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Abstract. This paper presents the first generic black-box construction of registered attribute-based encryption (Reg-
ABE) via predicate encoding [TCC’14]. The generic scheme is based on 𝑘-Lin assumption in the prime-order bilinear
group and implies the following concrete schemes that improve existing results:

– the first Reg-ABE scheme for span program in the prime-order group; prior work uses composite-order group;
– the first Reg-ABE scheme for zero inner-product predicate from 𝑘-Lin assumption; prior work relies on generic

group model (GGM);
– the first Reg-ABE scheme for arithmetic branching program (ABP) which has not been achieved previously.

Technically, we follow the blueprint of Hohenberger et al. [EUROCRYPT’23] but start from the prime-order dual-
system ABE by Chen et al. [EUROCRYPT’15], which transforms a predicate encoding into an ABE. The proof follows
the dual-system method in the context of Reg-ABE: we conceptually consider helper keys as secret keys; furthermore,
malicious public keys are handled via pairing-based quasi-adaptive non-interactive zero-knowledge argument by
Kiltz and Wee [EUROCRYPT’15].

1 Introduction

Registered attribute-based encryption (Reg-ABE) [HLWW23] is an emerging primitive that extends attribute-based
encryption (ABE) [SW05,GPSW06] to avoid key escrow issue. Conceptually, this is an extension of registration-based
encryption (RBE) [GHMR18]. A Reg-ABE for predicate 𝑃 : 𝑋 ×𝑌 → {0, 1} is established by publishing a common refer-
ence string crs. A user can generate his/her own key pair (pk, sk) locally and register (pk, 𝑦) for some 𝑦 ∈ 𝑌 into the
system. The registration is carried out by the curator in a public and deterministic manner, and will produce a master
public key mpk for encryption as traditional ABE. The user can decrypt a ciphertext for 𝑥 ∈ 𝑋 using his/her sk when
𝑃(𝑥, 𝑦) = 1 along with so-called helper key hsk obtained from the curator during registration phase. Furthermore,
each registration might trigger an update to all users’ helper keys.

Existing Reg-ABE can be classified into two classes: (1) Early work [GHMR18,GHM+19,GV20,CES21] uses non-black-
box technique based on garbling scheme [Yao82,BHR12] or indistinguishable obfuscation (iO) [GGH+13,JLS22]; while
(2) recent work [GKMR22,DKL+23,HLWW23,FFM+23] uses black-box technique based on concrete assumptions in bi-
linear group or integral lattice.

This work explores a systematic way to build pairing-based Reg-ABE in a black-box fashion: we want to cover a
large set of functionalities in a unified framework. All prior work [GKMR22,HLWW23,FFM+23] focused on a single
specific predicate. See Figure 1 for more details.

1.1 Results

In this work, we propose a generic Reg-ABE scheme via predicate encoding [Wee14,CGW15]. It works with prime-
order bilinear group and the security is based on the well-known 𝑘-Lin assumption for 𝑘 ≥ 1. Given our knowledge
of existing predicate encoding [Wee14,CGW15], this implies:

– the first Reg-ABE scheme for span program in the prime-order group; this improves the result of [HLWW23] which
supports the same predicate in composite-order groups;



– the first Reg-ABE scheme for zero inner-product predicate from standard assumption (𝑘-Lin); this partially resolved
the open problem posted in [FFM+23]: the RIPE in [FFM+23] relies on generic group model (GGM) but achieves
attribute-hiding; note that, even without attribute-hiding, the RIPE [FFM+23] does not seem to get rid of GGM;

– the first Reg-ABE scheme for arithmetic branching program (ABP) that goes beyond span program.

See Figure 1 for more details. We also highlight more implications thanks to the result in [ABS17] and more subse-
quent work on predicate encodings: we are able to come up with different variants of all Reg-ABE schemes mentioned
above, such as dual of policy (i.e., “key-policy vs ciphertext-policy” transformation) and composition of policies (i.e.,
disjunction, conjunction and negation of predicates).

reference functionality assumption

[GKMR22] Equality Check (IBE) prime, 𝑞-type/DBDH

[HLWW23] Span Program composite, static

[FFM+23] Inner-Product Predicate † prime, GGM

§ D.1 Span Program prime ✓,𝑘-Lin ✓

§ D.2 Inner-Product Predicate prime,𝑘-Lin ✓

§ 4 Arithmetic Branching Program ✓ prime ✓,𝑘-Lin ✓

Fig. 1. Summary of black-box construction of pairing-based Reg-ABE. In the column assumption, “composite” and “prime” indicate
composite- and prime-order bilinear groups respectively; “static” means a specific set of static assumptions, “GGM” stands for
generic group model; for 𝑘-Lin assumption, we allow 𝑘 ≥ 1. We use ✓to highlight the advantage of our scheme over prior ones
supporting the same predicate.
† [FFM+23] also achieves attribute-hiding while ours in Appendix D.2 does not; we note that, without considering attribute-hiding,
their scheme does not seem to be provably secure under standard assumption.

