
Swiper: a new paradigm for efficient weighted distributed

protocols

Andrei Tonkikh1 and Luciano Freitas1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, 19 Place Marguerite Perey,
Palaiseau, 91120, Essonne, France.

Contributing authors: tonkikh@telecom-paris.fr; lfreitas@telecom-paris.fr;

Abstract

The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption
model, in which at most a fraction fn of parties can be corrupted by the adversary. However, due to
the infamous Sybil attack, nominal models are not sufficient to express the trust assumptions in open
(i.e., permissionless) settings. Instead, permissionless systems typically operate in a weighted model,
where each participant is associated with a weight and the adversary can corrupt a set of parties
holding at most a fraction fw of the total weight.
In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal
model into the weighted model. To this end, we formalize and solve three novel optimization problems,
which we collectively call the weight reduction problems, that allow us to map large real weights into
small integer weights while preserving the properties necessary for the correctness of the protocols.
In all cases, we manage to keep the sum of the integer weights to be at most linear in the number of
parties, resulting in extremely efficient protocols for the weighted model. Moreover, we demonstrate
that, on weight distributions that emerge in practice, the sum of the integer weights tends to be far
from the theoretical worst case and, sometimes, even smaller than the number of participants.
While, for some protocols, our transformation requires an arbitrarily small reduction in resilience
(i.e., fw = fn − ϵ), surprisingly, for many important problems, we manage to obtain weighted
solutions with the same resilience (fw = fn) as nominal ones. Notable examples include erasure-coded
distributed storage and broadcast protocols, verifiable secret sharing, and asynchronous consensus.
Although there are ad-hoc weighted solutions to some of these problems, the protocols yielded by
our transformations enjoy all the benefits of nominal solutions, including simplicity, efficiency, and a
wider range of possible cryptographic assumptions.

Keywords: weight reduction, distributed protocols, weighted cryptography, threshold cryptography,
consensus, random oracles, broadcast

1 Introduction

1.1 Weighted distributed problems

Traditionally, distributed problems are studied in
the egalitarian setting where n parties communi-
cate over a network and any t of them can be faulty

or corrupted by a malicious adversary. Different
combinations of n and t are possible depending on
the problem at hand, the types of failures (crash,
omission, semi-honest, or malicious, also known
as Byzantine), and the network model (typically,
asynchronous, semi-synchronous, or synchronous).

1

However, for most distributed protocols, t has
to be smaller than a certain fraction of n. For
example, most practical Byzantine fault-tolerant
consensus protocols [19, 18] can operate for any
t < n

3 . We call such models nominal and use fn
to denote their resilience, i.e., a nominal protocol
with resilience fn operates correctly as long as less
than fnn parties are corrupt, where n is the total
number of participants.

However, this simple corruption model is not
always sufficient to express the actual fault struc-
ture or trust assumptions of real systems. As a
result, we see many practical blockchain protocols
adopt a more general, weighted model, where each
party is associated with a real weight that, intu-
itively, represents the number of “votes” this party
has in the system. The assumption on the number
of corrupt parties in this setting is replaced by the
assumption that the total weight of the corrupt
parties is smaller than a fraction fw of the total
weight of all participants. For example, in permis-
sionless systems, the weight can correspond to the
amount of “stake” or computational resources a
participant has invested in the system and, in the
context of managed systems, to a function of the
estimated failure probability.

There are two main reasons for adopting the
weighted model in the context of blockchain sys-
tems. First and foremost, it protects the system
from the infamous Sybil attacks, i.e., malicious
users registering themselves multiple times in
order to obtain multiple identities, thereby sur-
passing the resilience threshold fn. Second, it is
speculated that users with a greater amount of
resources (monetary, computational, or otherwise)
invested in the system, and consequently a higher
weight, will be more committed to the system’s
stability and less likely to engage in malicious
behavior.

1.2 Weighted voting and where it
needs help

Perhaps, the most prevalent tool used for the
design of distributed protocols is quorum sys-
tems [36, 49, 46]. Intuitively, to achieve fault
tolerance, each “action” is confirmed by a suffi-
ciently large set of participants (called a quorum).
Then, if two actions are conflicting or somehow
interdependent (e.g., writing and reading a file in
a distributed storage system), then the parties in

the intersection of the quorums are supposed to
ensure consistency. Thus, many distributed pro-
tocols can be converted from the nominal to the
weighted setting simply by changing the quorum
system, i.e., instead of waiting for confirmations
from a certain number of parties, waiting for a set
of parties with the corresponding fraction of the
total weight. We call this strategy weighted voting
and it often allows translating protocols from the
nominal to the weighted model while maintaining
the same resilience (i.e., fw = fn) and, in some
cases, with virtually no overhead.

However, weighted voting has two major down-
sides. First and foremost, many protocols rely on
primitives beyond simple quorum systems, and
weighted voting is often insufficient to translate
these protocols to the weighted model. Notable
examples include threshold cryptography [29,
9], secret sharing [56, 14], erasure and error-
correcting codes [45], and numerous protocols that
rely on these primitives.

Another example, relevant to blockchain sys-
tems, where weighted voting is typically not
sufficient is in Single Secret Leader Election pro-
tocols [10, 20, 21, 33]. It illustrates that not
all protocols that cannot be converted to the
weighted model simply3 by applying weighted vot-
ing belong to the categories above and motivates
the general approach taken in this paper.

The second drawback of weighted voting is
that it requires a careful examination of the proto-
col in order to determine whether weighted voting
is sufficient to convert it to the weighted model,
as well as non-trivial modifications to the protocol
implementation. It would be much nicer to have
a “black-box” transformation that would take a
protocol designed and implemented for the nomi-
nal model and output a protocol for the weighted
model. In this paper, we offer both a “black-
box” transformation and a set of more efficient
“open-box” transformations for a wide range of
problems.

1.3 Our contribution

Our contribution to the fields of distributed com-
puting and applied cryptography is twofold:
1. We present a simple and efficient black-box

transformation that can be applied to convert a
wide range of protocols designed for the nom-
inal model into the weighted model. Crucially,

2

one can determine the applicability of the trans-
formation simply by examining the problem in
question (e.g., Byzantine consensus), instead of
the protocol itself (e.g., PBFT [19]) and it does not
require modifications to the source code, only a
slim wrapper around it. The price for this transfor-
mation is an arbitrarily small decrease in resilience
(fw = fn − ϵ, where ϵ > 0) and an increase in
the communication and computation complexities
proportional to fw

ϵ .
2. Furthermore, by opening the black box and

examining the internal structure of distributed
protocols, we discover that by combining our
transformation with weighted voting, in many
cases, we can obtain weighted algorithms without
the reduction in resilience (fw = fn) and with a
minor or non-existent performance penalty.

We summarize some examples of our tech-
niques applied to a range of different protocols
in Table 1. The last two columns of the table
give the upper bound on the overhead of the
obtained weighted protocols compared to their
nominal counterparts executed with the same
number of parties. Note, however, that, in many
cases, the overhead applies only to specific parts
of the protocol, which may not be the bottle-
necks. Thus, further experimental studies may
reveal that the real overhead is even lower or
nonexistent, even with the worst-case weight dis-
tribution. Columns “fw” and “fn” specify the
resilience of the weighted protocols obtained and
the original nominal protocols, respectively. As
discussed above, in most cases, we manage to
avoid sacrificing resilience (i.e., fw = fn).

Furthermore, the main building block of our
constructions, the weight reduction problems, may
be of separate interest and may have important
applications beyond distributed protocols. It is
indeed an interesting and somewhat counterintu-
itive observation that large real weights can be
efficiently reduced to small integer weights while
preserving the key structural properties. We for-
mally define the three weight reduction problems
considered in this paper in Section 2 and present
a practical solver called Swiper in Section 3.

1.4 Empirical study

The performance of the weighted protocols con-
structed as suggested in this paper is sensitive
to the distribution of the participants’ weights.

While we provide upper bounds and thus analyze
our protocols for the worst weight distributions
possible, it is interesting whether such weight
distributions emerge in practice.

To study real-world weight distributions, we
tested our weight reduction algorithms on the
distribution of funds from multiple existing
blockchain systems [4, 37, 44, 47] ranging in size
from a hundred parties [5, 4] up to multiple tens of
thousands [3, 47]. We perform an in-depth analysis
in Section 7.

Roadmap

The rest of the paper is organized as follows:
we formally define weight reduction problems and
state the upper bounds in Section 2. We present
Swiper in Section 3. The proof that it satisfies
the stated bounds is delegated to Appendix A.
Sections 4 to 6 discuss in detail the applications of
the weight reduction problems in distributed com-
puting and cryptography. In Section 7, we discuss
the results of the empirical study performed on
real-world weight distributions. We discuss related
work in Section 8 and conclude the paper with
the discussion of directions for future work in
Section 9.

To avoid distraction, we moved to the
appendix the parts of the paper that are, while
essential, not required for understanding the key
ideas. Specifically, the formal proofs of the upper
bounds (Appendix A), the mixed integer program-
ming formulation of the Weight Restriction prob-
lem (Appendix B), and the empirical evaluation
results (Appendix C).

2 Weight reduction problems

Let us define the key building block to our con-
struction, the weight reduction problems: a class
of optimization problems that map (potentially
large) real weights w1, . . . , wn ∈ R≥0 to (ideally
small) integer weights t1, . . . , tn ∈ Z≥0 while pre-
serving certain key properties. For convenience, we
use the word “tickets” to denote the units of the
assigned integer weights, i.e., if t1, . . . , tn is the
output of a weight reduction problem, we say that
party i is given ti tickets.

