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Abstract—We introduce Grotto, a framework and C++
library for space- and time-efficient (2+ 1)-party piecewise

polynomial (i.e., spline) evaluation on secrets additively

shared over Z2𝒏. Grotto improves on the state-of-the-

art approaches based on distributed comparison functions

(DCFs) in almost every metric, offering asymptotically

superior communication and computation costs with the

same or lower round complexity. At the heart of Grotto

is a novel observation about the structure of the “tree”

representation underlying the most efficient distributed

point functions (DPFs) from the literature, alongside an

efficient algorithm that leverages this structure to do with

a single DPF what state-of-the-art approaches require many

DCFs to do. Our open-source Grotto implementation

supports evaluating dozens of useful functions out of the

box, including trigonometric and hyperbolic functions (and

their inverses); various logarithms; roots, reciprocals, and

reciprocal roots; sign testing and bit counting; and over

two dozen of the most common (univariate) activation

functions from the deep-learning literature.

“ I’ve got gadgets and gizmos aplenty;
I’ve got whozits and whatzits galore;
You want thingamabobs? I’ve got twenty!
But who cares? No big deal. I want more!

– Ariel (The Little Mermaid)”1. Introduction

Secure multiparty computation (MPC) offers a wealth
of opportunities to regain privacy in various facets our
increasingly digital lives. For example, privacy-enhanced
machine learning algorithms may one day soon allow us
to contribute our data “for the common good” without ever
revealing that data to anyone. A significant technical chal-
lenge on the path to this vision has been to efficiently mix
different kinds of computation; i.e., evaluating non-linear
functions when working in a linear scheme or performing
heavy arithmetic in a digital circuit-based scheme.

The need to evaluate non-linear functions in a linear
setting arises, for example, in the construction of pri-
vate neural networks, where non-linear activation func-
tions intersperse between linear layers. Early systems like
SecureML [22] resorted to using “MPC-friendly” knock-
offs of the activation functions used in non-MPC do-
mains. This paper presents a novel method, and imple-
mentation thereof, for the fast and accurate approximation
of such functions using so-called distributed point func-
tions.

Roadmap

The remainder of the paper proceeds as follows. Sec-
tion 2 lays out our notational conventions and recalls a
few fundamental cryptographic primitives used in the sub-
sequent sections. From here, Section 3 describes selection
vectors and their applications to the oblivious evaluation
of piecewise-polynomial functions (or splines); Section 4
presents a new data structure called the parity-segment tree
along with our prefix-parity algorithm for rapidly extract-
ing from a parity-segment tree the information we need in
the sequel; and then Section 5 describes point functions,
distributed point functions, and the specific construction
thereof we employ. Section 6 serves as a confluence of the
preceding three sections, detailing how to run the prefix-
parity algorithm directly on a distributed point function for
the oblivious evaluation of piecewise-polynomial functions.
Section 7 introduces Grotto, our framework and open-
source software implementation of the new techniques,
and then Section 8 follows with a performance evaluation
of Grotto and a head-to-head comparison with related
work. Sections 9 and Section 10 wrap up with a discussion
of related work and some concluding remarks. Additional
material elaborating on and extending results from the
main body is included as appendices.

2. Preliminaries & notation

We deal extensively with vectors over Z𝑁 . For the
special case where 𝑁 = 2, we equate such a vector with
the corresponding bitstring (i.e., the bitstring composed of
the same bits, in the same order). We use ‘⊕’ to denote
the bitwise exclusive-OR (XOR) operator and ‘+’ to denote
normal addition in a ring (or a module over a ring) of
characteristic other than 2.

We write ≫ and ≪ respectively for the arithmetic
(sign-extended) right shift or logical left shift applied to
fixed-width bitstrings; likewise, we write ≫ and ≪ for
cyclic rotation to the right or left, whether of a bitstring or
of a vector.

The substring of 𝑥 starting at index 𝑎 (inclusive) and
ending at 𝑏 (exclusive) is denoted by 𝑥 [𝑎 . .𝑏). A substring
𝑥 [0 . .𝑏) with starting index 0 is called a prefix of 𝑥 .



2.1. Fixed-point arithmetic

Fixed-point representations encode (approximations to)
real numbers using signed integers in two’s-complement
format. Specifically, the fixed-point approximation to 𝑥 ∈ R
is

⌊
𝑥 ·2𝑝

⌋
, where 𝑝 ∈ N is a fractional precision parameter

indicating how many bits to reserve for the fractional (non-
integer) part of 𝑥 . Assuming 64-bit representations, this
leaves 64−𝑝 − 1 bits for the integer part of 𝑥 (plus one bit
for the sign).

For example, the fixed-point approximation to 𝜋 =

3.14159. . . using 𝑝 = 16 fractional bits is⌊
𝜋 ·216⌋

=
⌊
205887.41614566. . .

⌋
= 205887
= 0x000000000003

sign bit + integer part

fractional part

243f .

Addition (or subtraction) of fixed-point numbers (as-
suming a common 𝑝) is realized using addition (or sub-
traction) of the underlying integers. The resulting sum (or
difference) is exact, provided no overflow occurs.

To multiply fixed-point numbers 𝑥0 and 𝑥1, respectively
having 𝑝0 and 𝑝1 fractional bits, it suffices to multiply the
underlying integer representations. The resulting product
has 𝑝 = 𝑝0 + 𝑝1 fractional bits and is likewise exact when
no overflow occurs.

For example, we can compute the area of a circle with
(unitless) radius 𝑟 = 1.25 by expressing 𝑟 as a fixed-point
number and computing⌊

𝜋 ·216⌋ ·⌊1.25·216⌋2
= 205887·819202

= 1381684268236800

= 0x0004
sign bit + integer part

fractional part

e8a270000000 ,

a fixed-point number with 𝑝
′
= 16+(16+16) = 48 fractional

bits and, consequently, just 64− 48− 1 = 15 bits remaining
for the integer part.

To “reset” the number of fractional bits back to 𝑝 = 16,
it suffices to perform an arithmetic (sign-extending) right
shift by 𝑝

′ − 𝑝 = 32 bits; that is,(
0x0004
sign bit + integer part

fractional part

e8a270000000 ≫ 32
)
= 0x

redundant sign bits

000000000004
sign bit + integer part

fractional part

e8a2 (2)

= 321698
=
⌊
4.908721923828125·216⌋

.

Meanwhile, 𝜋 ·1.252
= 4.9087385. . . so that

𝜋 ·𝑟 2 − 4.908721923828125 ≈ 0.00000165974059 < 2−16
.

2.2. Secret sharing

Secret sharing allows a dealer to distribute a secret
among two or more shareholders in such a way that
individual shareholders learn nothing while “authorized
subsets” of shareholders easily learn the whole secret [29].
Unless otherwise stated, all shares are assumed to be 64-bit
(2, 2)-threshold shares.

(2, 2)-Additive sharing. In (2, 2)-additive sharing, there
are just two shareholders, both of whom must cooperate
to recover the secret.

To share a 64-bit integer 𝑆 , the dealer samples [𝑆]0
uniformly at random, sets [𝑆]1 ← 𝑆 − [𝑆]0 mod 264, and
then sends [𝑆]𝑏 to shareholder 𝑏 for 𝑏 = 0, 1. To recover 𝑆 ,
the shareholders pool their shares and compute

[𝑆]0 + [𝑆]1 ≡ [𝑆]0 +
(
𝑆 − [𝑆]0

)
≡ 𝑆 (mod 264) .

Additive secret sharing is linearly homomorphic: Given
additive sharings [𝑆] B ([𝑆]0, [𝑆]1) and [𝑇 ] B ([𝑇 ]0, [𝑇 ]1)
alongside non-secret scalars 𝑐 and 𝑑 ,(
𝑐 ·[𝑆]0 + 𝑑 ·[𝑇 ]0

)
+
(
𝑐 ·[𝑆]1 + 𝑑 ·[𝑇 ]1

)
= 𝑐 ·

(
[𝑆]0 + [𝑆]1

)
+ 𝑑 ·

(
[𝑇 ]0 + [𝑇 ]1

)
≡ 𝑐 ·𝑆 + 𝑑 ·𝑇 (mod 264) ,

so that
(
𝑐 ·[𝑆]0 + 𝑑 ·[𝑇 ]0, 𝑐 ·[𝑆]1 + 𝑑 ·[𝑇 ]1

)
is a (2, 2)-additive

sharing of the linear combination 𝑐 ·𝑆 + 𝑑 ·𝑇 . Notice that
shareholder 𝑏 can compute [𝑐 ·𝑆 + 𝑑 ·𝑇 ]𝑏 B 𝑐 ·[𝑆]𝑏 + 𝑑 ·[𝑇 ]𝑏
locally—i.e., without interacting with its peer.

(2, 2)-XOR sharing. XOR-shares are just 𝑛-tuples of ad-
ditive shares over Z2. In this setting “addition”, is just
the bitwise exclusive-OR operator and, by convention,
“multiplication” is the bitwise logical-AND operator. We
write L𝑥 M = (L𝑥 M0, L𝑥 M1) to denote an XOR-sharing of 𝑥

(in contrast with writing [𝑥] = ([𝑥]0, [𝑥]1) for an additive
sharing of the same).

2.3. Beaver multiplication triples

Beaver multiplication triples [1] enable the efficient
multiplication of (2, 2)-additively shared secrets. Each
triple comprises three sharings

(
[𝑋], [𝑌 ], [𝑍]

)
, where 𝑋 and

𝑌 are uniform random scalars and
𝑍 B [𝑋]0·[𝑌 ]1 + [𝑋]1·[𝑌 ]0 mod 264

.

The shareholders typically precompute Beaver multiplica-
tion triples using either additively homomorphic encryp-
tion [23] or oblivious transfer [26] during a (rather costly)
precomputation phase; alternatively, in the case of (2 + 1)-
party computation (also known as server-aided 2-party com-
putation), well-formed triples are provided to the share-
holders for “free” by a semi-honest third party [11].

Given a pair of sharings [𝑥] and [𝑦] and a Beaver triple
([𝑋], [𝑌 ], [𝑍]), each shareholder 𝑏 sends(

[𝑥 + 𝑋]𝑏, [𝑦 + 𝑌 ]𝑏
)
B

(
[𝑥]𝑏 + [𝑋]𝑏, [𝑦]𝑏 + [𝑌 ]𝑏

)
to its peer, and then it outputs
[𝑧]𝑏 B [𝑥]𝑏·([𝑦]𝑏 + [𝑦 + 𝑌 ]1−𝑏) − [𝑌 ]𝑏·[𝑥 + 𝑋]1−𝑏 + [𝑍]𝑏
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so that
[𝑧]0 + [𝑧]1 =

(
[𝑥]0·([𝑦]0 + [𝑦 + 𝑌 ]1)

− [𝑌 ]0·[𝑥 + 𝑋]1 + [𝑍]0
)

+
(
[𝑥]1·([𝑦]1 + [𝑦 + 𝑌 ]0)

− [𝑌 ]1·[𝑥 + 𝑋]0 + [𝑍]1
)

=
(
[𝑥]0·

(
[𝑦]0 + ([𝑦]1 +��HH[𝑌 ]1)

)
− [𝑌 ]0·(��Z

Z[𝑥]1 +��HH[𝑋]1) +��HH[𝑍]0
)

+
(
[𝑥]1·

(
[𝑦]1 + ([𝑦]0 +��HH[𝑌 ]0)

)
− [𝑌 ]1·(��Z

Z[𝑥]0 +��HH[𝑋]0) +��HH[𝑍]1
)

= [𝑥]0·[𝑦]0 + [𝑥]0·[𝑦]1 + [𝑥]1·[𝑦]1 + [𝑥]1·[𝑦]0
= 𝑥 ·𝑦 .

Beaver triples are ephemeral, each enabling just a sin-
gle multiplication. The multiplication itself is agnostic to
whether 𝑥 and 𝑦 represent “actual” integers or fixed-point
numbers. Of course, in the latter case, multiplication will
increase the fractional bits in 𝑧 relative to 𝑥 and 𝑦, possibly
necessitating a subsequent fractional bit reduction.

2.4. Fractional-bit reduction for shared secrets

Reducing the fractional precision of a (2, 2)-additively
shared fixed-point number [𝑧] is similar to—albeit some-
what more tedious than—directly reducing that of 𝑧. Recall
that in a two’s-complement encoding, the most-significant
bit of 𝑧 is a sign bit with msb(𝑧) = 1 if 𝑧 is negative and
msb(𝑧) = 0 if it is non-negative. Consequently, the most
significant 𝑝 bits of 𝑧 ≫ 𝑝 are each “redundant” copies
of the original sign bit (which is now the (𝑝 + 1) th-most-
significant bit).

To reduce the number of fractional bits in [𝑧] =

([𝑧]0, [𝑧]1), each shareholder 𝑏 computes
[𝑧]𝑏 B

(
[𝑧]𝑏 ≫ 𝑝

)
.

From here, there are three cases to consider:
Case 1 (msb(𝒛) = 0; msb([𝒛]0) =msb([𝒛]1) = 1): Here

[𝑧]0 + [𝑧]1 overflows (carries out from the most-
significant bit) so that reconstructing 𝑧 entails an
implicit reduction modulo 264. Furthermore, each of
the 𝑝 most-significant bits of [𝑧]𝑏 are set; hence, in
the sum [𝑧]0 + [𝑧]1, the carry-out from the (𝑝 + 1) th-
most-significant bit induces a carry chain that leaves
the 𝑝 leftmost bits errantly set. Consequently,

[𝑧]0 + [𝑧]1 + 264−𝑝 ≡ 𝑧 (mod 264) .
Case 2 (msb(𝒛) = 1; msb([𝒛]0) =msb([𝒛]1) = 0): This is

similar to the first case, except now signs are flipped
so that

[𝑧]0 + [𝑧]1 − 264−𝑝 ≡ 𝑧 (mod 264) .
Case 3 (msb(𝒛) =msb([𝒛]0) or msb(𝒛) =msb([𝒛]1)): It

is easy to check that
[𝑧]0 + [𝑧]1 ≡ 𝑧 (mod 264)

always holds in this case.
The first two cases require an additional correction,

wherein the shareholders conditionally (and obliviously)

add [±264−𝑝] to [𝑧] to get [𝑧 ≫ 𝑝]. There exist a mul-
titude of options for how to implement this conditional
correction; however, they all require one or more rounds of
interaction. Computationally, the “best” case occurs when
msb(𝑧) is known (say, because application logic allows its
deduction) so that what correction to apply depends solely
on either msb([𝑧]0)∧msb([𝑧]1) or ¬msb([𝑧]0)∧¬msb([𝑧]1).
For the general case with 𝐵-bit integers where msb(𝑧)
is not known, a simple calculation confirms that we can
always use
[±2𝐵−𝑝] B 2𝐵−𝑝 ·

(
𝑍0·𝑍1+ (𝑍0+𝑍1−2·𝑍0·𝑍1−1)·[𝑍]

)
, (1)

where 𝑍𝑏 = msb([𝑧]𝑏) for 𝑏 = 0, 1 and 𝑍 = msb(𝑧).
To illustrate why such “corrections” are needed, we

consider the problem of resetting the number of fractional
bits in the area of a circle. Let 𝐴 = 0x0004e8a270000000,
as computed in the prequel, and consider the (2, 2)-additive
sharing of 𝐴 via

[𝐴]0 = 0x80014bf61ed29a6b
and

[𝐴]1 = 0x80039cac512d6595 .

Notice that msb([𝐴]0) = msb([𝐴]1) = 1 whereas msb(𝐴) =
0, yet [𝐴]0 + [𝐴]1 = 𝐴 over Z264. Then(

𝐴 ≫ 32
)
= 0x

redundant sign bits

000000000004
original sign bit + integer part

fractional part

e8a2 ,

while
[�̃�]0 =

(
[𝐴]0 ≫ 32

)
= 0x ffffffff

redundant sign bits

shifted share

80014bf6

and
[�̃�]1 =

(
[𝐴]1 ≫ 32

)
= 0x ffffffff

redundant sign bits

shifted share

80039cac ,

so that(
[�̃�]0 + [�̃�]1

)
+ 264−32 ≡

(
0xffffffff80014bf6
+ 0xffffffff80039cac

)
+ 0x0000000100000000
≡ 0xffffffff0004e8a2
+ 0x0000000100000000

≡ 0x000000000004e8a2 (mod 264) .
Mohassel and Zhang prove [22; Appendix B] that each of
Cases 1 and 2 only occurs with probability negligible in
the number of “extra” integer bits; thus, if program logic
suffices to prove that integer parts are sufficiently small,
P0 and P1 can forgo explicit corrections and still get the
correct result with very high probability.

