
Authentica: A Secure Authentication Mechanism using a Software-defined
Unclonable Function

1st Ripon Patgiri
Dept. of Computer Science & Engineering

National Institute of Technology Silchar
Assam, India

ripon@cse.nits.ac.in

2nd Laiphrakpam Dolendro Singh
Dept. of Computer Science & Engineering

National Institute of Technology Silchar
Assam, India

ldsingh@cse.nits.ac.in

Abstract—Password-based authentication is an extensively used
method to authenticate users. It uses cryptography to commu-
nicate the authentication process. On the contrary, the phys-
ically unclonable function (PUF)-based authentication mech-
anism is also gaining popularity rapidly due to its usability
in IoT devices. It is a lightweight authentication mechanism
that does not use cryptography protocol. PUF-based authenti-
cation mechanisms cannot authenticate users. To overcome the
drawback of PUF, we introduce a software-defined unclonable
function (SUF, for short). Contrary to the PUF, the SUF is used
to authenticate users, not devices. We use SUF to implement a
lightweight password-based authentication mechanism termed
Authentica. Authentica bridges the gap between the password-
based and the PUF-based authentication mechanism. Authen-
tica does not use cryptography for authentication. However,
we establish challenge-response using cryptography during
the registration phase, which is a one-time cost. Authentica
addresses a) impersonation attacks, b) collision attacks, c)
dictionary and rainbow table attacks, d) replay attacks, e)
DDoS attacks, f) the domino effect issues, and g) the challenge-
response database leakage issues.

Index Terms—Physically unclonable function, Software-defined
unclonable function, Password Hashing, Identity manager,
Authentication, Security, Attacks.

1. Introduction

The physically unclonable function (PUF) is emerging
due to security viability in IoT devices [1]–[3]. The PUFs are
designed based on a nanoscale disordered physical structure
where copying the same structure is physically impossible
even for its manufacturers [4]. It is a circuit embedded
with a device, producing a unique output where no other
devices can produce the same output for the same input.
This advantage is exploited in the authentication mechanism
of a device [5]–[10]. It is suitable for tiny device authen-
tication. PUF-based authentication features authentication
without cryptography; thus, it features a truly lightweight
authentication protocol.

1.1. Motivation

PUF is useful in authenticating devices without encryp-
tion but cannot be applied to authenticate the users. The
key drawbacks of PUF are: a) the PUF-based authentication
mechanism cannot authenticate users, b) PUF is integrated
with a physical device that costs money, c) the challenge-
response (CRP) database is vulnerable to leakage, d) it
cannot prevent the domino effect, and e) it cannot withstand
DDoS attack. Similarly, the key drawback of the password-
based authentication mechanism is the requirement of cryp-
tography to authenticate users.

We introduce a software-defined unclonable function,
SUF, to produce a unique output for a given challenge where
no one can produce the same output using the same function.
Similar to the PUF, a legitimate user can reproduce the
response for the given challenge exclusively. For instance,
the users A and B produce different responses for the same
challenge as defined in Definition 1. The RA ̸= RB for
the same challenge C . The SUF is used to implement
lightweight authentication, Authentica, and to overcome the
drawback of PUF and password-based authentication mech-
anisms. Authentica uses two secret words: a password and
a secret context. These secrets are used to thwart diverse
attacks. However, we can use a single secret, but the adver-
sary can break it using a guessing attack because guessing
attacks are becoming more powerful nowadays [11]–[15].
Therefore, we rely on two secrets because a user always
sets an easy-to-remember password. Moreover, Authentica
requires symmetric and asymmetric key cryptography for
establishing the challenge-response pair, which is a one-
time cost. The authentication process does not require any
cryptography.

Definition 1. Given two users A and B and a common
challenge C . The user A produces RA ← SUF(C) and
the user B produces RB ← SUF(C) where RA ̸= RB
if A ̸= B, then the function is called a software-defined
unclonable function (SUF).

Definition 2. Let ω1 and ω2 be the two strings to shuffle
pseudo-randomly. Let ζ be the context. The shuffling process
is defined over (ω1, ω2, ζ) where the two strings ω1 and ω2

1

are shuffled using the context ζ. The shuffling process is
significantly influenced by the context ζ, but the context does
not present in the shuffled strings. We denote this process
as SW ζ←− SHUFFLE(ω1, ω2).

1.2. Our proposed method

Our key objective is to build an authentication protocol
without encryption, i.e., a lightweight authentication pro-
tocol without loss of security. Therefore, we utilize SUF
to build a lightweight authentication protocol named Au-
thentica. Authentica comprises a challenge-response method
for authenticating the users using SUF. We first demon-
strate a software-defined unclonable function. The SUF is
constructed based on shuffling two words using context as
defined in Definition 2. For illustration, let the user password
be P , and the domain name be D . We convert the password
and domain name into hash values as

HP ← HASH512(P)

HD ← HASH512(D)
(1)

We shuffle the hash value using a secret context ζ as

SW ζ←− SHUFFLE(HP ,HD) (2)

The SW is converted into a hash value as

R ← HASH512(SW) (3)

The response, R, can be exclusively produced/reproduced
by the legitimate user. We term the above equations as SUF.
The Authentica adapts the above-described SUF for authen-
tication. Authentica has two phases: registration and authen-
tication phase. The registration phase requires cryptography
to establish the challenge-response of a user. We securely
establish the challenge-response pair of the client. The server
encrypts the user’s response to the given challenge. We use
the server’s PUF function to generate the encryption key as

K ← PUF(ServerKey)

K ← HASH512(K)

K ← ARGON2I(K)

(4)

where the ServerKey is the server’s secret key and the
ARGON2I() is a memory-hard hash function to derive an
encryption/decryption key. The secret key K is used to
encrypt the responses. The K is a single key to encrypt
the entire response database; therefore, it is fatal for the
challenge-response (CRP) database. We develop a multi-
key encryption technique to encrypt the responses. Each
response is encrypted with a different secret key so the
adversary cannot accidentally get authentication. Moreover,
it features a leaked-proof CRP database.

The authentication phase relies on a captcha, and the rest
of the communications are unencrypted. Thus, it achieves
lightweight authentication without loss of security. The
captcha is used to prove whether the prover is a human
or not. It prevents malicious requests from bots because
DDoS attacks produce a few million such requests that can

down the service. Therefore, it is a vital part of Authentica.
Also, we use lightweight data structures to prevent diverse
attacks. For authentication, the user extracts two challenges
which are embedded with the login page. It is fixed for
a domain and common for all users of that domain. Also,
the login page contains a timestamp of the server. A client
(prover) downloads the login page containing the challenges
and the server’s timestamp. The client retrieves the local
timestamp. The client produces the two responses by in-
putting the challenges to the SUF. The two responses are
hashed using timestamps by the SHA512 algorithm. The
hashed responses are sent to the server (verifier) without
encryption. The server receives these hashed responses. The
server also hashes the stored responses using the timestamp
to produce the hash values. The server compares the pro-
duced and received hashed responses for authentication. If
the comparison is successful, the prover wins. Otherwise, it
fails.

1.3. Our results

The SUF can uniquely produce a response against a
challenge where the same response cannot be produced by
other users using the same function and the same challenge.
Authentica adapts SUF to implement a lightweight authen-
tication protocol without loss of security. Authentica does
not use a cryptography protocol to authenticate the users,
and it can prevent diverse attacks, which are highlighted in
the next subsections.

1.3.1. Impersonation attacks. In Authentica, the prover
(user) proves its authenticity to the verifier (the server or
identity manager). The adversary wants to impersonate the
legitimate prover to the verifier. If the adversary proves its
authenticity to the verifier, the adversary wins; otherwise,
the adversary loses. The adversary must correctly repro-
duce the two responses to win the game. It requires two
secrets to reproduce the responses correctly. Therefore, the
adversary either guesses the two secrets within three trials
or performs a collision by which it correctly produces the
response. Since we use two secrets, thus, guessing becomes
harder. Moreover, the collision is also harder due to the two
responses using SHA512.

