √𝜌 − 𝜂
for some 𝜂 > 0. Let Plonky2 be the non-interactive succinct argument resulting of applying the BCS constriction
on Plonky2hIOP. Then for each i = (P,Q, 𝐻, 𝜎,PI, r, r′, ℓ, t), random oracle query bound 𝑄 ∈ N, random oracle
H : {0, 1}∗ → {0, 1}𝜅 , and all 𝑞 ≥ 1, Plonky2 has both adaptive soundness and adaptive knowledge soundness error

𝜀
OPlonky
fs

(i, 𝑄, 𝜅, 𝑞) = 𝑄 · 𝜀OPlonky
rbr

(i, 𝑞) + 3(𝑄2 + 1)
2𝜅

.

Proof. Follows directly from apply Theorem 3.15 to Theorem 4.10. □

56

7.3.2 Redshift, TurboPlonk, and Plonk

Next we briefly discuss how Plonk [GWC19], TurboPlonk [GW], Redshift [KPV22], and Plonky2 [Polb] are related to
OPlonky(𝛿),Plonky2hIOP, and how their relations compare to RROPlonky.

When it comes to the relations, to recover Plonk’s and Redshift’s relation, it suffices to specialize RROPlonky so that
|P | = 1, r = r′ = 3, ℓ = 5, and

𝑃1 = 𝑃1 (𝑋1, 𝑋2, 𝑋3, 𝑌1, 𝑌2, 𝑌3, 𝑍1, . . . , 𝑍5) = 𝑍1𝑋1 + 𝑍2𝑋2 + 𝑍3𝑋3 + 𝑍4𝑋1𝑋2 + 𝑍5.

Additionally, TurboPlonk’s relation can be recovered by setting r = r′. Finally, as mentioned earlier, Plonky2’s relation
is essentially RROPlonky. We note that as far as we are aware this is the first work formalizing it.

Plonk can be seen as being built on top of a 0-correlated IOP. Such correlated IOP is a particular instance of our
OPlonky(0). As before, it suffices to take r = r′ = 3 and t = 1, ℓ = 5. Note that Plonk is later is compiled into succinct
argument using the KZG commitment scheme. Hence, at that point, Plonk departs from our scheme.

While Redshift uses the same relation as Plonk and is very similar to our OPlonky(𝛿) and Plonky2hIOP, it does
not technically fit our framework. This is mainly because Redshift does not use an oracle (or an IOP in the compiled
version) for 𝛿-correlated agreement. Instead, it checks individually that certain maps are 𝛿-close to a Reed-Solomon
code. Additionally, the shape of these maps is slightly different. In any case, Redshift could be fit in a framework similar
to ours, but it is unclear how one could obtain security bounds similar to the ones our framework provides.

Plonky2 is essentially a non-interactive succinct argument instantiation of OPlonky(𝛿)compiled. We note that Plonky2
performs some low level implementation choices that we do not consider in this work, for example the usage of Merkle
caps instead of Merkle trees (in the BCS construction).

Finally, it does not make sense to speak about a TurboPlonk as an IOP, as TurboPlonk is vaguely defined.

8 Conclusions and Open Problems
In this work, we formalized the FS-security of FRI and Plonk-like protocols. Our results on Plonk-like protocols cover
multiple variants, some of which are already in production. There are other protocols that are amenable to our general
framework for correlated IOP’s, e.g., ethSTARK [Sta23] and RISC Zero [Tea23]. We leave as future work to perform a
RBR soundness/knowledge and FS analysis of these.

Our generalization OPlonky of IOPs using Plonk-like arithmetization along with a protocol for low-degree testing
(specifically, FRI) does not address KZG-based Plonk-like schemes. Compiling a 0-correlated IOP with RBR soundness
and knowledge using other commitment schemes and the FS-security of such schemes remain open problems.

Acknowledgements
Alexander R. Block was supported by DARPA under Contract No. HR00112020022 and No. HR00112020025. Albert
Garreta was supported by the Ethereum Foundation’s grant FY23-0885. Jonathan Katz was supported by NSF award
CNS-2154705 and by DARPA under Contract No. HR00112020025. Justin Thaler was supported by NSF CAREER
award CCF-1845125 and DARPA under Contract No. HR00112020022. Pratyush Ranjan Tiwari was partly supported
by NSF CNS-1814919 and a Security and Privacy research award from Google to Matthew Green. Michał Zając
was supported by the Ethereum Foundation’s grant FY23-0885. The views, opinions, findings, conclusions and/or
recommendations expressed in this material are those of the authors and should not be interpreted as reflecting the
position or policy of DARPA or the United States Government, and no official endorsement should be inferred.

57

References
[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification to signatures

via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In Lars R.
Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer, Heidelberg,
April / May 2002. doi:10.1007/3-540-46035-7_28.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round interactive
proofs. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages
113–142. Springer, Heidelberg, November 2022. doi:10.1007/978-3-031-22318-1_5.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115. IEEE
Computer Society Press, October 2001. doi:10.1109/SFCS.2001.959885.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security
and Privacy, pages 315–334. IEEE Computer Society Press, May 2018. doi:10.1109/SP.2018.00020.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.
doi:10.4230/LIPIcs.ICALP.2018.14.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https:
//eprint.iacr.org/2018/046.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg,
May 2016. doi:10.1007/978-3-662-49896-5_12.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public randomness source. IACR
Cryptol. ePrint Arch., page 1015, 2015.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller. Arya: Nearly linear-time
zero-knowledge proofs for correct program execution. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 595–626. Springer, 2018.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems: extended abstract. In Robert D. Kleinberg, editor,
ITCS 2013, pages 401–414. ACM, January 2013. doi:10.1145/2422436.2422481.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity gaps
for reed-solomon codes. Cryptology ePrint Archive, Paper 2020/654, 2020. Full version of the same
work published at FOCS 2020. DOI: https://doi.org/10.1109/FOCS46700.2020.00088. URL:
https://eprint.iacr.org/2020/654.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rĳmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Heidelberg, May 2019.
doi:10.1007/978-3-030-17653-2_4.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016. doi:10.1007/978-3-662-53644-5_2.

58

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1109/FOCS46700.2020.00088
https://eprint.iacr.org/2020/654
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2

[BDG+13] Nir Bitansky, Dana Dachman-Soled, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, Adriana López-Alt,
and Daniel Wichs. Why “Fiat-Shamir for proofs” lacks a proof. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 182–201. Springer, Heidelberg, March 2013. doi:10.1007/978-3-642-36594-2_
11.

[BEG+94] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the correctness
of memories. Algorithmica, 12:225–244, 1994.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_24.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling outside
the box improves soundness. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 5:1–5:32. LIPIcs,
January 2020. doi:10.4230/LIPIcs.ITCS.2020.5.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case reductions for the
distance to a code. In Rocco A. Servedio, editor, 33rd Computational Complexity Conference, CCC 2018,
June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 24:1–24:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.24.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643. Springer, Heidelberg, December 2012.
doi:10.1007/978-3-642-34961-4_38.

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable computation using multiple
provers. Cryptology ePrint Archive, Report 2014/846, 2014. https://eprint.iacr.org/2014/846.

[CBBZ22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-time
prover and high-degree custom gates. Cryptology ePrint Archive, Report 2022/1355, 2022. https:
//eprint.iacr.org/2022/1355.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019. doi:10.1145/3313276.3316380.

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation intractability
from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rĳmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.
doi:10.1007/978-3-319-78381-9_4.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994. doi:10.1007/3-540-48658-5_19.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004. doi:10.1145/1008731.1008734.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the quantum random
oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS,
pages 1–29. Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-36033-7_1.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with
streaming interactive proofs. In Shafi Goldwasser, editor, ITCS 2012, pages 90–112. ACM, January 2012.
doi:10.1145/2090236.2090245.

59

https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.4230/LIPIcs.ITCS.2020.5
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.1007/978-3-642-34961-4_38
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1145/2090236.2090245

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive
proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_
27.

[DMWG23] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak fiat-shamir attacks on modern proof
systems. Cryptology ePrint Archive, Paper 2023/691, 2023. https://eprint.iacr.org/2023/691.
URL: https://eprint.iacr.org/2023/691.

[Dus] Dusk Network. Plonkup. https://github.com/dusk-network/plonkup. Accessed May 24, 2023.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. doi:10.1007/3-540-47721-7_12.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm. In 44th FOCS,
pages 102–115. IEEE Computer Society Press, October 2003. doi:10.1109/SFCS.2003.1238185.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs
for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM
Press, May 2008. doi:10.1145/1374376.1374396.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. doi:10.1137/0218012.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the algebraic group model.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 64–93,
Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-84252-9_3.

[GW] Ariel Gabizon and Zachary J. Williamson. The turbo-plonk program syntax for specify-
ing snark programs. https://docs.zkproof.org/pages/standards/accepted-workshop3/
proposal-turbo_plonk.pdf. Accessed May 23, 2023.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Paper 2020/315, 2020. https://eprint.iacr.org/2020/315. URL:
https://eprint.iacr.org/2020/315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953.

[Hab22] Ulrich Haböck. A summary on the FRI low degree test. Cryptology ePrint Archive, Report 2022/1216,
2022. https://eprint.iacr.org/2022/1216.

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions (or: One-way
product functions and their applications). In Mikkel Thorup, editor, 59th FOCS, pages 850–858. IEEE
Computer Society Press, October 2018. doi:10.1109/FOCS.2018.00085.

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via list-recoverable codes (or:
parallel repetition of GMW is not zero-knowledge). In Samir Khuller and Virginia Vassilevska Williams,
editors, 53rd ACM STOC, pages 750–760. ACM Press, June 2021. doi:10.1145/3406325.3451116.

[Hol19] Justin Holmgren. On round-by-round soundness and state restoration attacks. Cryptology ePrint Archive,
Report 2019/1261, 2019. https://eprint.iacr.org/2019/1261.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM
STOC, pages 723–732. ACM Press, May 1992. doi:10.1145/129712.129782.

60

https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2023/691
https://github.com/dusk-network/plonkup
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-030-84252-9_3
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1216
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1145/3406325.3451116
https://eprint.iacr.org/2019/1261
https://doi.org/10.1145/129712.129782

[KPV22] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent SNARKs from
list polynomial commitments. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 1725–1737. ACM Press, November 2022. doi:10.1145/3548606.3560657.

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of Fiat-
Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402
of LNCS, pages 224–251. Springer, Heidelberg, August 2017. doi:10.1007/978-3-319-63715-0_8.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_11.

[L2B] L2BEAT. L2beat total value locked. https://l2beat.com/scaling/tvl. Accessed May 22, 2023.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

[Lip89] Richard J Lipton. Fingerprinting sets. Princeton University, Department of Computer Science, 1989.

[Lip90] Richard J Lipton. Efficient checking of computations. In Annual Symposium on Theoretical Aspects of
Computer Science, pages 207–215. Springer, 1990.

[Mat] Matter Labs. zksync 2.0: Hello ethereum! https://blog.matter-labs.io/
zksync-2-0-hello-ethereum-ca48588de179. Accessed May 24, 2023.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press,
November 2019. doi:10.1145/3319535.3339817.

[Mer] Ralph Merkle. Secrecy, authentication, and public key systems.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society
Press, November 1994. doi:10.1109/SFCS.1994.365746.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000. doi:
10.1137/S0097539795284959.

[Min] Mina. Mina book: Background on plonk. https://o1-labs.github.io/proof-systems/plonk/
overview.html. Accessed May 24, 2023.

[=ni] =nil; Foundation. Circuit definition library for =nil; foundation’s cryptography suite. https://github.
com/NilFoundation/zkllvm-blueprint. Accessed May 24, 2023.

[Pola] Polygon Labs. Fri verification procedures. https://wiki.polygon.technology/docs/miden/user_
docs/stdlib/crypto/fri/. Accessed May 23, 2023.

[Polb] Polygon Zero Team. Plonky2: Fast recursive arguments with plonk and fri. https://github.com/
mir-protocol/plonky2/tree/main/plonky2. URL: https://github.com/mir-protocol/
plonky2/tree/main/plonky2.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May 1996.
doi:10.1007/3-540-68339-9_33.

[PW18] Cécile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s entropy. Cryptography and
Communications, 10(1):211–233, 2018.

61

https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-642-17373-8_11
https://l2beat.com/scaling/tvl
https://doi.org/10.1145/146585.146605
https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://o1-labs.github.io/proof-systems/plonk/overview.html
https://o1-labs.github.io/proof-systems/plonk/overview.html
https://github.com/NilFoundation/zkllvm-blueprint
https://github.com/NilFoundation/zkllvm-blueprint
https://wiki.polygon.technology/docs/miden/user_docs/stdlib/crypto/fri/
https://wiki.polygon.technology/docs/miden/user_docs/stdlib/crypto/fri/
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://doi.org/10.1007/3-540-68339-9_33

[Rab83] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci., 27(2):256–267, 1983.
doi:10.1016/0022-0000(83)90042-9.

[RR20] Noga Ron-Zewi and Ron D. Rothblum. Local proofs approaching the witness length [extended abstract]. In
61st FOCS, pages 846–857. IEEE Computer Society Press, November 2020. doi:10.1109/FOCS46700.
2020.00083.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial
and Applied Mathematics, 8(2):300–304, 1960. arXiv:https://doi.org/10.1137/0108018, doi:
10.1137/0108018.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
704–737. Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_25.

[Sta] StarkWare Industries. Starkex documentation: Customers and their deployment contract addresses.
https://docs.starkware.co/starkex/deployments-addresses.html. Accessed May 22, 2023.