3

distributed
problem

nominal
solutions

weight reduction
problem

fw fn
worst-case average
comm. overhead

worst-case average
comp. overhead

Derived Protocols

Efficient Asynchronous
State-Machine Replication

[48, 30, 42,
24, 58]

WR for RNG
WQ for Broadcast

1/3 1/3
× 1.33 for Broadcast

× 1.33 for RNG
× 3.56 for Broadcast

× 1.33 for RNG

Structured Mempool [24] WQ for Broadcast 1/3 1/3 × 1.33 for Broadcast × 3.56 for Broadcast

Validated Asynchronous
Byzantine Agreement

[15, 2] WR for RNG 1/3 1/3 × 1.33 for RNG × 1.33 for RNG

Consensus with Checkpoints [6] WR for signing 1/3 1/3 × 1.33 for signing × 1.33 for signing

Linear BFT Consensus [61]
WR (BB) 1/4 1/3 × 2.67 × 2.67

Chain-Quality SSLE [10]

Useful Building Blocks

Erasure-Coded
Storage and Broadcast

[54, 17, 38,
51, 60, 50]

WQ 1/3 1/3 × 1.33 × 3.56

WR (BB) 1/4 1/3 – × 3

Error-Corrected Broadcast [27]
WQ 1/3 1/3 × 1.33 × 7.11

WR (BB) 1/4 1/3 – × 3

Verifiable Secret Sharing [56] WR 1/3 1/3 × 1.33 × 1.33

Common Coin [53, 16]

WR 1/3 1/2 × 1.33 × 1.33
Blunt Threshold Signatures [9, 59, 57]

Blunt Threshold Encryption [29]

Blunt Threshold FHE [40, 11]

Tight Secret Sharing

See sec. 4.3
(this paper)

WR 1/2 1/2
× 1.33

(+O(n2) small messages)
× 1.33

Tight Threshold Signatures

Tight Threshold Encryption

Tight Threshold FHE

Table 1: Examples of suggested weighted distributed protocols with the upper bounds on communication
and computation overhead compared to the nominal solutions with the same number of participants. See
Sections 4 to 6 for details on how these numbers were obtained. In Section 7, we study real-world weight
distributions and conclude that, in practice, the overhead should be much smaller. “WR” and “WQ” refer
to the weight reduction problems defined in Section 2. “WR (BB)” refers to the black-box transformation
described in Section 4.4.

Notation

To avoid repetition, throughout the rest of the
paper, we use the following notation:

1. [n] := {1, 2, . . . , n}
2. for any S ⊆ [n]: w(S) :=

∑
i∈S wi

3. for any S ⊆ [n]: t(S) :=
∑

i∈S ti

4. W := w([n]) =
∑n

i=1 wi

5. T := t([n]) =
∑n

i=1 ti

2.1 Weight Restriction

The first weight reduction problem is Weight
Restriction (or simply WR). It is parameterized
by two numbers αw, αn ∈ (0, 1) and requires the
mapping to preserve the property that any subset
of parties of weight less than αw obtains less than
αn tickets. More formally:

Problem 1 (Weight Restriction)

Given αw, αn ∈ (0, 1) and w1, . . . , wn ∈ R≥0

such that W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0

such that T is minimized, subject to the following
restriction:

∀S ⊆ [n] s.t. w(S) < αwW : t(s) < αnT

In Section 4, we apply Weight Restric-
tion to implement the black-box transformation
announced in Section 1.3 as well as weighted ver-
sions of secret sharing and threshold cryptography
with different access structures. In Appendix A,
we prove the following theorem:

Theorem 2.1 (WR upper bound). For any
αw, αn ∈ (0, 1) such that αw < αn and any
w1, . . . , wn: there exists a solution to the Weight

Restriction problem with T ≤
⌈
αw(1−αw)
αn−αw

n
⌉

4

To make sense of this expression, note that: (1)
it is proportional to n; (2) it is inversely propor-
tional to the “gap” between αw and αn; (3) the
numerator αw(1 − αw) is smaller than 1 and, in
fact, never exceeds 1/4. For a fixed αw, one can

see αw(1−αw) as the “constant” and O
(

n
αn−αw

)
as the “complexity”.

2.2 Weight Qualification

The next weight reduction problem we study is
Weight Qualification (or simply WQ). It requires
the mapping to preserve the property that any
subset of parties of weight greater than βw obtains
more than βn tickets. In some sense, WQ is
the opposite of the Weight Restriction problem
discussed above. More formally:

Problem 2 (Weight Qualification)

Given βw, βn ∈ (0, 1) and w1, . . . , wn ∈ R≥0

such that W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0

such that T is minimized, subject to the following
restriction:

∀S ⊆ [n] s.t. w(S) > βwW : t(s) > βnT

In Section 5, we show how to apply Weight
Qualification to implement weighted versions of
storage and broadcast protocols that rely on era-
sure and error-correcting codes for minimizing
communication and storage complexity.

There exists a simple reduction between WR
and WQ:

Theorem 2.2. For any βw, βn ∈ (0, 1) and
w1, . . . , wn ∈ R≥0, the following problems are
identical:
1. WQ(βw, βn, w1, . . . , wn)
2. WR(1− βw, 1− βn, w1, . . . , wn)

Proof Let us prove that any valid solution to
WR(1− βw, 1− βn, w1, . . . , wn) is a valid solution to
WQ(βw, βn, w1, . . . , wn). The inverse can be proven
analogously. Indeed, if t1, . . . , tn is a valid solution
for WR(1 − βw, 1 − βn, w1, . . . , wn), then ∀S ⊆ [n]
such that w(S) > βwW it holds that w([n] \ S) =
W −w(S) < (1−βw)W . Hence, t([n]\S) < (1−βn)T
and t(S) = T − t([n] \ S) > βnT . □

From Theorems 2.1 and 2.2, we obtain the
following:

Corollary 2.3 (WQ upper bound). For any
βw, βn ∈ (0, 1) such that βn < βw: there exists a
solution to the Weight Qualification problem with

T ≤
⌈
βw(1−βw)
βw−βn

n
⌉

2.3 Weight Separation

Finally, Weight Separation, in a sense, combines
WR and WQ: it has two parameters, α and β,
and guarantees that any set of weight β receives
more tickets than any set of weight α. Intuitively,
it is similar to solving WR(α, γ) and WQ(β, γ)
for some unknown γ ∈ (0, 1) at the same time, i.e.,
with just a single ticket assignment.

Problem 3 (Weight Separation)

Given α, β ∈ (0, 1) and w1, . . . , wn ∈ R≥0 such that
W ̸= 0 as input, find t1, . . . , tn ∈ Z≥0 such that T
is minimized, subject to the following restriction:
∀S1, S2 ⊆ [n] s.t. w(S1) < αW and w(S2) > βW :

t(S1) < t(S2)

In this paper, we focus primarily on Weight
Restriction and Weight Qualification because they
are sufficient for most applications and, being less
restrictive on the ticket assignment, permit more
efficient solutions. However, for completeness, we
also provide an upper bound onWeight Separation
and support it in our approximate solver described
in Section 3.

Theorem 2.4 (WS upper bound). For any α, β ∈
(0, 1) such that α < β: there exists a solu-
tion to the Weight Separation problem with T ≤
(α+β)(1−α)

β−α n.

Note that the numerator (α + β)(1 − α) is
always smaller than 1 for 0 < α < β < 1.

3 Swiper: Approximate solver
for Weight Reduction
problems

To provide a constructive proof for Theorems 2.1,
2.3 and 2.4 as well as to facilitate practical appli-
cations of weight reduction problems, we designed
Swiper—a fast approximate solver for the three
weight reduction problems defined in this paper.
Swiper enjoys a number of desirable properties:

5

System

number of tickets using Swiper

WR and WQ WS

αw = 1/4

αn = 1/3

αw = 1/3

αn = 3/8

αw = 1/3

αn = 1/2

αw = 2/3

αn = 3/4 α = 1/4

β = 1/3

α = 1/3

β = 1/2

α = 2/3

β = 3/4βw = 3/4

βn = 2/3

βw = 2/3

βn = 5/8

βw = 2/3

βn = 1/2

βw = 1/3

βn = 1/4

Aptos [4, 5]

W = 8.47× 108 n = 104
85 235 27 110 385 98 437 (+1)

Tezos [37, 32]

W = 6.76× 108 n = 382
133 425 61 (+8) 258 (+1) 670 233 (+2) 811

Filecoin [44, 31]

W = 2.52× 1019 n = 3700
3 091 8 233 1 533 4 691 10 485 4 838 11 858

Algorand [47, 3]

W = 9.72× 109 n = 42 920
745 13 475 293 6 258 46 009 2 188 64 189

Table 2: Number of tickets allocated by the Swiper protocol on sample weight distributions. In the few
cases when the linear mode yields more tickets than the standard (full) mode, the difference is written
in parentheses.

1. Robustness: It always respects the upper
bounds stated in Section 2. This means that even
under a malicious distribution of weights, the
number of assigned tickets will be within a known
limit, linear in the number of parties. We present
the algorithm in Section 3.1 and prove the upper
bounds in Appendix A.
2. Determinism: Swiper is a deterministic

protocol. Hence, when the initial weights are com-
mon knowledge, each party can run it locally and
all parties will obtain the same result. This elimi-
nates the need for executing any complex protocol
to agree on the ticket assignment.
3. Allocation efficiency: As we explore in

detail in Section 7, Swiper performs remarkably
well on real-world weight distributions, often allo-
cating far fewer tickets than predicted by the
upper bounds. In Table 2, we summarize the
number of tickets allocated by Swiper on the
distribution of funds in four major blockchain sys-
tems [5, 32, 31, 3] with some example thresholds.
Notice that, in many cases, the number of tick-
ets is actually below the number of users. This
happens partly due to the distributions being sig-
nificantly skewed and a large number of users
actually owning only a small fraction of the total
funds.
4. Computational efficiency: Assuming that

the thresholds (α, αw, αn, β, βw, βn) are constants,
the runtime of Swiper is either Õ(n) (in --linear

mode) or Õ(n2) (in standard mode). The differ-
ence in the implementation of the two modes is
detailed in Section 3.1. Both modes respect the
upper bounds and, as can be seen in Table 2, in
practice, usually yield identical or almost identical
results.

3.1 Algorithm and implementation

Overall structure. In Swiper, we consider
ticket assignments of a special form. Let c be
a fixed number between 0 and 1 (we will pre-
cisely specify c later in this section). Let t(s, k)
be the result of the following procedure: first, let
ti := ⌊swi + c⌋; then, consider the parties that
ended up “on the border”, i.e., that would lose a
ticket if we decreased s any further1 and take 1
ticket from all but arbitrary (yet deterministically
chosen) k of them.