3. Selection vectors

A selection vector is a vector in which one element is
1 and all others are 0. We refer to the length-𝑁 selection
vector having its 1 in position 𝑖 ∈ [0 . . 𝑁 ) as the 𝑖 th selection
vector of length 𝑁 .
Observation 1. All selection vectors of a given length are
equivalent up to cyclic rotation. Specifically, for any 𝑖, 𝑗 ∈
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P2

[𝑖], [®𝑒𝑖]

P0

[®𝑒𝑗]0B [®𝑒𝑖]0 ≫ ( 𝑗 − 𝑖)
= [®𝑒𝑖 ≫ ( 𝑗 − 𝑖)]0

[ 𝑗]0

P1

[®𝑒𝑗]1B [®𝑒𝑖]1 ≫ ( 𝑗 − 𝑖)
= [®𝑒𝑖 ≫ ( 𝑗 − 𝑖)]1

[ 𝑗]1[𝑖]0, [®𝑒𝑖]0
[𝑖]1, [®𝑒𝑖 ]1

[ 𝑗]0 − [𝑖]0
[ 𝑗]1 − [𝑖]1

Figure 1: A (2+1)-party protocol for converting an additive
sharing [ 𝑗] of a scalar 𝑗 ∈ [0 . . 𝑁 ) into an additive sharing
of the 𝑗 th selection vector ®𝑒𝑗 of length 𝑁 .

[0 . . 𝑁 ), if ®𝑒𝑖 is the 𝑖 th selection vector of length 𝑁 , then
®𝑒𝑗 = ®𝑒𝑖 ≫ ( 𝑗 − 𝑖) is the 𝑗 th selection vector of length 𝑁 .

Observation 1 is especially relevant when the selection
vector is secret shared: If P0 and P1 hold additive sharings
[𝑖] and [ 𝑗] of two numbers from the ring of integers
modulo 𝑁 alongside a sharing of the 𝑖 th selection vector
of length 𝑁 , then they can arrive at a sharing of the 𝑗 th
selection vector of length 𝑁 as follows. First, they leverage
linearity to learn
( 𝑗 − 𝑖) mod 𝑁 =

(
([ 𝑗]0 + [ 𝑗]1) −

(
[𝑖]0 + [𝑖]1)

)
mod 𝑁

=
(
([ 𝑗]0 − [𝑖]0)

P0 shares

+
(
[ 𝑗]1 − [𝑖]1)

P1 shares

)
mod 𝑁 (2)

without revealing 𝑖 or 𝑗 individually, after which each party
cyclically rotates its own share of ®𝑒𝑖 to the right by this
quantity.1 Notice that if 𝑖 is uniform, then ( 𝑗 − 𝑖) mod 𝑁

perfectly hides 𝑗 , making this transformation from the 𝑖 th
into the 𝑗 th selection vector perfectly oblivious.

Scalar-to-selection vector share conversion. Observa-
tion 1 suggests the following (2 + 1)-party protocol for
converting additive sharings of 𝑗 into additive sharings of
𝑗 th selection vectors. Let 𝑁 be given. In a preprocessing
phase, a semi-trusted third party P2 chooses 𝑖 ∈ [0 . . 𝑁 )
uniformly and provides additive sharings [𝑖] and [®𝑒𝑖] to the
first parties P0 and P1, where ®𝑒𝑖 is the 𝑖 th selection vector
of length 𝑁 . Upon learning the sharing [ 𝑗] in the online
phase, P0 and P1 interactively reconstruct ( 𝑗 − 𝑖) mod 𝑁

using Equation (2) and then they compute shares of ®𝑒𝑗 via
[®𝑒𝑗] B [®𝑒𝑖] ≫ ( 𝑗 − 𝑖) mod 𝑁 . A diagrammatic view of this
(2 + 1)-party protocol is included as Figure 1.

PIR from selection vectors. As their name hints, se-
lection vectors are useful for selecting items from a list.
For example, consider a lookup table (LUT) mapping each
of the first 𝑁 non-negative integers to a scalar outcome.
By encoding this LUT as a length-𝑁 vector ®𝑃 in the
obvious way and taking an inner product with ®𝑒𝑗 , we
find that ⟨®𝑒𝑗 , ®𝑃⟩ = 𝑃𝑗 , where 𝑃𝑗 is the image of 𝑗 in the
LUT. Moreover, because inner products are linear, the first
parties to the above (2 + 1)-party protocol can likewise

1. This approach is mathematically sound for additive sharings because
cyclic rotation is a linear operation, namely multiplication by a cyclic
permutation matrix (i.e., a cyclic rotation of the identity matrix).

obliviously fetch the sharing [𝑃𝑗] from ®𝑃 using [®𝑒𝑗]. Astute
readers may recognize this procedure as a variant of 2-
server private information retrieval (PIR) [10] over ®𝑃 in
which the “client” P2 pre-distributes random queries to
“servers” P0 and P1 in an offline phase.

As an alternative to rotating [®𝑒𝑖] to the right by ( 𝑗 − 𝑖),
P0 and P1 can instead rotate ®𝑃 to the left by the same
distance. Taking inner products as before, this alternative
is guaranteed to produce the same result because (i) com-
mutativity implies inner products are invariant under cyclic
reordering of summands, and (ii) left and right cyclic
rotations are mutually inverse operations, so that
⟨®𝑒𝑗 , ®𝑃⟩ = ⟨®𝑒𝑖 ≫ ( 𝑗 − 𝑖), ®𝑃⟩

= ⟨
(
®𝑒𝑖 ≫ ( 𝑗 − 𝑖)

)
≪ ( 𝑗 − 𝑖), ®𝑃 ≪ ( 𝑗 − 𝑖)⟩ via ( i )

= ⟨®𝑒𝑖 , ®𝑃 ≪ ( 𝑗 − 𝑖)⟩ . via (ii)

Figure 2 illustrates the equivalence between these two op-
tions. We will make use of this equivalence later on.

Function evaluation via PIR. If 𝑓 : Z𝑁 → Z𝑁 is some
function and ®𝑃 its truth table (that is, 𝑃𝑗 B 𝑓 ( 𝑗) for all 𝑗 ∈
Z𝑁 ), then the above steps realize a (2 + 1)-party oblivious
evaluation of 𝑓 ( 𝑗) at the secret input 𝑗 . When 𝑁 is small
(and 𝑓 nonlinear), this procedure can perform well relative
to evaluating 𝑓 ( 𝑗) directly using arithmetic (or Boolean)
circuits [14], [31], [33]. We stress that the Z𝑁 elements may
represent fixed-point numbers so that this is not limited to
the oblivious evaluation of integer-valued functions.

As a potentially significant optimization, wherever 𝑓

is constant within some interval, P0 and P1 can apply the
distributive law to save some work in the inner product cal-
culation. As an extreme example of this in action, suppose
that 𝑓 : Z𝑁 → Z𝑁 is the step function defined by

𝑓 ( 𝑗) B
{
𝐴 if 𝑗 ∈ [0 . .5), and
𝐵 otherwise,

so that ®𝑃 = (𝐴,𝐴,𝐴,𝐴,𝐴, 𝐵, . . . , 𝐵). Then the inner product
between [®𝑒𝑗]𝑏 = ([𝑒𝑗0]𝑏, [𝑒𝑗1]𝑏, . . . , [𝑒𝑗𝑁 ]𝑏) and ®𝑃 has the very
simple form
⟨[®𝑒𝑗]𝑏, ®𝑃⟩ = 𝐴·([𝑒𝑗0]𝑏 + [𝑒𝑗1]𝑏 + [𝑒𝑗2]𝑏 + [𝑒𝑗3]𝑏 + [𝑒𝑗4]𝑏)

+ 𝐵·([𝑒𝑗5]𝑏 + . . . + [𝑒𝑗𝑁 ]𝑏) ,
which can be evaluated using 𝑁 −1 additions and just two
scalar multiplications. For comparison, a naïve evaluation
would require 𝑁 −1 additions and 𝑁 scalar multiplications.
(Furthermore, if, e.g., 𝐵 = 0, then the cost further shrinks to
just 4 additions and a single scalar multiplication.)

Function evaluation via binary selection vectors.

So far, we have assumed that length-𝑁 selection vectors
®𝑒𝑗 are shared additively over Z𝑁 ; however, this is not
a formal requirement. Indeed, because selection vectors
consist solely of elements from {0, 1}, they can be shared
more compactly as length-𝑁 bitstrings (i.e., as length-𝑁
vectors over Z2). This shaves a factor ⌈lg𝑁 ⌉ from the size
of L®𝑒𝑗 M relative to that of [®𝑒𝑗], but not without introducing
a minor technicality: Before they can evaluate the inner
product between L®𝑒𝑗 M and ®𝑃 , the shareholders P0 and P1
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®𝑒6 ≫ (3 − 6) mod 8

®𝑃 ≪ (3 − 6) mod 8

Figure 2: Equivalence between rotating selection vectors rightward versus LUTs leftward. In the diagram, the selection
vector is ®𝑒6 and the desired record is 𝑃3 (the red element). The left subdiagram shows the outcome of rotating ®𝑒6 rightward
to get ®𝑒3; the right subdiagram shows the outcome rotating ®𝑃 leftward to move the red element into position 6.

must first lift each bit of L®𝑒𝑗 M into an additive sharing over
Z𝑁 . In general, such lifting is costly, requiring a round
of interaction between P0 and P1 to ensure the resulting
additive shares all have the correct signs in Z𝑁 (indeed, it
is impossible to differentiate among ±1 in Z2).

Fortunately, the special form of selection vectors makes
it possible for the shareholders to defer the latter interac-
tion needed for sign correction to a post-processing step, to
be performed only after evaluating the inner product.2 In
particular, for each of 𝑏 = 0, 1, shareholder P𝑏 lifts the 𝑖 th
bit L𝑒𝑗𝑖 M𝑏 of L®𝑒𝑗 M𝑏 into an additive share over Z𝑁 via

[±𝑒𝑗𝑖]𝑏 B
{

0 if L𝑒𝑗𝑖 M𝑏 = 0, and
(−1)𝑏 otherwise,

(3)

so that [±𝑒𝑗𝑖]0 + [±𝑒𝑗𝑖]1 ∈ {−1, 0, 1}. Now, the inner product
⟨[±®𝑒𝑗], ®𝑃⟩ yields ±𝑃𝑗 , a scalar that is correct up to sign. From
here, there are a few options for how to implement the sign
correction; we defer our discussion of those techniques to
Section 7.1.1.

The earlier optimization for when ®𝑃 is constant over
some interval ports nicely to the case where ®𝑒𝑗 is shared bit-
wise as L®𝑒𝑗 M: The shareholders simply perform the required
summation over Z2 and then convert the resulting sums
(i.e., not the individual addends) into additive shares over
Z𝑁 using Equation (3). Notice that computing such sums
of segments of L®𝑒𝑗 M is equivalent to computing the parities
of the bitstrings corresponding to those segments.

As a concrete example, let us consider the evaluation
of the step function 𝑓 from the earlier example with
vector length 𝑁 = 8 and input 𝑗 = 4. Supposing ®𝑒4 is
shared as L®𝑒4M = (11011010, 11010010), shareholder P0
computes(

1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1, 0 ⊕ 1 ⊕ 0
)
=
(
parity(11011), parity(010)

)
= (0, 1) ,

2. Specifically, since ®𝑒𝑗 consists entirely of 0s save for the 1 in position
𝑗 , the initial lifting of L®𝑒𝑗 M into Z𝑁 yields [±®𝑒𝑗 ]; that is, the requisite sign
correction can occur at the granularity of the entire vector. For vectors
with two or more non-zero entries, this would not be true.

while shareholder P1 computes(
1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0, 0 ⊕ 1 ⊕ 0

)
=
(
parity(11010), parity(010)

)
= (1, 1) .

Upon lifting these values to Z𝑁 , the shareholders respec-
tively hold vectors [−®𝑒4]0 B (0, 1) and [−®𝑒4]1 B (−1,−1),
from which they evaluate

⟨[−®𝑒4]0, ®𝑃⟩ = 0 · 𝑎 + 1 · 𝑏
= 𝑏

and
⟨[−®𝑒4]1, ®𝑃⟩ = (−1) · 𝑎 + (−1) · 𝑏

= (−𝑎) + (−𝑏) ,
and we find that 𝑏 +

(
(−𝑎) + (−𝑏)

)
= −𝑎, the negation of

𝑓 (4). A sign correction completes the process.

Spline evaluation via selection vectors. Up till now, we
have considered LUTs only for scalar-valued functions, yet
the technique generalizes seamlessly to vector- or matrix-
valued functions. As one useful application of this, we
can evaluate functions F : Z𝑁 → (Z𝑁 )1×𝑑 that output
(vectors of coefficients defining) polynomials, including
piecewise-linear functions and general splines. As a bonus, in
light of the optimizations already discussed, such piecewise
functions typically result in comparatively inexpensive in-
ner product computations (i.e., requiring far fewer than
𝑁 multiplications, since each “part” covers a non-trivial
subinterval of the domain).

To see why this is useful, suppose we wish to ap-
proximate some highly nonlinear function 𝑓 (𝑥) that is
prohibitively costly to evaluate exactly using arithmetic cir-
cuits. We can do so by constructing a piecewise-polynomial
function F such that, for all 𝑗 ∈ Z𝑁 , the coefficients
vector ⟨𝑎𝑑 , . . . , 𝑎1, 𝑎0⟩ ← F ( 𝑗) defines a good low-degree-
polynomial approximation 𝑓

′(𝑥) = 𝑎𝑑𝑥
𝑑 + · · · + 𝑎1𝑥 + 𝑎0

to 𝑓 (𝑥) in the vicinity of 𝑥 = 𝑗 . Given additive sharings
of such a coefficient vector [F ( 𝑗)] = [𝑓 ′(·)] and of the
input [ 𝑗], several well-known techniques can obliviously
compute [𝑓 ′( 𝑗)], thereby obtaining shares of a good ap-
proximation to 𝑓 ( 𝑗). We describe two such techniques in
Sections 7.1.1 and 7.1.2, respectively based on Horner’s
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method [16] together with Du-Atallah multiplication [11]
and on ABY2.0-style 𝐷-ary multiplication [25].

4. Parity-segment trees

A parity-segment tree is a data structure for answering
parity queries over the substrings of a binary string, with a
worst-case complexity logarithmic in the bitstring’s length.
That is, given the parity-segment tree 𝑇 (𝑥) for a length-𝑁
bitstring 𝑥 = 𝑥0𝑥1 · · · 𝑥𝑁−1, a parity query for the substring
𝑥 [𝑎 . .𝑏) of 𝑥 , 0 ≤ 𝑎 < 𝑏 ≤ 𝑁 , returns the parity

parity(𝑥 [𝑎 . .𝑏)) B
⊕

𝑏−1
𝑖=𝑎

𝑥𝑖

with a running time in O(lg𝑁 ).
Constructing the parity-segment tree 𝑇 (𝑥) for a given

bitstring 𝑥 is straightforward, if tedious. For ease of ex-
position, suppose that 𝑥 has length 𝑁 = 2𝑛+𝑘 for some
nonnegative integers 𝑛 and 𝑘 and that each leaf node
represents 𝜆 = 2𝑘 consecutive bits of 𝑥 . Notice that 𝜆 | 𝑁
by construction.

Given 𝑥 , we construct the tree 𝑇 (𝑥) from the bottom
up: To form the base of the tree, split 𝑥 into 𝑁 /𝜆 = 2𝑛 many
𝜆-bit substrings and then insert one leaf node for each of
these substrings, storing its parity inside the node. Next,
for each successive pair of leaf nodes, insert a parent and
store within it the combined parity of its two children. Now
repeat this process on each successive pair of parents, and
so on, until a single root emerges (after 𝑛 − 1 recursions).
Notice that the parity bit held by any given node equals the
parity of a concatenation over all substrings of 𝑥 associated
with leaves descendant from that node.

It follows easily by inspection that constructing the
parity-segment tree 𝑇 (𝑥) from 𝑥 requires the computation
of (𝑁 /𝜆)-many 𝜆-bit parities (for the leaf nodes) plus 2𝑛−1
single-bit XORs (for the interior nodes), giving a total
complexity of O(𝑁 ) bit operations; the tree itself occupies
2𝑛+1 − 1 ∈ O(𝑁 /𝜆) bits.

0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0𝑥 =

001010� 001110� 100000� 110111�

0__
__

_ 1_____

00
__
__

01____ 10
__
__

11____

00
0_
__

001___ 01
0_
__

011___ 10
0_
__

101___ 11
0_
__

111___

Figure 3: The parity-segment tree for a 64-bit string with
8-bit leaf nodes (i.e., 𝑁 = 23+3 and 𝜆 = 23).
4.1. Computing segment parities

Figure 3 shows the parity-segment tree for an arbitrary
64-bit string 𝑥 , which is written immediately below the
tree. In this toy example, each leaf node is associated with

a 1-byte (8-bit) substring—yielding 64/8 = 8 leaf nodes
in total—and holds the parity of that substring internally.
Likewise, each non-leaf node holds 1 bit indicating the
parity of its immediate descendants. We use light shading
(e.g., ) to indicate a node holds even parity (the bit is 0)
and dark shading (e.g., ) to indicate it holds odd parity
(the bit is 1).

Beneath the bitstring, we draw several half-open seg-
ments that collectively partition the bitstring into four con-
tiguous (up to cyclic rotation) substrings, totally ordered
by their rightmost endpoints. With 0-based indexing, the
first (green ) segment ends after bit 10; the second (blue )
segment after bit 14; the third ( red ) segment after bit 32;
and the fourth (orange ) segment after bit 55.