Strategy. We follow the blueprint by [HLWW23] and focus on a weaker primitive called slotted Reg-ABE. A slotted
Reg-ABE scheme for 𝐿 ∈ N slots (𝐿-slot Reg-ABE for short) is similar to the standard Reg-ABE except that the curator
is replaced by an aggregator who simply collects all 𝐿 public keys and generate mpk and hsk’s once for all. Here,
the aggregator is stateless while the curator is stateful which allows us to register the 𝐿 public keys in a one-by-one
fashion. By this, we do not worry about update operations for now which can be handled by so-called “powers-of-two”
approach by [HLWW23]. In particular, [HLWW23] shows that one can use the approach to generically transform any
slotted Reg-ABE to a (full-fledged) Reg-ABE while preserving basic features such as predicates, assumptions, etc. In this
work, we give a pairing-based slotted Reg-ABE via predicate encodings from 𝑘-Lin assumption. We provide a detailed
technical overview of our slotted Reg-ABE scheme in the next two subsections.

Remarks. Before we proceed, we remark that our Reg-ABE inherits several restrictions from [HLWW23], compared
with prior RBE [GHMR18,GHM+19,GV20,CES21,DKL+23]. We highlight two of them:

– Our Reg-ABE only accommodates bounded number of users, the size of crs depends on the number of users. Note
that, almost all known RBE schemes supporting unbounded number of users [GHMR18,GHM+19,GV20,CES21] re-
quire non-black-box techniques; the only exception is the recent LWE-based scheme by Döttling et al. [DKL+23].

– Our Reg-ABE requires an explicit verification of public key before registration, only those “valid” public keys can
be registered to the system, see Section 2.2. This is introduced by [HLWW23] to handle malicious public keys, see
Section 1.3, paragraph Handle Malicious pk; however, this is not needed in prior RBE schemes.

It is an interesting open problem to explore whether these restrictions or relaxations are necessary to support expres-
sive predicates. See Section 1.4 for more discussions and open problems.
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1.2 Overview of Slotted ABE

In this overview, we explain our construction of slotted Reg-ABE from predicate encodings. A 𝐿-slotted Reg-ABE for
𝑃 : 𝑋 × 𝑌 → {0, 1} is governed by a crs; given (pk1, 𝑦1), . . . , (pk𝐿, 𝑦𝐿) and crs, an aggregator can generate a master
public key mpk for encryption. For correctness, we require that one can use sk𝑖 , the corresponding secret key of pk𝑖 ,
to decrypt when 𝑃(𝑥, 𝑦𝑖) = 1 where 𝑥 is associated with the ciphertext. For security, when sk𝑖 is leaked, we require
that 𝑃(𝑥, 𝑦𝑖) = 0; when sk𝑖 is secret, it is allowed to have 𝑃(𝑥, 𝑦𝑖) = 1; here we neglect the case where pk𝑖 is malicious
for now and handle this case later on.

Starting Point: Predicate Encoding & Dual-system ABE. Let lower-case boldface denote row vectors and upper-case
boldface denote matrices. We first review the notion of predicate encoding and dual-system ABE [Wee14,CGW15] with
the notation in [ABS17,ACGU20]. A predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} has an (𝑛, 𝑛𝑐, 𝑛𝑘)-predicate encoding (PE) if: For all
𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , one can efficiently and deterministically find

C𝑥 ∈ Z𝑛×𝑛𝑐𝑝 , K𝑦 ∈ Z𝑛×𝑛𝑘𝑝 , a𝑦 ∈ Z1×𝑛𝑘
𝑝 , d𝑥, 𝑦 ∈ Z𝑛𝑐+𝑛𝑘𝑝

that forms M𝑥, 𝑦 =

(
a𝑦 0𝑛𝑐
K𝑦 C𝑥

)
such that

– when 𝑃(𝑥, 𝑦) = 1, we have M𝑥, 𝑦d⊤𝑥, 𝑦 = e⊤1 ;
– when 𝑃(𝑥, 𝑦) = 0, we have {𝑥, 𝑦, 𝛼, (𝛼∥w)M𝑥, 𝑦} ≈𝑠 {𝑥, 𝑦, 𝛼, (0∥w)M𝑥, 𝑦} where w← Z𝑛𝑝.