[Sta23] StarkWare. ethstark documentation v1.2. Cryptology ePrint Archive, Paper 2021/582, 2023. https:
//eprint.iacr.org/2021/582. URL: https://eprint.iacr.org/2021/582.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems for succinct arguments.
Cryptology ePrint Archive, Paper 2023/552, 2023. https://eprint.iacr.org/2023/552. URL:
https://eprint.iacr.org/2023/552.

[Suc] Succinct Labs. gnark-plonky2-verifier. https://github.com/succinctlabs/
gnark-plonky2-verifier. Accessed May 24, 2023.

[Tea23] RISC Zero Team. Risc zero’s proof system for a zkvm, 2023. Github repository. URL: https:
//github.com/risc0/risc0.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 71–89. Springer, Heidelberg, August 2013.
doi:10.1007/978-3-642-40084-1_5.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. https://people.cs.georgetown.edu/
jthaler/ProofsArgsAndZK.html, 2022. Manuscript draft.

[Wik21] Douglas Wikström. Special soundness in the random oracle model. Cryptology ePrint Archive, Report
2021/1265, 2021. https://eprint.iacr.org/2021/1265.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient zkSNARKs
without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE Computer
Society Press, May 2018. doi:10.1109/SP.2018.00060.

[ZGK+18] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou.
vram: Faster verifiable ram with program-independent preprocessing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 908–925. IEEE, 2018.

62

https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1109/FOCS46700.2020.00083
https://doi.org/10.1109/FOCS46700.2020.00083
http://arxiv.org/abs/https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1007/978-3-030-56877-1_25
https://docs.starkware.co/starkex/deployments-addresses.html
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2023/552
https://eprint.iacr.org/2023/552
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/risc0/risc0
https://github.com/risc0/risc0
https://doi.org/10.1007/978-3-642-40084-1_5
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://eprint.iacr.org/2021/1265
https://doi.org/10.1109/SP.2018.00060

A Concrete Security Analysis of Non-interactive FRI
In this section, we focus on the concrete security achieved by compiling the FRI IOPP with the BCS transformation
in the random oracle model; for ease of presentation, we readily refer to this protocol as FS-FRI in this section. We
do this by analyzing the tradeoffs between round-by-round soundness of FRI under provable and conjectured security,
the number of random oracle queries 𝑄, and the non-interactive soundness error 𝜀FRIfs−q. The goal of this analysis is to
provide a methodology for analyzing the above tradeoffs when using FS-FRI in practice; for example, how does one set
the parameters of FRI (i.e., field size, message length, code rate, etc.) to achieve soundness error 𝜀FRIfs−q = 2−𝜈 when an
attacker can make 𝑄 queries to the random oracle (i.e., roughly the number of hashes an attacker can perform)? We
hope this methodology is useful for those looking to use FRI in practice by being able to set targets for 𝑄 and 𝜈 then test
out what FRI parameters are secure, or vice versa (setting FRI parameters and target 𝑄 and seeing what 𝜈 is achievable).

To begin, recall that from Theorems 3.15 and 4.1, the soundness error of FS-FRI is given by

𝜀FRIfs−q = 𝑄 · 𝜀FRIrbr +
3(𝑄2 + 1)

2𝜅
,

where 𝜅 is the output length of the random oracle (in bits) and 𝜀FRIrbr is the round-by-round soundness error of the FRI
IOPP. Given the above equation, we analyze the tradeoffs between 𝜀FRIrbr , 𝑄, and a target 𝜈 by analyzing the following
constraints:

𝑄 · 𝜀FRIrbr ≤
2−𝜈

2
(32)

3(𝑄2 + 1)
2𝜅

≤ 2−𝜈

2
. (33)

So long as the above constraints are satisfied, then we have 𝜀FRIfs−q ≤ 2−𝜈 for a 𝑄-query adversary.12
We break down our analysis into two parts. In the first part (Appendix A.2), we set targets for the soundness error 𝜈

and the FRI parameters F, 𝑘 , and 𝜌 and analyze: (1) the upper bound on the number of RO queries 𝑄 given by Eq. (33);
and (2) for various settings of 𝑄 less than or equal to the the computed upper bound, whether or not the constraint in
Eq. (32) is satisfiable or not. The satisfiability of Eq. (32) for fixed values of 𝜈, F, 𝑘 , 𝜌, and 𝑄 depends on how 𝜀FRIrbr is
computed (i.e., either via provable security or conjectured security). In the second part (Appendix A.3), we examine
FRI parameters F, 𝑘 , 𝜌, and 𝛿 used today in several projects and analyze what values of 𝜈 are achievable under certain
fixed values of 𝑄.

For both parts of our analysis, we also obtain bounds on the number of verifier queries ℓ (whenever possible)
and analyze the size of the non-interactive proofs produced under these parameters, given in kilobytes or megabytes.
Additionally, we focus on non-batched FRI. This is done for simplicity since:

• there is variation as to the number of polynomials that different projects choose to batch together;

• for both variants of Batched FRI, batching increases the proof sizes by only (roughly) an additive factor proportional
to the number of batched polynomials (i.e., Batched FRI amortizes well); and

• communication-saving Batched FRI has round-by-round soundness error roughly 𝑡 times larger than non-Batched
FRI or non-communication saving Batched FRI (i.e., it has worse RBR soundness error).

A.1 Proof Sizes of FS-FRI
We first begin by giving an analysis of the proof sizes of FS-FRI. As a reminder, FS-FRI is the non-interactive protocol
obtained by compiling the FRI IOPP with the BCS transformation (Theorem 3.15). We remark that this version of
FS-FRI may or may not be the non-interactive version of FRI used in practice, as there are many optimizations that can
be made to reduce concrete proof sizes. We do not take into consideration any of these optimizations; for example,
Merkle capping, which shortens the length of Merkle authentication paths at the cost of increasing commitment size.

12Note that we are assuming that even finding a single collision in the random oracle is a security failure. However, we are unaware of any attack
against FRI that can exploit a single random oracle collision.

63

Thus our proof size analyses are overestimates; we believe that the proof sizes here can be reduced by roughly 33% via
optimizations used in practice.

Examining Algorithm 1 after compiling it with BCS via Merkle hashing, we can clearly determine the proof sizes
for FS-FRI. Let 𝜅 be the output length of the random oracleH , let F be a finite field, let 𝐿0 be the evaluation domain of
size 2𝑛, let 𝑑0 = 2𝑘 be the degree bound, and let ℓ be the number of times the verifier repeats the Query Phase of FRI.
Now first consider an intermediate version of FS-FRI, where instead of using the random oracle to compute verifier
challenges and queries, there is still interaction with the verifier for its challenges. In particular, the prover sends Merkle
roots of its various oracles to the verifier and responds to verifier queries to these oracles with Merkle authentication
paths. We refer to this protocol as FRI-ARG. In this case, the transcript of the interaction consists of the following.

• During the Folding Phase:

– Merkle roots 𝑀0, 𝑀1, . . . , 𝑀𝑘−1 and field element 𝐺𝑘 sent by the prover; and
– Field elements 𝑥0, 𝑥1, . . . , 𝑥𝑘−1 sent by the verifier.

• During the Query Phase:

– Field elements 𝑠0,1, . . . , 𝑠0,ℓ sent by the verifier; and
– Field elements 𝑞𝑖, 𝑗 , 𝑞′𝑖, 𝑗 and Merkle authentication paths 𝜋𝑖, 𝑗 , 𝜋′𝑖, 𝑗 sent by the prover for 𝑖 ∈ {0, 1, . . . , 𝑘 −1}

and 𝑗 ∈ [ℓ].

The size of this transcript is the proof size. From the above derivation, we have a transcript that consists of

• 𝑘 + ℓ + 2𝑘ℓ + 1 field elements;

• 𝑘 hashes of size 𝜅; and

• 2𝑘ℓ Merkle authentication paths.

The size of the Merkle authentication paths differs for each 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}. In particular, Merkle root 𝑀𝑖 is
constructed with |𝐿𝑖 | = 2𝑛−𝑖 many leaves, and thus the Merkle authentication paths 𝜋𝑖, 𝑗 and 𝜋′

𝑖, 𝑗
consist of 𝑛 − 𝑖 + 1

hashes of size 𝜅 for all 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} and 𝑗 ∈ [ℓ]. Thus the total number of hashes given by all the Merkle
authentication paths is

2ℓ
𝑘−1∑︂
𝑖=0

𝑛 − 𝑖 + 1 = 2ℓ
𝑛+1∑︂

𝑖=𝑛−𝑘+2
𝑖 = 2ℓ

(︄
𝑛+1∑︂
𝑖=1

𝑖 −
𝑛−𝑘+1∑︂
𝑖=1

𝑖

)︄
= 2ℓ

(︃
(𝑛 + 1) (𝑛 + 2)

2
− (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

2

)︃
= ℓ

(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
.

Thus our total proof size for FRI-ARG is

• 𝑘 + ℓ + 2𝑘ℓ + 1 field elements; and

• 𝑘 + ℓ ·
(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
hashes of size 𝜅.

Now when we compile FRI-ARG into a non-interactive argument via Fiat-Shamir, the proof only consists of
messages sent by the prover, and the verifier messages are obtained via the random oracle. This means that the 𝑘 + ℓ
verifier messages in F are not included in the non-interactive proof. Again assuming a random oracleH with 𝜅 bits of
output, the non-interactive proof consists of

• 2𝑘ℓ + 1 field elements (i.e., the prover’s responses to the verifier queries and 𝐺𝑘); and

• 𝑘 + ℓ ·
(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
hashes of size 𝜅.

64

A.1.1 Batched FRI Proof Sizes

While we do not consider Batched FRI in our security analyses, we provide an analysis of the Batched FRI proof sizes for
completeness. For Batched FRI with 𝑡 polynomials batched together, the above proof now includes 𝑡 additional Merkle
roots of length 𝜅 for each of these polynomials, 𝑡 additional field elements obtained from the verifier for batching these
polynomials, and 2ℓ𝑡 additional field elements and Merkle authentication paths for each of these polynomials during the
query phase. Each of these Merkle authentication paths consist of 𝑛 + 1 hashes of size 𝜅. Thus for FS-Batched-FRI, our
total proof size is

• 𝑘 + ℓ + 2ℓ𝑘 + 2ℓ𝑡 + 𝑡 + 1 field elements; and

• 𝑘 + ℓ ·
(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
+ 𝑡

(︁
1 + 2ℓ(𝑛 + 1)

)︁
hashes of size 𝜅.

Again compiling Batched FRI into a non-interactive argument, the proof only consists of prover messages and all
verifier messages are derived via the random oracle and the prover messages. This gives us a total proof size of

• 2ℓ(𝑘 + 𝑡) + 1 field elements; and

• 𝑘 + ℓ ·
(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
+ 𝑡

(︁
1 + 2ℓ(𝑛 + 1)

)︁
hashes of size 𝜅.

A.2 Part 1: Targeting Various Soundness Errors for FS-FRI
We turn to the first part of our analysis. That is, we set various targets for 𝜈, fix the parameters F, 𝑘 , and 𝜌 of FRI, and
analyze both the upper bound on 𝑄 given by Eq. (33) and whether or not Eq. (32) is satisfiable for certain fixing of 𝑄
within the upper bound. We perform this analysis with respect to provable security (Corollary 4.3) and conjectured
security (Conjectures 5.12 and 5.14).

Now notice that the constraint given by Eq. (33) is independent of the round-by-round soundness. Thus under this
constraint, we can upper bound the number of queries 𝑄 as

3(𝑄2 + 1)
2𝜅

≤ 1

2𝜈+1

𝑄2 ≤ 2𝜅−𝜈−1

3
− 1

𝑄 ≤
⌊︄(︃
2𝜅−𝜈−1

3
− 1

)︃1/2⌋︄
. (34)

Thus Eq. (34) is an upper bound on the number of RO queries any adversary is allowed to make when attacking the
non-interactive proof system. Note we take the floor as the upper bound since the number of queries is an integer. Given
this upper bound on 𝑄, we can turn to analyzing the other constraint given by Eq. (32):

𝑄 · 𝜀FRIrbr ≤
1

2𝜈+1

𝜀FRIrbr ≤
1

𝑄 · 2𝜈+1 . (35)

Now Eq. (35) give us an upper bound for 𝜀FRIrbr .
Given these constraints, we can now turn to our main goal of setting various values of 𝜈, F, 𝑘 , and 𝜌, and analyzing

𝑄 and 𝜀FRIrbr . For the remainder of this section, we consider the following parameters:

• Hashes of length 𝜅 = 256;

• Finite fields F of bit length log(|F|) ∈ {128, 192, 256};

• Message lengths 𝑑0 = 2𝑘 such that 𝑘 ∈ {10, 15, 20, 25};

• Rates 𝜌 ∈ {1/2, 1/4, 1/8, 1/16}; and

65

• 𝜈 ∈ {20, 40, 60, 80} (i.e., soundness error at most 2−𝜈 versus a 𝑄-query adversary).

In the subsequent sections, all computations were performed in Sagemath version 9.5 using 1000 bits of precision,
running on Ubuntu 22.04.2 LTS on Windows 10 x86_64 on an AMD Ryzen 7 3700X with 16GB of memory. See
Appendix A.5 for the annotated Sagemath code.

A.2.1 Provable Security

We first analyze the above parameters in the context of the provable RBR soundness of FRI given by Theorem 4.1.
Before we begin, we first obtain constraints on 𝜀FRIrbr under provable security guarantees. Towards this, recall that

𝜀FRIrbr = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 |F|
, (1 − 𝛿)ℓ

}︃
.

Combining this expression with Eq. (35), we have the constraint

max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 |F|
, (1 − 𝛿)ℓ

}︃
≤ 1

𝑄 · 2𝜈+1 .