The diagram also contains several pictorial annotations
conveying information about how our prefix-parity algo-
rithm helps to find the parity of each segment. As its name
suggests, the prefix-parity algorithm computes the parity of
each substring using the parities of prefixes of 𝑥 sharing the
same rightmost endpoints as the desired segments. In this
example, it finds each of the prefix parities parity(𝑥 [0 . .11)),
parity(𝑥 [0 . .15)), parity(𝑥 [0 . .33)), and parity(𝑥 [0 . .56)). A
subsequent post-processing phase exploits the nilpotency
of XOR to compute the desired segment parities from these
prefix parities via

parity( green ) = parity(𝑥 [56 . .64))⊕ parity(𝑥 [0 . .11))
=
(
parity(𝑥)⊕ parity(𝑥 [0 . .56))

)
⊕ parity(𝑥 [0 . .11)) ;

parity( blue ) = parity(𝑥 [11 . .15))
= parity(𝑥 [0 . .15))⊕ parity(𝑥 [0 . .11)) ;

parity( red ) = parity(𝑥 [15 . .33))
= parity(𝑥 [0 . .33))⊕ parity(𝑥 [0 . .15)) ; and

parity( orange ) = parity(𝑥 [33 . .56))
= parity(𝑥 [0 . .56))⊕ parity(𝑥 [0 . .33)) .

In the diagram, a node is drawn with a thick coloured
outline (e.g., ) if the prefix-parity algorithm visits that
node during the computation of one or more prefix parities.
We employ a memoization (and backtracking) strategy that
ensures each node is visited at most once throughout
the computation of all prefix parities; the outline’s colour
indicates which prefix the algorithm is computing when
it first visits that node. The dashed-and-dotted path em-
anating from the root likewise shows the traversal order
through the tree; we decorate the path with coloured-arrow
dashes (e.g., ) when the traversal is visiting new nodes
and with faint gray dots (e.g., ) when “backtracking” to
a previously visited (memoized) node. We place a thick
coloured dot (e.g., ) within a node if the 1-bit parity
stored at that node appears as an operand when computing
the prefix parity for the correspondingly coloured segment;
moreover, we highlight a prefix of the 𝜆-bit substring as-
sociated with a leaf if the parity of that prefix also appears
as an operand in the prefix-parity computation.

The prefix-parity algorithm performs a binary
search-like traversal through 𝑇 (𝑥), employing a simple
inclusion-exclusion strategy to compute a sequence of
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TABLE 1: The sequences of prefixes (and associated par-
ities) of 𝑥 considered (accounting for memoization) while
computing the four prefix parities arising in Figure 3.

level green blue red orange

0 𝑥 [0 . .0) 𝑥 [0 . .0) 𝑥 [0 . .64) 𝑥 [0 . .64)
1 𝑥 [0 . .0) 𝑥 [0 . .0) 𝑥 [0 . .32) 𝑥 [0 . .64)
2 𝑥 [0 . .16) 𝑥 [0 . .16) 𝑥 [0 . .32) 𝑥 [0 . .48)
3 𝑥 [0 . .8) 𝑥 [0 . .8) 𝑥 [0 . .32) 𝑥 [0 . .56)
4 𝑥 [0 . .11) 𝑥 [0 . .15) 𝑥 [0 . .33) —

root

leaf

substring

parities of prefixes that alternately over- and undershoot
the desired prefix. By adopting the convention that one
always “traverses left” both (i) to arrive at the root and
(ii) to access the substring associated with a leaf node, we
obtain the following procedure:

1) initialize a “running parity” to 0;
2) starting from the root, traverse to the leaf node asso-

ciated with the rightmost bit in the prefix;
3) wherever the root-to-leaf path changes directions, up-

date the running parity by XORing in the parity stored
at the node where the change-of-direction occurs; and

4) finally, XOR in any bits of the prefix that reside in the
substring associated with the leaf node.

As a modest optimization, one can terminate the traversal
early if ever the rightmost endpoint is one bit past the end
of the rightmost descendant of the left child of the node
presently being traversed (as in such cases, the running
parity is already guaranteed to be correct).

Annotated C-like pseudocode for the prefix-parity al-
gorithm—incorporating both the above early-termination
optimization as well as the bookkeeping needed for effec-
tive memoization—is included as Appendix B.

Illustrated walkthroughs for Figure 3. We strategi-
cally chose the segments in Figure 3 to illustrate some
notable sub-cases, namely (i) cyclically wrapping segments
(green ), (ii) two segments terminating at the same leaf
node (green and blue ), (iii) segments terminating imme-
diately following a leaf node (orange ), and (iv) the “typi-
cal” case where a segment is alone in terminating partway
through some leaf ( red ). We remark on the implications of
these cases in the algorithm walkthroughs below.

Prefix 1 (green ): The first segment ends 3 bits into the
second leaf node. Our algorithm traverses leftward
twice to arrive at the parent of that node. Since the
next traversal goes right (a change of direction), it
reads the parity bit (odd) within that parent. After
traversing right to the second leaf node, it must tra-
verse left to access the associated substring; thus, it
XORs in that leaf node’s parity bit (also odd). Finally, it
inspects the substring beneath that leaf node, XORing
in the parity of its 3-bit prefix (odd yet again). The

resulting parity is therefore
parity(𝑥 [0 . .11)) = parity(01001011 10001010) 1

⊕parity(00000000 10001010) ⊕1
⊕parity(00000000 10000000) ⊕1
= parity(01001011 10000000) =1 .

In total, the algorithm visits four nodes (and examines
one 𝜆-bit substring) to compute this prefix parity.

Prefix 2 (blue ): The second segment also ends part of
the way through the second leaf; consequently, the
algorithm reuses almost the entire first parity compu-
tation, merely substituting in a longer substring prefix
in the last step. In total, the algorithm visits zero new
nodes (and examines one 𝜆-bit substring) to compute
this prefix parity.

Prefix 3 ( red ): The third segment extends one bit into
the right subtree of the root (a direction change at the
outset). Hence, the algorithm XORs the parity stored
in the root (which captures the parity of the entire
string 𝑥 ) together with the parity stored within the
root’s right child (which captures the parity of the
second half of 𝑥), after which it holds the parity of
the first half of 𝑥 . For the remaining bit, it traverses
to the leftmost leaf beneath the right child of the root
(which involves no direction changes), and examines
the single bit of the associated substring that is part of
the segment. In total, the algorithm visits three new
nodes (and examines one 𝜆-bit substring) to compute
this prefix parity.

Prefix 4 (orange ): The fourth prefix terminates immedi-
ately after the substring in the second-last leaf node.
It XORs the memoized 1-bit parity from the root
together with the parity stored within the second-
last leaf node and its parent, after which it holds
the desired parity. In total, the algorithm visits two
new nodes (and does not examine any substring) to
compute this prefix parity.
All told, the prefix-parity algorithm in this example

visited 4 + 0 + 3 + 2 = 9 (out of 15) nodes and examined
1 + 0 + 1 + 0 = 2 (out of 8) distinct 𝜆-bit substrings of 𝑥
(computing 1+1+1+0 = 3 substring-prefix parities).

Table 1 lists the sequence of prefixes of 𝑥 whose parities
are computed (and memoized) as the prefix-parity algo-
rithm computes the above four prefix parities. In the table,
segment parities are colored gray wherever a memoized
value is in use; the arrows indicate where each memoized
value was most recently used.

4.2. Analysis

Our primary concern in the sequel will be how many
distinct edges the prefix-parity algorithm must traverse—
and, to a lesser extent, how many 𝜆-bit substrings it must
examine—for a given partitioning of 𝑥 into segments. The
next theorem characterizes the worst-case cost for the
number of edges (assuming optimal memoization).
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Figure 4: Binary-tree representation for the 45th point
function on Z23+3. Each leaf holds either a zero vector or a
selection vector of length 23.

Theorem 1. Given a parity-segment tree 𝑇 (𝑥) of height
𝑛 and a lexicographically sorted list 𝐸 of 𝑆 distinct prefix
endpoints, the prefix-parity algorithm traverses at most 𝑆 𝑛−∑𝑆

𝑖=2
⌊
lg(𝑖 − 1)

⌋
edges to compute all 𝑆 prefix parities.

Proof of Theorem 1 is included as Appendix A.
Theorem 1 implies that the prefix-parity algorithm

visits o
(
𝑆 𝑛

)
edges to compute 𝑆 prefix parities (of a given

2𝑛+𝑘 -bit string). We also note that tree 𝑇 (𝑥) has just 2𝑛+1−2
edges in total, which yields another upper bound on the
number of edges traversed. Notably, as 𝑆 approaches the
length 𝑁 = 2𝑛+𝑘 of 𝑥 , the amortized number of edges tra-
versed per prefix tends to 2−𝑘+1 as each of the 2𝑛+1−2 edges
is traversed exactly once (owing to memoization).3

The theorem deals with worst-cast costs. The expected
number of edges traversed depends on the distribution of
the prefixes. Generally speaking, more densely packed pre-
fix endpoints (i.e., shorter segments) imply greater amor-
tization savings. Appendix C plots empirically measured
edge-traversal counts for sets of endpoints sampled from
a handful of standard probability distributions.

Expected savings from early termination. Notice that
the “early-termination” optimization saves exactly 𝑖 + 1
traversals (this includes the “traversal” from a leaf node
to its associated substring) if and only if the endpoint is a
multiple of 2𝑖 ·𝜆 but not of 2𝑖+1·𝜆. The next theorem follows
easily from this observation.

Theorem 2. For a uniform random endpoint 𝑋 ∈ [0 . . 𝑁 ),
the early-termination optimization saves (2 − 2−𝑛)/𝜆 traver-
sals in expectation.

Proof. For 𝑖 = 1, . . . , 𝑛 − 1, the probability that uni-
form 𝑋 is a multiple of 𝜆·2𝑖 but not 𝜆·2𝑖+1 is given by

1
𝜆 ·2𝑖 −

1
𝜆 ·2𝑖+1 =

1
𝜆 ·2𝑖+1 ; for 𝑖 = 𝑛, it is just 1

𝜆 ·2𝑛 . Hence, in
expectation, we save

𝑛 + 1
𝜆·2𝑛 +

𝑛−1∑
𝑖=0

𝑖 + 1
𝜆·2𝑖+1 =

2 − 2−𝑛
𝜆

traversals (counting “traversals” from leaf nodes to sub-
strings). □

3. Indeed, it is easy to check that 𝑆𝑛 −∑𝑆
𝑖=2

⌊
lg(𝑖 − 1)

⌋
= 2𝑛+1 − 1.

5. Point functions

A binary point function is just a “functional” representa-
tion of a selection vector; that is, a Boolean-valued function
that has a selection vector as its truth table.
Definition 1. The 𝑖 th binary point function on Z𝑁 is the
function 𝑝𝑖 : Z𝑁 → {0, 1} for which

®𝑒𝑖 B
(
𝑝𝑖 (0), 𝑝𝑖 (1), . . . , 𝑝𝑖 (𝑁 − 1)

)
is the 𝑖 th selection vector of length 𝑁 .

All point functions that we consider in this work are
binary point function; thus, for brevity, we herein omit
the “binary” qualifier and speak merely of point functions
on Z𝑁 . If we suppose, as in the preceding section, that
𝑁 = 2𝑛+𝑘 for some non-negative integers 𝑛 and 𝑘 , then the
𝑖 th point function on Z𝑁 has a natural representation as a
full binary tree of height 𝑛 whose 2𝑛 leaf nodes partition ®𝑒𝑖
into 𝜆-bit segments, where 𝜆 = 2𝑘 . Figure 4 illustrates this
representation for the 45th point function on Z23+3.

The above-described correspondence is the basis for
several constructions of so-called distributed point func-
tions [4], [6], [12]. We describe one such construction
in the sequel; in preparation for this, Section 5.1 first
recalls and expands upon some elementary definitions and
results from a recent manuscript of Vadapalli, Storrier, and
Henry [32; §II.A and §V.A].

5.1. 0/1-leaves, 0/1-nodes, and 1-paths

Let 𝐵(𝑝) denote the height-𝑛 binary-tree representation
of the 𝑖 th point function on Z𝑁 . Vadapalli et al. assign a
discrete “type” to each node of 𝐵(𝑝) based on its pedigree.
Here we propose a (very modest) generalization of their
taxonomy that has been extended to account for the case
where 𝑘 > 0 so that each leaf node captures the image
of 𝜆 > 1 consecutive inputs to 𝑝𝑖 . This lets us use their
taxonomy on trees whose structure matches that of general
parity-segment trees as defined in Section 4 (as well as
that of the most compact distributed point functions in
the literature [6]).
Definition 2. A leaf node is called a 1-leaf if it holds a
𝜆-bit selection vector; it is called a 0-leaf if it holds a 𝜆-bit
zero vector.

Notice that, for every point function 𝑝 , precisely one
leaf node of 𝐵(𝑝) is a 1-leaf and all others are 0-leaves.
We color the sole 1-leaf in Figure 4 (and, likewise, in
Figure 5 below) red (i.e.,

) while all 0-leaves are green
(i.e.,

). The following observation about these leaves is
immediate.
Observation 2. The parity of the 𝜆-bit vector held in the
1-leaf is 1 while the parity of the 𝜆-bit vector held in each
0-leaf is 0.

The notions of 0-leaves and 1-leaves have natural,
recursively defined analogues for interior nodes.
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Definition 3. An interior node is a 0-node if its children
are both 0-leaves or both 0-nodes; it is a 1-node if its
children are either (i) a 1-leaf and a 0-leaf or (ii) a 1-node
and a 0-node.

In Figure 4, we use light shading (i.e., ) to indicate
an interior node is a 0-node and dark shading (i.e., ) to
indicate that it is a 1-node. Notice that, by construction,
every leaf node descendant from any 0-node is a 0-leaf
whereas exactly one leaf node descendant from any 1-node
is a 1-leaf (and all others are 0-leaves). From here, we can
further define the notion of a 1-path as follows.
Definition 4. A sequence of edges in 𝐵(𝑝) is a 1-path if
it originates at a 1-node and terminates at the sole 1-leaf
descendent from that 1-node.

Notice that every node along a 1-path is either a 1-node
or a 1-leaf. An immediate consequence of Definitions 2–4
follows in Theorem 3.
Theorem 3 ([32; Corollary 1]). The following three char-
acterizations are all equivalent: A full binary tree of height
𝑛 represents a point function if and only if
1) exactly one leaf is a 1-leaf and all others are 0-leaves;
2) its root is a 1-node; or
3) it contains a 1-path of height 𝑛.

Consequent to Bullet 3 of Theorem 3, the tree 𝐵(𝑝)
has exactly one 1-node at each non-leaf level (and exactly
one 1-leaf at the leaf level). Composing this fact with
Observation 2 yields the following (relatively obvious) the-
orem, which serves as one of two lynchpins of our main
construction.
Theorem 4. Fix 𝑏 ∈ {0, 1}. If 𝑝 is the 𝑖 th point function on
Z𝑁 and 𝐵(𝑝) its binary-tree representation, then an interior
node 𝑋 of 𝐵(𝑝) is a 𝑏-node if and only if the joint parity of
the vectors stored in leaves descendant from 𝑋 is 𝑏.

5.2. Distributed point functions

Intuitively, a distributed point function (DPF) is a com-
pact, secret-shared representation of a point function (or,
equivalently, of a selection vector). We adapted the follow-
ing formal definition from Vadapalli et al. [32; Definition 4],
with minimal modifications to specialize it for the case of
(2, 2)-DPFs with 1-bit outputs.
Definition 5. A (2, 2)-distributed point function, or (2, 2)-
DPF, with 1-bit outputs is an ordered pair of PPT algo-
rithms (Gen, Eval) defining an infinite family of secret-
shared representations of point functions; that is, given
(i) a security parameter 𝜆 ∈ N, (ii) an upper bound 𝑁 ∈ N
for the domain, and (iii) a distinguished input 𝑖 ∈ [0 . . 𝑁 ),
we have
1. Correctness: If (J®𝑒𝑖K0, J®𝑒𝑖K1) ← Gen(1𝜆, 𝑁 ; 𝑖), then, for
all 𝑗 ∈ [0 . . 𝑁 ),

Eval(J®𝑒𝑖K0, 𝑗) ⊕ Eval(J®𝑒𝑖K1, 𝑗) B
{

1 if 𝑗 = 𝑖 , and
0 otherwise.

2. Simulatability: There exists a PPT simulator S such
that, for any given 𝑁 , distinguished input 𝑖 ∈ [0 . . 𝑁 ),
and bit 𝑏 ∈ {0, 1}, the distribution ensembles{

S(1𝜆, 𝑁 ; 𝑏)
}
𝜆∈N

and {
J®𝑒𝑖K𝑏

�� (J®𝑒𝑖K0, J®𝑒𝑖K1) ← Gen(1𝜆, 𝑁 ; 𝑖)
}
𝜆∈N

are computationally indistinguishable.
The J®𝑒𝑖K𝑏 output by Gen are called DPF shares (of ®𝑒𝑖 ) or
DPF keys.

The next subsection recalls the Boyle-Gilboa-Ishai con-
struction for (2, 2)-DPFs with 1-bit outputs [6]. Readers
should take note of the structural relationships among
(i) the generation and evaluation of such DPFs, (ii) the
parity-segment trees from Section 4, and (iii) the taxo-
nomical treatment of point function-tree nodes from Sec-
tion 5.1. Jumping ahead, we observe that DPF shareholders
can compute XOR-shared segment parities directly from their
respective DPF shares while incurring only a surprisingly
low (asymptotic and concrete) cost and without any need
for interaction.