More formally, let Bs := {i | swi+c is integer}
and Ks,k := {arbitrary k members of Bs}. Then:

t(s, k)i :=

{
⌊swi + c⌋ − 1, if i ∈ (Bs \ Ks,k)

⌊swi + c⌋, otherwise

The crucial observation is that, despite hav-
ing two indices, this family of ticket assignments
can be totally ordered, each ticket assignment
having precisely one ticket more than the previ-
ous one (after removing duplicates). Indeed, let
Ts,k :=

∑n
i=1 t(s, k)i. Then, for 0 < k < |Bs|, by

1This corresponds to all i such that swi + c is an integer.

6

definition, T (s, k + 1) = T (s, k) + 1. Moreover,
if s′ is the smallest number greater than s such
that |Bs′ | ≠ 0, then T (s′, 1) = T (s′, 0) + 1 =
T (s, |Bs|) + 1. For any s′′ in between s and s′,
t(s′′, ∗) = t(s′, 0) = t(s, |Bs|).

Swiper finds a local minimum in this family
of ticket assignments, i.e., s∗ and k∗ such that
t(s∗, k∗) is viable (satisfies the problem require-
ments), but, for any sufficiently small ε and any k′,
t(s∗−ε, k′) is not viable and neither is t(s∗, k∗−1).

Theoretical foundations. In Appendix A, we
prove that, by selecting the constant c as αw in
case of Weight Restriction, (1 − βw) in case of
Weight Qualification, and α+β

2 in case of Weight
Separation, the resulting ticket assignment always
satisfies the bounds stated in Section 2 (The-
orems 2.1, 2.3 and 2.4).2 The proof works by
demonstrating that any invalid ticket assignment
of this form yields at least one fewer tickets
than the stated upper bounds. Any local mini-
mum yields just 1 ticket more than some invalid
ticket assignment and, thus, fewer or equal to the
upper bounds. This proof structure is important
for achieving practical efficiency.

Bootstrapping the solution. As mentioned
above, if the ticket assignment yielded by some
tuple (s, k) is invalid (does not satisfy the prob-
lem’s requirement), then the total number of
tickets in this ticket assignment must be smaller
than the upper bound. Conversely, if some tuple
(s, k) yields a ticket assignment with the total
number of tickets greater or equal to the upper
bound, we can conclude that the resulting ticket
assignment is valid. This fact alone allows us to
quickly arrive at a valid solution satisfying the
upper bound by simply finding a tuple (s, k) that
yields the number of tickets exactly equal to the
upper bound. This can be done efficiently with a
binary search.

Finding the local minimum. Thanks to the
fact that we are only looking for a local mini-
mum in the considered family of ticket assign-
ments, we can find it efficiently with a binary
search, assuming an efficient algorithm for verify-
ing the validity of a ticket assignment. However,
in the general case, verifying the validity of a

2To obtain these specific values, we first considered the gen-
eral case for an arbitrary c and then found the values of c that
minimized the upper bounds.

ticket assignment looks a lot like a (co-)NP-hard
problem. Indeed, one can easily see that verify-
ing a solution to Weight Restriction as defined
in Section 2 is equivalent to solving a particu-
lar instance of Knapsack—the famous NP-hard
optimization problem [43].

Fortunately, for the specific family of ticket
assignments that Swiper considers (denoted as
t(s, k) earlier in this section), an efficient algo-
rithm does exist. Indeed, we have already estab-
lished that any ticket assignment in this family
with the total number of tickets (T) exceeding the
upper bound is valid. If, on the other hand, T is
smaller than the upper bound, then we can use the
“dynamic programming by profits” approach [43,
Lemma 2.3.2] to solve Knapsack in time O(Tn).
Assuming αs and βs to be constant, T is O(n) and
O(Tn) = O(n2).

Practical efficiency and the --linear mode.
Solving Knapsack to verify the validity of t(s, k)
is the main bottleneck for the algorithm. To
achieve better practical efficiency, Swiper uses
well-known quasilinear-time Knapsack lower and
upper bounds to filter out as many solutions as
possible without invoking the knapsack solver.

The upper bound allows us to implement a
conservative check, i.e., it may yield false nega-
tives (falsely declaring t(s, k) as invalid), but never
false positives (falsely declaring t(s, k) as valid). In
--linear mode, Swiper only relies on the upper
bound and is guaranteed to find a valid solution,
albeit not necessarily a locally minimal one.

Additionally, the lower bound allows us to
implement a liberal check, i.e., it may yield false
positives, but never false negatives. By combining
the two, we can implement a quick test that can
return one of the three values (“valid”, “invalid”,
or “uncertain”). In the full mode (i.e., when
--linear is not provided), Swiper only invokes
the full knapsack solver (with O(n2) time com-
plexity) when the quick test returns “uncertain”,
which speeds up the algorithm by a more than a
factor of 3 on inputs with large enough resulting
number of tickets.

Prototype implementation. We provide the
full code for a prototype of Swiper and the data
used to generate Table 2 in a public GitHub
repository3. The prototype is implemented in

3https://github.com/DCL-TelecomParis/swiper

7

https://github.com/DCL-TelecomParis/swiper

Python, with JIT compilation used for certain
computation-heavy parts. It utilizes the Fraction
class to avoid any possible rounding errors. If
sub-second latencies are required by the applica-
tion, an implementation in a more performance-
oriented programming language as well as the
use of rounding (be it floating- or fixed-point
arithmetic) may be necessary.

4 Applications of Weight
Restriction

4.1 Distributed random number
generation

As a motivating example for Weight Restriction,
consider the Distributed Random Number Gener-
ation problem. Typically, it needs to satisfy two
properties:

• If all honest parties cooperate, they can
generate the next random number;

• Unless at least one honest party wants to
open the next random number, it remains com-
pletely unpredictable to the adversary.

Perhaps, the simplest way it can be
achieved [53] is by having a trusted party gen-
erate the random number and pre-distribute it
using secret sharing [56], such that each party
gets a number ti of shares and any subset of
parties possessing at least ⌈αnT ⌉ shares (where
T =

∑n
i=1 ti) can reconstruct the secret, but no

set of parties possessing less than this amount of
shares can learn anything about the secret.

Thus, by setting αw to the resilience of the pro-
tocol (αw := fw) and αn ≤ 1

2 , we can guarantee
that:

• Honest participants will receive more than
(1−αn)T ≥ ⌈αnT ⌉ shares and, hence, will be able
to reconstruct the random number.

• Corrupt participants will receive less than
αnT shares and, hence, will not be able to recon-
struct the random number unless some honest
party also wants to open it;

Practical randomness beacons [16, 55] oper-
ate similarly, only employing unique threshold
signatures [57, 9] in order to be able to reuse
the same secret multiple times. The described
weighted solution still applies to such approaches
unchanged.

4.2 Blunt Secret Sharing and
derivatives

In cryptography, certain actions have an associ-
ated access structure A that determines all sets of
parties that are able to perform these actions once
they collaborate. Traditional (n, k + 1)-threshold
systems can be seen as a particular access struc-
ture An(α) = {P ⊆ [n] : |P | > αn}, where α := k

n .
Analogously, a weighted threshold access structure
can be defined as Aw(α) = {P ⊆ Π :

∑
i∈P wi >

α
∑

i∈Π wi}.
We can also define the adversary structure

F ⊆ 2Π, the set of all sets of parties that can be
simultaneously corrupted at any given execution.
Often, the adversary structure is also defined by
a threshold, with a maximum corruptible weight
fraction fw, i.e., Fw(fw) = {P ⊂ Π :

∑
i∈P wi <

fw
∑

i∈Π wi}.
While threshold access structures are com-

monly studied in cryptography and are applied in
numerous distributed protocols, in practice, as we
illustrate in Section 6, it is often sufficient if the
access structure provides the following two proper-
ties, generalizing the requirements of the random
beacon presented in Section 4.1:

• There exists at least one set entirely com-
posed of honest parties that belongs to the access
structure. This typically guarantees the accompa-
nying protocol’s liveness properties.

• Any set containing only corrupt parties does
not belong to the access structure, as this would
break safety properties.

Hence, we define a blunt access structure as
follows:

Definition 4.1 (Blunt access structure). Given a
set of parties Π and the adversary structure F ⊆
2Π, A is a blunt access structure w.r.t. F if (∀F ∈
F : F ̸∈ A) and (∃A ∈ A : A ∩ F = ∅).

The following theorem shows that solving WR
is sufficient to implement weighted cryptographic
protocols with blunt access structures by a reduc-
tion to their nominal counterparts.

Theorem 4.2. Given a set of parties, a proto-
col P implementing a cryptographic primitive with
nominal threshold access structure An(αn), for
αn ≤ 1

2 , we obtain a protocol P ′ implementing a
blunt access structure w.r.t. adversarial structure

8

Fw(fw), assuming fw < αn, by solving Weight
Restriction with the corresponding parameters αn

and αw := fw. This is accomplished by instantiat-
ing P with n̂ = T virtual users and allowing party
i to control ti of them.4

Proof By definition of WR, once it distributes T tick-
ets, the number of tickets (and, hence, virtual users)
allocated to the corrupt parties will be less than αnT .
Hence, no element of the adversary structure shall
appear in the resulting access structure. In addition,
honest participants will receive more than (1−αn)T ≥
αnT (recall that αn ≤ 1

2) tickets (and, hence, virtual
users), ensuring that there exists a set consisting of
only honest parties in the access structure. □

Note that all participants must agree on
how many virtual users are assigned to each
party, as nominal protocols typically assume that
the membership is common knowledge. To this
end, it is sufficient for all parties to run an
agreed upon deterministic weight-restriction pro-
tocol (e.g., Swiper).

Among other things, this way, one can obtain
weighted versions of secret sharing [56], dis-
tributed random number generation [16], thresh-
old signatures [9], threshold encryption [29], and
threshold fully-homomorphic encryption [40], all
with blunt access structures. In the next section,
we discuss how to do it for other access structures.

4.3 Tight Secret Sharing and
derivatives

Although a blunt access structure is sufficient for
a large spectrum of applications, more restrictive
access structures are sometimes necessary as well.
Here, we present a straightforward approach that
involves just one extra round of communication to
transform a blunt access structure into a weighted
threshold access structure.5 This means that our
construction can be readily utilized in any pro-
tocol that already uses threshold cryptography
without requiring significant redesign efforts.