In the literature, they are called 𝛼-reconstruction and 𝛼-privacy which are used to ensure correctness and security of
ABE, respectively. (For the reader who is familiar with the notations in [CGW15], C𝑥 ,K𝑦 , a𝑦 correspond to sE, rE, kE,
and d𝑥, 𝑦 corresponds to sD, rD.) LetG be a finite cyclic group with generator 𝑔 and denote [𝑥] = 𝑔𝑥 , we will start from
the following one-key ABE scheme:

mpk : [w, 𝛼]; (1)

ct𝑥 : [𝑠, 𝑠wC𝑥], [𝑠𝛼] ·m;

sk𝑦 : 𝛼a𝑦 +wK𝑦 .

Decryption relies on the following equation:

(𝑠 · (𝛼a𝑦 +wK𝑦)∥𝑠wC𝑥)d⊤𝑥, 𝑦 = (𝑠𝛼∥𝑠w)M𝑥, 𝑦d⊤𝑥, 𝑦 = (𝑠𝛼∥𝑠w)e⊤1 = 𝑠𝛼 (2)

where the second equation uses the 𝛼-reconstruction of PE; security follows from the 𝛼-privacy of PE. The actual proof
needs a composite-order group with subgroup decision assumption; we omit the details.

Zero-slot Scheme. The left-hand side of equation (2) immediately inspires the following (oversimplified) Reg-ABE
scheme where we can embed 𝑦 to mpk so that an encryption under 𝑥 reveals m if and only 𝑃(𝑥, 𝑦) = 1. We call this
zero-slot scheme since there is no user to register at all.

crs : [w, 𝛼]; (3)

mpk𝑦 : [𝛼a𝑦 +wK𝑦 ,w, 𝛼];
ct𝑥 : [𝑠𝛼a𝑦 + 𝑠wK𝑦 , 𝑠wC𝑥], [𝑠𝛼] ·m.

Observe that the structure of ct𝑥 is quite similar to the left-hand side of (2); conceptually, we embed the decryption
procedure (not just the functional key sk𝑦 in scheme (1)) intompk. Decryption uses the same equation as in scheme (1),
i.e., equation (2). The security follows from the 𝛼-privacy as well as DDH assumption. In particular, the proof works in
two steps: DDH assumption allows us to change the ciphertext ct𝑥 to

[�̃�a𝑦 + w̃K𝑦 , w̃C𝑥], [�̃�] ·m

where �̃�, w̃ are uniform and independent of 𝛼,w; then privacy applies w.r.t. �̃� and w̃. The proof is quite simple due to
the fact that we actually work in the one-key setting.
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From Zero to One. We proceed to modify the zero-slot scheme to allow user registration. As [HLWW23], the user
will generate an ElGamal key pair: pk = [𝑢] and sk = 𝑢 where 𝑢 is uniformly sampled by the user himself/herself. To
register this user, we simply replace 𝛼 with 𝛼 + 𝑢 in mpk𝑦 and ct𝑥 . This means that, in ct𝑥 , we actually encrypt [𝑠𝛼] by
ElGamal encryption under pk; the user who holds sk = 𝑢 can recover the ciphertext in zero-slot scheme (3). In more
details, the one-slot scheme is

crs : [w, 𝛼]; (4)

pk, sk : [𝑢], 𝑢;

mpkpk, 𝑦 : [(𝛼 + 𝑢)a𝑦 +wK𝑦 ,w, 𝛼];
ct𝑥 : [𝑠, 𝑠(𝛼 + 𝑢)a𝑦 + 𝑠wK𝑦 , 𝑠wC𝑥], [𝑠𝛼] ·m.

Here we add [𝑠] for correctness. Clearly, one can publicly and deterministically compute mpkpk, 𝑦 from crs, pk and 𝑦;
this is an important feature for Reg-ABE. For security, we consider two cases:

– when 𝑢 is leaked, we require that 𝑃(𝑥, 𝑦) = 0, the security reduced to that for zero-slot scheme (3);
– when 𝑢 is secret, we allow that 𝑃(𝑥, 𝑦) = 1, the security relies on the fact that [𝑠𝛼] is hidden by [𝑠𝑢] which is

basically the security of ElGamal encryption.

A caveat is that we should also allow pk to be maliciously generated by the adversary; this is a stronger attack than
the first case and cannot be captured by the current scheme; we will defer the solution to the end of this overview.
Before we proceed, we mention that an alternative way to implement our strategy is to embed [𝑢] as follows:

mpkpk, 𝑦 : [𝛼a𝑦 +wK𝑦 ,w, 𝛼 + 𝑢];
ct𝑥 : [𝑠, 𝑠𝛼a𝑦 + 𝑠wK𝑦 , 𝑠wC𝑥], [𝑠(𝛼 + 𝑢)] ·m.