5.2.1. The BGI construction. At the heart of the
Boyle-Gilboa-Ishai (BGI) construction is the following
elementary observation about pseudorandom generators
(PRGs) seeded with (pseudo)randomly-sampled XOR shar-
ings.
Observation 3 (PRGs preserve “zeroness”). Let {G𝜆}𝜆∈N
be a length-doubling PRG family and consider (𝐿, 𝑅) ←
G𝜆([𝑧]0) ⊕ G𝜆([𝑧]1). If 𝑧 = 0𝜆 , then 𝐿 = 𝑅 = 0𝜆 ; otherwise,
if 𝑧 ≠ 0𝜆 , then both 𝐿 ≠ 0𝜆 and 𝑅 ≠ 0𝜆 with a probability
overwhelming in 𝜆.

In other words, either both halves of the output are
equal (because the inputs were equal), or neither half is
equal (because the inputs were unequal)—at least with a
very high probability. The idea from here is to use G𝜆 as a
black box to build what we call a pseudorandom traversal
function, wherein it is easy to force equality for a chosen
half of the output while ensuring that “inadvertent equali-
ties” in the other half remain cryptographically rare.
Definition 6. Let {G𝜆}𝜆∈N be a length-doubling PRG
family. The pseudorandom traversal function family from
{G𝜆}𝜆∈N is the infinite family {G̃𝜆}𝜆∈N of functions
G̃𝜆 : Z 𝜆−1

2 × Z2 ×
(
Z 𝜆−1

2 × (Z2)2
)
→ Z 𝜆

2 × Z 𝜆
2 such that

G̃𝜆(𝑠
𝜆 − 1 bits

,

1 bit

advice,cw
(𝜆 − 1) + 2 bits

)B
{

G𝜆(𝑠 ||0) if advice = 0, and
G𝜆(𝑠 ||0)⊕ (cw𝐿,cw𝑅) if advice = 1,

where cw𝐿 B cw ||𝑡𝐿 and cw𝑅 B cw ||𝑡𝑅 for cw = (cw, 𝑡𝐿, 𝑡𝑅).
An ordered couple ((𝑠0,advice0,cw), (𝑠1,advice1,cw)) of

G̃𝜆 inputs that share a common cw term is called an input
pair. Intuitively, the advice0 and advice1 bits of an input
pair indicate whether or not to “correct” the output of G𝜆

(via perturbing it by cw) before returning it from G̃𝜆 when
the PRG seed is 𝑠0 or 𝑠1, respectively.
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Figure 5: The BGI tree shares induced by J®𝑒27K over Z23+3.

Taxonomy of input pairs: Every input pair has one of
four types; namely, setting (𝐿0, 𝑅0) ← G̃𝜆(𝑠0,advice0,cw)
and (𝐿1, 𝑅1) ← G̃𝜆(𝑠1,advice1,cw), the pair is
1) a 0-pair if both 𝐿0 = 𝐿1 and 𝑅0 = 𝑅1;
2) an 𝐿-pair if 𝐿0 ≠ 𝐿1 while 𝑅0 = 𝑅1;
3) an 𝑅-pair if 𝐿0 = 𝐿1 while 𝑅0 ≠ 𝑅1; or
4) a 2-pair if neither 𝐿0 = 𝐿1 nor 𝑅0 = 𝑅1.

We will not use 2-pairs. When the 𝐿- versus 𝑅- “handed-
ness” of a pair is irrelevant to the discussion (or is a secret),
we refer to 𝐿-pairs and 𝑅-pairs alike as 1-pairs.

At a high level, the BGI construction uses pseudoran-
dom traversal function families to construct concise, XOR-
shared binary-tree representations of point functions. To
see how this works, we first examine how to construct 0-
and 1-pairs for a given G̃𝜆.

Constructing 0-pairs. Constructing a 0-pair is trivial:
Choose (𝑠0,advice0,cw) arbitrarily, and then set 𝑠1 B 𝑠0 and
advice1 B advice0. A straightforward calculation confirms
that the resulting input pair is indeed a 0-pair.

Constructing 1-pairs. To construct a 1-pair, choose 𝑠0,
𝑠1, and advice0 arbitrarily subject to 𝑠0 ≠ 𝑠1, compute
(𝐿0, 𝑅0) ← G𝜆(𝑠0 ||0) and (𝐿1, 𝑅1) ← G𝜆(𝑠1 ||0), set advice1 B
1 ⊕ advice0, 𝑅 B 𝑅0 ⊕ 𝑅1, and 𝐿 B 𝐿0 ⊕ 𝐿1, and then parse
𝐿 = (�̃�, 𝑡𝐿) ∈ Z 𝜆−1

2 × Z2 and 𝑅 = (�̃�, 𝑡𝑅) ∈ Z 𝜆−1
2 × Z2.

To make an 𝐿-pair, set
cw B (�̃�, 1 ⊕ 𝑡𝐿, 𝑡𝑅) ; (4)

to instead make an 𝑅-pair, set
cw B (�̃�, 𝑡𝐿, 1 ⊕ 𝑡𝑅) . (5)

A slightly more involved, albeit fully mechanical, calcula-
tion confirms that in both cases the resulting input pair is
indeed a 1-pair of the desired handedness.

Chaining 1-pairs. Notice that 0-pairs are agnostic to the
values of cw and advice𝑏 (provided advice1 = advice0 holds),
whereas 1-pairs require a very specific choice for cw (i.e.,
one that depends on 𝑠0, 𝑠1, and the desired handedness)

and also that advice0 = 1 ⊕ advice1. We recast part of this
as a formal observation, to be used in the next section, as
the second lynchpin of our construction.
Observation 4. If ((𝑠0,advice0,cw), (𝑠1,advice1,cw)) is a 𝑏-
pair for 𝑏 ∈ {0, 1}, then advice0 ⊕ advice1 = 𝑏.

Equations (4) and (5) together ensure the nonzero half
of G̃𝜆(𝑠0,advice0,cw) ⊕ G̃𝜆(𝑠1,advice1,cw) has a 1 as its
rightmost bit so that parsing that half of G̃𝜆(𝑠0,advice0,cw)
and G̃𝜆(𝑠1,advice1,cw) each as Z𝜆−1

2 × Z2 elements yields a
pair of values suitable for constructing another 1-pair. This
enables the natural construction of 1-pair chains consisting
of the initial (𝑠𝑏,advice𝑏) values linked by an array of cw
terms.

BGI share generation. At a high level, the BGI construc-
tion assembles a chain of 1-pairs whose handedness reflect
the leftmost bits of the distinguished input. Readers should
heed the similarities between the construction of this chain
and the definition of the 1-path in the corresponding point-
function tree (cf. Theorem 3). Suppose the distinguished
input is 𝑖 ∈ [0 . . 𝑁 ) with 𝑁 = 2𝑛+𝑘 and 𝜆 = 2𝑘 . The chain
begins with a uniformly random 𝐿-pair if the leftmost bit
of 𝑖 is 0 and a uniformly random 𝑅-pair if it is 1; the next
link is an 𝐿-pair if the second-leftmost bit of 𝑖 is 0 and an
𝑅-pair if it is 1, and so on until the chain accounts for each
of the leftmost 𝑛 bits of 𝑖 .

For the remaining 𝑘 bits, let 𝑖 ′ = 𝑖 mod 2𝑘 and let ®𝑒𝑖′ be
the 𝑖

′ th selection vector of length 𝜆. Suppose (𝐿0, 𝑅0) and
(𝐿1, 𝑅1) are output by the last 1-pair in the chain. If that last
pair is an 𝐿-pair, then output leaf B 𝐿0⊕𝐿1⊕®𝑒𝑖′ ; otherwise,
if it is an 𝑅-pair, then output leaf B 𝑅0 ⊕ 𝑅1 ⊕ ®𝑒𝑖′ .

Each DPF share J®𝑒𝑖K𝑏 then consists of (i) the 𝑏 th share
of the 1-pair chain (i.e., (𝑠𝑏,advice𝑏) and the array of 𝑛
correction terms) alongside (ii) the final leaf value.

From 1-pair chains to BGI tree shares. Owing to the
pseudorandomness of G𝜆, it is computationally infeasible
for a shareholder knowing only one of J®𝑒𝑖K0 or J®𝑒𝑖K1 to
deduce the sequence of 𝐿- versus 𝑅-ward traversals (i.e., the
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leftmost bits of 𝑖) reflected in the 1-pair chain. Nevertheless,
such a shareholder can “evaluate” the chain for any of
the 2𝑛 distinct length-𝑛 traversal sequences. Consequently,
we can think of the 1-pair chain as implicitly defining a
(componentwise-)XOR-shared full binary tree of height 𝑛,
which we refer to as the BGI tree induced by J®𝑒𝑖K.

If ever the traversal sequence diverges from the binary
representation of the distinguished input 𝑖 , then, by def-
inition, it transits (one share of) a 0-pair. Consequently,
if both shareholders evaluate their respective shares on
that same sequence, then the pseudorandom values they
produce must coincide from that 0-pair onward—up to and
including the leaf node. In particular, we have just argued
that (i) corresponding leaves not at the end of the 1-pair
chain hold XOR-shares of 0𝜆 ; furthermore, due to the way
the value leaf was constructed, (ii) corresponding leaves
that are at the end of the 1-pair chain hold XOR-shares of
®𝑒𝑖′ , with 𝑖

′
= 𝑖 mod 𝜆 capturing the 𝑘 rightmost bits of the

distinguished input 𝑖 .

Observation 5. Let (L𝐷M0, L𝐷M1) be the BGI tree shares
induced by J®𝑒𝑖K. If corresponding nodes in L𝐷M0 and L𝐷M1
form a 0-pair, then their reconstructed counterpart in 𝐷 is
a 0-node (or a 0-leaf); likewise, if they form a 1-pair, then
their reconstructed counterpart in 𝐷 is a 1-node (or a 1-leaf).

The shareholders can, therefore, “evaluate” their re-
spective DPF shares at any input 𝑗 ∈ [0 . .2𝑛+𝑘 ) to obtain
an XOR-sharing L𝑝𝑖 ( 𝑗)M by applying G̃𝜆 repeatedly (with
appropriate handedness) until arriving at the leaf, and then
extracting the desired bit from that leaf.

Figure 5 illustrates the BGI tree shares induced by J®𝑒27K
over Z23+3. The single bit set off in a box to the right of
each node is that node’s advice bit; edges are doublestruck
(i.e., ‘ ’) if the advice bit of the parent is 1 (a perturbation
by cw is applied) and singlestruck (i.e., ‘ ’) otherwise (no
perturbation by cw is applied). The 1-pair chain is set
off in red . In between the two tree shares, we draw the
reconstructed leaf nodes including the 1-byte substring of
®𝑒𝑖 that each leaf holds.

We conclude this section by asserting that the BGI
construction constitutes a (2, 2)-DPF with 1-bit outputs (cf.
Definition 5).

Theorem 5 ([5; Theorem 3.3]). If {G𝜆}𝜆∈N is a length-
doubling PRG family, then the BGI construction is a (2, 2)-
DPFs with 1-bit outputs. Each DPF share comprises just 𝜆·𝑛+
𝑛 − 1 bits.

Interested readers can find proof of Theorem 5 and
additional details about the BGI construction in Boyle et
al.’s manuscript [5; §3.2.2].

6. DPFs as parity-segment trees

The following observation about segment parities over
point functions is obvious, yet it is sufficiently central to
our technique as to warrant explication.

Observation 6. Fix 𝑖 ∈ [0 . . 𝑁 ) and let ®𝑒𝑖 be the 𝑖 th selection
vector of length 𝑁 . Then parity(®𝑒𝑖 [𝑎 . .𝑏)) = 1 if and only if
𝑖 ∈ [𝑎 . .𝑏).

When combined with Theorem 4, Observation 6 leads
to the following implication.
Corollary 1 (Point-function tree → parity-segment tree).
The binary-tree representation of a point function doubles
as the parity-segment tree for the associated selection vector,
with 0-nodes implying even, and 1-nodes odd, parity.

Meanwhile, from Observation 4 we know that the joint
parity of advice bits for 0-pairs is even (0) while for 1-pairs
it is odd (1). In conjunction with Observation 5, we get the
following analogue of Corollary 1.
Corollary 2 (DPF tree → point-function tree). A DPF tree
pair doubles as an XOR-shared binary-tree representation of
the associated point function.

Finally, we note that all arithmetic operations in the
prefix-parity algorithm are linear over Z2. The confluence
of this fact with a transitive application of Corollary 2
followed by Corollary 1 makes the following “Fundamental
Theorem of Grotto” inescapable.
Theorem 6 (Fundamental Theorem of Grotto). BGI
shareholders can run the prefix-parity algorithm directly on
their respective DPF shares to obtain XOR-sharings of arbi-
trary segment parities, at a cost of one half-PRG4 evaluation
per edge traversed.

Circling back to piecewise-polynomial function evalu-
ation as discussed in Section 3, Theorem 6 leads to a novel
approach for approximating (or exactly evaluating) a large
class of nonlinear functions on additively-shared inputs at
a very low cost relative to prior art.

7. The Grotto framework

We now have all the fundamental building blocks in
place. This section describes how we integrated these
building blocks to arrive at Grotto, our framework and
C++ library for space- and time-efficient (2 + 1)-party
evaluation of piecewise-polynomial functions (or splines)
on (2, 2)-additively shared inputs.

The premise. P0 and P1 wish to obliviously evaluate
some non-linear function 𝑓 : R→ R on input some (2, 2)-
additively shared fixed-point value [𝑥]; that is, they wish
to compute [𝑓 (𝑥)] from [𝑥]. We assume that 𝑓 is well-
approximated by the piecewise-polynomial function de-
scribed in F B ( ®𝐵, ®𝑃) and that P0 and P1 each hold F
in plaintext. Here ®𝐵 is the ordered list of endpoints for the
“pieces” of the approximation and ®𝑃 is the correspondingly
ordered list of (vectors of coefficients defining) polynomials
for approximating within those pieces.
4. A half-PRG evaluation is an evaluation of G𝜆 in which only half of

the output is required. For many PRGs, it is possible to compute only the
required half at about half the cost of a full, length-doubling evaluation.
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Preprocessing phase. In a preprocessing phase, some
benevolent third-party (P2) samples an ([𝑖], J®𝑒𝑖K) pair along-
side “Beaver triple-like” values in support of the eventual
sign-corrected polynomial evaluation (see Section 7.1), and
then it distributes the shares and Beaver triple-like values
to P0 and P1 and exits the scene.

Online phase. Upon learning [𝑥] in the online phase,
P0 and P1 use a reconstructed 𝑥 − 𝑖 to cyclically shift
each endpoint in ®𝐵 to the left. Here they are effectively
running the protocol of Figure 1, only with J®𝑒𝑖K in place
of [®𝑒𝑖] and leveraging the previously described equivalence
between rotating ®𝑒𝑖 to the right versus rotating ®𝐵 to the
left (see Figure 2). We emphasize that shifting ®𝐵 instead of
®𝑒𝑖 obviates the need for P0 and P1 to evaluate the DPF at
every 𝑖 ∈ [0 . . 𝑁 ), a procedure that may be prohibitively
costly—or perhaps even computationally infeasible—when
𝑁 is large [33].

Both parties then run the prefix-parity algorithm on
their respective shares of J®𝑒𝑖K to find XOR-shared prefix
parities for each of the above-rotated endpoints, and then
they use these XOR-shared prefix parities to construct
XOR-shares of the vector of segment parities correspond-
ing to pieces in F . Specifically, the resulting shares recon-
struct to the selection vector indicating which polynomial
reflected in ®𝑃 provides a good approximation to 𝑓 on input
𝑥 . From here, the two parties use this vector of parities
to obliviously fetch additive shares of (plus-or-minus) the
appropriate coefficients vector from ®𝑃 , using the PIR-like
process from Section 3.

Finally, the parties use the aforementioned Beaver
triple-like values to compute sign-corrected evaluations
on input [𝑥] of whatever polynomial 𝑓 ′ they obliviously
fetched in the preceding step, yielding additive shares of (a
good approximation to) the desired evaluation 𝑓 (𝑥).

7.1. Sign-corrected polynomial evaluation

Grotto could use any of a number of known tech-
niques for oblivious polynomial evaluation. Our imple-
mentation supports two such techniques, namely either
(i) Horner’s method together with Du-Atallah multiplica-
tion or (ii) ABY2.0-style 𝐷-ary multiplication.

7.1.1. Horner’s method. Horner’s method is a technique
for evaluating polynomials efficiently. To evaluate the
degree-𝑑 polynomial 𝑎(𝑥) B 𝑎𝑑 ·𝑥𝑑+𝑎𝑑−1·𝑥𝑑−1+· · ·+𝑎1·𝑥+𝑎0,
Horner’s method simply expresses it in the form
𝑎0 + 𝑥 ·

(
𝑎1 + 𝑥 ·

(
𝑎2 + 𝑥 ·

(
𝑎3 + · · · + 𝑥 ·(𝑎𝑑−1 + 𝑥 ·𝑎𝑑 ) · · ·

) ) )
,

thereby allowing its evaluation via an interleaved sequence
of 𝑑 additions and 𝑑 multiplications.