This yields the additional constraints

(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 |F|
≤ 1

𝑄 · 2𝜈+1 (36)

(1 − 𝛿)ℓ ≤ 1

𝑄 · 2𝜈+1 . (37)

Recall that in FRI, we have |𝐿0 | = 2𝑘/𝜌, so under our fixing of 𝑘 and 𝜌, the parameter |𝐿0 | is fixed as well. For provable
security, we always consider maximal 𝛿, i.e., we set 𝛿 = 1 − √𝜌(1 + 1/(2𝑚)). Moreover, 𝑚 is the Johnson proximity
parameter and must satisfy 𝑚 ≥ 3.

Notice that for any fixed values of 𝑄 and 𝜈, the constraint of Eq. (37) is always satisfiable by taking ℓ =⌈︁
log(1/(𝑄 · 2𝜈+1))/log(1 − 𝛿)

⌉︁
. Notice also that for fixed values of 𝑄 and 𝜈, the constraint of Eq. (36) gives an upper

bound on the Johnson proximity parameter 𝑚. Given that 𝑚 ≥ 3 is required and Eq. (36) gives an upper bound on
𝑚, it is possible that under certain parameters F, 𝑘 , 𝜌, 𝑄, and 𝜈 we have 𝑚 < 3. In this case, we conclude that these
parameters are infeasible.

Given the above constraints, we can now turn to analyzing what provable security guarantees are achievable under
the setting of parameters we are considering (i.e., the parameters given at the end of Appendix A.2). In what follows,
we fix particular values of 𝜈 ∈ {40, 60, 80, 100}, analyze the query upper bound via Eq. (34), then analyze whether or
not Eq. (36) is satisfiable under certain fixings of 𝑄.
Remark A.1. In what follows, we are only discussing feasibility of parameters with respect to the parameters outlined at
the end of Appendix A.2. It is entirely possible to find other feasible parameters for different settings of 𝑘 , log |F|, and
𝜌. We do not exhaustively consider all such feasible parameters and only consider our setting of parameters as a guide
to get a quick grasp on how certain settings of parameters behave.

To begin, for 𝜈 ∈ {40, 60, 80, 100}, the constraint of Eq. (34) along with 𝜅 = 256 gives us the following ranges for
𝑄, which we present as powers of two for ease of presentation:

2116 ≤ 𝑄 < 2117 𝜈 = 20

2106 ≤ 𝑄 < 2107 𝜈 = 40

296 ≤ 𝑄 < 297 𝜈 = 60

286 ≤ 𝑄 < 287 𝜈 = 80

Thus, in our parameter analysis below, we consider two cases: 𝑄 = 260 and 𝑄 = 280. We choose 280 as our largest query
bound since it is smaller than all of the bounds above, and thus can be used to compare parameters across different
settings of 𝜈. The bound 𝑄 = 260 is chosen simply as another point of comparison for when the hashing power of an
adversary is lower.

66

Soundness Error 𝜈 = 20. In Figure 3, we present our parameter analysis for target soundness error 𝜈 = 20. Examining
the given table, we can conclude that for target soundness error 𝜈 = 20 and query range𝑄 ∈ {260, 280}, all the parameters
we consider are feasible for both 192-bit and 256-bit finite fields, whereas none of the parameters we consider were
feasible in the case of 128-bit finite fields.

𝜈 = 20 Corollary 4.3
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.293, 163, 840 KiB) (0.500, 82, 474 KiB) (0.646, 55, 352 KiB) (0.750, 41, 288 KiB)

15 (0.293, 163, 1.60 MiB) (0.500, 82, 903 KiB) (0.646, 55, 657 KiB) (0.750, 41, 529 KiB)
20 (0.293, 163, 2.64 MiB) (0.500, 82, 1.43 MiB) (0.646, 55, 1.02 MiB) (0.750, 41, 833 KiB)
25 (0.292, 163, 3.92 MiB) (0.499, 82, 2.10 MiB) (0.645, 55, 1.49 MiB) (0.749, 41, 1.17 MiB)

256 10 (0.293, 163, 866 KiB) (0.500, 82, 487 KiB) (0.646, 55, 361 KiB) (0.750, 41, 295 KiB)
15 (0.293, 163, 1.64 MiB) (0.500, 82, 923 KiB) (0.646, 55, 670 KiB) (0.750, 41, 538 KiB)
20 (0.293, 163, 2.69 MiB) (0.500, 82, 1.45 MiB) (0.646, 55, 1.04 MiB) (0.750, 41, 846 KiB)
25 (0.293, 163, 3.98 MiB) (0.500, 82, 2.13 MiB) (0.646, 55, 1.51 MiB) (0.750, 41, 1.19 MiB)

𝜈 = 20
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.293, 203, 1.02 MiB) (0.500, 102, 590 KiB) (0.646, 68, 435 KiB) (0.750, 51, 358 KiB)

15 (0.292, 203, 2.00 MiB) (0.499, 102, 1.10 MiB) (0.645, 68, 813 KiB) (0.749, 51, 657 KiB)
20 (0.290, 205, 3.32 MiB) (0.497, 102, 1.77 MiB) (0.644, 68, 1.27 MiB) (0.747, 51, 1.01 MiB)
25 (0.285, 209, 5.02 MiB) (0.492, 104, 2.66 MiB) (0.639, 69, 1.87 MiB) (0.742, 52, 1.49 MiB)

256 10 (0.293, 203, 1.05 MiB) (0.500, 102, 605 KiB) (0.646, 68, 446 KiB) (0.750, 51, 366 KiB)
15 (0.293, 203, 2.04 MiB) (0.500, 102, 1.12 MiB) (0.646, 68, 829 KiB) (0.750, 51, 669 KiB)
20 (0.293, 203, 3.35 MiB) (0.500, 102, 1.81 MiB) (0.646, 68, 1.29 MiB) (0.750, 51, 1.03 MiB)
25 (0.293, 203, 4.96 MiB) (0.500, 102, 2.65 MiB) (0.646, 68, 1.87 MiB) (0.750, 51, 1.48 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 3: Numerical calculations for soundness error 𝜈 = 20 via Corollary 4.3, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 𝑚 ≥ 3 is violated for Johnson proximity parameter 𝑚.

Soundness Error 𝜈 = 40. In Figure 4, we present our parameter analysis for target soundness error 𝜈 = 40. Examining
the given table, we can conclude that for target soundness error 𝜈 = 40 and query upper bound 𝑄 = 260, all the
parameters we consider are feasible for both 192-bit and 256-bit finite fields. For 𝑄 = 280 queries, all parameters we
consider are feasible for 256-bit finite fields, and only 2 of 16 parameter settings are infeasible for 192-bit finite fields.
Note that none of the parameters we consider were feasible for 128-bit finite fields.

67

𝜈 = 40 Corollary 4.3
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.293, 203, 1.02 MiB) (0.500, 102, 590 KiB) (0.646, 68, 435 KiB) (0.750, 51, 358 KiB)

15 (0.292, 203, 2.00 MiB) (0.499, 102, 1.10 MiB) (0.645, 68, 813 KiB) (0.749, 51, 657 KiB)
20 (0.290, 205, 3.32 MiB) (0.497, 102, 1.77 MiB) (0.644, 68, 1.27 MiB) (0.747, 51, 1.01 MiB)
25 (0.285, 209, 5.02 MiB) (0.492, 104, 2.66 MiB) (0.639, 69, 1.87 MiB) (0.742, 52, 1.49 MiB)

256 10 (0.293, 203, 1.05 MiB) (0.500, 102, 605 KiB) (0.646, 68, 446 KiB) (0.750, 51, 366 KiB)
15 (0.293, 203, 2.04 MiB) (0.500, 102, 1.12 MiB) (0.646, 68, 829 KiB) (0.750, 51, 669 KiB)
20 (0.293, 203, 3.35 MiB) (0.500, 102, 1.81 MiB) (0.646, 68, 1.29 MiB) (0.750, 51, 1.03 MiB)
25 (0.293, 203, 4.96 MiB) (0.500, 102, 2.65 MiB) (0.646, 68, 1.87 MiB) (0.750, 51, 1.48 MiB)

𝜈 = 40
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.290, 245, 1.23 MiB) (0.497, 122, 705 KiB) (0.644, 82, 525 KiB) (0.747, 61, 429 KiB)

15 (0.285, 250, 2.46 MiB) (0.492, 124, 1.33 MiB) (0.639, 83, 992 KiB) (0.742, 62, 799 KiB)
20 (0.272, 265, 4.29 MiB) (0.479, 129, 2.24 MiB) (0.624, 86, 1.60 MiB) (0.725, 65, 1.29 MiB)
25 (0.234, 315, 7.57 MiB) (0.438, 146, 3.73 MiB)

256 10 (0.293, 243, 1.26 MiB) (0.500, 122, 724 KiB) (0.646, 81, 531 KiB) (0.750, 61, 438 KiB)
15 (0.293, 243, 2.45 MiB) (0.500, 122, 1.34 MiB) (0.646, 81, 987 KiB) (0.750, 61, 801 KiB)
20 (0.293, 243, 4.01 MiB) (0.500, 122, 2.16 MiB) (0.646, 81, 1.53 MiB) (0.750, 61, 1.23 MiB)
25 (0.293, 243, 5.93 MiB) (0.500, 122, 3.17 MiB) (0.646, 81, 2.23 MiB) (0.750, 61, 1.77 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 4: Numerical calculations for soundness error 𝜈 = 40 via Corollary 4.3, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 𝑚 ≥ 3 is violated for Johnson proximity parameter 𝑚.

Soundness Error 𝜈 = 60. In Figure 5, we present our parameter analysis for target soundness error 𝜈 = 60. Examining
the given table, we can conclude that for target soundness error 𝜈 = 60 and query bound 𝑄 = 260, nearly all parameters
are feasible for 192-bit and 256-bit finite fields, save for 𝑘 = 25 with rates 𝜌 = 1/8, 1/16 when the field is 192-bits. For
𝑄 = 280, all parameters are feasible for 256-bit finite fields, and most parameters are infeasible for 192-bit finite fields,
including all parameter settings for 𝑘 = 20 and 𝑘 = 25, and two parameter settings for 𝑘 = 15. Note again that none of
the parameters we consider were feasible for 128-bit finite fields.

68

𝜈 = 60 Corollary 4.3
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.290, 245, 1.23 MiB) (0.497, 122, 705 KiB) (0.644, 82, 525 KiB) (0.747, 61, 429 KiB)

15 (0.285, 250, 2.46 MiB) (0.492, 124, 1.33 MiB) (0.639, 83, 992 KiB) (0.742, 62, 799 KiB)
20 (0.272, 265, 4.29 MiB) (0.479, 129, 2.24 MiB) (0.624, 86, 1.60 MiB) (0.725, 65, 1.29 MiB)
25 (0.234, 315, 7.57 MiB) (0.438, 146, 3.73 MiB)

256 10 (0.293, 243, 1.26 MiB) (0.500, 122, 724 KiB) (0.646, 81, 531 KiB) (0.750, 61, 438 KiB)
15 (0.293, 243, 2.45 MiB) (0.500, 122, 1.34 MiB) (0.646, 81, 987 KiB) (0.750, 61, 801 KiB)
20 (0.293, 243, 4.01 MiB) (0.500, 122, 2.16 MiB) (0.646, 81, 1.53 MiB) (0.750, 61, 1.23 MiB)
25 (0.293, 243, 5.93 MiB) (0.500, 122, 3.17 MiB) (0.646, 81, 2.23 MiB) (0.750, 61, 1.77 MiB)

𝜈 = 60
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.272, 308, 1.55 MiB) (0.479, 150, 867 KiB) (0.624, 100, 640 KiB) (0.725, 76, 534 KiB)

15 (0.234, 367, 3.61 MiB) (0.438, 170, 1.83 MiB)
256 10 (0.293, 283, 1.47 MiB) (0.500, 142, 843 KiB) (0.646, 95, 623 KiB) (0.750, 71, 510 KiB)

15 (0.293, 283, 2.85 MiB) (0.500, 142, 1.56 MiB) (0.646, 95, 1.13 MiB) (0.750, 71, 932 KiB)
20 (0.293, 283, 4.66 MiB) (0.500, 142, 2.51 MiB) (0.646, 95, 1.80 MiB) (0.750, 71, 1.43 MiB)
25 (0.292, 283, 6.91 MiB) (0.499, 142, 3.68 MiB) (0.646, 95, 2.61 MiB) (0.749, 71, 2.06 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 5: Numerical calculations for soundness error 𝜈 = 60 via Corollary 4.3, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 𝑚 ≥ 3 is violated for Johnson proximity parameter 𝑚.

Soundness Error 𝜈 = 80. In Figure 6, we present our parameter analysis for target soundness error 𝜈 = 112.
Examining the given table, again all parameters remain feasible for 256-bit finite fields. However, the feasible parameters
for 192-bit finite fields continue to shrink. For 𝑄 = 260, 10 out of 16 parameter settings are infeasible, and for 𝑄 = 280,
none of the parameter settings are feasible. This matches the trend with the prior tables that increasing 𝜈 decreases the
number of feasible parameters. As with the previous values of 𝜈, none of the parameters we consider were feasible for
128-bit finite fields in this case.