Given a protocol P implementing a cer-
tain primitive of distributed cryptography (e.g.,

4Recall that ti is the number of tickets assigned to party i
and T is the total number of tickets assigned by the solution
to the weight reduction problem (in this case, to WR). See
Section 2 for details.

5In fact, this can be further generalized to arbitrary access
structures.

threshold signatures [29]) with a blunt access
structure, we can obtain a protocol P ′ implement-
ing the same protocol with a weighted threshold
access structure Aw(β) as follows: whenever an
honest party wants to perform an action A (e.g.,
produce a threshold signature), instead it simply
broadcasts a message “voting” for the action to be
performed, without actually revealing any secret
data (e.g., its threshold signature share). Then,
when an honest party receives such votes from par-
ties with a total weight more than βW , it partici-
pates in the action A, according to the underlying
protocol P (e.g., broadcasts its threshold signature
share). Thus, we can notice that:
1. Unless a threshold of parties (potentially

including Byzantine) cast votes for A, no hon-
est party will participate in A in P. Thus, by
Theorem 4.1, action A will not be performed;
2. If a threshold of parties cast votes for A,

all honest parties will eventually participate in A
according to P, thus, by Theorem 4.1, the action
will be performed.

4.4 Black-Box transformation

The same approach of allocating a number of
virtual users according to the number of tick-
ets as described in Section 4.2 can be applied to
arbitrary distributed protocols.

Given a nominal protocol P, the “virtual
users” approach allows us to define a protocol P ′

that operates in the weighted model by, essen-
tially, emulating the nominal model, as long as
we can solve Weight Restriction with parame-
ters αw := fw and αn := fn. If fw < fn,
by Theorem 2.1, T =

∑
i∈[n] ti will be at most

O
(

n
fn−fw

)
. In P ′, each party i participates in P

with ti virtual identities. Two components of the
transformation depend on the problem at hand
(but not on the underlying protocol P):
1. Mapping the input of i in P ′ to the inputs of

its virtual identities in P;
2. Treatment of the outputs of i’s virtual iden-

tities in P to produce the outputs in P ′.
We illustrate the black-box transformation

with two examples: Validated Byzantine Agree-
ment [15] and Single Secret Leader Election [10].

Consensus. For concreteness, let us consider
the problem of Validated Byzantine Agreement
(VBA) [15]. However, one can easily verify that

9

the same logic will apply to most, if not all, of
the many types of consensus and state machine
replication, including both crash and Byzantine
fault-tolerant ones.

Definition 4.3. A protocol solves validated
Byzantine agreement with external validity predi-
cate V if it satisfies the following conditions:
Liveness: Each honest party outputs a value.
Agreement: No two honest parties can output dif-

ferent values.
External Validity: If an honest party outputs v,

then V(v) holds.
Integrity: If all parties are honest, and if some

party decides v, then v is the input of some
party.

Efficiency: The communication complexity is
probabilistically uniformly bounded.

Consider an arbitrary protocol P that solves
the problem for some external validity predicate
V. Let P ′ be the protocol obtained from P by
applying the transformation described above with
the problem-specific part defined as follows:
1. The input of all virtual identities of party i

in P is the same as i’s input in P ′;
2. If ti ̸= 0, party i outputs the value output by

its first virtual identity and sends it to all parties
j such that tj = 0. If ti = 0, it waits for messages
from parties with total weight greater than fwW
vouching for the same output v and outputs v.

By construction and the definition of WR,
assuming that at most a fraction fw of the total
weight is corrupted, at most a fraction fn of
virtual identities will be corrupted and, hence,
assuming P solves VBA with nominal resilience
fn, the simulated protocol will satisfy the prop-
erties of VBA. One can easily verify that each
of the five properties will be satisfied for P ′ as
well. Notice, in particular, that efficiency will still
be satisfied as the total communication complex-
ity will be increased by only a constant factor
(assuming fw and fn to be constants).

Single Secret Leader Election. SSLE [10] is
a distributed protocol that has as an objective to
select one of the participants to be a leader with an
additional constraint that only the elected party
knows the result of the election. Then, once the
leader is ready to make a proposal, it reveals itself
and other participants can then correctly verify

that the claiming leader was indeed elected by the
protocol.

The original paper [10] contains nominal solu-
tions for the protocol relying on ThFHE [11]
and on shuffling a list of commitments under
the DDH assumption. The authors initially sug-
gest that their protocols could support weights
by replicating each party to match their weights.
This approach is identical to the transformation
described in this section with the exception that
it does not include weight reduction and, thus,
exhibits overhead proportional to the total weight
(which can be prohibitively large, see Table 2). We
can solve this issue by applying Weight Restric-
tion at the cost of lowering the resilience by an
arbitrarily small constant ϵ (fw = fn − ϵ).

However, the original problem definition
requires the election to be fair, that is, for the
probability of each party being elected to be uni-
form. It is easy to see that, as a result of applying
weight reduction, this property will not be main-
tained. Instead, we can relax it to an alternative
property of chain-quality, requiring that the frac-
tion of blocks produced by corrupt parties should
not surpass a constant fraction α when the adver-
sary might control a fraction of the weights up to
fw. Our transformation then trivially solves this
problem for α := fn.

Properties such as fairness are one of the lim-
itations of our transformations since any property
that is a function of the weight of the parties
may not be preserved after the transformation is
applied. We discuss fairness in slightly more detail
and speculate about possible fixes to this issue in
Section 9.

5 Applications of Weight
Qualification

5.1 Erasure-Coded Storage and
Broadcast

Erasure-coded storage systems [54, 17, 38, 51, 60],
also known under the names of Information Dis-
persal Algorithms (IDA) [54] and Asynchronous
Verifiable Information Dispersal (AVID) [17],
are crucial to many systems for space and
communication-efficient, secure, and fault-tolerant
storage. Moreover, as demonstrated in [17], they
can yield highly communication-efficient solutions

10

to the very important problem of asynchronous
Byzantine Reliable Broadcast [13, 12], a funda-
mental building block in distributed computing
that, among other things, serves as the basis for
many practical consensus [48, 30, 42, 24, 58], dis-
tributed key generation [1, 28], and mempool [24]
protocols.

The challenge of applying these protocols in
the weighted setting is that (k,m) erasure cod-
ing, by definition, converts the original data into
m discrete fragments such that any k of them
are sufficient to reconstruct the original informa-
tion. Thus, each party will inevitably get to store
an integer number of these fragments, and the
smaller m is, the more efficient the encoding and
reconstruction will be. Moreover, for the most
commonly used codes–Reed Solomon–the origi-
nal message must be of size at least k logm bits.
Hence, using a large m may lead to increased com-
munication as the message may have to be padded
to reach this minimum size. As we illustrate in this
section, determining the smallest “safe” number
of fragments to give to each party is exactly the
Weight Qualification problem defined in Section 2.

Let us consider the example of [17] as it is
the first erasure-coded storage protocol tolerating
Byzantine faults. We believe Weight Qualification
can be applied analogously to other similar works.

This protocol operates in a model where any t
out of n parties can be malicious or faulty, where
t < n

3 . In other words, it has the nominal fault
threshold of fn = 1

3 . The protocol encodes the
data using (t+ 1, n) erasure coding, and the data
is considered to be reliably stored once at least
2t+1 parties claim to have stored their respective
fragments. The idea is that, even if t of them are
faulty, the remaining t + 1 parties will be able to
cooperate to recover the data.

In order to make a weighted version of this
protocol, instead of waiting for confirmations from
2t + 1 parties, one needs to wait for confirma-
tions from a set of parties that together possess
more than a fraction 2fw of total weight, where
fw = fn = 1

3 . A subset of weight less than fw of
these parties may be faulty. Hence, for the proto-
col to work, it is sufficient to guarantee that any
subset of total weight more than 2fw − fw = fw
gets enough fragments to reconstruct the data. To
this end, we can apply the WQ problem with the
threshold βw = fw. We can set βn to be an arbi-
trary number such that 0 < βn < βw. Then, we

can use (⌈βnT ⌉, T) erasure coding, where T is the
total number of tickets allocated by the WQ solu-
tion. Hence, whenever a set of parties of weight
more than 2fw claim to have stored their frag-
ments, we will be able to reconstruct the data with
the help of the correct participants in this set. As
for the rest of the protocol, it can be converted to
the weighted model simply by applying weighted
voting, as was discussed in Section 1.2.

As a result, we manage to obtain a weighted
protocol for erasure-coded verifiable storage with
the same resilience as in the nominal protocol
(fw = fn = 1

3). The “price” we pay is using era-
sure coding with a smaller rate (βn instead of fw),
i.e., storing data with a slightly increased level
of redundancy. However, note that βn can be set
arbitrarily close to fw, at the cost of more total
tickets and, hence, more computation.

Example instantiations

The communication and storage complexity
of these protocols depends linearly on the
rate of the erasure code. Using Reed-Solomon
with Berlekamp-Massey decoding algorithm, the
decoding computation complexity [35] is O(m2 ·
M
rm) = O(mr ·M), where M is the size of the mes-
sage (which we do not affect), r is the rate of the
code (in our case, r = βn), and m is the number
of fragments (in our case, the number of tickets
allocated by the solution to the WQ problem).
For the sake of illustration, let us fix βn to be 1

4 .
Then, the rate of the code used in the weighted
solution will be 4

3 times smaller than in the nom-
inal solution. For the number of fragments m, let
us substitute the upper bound from Theorem 2.3

(m ≤
⌈
βw(1−βw)
βw−βn

n
⌉
). For βw = 1

3 and βn = 1
4 ,

m ≤ 8
3n. Hence, the overall slow-down compared

to the nominal solution is 8
3 · 4

3 ≈ 3.56.
One can also consider using FFT-based decod-

ing algorithms [41]. Since the complexity of the
FFT-based decoding depends only polylogarith-
mically on the number of fragments m, one can
select the rate of the code (r = βn) to be much
closer to βw and, thus, minimize communication
and storage overhead.

Some protocols [50] are designed for higher
reconstruction thresholds, which allows them to be
more communication- and storage-efficient com-
pared to [17]. For these cases, we will need to

11

set βw := 2
3 . By setting βn := 1

2 and apply-
ing the upper bound from Theorem 2.3, we will
obtain the same reduction of factor 4

3 in rate and

2 times fewer tickets: m ≤ 1/3·2/3
2/3−1/2n = 4

3 . The

computational overhead will be 4
3 · 4

3 ≈ 1.78.