1.3.2. Collision attacks. There is a possibility of collision
in the hash algorithm due to limited spaces of the hash value.
Using a collision attack, the adversary can impersonate.
However, SHA512 is a collision-resistant hash algorithm.
Therefore, it is hard to perform a collision attack on a
single response, whereas Authentica uses two responses
to avoid accidental collision. Moreover, the adversary can
impersonate if the adversary’s hash value for the response
can be constructed by the server using the timestamps and
response of the given client. Thus, performing a collision
attack is computationally hard.

1.3.3. Dictionary and rainbow table attacks. The dictio-
nary and rainbow table attacks are applied to the leaked hash

2

values. Usually, the dictionary and rainbow table attacks
are used against salted passwords and/or hashed passwords.
In Authentica, the challenge-response (CRP) database is
encrypted using a secret key generated by the server’s PUF.
Therefore, dictionary or rainbow table attacks do not apply.
However, the adversary can perform a dictionary or rainbow
table attack on the hashed value of the responses, which
are unencrypted. The adversary needs to produce two hash
values for the responses using the given timestamp by the
server. For each communication, the hash value for the
response changes because the server’s timestamp changes.
Therefore, the dictionary attack and rainbow table attack do
not apply.

1.3.4. Replay attacks. The most common attack in
challenge-response-based authentication is a replay attack
since the communication is carried out without encryption.
The adversary performs a replay attack using the previous
hash values for the response. Notably, the server looks for
the hash values from the client with the server’s given
timestamp, where the adversary measurably fails to produce
the hash values for the response using the server’s generated
timestamp. Thus, an adversary cannot replay the previous
communication for the authentication.

1.3.5. Domino effect. The domino effect occurs due to
password reuse in state-of-the-art authentication systems.
Therefore, password reuse is strongly discouraged in the
state-of-the-art authentication mechanism [16]. On the con-
trary, our proposed system encourages users to reuse the
password without any risks. Using the same password, the
user is always able to create different hash values for the
different domains. We use the domain name to facilitate
password reuse, which is similar to Ross et al. [17]. Au-
thentica considers two secrets: a password and a secret
context. We use a secret context in the shuffling process,
whereas the shuffled word does not contain the characters
of the context. It influences the shuffling process, and it
is computationally hard to reproduce the shuffled word
without knowing the adversary’s password and context. The
challenge, domain word, and password are shuffled using a
secret context to produce a response. The shuffled word is
converted into a hash value using SHA512. Therefore, the
response of a domain cannot be the same as the response of
another domain with the same password and secret context.
Therefore, there is no domino effect in Authentica.

1.3.6. DDoS attack. DDoS attackers do not aim to imper-
sonate but slow down the services. To tackle such kinds
of attacks, Authentica uses a captcha challenge. Moreover,
Authentica uses Bloom Filter to filter out unwanted au-
thentication requests. Due to the false positives of Bloom
Filter, the malicious requests can reach the authentication
table and failure table. The authentication table and failure
table filter out the remaining malicious requests. We know
that the Bloom Filter is a lightweight and fast data structure
that can filter millions of requests per second. Moreover, the
authentication table and failure table are hashtable which are

also fast data structures. Therefore, Authentica can handle
DDoS efficiently and effectively.

1.3.7. Database stealing issue. We assume that the ad-
versary can easily steal the CRP database. Moreover, the
adversary can also steal the secret ServerKey. To prevent
such kind of accident, we use PUF to generate a secret key
as K = PUF (ServerKey). The K is updated using
SHA512 and Argon2i hash function. The K is used to
encrypt/decrypt the responses. We use secret salt to generate
a secret key where an adversary cannot generate the secret
key without accessing the server physically. Moreover, each
response is encrypted with a different key, and it is com-
putationally hard to decrypt the response for the adversary.
Therefore, the adversary cannot decrypt the response even
if the CRP database is leaked.

2. Software-defined Unclonable Function

The PUF produces a unique response for a given chal-
lenge; no one can produce the same response [1]–[3]. The
same response can be reproduced consistently for a given
challenge by the legitimate PUF. The PUF-based authentica-
tion mechanism authenticates the devices but not the users.
Therefore, we adopt a shuffling function to implement the
software-defined unclonable function to authenticate users.
The SUF also guarantees that no one can produce the same
response for a given challenge. Moreover, the same response
can be reproduced consistently for a given challenge by the
legitimate user.

The shuffling process shuffles two strings using a secret
context. Let ζ be a secret context, P is a password, and C
be the challenge. The challenge is known to all, including
adversaries. The secret context and password are known to
the client, C, exclusively. The client converts the password
into a hash value by hashing using SHA512 as given in
Equation (5).

HP ← HASH512(P) (5)

Also, the client converts the given challenge into a hash
value as

HC ← HASH512(C) (6)

The HP is shuffled with another hash value HC with a
context of ζ and produces a shuffled word SW , as shown
in Equation (7).

SW ζ←− SHUFFLE(HP ,HC) (7)

Notably, the SW does not contain any character of the ζ.
The shuffled word is hashed to produce a response R as
shown in Equation (8).

R ← HASH512(SW) (8)

The R is the unique value that the client, C, can produce
exclusively. Also, the C can consistently reproduce the same
response, R, for the same challenge C . Theoretically, no one
can reproduce the same response using the same challenge

3

C but HC = H′
C where C ̸= C ′. It occurs due to the

collision in hashing.
Let ω1 and ω2 be the two words known to all, and the

context is a secret word. The client converts the words into
hash values as

Hω1 ← HASH512(ω1)

Hω2 ← HASH512(ω2)
(9)

In this case, the adversary can produce the correct hash value
since we assumed the words were public. These two hash
values are shuffled using a secret context as

SW ζ←− SHUFFLE(Hω1
,Hω2

) (10)

The adversary cannot reproduce the SW since the adversary
does not know about the context. We use SHA512; the hash
values are 512-bit long and 128 characters in hexadecimal
representation. Therefore, the length of the two strings is
128 in the shuffling process. The probability of selecting
an index from 128 indexes at Hω1

to place a character
from Hω2

into the Hω1
is 1

128 . Now, the length of Hω1

is increased by one, and ω2 is decreased by one. Therefore,
selecting an index from 129 indexes of Hω1 is 1

129 . This
selection probability is an independent event. Therefore, the
probability of placing two characters from Hω2 in Hω1 is

1
128×129 . Thus, the total probability of correctly reproducing
the shuffled word without knowing the secret context is

1

128× 129× 130× . . .× 256
≈ 0 (11)

The reproduction of a shuffled word without knowing the
context is computationally hard.

The adversary can attack the secret context or password
instead of reproducing the shuffled word. The probabil-
ity of reconstruction of the context using the brute force
method is 1

(9410)
= 1.1060409160874147e − 13 where ten

characters to choose from 94 available characters for the
context (excluding white space), which is easier than re-
producing the shuffled word. But it is still computationally
hard to reproduce the secret context if the secret context
is a high entropy word. Moreover, the password is also a
secret word. Therefore, it is difficult to perform a brute-force
attack. However, a guessing attack is more powerful than a
brute-force attack. Therefore, we assume the adversary can
reproduce the secret context using a guessing attack. The
adversary guesses the password and secret context using a
guessing attack. Then, the adversary can evade the security
of SUF. However, performing a guessing attack for the two
secrets is difficult. Moreover, the guessing attack’s success
depends on the entropy of the secrets.