69

𝜈 = 80 Corollary 4.3
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.272, 308, 1.55 MiB) (0.479, 150, 867 KiB) (0.624, 100, 640 KiB) (0.725, 76, 534 KiB)

15 (0.234, 367, 3.61 MiB) (0.438, 170, 1.83 MiB)
256 10 (0.293, 283, 1.47 MiB) (0.500, 142, 843 KiB) (0.646, 95, 623 KiB) (0.750, 71, 510 KiB)

15 (0.293, 283, 2.85 MiB) (0.500, 142, 1.56 MiB) (0.646, 95, 1.13 MiB) (0.750, 71, 932 KiB)
20 (0.293, 283, 4.66 MiB) (0.500, 142, 2.51 MiB) (0.646, 95, 1.80 MiB) (0.750, 71, 1.43 MiB)
25 (0.292, 283, 6.91 MiB) (0.499, 142, 3.68 MiB) (0.646, 95, 2.61 MiB) (0.749, 71, 2.06 MiB)

𝜈 = 80
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
256 10 (0.293, 323, 1.68 MiB) (0.500, 162, 962 KiB) (0.646, 108, 709 KiB) (0.750, 81, 582 KiB)

15 (0.292, 323, 3.25 MiB) (0.499, 162, 1.78 MiB) (0.646, 108, 1.29 MiB) (0.749, 81, 1.04 MiB)
20 (0.291, 325, 5.36 MiB) (0.498, 162, 2.87 MiB) (0.645, 108, 2.04 MiB) (0.748, 81, 1.63 MiB)
25 (0.288, 329, 8.03 MiB) (0.495, 164, 4.25 MiB) (0.641, 109, 2.99 MiB) (0.745, 82, 2.38 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 6: Numerical calculations for soundness error 𝜈 = 80 via Corollary 4.3, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 𝑚 ≥ 3 is violated for Johnson proximity parameter 𝑚.

Conclusions. Under provable security, the above tables highlight that larger fields, smaller messages, and larger rates
(i.e., 𝜌 is larger) are necessary for feasibility of parameters under various settings of 𝜈. None of the parameters we
considered were feasible for 128-bit finite fields, though there may be finite fields between 128 and 192-bits in size
where parameters are feasible (similarly for between 192 and 256-bit finite fields). As a reminder, a setting of parameters
(|F|, 𝑘, 𝜌, 𝑄, 𝜈) was infeasible if Eq. (36) implied 𝑚 < 3 for |𝐿0 | = 2𝑘/𝜌, violating the constraint that 𝑚 ≥ 3.

A.2.2 Conjectured Security Under Conjecture 5.12

We next analyze the parameters we consider in the context of the conjectured RBR soundness given by Conjecture 5.12.
To begin, under this conjecture, the RBR soundness error of FRI is given by

𝜀FRIrbr = max

{︃
|𝐿0 |𝑐2

(𝜌𝜂)𝑐1 · |F| , (1 − 𝛿)
ℓ

}︃
,

where 𝑐1, 𝑐2 ≥ 1 are constants and 𝜂 > 0 such that 𝛿 ≤ 1 − 𝜌 − 𝜂. In our analysis, we assume our finite fields are of
prime order, i.e., they are specified by a {128, 192, 256}-bit prime, respectively. This allows us to consider the best
possible setting of 𝑐1 = 𝑐2 = 1 under this conjecture. Combining this setting with the above equation and with Eq. (33),
we obtain the constraints

|𝐿0 |
𝜌𝜂 |F| ≤

1

𝑄 · 2𝜈+1 (38)

(1 − 𝛿)ℓ ≤ 1

𝑄 · 2𝜈+1 . (39)

Here again we set |𝐿0 | = 2𝑘/𝜌 and assume 𝛿 is maximal, i.e., 𝛿 = 1 − 𝜌 − 𝜂.
Notice again that for any fixed values of 𝑄 and 𝜈, constraint Eq. (39) is always satisfiable by taking ℓ =⌈︁

log(1/(𝑄 · 2𝜈+1))/log(1 − 𝛿)
⌉︁
. Notice also that for fixed 𝜈, 𝑄, 𝜌, and F, Eq. (38) gives us a lower bound on the value

𝜂. In particular, it tells us that 𝜂 ≥ (|𝐿0 | ·𝑄 · 2𝜈+1)/(𝜌 · |F|). Moreover, 𝜂 > 0 must be satisfied, and 𝜂 ≤ 𝜌 must also be
satisfied since 𝛿 ≤ 1. If the lower bound on 𝜂 given by Eq. (38) violates 𝜂 ≤ 𝜌 (i.e., it gives us 𝜂 > 𝜌), then we conclude
that these parameters are infeasible.

70

Given the above constraints, we can now turn to analyzing what security guarantees are achievable under
Conjecture 5.12 and the parameters we are considering (i.e., the parameters given at the end of Appendix A.2. In what
follows, we fix particular values of 𝜈 ∈ {20, 40, 60, 80}, analyze the query upper bound via Eq. (34), then analyze
whether or not Eq. (38) is satisfiable under certain fixings of 𝑄. As before, we have the following ranges for 𝑄:

2116 ≤ 𝑄 < 2117 𝜈 = 20

2106 ≤ 𝑄 < 2107 𝜈 = 40

296 ≤ 𝑄 < 297 𝜈 = 60

286 ≤ 𝑄 < 287 𝜈 = 80

And again in this section we consider 𝑄 = 260 and 𝑄 = 280 in our parameter analyses.

Soundness Error 𝜈 = 20. In Figure 7, we present our parameter analysis for target soundness error 𝜈 = 20. Examining
the table, we obtain our first settings of parameters that are feasible for 128-bit finite fields. In fact, for 𝑄 = 260, all
parameter settings are feasible for all finite field sizes. For 𝑄 = 280, all parameter settings are feasible for 192-bit and
256-bit finite fields, whereas 7 out of 16 parameter settings for 128-bit finite fields are infeasible.

71

𝜈 = 20 Conjecture 5.12
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 82, 410 KiB) (0.750, 41, 230 KiB) (0.875, 28, 175 KiB) (0.937, 21, 144 KiB)

15 (0.500, 82, 807 KiB) (0.750, 41, 442 KiB) (0.875, 28, 328 KiB) (0.937, 21, 266 KiB)
20 (0.500, 82, 1.30 MiB) (0.750, 41, 718 KiB) (0.875, 28, 525 KiB) (0.937, 21, 420 KiB)
25 (0.500, 82, 1.94 MiB) (0.750, 41, 1.03 MiB) (0.875, 28, 766 KiB) (0.937, 21, 607 KiB)

192 10 (0.500, 82, 423 KiB) (0.750, 41, 237 KiB) (0.875, 28, 179 KiB) (0.937, 21, 147 KiB)
15 (0.500, 82, 826 KiB) (0.750, 41, 452 KiB) (0.875, 28, 335 KiB) (0.937, 21, 271 KiB)
20 (0.500, 82, 1.33 MiB) (0.750, 41, 730 KiB) (0.875, 28, 534 KiB) (0.937, 21, 427 KiB)
25 (0.500, 82, 1.97 MiB) (0.750, 41, 1.05 MiB) (0.875, 28, 777 KiB) (0.937, 21, 616 KiB)

256 10 (0.500, 82, 435 KiB) (0.750, 41, 243 KiB) (0.875, 28, 184 KiB) (0.937, 21, 151 KiB)
15 (0.500, 82, 846 KiB) (0.750, 41, 461 KiB) (0.875, 28, 341 KiB) (0.937, 21, 276 KiB)
20 (0.500, 82, 1.35 MiB) (0.750, 41, 743 KiB) (0.875, 28, 543 KiB) (0.937, 21, 433 KiB)
25 (0.500, 82, 2.00 MiB) (0.750, 41, 1.06 MiB) (0.875, 28, 788 KiB) (0.937, 21, 624 KiB)

𝜈 = 20
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 102, 510 KiB) (0.750, 51, 287 KiB) (0.875, 34, 212 KiB) (0.936, 26, 179 KiB)

15 (0.499, 102, 1004 KiB) (0.746, 52, 561 KiB) (0.859, 36, 422 KiB)
20 (0.469, 111, 1.76 MiB) (0.625, 72, 1.23 MiB)

192 10 (0.500, 102, 526 KiB) (0.750, 51, 295 KiB) (0.875, 34, 218 KiB) (0.937, 26, 183 KiB)
15 (0.500, 102, 1.00 MiB) (0.750, 51, 562 KiB) (0.875, 34, 406 KiB) (0.937, 26, 335 KiB)
20 (0.500, 102, 1.65 MiB) (0.750, 51, 909 KiB) (0.875, 34, 648 KiB) (0.937, 26, 528 KiB)
25 (0.500, 102, 2.45 MiB) (0.750, 51, 1.30 MiB) (0.875, 34, 943 KiB) (0.937, 26, 762 KiB)

256 10 (0.500, 102, 542 KiB) (0.750, 51, 303 KiB) (0.875, 34, 223 KiB) (0.937, 26, 187 KiB)
15 (0.500, 102, 1.03 MiB) (0.750, 51, 574 KiB) (0.875, 34, 414 KiB) (0.937, 26, 341 KiB)
20 (0.500, 102, 1.68 MiB) (0.750, 51, 925 KiB) (0.875, 34, 659 KiB) (0.937, 26, 536 KiB)
25 (0.500, 102, 2.49 MiB) (0.750, 51, 1.32 MiB) (0.875, 34, 957 KiB) (0.937, 26, 772 KiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 7: Numerical calculations for soundness error 𝜈 = 20 via Conjecture 5.12, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 0 < 𝜂 < 𝜌 is violated for parameter 𝜂.

Soundness Error 𝜈 = 40. In Figure 8, we present our parameter analysis for target soundness error 𝜈 = 40. Examining
the table, we see that less parameters are feasible for 128-bit finite fields than for the case of 𝜈 = 20. For 𝑄 = 260, most
parameters are feasible for 128-bit finite fields, whereas for 𝑄 = 280, none of the parameters are feasible for 128-bit
finite fields. On the plus side, all of the parameter settings we consider are feasible for both 192-bit and 256-bit finite
fields, for both 𝑄 = 260 and 𝑄 = 280.

72

𝜈 = 40 Conjecture 5.12
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 102, 510 KiB) (0.750, 51, 287 KiB) (0.875, 34, 212 KiB) (0.936, 26, 179 KiB)

15 (0.499, 102, 1004 KiB) (0.746, 52, 561 KiB) (0.859, 36, 422 KiB)
20 (0.469, 111, 1.76 MiB) (0.625, 72, 1.23 MiB)

192 10 (0.500, 102, 526 KiB) (0.750, 51, 295 KiB) (0.875, 34, 218 KiB) (0.937, 26, 183 KiB)
15 (0.500, 102, 1.00 MiB) (0.750, 51, 562 KiB) (0.875, 34, 406 KiB) (0.937, 26, 335 KiB)
20 (0.500, 102, 1.65 MiB) (0.750, 51, 909 KiB) (0.875, 34, 648 KiB) (0.937, 26, 528 KiB)
25 (0.500, 102, 2.45 MiB) (0.750, 51, 1.30 MiB) (0.875, 34, 943 KiB) (0.937, 26, 762 KiB)

256 10 (0.500, 102, 542 KiB) (0.750, 51, 303 KiB) (0.875, 34, 223 KiB) (0.937, 26, 187 KiB)
15 (0.500, 102, 1.03 MiB) (0.750, 51, 574 KiB) (0.875, 34, 414 KiB) (0.937, 26, 341 KiB)
20 (0.500, 102, 1.68 MiB) (0.750, 51, 925 KiB) (0.875, 34, 659 KiB) (0.937, 26, 536 KiB)
25 (0.500, 102, 2.49 MiB) (0.750, 51, 1.32 MiB) (0.875, 34, 957 KiB) (0.937, 26, 772 KiB)

𝜈 = 40
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 122, 629 KiB) (0.750, 61, 352 KiB) (0.875, 41, 262 KiB) (0.937, 31, 218 KiB)

15 (0.500, 122, 1.20 MiB) (0.750, 61, 672 KiB) (0.875, 41, 490 KiB) (0.937, 31, 400 KiB)
20 (0.500, 122, 1.97 MiB) (0.750, 61, 1.06 MiB) (0.875, 41, 782 KiB) (0.937, 31, 630 KiB)
25 (0.500, 122, 2.93 MiB) (0.750, 61, 1.56 MiB) (0.875, 41, 1.11 MiB) (0.937, 31, 909 KiB)

256 10 (0.500, 122, 648 KiB) (0.750, 61, 362 KiB) (0.875, 41, 269 KiB) (0.937, 31, 223 KiB)
15 (0.500, 122, 1.23 MiB) (0.750, 61, 686 KiB) (0.875, 41, 500 KiB) (0.937, 31, 407 KiB)
20 (0.500, 122, 2.01 MiB) (0.750, 61, 1.08 MiB) (0.875, 41, 795 KiB) (0.937, 31, 640 KiB)
25 (0.500, 122, 2.98 MiB) (0.750, 61, 1.58 MiB) (0.875, 41, 1.13 MiB) (0.937, 31, 921 KiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 8: Numerical calculations for soundness error 𝜈 = 40 via Conjecture 5.12, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 0 < 𝜂 < 𝜌 is violated for parameter 𝜂.

Soundness Error 𝜈 = 60. In Figure 9, we present our parameter analysis for target soundness error 𝜈 = 60. Examining
the table, we again are in the case where none of the parameters we consider are feasible for 128-bit finite fields.
However, all of the parameters we consider are feasible for both 192-bit and 256-bit finite fields.