For example, to evaluate the quadratic 𝑓 (𝑥) = 𝑎2·𝑥2 +
𝑎1·𝑥 + 𝑎0, in which the coefficients 𝑎𝑖 and indeterminate 𝑥

are each fixed-point numbers with 𝑝 fractional bits, on in-
put 𝑥 = 𝑗 , Horner’s method evaluates the expression

𝑓 ( 𝑗) =
( ( ( (
(𝑎2 · 𝑗) ≫ 𝑝

)
+ 𝑎1

)
· 𝑗
)
≫ 𝑝

)
+ 𝑎0 .

The arithmetic right-shifts following every multiplication
ensure the operands to each addition and the final output
all have 𝑝 fractional bits.

When this approach is instantiated using Du-Atallah
multiplication, evaluating a degree-𝑑 polynomial requires
2𝑑 + 1 rounds of interaction—specifically, 𝑑 rounds for the
𝑑 multiplications interleaved with 𝑑 rounds for precision
reductions, plus one final round that merely sign-corrects
the penultimate answer. As the details of the first 2𝑑 rounds
are quite standard—and, in any case, not germane to our
main contribution—we omit their detailed exposition, in-
stead focusing our attention on the sign correction in the
final round.
Sign-correcting the answer. Implementing the sign-
correction is pleasantly easy: Let L𝑒M = (L𝑒M0, L𝑒M1) be
the XOR-shared vector of segment parities, let 𝑈0 and 𝑈1
respectively denote the sum over Z𝑁 of all parities in L𝑒M0
and L𝑒M1, and set 𝑢 B 𝑈0 − 𝑈1. By construction, we have
𝑢 = ±1 and, moreover, if 𝑓 ′ is the (uncorrected) polynomial
that L𝑒M selects from ®𝑃 , then 𝑢 has the “matching” sign. It,
therefore, follows that

𝑓 ( 𝑗) ≈ 𝑢·𝑓 ′( 𝑗) ,
which P0 and P1 can easily compute a sharing of using
one final Du-Atallah multiplication between the sharings
[±𝑓 ′( 𝑗)] and [𝑢] = (𝑈0,−𝑈1).

7.1.2. ABY2.0-style multiplication. The approach based
on Horner’s method incurs low precomputation costs in
exchange for a relatively large (degree-dependent) round
complexity. As an alternative that avoids this blowup in
round complexity, Grotto also supports polynomial evalu-
ation based on the single-round 𝐷-ary multiplication tech-
nique used by ABY2.0 [25]. This technique has a noticeably
higher pre-processing cost, but it can be substantially more
performant in instances where each round of communica-
tion incurs Internet round-trip latency.

Our use of ABY2.0-style multiplication follows the
original expositions of Patra, Schneider, Suresh, and
Yalame [25; §3.1.4] rather faithfully, save for two important
optimizations that we introduce specifically to facilitate
efficient fixed-point polynomial evaluation. First, because
we desire only the final output of a polynomial evaluation
(i.e., we are not interested in evaluating the individual
monomials), we are able to merge several P2 terms to
noticeably reduce overall precomputation size relative to
a naïve application of ABY2.0-style multiplication to the
individual monomials. Second, to prevent integer overflows
and the need to reduce the fractional bits in intermediate
values, we “lift” the coefficients 𝑎𝑖 and indeterminate 𝑥

to a larger ring (namely, to Z2𝑛+𝑘+𝑚 for some 𝑚 ∈ N).
Once the polynomial has been evaluated in this larger ring,
we project the result back into Z2𝑛+𝑘 . While it would be
possible to support arbitrarily large integer parts with this
approach, our implementation in Grotto seeks only to
support evaluations that would also succeed using Horner’s
method (see Section 7.1.1); for instance, if 𝑥 is a 64-bit
integer with 16 fractional bits, then each intermediate value
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in the Horner evaluation has 32 fractional bits and, thus,
integer parts comprising at most 31 = 64 − 32 − 1 bits.
Therefore, for polynomials of degree 𝑑 , we desire a ring
large enough to encode 16(𝑑 + 3) bits—31 integer bits, 1
sign bit, and 16(𝑑 + 1) fractional bits—such as Z2𝑛+𝑘+𝑚 for
any𝑚 ≥ max(16(𝑑 +3) −𝑛−𝑘, 0). For optimal performance
on 64-bit CPUs, our implementation uses the smallest such
𝑚 for which 𝑛 + 𝑘 +𝑚 is a multiple of 64.

Lifting the coefficients. Lifting the 𝑎𝑖 is trivial: Since P0
and P1 hold the LUT ®𝑃 in plaintext, they can lift each co-
efficient “for free” ahead of the PIR step. At the same time,
they adjust the number of fractional bits in each coefficient
(by left-shifting in zeros) so that every monomial 𝑎𝑖 ·𝑥𝑖 will
use exactly (𝑑 + 1)·𝑝 fractional bits; that is, they replace
each 𝑎𝑖 by 𝑎𝑖 B (𝑎𝑖 ≪ (𝑑 − 𝑖)·𝑝) ||0𝑖 ·𝑝 ∈ Z2𝑛+𝑘+𝑚 . The latter
fractional-precision adjustments ensure that the decimal
points in intermediate values of the polynomial evaluation
“line up”, allowing them to be added or subtracted non-
interactively.

Lifting the indeterminate. Lifting the indeterminate is
more cumbersome, as P0 and P1 hold only a sharing [ 𝑗]
of the input. The main observation behind our approach
is that lifting [ 𝑗] is actually trivial—provided we are not
fussy about the number fractional bits in the lifted result.
Specifically, to lift [ 𝑗] from Z2𝑛+𝑘 into Z2𝑛+𝑘+𝑚 , P0 and P1
each simply append 0𝑚 to the binary representations of
their respective shares (and switch from reducing modulo
2𝑛+𝑘 to reducing modulo 2𝑛+𝑘+𝑚) so that

[ 𝑗]0||0𝑚 + [ 𝑗]1||0𝑚 = 𝑗 ||0𝑚 ∈ Z2𝑛+𝑘+𝑚 ,

which is the correct 𝑗 , only with 𝑝 +𝑚 instead of 𝑝 frac-
tional bits. From here, an interactive fractional precision
reduction (see Section 2.4) suffices to “reset” the number
of fractional bits back to the desired 𝑝 .

Only one question remains unanswered: How do P0 and
P1 determine [msb( 𝑗)], which is needed in Equation (1),
from [ 𝑗]? For this, we look inward, noting that the msb
function is just a piecewise-constant (indeed, piecewise-
Boolean) function comprising two parts; thus, the parties
can calculate [±msb( 𝑗)] using the same DPF shares as they
are using to fetch 𝑓

′ from ®𝑃 . Because the “polynomials” for
the msb function are constant integers, there is no reason
to lift them to the larger ring (i.e., there is no “chicken
and egg” situation). Then, when subsequently computing
the correction term via Equation (1), we use the fact that
msb( 𝑗) ∈ {0, 1} so that(

±msb( 𝑗)
)2

=
(
−msb( 𝑗)

)2
= msb( 𝑗)2 = msb( 𝑗)

holds for all 𝑗 .

Putting it all together. Instantiating Grotto with
ABY2.0-style multiplication yields a three-round protocol
for approximations via polynomials of any degree:
Round 1: P0 and P1 reconstruct 𝑗 − 𝑖 mod 2𝑛+𝑘 and use a
Du-Atallah multiplication to compute the sharing [𝑍0·𝑍1]
with 𝑍𝑏 B msb([ 𝑗]𝑏) for 𝑏 = 0, 1 (cf. Equation (1)). Note
that P0 and P1 respectively know 𝑍0 and 𝑍1 in plaintext.

Before proceeding to the next round, each party lifts
(and precision-adjusts) the coefficients comprising ®𝑃 into
Z2𝑛+𝑘+𝑚 and then runs the prefix-parity algorithm to fetch
its shares of [±𝑎𝑖] and [±𝑍] for 𝑍 B msb( 𝑗).
Round 2: P0 and P1 use a ternary ABY2.0-style
multiplication to compute the sharing [(𝑍0·𝑍1)·(±𝑍 )2]
from [𝑍0·𝑍1] and [±𝑍], and then they use it to (from
this point on, non-interactively) compute [±2𝑛+𝑘] using
Equation (1).
Before proceeding to the next round, the parties use
[±2𝑛+𝑘] as the correction term to lift the shares of the
indeterminate 𝑥 ∈ Z2𝑛+𝑘 into shares of 𝑥 ∈ Z2𝑛+𝑘+𝑚 .
Round 3: P0 and P1 use a (𝑑 + 2)-ary ABY2.0-style multi-
plication over sharings [𝑎0], . . . , [𝑎𝑑], [𝑥], and [𝑢] (which
they compute the same way as they would in Horner’s
method) to evaluate [𝑓 ′(𝑥)] = [𝑢·(𝑎𝑑 ·𝑥𝑑 + · · · +𝑎1·𝑥 +𝑎0)].

In cases where the coefficients and 𝑥 need not be lifted
to avoid overflow, we can skip Round 2 above, resulting in
a somewhat simpler two-round protocol. We include our
precise formulae for ABY2.0-style sign-corrected polyno-
mial evaluation and detailed derivations thereof as Appen-
dix E.5

8. Implementation & evaluation

To empirically evaluate the performance of our ap-
proach, we implemented Grotto as a C++ library. Our
implementation uses dpf++ [15] for (2, 2)-DPFs, the GNU
multiprecision arithmetic library (GMP) v6.2.1 [13] for
multi-limb arithmetic in our ABY2.0-style multiplication,
and the C++ version of ALGLIB 3.19.0 [2] for curve fitting
in our LUT-generation code.

In addition to implementing the prefix-parity algorithm
and associated (2 + 1)-party protocols, our implementa-
tion comes equipped with scores of “gadgets” (i.e., LUTs
and associated machinery) for evaluating common func-
tions, including trigonometric and hyperbolic functions
(and their inverses); various logarithms; roots, reciprocals,
and reciprocal roots; sign testing and bit counting; and
over two dozen of the most common (univariate) activation
functions from the deep-learning literature. We also include
utilities for generating additional LUTs from arbitrary func-
tions 𝑓 : R → R given as a blackbox.6 We include as
Appendix D a table summarizing selected gadgets (65 in all)
supported out-of-the-box by Grotto, including efficiency
metrics (polynomial degree, number of parts in ®𝑃 , and

5. In fact, Appendix E includes derivations for both one- and two-
round sign-corrected evaluations (for constant, linear, quadratic, and cubic
polynomials). The two-round variants are similar to their one-round
counterparts, as described above, except they apply the sign correction
as a post-processing step (similar to with Horner’s method). This reduces
the number of Beaver-like terms that P2 must send at the expense of
one additional communication round; crucially, though, it still decouples
the round complexity of polynomial evaluation from the degree of the
polynomial under consideration.
6. Simultaneously efficient, accurate, and fully-automated LUT genera-

tion is impossible given only blackbox access to 𝑓 ; to work around this,
our LUT-generation utility allows the user to provide some “hints” that
effectively transform the problem into that of “graybox” LUT generation.
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TABLE 2: Grotto versus LLAMA and EzPC DCFs
Input Polys Preprocessing Online

Function Scheme
bitlength frac bits # parts degree comp comm comp comm rounds

LLAMA 16 9 10 2 28 ± 4 µs 11.37KiB 60 ± 10 µs 36B 3
Grotto 16 9 40 3 2.65 ± 0.02µs 0.38KiB 3.1 ± 0.6µs 74B 3isqrt
Grotto 64 16 330 3 4.61 ± 0.02µs 1.32KiB 78 ± 1 µs 152B 3
LLAMA 16 9 12 2 31 ± 6 µs 13.22KiB 60 ± 10 µs 36B 3
Grotto 16 9 19 3 2.67 ± 0.07µs 0.38KiB 2.6 ± 0.5µs 74B 3tanh
Grotto 64 16 84 3 4.55 ± 0.07µs 1.32KiB 17 ± 3 µs 152B 3
LLAMA 16 9 34 2 60 ± 10 µs 33.05KiB 260 ± 60 µs 36B 3
Grotto 16 9 84 3 2.66 ± 0.02µs 0.38KiB 5 ± 7 µs 74B 3sigmoid
Grotto 64 16 98 3 4.61 ± 0.02µs 1.32KiB 21 ± 4 µs 152B 3
Grotto 16 9 40 3 2.66 ± 0.05µs 0.38KiB 3.2 ± 0.6µs 74B 3log10
Grotto 64 16 550 3 4.58 ± 0.03µs 1.32KiB 186 ± 2 µs 152B 3
Grotto 16 9 39 3 2.66 ± 0.02µs 0.38KiB 6 ± 1 µs 74B 3sqrt
Grotto 64 16 999 3 4.50 ± 0.04µs 1.32KiB 554 ± 1 µs 152B 3

expected number of half-PRG invocations used by the
prefix-parity algorithm) alongside fidelity metrics (maxi-
mum error and root-mean-squared approximation error)
for each gadget.

Performance benchmarks. The remainder of this section
reports our findings from a series of experiments we ran
on a workstation equipped with 16GiB of RAM and an
Intel Core i7-9700K processor, and running Ubuntu 18.04.
We ran all experiments for 100 trials and report here
the sample mean alongside the sample standard deviation
over those 100 trials. (We express this as mean ± stdev.)
All numbers are reported to one significant figure in the
sample standard deviation.

We compare Grotto against the recent work closest to
it, namely LLAMA [14]. (Some details about LLAMA and
its relation to Grotto appear in Section 9.) Table 2 presents
single-threaded wall-clock running times excluding network
latency for a small selection of gadgets. The first three
gadgets—reciprocal square root (isqrt), hyperbolic tangent
(tanh), and the logistic sigmoid function (sigmoid)—are
also provided by the reference implementation of LLAMA,
albeit only with 16-bit words. In addition to the three
above-mentioned functions, we also benchmark Grotto
on the square root (sqrt) and base-10 logarithm (log10)
functions. We note that sqrt is the costliest function among
those listed in Appendix D in terms of expected half-PRG
calls.

Our experiments indicate that Grotto handily outper-
forms LLAMA on almost every metric: In all instances,
its preprocessing time and space requirements are but a
fraction of what LLAMA uses; online computation times
are consistently lower as well, with even Grotto on 64-
bit words outperforming even LLAMA on 16-bit words for
two out of three common gadgets.

In terms of round complexity and online communica-
tion, Grotto is also competitive with LLAMA but can-
not compete with DCFs’ non-interactive evaluation. In
particular, Grotto incurs the same round complexity as
LLAMA, but has a noticeably higher online communication
cost, owing to our use of cubic (rather than quadratic)
polynomials and our strategy of lifting shares to a larger
ring. The upshot of this higher online communication is

the capacity for faster and more accurate approximations:
Grotto’s approximations for all three functions exhibit
a maximum error less than the fixed-point numbers can
represent, whereas LLAMA tolerates deviations of up to 4
units in the last place (ULPs) of error.

We stress that all of the times we present explicitly
ignore the network communication time. This is done for
consistency with the available implementation of LLAMA
and to remove the communication overhead which domi-
nates the running time of both LLAMA and Grotto alike.
Besides, typical Internet latency is easily four to five orders
of magnitude higher than Grotto’s running time, making
the overhead of Grotto impossible to separate from the
variance in the network latency.

9. Related work

Grotto builds on a line of recent works that use DPFs
and the related distributed comparison functions (DCFs), a
DPF-adjacent primitive that is specialized for performing
efficient comparisons, to evaluate non-linear functions in
additive secret sharing-based (2+1)-party protocols.

For instance, Vadapalli, Bayatbabolghani, and
Henry [31] used the spline evaluation via selection vectors
approach as described in Section 3, but with the selection
vector shares compressed as DPF shares, to implement
both piecewise-linear approximations for the reciprocal
square root (isqrt) function and a piecewise-constant exact
comparison (leq) for 16-bit fixed-point numbers in the
semi-honest (2+ 1)-party setting. Subsequently, Wagh [33]
generalized their approach to work in the fully malicious
setting by porting a sketching protocol for finite fields
into the ring of integers modulo 2𝑛 . In both cases, the
authors restricted attention to Z𝑁 for 𝑁 a small power
of 2 to account for inherently poor (O(𝑁 )) asymptotics;
indeed, Wagh writes that “typical sizes for which [this
approach] provides performance comparable to general
purpose (sic) MPC are around 20-25 bits” [33; §3].

Boyle, Chandran, Gilboa, Gupta, Ishai, Kumar, and
Rathee [3] showed how replacing DPFs with DCFs can lead
to vastly improved asymptotics. Indeed, their innovation
improves exponentially on the complexity of the Vadapalli
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et al. and Wagh, with communication and computation
both in O(𝑃 · lg𝑁 ) to evaluate a spline with 𝑃 parts.
Gupta, Kumaraswamy, Chandran, and Gupta [14] built on
Boyle et al.’s ideas in constructing their LLAMA library,
a project with similar goals to Grotto. Compared with
the methods described in the above two works, Grotto
reduces communication cost from O(𝑃 · lg𝑁 ) to O(lg𝑁 )
and computation cost from O(𝑃 · lg𝑁 ) to o(𝑃 · lg𝑁 ), while
also shrinking the hidden constants.