They are basically equivalent. We will work with (4) that makes the follow-up discussion simpler.

From One to Many: Observation. We follow the strategy of [HLWW23,FFM+23] to build 𝐿-slot scheme based on
one-slot scheme that allows us to register (pk1, 𝑦1), . . . , (pk𝐿, 𝑦𝐿) for a priori known 𝐿 ∈ N: we generate 𝐿 parallel one-
slot schemes, register (pk 𝑗 , 𝑦 𝑗) to 𝑗-th instance of one-slot scheme (or slot 𝑗 for short) and “add” the corresponding
mpkpk 𝑗 , 𝑦 𝑗 and ciphertext in a “component-wise” way. In particular, the scheme is as follows:

crs : [w 𝑗 , 𝛼 𝑗],∀ 𝑗; (5)

pk𝑖 : [𝑢𝑖];
sk𝑖 : 𝑢𝑖 ;

mpk : [∑ 𝑗 ((𝛼 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ),
∑

𝑗 w 𝑗 ,
∑

𝑗 𝛼 𝑗];
ct𝑥 : [𝑠, 𝑠∑ 𝑗 ((𝛼 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠

∑
𝑗 w 𝑗C𝑥], [𝑠

∑
𝑗 𝛼 𝑗] ·m;

where 𝑗 ranges over 1, . . . , 𝐿 and those terms with subscript 𝑗 correspond to slot 𝑗. We encounter the same issue as
in [HLWW23]: even with sk𝑖 = 𝑢𝑖 and 𝑃(𝑥, 𝑦𝑖) = 1 for some 𝑖, we still cannot decrypt successfully as before due to
the “add” operation and the solution is to issue an extra helper key hsk𝑖 for each slot 𝑖 ∈ [𝐿]. Omitting the term with
message m and fixing 𝑖 ∈ [𝐿], the ciphertext is the “sum” of two parts:

[𝑠, 𝑠((𝛼𝑖 + 𝑢𝑖)a𝑦𝑖 +w𝑖K𝑦𝑖 ), 𝑠w𝑖C𝑥], // local part;
[𝑠, 𝑠∑ 𝑗≠𝑖 ((𝛼 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠

∑
𝑗≠𝑖 w 𝑗C𝑥], // mixed part.

The local part corresponds to one-slot scheme for slot 𝑖 and can be handled via sk𝑖 as before, i.e., scheme (4); the mixed
part involves terms from all other slots. The helper key hsk𝑖 is designed to remove the mixed part.
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From One to Many: Helper Keys via Pairing. A naive solution is to set

hsk𝑖 :
∑

𝑗≠𝑖 ((𝛼 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ),
∑

𝑗≠𝑖 w 𝑗 .

This definitely works but may suffer from “mix-and-match” attack. As an example, for 𝐿 = 3, we have:

hsk2 − hsk1 + hsk3 = 2((𝛼1 + 𝑢1)a𝑦1 +w1K𝑦1 ,w1)

this allows user in slot 1 to recover𝛼1 since𝑢1 is known to this user and hsk1, hsk2, hsk3 should be public. Therefore, the
scheme is entirely broken. We fix the issue using the idea of achieving collusion resistance in ABE: we introduce differ-
ent random coins into different hsk𝑖 which avoids the above attack; this requires bilinear group. Let G1 = ⟨𝑔1⟩,G2 =

⟨𝑔2⟩ be finite cyclic source groups of bilinear maps 𝑒 andG𝑇 be the target group. Write [𝑥]1 = 𝑔𝑥1 , [𝑥]2 = 𝑔𝑥2 . We embed
mpk,ct𝑥 in G1 and set hsk𝑖 over G2 with random coin 𝑟𝑖 :

hsk𝑖 : [𝑟𝑖 , 𝑟𝑖
∑

𝑗≠𝑖 ((𝛼 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑

𝑗≠𝑖 w 𝑗]2.