73

𝜈 = 60 Conjecture 5.12
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 122, 629 KiB) (0.750, 61, 352 KiB) (0.875, 41, 262 KiB) (0.937, 31, 218 KiB)

15 (0.500, 122, 1.20 MiB) (0.750, 61, 672 KiB) (0.875, 41, 490 KiB) (0.937, 31, 400 KiB)
20 (0.500, 122, 1.97 MiB) (0.750, 61, 1.06 MiB) (0.875, 41, 782 KiB) (0.937, 31, 630 KiB)
25 (0.500, 122, 2.93 MiB) (0.750, 61, 1.56 MiB) (0.875, 41, 1.11 MiB) (0.937, 31, 909 KiB)

256 10 (0.500, 122, 648 KiB) (0.750, 61, 362 KiB) (0.875, 41, 269 KiB) (0.937, 31, 223 KiB)
15 (0.500, 122, 1.23 MiB) (0.750, 61, 686 KiB) (0.875, 41, 500 KiB) (0.937, 31, 407 KiB)
20 (0.500, 122, 2.01 MiB) (0.750, 61, 1.08 MiB) (0.875, 41, 795 KiB) (0.937, 31, 640 KiB)
25 (0.500, 122, 2.98 MiB) (0.750, 61, 1.58 MiB) (0.875, 41, 1.13 MiB) (0.937, 31, 921 KiB)

𝜈 = 60
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 142, 732 KiB) (0.750, 71, 410 KiB) (0.875, 48, 307 KiB) (0.937, 36, 253 KiB)

15 (0.500, 142, 1.40 MiB) (0.750, 71, 782 KiB) (0.875, 48, 574 KiB) (0.937, 36, 464 KiB)
20 (0.500, 142, 2.30 MiB) (0.750, 71, 1.24 MiB) (0.875, 48, 915 KiB) (0.937, 36, 731 KiB)
25 (0.500, 142, 3.41 MiB) (0.750, 71, 1.82 MiB) (0.875, 48, 1.30 MiB) (0.937, 36, 1.03 MiB)

256 10 (0.500, 142, 754 KiB) (0.750, 71, 421 KiB) (0.875, 48, 315 KiB) (0.937, 36, 259 KiB)
15 (0.500, 142, 1.43 MiB) (0.750, 71, 799 KiB) (0.875, 48, 585 KiB) (0.937, 36, 473 KiB)
20 (0.500, 142, 2.34 MiB) (0.750, 71, 1.26 MiB) (0.875, 48, 930 KiB) (0.937, 36, 743 KiB)
25 (0.500, 142, 3.47 MiB) (0.750, 71, 1.84 MiB) (0.875, 48, 1.32 MiB) (0.937, 36, 1.04 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 9: Numerical calculations for soundness error 𝜈 = 60 via Conjecture 5.12, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 0 < 𝜂 < 𝜌 is violated for parameter 𝜂.

Soundness Error 𝜈 = 80. In Figure 10, we present our parameter analysis for target soundness error 𝜈 = 80.
Examining the table, again all of the parameters we consider are infeasible for 128-bit finite fields. For 𝑄 = 260 queries,
all parameters are feasible for both 192-bit and 256-bit finite fields. For 𝑄 = 280, all parameters are feasible for 256-bit
finite fields, and 4 of 16 parameter settings are infeasible for 192-bit finite fields.

74

𝜈 = 80 Conjecture 5.12
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 142, 732 KiB) (0.750, 71, 410 KiB) (0.875, 48, 307 KiB) (0.937, 36, 253 KiB)

15 (0.500, 142, 1.40 MiB) (0.750, 71, 782 KiB) (0.875, 48, 574 KiB) (0.937, 36, 464 KiB)
20 (0.500, 142, 2.30 MiB) (0.750, 71, 1.24 MiB) (0.875, 48, 915 KiB) (0.937, 36, 731 KiB)
25 (0.500, 142, 3.41 MiB) (0.750, 71, 1.82 MiB) (0.875, 48, 1.30 MiB) (0.937, 36, 1.03 MiB)

256 10 (0.500, 142, 754 KiB) (0.750, 71, 421 KiB) (0.875, 48, 315 KiB) (0.937, 36, 259 KiB)
15 (0.500, 142, 1.43 MiB) (0.750, 71, 799 KiB) (0.875, 48, 585 KiB) (0.937, 36, 473 KiB)
20 (0.500, 142, 2.34 MiB) (0.750, 71, 1.26 MiB) (0.875, 48, 930 KiB) (0.937, 36, 743 KiB)
25 (0.500, 142, 3.47 MiB) (0.750, 71, 1.84 MiB) (0.875, 48, 1.32 MiB) (0.937, 36, 1.04 MiB)

𝜈 = 80 Conjecture 5.12
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 162, 835 KiB) (0.750, 81, 468 KiB) (0.875, 54, 346 KiB) (0.937, 41, 288 KiB)

15 (0.500, 162, 1.59 MiB) (0.750, 81, 892 KiB) (0.874, 54, 645 KiB) (0.934, 42, 541 KiB)
20 (0.498, 162, 2.62 MiB) (0.742, 83, 1.44 MiB) (0.844, 61, 1.14 MiB)
25 (0.438, 194, 4.66 MiB)

256 10 (0.500, 162, 860 KiB) (0.750, 81, 481 KiB) (0.875, 54, 354 KiB) (0.937, 41, 295 KiB)
15 (0.500, 162, 1.63 MiB) (0.750, 81, 911 KiB) (0.875, 54, 658 KiB) (0.937, 41, 538 KiB)
20 (0.500, 162, 2.67 MiB) (0.750, 81, 1.43 MiB) (0.875, 54, 1.02 MiB) (0.937, 41, 846 KiB)
25 (0.500, 162, 3.96 MiB) (0.750, 81, 2.10 MiB) (0.875, 54, 1.48 MiB) (0.937, 41, 1.19 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 10: Numerical calculations for soundness error 𝜈 = 80 via Conjecture 5.12, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively; i.e., the
constraint 0 < 𝜂 ≤ 𝜌 is violated for parameter 𝜂.

Conclusions. Under the conjectured security of FRI given in Conjecture 5.12 from [BCI+20], the above tables again
highlight that larger fields, smaller messages, and larger rates are necessary for feasibility of parameters under various
settings of 𝜈. With provable security, none of the parameters we consider were feasible for 128-bit finite fields. In
contrast with provable security, more parameters under Conjecture 5.12 were feasible; moreover, the overall proof sizes
were smaller, the FRI proximity parameter 𝛿 was larger, and the verifier query complexity ℓ was smaller. As a reminder,
in the above analysis, a setting of parameters (|F|, 𝑘, 𝜌, 𝑄, 𝜈) was infeasible if Eq. (38) implied that 𝜈 > 𝜌.

A.2.3 Conjectured Security Under Conjecture 5.14

We conclude our analysis of the parameters we consider in the context of the conjectured RBR soundness given by
Conjecture 5.14. We first remark that Conjecture 5.14 is made specifically about the toy problem; i.e., a slight variant of
FRI where FRI is invoked on a function 𝑔(𝑥) = (𝑓 (𝑥) − 𝛼)/𝑥 for 𝑓 : 𝐿0 → F. Throughout this appendix, for ease of
presentation when referring to the RBR soundness error of “FRI” in the context of this conjecture specifically, we mean
in the round-by-round soundness of this toy problem.

To begin, under this conjecture, the RBR soundness error of FRI is given by

𝜀FRIrbr = max

{︃
1

|F| , 𝜌
ℓ

}︃
,

75

where 𝛿 = 1 − 𝜌 is the FRI proximity parameter. Combining this expression with Eq. (32), we have the constraints

1

|F| ≤
1

𝑄 · 2𝜈+1 ⇐⇒ 𝑄 · 2𝜈+1 ≤ |F| (40)

𝜌ℓ ≤ 1

𝑄 · 2𝜈+1 . (41)

Again here we set |𝐿0 | = 2𝑘/𝜌, so fixing 𝑘 and 𝜌 fixes |𝐿0 | as well.
As in the case of prior sections, for any fixed 𝑄 and 𝜈, the constraint of Eq. (41) is always satisfied by taking

ℓ =
⌈︁
log(1/(𝑄 · 2𝜈+1))/log(𝜌)

⌉︁
. The constraint of Eq. (40) gives us a lower bound on |F| of 𝑄 · 2𝜈+1, so feasibility only

depends on having a sufficiently large field. Notice also that Eq. (40) gives an additional upper bound on 𝑄 as well,
along with the constraint of Eq. (34).

Given these constraints, we can now turn to analyzing what provable security guarantees are achievable under the
setting of parameters we are considering (i.e., the parameters given at the end of Appendix A.2). In what follows, we fix
particular values of 𝜈 ∈ {20, 40, 60, 80} and log |F| ∈ {128, 192, 256} and analyze the feasibility of parameters 𝜌 and 𝑘

for certain values of 𝑄. Again from Eq. (34) and 𝜅 = 256, we have

2116 ≤ 𝑄 < 2117 𝜈 = 20

2106 ≤ 𝑄 < 2107 𝜈 = 40

296 ≤ 𝑄 < 297 𝜈 = 60

286 ≤ 𝑄 < 287 𝜈 = 80

As before, we choose to consider 𝑄 = 260 and 𝑄 = 280 in our calculations. Note that we additionally have the constraint
𝑄 ≤ |F|/2𝜈+1, which may be smaller than 260 or 280. In this case, we consider the parameters as being infeasible and
indicate them appropriately.

Soundness Error 𝜈 = 20. In Figure 11, we present our parameter analysis for target soundness error 𝜈 = 20.
Examining the table, for the first time we have all parameter settings are feasible for all finite field sizes, for both 𝑄 = 260

and 𝑄 = 280 query bounds.

76

𝜈 = 20 Conjecture 5.14
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 81, 405 KiB) (0.750, 41, 230 KiB) (0.875, 27, 169 KiB) (0.938, 21, 144 KiB)

15 (0.500, 81, 797 KiB) (0.750, 41, 442 KiB) (0.875, 27, 316 KiB) (0.938, 21, 266 KiB)
20 (0.500, 81, 1.29 MiB) (0.750, 41, 718 KiB) (0.875, 27, 506 KiB) (0.938, 21, 420 KiB)
25 (0.500, 81, 1.92 MiB) (0.750, 41, 1.03 MiB) (0.875, 27, 739 KiB) (0.938, 21, 607 KiB)

192 10 (0.500, 81, 417 KiB) (0.750, 41, 237 KiB) (0.875, 27, 173 KiB) (0.938, 21, 147 KiB)
15 (0.500, 81, 816 KiB) (0.750, 41, 452 KiB) (0.875, 27, 323 KiB) (0.938, 21, 271 KiB)
20 (0.500, 81, 1.31 MiB) (0.750, 41, 730 KiB) (0.875, 27, 515 KiB) (0.938, 21, 427 KiB)
25 (0.500, 81, 1.95 MiB) (0.750, 41, 1.05 MiB) (0.875, 27, 749 KiB) (0.938, 21, 616 KiB)

256 10 (0.500, 81, 430 KiB) (0.750, 41, 243 KiB) (0.875, 27, 177 KiB) (0.938, 21, 151 KiB)
15 (0.500, 81, 835 KiB) (0.750, 41, 461 KiB) (0.875, 27, 329 KiB) (0.938, 21, 276 KiB)
20 (0.500, 81, 1.34 MiB) (0.750, 41, 743 KiB) (0.875, 27, 523 KiB) (0.938, 21, 433 KiB)
25 (0.500, 81, 1.98 MiB) (0.750, 41, 1.06 MiB) (0.875, 27, 760 KiB) (0.938, 21, 624 KiB)

𝜈 = 20
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 101, 505 KiB) (0.750, 51, 287 KiB) (0.875, 34, 212 KiB) (0.938, 26, 179 KiB)

15 (0.500, 101, 994 KiB) (0.750, 51, 550 KiB) (0.875, 34, 398 KiB) (0.938, 26, 329 KiB)
20 (0.500, 101, 1.60 MiB) (0.750, 51, 893 KiB) (0.875, 34, 638 KiB) (0.938, 26, 520 KiB)
25 (0.500, 101, 2.39 MiB) (0.750, 51, 1.28 MiB) (0.875, 34, 930 KiB) (0.938, 26, 752 KiB)

192 10 (0.500, 101, 521 KiB) (0.750, 51, 295 KiB) (0.875, 34, 218 KiB) (0.938, 26, 183 KiB)
15 (0.500, 101, 1018 KiB) (0.750, 51, 562 KiB) (0.875, 34, 406 KiB) (0.938, 26, 335 KiB)
20 (0.500, 101, 1.63 MiB) (0.750, 51, 909 KiB) (0.875, 34, 648 KiB) (0.938, 26, 528 KiB)
25 (0.500, 101, 2.43 MiB) (0.750, 51, 1.30 MiB) (0.875, 34, 943 KiB) (0.938, 26, 762 KiB)

256 10 (0.500, 101, 536 KiB) (0.750, 51, 303 KiB) (0.875, 34, 223 KiB) (0.938, 26, 187 KiB)
15 (0.500, 101, 1.02 MiB) (0.750, 51, 574 KiB) (0.875, 34, 414 KiB) (0.938, 26, 341 KiB)
20 (0.500, 101, 1.67 MiB) (0.750, 51, 925 KiB) (0.875, 34, 659 KiB) (0.938, 26, 536 KiB)
25 (0.500, 101, 2.47 MiB) (0.750, 51, 1.32 MiB) (0.875, 34, 957 KiB) (0.938, 26, 772 KiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 11: Numerical calculations for soundness error 𝜈 = 20 via Conjecture 5.14, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively.

Soundness Error 𝜈 = 40. In Figure 12, we present our parameter analysis for target soundness error 𝜈 = 40.
Examining the table, we finally have a setting where all of the parameters we consider are feasible for all finite field sizes.