5.2 Error-Corrected Broadcast

The exciting work of [27] illustrated how one
can avoid the need for complicated cryptographic
proofs in the construction of communication-
efficient broadcast protocols by employing error-
correcting codes, thus enabling a better com-
munication complexity when a trusted setup is
not available. The protocol of [27] can be used
for the construction of communication-efficient
Asynchronous Distributed Key Generation [1, 28]
protocols.

Similarly to erasure codes, error-correcting
codes convert the data into m discrete fragments,
such that any k of them are sufficient to recon-
struct the original information. However, they
have the additional property that the data can be
reconstructed even when some of the fragments
input to the decoding procedure are invalid or cor-
rupted. Reed-Solomon decoding allows correcting
up to e errors when given k+2e fragments as input.

The protocol of [27] tolerates up to t failures in
a system of n ≥ 3t + 1 parties (for simplicity, we
will consider the case n = 3t + 1). Its key contri-
bution is the idea of online error correction. Put
simply, the protocol first ensures that:

• Every honest party obtains a cryptographic
hash of the data to be reconstructed;

• Every honest party obtains its chunk of the
data.
Then, in order to reconstruct a message, an hon-
est party solicits fragments from all other parties
and repeatedly tries to reconstruct the original
data using the Reed-Solomon decoding and veri-
fies the hash of the output of the decoder against
the expected value. As the protocol uses k = t+1
and m = n, after hearing from all 2t + 1 honest
and e ≤ t malicious parties, it will be possible to
reconstruct the original data (as 2t+1+e ≥ k+2e,
for k = t+ 1).

To convert this protocol into the weighted
model, it is sufficient to make sure that all hon-
est parties together possess enough fragments to
correct all errors introduced by the corrupted par-
ties. To this end, we will apply the WQ problem.

We will set βw to the fraction of weight owned
by honest parties, i.e., βw := 1 − fw = 2

3 (where
fw will be the resilience of the resulting weighted
protocol, fw = fn = 1

3). However, it is not
immediately obvious how to set βn to allow the
above-mentioned property.

If we want to use error-correcting codes with
rate r, we need to guarantee that the fraction of
fragments received by the honest parties (which
is at least βn) is at least r + e, where e is the
fraction of fragments received by the corrupted
parties. However, since honest parties get at least
the fraction βn of all fragments, then e ≤ 1− βn.
Hence, we need to set βn so that βn ≥ r+(1−βn).
We can simply set βn := r

2+
1
2 for arbitrary r < 1

3 .

Example instantiation

For the sake of an example, we can set βw := 2
3 ,

r := 1
4 and βn := 5

8 . Then, using the bound from
Theorem 2.3, the number of tickets will be at most
2/3·1/3
2/3−5/8 · n ≤ 16

3 n.

As was discussed above, for erasure codes,
we can either use the Berlekamp-Massey decod-
ing algorithm or the FFT-based approaches. The
same applies to error-correcting codes. As most
practical implementations use the former, we will
focus on it. In this case, the communication over-
head will be rn

rw
, where rn = 1

3 is the rate used
in the nominal protocol and rw is the rate used
for the weighted protocol (in the example above,
r = 1

4). The computation overhead is rn
rw

· T
n ,

where T is the number of tickets allocated by the
WQ solution (in the example above, T ≤ 16

3 n in
the worst case). Hence, for the example param-
eters, the worst-case computational overhead is
4
3 · 16

3 ≈ 7.11.

6 Derived Applications

In this section, we discuss indirect applications of
weight reduction problems that are obtained by
using one or multiple building blocks discussed in
Sections 4 and 5. For all applications discussed
here, we manage to avoid losing resilience despite
applying weight reduction. In all cases, the major-
ity of the protocol logic should be converted to the
weighted model by applying weighted voting, as
discussed in Section 1.2.

12

6.1 Asynchronous State Machine
Replication

For asynchronous state machine replication pro-
tocols [48, 30, 42, 24, 58], we simply need to
use a weighted communication-efficient broadcast
protocol (discussed in Section 5) and weighted dis-
tributed random number generation (discussed in
Section 4.1). distributed number generation part
can use a nominal protocol with threshold αn = 1

2
and set αw := 1

3 , which is the resilience of the rest
of the protocol. Thus, in some sense, we level the
resilience of different parts of the protocol, without
affecting the resilience of the composition.

6.2 Validated Asynchronous
Byzantine Agreement

The same approach can be applied to generate
randomness for Validated Asynchronous Byzan-
tine Agreement (VABA) [15, 2].

These protocols also require tight thresh-
old signatures. However, in practice, multi-
signatures [52, 9] are usually applied instead as
they have almost no overhead over threshold sig-
natures on the system sizes where such protocols
could be applied (below 1000 participants): it
suffices to append the multi-signature with an
array of n bits, indicating the set of parties that
produced the signature. Then, along with the veri-
fication of the validity of the multi-signature itself,
anyone can verify that the signers together hold
sufficient weight.

Alternatively, one could apply the approach
described in Section 4.3 to implement tight
weighted threshold signatures. However, it would
lead to an increase in message complexity of the
resulting protocol, which we want to avoid.

Finally, an ad-hoc weighted threshold signa-
ture scheme can be applied, such as the one
recently proposed in [25]. Note that these signa-
tures cannot be used for distributed randomness
generation as they lack the necessary uniqueness
property, and thus we still need to apply Swiper
to obtain a complete protocol.

6.3 Consensus with Checkpoints

We can apply the same approach for checkpoint-
ing proof-of-stake consensus protocols [6], but this
time for blunt threshold signatures (as discussed

in Section 4.2) instead of random number gen-
eration. If, for some reason, one wants to use a
tight threshold signature, the approach described
in Section 4.3 can be applied at the cost of just 1
additional message delay per checkpoint.

Compared to ad-hoc solutions for weighted
threshold signatures [25], we claim that our
approach is more computationally efficient as it is
basically as fast as the underlying nominal pro-
tocol. For example, 2 pairings to verify a BLS
signature [9] compared to 13 pairings to verify a
signature in [25]. Moreover, the weight reduction
approach is more general and can support other
types of threshold signatures, such as RSA [57]
and Schnorr [59], the latter being particularly
important in the context of checkpointing to Bit-
coin [6].

7 Analyzing Weight
Restriction on sample
systems

Data sets. We analyzed our protocol using
four real-world data sets for weight distribution:
Aptos [4, 5], Tezos [37, 32], Filecoin [44, 31], and
Algorand [47, 3]. For the reader’s convenience, we
provide the results for all the datasets in a sepa-
rate appendix C and present the results for only
one blockchain (Tezos) in Figure 1 as an example.

Experiment description. We performed two
kinds of experiments on real blockchain data. In
the first experiment, shown in the left column of
Figure 1, we analyzed the influence of the choice
of parameters αw and αn for the original data
retrieved from the blockchains; the value of αn

was varied in the range [0.1, 1], while the value of
αw was tested in the range [0.1 × αn, 0.9 × αn].
In the experiments showcased in the right column
of Figure 1, we kept these parameters fixed and
analyzed the influence of the number of parties in
the metrics we tracked. In order to simulate hav-
ing the same blockchain with different numbers of
parties, we used the statistical technique known
as bootstrapping. To this end, we performed 100
experiments sampling parties with replacement
from the blockchain data and taking the average
of the results.

In each experiment, we tracked the total num-
ber of tickets distributed, the maximum number

13

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

100

200

300

400

Total tickets

(w, n) = (1/4,1/3)
(w, n) = (1/3,3/8)

(w, n) = (1/3,1/2)
(w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

10

20

30

40

50

Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

20

40

60

80

Holders

100

200

300

400

10

20

30

40

50

60

20

40

60

80

Fig. 1: Experiment results using Tezos

of tickets held by a single party, and the num-
ber of parties that get at least one ticket (in the
figures, we label them as the number of holders).
In Figure 1, we show the results for the Tezos
blockchain. The results for Algorand, Aptos, and
Filecoin are available in Appendix C. The analysis
of the results reveals the following information: the
upper bound given in Section 2 is very pessimistic
for weight distributions emerging in practice, with
the total number of tickets rarely surpassing the
number of parties for different values of αn and
αw. The total number of tickets varies extremely
close to a linear function on the number of parties,
as well as the number of holders. The maximum
number of tickets, on the other hand, seems to
saturate when the number of parties in absolute

terms surpasses the order of magnitude of 1000,
remaining almost constant after that point.

8 Related Work

Knapsack. The Knapsack problem and its vari-
ations hold huge importance in theoretical com-
puter science and have numerous applications in
both theory and practice. The weight reduction
problems studied in this paper seem to be related
to, or can even be seen as a variation of the
famous Knapsack problem. For example, one can
see Weight Restriction as the problem of con-
structing “worst possible” profits for a Knapsack
instance given the weights and the capacity. We

14

refer to [43] for a comprehensive survey on the
topic.

Virtual users. The simplest solution for creat-
ing a weighted threshold cryptographic system is
to simply have a user of weight w become w virtual
users and to give one key to each of them. Shamir’s
paper describing his secret sharing scheme [56]
puts forward this solution. However, in practice,
the total weight tends to be prohibitively large,
and “quantizing” it requires solving weight reduc-
tion problems, which is the main subject of this
paper.

Weighted voting. In [36], Gifford presents the
idea of weighted voting for distributed storage
systems. The paper suggests assigning weights to
replicas according to the estimated failure proba-
bilities and using weight-based quorums to store
and retrieve data. We discuss the merits and lim-
itations of this approach in Section 1.2. The goal
of our paper is to complement the weighted voting
approach and design a framework for implement-
ing weighted distributed protocols that can benefit
from solutions and primitives that are initially
designed for the nominal model. In Sections 4
to 6, we discuss in detail how to combine weighted
voting and weight reduction to obtain extremely
efficient weighted protocols without sacrificing
resilience.