2.1. Implementation of SUF

SUF is implemented based on a shuffling process of two
strings using a context. The shuffling process uses a non-
cryptography string hash function, and we use Murmur2
for shuffling the strings with respect to the context. The

Algorithm 1 Computing integer value (θ) for utilization in
the hash function.

1: procedure GETSEEDVALUE(ω,L , θ, τ)
2: for i : 1 to τ do
3: θ = PRIMARYHASH(ω,L , θ)
4: end for
5: return θ
6: end procedure

Algorithm 2 Inserting a character ch into a particular
position of ω.

1: procedure INSERTCHARAT(ω,L , ch, pos)
2: for i : L to pos do
3: ω[i] = ω[i− 1]
4: end for
5: ω[i] = ch
6: end procedure

Algorithm 3 Shuffling algorithm.
1: procedure SHUFFLE(ω1, ω2, ctx, θ, buff)
2: L1 = LENGTH(ω1)
3: L2 = LENGTH(ω2)
4: L3 = LENGTH(ctx)
5: COPY(buff, ω1)
6: τ = 16, δ = 1783, µ = 16
7: θ = GETSEEDVALUE(ctx,L3, θ, τ)
8: τ = θ%δ + µ
9: θ = GETSEEDVALUE(ω2,L 2, θ, τ)

10: τ = θ%δ + µ
11: θ = GETSEEDVALUE(ω1,L1, θ, τ)
12: τ = θ%δ + µ
13: while ω1[i] ̸= Null do
14: θ = GETSEEDVALUE(ω2,L 2, θ, τ)
15: τ = θ%δ + µ
16: θ = GETSEEDVALUE(ω1,L1, θ, τ)
17: τ = θ%δ + µ
18: θ = GETSEEDVALUE(ctx,L3, θ, τ)
19: τ = θ%δ + µ
20: ρ = θ%L1

21: INSERTCHARAT(buff,L1, ω2[i], ρ)
22: L1 = L1 + 1
23: i = i+ 1
24: end while
25: end procedure

shuffling process uses a context to randomize (pseudo-
randomized) the shuffling process. Algorithm 1 alters the
integer value τ times because the Murmur2 is an insecure
string hash function. Algorithm 3 implements the shuffling
process by selecting one character to insert into another
word based on an integer value (θ). Initially, the θ is set to a
32-bit integer value. Algorithm 3 selects a character one by
one from ω2 to insert into ω1. The selected character from
ω2 is inserted into ω1 in a given index using Algorithm 2
where the index is generated by computing integer value

4

using Algorithm 1. Therefore, the selection process of an
index of ω1 depends on the two strings (ω1 and ω2) and
the context. The context influences the selection process
of the index. We can further improve the index selection
process by pseudo-randomly selecting a character from ω2

too. We can randomly (pseudo) select a character from ω2

and insert the selected character into the ω1. The probability
of selecting the first character from ω2 is 1

128 and probability
of selecting an index to insert at ω1 is 1

128 . The probability of
selecting the second character from ω1 is 1

127 and selecting
an index to insert at ω1 is 1

129 and so on. Thus, it improves
the probability as

1

128× 128× 129× 127× 130× 126× . . .× 256× 1
≈ 0

(12)
Equation (12) is smaller than Equation (11); hence, Equation
(12) is stronger than Equation (11).

3. Authentica

Authentica has two phases: the registration phase and the
authentication phase. We first discuss the registration phase,
and then we discuss the authentication phase.

3.1. Registration phase

Unlike PUF, the SUF function does not require a phys-
ical device to be integrated with. Moreover, SUF cannot be
applied to authenticate a physical device. The SUF imple-
ments a challenge-response method similar to the PUF. The
challenge-response of a user is stored in a server’s database.
The registration phase establishes the challenge-response
of the user, which cannot malfunction. Otherwise, Authen-
tica fails. Therefore, Authentica uses existing cryptography
(assumed SSL for encryption) to establish the challenge-
response of the users in the server’s database, which is
a one-time cost. Let the challenges be (C1,C2), which is
public and common for all other users of a given domain.
The two challenges are embedded with the registration and
login page. The challenges are different for different identity
managers, and the challenges cannot be the same for two
different domain names. Let the responses be (R1,R2) for
the challenges (C1,C2). The pair (R1, R2) need to be stored
in the server’s database against the user. The challenges are
the same for all the users for a given domain and remain
fixed throughout the lifetime of the identity manager. Still,
the responses are different for each user because of the
SUF. To store the pair (R1, R2) against the user, we need
encryption and decryption for communication in the regis-
tration process, which is one time cost. We rely on existing
encryption technology for registration to securely transmit
the responses from the client to the server and securely
establish the response into the server’s CRP database.

Table 1 demonstrates the registration process. In the reg-
istration phase, the client downloads the registration pages
where the challenges are embedded with the registration

pages since the challenges are public. The client converts
the challenge and domain word into hash values as

HC1
← HASH512(C1)

HC2
← HASH512(C2)

HD ← HASH512(D)

(13)

The domain word and challenges are public words that
are known to all, including the adversary. Anyone can
reconstruct the hash values of these three words. The client
shuffles these two hash values using a secret context ζ as
given below-

SD1
ζ←− SHUFFLE(HC1 ,HD)

SD2
ζ←− SHUFFLE(HC2 ,HD)

(14)

These hash values are shuffled using a secret context where
reproducing the shuffled word is computationally hard with-
out knowing the secret context. The SD1 and SD2 can be
reconstructed using the secret context consistently for the
given challenge by the same user. The shuffled words are
converted into hash values as

HSD1
← HASH512(SD1)

HSD2
← HASH512(SD2)

(15)

The client converts the password into a hash value as

HP ← HASH512(P) (16)

This process conceals the password from revealing it to the
world. Again, the client shuffles two hash values as

SW1
ζ←− SHUFFLE(HSD1

,HP)

SW2
ζ←− SHUFFLE(HSD2

,HP)
(17)

It requires the correct hash value of the password and a
correct context to reconstruct SW1 and SW2. The new
shuffled word SW1 and SW2 are converted into a hash
value as given below-

R1 ← HASH512(SW1)

R2 ← HASH512(SW2)
(18)

The client sends the response (R1,R2) using the POST
method to the server along with all the necessary informa-
tion of the user; for instance, email ID, phone numbers,
etc. to be inserted into the identity manager’s database. We
assumed SSL for the POST method.

The identity manager (the server) receives the user’s data
and responses. The responses are crucial data for security.
We utilize the concept of the PUF to generate the encryp-
tion/decryption key. The identity manager generates the key
using its secret word, ServerKey as

K ← PUF (ServerKey)

K ← HASH512(K)
(19)

The ServerKey is not secure, and it can leak at any time.
Therefore, we cannot rely on the identity manager’s secret
word. Hence, we use the PUF function to generate a key.
The K cannot be generated without physically accessing

5

TABLE 1. REGISTRATION PROCESS OF A CLIENT IN A SERVER.

Client, C Server, S
1. The client downloads the registration page
and extracts the challenge embedded with
the page.
2. The client produces the response pair (R1,R2)
using SUF.
3. The client sends the response pair (R1,R2) along
with user details to the server for registration
using the POST method. Also, the client clicks
on the captcha challenge.

1. The server receives the response pair (R1,R2)
along with the user details.
2. The server computes the secret key K to
encrypt the response pair (R1,R2) and stores the
encrypted response pair into the database.
3. The server stores the user’s details in its database.
4. The server inserts the user ID ID into the Bloom Filter.
5. Initiate the failure table FT and authentication table (HT).
6. Registration is successful.