77

𝜈 = 40 Conjecture 5.14
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 101, 505 KiB) (0.750, 51, 287 KiB) (0.875, 34, 212 KiB) (0.938, 26, 179 KiB)

15 (0.500, 101, 994 KiB) (0.750, 51, 550 KiB) (0.875, 34, 398 KiB) (0.938, 26, 329 KiB)
20 (0.500, 101, 1.60 MiB) (0.750, 51, 893 KiB) (0.875, 34, 638 KiB) (0.938, 26, 520 KiB)
25 (0.500, 101, 2.39 MiB) (0.750, 51, 1.28 MiB) (0.875, 34, 930 KiB) (0.938, 26, 752 KiB)

192 10 (0.500, 101, 521 KiB) (0.750, 51, 295 KiB) (0.875, 34, 218 KiB) (0.938, 26, 183 KiB)
15 (0.500, 101, 1018 KiB) (0.750, 51, 562 KiB) (0.875, 34, 406 KiB) (0.938, 26, 335 KiB)
20 (0.500, 101, 1.63 MiB) (0.750, 51, 909 KiB) (0.875, 34, 648 KiB) (0.938, 26, 528 KiB)
25 (0.500, 101, 2.43 MiB) (0.750, 51, 1.30 MiB) (0.875, 34, 943 KiB) (0.938, 26, 762 KiB)

256 10 (0.500, 101, 536 KiB) (0.750, 51, 303 KiB) (0.875, 34, 223 KiB) (0.938, 26, 187 KiB)
15 (0.500, 101, 1.02 MiB) (0.750, 51, 574 KiB) (0.875, 34, 414 KiB) (0.938, 26, 341 KiB)
20 (0.500, 101, 1.67 MiB) (0.750, 51, 925 KiB) (0.875, 34, 659 KiB) (0.938, 26, 536 KiB)
25 (0.500, 101, 2.47 MiB) (0.750, 51, 1.32 MiB) (0.875, 34, 957 KiB) (0.938, 26, 772 KiB)

𝜈 = 40
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 121, 605 KiB) (0.750, 61, 343 KiB) (0.875, 41, 256 KiB) (0.938, 31, 213 KiB)

15 (0.500, 121, 1.16 MiB) (0.750, 61, 658 KiB) (0.875, 41, 480 KiB) (0.938, 31, 392 KiB)
20 (0.500, 121, 1.92 MiB) (0.750, 61, 1.04 MiB) (0.875, 41, 769 KiB) (0.938, 31, 620 KiB)
25 (0.500, 121, 2.86 MiB) (0.750, 61, 1.54 MiB) (0.875, 41, 1.10 MiB) (0.938, 31, 896 KiB)

192 10 (0.500, 121, 624 KiB) (0.750, 61, 352 KiB) (0.875, 41, 262 KiB) (0.938, 31, 218 KiB)
15 (0.500, 121, 1.19 MiB) (0.750, 61, 672 KiB) (0.875, 41, 490 KiB) (0.938, 31, 400 KiB)
20 (0.500, 121, 1.96 MiB) (0.750, 61, 1.06 MiB) (0.875, 41, 782 KiB) (0.938, 31, 630 KiB)
25 (0.500, 121, 2.91 MiB) (0.750, 61, 1.56 MiB) (0.875, 41, 1.11 MiB) (0.938, 31, 909 KiB)

256 10 (0.500, 121, 643 KiB) (0.750, 61, 362 KiB) (0.875, 41, 269 KiB) (0.938, 31, 223 KiB)
15 (0.500, 121, 1.22 MiB) (0.750, 61, 686 KiB) (0.875, 41, 500 KiB) (0.938, 31, 407 KiB)
20 (0.500, 121, 1.99 MiB) (0.750, 61, 1.08 MiB) (0.875, 41, 795 KiB) (0.938, 31, 640 KiB)
25 (0.500, 121, 2.95 MiB) (0.750, 61, 1.58 MiB) (0.875, 41, 1.13 MiB) (0.938, 31, 921 KiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 12: Numerical calculations for soundness error 𝜈 = 40 via Conjecture 5.14, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively.

Soundness Error 𝜈 = 60. In Figure 13, we present our parameter analysis for target soundness error 𝜈 = 60.
Examining the table, we see that in this case all parameters are feasible for 𝑄 = 260, but parameters for 128-bit finite
fields become infeasible for 𝑄 = 280. However, all parameters remain feasible for 𝑄 = 280 and 192-bit or 256-bit finite
fields.

78

𝜈 = 60 Conjecture 5.14
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 121, 605 KiB) (0.750, 61, 343 KiB) (0.875, 41, 256 KiB) (0.938, 31, 213 KiB)

15 (0.500, 121, 1.16 MiB) (0.750, 61, 658 KiB) (0.875, 41, 480 KiB) (0.938, 31, 392 KiB)
20 (0.500, 121, 1.92 MiB) (0.750, 61, 1.04 MiB) (0.875, 41, 769 KiB) (0.938, 31, 620 KiB)
25 (0.500, 121, 2.86 MiB) (0.750, 61, 1.54 MiB) (0.875, 41, 1.10 MiB) (0.938, 31, 896 KiB)

192 10 (0.500, 121, 624 KiB) (0.750, 61, 352 KiB) (0.875, 41, 262 KiB) (0.938, 31, 218 KiB)
15 (0.500, 121, 1.19 MiB) (0.750, 61, 672 KiB) (0.875, 41, 490 KiB) (0.938, 31, 400 KiB)
20 (0.500, 121, 1.96 MiB) (0.750, 61, 1.06 MiB) (0.875, 41, 782 KiB) (0.938, 31, 630 KiB)
25 (0.500, 121, 2.91 MiB) (0.750, 61, 1.56 MiB) (0.875, 41, 1.11 MiB) (0.938, 31, 909 KiB)

256 10 (0.500, 121, 643 KiB) (0.750, 61, 362 KiB) (0.875, 41, 269 KiB) (0.938, 31, 223 KiB)
15 (0.500, 121, 1.22 MiB) (0.750, 61, 686 KiB) (0.875, 41, 500 KiB) (0.938, 31, 407 KiB)
20 (0.500, 121, 1.99 MiB) (0.750, 61, 1.08 MiB) (0.875, 41, 795 KiB) (0.938, 31, 640 KiB)
25 (0.500, 121, 2.95 MiB) (0.750, 61, 1.58 MiB) (0.875, 41, 1.13 MiB) (0.938, 31, 921 KiB)

𝜈 = 60
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 141, 727 KiB) (0.750, 71, 410 KiB) (0.875, 47, 301 KiB) (0.938, 36, 253 KiB)

15 (0.500, 141, 1.39 MiB) (0.750, 71, 782 KiB) (0.875, 47, 562 KiB) (0.938, 36, 464 KiB)
20 (0.500, 141, 2.28 MiB) (0.750, 71, 1.24 MiB) (0.875, 47, 896 KiB) (0.938, 36, 731 KiB)
25 (0.500, 141, 3.39 MiB) (0.750, 71, 1.82 MiB) (0.875, 47, 1.27 MiB) (0.938, 36, 1.03 MiB)

256 10 (0.500, 141, 749 KiB) (0.750, 71, 421 KiB) (0.875, 47, 308 KiB) (0.938, 36, 259 KiB)
15 (0.500, 141, 1.42 MiB) (0.750, 71, 799 KiB) (0.875, 47, 573 KiB) (0.938, 36, 473 KiB)
20 (0.500, 141, 2.32 MiB) (0.750, 71, 1.26 MiB) (0.875, 47, 911 KiB) (0.938, 36, 743 KiB)
25 (0.500, 141, 3.44 MiB) (0.750, 71, 1.84 MiB) (0.875, 47, 1.29 MiB) (0.938, 36, 1.04 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 13: Numerical calculations for soundness error 𝜈 = 60 via Conjecture 5.14, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively.

Soundness Error 𝜈 = 80. In Figure 14, we present our parameter analysis for target soundness error 𝜈 = 80.
Examining the table, we now are in a similar case to our other conjecture where parameters for 128-bit finite fields are
infeasible. We remark, however, that in this case it is due to {260, 280} > |F|/281, which violates the constraint we have
on the query bound. Smaller 𝑄 will reveal more feasibility results for 128-bit finite fields.

79

𝜈 = 80 Conjecture 5.14
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 141, 727 KiB) (0.750, 71, 410 KiB) (0.875, 47, 301 KiB) (0.938, 36, 253 KiB)

15 (0.500, 141, 1.39 MiB) (0.750, 71, 782 KiB) (0.875, 47, 562 KiB) (0.938, 36, 464 KiB)
20 (0.500, 141, 2.28 MiB) (0.750, 71, 1.24 MiB) (0.875, 47, 896 KiB) (0.938, 36, 731 KiB)
25 (0.500, 141, 3.39 MiB) (0.750, 71, 1.82 MiB) (0.875, 47, 1.27 MiB) (0.938, 36, 1.03 MiB)

256 10 (0.500, 141, 749 KiB) (0.750, 71, 421 KiB) (0.875, 47, 308 KiB) (0.938, 36, 259 KiB)
15 (0.500, 141, 1.42 MiB) (0.750, 71, 799 KiB) (0.875, 47, 573 KiB) (0.938, 36, 473 KiB)
20 (0.500, 141, 2.32 MiB) (0.750, 71, 1.26 MiB) (0.875, 47, 911 KiB) (0.938, 36, 743 KiB)
25 (0.500, 141, 3.44 MiB) (0.750, 71, 1.84 MiB) (0.875, 47, 1.29 MiB) (0.938, 36, 1.04 MiB)

𝜈 = 80
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.500, 161, 830 KiB) (0.750, 81, 468 KiB) (0.875, 54, 346 KiB) (0.938, 41, 288 KiB)

15 (0.500, 161, 1.59 MiB) (0.750, 81, 892 KiB) (0.875, 54, 645 KiB) (0.938, 41, 529 KiB)
20 (0.500, 161, 2.60 MiB) (0.750, 81, 1.41 MiB) (0.875, 54, 1.01 MiB) (0.938, 41, 833 KiB)
25 (0.500, 161, 3.87 MiB) (0.750, 81, 2.07 MiB) (0.875, 54, 1.46 MiB) (0.938, 41, 1.17 MiB)

256 10 (0.500, 161, 855 KiB) (0.750, 81, 481 KiB) (0.875, 54, 354 KiB) (0.938, 41, 295 KiB)
15 (0.500, 161, 1.62 MiB) (0.750, 81, 911 KiB) (0.875, 54, 658 KiB) (0.938, 41, 538 KiB)
20 (0.500, 161, 2.65 MiB) (0.750, 81, 1.43 MiB) (0.875, 54, 1.02 MiB) (0.938, 41, 846 KiB)
25 (0.500, 161, 3.93 MiB) (0.750, 81, 2.10 MiB) (0.875, 54, 1.48 MiB) (0.938, 41, 1.19 MiB)

log |F| 𝑘 (𝛿, ℓ, |𝜋 |)

Figure 14: Numerical calculations for soundness error 𝜈 = 80 via Conjecture 5.14, where 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the
number of repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a malicious
prover, and |𝜋 | is the proof size. Parameters log |F| ∈ {128, 192, 256} and 𝑘 ∈ {10, 15, 20, 25} are considered. Grayed
out entries and/or entirely omitted rows indicate infeasibility of parameters for that entry or row, respectively.

Conclusions. Under the conjectured security of FRI given in Conjecture 5.14, the above tables again highlight that
larger fields, smaller messages, and larger rates are necessary for feasibility of parameters under various settings of 𝜈. In
contrast with both provable security given under Corollary 4.3 and conjectured security under Conjecture 5.12, the
more aggressive conjecture of Conjecture 5.14 allows us to have some feasible parameters for 128-bit finite fields for
lower values of 𝜈. As a reminder, parameters we considered in this section were infeasible if Eq. (40) was violated for
selections of (F, 𝑄, 𝜈).

A.3 Part 2: Soundness Under FRI Parameters From Various Projects
We now turn to the second part of our analysis. That is, we analyze various parameter settings for FRI, set various
targets for 𝑄, and analyze the achievable soundness error 𝜈. As a reminder, 𝑄 is (an upper bound on) the number of
random oracle queries an attacker is allowed to make when attacking FS-FRI. In this section, we are therefore interested
in analyzing how Eqs. (32) and (33) upper bound the parameter 𝜈. Rewriting these equations, we have the following
constraints:

𝜈 ≤
⌊︄
log

(︄
1

2 · 𝑄 · 𝜀FRI
rbr

)︄⌋︄
(42)

𝜈 ≤
⌊︃
log

(︃
2𝜅−1

3 · (𝑄2 + 1)

)︃⌋︃
. (43)

Therefore in what follows, we always set 𝜈 = min{Eq. (42), Eq. (43)} in our analysis.

80

For provable security, recall that Corollary 4.3 gives us

𝜀FRIrbr = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 |F|
, (1 − 𝛿)ℓ

}︃
.

Therefore combining this expression with Eq. (42) gives us

𝜈 ≤
⌊︃
log

(︃
1

2𝑄
·min

{︃
3𝜌3/2 |F|

(𝑚 + 1/2)7 · |𝐿0 |2
,

1

(1 − 𝛿)ℓ

}︃)︃⌋︃
. (44)

Next, the security bounds given by Conjecture 5.12 for constants 𝑐1 = 𝑐2 = 1 and parameter 0 < 𝜂 < 𝜌 give us RBR
soundness error

𝜀FRIrbr = max

{︃
|𝐿0 |
𝜌𝜂 |F| , (1 − 𝛿)

ℓ

}︃
.