This is analogous to the secret key in ABE and helps to recover the local part of ct𝑥 in the same form as before but over
G𝑇 with random coin 𝑠𝑟𝑖 instead of 𝑠:

[𝑠𝑟𝑖 ((𝛼𝑖 + 𝑢𝑖)a𝑦𝑖 +w𝑖K𝑦𝑖 ), 𝑠𝑟𝑖w𝑖C𝑥]𝑇

Then, decryption of one-slot scheme gives [𝑠𝑟𝑖𝛼𝑖]𝑇 when 𝑃(𝑥, 𝑦𝑖) = 1. However, one cannot use this to carry message
m: since𝛼𝑖 and 𝑟𝑖 are fresh for each 𝑖 ∈ [𝐿], we have to include terms [𝑠𝑟1𝛼1]𝑇 ·m, . . . , [𝑠𝑟𝐿𝛼𝐿]𝑇 ·m in ct𝑥 for correctness,
this further requires us to publish [𝑟1𝛼1]𝑇 , . . . , [𝑟𝐿𝛼𝐿]𝑇 in mpk, i.e., we have |mpk| = 𝑂(𝐿), which is disallowed in Reg-
ABE. A common trick in the context of ABE is sufficient to fix this: we will include term [𝑠𝛼]𝑇 ·m in ct𝑥 as usual and
connect 𝛼𝑖 and 𝛼 via term [𝑟𝑖𝛼𝑖 + 𝛼]2 in hsk𝑖 . By this, we do not make any change to ct and user in slot 𝑖 can compute

𝑒( [𝑠]1, [𝑟𝑖𝛼𝑖 + 𝛼]2) = [𝑠𝑟𝑖𝛼𝑖]𝑇 · [𝑠𝛼]𝑇

which recovers m given [𝑠𝑟𝑖𝛼𝑖]𝑇 we computed before and [𝑠𝛼]𝑇 ·m in ct𝑥 .

Summary. Putting all these together and writing 𝛼 𝑗 as 𝑣 𝑗 , we have the following scheme:

crs = [𝛼]𝑇 , [𝑣 𝑗 ,w 𝑗]1, ∀ 𝑗; (6)

[𝑟𝑖 , 𝑟𝑖𝑣 𝑗 , 𝑟𝑖w 𝑗 , 𝑟𝑖𝑣𝑖 + 𝛼]2, ∀𝑖 ≠ 𝑗;

pk𝑖 = [𝑢𝑖]1, [𝑢𝑖𝑟 𝑗]2, ∀ 𝑗 ≠ 𝑖;

sk𝑖 = 𝑢𝑖 ;

mpk = [∑ 𝑗 ((𝑣 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ),
∑

𝑗 w 𝑗]1, [𝛼]𝑇 ;

hsk𝑖 = [𝑟𝑖 , 𝑟𝑖
∑

𝑗≠𝑖 ((𝑣 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑟𝑖
∑

𝑗≠𝑖 w 𝑗 , 𝑟𝑖𝑣𝑖 + 𝛼]2;

ct𝑥 = [𝑠, 𝑠∑ 𝑗 ((𝑣 𝑗 + 𝑢 𝑗)a𝑦 𝑗 +w 𝑗K𝑦 𝑗 ), 𝑠
∑

𝑗 w 𝑗C𝑥]1, [𝑠𝛼]𝑇 ·m.

Here crs is constructed so that one can use it to generate mpk and hsk1, . . . , hsk𝐿 in a public way. To prove the security,
we will need to embed (6) into composite-order group. We decide not to dive into details in the composite-order group
and focus on prime-order scheme where we will handle malicious public key. Before that, we quickly mention the
connect to broadcast encryption (BE) by Gentry and Waters [GW09]: neglecting all terms involving w1, 𝑢1, . . . ,w𝐿, 𝑢𝐿,
the first row of crs is the master public key of BE, the second row of crs gives the secret keys for users 1, . . . , 𝐿 and
ct𝑥 is the BE ciphertext for set [𝐿]. In another words, by introducing term [𝑟𝑖𝛼𝑖 + 𝛼]2 in hsk𝑖 and crs in the previous
paragraph, we actually employ Gentry-Waters BE [GW09] to reduce the size of ct𝑥 and mpk from 𝑂(𝐿) to 𝑂(1). Two
recent results formally clarify the connection, see Section 1.4, paragraph Concurrent Work.
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1.3 Final Slotted Reg-ABE in Prime-Order Group

Our final scheme is based on the prime-order version of scheme (6). We first explain how to get this prime-order
scheme and then reach the final slotted Reg-ABE scheme with an additional concern on malicious public keys.