1. The client deletes all associated data upon
successful registration.

the server. Thus, it secures even if the ServerKey is public.
Moreover, we update the key using Argon2i memory-hard
hash function as

K ← ARGON2I(K ,S) (20)

where S is a salt. The salt can be generated as

S ← HASH512(ServerKey) (21)

The single-key encryption is fatal for the identity manager
because the adversary can reveal the entire responses of all
users if the K is comprised. To solve this issue, we use a
set of ServerKey for n users as defined below-

ServerKey ={(SK11,SK12), (SK21,SK22),

(SK31,SK32) . . . , (SKn1,SKn2)}
(22)

The ServerKey is a set of semi-private words. These words
are stored in the server without encryption. The server can
pick ith pair of the server’s key for the ith user and computes
the secret key for encryption as

Ki1 ← PUF(ServerKeyi1)

Ki2 ← PUF(ServerKeyi2)
(23)

where ServerKeyi1 ̸= ServerKeyi2, and therefore, Ki1 ̸=
Ki2. Moreover, the Ki1 ̸= Kj1 and Ki2 ̸= Kj2 which
implies the ServerKey is a set of unique words. The keys
are updated as

Ki1 ← HASH512(Ki1)

Ki2 ← HASH512(Ki2)
(24)

Again, the keys are updated as

Ki1 ← ARGON2I(Ki1,Si1)

Ki2 ← ARGON2I(Ki2,Si2)
(25)

where the salt can be generated as

S ={(S11,S12), (S21,S22), (S31,S32),
. . . , (Sn1,Sn2)}

Si1 ← PUF(Si1)
Si2 ← PUF(Si2)
Si1 ← HASH512(Si1)

Si2 ← HASH512(Si2)

(26)

The S is a set of pair of words to generate salt values
where Si1 ̸= Si2, Si1 ̸= Sj1, and Si2 ̸= Sj2. The S is
also semi-private or semi-secret, stored in the server without
encryption. These are used to generate salt using PUF for
the Argon2i hash function. Therefore, no one can generate
the K and S without physical access to the server. The
responses are encrypted as

ER1
← ENC(R1,Ki1)

ER2
← ENC(R2,Ki2)

(27)

The ciphertext of responses (ER1
,ER2

) are inserted into
the CRP database against the user. The ENC() is a sym-
metric AES or ECC encryption.

3.2. Authentication phase

A client, C, wishes to acquire an authentication from the
server, S. The client needs to prove as human by using a
captcha challenge. It is required to defend against malicious
requests from bots. The client downloads the login page
for authentication and clicks on the captcha. The challenges
are embedded with the login page. The legitimate user can
reproduce the responses from the challenges at any given
time. The server sends the challenges with a random nonce

6

TABLE 2. AUTHENTICATION PROCESS USING CHALLENGE-RESPONSE USING SUF.

Client, C Server, S
1. Client wishes to get authentication from server S.
2. Client proves as human by captcha.
3. Client downloads the login page where the
challenges (C1, C2) are embedded. Moreover, the client
downloads the timestamp (T N) from the page.
4. The client generates a timestamp T R.
5. The client produces hash values of the responses,
HR1 and HR2 , using T N and T R.
6. The client sends HR1 and HR2 , T N , and T R
to the server without encryption.

1. The server receives HR1
and HR2

, T N , and T R.
2. The server checks the user ID in Bloom Filter,
authentication table, and failure table.
3. Server computes K to decrypt the stored responses
of the client.
4. The server constructs the hash values of the decrypted
response using the T N and T R.
5. The constructed hash values and received hash
values are compared for authentication.
6. If the comparison is successful, the user is
authenticated. Otherwise, the authentication fails.

1. The client receives an authentication notification.

for each login request. This random nonce is generated using
a true random number generator and should not be repeated.
Moreover, the random nonce is altered if the login page is
refreshed. However, the repetition of the generated random
nonce depends on the true random number generator. Let the
random nonce be N , and the server will generate a different
random nonce in each login page request. The random nonce
is merged with the current timestamp of the server and sent
to the client as

N ← G()
TS ← GETCURRENTTIMESTAMP()

T N ← η || TS || N
(28)

where G() is a generator for a random nonce and η =
{1, 2, 3, . . .} in increasing order. The server maintains a
counter for each user, termed η. For instance, if η = 1,
it will be η = 2 in the next authentication. Notably, the
T N will be different for each client. The client extracts the
challenge (C1,C2) and the random nonce, T N , from the
login page. The client reproduce the responses (R1,R2)
using Equations (13)-(18). The authentication process is
communicated to the server without encryption. Therefore,
the responses cannot be directly sent to the server. To
conceal the response, the client generates a random nonce
as

R ← G()
TC ← GETCURRENTTIMESTAMP()

T R ← TC || R
(29)

The client converts the random nonce into hash values as

HT N ← HASH512(T N)

HT R ← HASH512(T R) (30)

The client computes hashing and produces a hash value for
R1 as

HC1
← HASH(R1 || C1)

HT N 1
← HASH(HC1

|| HT N)

HT R1
← HASH(HT N 1

|| HT R)

HR1
← HASH(HT R1

|| R1)

(31)

Again, the client computes hashing and produces a hash
value for R2 as

HC2
← HASH(R2 || C2)

HT N 2
← HASH(HC2

|| HT N)

HT R2
← HASH(HT N 2

|| HT R)

HR2
← HASH(HT R2

|| R2)

(32)

The client sends the computed responses (HR1
,HR2

) to the
server along with the random nonce T R and T N without
encryption. The server receives the computed hash values
and the random nonce. The server checks the validity of the
user ID in Bloom Filter as

if ID ∈ BF

Proceed to the next step

else
Invalid user ID

(33)

7

This process ensures unnecessary processing of requests
from invalid user IDs. The server also examines whether
the user is already authenticated or not as

if ID ∈ HT and HT .ID.logout = true

Proceed to the next step

else if | HT .ID.Tauth − Tcurrent |≥ δ

HT .ID.logout = true

Proceed to the next step

else
Block the request

(34)

This process ensures that it should not process already
authenticated users. Furthermore, it examines the blocking
of the user ID in the failure table as

if | FT .ID.Tblocking − Tcurrent |≤ FT .ID.level
Block the request

else
Proceed to the next step

(35)

Initially, the FT .ID.Tblocking and FT .ID.level are set to
zero. The above equation examines whether the user’s block-
ing is expired. Moreover, the server checks the received
values for freshness as

if Hrecent
R1

= ID.Hrecent
R1

and Hrecent
R2

= ID.Hrecent
R2

Already authenticated.

It′s a replay attack.

Block the request

else if T N ≤ T N recent and T R ≤ T Rrecent

It′s a replay attack.

Block the request.

else
Proceed to the next step

(36)

where T N recent and T Rrecent are the timestamps of the
previous authentication. Notably, these values can be empty
at the first time of authentication. The server requires a key
to decrypt the stored responses if the request is fresh. The
server reproduces the decryption keys Ki1 and Ki2 using
Equations (22)-(26). The server decrypts the responses of
the user as

Rdec
1 ← DEC(ER1 ,Ki1)

Rdec
2 ← DEC(ER2

,Ki2)
(37)

The server computes the hash values for the response R1

as

HS
C1
← HASH(Rdec

1 || C1)

HS
T N 1

← HASH(HS
C1
|| HT N)

HS
T R1

← HASH(HS
T N 1

|| HT R)

HS
R1
← HASH(HS

T R1
|| Rdec

1)

(38)

Again, the server computes the hash values for the response
R2 as

HS
C2
← HASH(Rdec

2 || C2)

HS
T N 2

← HASH(HS
C2
|| HT N)

HS
T R2

← HASH(HS
T N 2

|| HT R)

HS
R2
← HASH(HS

T R2
|| Rdec

2)

(39)

The server compares the hash values of the server-side and
client-side as

if HR1
= HS

R1
and HR2

= HS
R2

User is authenticated.

else
Authentication fails.