Thus combining this expression with Eq. (42) gives us

𝜈 ≤
⌊︃
log

(︃
1

2𝑄
·min

{︃
𝜌𝜂 |F|
|𝐿0 |

,
1

(1 − 𝛿)ℓ

}︃)︃⌋︃
. (45)

Finally, the security bounds given by Conjecture 5.14 give us RBR soundness error

𝜀FRIrbr = max

{︃
1

|F| , 𝜌
ℓ

}︃
.

Again combining the above expression with Eq. (42) gives us

𝜈 ≤
⌊︃
log

(︃
1

2𝑄
·min

{︃
|F|, 1

𝜌ℓ

}︃)︃⌋︃
. (46)

We use the constraints Eqs. (44) to (46), along with Eq. (43), to analyze several settings of parameters found in other
works.

A.3.1 Parameters from RISC Zero [Tea23]

The RISC Zero [Tea23] project uses FRI in their system. Examining their codebase reveals the following setting of
parameters for FRI:

• log |F| = 124;

• 𝜌 = 1/4;

• ℓ = 50; and

• 𝑘 = 24 and 𝑑0 = 224.13

These parameters target soundness error 2−100 for the interactive FRI protocol. We analyze the achievable soundness
error of these parameters in the non-interactive FRI proof.

As with prior sections, we analyze the above parameters with respect to provable and conjectured security. Using
Eqs. (44) to (46), we analyze the achievable soundness error 𝜈 for provable and conjectured security, respectively, versus
𝑄 = 220, 240, 260, 280 query adversaries. Note that RISC Zero does not give any values for the Johnson proximity
parameter 𝑚 (needed for Corollary 4.3), so we set 𝑚 = 3, which is the minimum possible value for 𝑚, and note that any
larger 𝑚 only results in smaller 𝜈. Furthermore, RISC Zero does not specify parameter 𝜂 (needed for Conjecture 5.12),

13Note that 224 is a hardcoded upper bound on the polynomial degree 𝑑0.

81

so we simply set 𝜂 = 𝜌/6 to provide a comparison with 𝑚 = 3 considered for the provable security case. We summarize
our findings in Figure 15.

log |F| = 124, 𝜌 = 1/4, 𝑘 = 24
𝑄 = 220 𝑄 = 240 𝑄 = 260 𝑄 = 280

ℓ = 50, |𝜋 | = 1.17 MiB
Corollary 4.3

𝜈 = 17 𝛿 = 0.41667𝑚 = 3
𝛿 = 1 − √𝜌(1 + 1/(2𝑚))

Conjecture 5.12
𝜈 = 44 𝜈 = 24 𝜈 = 4 𝛿 = 0.70833𝜂 = 𝜌/6

𝛿 = 1 − 𝜌 − 𝜂
Conjecture 5.14

𝜈 = 79 𝜈 = 59 𝜈 = 39 𝜈 = 19 𝛿 = 3/4
𝛿 = 1 − 𝜌

Figure 15: Soundness error calculations for FRI parameters in [Tea23] in the context of non-interactive FRI. The top left
entry of the table indicates the fixed parameters. Note that [Tea23] does not give a Johnson proximity parameter 𝑚, so
we choose 𝑚 = 3 as any larger 𝑚 only makes 𝜈 in the above calculations smaller. Each row corresponds to calculations
with respect to Corollary 4.3 and Conjectures 5.12 and 5.14. 𝛿 is the FRI proximity parameter, ℓ is the verifier query
complexity, and |𝜋 | is the proof size of non-interactive argument under these parameters. Each 𝜈 entry of the table
indicates the achievable soundness error versus a 𝑄-query adversary for 𝑄 given in each column. The grayed out entry
indicates 𝜈 ≤ 0.

A.3.2 Parameters from Plonky2 [Polb]

Examining the Plonky2 system [Polb], we extract fixed parameters log |F| = 128 and 𝑁 = 232. They have two
configurations with (𝜌, ℓ) = (1/2, 84) and (𝜌, ℓ) = (1/8, 28) for rate 𝜌 and verifier query complexity ℓ, giving 𝑘 = 31
and 𝑘 = 29, respectively. Both of these configuration target soundness error at most 2−100, which includes 16-bits of
grinding, where the prover computes a 16-bit proof of work on the computed non-interactive proof as an additional part
of the proof. In particular, this translates to a target soundness error of 2−84 for the FRI part of the non-interactive proof
(not including the grinding). However, the parameters used to achieve soundness error 2−84 for the FRI part of the proof
are chosen with respect to the interactive FRI soundness error.

As with prior sections, we analyze the above parameters with respect to provable and conjectured security for the
non-interactive FRI proof. Using Eqs. (44) to (46), we analyze the achievable soundness error 𝜈 for provable and
conjectured security, respectively, versus a 𝑄 = 220, 240, 260, 280 query adversary. Note that Plonky2 does not give
any values for the Johnson proximity parameter 𝑚 (needed for Corollary 4.3), so we set 𝑚 = 3, which is the minimum
possible value for 𝑚, and note that any larger 𝑚 only results in smaller 𝜈. Furthermore, Plonky2 does not specify
parameter 𝜂 (needed for Conjecture 5.12), so we simply set 𝜂 = 𝜌/6 to provide a comparison with 𝑚 = 3 considered for
the provable security case. We summarize our findings in Figures 16 and 17.

82

log |F| = 128, 𝜌 = 1/2, 𝑘 = 31
𝑄 = 220 𝑄 = 240 𝑄 = 260 𝑄 = 280

ℓ = 84, |𝜋 | = 2.94 MiB
Corollary 4.3

𝜈 = 2 𝛿 = 0.17504𝑚 = 3
𝛿 = 1 − √𝜌(1 + 1/(2𝑚))

Conjecture 5.12
𝜈 = 38 𝜈 = 18 𝛿 = 0.41667𝜂 = 𝜌/6

𝛿 = 1 − 𝜌 − 𝜂
Conjecture 5.14

𝜈 = 63 𝜈 = 43 𝜈 = 23 𝜈 = 3 𝛿 = 1/2
𝛿 = 1 − 𝜌

Figure 16: Soundness error calculations for one set of FRI parameters in [Polb] in the context of non-interactive FRI.
The top left entry of the table indicates the fixed parameters. Note that [Polb] does not give a Johnson proximity
parameter 𝑚, so we choose 𝑚 = 3 as any larger 𝑚 only makes 𝜈 in the above calculations smaller. Each row corresponds
to calculations with respect to Corollary 4.3 and Conjectures 5.12 and 5.14. 𝛿 is the FRI proximity parameter, ℓ is the
verifier query complexity, and |𝜋 | is the proof size of non-interactive argument under these parameters. Each 𝜈 entry of
the table indicates the achievable soundness error versus a 𝑄-query adversary for 𝑄 given in each column. The grayed
out entry indicates 𝜈 ≤ 0.

log |F| = 128, 𝜌 = 1/8, 𝑘 = 29
𝑄 = 220 𝑄 = 240 𝑄 = 260 𝑄 = 280

ℓ = 28, |𝜋 | = 990 KiB
Corollary 4.3

𝜈 = 14 𝛿 = 0.58752𝑚 = 3
𝛿 = 1 − √𝜌(1 + 1/(2𝑚))

Conjecture 5.12
𝜈 = 34 𝜈 = 14 𝛿 = 0.93748𝜂 = 𝜌/6

𝛿 = 1 − 𝜌 − 𝜂
Conjecture 5.14

𝜈 = 63 𝜈 = 43 𝜈 = 23 𝜈 = 3 𝛿 = 7/8
𝛿 = 1 − 𝜌

Figure 17: Soundness error calculations for another set of FRI parameters in [Polb] in the context of non-interactive
FRI. The top left entry of the table indicates the fixed parameters. Note that [Polb] does not give a Johnson proximity
parameter 𝑚, so we choose 𝑚 = 3 as any larger 𝑚 only makes 𝜈 in the above calculations smaller. Each row corresponds
to calculations with respect to Corollary 4.3 and Conjectures 5.12 and 5.14. 𝛿 is the FRI proximity parameter, ℓ is the
verifier query complexity, and |𝜋 | is the proof size of non-interactive argument under these parameters. Each 𝜈 entry of
the table indicates the achievable soundness error versus a 𝑄-query adversary for 𝑄 given in each column. The grayed
out entries indicate 𝜈 ≤ 0.

A.4 Final Remarks
In Part 1 of our analysis, we consider various targets for the non-interactive soundness error 2−𝜈 of FS-FRI versus𝑄-query
adversaries under some fixed parameters of FS-FRI (F, 𝑘 , and 𝜌). Given these targets and fixed parameters, we calculate
upper bounds on the query complexity 𝑄 of a non-interactive adversary attacking FS-FRI, which roughly translates to
the hashing power of an adversary attacking FS-FRI when instantiating the random oracle with a cryptographic hash
function. Given the upper bound on 𝑄, we consider various values for 𝑄 and compute the feasibility of achieving
soundness error 2−𝜈 versus a 𝑄-query adversary under the fixed parameters F, 𝑘 , and 𝜌. For our parameter choices,
our analysis shows that for provable security of FRI (Corollary 4.3), all parameter choices are infeasible when we
consider 128-bit finite fields, most parameter choices are infeasible for 192-bit finite fields, and nearly all parameter
choices are feasible for 256-bit finite fields; in this case, parameters were infeasible if Eq. (36) implied that 𝑚 < 3
for Johnson proximity parameter 𝑚. Under the first conjectured security of FRI (Conjecture 5.12), the case is nearly

83

identical to the provable security case, save for more parameter choices are feasible for 192-bit finite fields; in this
case, parameters were infeasible if Eq. (38) implied that parameter 𝜂 ≥ 𝜌 or 𝜂 ≤ 0. In the case of the most aggressive
security conjecture (Conjecture 5.14), parameters become feasible for 128-bit finite fields, but only for small values of
𝜈 (i.e., large soundness error), and all parameter choices are feasible for 192-bit and 256-bit finite fields; in this case,
parameters were infeasible if |F| < 𝑄 · 2𝜈+1 for finite field F and query bound 𝜈.

We remark that it is highly likely there exist parameters (e.g., smaller messages, 200-bit finite fields, etc.) where
certain parameters that were infeasible in our setting become feasible. Thus we can offer the following methodology
for choosing FRI parameters. First, for the non-interactive FRI protocol, one can set a desired non-interactive success
probability 𝜈 of a bounded-query adversary. Given 𝜈, one can calculate an upper bound on 𝑄, the adversarial power
(i.e., the number of queries it can make to the random oracle). Given this upper bound, one can choose a some value 𝑄
less than or equal to the computed upper bound as a target (i.e., protect your system only against adversaries that can
make at most 2100 hashes). With all these parameters, one can set target parameters of FRI F, 𝑘 , and 𝜌 and then check if
such parameters are feasible under the assumptions one is making about FRI (i.e., provable versus conjectured security).

In Part 2 of our analysis, we analyze what soundness errors 𝜈 are achievable for parameters of FRI that are deployed
in practice. Our calculations of 𝜈 are with respect to considering adversaries that can make 𝑄 ∈ {220, 240, 260, 280}
random oracle queries when attacking FS-FRI. All parameters from [Polb, Tea23] we considered have large provable
soundness errors (i.e., small 𝜈), even versus only a 220-query adversary. In the case of Conjecture 5.12, the same
parameters from [Polb, Tea23] have large soundness errors, with the best 𝜈 = 44 being only achieved when 𝑄 = 220

(which gets worse for larger 𝑄). The parameters of [Polb] and [Tea23] achieve their targeted soundness errors under the
strongest conjecture, Conjecture 5.14.

We stress that all of our analyses above are specifically for FS-FRI, the non-interactive random oracle proof obtained
by compiling the FRI IOPP (Algorithm 1) with the BCS transformation (Theorem 3.15, [BCS16]). As such, our
analysis is self-contained in the context of FS-FRI only: all restrictions, bounds, and calculations only apply to this
protocol. When considering protocols that use FRI as a sub-protocol (e.g., in Section 7 we do this, and many other
projects do this including [Polb, Tea23, BGKS20]), we stress that additional constraints may be introduced on the FRI
parameters. Hence our calculations above should not be considered as a black-box when analyzing FRI when it is used
as a sub-protocol, as the constraints we outlined above could be changed. In fact, it is possible that end-to-end analyses
of protocols that invoke FRI as a sub-protocol may make the resulting provable soundness bounds even worse than what
we have showcased here. Thus it is important to perform careful end-to-end security analyses of protocols that invoke
FRI (and other protocols in general) in order to accurately assess the security of an overall system, and set parameters
appropriately.

A.5 Sagemath Code
The Sagemath code we used to evaluate the parameters we consider throughout this section can be found at the following
Github link: https://github.com/alexander-r-block/FRI-Parameter-Testing-Sagemath.

84

https://github.com/alexander-r-block/FRI-Parameter-Testing-Sagemath

B 𝛿-Correlated hIOPs and Reed-Solomon Encoded IOPs
As we mentioned, our notion of 𝛿-correlated hIOP is related to that of Reed-Solomon (RS) encoded IOP’s [BCR+19,
COS20]. The main similarities and differences are:

• When 𝛿 = 0, 𝛿-correlated IOPs can be seen as a subclass of RS-encoded IOPs, modulo changing superficial
formalization details (some of which we discuss next). This is because the two checks the verifier performs in a
𝛿-correlated IOP pass if and only if certain rational constraints (in the terminology of RS-encoded IOPs) are
satisfied.
The converse is, however, not true: for 𝛿 = 0, RS-encoded IOPs are more general than 𝛿-correlated IOPs,
since they allow to use more varied sets of rational constraints. We emphasize the term “sets” here, because,
individually, a rational constraint 𝑄(𝑋) = 𝑝(𝑋, 𝑓1 (𝑋), . . . , 𝑓𝑚 (𝑋))/𝑞(𝑋) (following the notation in Definition
4.1 of [COS20]) can always be written in the “0-correlated compatible form”

𝑄(𝑋) −𝑄(𝑧)
𝑋 − 𝑧

for an arbitrary 𝑧. Then the latter is a low degree polynomial if and only if 𝑄(𝑋) is.
However, the set of “rational constraints” in a 0-correlated IOP stem from using the DEEP-ALI method on a set
of polynomial constraints. In general, RS-encoded IOPs are more expressive than that.