In terms of applications, one of the most obvious places
our work applies is evaluating non-linear activation func-
tions in the context of privacy-preserving neural networks.
Recent years have seen a flurry of research in this direction,
including a plethora of works in the 2-party [17], [18], [21],
[21], [27], (2 + 1)-party [19], [28], 3-party [8], [24], [33]–
[35], and 4-party [7], [9], [20] settings.

10. Conclusion

We introduced Grotto, a framework and C++ library
for space- and time-efficient (2 + 1)-party piecewise
polynomial evaluation on secrets additively shared
over Z2𝑛+𝑘 . Grotto improves on the state-of-the-art
approaches based on DCFs in almost every metric,
offering asymptotically superior communication and
computation costs with comparable round complexity. At
the heart of Grotto is a novel observation about the
structure of the most compact DPFs from the literature
and our prefix-parity algorithm, which leverages this
structure to do with a single DPF what others require
many DCFs to do.
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Appendix A.

Proof of Theorem 1

Theorem 1 (Restatement). Given a parity-segment tree
𝑇 (𝑥) of height 𝑛 and a lexicographically sorted list 𝐸 of 𝑆
distinct prefix endpoints, the prefix-parity algorithm traverses
at most 𝑆 𝑛 − ∑𝑆

𝑖=2
⌊
lg(𝑖 − 1)

⌋
edges to compute all 𝑆 prefix

parities.

Before proving Theorem 1, we state and prove the
following lemma based on the intuition that a “worst-
case” instance for the prefix-parity algorithm is one that
minimizes the lengths of common prefixes in (the binary
representations of) successive endpoints in 𝐸.
Lemma 1. If 𝑃 is a set of 𝑆 distinct bitstrings, then∑

𝑥 ∈𝑃 |𝑥 | ≥
∑

𝑆−1
𝑖=1

⌈
lg(𝑖 + 1)

⌉
, (6)

where |𝑥 | denotes the length (in bits) of 𝑥 .

Proof (Sketch). We first note that equality holds in Equa-
tion (6) when 𝑃 consists of the empty string together with
the binary representations of all non-negative integers less
than 𝑆 − 1 [30]. Moreover, substituting one or more bit-
strings from 𝑃 with the binary representations of integers
greater than or equal to 𝑆−1 results in a set whose aggregate
length is likewise greater than or equal to that of 𝑃 . □

Proof of Theorem 1. The result follows by induction on 𝑆 .

Base case (𝑺 = 1): This case is immediate by inspection.
Inductive step: Assume the prefix-parity algorithm tra-
verses at least (𝑆 − 1)𝑛 −∑𝑆−1

𝑖=2
⌊
lg(𝑖 − 1)

⌋
edges for 𝑆 − 1

endpoints and let 𝐸 be some length-(𝑆 − 1) sequence of
endpoints inducing this worst-case cost. We will construct
a worst-case length-𝑆 sequence 𝐸

′ by inserting one addi-
tional endpoint at an appropriate (sorted) position within
𝐸. Specifically, to ensure that the resulting sequence is
also a worst-case sequence, it suffices to choose a position
among existing endpoints that (globally) minimizes the
length of its common prefix with its immediate neigh-
bours in the resulting ordered sequence (thereby maxi-
mizing the number of new edges to traverse).
Thus, we construct 𝐸 ′ by inserting an arbitrary endpoint
whose prefix is one of the (not necessarily unique) short-
est prefixes not yet reflected in 𝐸. Now, consider the
sets 𝑃 and 𝑃

′ of shortest unique prefixes for 𝐸 and 𝐸
′,

respectively. From Lemma 1, we have∑
𝑥 ∈𝑃 ′ |𝑥 | −

∑
𝑥 ∈𝑃 |𝑥 | ≥

∑
𝑆−1
𝑖=1

⌈
lg(𝑖 + 1)

⌉
−
∑

𝑆−2
𝑖=1

⌈
lg(𝑖 + 1)

⌉
=
⌈
lg(𝑆 − 1 + 1)

⌉
≥

⌊
lg 𝑆

⌋
.

As all but the last bit of the shortest unique prefix cor-
responds to an already-traversed edge, this newly added
endpoint necessitates traversing at most

𝑛 − (
⌈
lg 𝑆

⌉
− 1) ≥ 𝑛 −

⌊
lg(𝑆 − 1)

⌋
additional edges, for a total number of edges traversed of
at most(

(𝑆 − 1)𝑛 −
∑

𝑆−1
𝑖=2

⌊
lg(𝑖 − 1)

⌋ )
+
(
𝑛 −

⌊
lg(𝑆 − 1)

⌋ )
= 𝑆 𝑛 −

∑
𝑆

𝑖=2

⌊
lg(𝑖 − 1)

⌋
. □
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Appendix B.

Prefix-parity pseudocode

This appendix presents a pseudocode listing for
the prefix-parity algorithm (Figure 6). The pseudocode
is written using a C-like syntax and is accompanied by

some commentary (on the right) that elucidates selected
steps in the algorithm (notably including those related to
memoization).

1 // Computes the prefix parities for each of the given endpoints
2 //
3 // Parameters:
4 // bound - a sorted list of segment endpoints
5 // T - a parity-segment tree
6 // n,k - depth of tree, lg(bits per leaf)
7 //
8 vector prefix_parities(vector bound, tree T, int n, int k)
9 {
10 vector res = {} // to be populated with prefix parities
11 vector path = {T.root} // memoized current path from the root
12 vector direction = {0} // traversal directions along path
13 // 0 is to the left; 1 is to the right
14 vector parity = {0} // cumulative prefix parity along path
15 vector left = {2**(n-1)} // leftmost-beneath-right-child along path
16 int prev = ~bound[0] // *complement* of first shifted bound;
17 // ensures from=0 in first loop iteration
18

19 for (int i = 0; i < bound.length; i++)
20 {
21 int from = clz(bound[i] ^ prev) // common prefix length
22 int to = n // by default, traverse entire depth
23

24 for (int j = from; j < to; j++) // iterate only over (non-common) suffix
25 {
26 int next_dir = (left[j] <= bound[i]) ? 1 : 0 // going right or left?
27 int next_path = T.traverse(path[j], next_dir) // go that direction
28 int next_parity = (next_dir == direction[j]) // update running parity
29 ? parity[j] // no change
30 : path[j].parity ^ parity[j] // include/exclude
31 int next_left = (next_dir == 1) // update leftmost bit
32 ? left[j] + 2**(64-2-j) // advance right
33 : left[j] - 2**(64-2-j) // unadvance left
34 //^^^^^^^^^^^ <- #bits beneath each child
35

36 path[j+1] = next_path // memoize node along path
37 direction[j+1] = next_dir // memoize direction of traversal
38 left[j+1] = next_left // memoize leftmost-beneath-right-child
39 parity[j+1] = next_parity // memoize cumulative parities
40

41 if (next_left == bound[i]) // early-termination optimization
42 to = j // -> halt traversal at current level
43 } // inner for loop ends
44

45 res[i] = parity[to] // record running prefix-parity
46 if (to == n) // conditionally add partial-leaf parity
47 {
48 string substr = path[n].substr // substring associated with leaf
49 int prefix_len = bound[i] % 2**k // length of prefix to compute
50 res[i] ^= prefix_parity_str(substr, prefix_len)
51 }
52 prev = bound[i] // for computing common prefix length
53 } // outer for loop ends
54 return res // n.b.: *prefix* (not segment) parities!
55 } // prefix_parities

vector path memoizes each node along the path from the root to the
leaf node whose substring contains the bound[i] th bit, sidestepping
the need to revisit any node in the common prefix between bound[i]
and bound[i+1] (and, likewise, between bound[i-1] and bound[i]).
If vector bound is lexicographically sorted, then this is sufficient to
ensure that no edge in the tree is traversed more than once.
Similarly, vector parity memoizes running parities along this
path. Since the “inclusion-exclusion” decisions used to update run-
ning parities depend on traversal direction changes, we also use
vector direction to memoize traversal directions along this path.
Meanwhile, vector left exists to assist in deciding which direction
to go.

int from is the index of the first bit after the common prefix; i.e.,
the point starting from which memoized values reflect prev but not
bound[i] . In the first loop iteration, prev == ~bound[i] , which
ensures that from=0 . On the subsequent iterations, from is set to
clz(bound[i] ^ prev) , the number of leading zeros in the binary rep-
resentation of bound[i] ^ prev (i.e., the number of prefix bits common
to the current and previous bound). int to=n at the start of each loop
iteration, but it may be reduced by the early-terminate optimization on
Lines 41-42.

int next_dir indicates whether to traverse to the right (1) or left
(0), depending on whether parity[j] currently over- or undershoots
path[j] . After traversing in that direction on Line 27, Lines 28-33
compute the next_parity and the next_left . The ternary operator
on lines 28-30 carries forward parity[j] if there was no change in
traversal direction; otherwise, it first “updates” that parity by XORing
in the parity of the node just traversed. All four values are memoized on
Lines 36-39.

If, by serendipity, path[j+1] neither overshoots nor undershoots
bound[i] at this point, then parity[j+1] already equals the desired
parity andwe can break from the inner loop now—even if we haven’t yet
reached a leaf. We break by setting to=j so that Lines 45-51 can easily
determine whether or not we manually broke from the inner loop.

If we did notmanually break from the inner loop, thenwemust complete
the parity computation by XORing in some prefix of the substring in the
leaf node currently stored in path[n] .

Figure 6: C-like pseudocode listing for the prefix-parity algorithm (left) with running commentary (right).
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Appendix C.

Prefix-parity amortization via memoization

This appendix presents empirically measured total costs
for the prefix-parity algorithm with many endpoints,
such as when evaluating several complex functions
at once. The costs depend heavily on the distribution
of the points, with higher endpoint density implying
greater per-endpoint savings. We choose three kinds of
distributions, namely uniform, Gaussian, and Zipfian.

As expected, the greater the variance of the distri-
bution, the lower the amortization savings that the
prefix-parity algorithm enjoys, with the “worst” case
occurring when endpoints are sampled uniformly. By
contrast, the amortization savings for Zipfian distribu-
tions with small parameters are very extreme.
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Figure 7: Empirical amortized costs for prefix-parity over points sampled from selected probability distributions.
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Appendix D.

Selected gadgets

This appendix lists selected gadgets that are supported
by Grotto out of the box, summarizing polynomial de-

grees and lookup table sizes for each gadget assuming
64-bit fixed-point arithmetic with 16 fractional bits.

Gadget Descriptive name Formula Degree # parts
†

Max error
†

RMSE
†

Expected half-PRGs
†

cos cosine¶ cos(𝑥) 3 64 3.0e − 8 1.6e − 8 586 ± 3
sin sine¶ sin(𝑥) 3 63 3.0e − 8 1.7e − 8 580 ± 2
tan tangent¶ sin(𝑥)/cos(𝑥) 3 608 4.6e − 4‡ 5.8e − 5‡ 489 ± 3
csc cosecant¶ 1/sin(𝑥) 3 595 4.6e − 4‡ 5.8e − 5‡ 492 ± 3
sec secant¶ 1/cos(𝑥) 3 358 4.6e − 4‡ 5.5e − 5‡ 496 ± 3
cot cotangent¶ 1/tan(𝑥) 3 366 2.9e − 4‡ 3.4e − 5‡ 486 ± 3
arccos arc cosine cos−1 (𝑥) 3 31 6.8e − 5 1.1e − 5 245 ± 2
arcsin arc sine sin−1 (𝑥) 3 31 7.9e − 5 1.3e − 5 244 ± 2
arctan arc tangent tan−1 (𝑥) 3 179 1.6e − 7 2.4e − 8 2333 ± 4
arccsc arc cosecant csc−1 (𝑥) 3 55 4.4e − 4‡ 3.9e − 5‡ 744 ± 3
arcsec arc secant sec−1 (𝑥) 3 58 4.4e − 4‡ 3.5e − 5‡ 755 ± 4
arccot arc cotangent cot−1 (𝑥) 3 41 1.5e − 5‡ 7.2e − 6‡ 684 ± 3
arcosh area hyperbolic cosine ln(𝑥 +

√︁
𝑥

2 − 1 ) 3 439 2.4e − 7 8.7e − 8 11 129 ± 4
arsinh area hyperbolic sine ln(𝑥 +

√︁
𝑥

2 + 1 ) 3 753 2.4e − 7 8.9e − 8 22 166 ± 4

t
r
i
g
o
n
o
m
e
t
r
i
c
f
u
n
c
t
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n
s

artanh area hyperbolic tangent 1
2 ln( (1 + 𝑥)/(1 − 𝑥)) 3 54 1.5e − 7 9.0e − 8 299 ± 2

ln natural logarithm ln(𝑥) 3 507 3.0e − 7 7.5e − 8 11 382 ± 5
log10 common logarithm log10 (𝑥) 3 550 1.7e − 7 4.8e − 8 10 343 ± 5
log2 binary logarithm lg(𝑥) 3 193 3.9e − 5 6.5e − 6 4402 ± 5
ilogb integer binary log ⌊lg(𝑥) ⌋ 0 128 0 0 3306 ± 1

l
o
g
a
r
i
t
h
m
s

ilog10 integer base-10 log ⌊log10 (𝑥) ⌋ 0 40 0 0 1158 ± 5

sqrt square root
√
𝑥 3 999 1.2e − 4 2.6e − 5 34 911 ± 4

cbrt cube root 3√
𝑥 3 765 1.7e − 5 2.1e − 6 24 326 ± 4

qtrt quartic root 4√
𝑥 3 379 1.6e − 5 6.3e − 6 9344 ± 5

isqrt reciprocal square root 1/√𝑥 3 330 3.5e − 6 1.6e − 7 4174 ± 3
icbrt reciprocal cube root 1/ 3√

𝑥 3 192 2.0e − 5 3.7e − 6 1082 ± 4
iqtrt reciprocal quartic root 1/ 4√

𝑥 3 367 3.5e − 6 1.6e − 7 5862 ± 4

r
o
o
t
s
/
r
e
c
i
p
r
o
c
a
l
s

reciprocal reciprocal 1/𝑥 3 561 4.6e − 5 4.6e − 6 1051 ± 3

erf Gaussian error function (2/√𝜋 )
∫ 𝑥

0 𝑒−𝑡
2 dt 3 70 3.0e − 8 1.7e − 8 626 ± 2

e
r
f

erfc complementary erf 1 − erf (𝑥) 3 92 4.2e − 8 1.6e − 8 772 ± 2

abs absolute value |𝑥 | 1 2 0 0 114 ± 0
signum sign number sgn(𝑥) 0 3 0 0 114 ± 0
positive test strictly positive [𝑥 > 0] 0 2 0 0 114 ± 0
negative test strictly negative [𝑥 < 0] 0 2 0 0 114 ± 0
nonneg test non-negative [𝑥 ≥ 0] 0 2 0 0 114 ± 0
nonpos test non-positive [𝑥 ≤ 0] 0 2 0 0 114 ± 0
zero test exactly zero [𝑥 ?