(40)

If the above-given equation holds, the user is authenticated.
Otherwise, the authentication fails.

4. Bloom Filter

Bloom Filter is an approximate membership data struc-
ture with a tiny memory footprint for large input items.
Bloom Filter returns either true or false on a given query.
If Bloom Filter returns true, which means the item may be
present, but it is not guaranteed. It has a false positive issue.
However, if the Bloom Filter returns false, it guarantees the
item is not present. We exploit this advantage (guarantee)
of Bloom Filter. Authentica uses Bloom Filter to maintain
the list of valid user IDs to prevent invalid users.

Let the adversary wants authentication from the server,
and it cannot get authentication from the server due to an
incorrect response for a given challenge. Let us assume that
the adversary evades the security of the captcha because
the authentication phase does not apply cryptography. The
adversary wants to down the service by launching a DDoS
attack on the server. The adversary launches many authen-
tication requests. The adversary needs to generate a valid
user ID to pass the barrier of the Bloom Filter because
the Bloom Filter examines the validity of the user ID.
Therefore, the adversary cannot cross the barrier of Bloom
Filter with an invalid user ID. However, a few requests can
cross the barrier of Bloom Filter due to false positive cases.
Therefore, the server processes these requests but cannot
gain authentication against the user IDs since the user IDs
are invalid. Therefore, most of the requests cannot cross the
barrier. Bloom Filter is a fast and lightweight data structure
that handles millions of requests per second. Moreover, it
uses a tiny memory footprint for many user IDs. Therefore,
the adversary cannot launch a DDoS attack even if the
captcha is not working.

There are diverse Bloom Filters available, which can
be either multi-threaded Bloom Filter or non-threaded. The
Authentica does not require a multi-threaded Bloom Filter
or parallel Bloom Filter. Therefore, we can use standard
Bloom Filter [18], or robustBF [19], [20]. robustBF con-
sumes 10.40× and 44.01× less memory than SBF and CBF
on average, respectively [19]. Also, robustBF is 2.038× and

8

2.48× faster in the insertion of 10M data than SBF [18] and
CBF [21], respectively [19]. Thus, robustBF is an extremely
efficient Bloom Filter that is suitable for Authentica.

5. Failure of authentication request

The failure table FT is a hashtable that maintains the
user ID, the count of its failed attempt to get authentication,
its recent timestamp for the failed attempt, and the backlist
information. The blacklist has several levels of blocking:
Level 0, Level 1, Level 2, Level 3, Level 4, Level 5, and
Level 6. Each user starts from Level 0, which means no
blocking. Level 1 blocks the user for five seconds on three
consecutive failed attempts. After five seconds, Level 2 acti-
vates if the user performs another three failed attempts, i.e.,
the user cannot get authentication since the last blocking.
The next level is activated upon three failed attempts. Level
2 blocks the user for 1 minute. Similarly, Level 3 blocks
the user for 5 minutes, Level 4 blocks the user for half
hour, Level 5 blocks the user for one hour, and Level 6
blocks the user for a day. After each blocking, three attempts
are given to the user to get an authentication. Failure to
get authentication causes inconvenience to the user. After
expiring of Level 6, it reset to Level 1 again upon failure
of getting authentication.

A user is authenticated upon successfully reproducing
the responses for the challenges. Otherwise, the authentica-
tion fails. If authentication fails, the failed attempt counter
is incremented as

FT .ID.counter = FT .ID.counter + 1 (41)

If FT .ID.counter ≥ 3, the blocking information of the
user is updated as

if FT .ID.counter ≥ 3

FT .ID.blocking = level l%7 + 1

FT .ID.Tauth = Tcurrent
FT .ID.counter = 0

(42)

The blocking status is upgraded to the next level by
FT .ID.blocking = level l%7 + 1. If the blocking level is
Level 6, then the blocking level is upgraded to Level 1. The
timestamp of the blocking is recorded. Also, the counter is
set to zero, allowing the user to perform three failed attempts
upon expiration of the blocking.

6. Hashtable for user ID

The hashtable contains the user ID, timestamp of the
authentication time, and authentication information. The
user request to the server for authentication using its ID.
The server checks the hashtable for the user ID. The server
retrieves the current timestamp if the user ID is in the
hashtable. Let the authentication timestamp be Tauth and
the current timestamp be Tcurrent. The difference between

the timestamp must be greater than a threshold δ; otherwise,
assign the user ID as logged out as given below-

if ID ∈ HT and HT .ID.logout = true

Proceed to the next step

else if | HT .ID.Tauth − Tcurrent |≥ δ

HT .ID.logout = true

Proceed to the next step

else
Block the request

(43)

If the user ID is logged out, i.e., ID ∈ HT and
HT .ID.logout = true, the server proceeds to the next
step. Otherwise, the server checks the login session expi-
ration time using the timestamps. This hashtable ensures
the authenticated users are not authenticated again. Also,
the user ID must belong to this hash table for verification.
Therefore, the adversary cannot initiate the authentication
process. However, the authentication process is performed
without encryption so that the adversary can get all valid
user IDs.

7. The challenge-response database

The challenge-response (CRP) database is prone to at-
tack by adversaries. Attackers try to breach the server’s
security and leak the CRP database. Encrypting the CRP
database is necessary to safeguard its security. In this case,
we assume the slow hash function and memory hard hash
function meet the performance of cryptography on the
server. A recent development suggests that the CRP database
can be encrypted using a key generated by PUF [22]. The
adversary’s PUF cannot produce the same results as the
server’s PUF. To generate a key using the server’s PUF,
we assume that the server’s PUF is noise-free. However, the
damage to the circuit causes an issue; therefore, it requires a
backup server with a different PUF [22]. Let the function be
the PUF(). We generate a key K to encrypt the response
of the client as

K ← PUF(ServerKey) (44)

There are two key drawbacks of the above-mentioned en-
cryption: a) PUF damage caused no recovery, and b) if the
K is compromised, the response can be revealed. Firstly,
the PUF can damage or malfunction at any given time.
Therefore, it requires an active backup of the CRP database
where modification of the main CRP database triggers a
modification in the backup server. There are two reasons
to modify the CRP database: a) inserting a new user and
b) forgotten responses. These operations are not frequent,
and a backup server can easily be maintained. Secondly, the
entire response database can be revealed if the adversary
discovers the K either accidentally or using a collision
attack (or any other method). To solve this issue, we use
a set of ServerKey as defined below-

ServerKey ={(SK11,SK12), (SK21,SK22),

(SK31,SK32) . . . , (SKn1,SKn2)}
(45)

9

The server’s keys are stored pairwise for each user. We term
this pair as semi-secret or semi-private words because these
words are stored unencrypted in the server. The server can
pick ith pair from the Serverkey for ith user and computes
the secret key for encryption as

Ki1 ← PUF(ServerKeyi1)

Ki2 ← PUF(ServerKeyi2)
(46)

The computed keys are updated using the SHA512 hash
function as shown in Equation (24). Again, the keys are
updated using Argon2i. However, the Argon2i is optional.
We can derive salt to update the keys as

Ki1 ← ARGON2I(Ki1,Si1)

Ki2 ← ARGON2I(Ki2,Si2)
(47)

where
S ={(S11,S12), (S21,S22), (S31,S32),

. . . , (Sn1,Sn2)}
Si1 ← PUF(Si1)
Si2 ← PUF(Si2)
Si1 ← HASH512(Si1)

Si2 ← HASH512(Si2)

(48)

Similar to the ServerKey, the S is also a semi-secret where
the words are stored in the server unencrypted. Notably, we
input two secrets into the Argon2i hash function: the secret
key and the secret salt. Therefore, it is computationally hard
to discover the secret key to decrypt the response because
Argon2i is a memory-hard hash function suitable to prevent
parallel computation of the adversary.