• In our terminology, RS-encoded IOP’s only consider the case 𝛿 = 0, while we allow for 𝛿 > 0, which in our
context was useful in formalization tasks. We remark that, when comparing to the works in [BCR+19, COS20],
this is not a deep distinction because the RS-encoded IOP from these references are compiled with a protocol
ΠCA for 𝛿-correlated agreement. Similarly, our results can be understood as compilation results for 0-correlated
IOPs with the protocol ΠCA.

• A RS-encoded IOP does not make use of an oracle for correlated agreement, but instead defines soundness for
adversaries that are constrained on the type of messages they can send. More precisely, the soundness definition
of a RS-encoded IOP only considers adversaries that send codewords from certain RS codes.
Note however that, when 𝛿 = 0, this distinction makes no difference: whether one provides the verifier with
oracles for 0-correlated agreement, or one constraints the definition of soundness, the resulting families of IOP’s
are the same.

• RS-encoded IOP’s are more relaxed in the degree bound of the codewords sent by the prover: while we ask that
all codewords have the same degree bound 𝑑, in RS-encoded IOP there is a degree bound for each codeword sent.
It may be possible to generalize the notion of 𝛿-correlated IOPs in a similar fashion, and still obtain a compilation
result similar to Theorem 4.6.

85

C A Less Sound Variant of OPlonky
In this appendix we discuss a variation of OPlonky that is arguably more natural than the original protocol, but whose
RBR soundness error is, in principle, much larger. The difference between the two protocols is related to how the
t “parallel” checks in Rounds 1 and 2 are performed. We emphasize that most protocols use t = 1 and a large field
F, in which case the considerations in this appendix do not apply. On the other hand, some projects (e.g., Plonky2)
currently use t = 2 and a 64-bit field F. In this scenario, the natural variation of OPlonky described here would lead to
a non-interactive protocol with ≈ 50 bits of security, while the original (interactive) OPlonky achieves ≈ 100 bits of
security.

Recall that the first Round of OPlonky(𝛿) is obtained as the t-parallel repetition of the protocol permutation hIOP
ΠRRPerm

(𝛿). The second round is also the result of repeating t checks in parallel: more precisely, for t random challenges
𝛼, the prover aims to certify that∑︂

𝑗∈[| P |]
𝛼 𝑗−1𝑃 𝑗 (a1 (𝑋), . . . , ar (𝑋), a1 (𝜔𝑋), . . . , ar (𝜔𝑋), sel1 (𝑋), . . . , selℓ (𝑋))

+𝛼 | P |−1
(︂
u1 (𝛼) + 𝛼s+2u2 (𝛼) + . . . + 𝛼 (t−1) (s+2)ut (𝛼)

)︂
= 0

vanishes on 𝐻. Importantly, each one of these t verifications combines all the polynomials from the t checks of Round 1.
This is in contrast to the the similar (and arguably more natural, though insecure) approach in which one repeats an
entire IOP (or some rounds of it) t times in parallel. In full, such a variation of OPlonky(𝛿) would proceed as follows
(the protocol is essentially the same as the original OPlonky(𝛿) except for the third prover’s message):

Prover’s message 1. Exactly as in the original OPlonky(𝛿), here POPlonky computes a1 (𝑋), . . . , ar (𝑋) as a 𝑗 (𝑋) =∑︁n
𝑖=1w(𝑗−1)n+𝑖L𝑖 (𝑋) for each 𝑗 ∈ [r]. It then sends oracles ⟦a1 (𝑋) |𝐷⟧, . . . , ⟦ar (𝑋) |𝐷⟧ to VOPlonky, where

a𝑖 (𝑋) |𝐷 denotes the word from F𝐷 obtained by restricting a𝑖 (𝑋) on 𝐷.

Permutation argument part (Verifier’s challenge 1 and Prover’s message 2). Again exactly as in OPlonky(𝛿), for
t times in parallel, POPlonky and VOPlonky execute the online phase of the permutation proof ΠRRPerm

for the triple

(i′,x′,w′) =
(︁
(r′, 𝜎), (⟦a𝑖⟧, ⟦a𝑖⟧)𝑖∈[r′] , (a𝑖 , a𝑖)𝑖∈[r′]

)︁
.

At the end of each of the t executions of the interactive phase, VOPlonky has received oracles

(⟦z𝑘⟧, ⟦𝜋𝑘,1⟧, . . . , ⟦𝜋𝑘, (s−1)⟧)

for each 𝑘 ∈ [t]. Let (𝛽𝑘 , 𝛾𝑘) be the verifier’s challenges on each of the executions.
For each 𝑘 ∈ [t], we denote by (�̄� 𝑘𝑖 (𝑋))𝑖∈[s] the polynomials in Eq. (23) computed with the challenges 𝛽𝑘 , 𝛾𝑘 .

Verifier’s challenge 2. As in the original protocol, VOPlonky samples random challenges 𝛼1, . . . , 𝛼t and sends them to
POPlonky.

Prover’s message 3. This step deviates from the original protocol. Specifically, POPlonky computes polynomials
(d𝑘 (𝑋), q𝑘 (𝑋))𝑘∈[t] as follows:

u𝑘 (𝑋) :=
(︁
�̄� 𝑘1 (𝑋)z𝑘 (𝑋) − 𝜋𝑘,1 (𝑋)𝑔𝑘1 (𝑋)

)︁
𝛼𝑘

+∑︁s−1
𝑗=2

(︂
�̄� 𝑘 𝑗 (𝑋)𝜋𝑘, 𝑗−1 (𝑋) − 𝜋𝑘, 𝑗 (𝑋)𝑔𝑘 𝑗 (𝑋)

)︂
𝛼
𝑗

𝑘

+
(︁
�̄� 𝑘s (𝑋)𝜋𝑘,s−1 (𝑋) − z𝑘 (𝜔𝑋)𝑔𝑘s (𝑋)

)︁
𝛼s+1
𝑘

+(z𝑘 (𝑋) − 1)L1 (𝑋)𝛼s+2
𝑘 .

d𝑘 (𝑋) :=
∑︂

𝑗∈[| P |]
𝛼
𝑗−1
𝑘

𝑃 𝑗 (a1 (𝑋), . . . , ar (𝑋), a1 (𝜔𝑋), . . . , ar (𝜔𝑋), sel1 (𝑋), . . . , selℓ (𝑋)) + 𝛼 | P |−1𝑘
u𝑘 (𝑋).

q𝑘 (𝑋) := d𝑘 (𝑋)/ZH (𝑋).
(47)

Then POPlonky splits the polynomials q𝑘 (𝑋) into degree 𝑛 polynomials q𝑘,1 (𝑋), . . . , q𝑘,𝑣 (𝑋), so that q𝑘 (𝑋) =∑︁𝑣
𝑖=1 𝑋

𝑛𝑖𝑃𝑘,𝑣 (𝑋) and sends oracle access to these to VOPlonky.

86

Rest of the protocol. The remaining steps of the protocol proceed identically as in OPlonky(𝛿).

This variation of OPlonky has much higher RBR soundness error than the original one. Moreover, when compiled
into a SNARK (via the method described in Definition 6.2 and Section 7.3.1), an attack from [AFK22] can be applied
to it (the [AFK22] attack applies more generally whenever the FS transformation is applied to an interactive protocol
involving parallel repetition).

To illustrate the attack, let us analyse the specific case t = 2. Suppose that an adversaryA receives (𝛽1, 𝛾1), (𝛽2, 𝛾2)
so that (𝛽1, 𝛾1) allows A to “cheat at Round 1”, in the sense that all of the maps

�̄� 11 (𝑋)z𝑘 (𝑋) − 𝜋1,1 (𝑋)𝑔11(𝑋)
𝜋1, 𝑗−1 (𝑋) − 𝜋1, 𝑗 (𝑋)𝑔1 𝑗 (𝑋), 𝑗 = 2, . . . , s − 1
�̄� 1s (𝑋)𝜋1,s−1 (𝑋) − z1 (𝜔𝑋)𝑔1s (𝑋)
(z1 (𝑋) − 1)L1 (𝑋).

(48)

vanish on 𝐻. Notice that we make no assumption on the analogous polynomials constructed with the challenge (𝛽2, 𝛾2).
From the arguments in the proof of Lemma 4.9, this event occurs with probability at most 3n(r′+u)

|F | . Observe that, in
this case, d1 (𝑋) vanishes on 𝐻 for any 𝛼1 received. On the other hand, since we made no assumptions about (𝛽2, 𝛾2),
d2 (𝑋) may not vanish on 𝐻. However, if it does, both d1 (𝑋), d2 (𝑋) vanish on 𝐻 and then A is able to complete the
protocol and convince the verifier with probability 1. In particular, A escapes the doomed set of partial transcripts that
we defined in Lemma 4.9.

Using similar arguments to the ones used to estimate 𝜀2 in the proof of Lemma 4.9, the probability thatA is “lucky”
and receives 𝛼2 such that d2 (𝑋) vanishes on 𝐻 is at most | P |+s+1|F | . Hence, if we take the same doomed sets as in the
proof of Lemma 4.9, then the RBR soundness error of this variant of OPlonky(𝛿) is at least | P |+s+1|F | , which is much
higher than the one obtained in Lemma 4.9, and could be devastating if one were to use a small field F.

Indeed, the FS compilation of such protocol into its non-interactive version would allow an attacker to repeatedly
generate new challenges for Round 1 until obtaining a challenge (𝛽1, 𝛾1, 𝛽2, 𝛾2) that allows (𝛽1, 𝛾1) to cheat the first
permutation argument. Then, the adversary could move on to the next round, and again generate new Round 2 challenges
(𝛼1, 𝛼2) until 𝛼2 is such that d2 (𝑋) vanishes on 𝐻. As we argued, it does not matter what 𝛼1 is at this point, as d1 (𝑋)
will always vanish on 𝐻. At this point, the verifier will eventually accept the proof. This type of attack is introduced and
described in [AFK22].

Intuitively, it is clear that the soundness error of this variation of OPlonky is roughly 𝜀 := max{ 3n(r
′+u)
|F | ,

| P |+s+1
|F | }.

This is much larger than the error the original OPlonky would have (in the current setting), namely 𝜀2. However
actually proving that the soundness error is roughly 𝜀 and cannot be made lower requires significant effort, and requires
researching how to attack Plonk-like protocols in general. We leave this as upcoming work.

87

	Introduction
	Our Results
	Technical Details
	Round-by-round Soundness of FRI
	A General Tool for Proving RBR (Knowledge) Soundness
	Round-by-round Soundness of Specific δ-correlated Proof Systems

	Additional Related Work
	Organization

	Technical Overview
	Round-by-round Soundness and Fiat-Shamir
	Round-by-round Soundness of FRI
	FRI Round-by-round Soundness Overview
	Batched FRI Round-by-round Soundness Overview
	Instantiating ε1, ε2, and ε3
	FRI Round-by-round Knowledge Overview

	Correlated IOPs and Round-by-round Knowledge Soundness
	Round-by-round Knowledge of Plonk-like Protocols
	Round-by-round Soundness of OPlonky

	Round-by-round Knowledge of ethSTARK
	From Round-by-round Soundness to Fiat-Shamir Security

	Preliminaries
	Reed-Solomon Codes
	Interactive Oracle Proofs
	Round-by-round Soundness and Knowledge
	The BCS Transformation for IOPs
	The Plonk SNARK
	Plonk Variations

	Our Results
	Round-by-round Soundness of FRI and Batched FRI
	Correlated IOPs
	A Plonk-like Protocol Abstraction OPlonky

	Round-by-round Soundness of the FRI Protocol
	Round-by-round Soundness of FRI in the Unique Decoding Radius
	Round-by-round Soundness of Batched FRI
	Round-by-round Soundness of Batched FRI in the Unique Decoding Regime
	Communication-saving Batched FRI

	Round-by-round Knowledge Soundness of FRI
	Non-interactive FRI in the Random Oracle Model
	Conjectured Security of FRI
	Concrete Security Analysis of Non-interactive FRI
	FRI-IOPP Description

	δ-Correlated Holographic IOPs
	Plonk-like Protocols
	A δ-correlated hIOP for the Permutation Relation
	Description of PermArg(δ)

	A δ-correlated hIOP for TurboPlonk's and Plonky2's Relation
	Description of the hIOP
	Indexer
	Online Phase
	Verifier's Decision

	RBR Soundness and Knowledge of OPlonky
	Turning Plonky2hIOP into a SNARK
	Redshift, TurboPlonk, and Plonk

	Conclusions and Open Problems
	Concrete Security Analysis of Non-interactive FRI
	Proof Sizes of FS-FRI
	Batched FRI Proof Sizes

	Part 1: Targeting Various Soundness Errors for FS-FRI
	Provable Security
	Conjectured Security Under Conjecture 5.12
	Conjectured Security Under Conjecture 5.14

	Part 2: Soundness Under FRI Parameters From Various Projects
	Parameters from RISC Zero [Tea23]
	Parameters from Plonky2 [Polb]

	Final Remarks
	Sagemath Code

	δ-Correlated hIOPs and Reed-Solomon Encoded IOPs
	A Less Sound Variant of OPlonky