Ad-hoc solutions. There is a large body of
work studying ad-hoc weighted cryptographic pro-
tocols [34, 7, 22, 39, 25, 8]. Compared to these
works, the weight reduction approach studied in
this paper has a number of benefits, such as
simplicity, efficiency, wider applicability, and a
wider range of possible cryptographic assump-
tions. Moreover, in many cases, ad-hoc solutions
can be combined with and benefit from weight
reduction. In this paper, we also study other, non-
cryptographic, applications, such as erasure and
error-corrected distributed storage and broadcast
protocols.

Similar work by Benhamouda, Halevi, and
Stambler. A recent work [8] mentioned a sim-
ilar idea of reducing real weights to integers to
construct ramp secret sharing. This project has
been started and the first version of Swiper has
been drafted before the online publication and
without any knowledge of [8]. As the main focus
of [8] is different, we believe that we do a much

more in-depth exploration of this direction by
studying different kinds of weight reduction prob-
lems and their applications beyond secret sharing,
as well as providing much tighter bounds and
implementing a solver that is not only linear in
the worst case but also allocates very few tick-
ets in empirical evaluations on real-world weight
distributions.

Application in Aptos blockchain. A ver-
sion of the Weight Separation problem has
been recently used in the Aptos blockchain in
their implementation of on-chain randomness [26].
They consider an inverse problem where the num-
ber of tickets is fixed and the gap between α and
β is minimized. Note that one can trivially reduce
one problem to the other (in both directions) by
using a binary search.

9 Concluding remarks and
future work directions

In this paper, we have presented a family of opti-
mization problems called weight reduction that,
to the best of our knowledge, has not been stud-
ied before. We provided practical protocols to
find good, albeit not optimal, solutions to these
problems. As we have shown, it allows us to
obtain efficient implementations of many weighted
distributed protocols.

We believe that weight reduction problems will
play an important role in the future of blockchain
systems as they become more sophisticated and
the need for threshold cryptography as well as era-
sure coding and protocols like single secret leader
election grows. At the time of writing, at least one
major layer-1 blockchain has already integrated
a version of Weight Separation for generating
on-chain randomness.

In this paper, we attempted the first system-
atic study of this family of problems, but there
are still many important questions being left for
future research.

Fairness. Weight reduction naturally leads to
slight deviations in the relative weights of the par-
ticipants. While in this paper we focused on safety
and liveness properties and showed that they can
still be preserved, we did not consider any kind
of fairness properties. However, we believe that,

15

somewhat counterintuitively, some form of fair-
ness can be preserved as well. To this end, we are
considering two possible directions:
1. Expected fairness: In addition to deter-

ministically assigned tickets, we can allocate some
small number of tickets randomly so that each
party gets exactly the same fraction of tickets as
its fraction of weight in expectation. We believe
that it can be done while still preserving safety and
liveness deterministically, i.e., even in the worst
case, when all the “random” tickets are received
by the adversary.
2. Integral fairness: Similarly, one can imag-

ine a deterministic protocol that provides fairness
over time. In such a scheme, the ticket assignment
will be updated periodically and each party will
get exactly the right number of tickets on average,
over a large enough period.

Incentives. One important aspect of proof-of-
stake blockchains is the distribution of incentives,
which should depend on the weight of each party.
It is not immediately clear what is the right way
to allocate incentives in a system where weight
reduction is being applied.

Other applications. While we covered a wide
range of applications in this paper, we believe that
there must be others, including ones not related to
distributed computing or applied cryptography.

Adversarial attacks. In this paper, we study
the “worst case” weight distributions by provid-
ing the upper bounds and the “organic case”

by studying the real-world weight distributions.
However, in practice, under an adversarial attack,
the weight distribution will be a hybrid one: the
weights of honest parties will be organic, but the
weights of the adversarial parties may be redis-
tributed maliciously. It is an interesting avenue
for future work to study how much an adversary
can affect the number of tickets (and, thus, the
performance of the system) by redistributing their
weight in a malicious manner.

Complexity and more precise bounds.
Finally, there are still many theoretical questions
about these problems. Do they have polynomial-
time exact solutions? What are the lower bounds?
Can we derive better upper bounds? Moreover,
what are some other interesting and useful weight
reduction problems, apart from the three defined
in this paper?

Acknowledgement

We are grateful to Benny Pinkas for recommend-
ing the inclusion of a constant in the construction
of Swiper, a suggestion that helped us signifi-
cantly reduce the number of allocated tickets both
in theory and in practice, and to the anony-
mous PODC reviewers for constructive feedback
on the paper structure and presentation. Andrei
Tonkikh is supported by TrustShare Innovation
Chair (financed by Mazars). Luciano Freitas is
supported by Nomadic Labs.

16

References

[1] Ittai Abraham, Philipp Jovanovic, Mary
Maller, Sarah Meiklejohn, Gilad Stern, and
Alin Tomescu. Reaching consensus for asyn-
chronous distributed key generation. In Pro-
ceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, pages
363–373, Italy, virtual, 2021. ACM.

[2] Ittai Abraham, Dahlia Malkhi, and Alexan-
der Spiegelman. Asymptotically optimal val-
idated asynchronous byzantine agreement. In
Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages
337–346, Toronto, 2019. ACM.

[3] Algoexplorer. Algorand stake distribu-
tion. https://algoexplorer.io/top-accounts,
2023. Accessed: 2023-03-28.

[4] Aptos. White paper – the aptos blockchain:
Safe, scalable, and upgradeable web3 infras-
tructure. Technical report, Aptos, 2022.
URL: https://aptos.dev/aptos-white-paper/.

[5] Aptoscan. Aptos stake distribution. https://
aptoscan.com/validators?ps=100&p=, 2023.
Accessed: 2023-03-28.

[6] Sarah Azouvi and Marko Vukolić. Pikachu:
Securing pos blockchains from long-range
attacks by checkpointing into bitcoin pow
using taproot. In Proceedings of the 2022
ACM Workshop on Developments in Consen-
sus, pages 53–65, Los Angeles, 2022. ACM.

[7] Amos Beimel and Enav Weinreb. Mono-
tone circuits for monotone weighted threshold
functions. Information Processing Letters,
97(1):12–18, 2006.

[8] Fabrice Benhamouda, Shai Halevi, and Lev
Stambler. Weighted secret sharing from wire-
tap channels. Cryptology ePrint Archive,
Paper 2022/1578, 2022. https://eprint.iacr.
org/2022/1578. URL: https://eprint.iacr.
org/2022/1578.

[9] Alexandra Boldyreva. Threshold signatures,
multisignatures and blind signatures based
on the gap-diffie-hellman-group signature
scheme. In Yvo G. Desmedt, editor, Public
Key Cryptography — PKC 2003, pages 31–
46, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[10] Dan Boneh, Saba Eskandarian, Lucjan Han-
zlik, and Nicola Greco. Single secret leader

election. In Proceedings of the 2nd ACM
Conference on Advances in Financial Tech-
nologies, pages 12–24, New York, 2020. ACM.

[11] Dan Boneh, Rosario Gennaro, Steven
Goldfeder, Aayush Jain, Sam Kim, Peter MR
Rasmussen, and Amit Sahai. Threshold cryp-
tosystems from threshold fully homomorphic
encryption. In Advances in Cryptology–
CRYPTO 2018: 38th Annual International
Cryptology Conference, August 19–23, 2018,
Proceedings, Part I 38, pages 565–596, Santa
Barbara, CA, USA, 2018. Springer.

[12] Gabriel Bracha and Sam Toueg. Asyn-
chronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840,
1985.

[13] Christian Cachin, Rachid Guerraoui, and
Lúıs Rodrigues. Introduction to reliable and
secure distributed programming. Springer Sci-
ence & Business Media, Berlin, Heidelberg,
2011.

[14] Christian Cachin, Klaus Kursawe, Anna
Lysyanskaya, and Reto Strobl. Asynchronous
verifiable secret sharing and proactive cryp-
tosystems. In Proceedings of the 9th ACM
Conference on Computer and Communica-
tions Security, pages 88–97, Washington, DC
USA, 2002. ACM.

[15] Christian Cachin, Klaus Kursawe, Frank
Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols.
In Advances in Cryptology—CRYPTO 2001:
21st Annual International Cryptology Con-
ference, August 19–23, 2001 Proceedings,
pages 524–541, Santa Barbara, California,
USA, 2001. Springer.

[16] Christian Cachin, Klaus Kursawe, and Vic-
tor Shoup. Random oracles in constantipole:
practical asynchronous byzantine agreement
using cryptography. In Proceedings of the
nineteenth annual ACM symposium on Prin-
ciples of distributed computing, pages 123–
132, Portland Oregon USA, 2000. ACM.

[17] Christian Cachin and Stefano Tessaro. Asyn-
chronous verifiable information dispersal. In
24th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’05), pages 191–201,
Orlando, Florida, USA, 2005. IEEE.

17

https://algoexplorer.io/top-accounts
https://aptos.dev/aptos-white-paper/
https://aptoscan.com/validators?ps=100&p=
https://aptoscan.com/validators?ps=100&p=
https://eprint.iacr.org/2022/1578
https://eprint.iacr.org/2022/1578
https://eprint.iacr.org/2022/1578
https://eprint.iacr.org/2022/1578

[18] Ran Canetti and Tal Rabin. Fast asyn-
chronous byzantine agreement with optimal
resilience. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of com-
puting, pages 42–51, San Diego California
USA, 1993. ACM.

[19] Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance. In Proceedings of
the Third Symposium on Operating Systems
Design and Implementation, OSDI ’99, page
173–186, USA, 1999. USENIX Association.

[20] Dario Catalano, Dario Fiore, and Emanuele
Giunta. Adaptively secure single secret leader
election from ddh. In Proceedings of the
2022 ACM Symposium on Principles of Dis-
tributed Computing, pages 430–439, Salerno,
Italy, 2022. ACM.

[21] Dario Catalano, Dario Fiore, and Emanuele
Giunta. Efficient and universally composable
single secret leader election from pairings.
In Public-Key Cryptography–PKC 2023: 26th
IACR International Conference on Practice
and Theory of Public-Key Cryptography, May
7–10, 2023, Proceedings, Part I, pages 471–
499, Atlanta, GA, USA, 2023. Springer.

[22] Pyrros Chaidos and Aggelos Kiayias. Mithril:
Stake-based threshold multisignatures, 2021.