= 0] 0 2 0 0 57 ± 0

s
i
g
n
t
e
s
t
i
n
g

nonzero test non-zero [𝑥 ≠ 0] 0 2 0 0 57 ± 0

clz count leading zeros clz(𝑥) 0 49 0 0 1665 ± 1

b
i
t
s

clrsb count redundant sign bits clrsb(𝑥) 0 95 0 0 3207 ± 1

ReLU rectified linear unit max(0, 𝑥) 1 2 0 0 114 ± 0
ReLU6 clipped ReLU min(max(0, 𝑥), 6) 1 3 0 0 128 ± 2
LeakyReLU leaky ReLU max(0, 𝑥) +min(0, 𝑥/100) 1 2 0 0 114 ± 0
ReLU2 squared ReLU max(0, 𝑥2) 2 2 0 0 114 ± 0
GELU Gaussian error linear unit 𝑥 (1 + erf (𝑥/

√
2 ))/2 3 81 6.0e − 6 2.5e − 7 712 ± 2

HardELiSH “hard” ELiSH min(𝑒𝑥 − 1, |𝑥 |) max(0,min(1, 𝑥+12 )) 3 38 4.2e − 8 1.2e − 8 351 ± 2
Hardshrink “hard” shrink | ( |𝑥) < 1 ? 0 : 𝑥 1 3 0 0 182 ± 1
Hardsigmoid “hard” logistic sigmoid 𝑥 < −3 ? 0 : (𝑥 > 3 ? 1 : (𝑥 + 3)/6) 1 3 0 0 128 ± 2
Hardswish “hard” swish 𝑥 < −3 ? 0 : (𝑥 > 3 ? 1 : 𝑥 · (𝑥 + 3)/6) 2 3 0 0 128 ± 1
Hardtanh “hard” hyperbolic tangent 𝑥 < −1 ? −1 : (𝑥 > 1 ? 1 : 𝑥) 1 3 0 0 126 ± 2
Softplus “soft” plus ln(1 + 𝑒𝑥 ) 3 94 1.2e − 7 2.2e − 8 960 ± 2
Softminus “soft” minus 𝑥 − Softplus(𝑥) 3 93 1.2e − 7 2.2e − 8 946 ± 2
Softsign “soft” sign 𝑥/(1 + |𝑥 |) 3 182 6.2e − 7 3.9e − 8 2247 ± 3
Softshrink “soft” shrink sgn(𝑥) ·max( | ( |𝑥) − 1, 0) 1 3 0 0 125 ± 1
ELU exponential linear unit max(𝛼 𝑒𝑥 − 1, 𝑥) 3 46 3.0e − 8 1.7e − 8 496 ± 3
sigmoid logistic sigmoid 1/(1 + 𝑒−𝑥 ) 3 98 1.1e − 7 1.4e − 8 991 ± 2
SiLU sigmoid linear unit 𝑥 sigmoid(𝑥) 3 108 1.2e − 7 2.6e − 8 1046 ± 2
CELU continuously differentiable ELU max(0, 𝑥) +min(0, 𝑒𝑥 − 1) 3 47 3.0e − 8 1.7e − 8 507 ± 2
ELiSH exponential-linear squashing 𝑥 < 0 ? 𝑥

1+𝑒−𝑥 : 𝑒
𝑥−1

1+𝑒−𝑥 3 115 1.2e − 7 2.4e − 8 1093 ± 3
Mish Misra’s swish 𝑥 tanh(Softplus(𝑥)) 3 106 1.2e − 7 1.8e − 8 1005 ± 3
LeCunTanh LeCun’s hyperbolic tangent 1.7159 tanh( 2

3𝑥) 3 89 4.2e − 8 2.3e − 8 860 ± 2
TanhExp tanh-exponential 𝑥 tanh(𝑒𝑥 ) 3 100 6.0e − 8 1.1e − 8 931 ± 3
TanhShrink tanh shrink 𝑥 − tanh(𝑥) 3 99 8.4e − 8 5.9e − 8 852 ± 2
Serf log-softplus error 𝑥 erf (Softplus(𝑥)) 3 102 5.9e − 8 1.5e − 8 943 ± 2
logsigmoid natural ogarithm of sigmoid ln sigmoid(𝑥) 3 67 4.1e − 5 7.2e − 6 682 ± 2

a
c
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tanh hyperbolic tangent (𝑒𝑥 − 𝑒−𝑥 )/(𝑒𝑥 + 𝑒−𝑥 ) 3 84 3.0e − 8 1.7e − 8 770 ± 3
†Assuming 64-bit fixed-point arithmetic using 16-bits to represent the fractional part.
‡This function has one or more poles; error measurements exclude points with a distance less than 1.5e − 3 from a pole.
¶This is a periodic function for which only the principle domain is included in the LUT
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Appendix E.

Formulae for (2+1)-PC sign-corrected poly-

nomial evaluation

E.1. One-round ABY2.0-like evaluation

E.1.1. For constant polynomials.

Precomputation: P2 samples 𝑈 and 𝐴0, computes [𝑈 ],
[𝐴0], [𝑈 ·𝐴0], and shares all five them among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 and [𝑎0]𝑏 = [𝑎0]𝑏 +
[𝐴0]𝑏 to P1−𝑏 , and vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·𝑎0·𝑏 − 𝑢·[𝐴0]0 − 𝑎0·[𝑈 ]0 +
[𝑈 ·𝐴0]0

The result is [𝑦] = 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑈 ] + [𝑈 ·𝐴0]
This is derived by:

[𝑦] = [𝑦]0 + [𝑦]1
= 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑈 ] + [𝑈 ·𝐴0]
= (𝑢 − [𝑈 ])·(𝑎0 − [𝐴0])
= 𝑢·𝑎0

E.1.2. For linear polynomials.

Precomputation: P2 samples 𝐴0, 𝐴1, 𝑈 , and 𝑋 , computes
[𝑈 ·𝑋], [𝑈 ·𝐴1], [𝐴1·𝑋 −𝐴0], [𝑈 ·(𝐴1·𝑋 −𝐴0)], and shares
all eight among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏, [𝑎0]𝑏 = [𝑎0]𝑏 +[𝐴0]𝑏 ,
[𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋]𝑏 to P1−𝑏 , and
vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·(𝑏·(𝑎1·𝑥 + 𝑎0) − 𝑎1·[𝑋]𝑏 −
𝑥 ·[𝐴1]𝑏 + [𝐴1·𝑋 − 𝐴0]𝑏) − (𝑎1·𝑥 + 𝑎0)·[𝑈 ]𝑏 + 𝑎1·[𝑈 ·𝑋]𝑏 +
𝑥 ·[𝑈 ·𝐴1]𝑏 − [𝑈 ·(𝐴1·𝑋 −𝐴0)]𝑏
The result is [𝑦] = 𝑢·((𝑎1·𝑥+𝑎0)−𝑎1·[𝑋]−𝑥 ·[𝐴1]+[𝐴1·𝑋−

𝐴0]) − (𝑎1·𝑥 + 𝑎0)·[𝑈 ] + 𝑎1·[𝑈 ·𝑋] + 𝑥 ·[𝑈 ·𝐴1] − [𝑈 ·(𝐴1·𝑋 −
𝐴0)]

This is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= 𝑢·(𝑎1·𝑥 + 𝑎0 − 𝑎1·[𝑋] − 𝑥 ·[𝐴1] + [𝐴1·𝑋 −𝐴0])
− (𝑎1·𝑥 + 𝑎0)·[𝑈 ] + 𝑎1·[𝑈 ·𝑋] + 𝑥 ·[𝑈 ·𝐴1]
− [𝑈 ·(𝐴1·𝑋 −𝐴0)]

= 𝑢·𝑎1·𝑥 − 𝑢·𝑎1·[𝑋] − 𝑢·𝑥 ·[𝐴1] − 𝑎1·𝑥 ·[𝑈 ]
+ 𝑢·[𝐴1·𝑋] + 𝑎1·[𝑈 ·𝑋] + 𝑥 ·[𝑈 ·𝐴1] − [𝑈 ·𝐴1·𝑋]
+ 𝑢·𝑎0 − 𝑢·[𝐴0] − 𝑎0·[𝑈 ] + [𝑈 ·𝐴0]

= 𝑢·𝑎1·𝑥 − 𝑢·𝑎1·[𝑋] − 𝑢·𝑥 ·[𝐴1] − 𝑎1·𝑥 ·[𝑈 ]
+ 𝑢·[𝐴1·𝑋] + 𝑎1·[𝑈 ·𝑋] + 𝑥 ·[𝑈 ·𝐴1] − [𝑈 ·𝐴1·𝑋]
+ 𝑢·𝑎0·2𝑝

= (𝑢 − [𝑈 ])·(𝑎1 − [𝐴1])·(𝑥 − [𝑋]) + 𝑢·𝑎0·2𝑝

= 𝑢·𝑎1·𝑥 + 𝑢·𝑎0·2𝑝

= 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )

E.1.3. For quadratic polynomials.

Precomputation: P2 samples 𝐴0, 𝐴1, 𝐴2, 𝑈 , and 𝑋 , com-
putes [𝑋 2], [𝑈 ·𝐴2], [𝑈 ·𝑋], [𝑈 ·𝑋 2], [2·𝐴2·𝑋−𝐴1], [𝐴2·𝑋 2−

𝐴1·𝑋 +𝐴0], [𝑈 ·(2·𝐴2·𝑋 −𝐴1)], [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)],
and shares all thirteen among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏, [𝑎0]𝑏 = [𝑎0]𝑏 +[𝐴0]𝑏 ,
[𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏 + [𝐴2]𝑏 , and [𝑥]𝑏 =

[𝑥]𝑏 + [𝑋]𝑏 to P1−𝑏 , and vice versa.
Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·(𝑏·(𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0) −
𝑥

2·[𝐴2]𝑏 +𝑥 ·[2·𝐴2·𝑋 −𝐴1]𝑏−(𝑎1+2·𝑎2·𝑥)·[𝑋]𝑏 +𝑎2·[𝑋 2]𝑏−
[𝐴2·𝑋 2−𝐴1·𝑋+𝐴0]𝑏)−[𝑈 ]𝑏 ·(𝑎2·𝑥2+𝑎1·𝑥+𝑎0)+𝑥2·[𝑈 ·𝐴2]𝑏−
𝑥 ·[𝑈 ·(2·𝐴2·𝑋 −𝐴1)]𝑏 + (𝑎1 +2·𝑎2·𝑥)·[𝑈 ·𝑋]𝑏 −𝑎2·[𝑈 ·𝑋 2]𝑏 +
[𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)]𝑏
The result is [𝑦] = 𝑢·((𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0) − 𝑥

2·[𝐴2] +
𝑥 ·[2·𝐴2·𝑋 −𝐴1] − (𝑎1+2·𝑎2·𝑥)·[𝑋] +𝑎2·[𝑋 2] −[𝐴2·𝑋 2−𝐴1·𝑋 +
𝐴0]) − [𝑈 ]·(𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0) + 𝑥2·[𝑈 ·𝐴2] − 𝑥 ·[𝑈 ·(2·𝐴2·𝑋 −
𝐴1)] + (𝑎1 + 2·𝑎2·𝑥)·[𝑈 ·𝑋] − 𝑎2·[𝑈 ·𝑋 2] + [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +
𝐴0)]

This is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= 𝑢·((𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0) − (2·𝑥 ·𝑎2 + 𝑎1)·[𝑋]
+ 𝑎2·[𝑋 2] − 𝑥2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1]
− [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0])
− (𝑎2 + 𝑎1·𝑥 + 𝑎0)·𝑥2[𝑈 ]
+ (2·𝑥 ·𝑎2 + 𝑎1)·[𝑈 ·𝑋] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥2·[𝑈 ·𝐴2] − 𝑥 ·[𝑈 ·(2·𝐴2·𝑋 −𝐴1)]
+ [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)]

= 𝑢·(𝑎2·𝑥2 − 2·𝑥 ·𝑎2·[𝑋] + 𝑎2·[𝑋 2]
− 𝑥2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋] − [𝐴2·𝑋 2])
− 𝑎2·𝑥2[𝑈 ] + 2·𝑥 ·𝑎2·[𝑈 ·𝑋]
− 𝑎2·[𝑈 ·𝑋 2] + 𝑥2·[𝑈 ·𝐴2] − 2·𝑥 ·[𝑈 ·𝐴2·𝑋]
+ [𝑈 ·𝐴2·𝑋 2] + 𝑢·((𝑎1·𝑥 + 𝑎0) − 𝑎1·[𝑋]
− 𝑥 ·[𝐴1] + [𝐴1·𝑋 −𝐴0]) − (𝑎1·𝑥 + 𝑎0)·[𝑈 ]
+ 𝑎1·[𝑈 ·𝑋] + 𝑥 ·[𝑈 ·𝐴1] − [𝑈 ·(𝐴1·𝑋 −𝐴0)]

= 𝑢·(𝑎2·𝑥2 − 2·𝑥 ·𝑎2·[𝑋] + 𝑎2·[𝑋 2]
− 𝑥2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋] − [𝐴2·𝑋 2])
− 𝑎2·𝑥2[𝑈 ] + 2·𝑥 ·𝑎2·[𝑈 ·𝑋] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥2·[𝑈 ·𝐴2] − 2·𝑥 ·[𝑈 ·𝐴2·𝑋] + [𝑈 ·𝐴2·𝑋 2]
+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= (𝑢·𝑎2·𝑥2 − 2·𝑢·𝑥 ·𝑎2·[𝑋] + 𝑢·𝑎2·[𝑋 2]
− 𝑢·𝑥2·[𝐴2] + 2·𝑢·𝑥 ·[𝐴2·𝑋] − 𝑢·[𝐴2·𝑋 2])
− 𝑎2·𝑥2[𝑈 ] + 2·𝑥 ·𝑎2·[𝑈 ·𝑋] − 𝑎2·[𝑈 ·𝑋 2]
+ 𝑥2·[𝑈 ·𝐴2] − 2·𝑥 ·[𝑈 ·𝐴2·𝑋] + [𝑈 ·𝐴2·𝑋 2]
+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= (𝑢 − [𝑈 ])·(𝑎2 − [𝐴2])·(𝑥 − [𝑋])2

+ 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= 𝑢·𝑎2·𝑥2 + 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= 𝑢·
(
𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

)
E.1.4. For cubic polynomials.
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TABLE 3: Comparing round complexity and communication cost to evaluate polynomials using (2 + 1)-party protocols.
The communication cost is expressed as the number of values exchanged as part of the Beaver triple-like from P2 (in the
preprocessing phase) and between P0 and P1 (in the online phase). The bitlength of each term depends on the polynomial
degree and fractional precision; see Section 7.1.2 for details on how to calculate them.

Protocol
Polynomial Round Communication

degree complexity Preprocessing Online

One-round ABY2.0
1 1 8 4
2 1 13 5
3 1 18 6

Two-round ABY2.0-like ABY2.0
1 2 6 4
2 2 9 5
3 2 13 6

Horner’s method
1 2 6 4
2 3 8 5
3 4 10 6

Precomputation: P2 samples 𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝑈 , and 𝑋 ,
computes [𝑋 2], [𝑋 3], [3·𝐴3·𝑋 −𝐴2], [3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +
𝐴1], [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0], [𝑈 ·𝑋], [𝑈 ·𝑋 2], [𝑈 ·𝑋 3],
[𝑈 ·𝐴3], [𝑈 ·(3·𝐴3·𝑋 − 𝐴2)], [𝑈 ·(3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 + 𝐴1)],
[𝑈 ·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)], and shares all eighteen
among P0 and P1.

Round 1: P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏, [𝑎0]𝑏 = [𝑎0]𝑏 +[𝐴0]𝑏 ,
[𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏 + [𝐴2]𝑏 , [𝑎3]𝑏 = [𝑎3]𝑏 +
[𝐴3]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋]𝑏 to P1−𝑏 , and vice versa.

Output: P𝑏 outputs [𝑦]𝑏 = 𝑢·
(
𝑏·(𝑎3·𝑥3 +𝑎2·𝑥2 +𝑎1·𝑥 +𝑎0) −

(3·𝑎3·𝑥2+2·𝑎2·𝑥+𝑎1)·[𝑋]𝑏+(3·𝑎3·𝑥+𝑎2)·[𝑋 2]𝑏−𝑎3·[𝑋 3]𝑏−
𝑥

3·[𝐴3]𝑏 +𝑥2·[3·𝐴3·𝑋 −𝐴2]𝑏 −𝑥 ·[3·𝐴3·𝑋 2−2·𝐴2·𝑋 +𝐴1]𝑏 +
[𝐴3·𝑋 3 − 𝐴2·𝑋 2 + 𝐴1·𝑋 − 𝐴0]𝑏

)
− [𝑈 ]𝑏 ·(𝑎3·𝑥3 + 𝑎2·𝑥2 +

𝑎1·𝑥 + 𝑎0) + (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑈 ·𝑋]𝑏 − (3·𝑎3·𝑥 +
𝑎2)·[𝑈 ·𝑋 2]𝑏 + 𝑎3·[𝑈 ·𝑋 3]𝑏 + 𝑥3·[𝑈 ·𝐴3]𝑏 − 𝑥2·[𝑈 ·(3·𝐴3·𝑋 −
𝐴2)]𝑏+𝑥 ·[𝑈 ·(3·𝐴3·𝑋 2−2·𝐴2·𝑋+𝐴1)]𝑏−[𝑈 ·(𝐴3·𝑋 3−𝐴2·𝑋 2+
𝐴1·𝑋 −𝐴0)]𝑏
The result is [𝑦] = 𝑢·

(
(𝑎3·𝑥3 + 𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0) −

(3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋] + (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2] − 𝑎3·[𝑋 3] −
𝑥

3·[𝐴3] + 𝑥2·[3·𝐴3·𝑋 − 𝐴2] − 𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 + 𝐴1] +
[𝐴3·𝑋 3 − 𝐴2·𝑋 2 + 𝐴1·𝑋 − 𝐴0]

)
− [𝑈 ]·(𝑎3·𝑥3 + 𝑎2·𝑥2 + 𝑎1·𝑥 +

𝑎0) + (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑈 ·𝑋] − (3·𝑎3·𝑥 + 𝑎2)·[𝑈 ·𝑋 2] +
𝑎3·[𝑈 ·𝑋 3]+𝑥3·[𝑈 ·𝐴3]−𝑥2·[𝑈 ·(3·𝐴3·𝑋−𝐴2)]+𝑥 ·[𝑈 ·(3·𝐴3·𝑋 2−
2·𝐴2·𝑋 +𝐴1)] − [𝑈 ·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)]

This is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= 𝑢·((𝑎3·𝑥3 + 𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0)
− (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋] + (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2]
− 𝑎3·[𝑋 3] − 𝑥3·[𝐴3] + 𝑥2·[3·𝐴3·𝑋 −𝐴2]
− 𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1]
+ [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0])
− (𝑎3·𝑥3 + 𝑎2𝑥

2 + 𝑎1·𝑥 + 𝑎0)·[𝑈 ]
+ (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑈 ·𝑋] + 𝑥3·[𝑈 ·𝐴3]
− 𝑥2·[𝑈 ·(3·𝐴3·𝑋 −𝐴2)]

+ 𝑥 ·[𝑈 ·(3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1)]
− [𝑈 ·(𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋 −𝐴0)]

= 𝑢·(𝑎3·𝑥3 − 3·𝑎3·𝑥2·[𝑋] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥3·[𝐴3]
+ 3·𝑥2·[𝐴3·𝑋] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3]) − 𝑎3·𝑥3·[𝑈 ]
+ 3·𝑎3·𝑥2·[𝑈 ·𝑋] − 3·𝑎3·𝑥 ·[𝑈 ·𝑋 2] + 𝑎3·[𝑈 ·𝑋 3]
+ 𝑥3·[𝑈 ·𝐴3] − 3·𝑥2·[𝑈 ·𝐴3·𝑋] + 3·𝑥 ·[𝑈 ·𝐴3·𝑋 2]
− [𝑈 ·𝐴3·𝑋 3] + 𝑢·((𝑎2·𝑥2 + 𝑎1·𝑥 + 𝑎0)
− (2·𝑥 ·𝑎2 + 𝑎1)·[𝑋] + 𝑎2·[𝑋 2]
− 𝑥2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0])
− (𝑎2 + 𝑎1·𝑥 + 𝑎0) ·𝑥2[𝑈 ] + (2·𝑥 ·𝑎2 + 𝑎1)·[𝑈 ·𝑋]
− 𝑎2·[𝑈 ·𝑋 2] + 𝑥2·[𝑈 ·𝐴2] − 𝑥 ·[𝑈 ·(2·𝐴2·𝑋 −𝐴1)]
+ [𝑈 ·(𝐴2·𝑋 2 −𝐴1·𝑋 +𝐴0)]

= 𝑢·(𝑎3·𝑥3 − 3·𝑎3·𝑥2·[𝑋] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥3·[𝐴3]
+ 3·𝑥2·[𝐴3·𝑋] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
− 𝑎3·𝑥3·[𝑈 ] + 3·𝑎3·𝑥2·[𝑈 ·𝑋] − 3·𝑎3·𝑥 ·[𝑈 ·𝑋 2]
+ 𝑎3·[𝑈 ·𝑋 3] + 𝑥3·[𝑈 ·𝐴3] − 3·𝑥2·[𝑈 ·𝐴3·𝑋]
+ 3·𝑥 ·[𝑈 ·𝐴3·𝑋 2] − [𝑈 ·𝐴3·𝑋 3]

+ 𝑢·
(
𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

)
·2𝑝

= (𝑢 − [𝑈 ])·(𝑎3·𝑥3 − 3·𝑎3·𝑥2·[𝑋] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥3·[𝐴3] + 3·𝑥2·[𝐴3·𝑋] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])

+ 𝑢·
(
𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

)
·2𝑝

= (𝑢 − [𝑈 ])·(𝑎3 − [𝐴3])·(𝑥 − [𝑋])3

+ 𝑢·
(
𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

)
·2𝑝

= 𝑢·𝑎3·𝑥3 + 𝑢·
(
𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

)
·2𝑝

= 𝑢·
(
𝑎3·𝑥3 + 𝑎2·𝑥2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝

)
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E.2. Two-round ABY2.0-like evaluation

E.2.1. For constant polynomials. Since sign-correcting
a constant polynomial only requires a single multiplication
as described in section E.1.1, a Two-round ABY2.0-like
evaluation is not required.

E.2.2. For linear polynomials.

Precomputation: P2 samples 𝐴1, 𝑈 , 𝑋 , and 𝑌 , computes
[𝐴1·𝑋], [𝑈 ·𝑌 ], and shares all six among P0 and P1.

Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 and [𝑥]𝑏 = [𝑥]𝑏 +
[𝑋]𝑏 to P1−𝑏 , and vice versa.

Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 +[𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏
to P1−𝑏 , and vice versa. Here [𝑦]𝑏 = 𝑏· (𝑎1·𝑥) − 𝑎1·[𝑋]𝑏 −
𝑥 ·[𝐴1]𝑏 + [𝐴1·𝑋]𝑏 + [𝑎0]·2𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦−𝑥 ·[𝑋]𝑏−𝑦·[𝑌 ]𝑏+[𝑋 ·𝑌 ]𝑏
The result of the first round of online communication

is [𝑦] = (𝑎1·𝑥) − 𝑎1·[𝑋] − 𝑥 ·[𝐴1] + [𝐴1·𝑋] + [𝑎0]·2𝑝
This is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= 𝑎1·𝑥 − 𝑥 ·[𝐴1] − 𝑎1·[𝑋] + [𝐴1·𝑋] + [𝑎0]·2𝑝

= (𝑎1 − [𝐴1])·(𝑥 − [𝑋]) + [𝑎0]·2𝑝

= 𝑎1·𝑥 + 𝑎0·2𝑝

The final Du-Atallah multiplication produces, 𝑢·[𝑦] =
𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 ), the sign corrected result.

E.2.3. For quadratic polynomials.

Precomputation: P2 samples 𝐴1, 𝐴2, 𝑈 , 𝑋 , and 𝑌 , com-
putes [𝑋 2], [2·𝐴2·𝑋 − 𝐴1], [𝐴2·𝑋 2 − 𝐴1·𝑋], [𝑈 ·𝑌 ], and
shares all nine among P0 and P1.

Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏 +
[𝐴2]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋]𝑏 to P1−𝑏 , and vice versa.

Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 +[𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏
to P1−𝑏 , and vice versa. Here [𝑦]𝑏 = 𝑏·(𝑎2·𝑥2 + 𝑎1·𝑥) −
𝑥

2·[𝐴2]𝑏 +𝑥 ·[2·𝐴2·𝑋 −𝐴1]𝑏−(𝑎1+2·𝑎2·𝑥)·[𝑋]𝑏 +𝑎2·[𝑋 2]𝑏−
[𝐴2·𝑋 2 −𝐴1·𝑋]𝑏 + [𝑎0]𝑏·22𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦−𝑥 ·[𝑋]𝑏−𝑦·[𝑌 ]𝑏+[𝑋 ·𝑌 ]𝑏
The result of the first round of online communication

is [𝑦] = (𝑎2·𝑥2 + 𝑎1·𝑥) − 𝑥2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 − 𝐴1] − (𝑎1 +
2·𝑎2·𝑥)·[𝑋] + 𝑎2·[𝑋 2] − [𝐴2·𝑋 2 −𝐴1·𝑋] + [𝑎0]·22𝑝

This value is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= (𝑎2·𝑥2 + 𝑎1·𝑥) − (2·𝑎2·𝑥 + 𝑎1)·[𝑋] + 𝑎2·[𝑋 2] − 𝑥2·[𝐴2]
+ 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋] + [𝑎0]·22𝑝

= (𝑎2·𝑥2 − 2·𝑎2·𝑥 ·[𝑋] + 𝑎2·[𝑋 2] − 𝑥2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋]
− [𝐴2·𝑋 2]) + 𝑎1·𝑥 − 𝑥 ·[𝐴1] − 𝑎1·[𝑋] + [𝐴1·𝑋]
+ [𝑎0]·22𝑝

= (𝑎2·𝑥2 − 2·𝑎2·𝑥 ·[𝑋] + 𝑎2·[𝑋 2] − 𝑥2·[𝐴2] + 2·𝑥 ·[𝐴2·𝑋]
− [𝐴2·𝑋 2]) + (𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= (𝑎2 − [𝐴2])·(𝑥 − [𝑋])2 + (𝑎1·𝑥 + 𝑎0·2𝑝 )·2𝑝

= 𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝

The final Du-Atallah multiplication produces the sign-
corrected result 𝑢·𝑦 = 𝑢·(𝑎2·𝑥2 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·2𝑝 )

E.2.4. For cubic polynomials.

Precomputation: P2 samples 𝐴1, 𝐴2, 𝐴3, 𝑈 , 𝑋 , and 𝑌 ,
computes [𝑋 2], [𝑋 3], [3·𝐴3·𝑋 −𝐴2], [3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +
𝐴1], [𝐴3·𝑋 3−𝐴2·𝑋 2+𝐴1·𝑋], [𝑈 ·𝑌 ], and shares all thirteen
among P0 and P1.

Round 1: P𝑏 sends [𝑎1]𝑏 = [𝑎1]𝑏 + [𝐴1]𝑏 , [𝑎2]𝑏 = [𝑎2]𝑏 +
[𝐴2]𝑏 , [𝑎3]𝑏 = [𝑎3]𝑏 + [𝐴3]𝑏 , and [𝑥]𝑏 = [𝑥]𝑏 + [𝑋]𝑏 to
P1−𝑏 , and vice versa.

Round 2: P𝑏 sends [𝑦]𝑏 = [𝑦]𝑏 +[𝑌 ]𝑏 and [𝑢]𝑏 = [𝑢]𝑏 +[𝑈 ]𝑏
to P1−𝑏 , and vice versa. Here [𝑦]𝑏 = 𝑏·(𝑎3·𝑥3 + 𝑎2·𝑥2 +
𝑎1·𝑥) − (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋]𝑏 + (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2]𝑏 −
𝑎3·[𝑋 3]𝑏 − 𝑥

3·[𝐴3]𝑏 + 𝑥2·[3·𝐴3·𝑋 − 𝐴2]𝑏 − 𝑥 ·[3·𝐴3·𝑋 2 −
2·𝐴2·𝑋 +𝐴1]𝑏 + [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋]𝑏 + [𝑎0]𝑏·23𝑝 .

Output: P𝑏 outputs [𝑢·𝑦]𝑏 = 𝑏·𝑥 ·𝑦−𝑥 ·[𝑋]𝑏−𝑦·[𝑌 ]𝑏+[𝑋 ·𝑌 ]𝑏
The result of the first round of online communication

is [𝑦] = (𝑎3·𝑥3 + 𝑎2·𝑥2 + 𝑎1·𝑥) − (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋] +
(3·𝑎3·𝑥 +𝑎2)·[𝑋 2] −𝑎3·[𝑋 2] +𝑥2·[3·𝐴3·𝑋 −𝐴2] −𝑥 ·[3·𝐴3·𝑋 2−
2·𝐴2·𝑋 +𝐴1] + [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋] + [𝑎0]·23𝑝 .

This value is derived by:
[𝑦] = [𝑦]0 + [𝑦]1

= (𝑎3·𝑥3 + 𝑎2·𝑥2 + 𝑎1·𝑥) − (3·𝑎3·𝑥2 + 2·𝑎2·𝑥 + 𝑎1)·[𝑋]
+ (3·𝑎3·𝑥 + 𝑎2)·[𝑋 2] − 𝑎3·[𝑋 3] − 𝑥3·[𝐴3]
+ 𝑥2·[3·𝐴3·𝑋 −𝐴2] − 𝑥 ·[3·𝐴3·𝑋 2 − 2·𝐴2·𝑋 +𝐴1]
+ [𝐴3·𝑋 3 −𝐴2·𝑋 2 +𝐴1·𝑋] + [𝑎0]·23𝑝

= (𝑎3·𝑥3 − 3·𝑎3·𝑥2·[𝑋] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥3·[𝐴3] + 3·𝑥2·[𝐴3·𝑋] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
+ (𝑎2·𝑥2 + 𝑎1·𝑥) − (2·𝑎2·𝑥 + 𝑎1)·[𝑋] + 𝑎2·[𝑋 2]
− 𝑥2·[𝐴2] + 𝑥 ·[2·𝐴2·𝑋 −𝐴1] − [𝐴2·𝑋 2 −𝐴1·𝑋]
+ [𝑎0]·23𝑝

= (𝑎3·𝑥3 − 3·𝑎3·𝑥2·[𝑋] + 3·𝑎3·𝑥 ·[𝑋 2] − 𝑎3·[𝑋 3]
− 𝑥3·[𝐴3] + 3·𝑥2·[𝐴3·𝑋] − 3·𝑥 ·[𝐴3·𝑋 2] + [𝐴3·𝑋 3])
+ (𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝 )·2𝑝

= (𝑎3 − [𝐴3])·(𝑥 − [𝑋])3 + (𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝 )·2𝑝

= 𝑎3·𝑥3 + 𝑎2·𝑥2·2𝑝 + 𝑎1·𝑥 ·22𝑝 + 𝑎0·23𝑝

The final Du-Atallah multiplication produces the sign-
corrected result 𝑢·𝑦 = 𝑢·(𝑎3·𝑥3 + 𝑎2·𝑥2·2𝑝 + 𝑎1·𝑥 ·22𝑝 +
𝑎0·23𝑝 )

E.3. Horner’s Method evaluation

E.3.1. For linear polynomials. Identical to the two-
round ABY2.0-like linear evaluation.
Precomputation: P2 samples 𝐴1, 𝑈 , 𝑋 , and 𝑌 , computes
[𝐴1 ·𝑋] and [𝑈 ·𝑌 ], and shares all six among P0 and P1.

Round 1: Du-Atallah multiply 𝑎1 · 𝑥 . To do this, P𝑏 sends
𝑎1 = [𝑎1] + [𝐴1] and 𝑥 = [𝑥] + [𝑋] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply 𝑢 · 𝑦1 where 𝑦1 = 𝑎1 · 𝑥 +
𝑎0·2𝑝 . To do this, P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 and [𝑦]𝑏 =

[𝑦]𝑏 + [𝑌 ]𝑏 to P1−𝑏 , and vice versa.
Output: P𝑏 outputs 𝑢 · 𝑦1 = 𝑢·(𝑎1·𝑥 + 𝑎0·2𝑝 )

Total:
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• 6 precomputed values
• 2 rounds
• 4 values sent online by each of 𝑃0 and 𝑃1

E.3.2. For quadratic polynomials.

Precomputation: P2 samples 𝐴2, 𝑈 , 𝑋 , 𝑌1, and 𝑌2, com-
putes [𝐴2 ·𝑋], [𝑌1 ·𝑋], and [𝑈 · 𝑌2], and shares all eight
among P0 and P1.

Round 1: Du-Atallah multiply 𝑎2 · 𝑥 . To do this, P𝑏 sends
𝑎2 = [𝑎2] + [𝐴2] and 𝑥 = [𝑥] + [𝑋] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply [𝑦1] · [𝑥] where 𝑦1 = 𝑎2 ·𝑥 +
𝑎1·2𝑝 . To do this, P𝑏 sends [𝑦1] = [𝑦1] + [𝑌1] to P1−𝑏 , and
vice versa.

Round 3: Du-Atallah multiply 𝑢 · 𝑦2 where 𝑦2 = 𝑦1 · 𝑥 +
𝑎0·22𝑝

= (𝑎2 · 𝑥 + 𝑎1·2𝑝 ) · 𝑥 + 𝑎0·22𝑝 . To do this, P𝑏 sends
[𝑢]𝑏: = [𝑢]𝑏: + [𝑈 ]𝑏 and [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 to P1−𝑏 , and
vice versa.

Output: P𝑏 outputs 𝑢·𝑦 = 𝑢·(𝑎2·𝑥2 + 𝑎1·𝑥 ·2𝑝 + 𝑎0·22𝑝 )
Result: 𝑢 · ((𝑎2 · 𝑥 + 𝑎1) · 𝑥 + 𝑎0)

Total:
• 8 precomputed values
• 3 rounds
• 5 values sent online by each of 𝑃0 and 𝑃1

E.3.3. For cubic polynomials.

Precomputation: P2 samples 𝐴3, 𝑈 , 𝑋 , 𝑌1, 𝑌2, and 𝑌3,
computes [𝐴3 · 𝑋], [𝑌1 · 𝑋], [𝑌2 · 𝑋], and [𝑈 · 𝑌3], and
shares all ten among P0 and P1.

Round 1: Du-Atallah multiply 𝑎3 · 𝑥 . To do this, P𝑏 sends
𝑎3 = [𝑎3] + [𝐴3] and 𝑥 = [𝑥] + [𝑋] to P1−𝑏 , and vice versa.

Round 2: Du-Atallah multiply [𝑦1] · [𝑥] where 𝑦1 = 𝑎3 ·𝑥 +
𝑎2·2𝑝 . To do this, P𝑏 sends [𝑦1] = [𝑦1] + [𝑌1] to P1−𝑏 , and
vice versa.

Round 3: Du-Atallah multiply [𝑦2] · [𝑥] where 𝑦2 = (𝑎3 ·
𝑥 +𝑎2·2𝑝 ) ·𝑥 +𝑎1·22𝑝 . To do this, P𝑏 sends [𝑦2] = [𝑦2] +[𝑌2]
to P1−𝑏 , and vice versa.

Round 4: Du-Atallah multiply 𝑢 · 𝑦3 where 𝑦2 = 𝑦2 · 𝑥 +
𝑎0·23𝑝

=

( (
𝑎3 · 𝑥 + 𝑎2·2𝑝

)
· 𝑥 + 𝑎1·22𝑝

)
· 𝑥 + 𝑎0·23𝑝 . To do

this, P𝑏 sends [𝑢]𝑏 = [𝑢]𝑏 + [𝑈 ]𝑏 and [𝑦]𝑏 = [𝑦]𝑏 + [𝑌 ]𝑏 to
P1−𝑏 , and vice versa.

Output: P𝑏 outputs 𝑢·𝑦 = 𝑢·(𝑎3·𝑥3 + 𝑎2·𝑥2·2𝑝 + 𝑎1·𝑥 ·22𝑝 +
𝑎0·23𝑝 ).

Result: 𝑢·(𝑦2 · 𝑥 + 𝑎0 = ((𝑎3 · 𝑥 + 𝑎2) · 𝑥 + 𝑎1) · 𝑥 + 𝑎0)
Total:
• 10 precomputed values
• 4 rounds
• 6 values sent online by each of 𝑃0 and 𝑃1
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