The ciphertexts (ER1
and ER2

) are inserted into the
response database. The server securely deletes the server’s
key Ki1 and Ki2. The ServerKey can be public, but
we termed it semi-private or semi-secret because these are
stored in the server without encryption. Let us assume the
adversary discovers Ki1, and therefore, the adversary can
leak R1. But the adversary cannot get Ki2 to leak the R2.
Let us assume the adversary discovers Ki1 and Ki2. So the
adversary can reveal the R1 and R2, which does not mean
that adversary can reveal other responses. Therefore, it is
secure even if a key is leaked or compromised.

7.1. Securely deleting a variable

Securely deleting a variable is an issue for the de-
veloper due to the side-channel attack. Let us assume a
developer uses a variable SecretKey = ”Alan Turing”.
If we directly release the variable, the character will not
be deleted, and these characters will remain on the mem-
ory allocated for the variable. Therefore, before deleting
the variable, we assign the variable with white spaces as
SecretKey = ” ” where all characters of the
variable are replaced with white spaces. Now, we can free or
delete the variable. This simple technique left no characters
traceable for the adversary. Thus, an adversary can learn
nothing from the allocated memory for the variables.

7.2. Client-side password strength

The password is not sent to the server, so the server
cannot suggest the password strength. Therefore, the server
cannot offer Ajax services. Hence, it requires client-side
password monitoring. It is trivial to implement such kinds of
systems. Such a system counts the symbols, capital letters,
small letters, and digits. Based on the minimum counts of
these characters, we can decide whether the password is
strong or not. Let the symbol count, small letter count, upper
letter count, and digits count are Symb, Ups, Small, and
Digit, respectively. We measure the password and secret
context’s strength as

min = MINIMUM(Symb, Ups, Small,Digit)

if min = 1

Weak secret

else if min = 2

Good secret

else if min = 3

Strong secret

else
V ery strong secret.

(49)

Moreover, the password and context length must be greater
than or equal to 10 characters.

8. Security Analysis

We analyze the security strength of Authentica, and it
can prevent the domino effect, dictionary attacks, rainbow
table attacks, collision attacks, impersonation attacks, replay
attacks, and DDoS attacks described in this section.

8.1. Collision attack

The collision attack states that the hash algorithm pro-
duces the same hash values even if the two input strings
are different. Precisely, the Hω = H′

ω where ω ̸= ω′. There
is always a possibility of collision in the hash algorithms
because the bit size limits the hash value. On the contrary,
the input space is infinitely large, and we can assume that
the universe is the input space. Suppose the adversary can
produce a response R1 of a given challenge C1 due to a
collision. The adversary requires another response R2 for
the challenge C2. The adversary needs to perform a collision
attack on the challenge C2 to reproduce the response R2.
Authentica uses the SHA512 hash algorithm to produce
the hash values; therefore, it is computationally hard to
produce the response R2 for the challenge C2. If it is
computationally hard to reproduce R2, thus so R1 too.
Let us assume two sets of words to perform a collision
attack by the adversary: X = {xi, x2, x3, . . . , xm} and
Y = {y1, y2, y3, . . . , yn} where m and n are sufficiently
large enough to perform a collision attack. The probability
of selecting a correct word that collides with the R1 is 1

m

10

and the R2 is 1
n . Alternatively, the xi correctly produces R1

and the yj correctly produces R2 where i = 1, 2, 3, . . . and
j = 1, 2, 3, The probability of selecting two words from
X and Y that correctly produces R1 and R2, respectively, is

1

(mn
2)

which is sufficiently small enough to thwarts collision
attack. We assumed that the words from X and Y can
correctly reproduce the R1 and R2, which is not necessary.
Therefore, the collision attack is computationally hard in
Authentica.

8.2. Impersonate attack

Authentication is a crucial process to protect the digital
assets. It should ensure that only legitimate users can get
authentication while illegitimate users are prevented from
getting authentication. Let us assume the adversary gener-
ates responsesHadv

R1
andHadv

R2
. To perform an impersonation

attack, the following equation must hold-

Hadv
R1

= RECONSTRUCTIONHASHVALUE(Rdec
1 , T R, T N)

Hadv
R2

= RECONSTRUCTIONHASHVALUE(Rdec
2 , T R, T N)

(50)

where RECONSTRUCTIONHASHVALUE() is a reconstruc-
tion of the hash value using the given parameter by the
server. To perform the above-given impersonation attack,
the following equation must satisfy.

Hadv
R1
̸= Hrecent

R1

Hadv
R2
̸= Hrecent

R2

(51)

Moreover, it must also satisfy the following equation.

T N adv > T N recent

T Radv > T Rrecent
(52)

Suppose, the T N adv > T N recent and the server generates
a timestamp T N for authentication which is T N adv =
T N . If it holds, then Equation (50) cannot hold. The
adversary is the legitimate user if Equation (50)-(52) hold.
Thus, the adversary cannot perform an impersonation attack.

Theorem 1. The two users, A and B, cannot produce the
same response for a common challenge. If the RA ̸= RB,
the adversary can impersonate where the RA ← SUF(C)
and RB ← SUF(C) and A ̸= B.

Proof. To impersonate, the adversary must satisfy the fol-
lowing equation

RA = RB and A ̸= B (53)

The above-given condition holds if the following equation
holds

PA = PB and ζA = ζB (54)

Coincidentally, the passwords and secret context are the
same for the two different users. However, this case can
easily be prevented in the registration phase. The duplicate
value for R1 and R2 cannot be inserted into the response
database. Thus, Equation (53) cannot satisfy two different

users. If the adversary correctly guesses the two secrets
of a user, then the adversary can gain authentication. The
guessing should be precise for a given user. For instance,
the adversary cannot impersonate if a user’s password and
secret context are correctly guessed within three attempts.
Different users’ passwords and secret contexts cannot im-
personate another user.

8.3. Replay attack

The server generates a random nonce which is generated
by a true random number generator. Also, the server gets
the current timestamp. Let the random nonce be N , and the
timestamp be T . The concatenated string is T N ← T ||
N . We know that the timestamp is comparable and unique.
Therefore, the T N is also comparable and unique. Let the
timestamps T1, T2, T3, . . . , be the timestamps. The Ti ̸= Tj
where i ̸= j. The Ti > Tj if i > j. Similarly, the Ti = Tj
if i = j.

Ti = Tj , if i = j

Ti > Tj , if i > j

Ti < Tj , if i < j

(55)

The timestamps are comparable because these are con-
stituted using time, increasing order of number, or both.
For instance, T1 = 1 2023-04-20-10-30-15 and T2 =
2 2023-04-20-10-30-20. The true random number generator
can generate a unique random nonce, say N1, N2, N3,
The Ni ̸= Nj where i ̸= j.{

Ni = Nj , if i = j

Ni ̸= Nj , if i ̸= j
(56)

Similarly, the user computes the timestamp, denoted as
T R— the current time and date of the user’s system and
a random number. Unlike the server’s timestamp, the user
does not add a number of increasing orders. However, the
T R is also comparable.

Theorem 2. The T N adv < T N is a replay attack where
T N is expected timestamp.