[23] Benôıt Colson, Patrice Marcotte, and Gilles
Savard. An overview of bilevel optimization.
Annals of operations research, 153(1):235–
256, 2007.

[24] George Danezis, Lefteris Kokoris-Kogias,
Alberto Sonnino, and Alexander Spiegelman.
Narwhal and tusk: a dag-based mempool and
efficient bft consensus. In Proceedings of the
Seventeenth European Conference on Com-
puter Systems, pages 34–50, Rennes, France,
2022. ACM.

[25] Sourav Das, Philippe Camacho, Zhuolun
Xiang, Javier Nieto, Benedikt Bunz, and
Ling Ren. Threshold signatures from inner
product argument: Succinct, weighted, and
multi-threshold, 2023.

[26] Sourav Das, Benny Pinkas, Alin Tomescu,
and Zhuolun Xiang. Distributed randomness
using weighted vrfs, 2024.

[27] Sourav Das, Zhuolun Xiang, and Ling Ren.
Asynchronous data dissemination and its
applications. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and

Communications Security, pages 2705–2721,
Virtual Event Republic of Korea, 2021. ACM.

[28] Sourav Das, Thomas Yurek, Zhuolun Xiang,
Andrew Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed
key generation. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 2518–2534,
San Francisco, CA, USA, 2022. IEEE.

[29] Yvo Desmedt. Threshold cryptosystems.
In Advances in Cryptology—AUSCRYPT’92:
Workshop on the Theory and Application
of Cryptographic Techniques Gold Coast,
December 13–16, 1992 Proceedings 3, pages
1–14, Queensland, Australia, 1993. Springer.

[30] Sisi Duan, Michael K Reiter, and Haibin
Zhang. Beat: Asynchronous bft made practi-
cal. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communica-
tions Security, pages 2028–2041, Toronto,
Canada, 2018. ACM.

[31] Filfox. Filecoin stake distribution. https://
filfox.info/en/ranks/power, 2023. Accessed:
2023-03-28.

[32] Fish. Tezos stake distribution. https://tezos.
fish/leaderboard/all, 2023. Accessed: 2023-
03-28.

[33] Luciano Freitas, Andrei Tonkikh, Adda-
Akram Bendoukha, Sara Tucci-Piergiovanni,
Renaud Sirdey, Oana Stan, and Petr
Kuznetsov. Homomorphic sortition–single
secret leader election for pos blockchains,
2023.

[34] Sanjam Garg, Abhishek Jain, Pratyay
Mukherjee, Rohit Sinha, Mingyuan Wang,
and Yinuo Zhang. Cryptography with
weights: Mpc, encryption and signatures,
2022.

[35] Giuliano Garrammone. On decoding com-
plexity of reed-solomon codes on the packet
erasure channel. IEEE Communications Let-
ters, 17(4):773–776, 2013.

[36] David K Gifford. Weighted voting for repli-
cated data. In Proceedings of the seventh
ACM symposium on Operating systems prin-
ciples, pages 150–162, Pacific Grove Califor-
nia USA, 1979. ACM.

[37] L.M Goodman. White paper – tezos:
a self-amending crypto-ledger. Technical
report, Tezos, 2014. URL: https://tezos.com/
whitepaper.pdf.

18

https://filfox.info/en/ranks/power
https://filfox.info/en/ranks/power
https://tezos.fish/leaderboard/all
https://tezos.fish/leaderboard/all
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf

[38] James Hendricks, Gregory R Ganger, and
Michael K Reiter. Verifying distributed
erasure-coded data. In Proceedings of the
twenty-sixth annual ACM symposium on
Principles of distributed computing, pages
139–146, Portland Oregon USA, 2007. ACM.

[39] Mitsuru Ito, Akira Saito, and Takao
Nishizeki. Secret sharing scheme realizing
general access structure. Electronics and
Communications in Japan (Part III: Fun-
damental Electronic Science), 72(9):56–64,
1989.

[40] Aayush Jain, Peter MR Rasmussen, and
Amit Sahai. Threshold fully homomorphic
encryption, 2017.

[41] Jørn Justesen. On the complexity of decoding
reed-solomon codes (corresp.). IEEE transac-
tions on information theory, 22(2):237–238,
1976.

[42] Idit Keidar, Eleftherios Kokoris-Kogias,
Oded Naor, and Alexander Spiegelman.
All you need is dag. In Proceedings of
the 2021 ACM Symposium on Princi-
ples of Distributed Computing, PODC’21,
page 165–175, New York, NY, USA, 2021.
Association for Computing Machinery.
doi:10.1145/3465084.3467905.

[43] H. Kellerer, U. Pferschy, and D. Pisinger.
Knapsack Problems. Springer, Berlin, Ger-
many, 2004.

[44] Protocol Labs. White paper – filecoin: A
decentralized storage network. Technical
report, Protocol Labs, 2017. URL: https:
//filecoin.io/filecoin.pdf.

[45] Florence Jessie MacWilliams and Neil
James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier,
Philadelphia, PA, USA, 1977.

[46] Dahlia Malkhi and Michael Reiter. Byzan-
tine quorum systems. In Proceedings of
the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, page
569–578, New York, NY, USA, 1997. Asso-
ciation for Computing Machinery. doi:10.

1145/258533.258650.
[47] Silvio Micali. ALGORAND: the efficient and

democratic ledger, 2016. URL: http://arxiv.
org/abs/1607.01341, arXiv:1607.01341.

[48] Andrew Miller, Yu Xia, Kyle Croman, Elaine

Shi, and Dawn Song. The honey badger of bft
protocols. In Proceedings of the 2016 ACM
SIGSAC conference on computer and com-
munications security, pages 31–42, Vienna,
Austria, 2016. ACM.

[49] Moni Naor and Avishai Wool. The load,
capacity, and availability of quorum systems.
SIAM Journal on Computing, 27(2):423–447,
1998.

[50] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H.
Vaidya, and Zhuolun Xiang. Improved
Extension Protocols for Byzantine Broad-
cast and Agreement. In Hagit Attiya,
editor, 34th International Symposium on
Distributed Computing (DISC 2020), vol-
ume 179 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 28:1–
28:17, Dagstuhl, Germany, 2020. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik.
URL: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.DISC.2020.28,
doi:10.4230/LIPIcs.DISC.2020.28.

[51] Kamilla Nazirkhanova, Joachim Neu, and
David Tse. Information dispersal with prov-
able retrievability for rollups, 2021.

[52] Kazuo Ohta and Tatsuaki Okamoto. Multi-
signature schemes secure against active
insider attacks. IEICE Transactions on Fun-
damentals of Electronics, Communications
and Computer Sciences, 82(1):21–31, 1999.

[53] Michael O Rabin. Randomized byzantine
generals. In 24th annual symposium on
foundations of computer science (sfcs 1983),
pages 403–409, Tucson, Arizona, USA, 1983.
IEEE.

[54] Michael O Rabin. Efficient dispersal of infor-
mation for security, load balancing, and fault
tolerance. Journal of the ACM (JACM),
36(2):335–348, 1989.

[55] Mayank Raikwar and Danilo Gligoroski.
Sok: Decentralized randomness beacon pro-
tocols. In Information Security and Privacy:
27th Australasian Conference, ACISP 2022,
November 28–30, 2022, Proceedings, pages
420–446, Wollongong, NSW, Australia, 2022.
Springer.

[56] Adi Shamir. How to share a secret. Commu-
nications of the ACM, 22(11):612–613, 1979.

19

https://doi.org/10.1145/3465084.3467905
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1145/258533.258650
https://doi.org/10.1145/258533.258650
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.28
https://doi.org/10.4230/LIPIcs.DISC.2020.28

[57] Victor Shoup. Practical threshold signatures.
In Advances in Cryptology—EUROCRYPT
2000: International Conference on the The-
ory and Application of Cryptographic Tech-
niques, May 14–18, 2000 Proceedings 19,
pages 207–220, Bruges, Belgium, 2000.
Springer.

[58] Alexander Spiegelman, Neil Giridharan,
Alberto Sonnino, and Lefteris Kokoris-
Kogias. Bullshark: Dag bft protocols made
practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page
2705–2718, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. doi:10.

1145/3548606.3559361.
[59] Douglas R. Stinson and Reto Strobl. Prov-

ably secure distributed schnorr signatures
and a (t, n) threshold scheme for implicit

certificates. In Proceedings of the 6th Aus-
tralasian Conference on Information Secu-
rity and Privacy, ACISP ’01, page 417–434,
Berlin, Heidelberg, 2001. Springer-Verlag.

[60] Lei Yang, Seo Jin Park, Mohammad
Alizadeh, Sreeram Kannan, and David Tse.
Dispersedledger: High-throughput byzantine
consensus on variable bandwidth networks.
In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI
22), pages 493–512, Renton, WA, USA, 2022.
USENIX.

[61] Maofan Yin, Dahlia Malkhi, Michael K
Reiter, Guy Golan Gueta, and Ittai Abra-
ham. Hotstuff: Bft consensus with linearity
and responsiveness. In Proceedings of the
2019 ACM Symposium on Principles of Dis-
tributed Computing, pages 347–356, Toronto
ON Canada, 2019. ACM.

20

https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361

A Proofs

In this section, we provide formal proofs for
Theorems 2.1, 2.3 and 2.4.

A.1 Upper bounds on Weight
Restriction and Weight
Separation

Let us start with some auxiliary definitions. A
ticket assignment t is a vector of n numbers:
t1, . . . , tn ∈ Z≥0. With a slight abuse of notation,
for a ticket assignment t and a set S ⊆ [n], we use
notation t(S) to denote

∑
i∈S ti. Let us say that

a ticket assignment t is viable if t([n]) ̸= 0 and
∀S ⊆ [n] : if w(S) < αwW , then t(S) < αnt([n]),
that is if it satisfies the requirements of the Weight
Restriction problem as defined in Section 2.