Prime-order Scheme. Applying the “composite-order-to-prime-order” transformation in [CGW15], we can get our
scheme in the prime-order group. In more details, discarding all subscripts 𝑖 and 𝑗, we do the following substitution
with A ∈ Z𝑘×(𝑘+1)

𝑝 and B ∈ Z(𝑘+1)×𝑘
𝑝 :

𝛼 ∈ Z𝑁 , 𝑣 ∈ Z𝑁 , w ∈ Z𝑛𝑁 ↦→ k ∈ Z𝑘+1
𝑝 , V ∈ Z(𝑘+1)×(𝑘+1)

𝑝 , W ∈ Z(𝑘+1)×(𝑘+1)𝑛
𝑝 ;

and

[𝑠]1 ∈ G1, [𝑟]2 ∈ G2, [𝛼]2 ∈ G2 ↦→ [sA]1 ∈ G1×(𝑘+1)
1 , [Br⊤]2 ∈ G𝑘+1

2 , [k]2 ∈ G𝑘+1
2

[𝛼]𝑇 ∈ G𝑇 , [𝑠𝛼]𝑇 ∈ G𝑇 ↦→ [Ak⊤]𝑇 ∈ G𝑘
𝑇 , [sAk⊤]𝑇 ∈ G𝑇

[𝑣]1 ∈ G1, [w]1 ∈ G𝑛
1 ↦→ [AV]1 ∈ G

𝑘×(𝑘+1)
1 , [AW]1 ∈ G𝑘×(𝑘+1)𝑛

1

[𝑠𝑣]1 ∈ G1, [𝑠w]1 ∈ G𝑛
1 ↦→ [sAV]1 ∈ G

1×(𝑘+1)
1 , [sAW]1 ∈ G1×(𝑘+1)𝑛

1

[𝑟𝑣]2 ∈ G2, [𝑟w]2 ∈ G𝑛
2 ↦→ [VBr⊤]2 ∈ G𝑘+1

2 , [W(I𝑛 ⊗ Br⊤)]2 ∈ G(𝑘+1)×𝑛
2

Note that 𝑢 ∈ Z𝑁 is translated to U ∈ Z(𝑘+1)×(𝑘+1)
𝑝 as 𝑣 ∈ Z𝑁 and each entry in w is actually treated as 𝑣 too4. The proof

is analogous to the dual-system proof for ABE [Wat09,Wee14,CGW15]:

1. we switch [sA]1 to a random vector [c]1 over G1;
2. for 𝑗 = 1, . . . , 𝐿, we switch [Br⊤

𝑗
]2 to a random vector [d⊤

𝑗
]2 over G2 and make use of the entropy in U 𝑗 ,V 𝑗 ,W 𝑗 to

argue the “partial” secrecy of k in term V 𝑗Br⊤𝑗 + k
⊤.

Recall that we use the idea of collusion resistance to build hsk1, . . . , hsk𝐿. Therefore, in the proof, we conceptually view
hsk1, . . . , hsk𝐿 as secret keys in ABE and exactly follow the dual-system method. Of course, the actual proof makes
changes in crs instead of hsk1, . . . , hsk𝐿 since aggregation is public and the adversary with crs along with a series of
public keys can compute them by itself, see Section 2 for formal definition.

Handle Malicious pk. We finally mention a subtlety in the proof. Recall that, in Section 1.2, we neglect the case where
pk is malicious. In this case, the first step mentioned in the proof overview can not go through since the simulator does
not know sk = U. In particular, the simulator takes [A, t]1 as input where t = sA or t = c and need to simulate the term
[sAU]1 (or [cU]1) appeared in the challenge ciphertext where [AU]1 is the public key registered by the adversary;
clearly, this is infeasible without U. Our solution is to allow the simulator to “program” [sA]1 (or [c]1) into crs so that
the user is forced to compute [sAU]1 (or [cU]1) for us when the user submitted pk. In particular, we make two changes
to the prime-order scheme.

4 Let w = (𝑤1, . . . , 𝑤𝑛). With the same substitution 𝑤𝑖 ∈ Z𝑁 ↦→W𝑖 ∈ Z
(𝑘+1)×(𝑘+1)
𝑝 and

[𝑠𝑤𝑖]1 ↦→ [sAW𝑖]1, [𝑟𝑤𝑖]2 ↦→ [W𝑖Br⊤]2,

we have

[𝑠w]1 = [𝑠𝑤1∥ . . . ∥𝑠𝑤𝑛]1 = [sAW1∥ · · · ∥sAW𝑛]1 = [sA(W1∥ · · · ∥W𝑛)]1
[𝑟w]2 = [𝑟𝑤1∥ . . . ∥𝑟𝑤𝑛]2 = [W1Br⊤∥ · · · ∥W𝑛Br⊤]2 = [(W1∥ · · · ∥W𝑛) (I𝑛 ⊗ Br⊤)]2

where we obtain W = (W1∥ · · · ∥W𝑛) ∈ Z(𝑘+1)×(𝑘+1)𝑛
𝑝 .
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1. We introduce an extra term [R]1 where R ← Z(𝑘+2)×(𝑘+1)
𝑝 to crs; user’s public key also includes an extra term

[RU]1. In the reduction, we program

R = R̃

(
t

I𝑘+1

)
, R̃← Z(𝑘+2)×(𝑘+2)

𝑝

In both cases, R̃ ensures thatR is random. Receiving pk = [T = AU,Q = RU]1, we use [e1R̃−1Q]1 = [tU]1 to simulate
the ciphertext, which is either [sAU]1 or [cU]1 as required.