Proof. The server and client exchange these timestamps
without encryption. Therefore, the adversary can get a copy
of these timestamps and hash values. The adversary can
perform a replay attack using previous hash values to gain
authentication. The server stores the recently authenticated
users with their timestamps and hash values to prevent
replay attacks. Let the recent hash values be the Hrecent

R1

and Hrecent
R2

, and the recent timestamps be the T N recent

and T Rrecent. The user gains authentication from the server
using these values, and the server stores these values against
the user. Let the adversary captures these values and re-
send them to the server to gain authentication. The server
examines these values in a hashtable in Equation (36). Let
the hash values of the adversary be ADVR1

and ADVR2
,

and the timestamps of the adversary be T N adv and T Radv.
We have two cases: recent authenticated values and pre-
vious authentication values. The adversary can replay the

11

recently authenticated values. Therefore, the following equa-
tion holds for the first case.

if ADVR1 = Hrecent
R1

and ADVR2 = Hrecent
R2

It′s a replay attack.
(57)

If the above equation holds, the user is already authenticated
using the same values, and it is a case of a replay attack.
For the second case, the adversary can store all values of a
given user to perform a replay attack. Therefore, the above
equation cannot hold. Thus, we check the timestamps as
given below-

if T N adv ≤ T N recent and T Radv ≤ T N recent

It′s a replay attack.
(58)

The adversary must produce two hash values for a given
T N to get authentication. Moreover, the adversary must
produce the hash values within a few seconds; otherwise, it
becomes a replay attack.

This method causes inconvenience if the user cannot
update its system time and date, i.e., the time and date of the
user’s system cannot malfunction. It ensures the adversary
cannot perform a replay attack even if the server does not
store the history of the authentication of a user. Therefore,
the server does not require to store the history of the hash
values and timestamps.

8.4. Dictionary and rainbow table attack

The dictionary attack is carried out by performing pre-
computed hash values. For instance, the dictionary is con-
structed as

Dict = {h1 : x1, h2 : x2, h3 : x3, . . .} (59)

The adversary performs a lookup operation on the dictio-
nary for a given hash value to discover the corresponding
input. For instance, if the adversary receives a hash value
hi, then the corresponding raw string is xi. Assume that
the adversary discovers the corresponding input for the
response HR1 due to collision. The adversary must be able
to create a collision on HR1 to evade the security, which
is computationally hard due to the SHA512 hash algorithm.
Moreover, the hash values of the responses alter in each
communication. Therefore, it is difficult to discover the
original password and context using the dictionary attack.

Similarly, the rainbow table attack is also a powerful
method to crack passwords, similar to a dictionary attack. It
creates a chain of precomputed hash values with a reduction
function. For instance, the leaked hash value hi is reduced
to xi for the hash value using a rainbow table attack. The
rainbow table attack does not apply since the CRP database
is encrypted using a key derived using Argon2i. However,
the adversary can perform a rainbow table attack on HR1

and HR2 . The rainbow table attack can be successful only
when the communication is fixed hash values for HR1

and HR2 but Authentica alters the hash values in each
communication. Thus, the rainbow table is computationally
hard to perform.

8.5. Domino effect

The password-based authentication system is prone to a
domino effect due to password reuse in multiple domains.
We use domain words to defeat such kinds of attacks similar
to Ross et. al. [17]. Also, we encourage the user to reuse
the passwords in multiple domains.

Theorem 3. Given two different domains (D1 and D2), the
same challenges (C1 and C2), and the same secret words
(P and ζ). The responses for domain D1 are R1 and R′

1,
and for domain D2 are R2 and R′

2. If D1 ̸= D2 holds then
R1 ̸= R2 and R′

1 ̸= R′
2.

Proof. We need to prove that a password and a secret
context for two different domain words always translate
into different responses for the same challenges, i.e., the
adversary cannot perform the domino effect. Our method
shuffles the challenge with a domain word in the context
of a secret word. The domain words are D1 and D2 where
D1 ̸= D2 and non-empty. The challenges are C1 and C2,
and password is P . Let us construct the responses of the
domain name D1. The client hashes the challenge and the
domain word D1 as

HC1 ← HASH512(C1)

HC2 ← HASH512(C2)

HD1 ← HASH512(D1)

(60)

We shuffle these two hash values using a secret context as

SD1
ζ←− SHUFFLE(HC1

,HD1
)

SD′
1

ζ←− SHUFFLE(HC2
,HD1

)
(61)

The client converts the shuffled words into a hash value as
HSD1 ← HASH(SD1)

H′
SD1
← HASH(SD′

1)
(62)

Again, the client hashes the password as

HP ← HASH(P) (63)

The HSD and HP shuffled using a secret context as

SW1
ζ←− SHUFFLE(HSD1

,HP)

SW ′
1

ζ←− SHUFFLE(H′
SD1

,HP)
(64)

The newly shuffled word is converted into a hash value as

R1 ← HASH(SW1)

R′
1 ← HASH(SW ′

1)
(65)

For the same secrets and challenge, the client computes the
hash value for the different domain D2 as

HD2
← HASH512(D2) (66)

The HD1
̸= HD2

holds since D1 ̸= D2. The hash values
are shuffled with the hash value of the challenge as

SD2
ζ←− SHUFFLE(HC1 ,HD2)

SD′
2

ζ←− SHUFFLE(HC2
,HD2

)
(67)

12

where
SD1 ̸= SD2

SD′
1 ̸= SD

′
2

(68)

The client converts the shuffled word into a hash value as
HSD2

← HASH(SD2)

H′
SD2
← HASH(SD′

2)
(69)

Therefore, the following equation holds.

HSD1 ̸= HSD2

H′
SD1
̸= H′

SD2

(70)

The shuffled hash value is shuffled with the hash value of
the password as

SW2
ζ←− SHUFFLE(H′

SD2
,HP)

SW ′
2

ζ←− SHUFFLE(H′
SD2

,HP)
(71)

Also, the following equation holds.

SW1 ̸= SW2

SW ′
1 ̸= SW

′
2

(72)

The shuffled word is converted into a hash value as
R2 ← HASH(SW2)

R′
2 ← HASH(SW ′

2)
(73)

We can conclude that two different domain words produce
different responses for the same challenge and secret words,
which is shown below

R1 ̸= R2

R′
1 ̸= R′

2

(74)

Therefore, an adversary cannot gain authentication in other
domains even if the adversary steals the challenge-response
database of a server. The hash values for the same password
and secret word differ for different domains. Thus, our
proposed mechanism encourages the reuse of secret words in
multiple domains without risking the authentication process.
Thus, it eliminates the domino effect.

8.6. Guessing attacks

The guessing attack is one of the most powerful at-
tacks where the adversary can evade security using a few
trials. The user always sets easy secrets such that they
can easily remember the secrets. Therefore, the guessing
attack becomes more powerful. Authentica uses two secrets:
password and secret context. Let us assume that the client’s
name is Alan Turing, the password is Alan@1234, and
the secret context is Turing@1234. It becomes easy to be
guessed by the adversary. Therefore, we use the following
rules to prevent a guessing attack-

• The minimum length of the secret context and pass-
word is ten characters long: composed of at least a
capital letter, a small letter, a digit, and a symbol.

• The secret and password cannot be the email ad-
dress.

• The password and the secret context cannot be the
same.

• The given name and surname cannot be a substring
of secret context and password.

The above-given rule for the password and the secret context
is much harder to perform a guessing attack. However, there
is still room for weak secrets but a combination of two
secrets can make it stronger.

8.7. DDoS attack

It is easy to perform a distributed denial of service at-
tack on a PUF-based authentication mechanism because the
communications are unencrypted. Therefore, we rely on a
captcha to prevent requests from bots. Moreover, Authentica
uses a lightweight data structure, Bloom Filter, to filter out
unwanted user IDs. Furthermore, the user ID is examined in
the authentication and failure tables, which are implemented
based on the hashtable. These data structures can handle
millions of requests per second. Thus, the DDoS attack
cannot down the service of Authentica.