In this section, we formally prove Theorem 2.1
by constructing a viable ticket assignment t̂ such

that t̂([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
. As the starting point,

we consider a family of ticket assignments param-
eterized by a single number s > 0:

(ts)i := ⌊wis+ αw⌋.
Let s∗ be a locally minimal viable value for s,

i.e., a positive number such that ts∗ is viable, but
ts∗−ε is not, for any sufficiently small ε. Since we
already proved that viable values of s exist, it is
easy to see that such s∗ exists. Moreover, there
must be some j such that s∗wj + αw is an inte-
ger. Indeed, if this does not hold, we would be able
to slightly decrease s∗ without changing the ticket
assignment, which would contradict the assump-
tion that s∗ is a local minimum. Let t∗ := ts∗ and
J := {j ∈ [n] | s∗wi + αw is an integer}. Let t′

be a ticket assignment in which we take one ticket
from each party in J , i.e.:

t′i :=

{
t∗i − 1 if i ∈ J

t∗i otherwise

Notice that t′ is equal to ts∗−ε for a sufficiently
small ε > 0.6 Hence, by construction, t′ is not
viable. Now, let us consider a set of “intermedi-
ate” ticket assignments: we will be taking tickets

6Indeed, if we decrease s∗ by any positive amount, each
party in J will lose at least one ticket as they will step over
the rounding threshold. However, it is also easy to see that ε
can be made small enough so that no other party will lose a
ticket and no party in J will lose more than one ticket.

from parties in J as long as the ticket assignment
stays viable. We will end up with two ticket assign-
ments: t̂ and ˆ̂t such that t̂ is viable and ˆ̂t is not,
and t̂([n]) = ˆ̂t([n]) + 1. All that is left is to prove

that t̂([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
or, equivalently, that

ˆ̂t([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
− 1.

Since ˆ̂t is not viable, either ˆ̂t([n]) = 0 or there
must exist a set S ⊆ [n] such that w(S) < αwW

and ˆ̂t(S) ≥ αn
ˆ̂t([n]). As the former case is trivial,

we will focus on the latter. Let us provide an upper
bound on ˆ̂t(S) and a lower bound on ˆ̂t(S), where
S := [n] \ S. To this end, let us note that, for any

i ∈ [n], it holds that ˆ̂ti ≥ wis
∗ + αw − 1. Indeed,

there are two cases to consider:
1. if ˆ̂ti = t∗i , the inequality holds trivially as

ˆ̂ti = t∗i = ⌊wis
∗ + αw⌋;

2. otherwise, ˆ̂ti = t∗i − 1. However, by construc-
tion, it means that wis

∗ + αw is an integer and,
thus t∗i = wis

∗ + αw and ˆ̂ti = wis
∗ + αw − 1.

Hence:

ˆ̂t(S) =
∑
i∈S

ˆ̂ti

≤
∑
i∈S

t∗i =
∑
i∈S

⌊wis
∗ + αw⌋

< αwWs∗ + αw|S|
ˆ̂t(S) =

∑
i̸∈S

ˆ̂ti

≥
∑
i̸∈S

(wis
∗ + αw − 1)

> (1− αw)Ws∗ − (1− αw)(n− |S|)

By construction, ˆ̂t(S) ≥ αn
ˆ̂t([n]) and ˆ̂t([n]) =

ˆ̂t(S) + ˆ̂t(S). Hence, (1 − αn)ˆ̂t(S) ≥ αn
ˆ̂t(S). From

this, we can derive an upper bound on s∗:

(1− αn)ˆ̂t(S) ≥ αn
ˆ̂t(S) ⇒

⇒ (1− αn)(αwWs∗ + αw|S|)
> αn((1− αw)Ws∗ − (1− αw)(n− |S|))

⇒ s∗ <
αn(1− αw)n

(αn − αw)W
− |S|

W

21

Finally, we can combine everything into an
upper bound on ˆ̂t([n]):

ˆ̂t([n]) ≤
ˆ̂t(S)

αn

<
αw

αn
(Ws∗ + |S|)

<
αw

αn

(
αn(1− αw)n

αn − αw
− |S|+ |S|

)
=

αw(1− αw)

αn − αw
n

Since ˆ̂t([n]) is an integer and the inequality is

strict, we can rewrite it as ˆ̂t([n]) ≤
⌈
αw(1−αw)
αn−αw

n
⌉
−

1. As, by construction, t̂ is viable and t̂([n]) =
ˆ̂t([n])+1, we found a viable ticket assignment with

at most
⌈
αw(1−αw)
αn−αw

n
⌉
tickets, thus concluding the

proof of Theorems 2.1 and 2.3. □

A.2 Upper bound on Weight
Separation

Let γ := α+β
2 . For Weight Separation, we ana-

lyze a family of ticket assignments of form ts,i :=
⌊wis+ γ⌋. Let us consider the case when the WS
conditions are violated, i.e., there exist sets S1 and
S2 such that w(S1) < αW , w(S2) > βW , and
t(S1) ≥ t(S2). This means that at least one of two
events happened: t(S1) ≥ γT or t(S2) < γT , or,
equivalently, t(S2) > (1−γ)T . Let us first consider
the case when t(S1) ≥ γT . This can only happen

when s < γ(1−γ)n
(γ−α)W . The proof is done using the

same set of techniques as in Appendix A.1:

t(S1) =
∑
i∈S1

ti =
∑
i∈S1

⌊wis+ γ⌋

≤
∑
i∈S1

(wis+ γ)

< αWs+ γ|S1|

t(S1) =
∑
i ̸∈S1

⌊wis+ γ⌋

≥
∑
i ̸∈S1

(wis+ γ − 1)

> βWs− (1− γ)(n− |S1|)

t(S1) ≥ γT

⇔ (1− γ)t(S1) ≥ γt(S1)

⇒ (1− γ)(αWs+ γ|S1|) > γ(βWs− (1− γ)(n− |S1|))

⇒ s <
γ(1− γ)n

(γ − α)W

Analogously, in the case when t(S2) > (1−γ)T ,
we can prove (by substitution of (1 − γ) in place
of γ and (1− β) in place of α) that:

s <
(1− γ)(1− (1− γ))n

((1− γ)− (1− β))W
=

γ(1− γ)n

(β − γ)W

We specifically chose γ = α+β
2 so that the two

bounds coincide: s < 2γ(1−γ)n
(β−α)W . Hence, it is suffi-

cient to select s := γ(2−α−β)n
(β−α)W to guarantee that

neither of the two events happens and t(S1) <
γT ≤ t(S2).

Let us now compute a bound on the total
number of tickets:

T ≤ sW + γn =
(α+ β)(1− α)

β − α
n

□

B Exact solution using MIP

The way we formulate WR in section 2.1 can be
directly translated into an instance of bi-level opti-
mization problem [23]. In such problems, we define
an upper level optimization problem which con-
tains another (lower-level) optimization problem
in its constraints, namely:

minimize

n∑
i=1

ti

subject to

n∑
i=1

xiti < αn

n∑
i=1

ti

maximize

n∑
i=1

xiti

subject to

n∑
i=1

wixi < αw

n∑
i=1

wi

n∑
i=1

ti ≥ 1

xi ∈ {0, 1}, ti ∈ {0, 1, 2, . . . }

22

Noticing that the inner optimization problem
is the Knapsack problem, we can hard-code a
dynamic programming by profits solution to the
Knapsack problem into the constraints. Unfor-
tunately, the resulting MIP has a lot, albeit a
polynomial number, of constraints and, thus, is
prohibitively slow for inputs of size larger than a
couple of dozens.

C Experiment Results

Figures 3 to 5 demonstrate the results of the
experiments on the data from the stake distribu-
tion of 4 major blockchain systems: Aptos [4, 5],
Tezos [37, 32], Filecoin [44, 31], and Algorand [47,
3]. The analysis of the experimental results is
presented in Section 7.

23

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

50

100

150

200

250
Total tickets

(w, n) = (1/4,1/3)
(w, n) = (1/3,3/8)

(w, n) = (1/3,1/2)
(w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

2

4

6

8
Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

10

20

30

40

50

Holders

50

100

150

200

1

2

3

4

5

6

7

10

20

30

40

50

Fig. 2: Experiment results using Aptos

24

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

100

200

300

400

Total tickets

(w, n) = (1/4,1/3)
(w, n) = (1/3,3/8)

(w, n) = (1/3,1/2)
(w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

10

20

30

40

50

Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

20

40

60

80

Holders

100

200

300

400

10

20

30

40

50

60

20

40

60

80

Fig. 3: Experiment results using Tezos

25

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

103

104
Total tickets

(w, n) = (1/4,1/3)
(w, n) = (1/3,3/8)

(w, n) = (1/3,1/2)
(w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

10

15

20

25

30

35

Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

500

1000

1500

2000

Holders

2000

4000

6000

8000

10

20

30

500

1000

1500

2000

Fig. 4: Experiment results using Filecoin

26

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Total tickets

0.2 0.4 0.6 0.8 1.0
nfrac

102

103

104

Total tickets

(w, n) = (1/4,1/3)
(w, n) = (1/3,3/8)

(w, n) = (1/3,1/2)
(w, n) = (2/3,3/4)

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Max tickets

0.2 0.4 0.6 0.8 1.0
nfrac

0

100

200

300

400

Max tickets

0.2 0.4 0.6 0.8 1.0
n

0.1

0.3

0.5

0.7
0.9

1
w
/

n

Holders

0.2 0.4 0.6 0.8 1.0
nfrac

0

200

400

600

Holders

2000

4000

6000

8000

10000

12000

100

200

300

200

400

600

800

Fig. 5: Experiment results using Algorand

27

	Introduction
	Weighted distributed problems
	Weighted voting and where it needs help
	Our contribution
	Empirical study

	Weight reduction problems
	Weight Restriction
	Weight Qualification
	Weight Separation

	Swiper: Approximate solver for Weight Reduction problems
	Algorithm and implementation

	Applications of Weight Restriction
	Distributed random number generation
	Blunt Secret Sharing and derivatives
	Tight Secret Sharing and derivatives
	Black-Box transformation

	Applications of Weight Qualification
	Erasure-Coded Storage and Broadcast
	Error-Corrected Broadcast

	Derived Applications
	Asynchronous State Machine Replication
	Validated Asynchronous Byzantine Agreement
	Consensus with Checkpoints

	Analyzing Weight Restriction on sample systems
	Related Work
	Concluding remarks and future work directions
	Proofs
	Upper bounds on Weight Restriction and Weight Separation
	Upper bound on Weight Separation

	Exact solution using MIP
	Experiment Results