2. Since the adversary can give an inconsistent pk where T = AU and Q = RU′ with U ≠ U′. We additionally ask for
a proof 𝜋 showing (

T
Q

)
∈ span

(
A
R

)
This ensures U = U′. One can generate the proof via any non-interactive zero-knowledge proof/argument (NIZK)
for sufficiently large language such as Groth-Sahai Proof [GS08]. In this work, we choose to employ quasi-adaptive
NIZK (QA-NIZK) for linear space from pairing [JR13] due to the fact that [A]1 and [R]1 (i.e., the language) are deter-
mined at a quite early stage. We mention that we need a stronger unbounded simulation soundness [GHR15,LPJY15]
where the adversary is given A and R “in the clear”; we leave more details to Section 2.4.

However, the additional term [Q]1 leaks almost all information of U, which is crucial for the security when the user is
honest. To fix the issue, we employ a wider A and R along with a higher U so that given AU,RU, we still have left-over
entropy in cU for the security; see Section 3.4 for more details. We finally note that our method is indeed inspired by
the idea of [HLWW23] in the composite-order group, however, this is not derived from theirs via a composite-order-
to-prime-order transformation.

1.4 Discussions

On Hohenberger et al.’s Reg-ABE [HLWW23]. The recent work [HLWW23] showed a registered CP-ABE for span pro-
gram and mentioned that “... if we ignore the slot-specific ciphertext component, then the structure of the ciphertexts
in our scheme coincides with those in the ciphertext policy ABE scheme of Lewko et al. [LOS+10].” But the connection
with predicate encoding is not as straightforward as stated. For 𝑆 ⊆ [𝑛], let us define x = (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 where
𝑥𝑖 = 1 for 𝑖 ∈ 𝑆 and 𝑥𝑖 = 0 for 𝑖 ∉ 𝑆. [HLWW23] uses the following unusual structure to encode 𝑆 in mpk and ct (Note
that we are not showing mpk and ct accurately, there are some minor differences.):

mpk : {(1 − 𝑥𝑖)𝑤𝑖}𝑖∈[𝑛] and ct : {𝛼𝑖 + (1 − 𝑥𝑖)𝑤𝑖𝑠𝑖 , 𝑠𝑖}𝑖∈[𝑛]

where w = (𝑤1, . . . , 𝑤𝑛) is the public parameter and 𝛼𝑖 are secret sharings of a secret value according to the policy
that associated with ct. The key point is the fact that term 𝛼𝑖 + (1−𝑥𝑖)𝑤𝑖𝑠𝑖 in ct encodes both the policy (via 𝛼𝑖 ’s) and set
(i.e., 𝑥𝑖); this is not the case in predicate encodings where we encode them separately (due to the syntax of standard
ABE). However, a simple calculation shows that

𝛼𝑖 + (1 − 𝑥𝑖)𝑤𝑖𝑠𝑖 = (𝛼𝑖 + 𝑤𝑖𝑠𝑖) − (𝑥𝑖𝑤𝑖𝑠𝑖), ∀𝑖 ∈ [𝑛] (7)

namely we can easily “unpack” ct as
ct′ : 𝑠𝑖 , {𝛼𝑖 + 𝑤𝑖𝑠𝑖}𝑖∈[𝑛] , {𝑥𝑖𝑤𝑖𝑠𝑖}𝑖∈[𝑛]

where the two terms encode policy (via 𝛼𝑖) and set separately; in fact, they are exactly the encoding for CP-ABE pre-
sented in [CGW15, Appendix A.5] and equation (7) is actually the first step of decryption. This clarifies the connection
between ours and [HLWW23]; this also suggests a possibility of optimizing the efficiency. Roughly, this requires some
kind of pre-processing property for predicate encoding and we leave this as a future work.
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Towards (Weak) Attribute-Hiding. As we have mentioned in Section 1.1, the RIPE proposed in [FFM+23] achieves
attribute-hiding which roughly means that 𝑥 associated with the ciphertext is also hidden from the adversary. Given
the notion of attribute-hiding predicate encoding formulated in [CGW15], it is expected that our scheme can also
support weak attribute-hiding (as the dual-system ABE via predicate encoding in [CGW15]). However, we argue that
this is not straight-forward as expected: in order to remove the mixed part from the ciphertext using helper key, the
decryption procedure needs to know 𝑥 to get C𝑥 , see scheme (6) and Section 3.1; therefore, even with attribute-hiding
predicate encoding, our Reg-ABE does not achieve (weak) attribute-hiding. It is still open to get (weak) attribute-hiding
under standard assumption such as 𝑘-Lin; note that the Reg-IPE by [FFM+23] indeed achieves attribute-hiding but in
the generic group model.