8.8. Revealing password

Recent developments suggest that the adversary has
already revealed a few billion passwords [23]–[25]. COMB
publishes 3.2 billion unique pairs of cleartext emails and
passwords. Similarly, RockYou2021 publishes 8.4 billion
passwords. However, the CrackStation can perform lookup
operations on a computed hash value to inverse. Authentica
shuffles the hash value of the domain name, password,
and challenge to produce a response using a secret context
to prevent secrets leakage. The hash value is stored as a
response in the server by encrypting it with a separate secret
key. The server does not deal with the plaintext of the
secrets. Therefore, it is computationally infeasible to leak
the raw secret from the hash value.

9. Conclusion

In this paper, we presented SUF to authenticate users
instead of authenticating the devices. The SUF is adapted to
implement an authentication mechanism without encryption
called Authentica. Authentica uses two secrets to prevent
diverse attacks: impersonation attacks and collision attacks.
Moreover, Authentica uses timestamps to defeat replay at-
tacks. The rainbow table and dictionary attacks are ad-
dressed by encrypting each response using a different secret
key. The DDoS attack is addressed by applying Captcha,
Bloom Filter, and Hashtable. Also, Authentica uses two
responses to avoid collision attacks. Moreover, the domino
effect issue is addressed by shuffling the domain name with
the challenge while producing a response so the user can
reuse their secrets without any risks. Furthermore, it uses
two secrets to defeat the guessing attacks. Thus, we have
demonstrated how Authentica authenticates users without
using a cryptography protocol, which is better than state-of-
the-art authentication protocols.

13

Acknowledgement

The research work of Dr. Ripon Patgiri is supported
by the Science and Engineering Research Board (SERB),
Government of India, under Grant no. EEQ/2021/000694.

References

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershen-
feld, “Physical one-way functions,” Science, vol. 297,
no. 5589, pp. 2026–2030, 2002. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1074376

[2] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable func-
tions,” Nat. Electron., vol. 3, pp. 81–91, Feb. 2020.

[3] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of
the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.

[4] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas,
and J. Schmidhuber, “Modeling attacks on physical unclonable
functions,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 237–249.
[Online]. Available: https://doi.org/10.1145/1866307.1866335

[5] S. Yu, A. K. Das, Y. Park, and P. Lorenz, “Slap-iod: Secure and
lightweight authentication protocol using physical unclonable func-
tions for internet of drones in smart city environments,” IEEE Trans-
actions on Vehicular Technology, vol. 71, no. 10, pp. 10 374–10 388,
2022.

[6] G. Bansal, N. Naren, V. Chamola, B. Sikdar, N. Kumar, and
M. Guizani, “Lightweight mutual authentication protocol for v2g
using physical unclonable function,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7234–7246, 2020.

[7] Q. Zhang, J. Wu, H. Zhong, D. He, and J. Cui, “Efficient anonymous
authentication based on physically unclonable function in industrial
internet of things,” IEEE Transactions on Information Forensics and
Security, vol. 18, pp. 233–247, 2023.

[8] P. Gope, O. Millwood, and B. Sikdar, “A scalable protocol level
approach to prevent machine learning attacks on physically unclon-
able function based authentication mechanisms for internet of medical
things,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3,
pp. 1971–1980, 2022.

[9] J. Cui, J. Yu, H. Zhong, L. Wei, and L. Liu, “Chaotic map-based
authentication scheme using physical unclonable function for internet
of autonomous vehicle,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 24, no. 3, pp. 3167–3181, 2023.

[10] H. M. S. Badar, S. Qadri, S. Shamshad, M. F. Ayub, K. Mahmood, and
N. Kumar, “An identity based authentication protocol for smart grid
environment using physical uncloneable function,” IEEE Transactions
on Smart Grid, vol. 12, no. 5, pp. 4426–4434, 2021.

[11] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 1242–1254. [Online]. Available:
https://doi.org/10.1145/2976749.2978339

[12] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer,
N. Christin, and L. F. Cranor, “Fast, lean, and accurate:
Modeling password guessability using neural networks,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX:
USENIX Association, Aug. 2016, pp. 175–191. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/melicher

[13] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han,
“Chunk-level password guessing: Towards modeling refined
password composition representations,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 5–20. [Online]. Available:
https://doi.org/10.1145/3460120.3484743

[14] F. Yu and M. V. Martin, “Gnpassgan: Improved generative adversarial
networks for trawling offline password guessing,” in 2022 IEEE Eu-
ropean Symposium on Security and Privacy Workshops (EuroS&PW),
2022, pp. 10–18.

[15] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in 2021
IEEE Symposium on Security and Privacy (SP), 2021, pp. 1382–1399.

[16] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The
tangled web of password reuse.” in NDSS, vol. 14, 2014, pp. 23–
26.

[17] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell, “Stronger password authentication using browser
extensions,” in 14th USENIX Security Symposium (USENIX
Security 05). Baltimore, MD: USENIX Association, Jul.
2005. [Online]. Available: https://www.usenix.org/conference/14th-
usenix-security-symposium/stronger-password-authentication-using-
browser-extensions

[18] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Performance:
Building a Better Bloom Filter,” in Algorithms – ESA 2006. Berlin,
Germany: Springer, 2006, pp. 456–467.

[19] S. Nayak and R. Patgiri, “Robustbf: A high accuracy and memory
efficient 2d bloom filter,” 2021.

[20] “robustBF,” Jul. 2023, [Online; accessed 20 June 2023]. [Online].
Available: https://github.com/patgiri/robustBF

[21] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese, “An Improved Construction for Counting Bloom Filters,” in
Algorithms – ESA 2006. Berlin, Germany: Springer, 2006, pp. 684–
695.

[22] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H.
Spafford, “Ersatzpasswords: Ending password cracking and detecting
password leakage,” in Proceedings of the 31st Annual Computer
Security Applications Conference, ser. ACSAC ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 311–320.
[Online]. Available: https://doi.org/10.1145/2818000.2818015

[23] “COMB: over 3.2 Billion Email/Password Combinations Leaked
| Cybernews,” Jul. 2022, [Online; accessed 15 June 2023].
[Online]. Available: https://cybernews.com/news/largest-compilation-
of-emails-and-passwords-leaked-free

[24] “CrackStation - Online Password Hash Cracking - MD5, SHA1,
Linux, Rainbow Tables, etc.” Jul. 2023, [Online; accessed 15 June
2023]. [Online]. Available: https://crackstation.net

[25] “RockYou2021: Largest Ever Password Compilation Leaked |
Cybernews,” Feb. 2023, [Online; accessed 20 June 2023].
[Online]. Available: https://cybernews.com/security/rockyou2021-
alltime-largest-password-compilation-leaked

Appendix

14

TABLE 3. THE USED SYMBOLS THROUGHOUT THE PAPER AND THEIR
DESCRIPTIONS.

Notation Description
C The client or user
S The server or identity manager
P User’s password
ζ User’s secret context
C An example challenge
R An example response generated from C
C1 and C2 Two challenges of Authentica for a single

domain
R1 and R2 Two response generated from C1 and C2

for a single user
ω1 and ω2 Two example word
D Domain word or domain name
SW and SD Two shuffled word
S A positive integer value
τ Number of iteration
S A salt to input into Argon2i
L Length of a given string
HASH512() SHA512 hash function
PUF() Physically unclonable hash function
SUF() Software-defined unclonable hash function
ARGON2I() Agron2i, a memory-hard hash function for

key derivation
K A secret key for encryption or decryption
HP The hash value of password
HD The hash value fo the domain name
HC The hash value of the challenge
HR The hash value of the response
T N A timestamp generated by the server (iden-

tity manager)
T R A timestamp generated by the client (user)
G() A true random number generator
BF A Bloom Filter
FT A failure table implemented using hashtable
HT A hashtable for the list of users.

15