More Expressive Reg-ABE from Pair Encoding. Pair Encoding proposed by Attrapadung [Att14] is a more power-
ful tool to build ABE; for instance, this allows us to support multi-use of attribute and uniform computation such as
DFA. However, our scheme can not work with pair encoding in a straight-forward way. We provide a quick discussion:
Compared with the predicate encoding whose security is information-theoretical, the security of pair encoding (es-
pecially, for those predicates we just mentioned) is defined computationally when encodings w.r.t. ciphertext and key
(analogous to C𝑥 and K𝑦) are encoded over G1 and G2, respectively. However, in the context of our Reg-ABE scheme,
we encode both of them over G1 and thus all existing pair encodings with computational security should be revised.
We leave this as a future work to adapt the notion of pair encoding and build Reg-ABE from this. Furthermore, we
point out that the use of pair encoding may introduce strong assumptions such as 𝑞-type assumption. To obtain those
functionalities and properties we mentioned at the beginning under standard assumptions, more work will be needed
to adapt specialized solutions for ABE such as [KW19,GWW19,GW20,LL20] to the context of Reg-ABE.

Concurrent Work. As an independent work, Freitag et al. [FWW23] proposed a Reg-ABE scheme for arbitrary circuit
families from witness encryption (WE) [GGSW13] and newly proposed function-binding hash function. Given the WE
in [VWW22], the scheme can be based on (evasive) LWE. In contract to our work and the pairing-based construction
in [HLWW23], this construction is more like iO-based Reg-ABE in [HLWW23]: it enjoys transparent setup, supports
unbounded number of users. However, it only achieves a weaker notion of selective-policy security without corrup-
tion in the standard model; the restriction on corruption can be removed in the random oracle model. Furthermore,
this work also pointed out that Reg-ABE implies flexible/distributed broadcast encryption. Applying this observation,
we mention that our Reg-ABE scheme implies the recent distributed broadcast encryption based on 𝑘-Lin assump-
tion [KMW23]; their another construction based on DBHE assumption [KMW23] does not seem to be relevant to our
Reg-ABE scheme.

Organization. Our paper is organized as follows: We review some background knowledge in Section 2. Section 3
presents our slotted Reg-ABE via predicate encoding, this readily implies full-fledged Reg-ABE. We show the first slotted
Reg-ABE for ABP in Section 4 and more concrete instantiations in Appendix D.

2 Preliminaries

Notations. For a finite set 𝑆, we use 𝑠 ← 𝑆 to denote the procedure of sampling 𝑠 from 𝑆 uniformly. For an ordered
list or array L, we use |L| to denote its size (i.e., the number of entries in the list) and use L[𝑖] to refer to its 𝑖-th entry.
When 𝑖 > |L| or 𝑖 < 1, we defineL[𝑖] = ⊥; when we append 𝑥 toL, we setL[|L|+1] = 𝑥. We use★as wildcard. Let ≈𝑠
(resp. ≈𝑐) stand for two distributions being statistically (resp. computationally) indistinguishable. We use lower-case
boldface to denote row vectors (e.g., a) and upper-case boldface to denote matrices (e.g. M). We let e1 = (1, 0, . . . , 0) of
proper dimension (which is clear from the context) and use “∥” to denote vector or matrix concatenation (e.g. (A∥B)).
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Kronecker Product. Let F be a field. The Kronecker Product for matrices A = (𝑎𝑖, 𝑗) ∈ Fℓ×𝑚 and B ∈ F𝑛×𝑝 is

A ⊗ B = (𝑎𝑖, 𝑗B) =
©«
𝑎1,1B · · · 𝑎1,𝑚B
...

...

𝑎ℓ,1B . . . 𝑎ℓ,𝑚B

ª®®®¬ ∈ F
ℓ𝑛×𝑚𝑝. (8)

For matrices A,B,C,D of proper sizes, we have (A ⊗ B) (C ⊗ D) = AC ⊗ BD.

2.1 Prime-Order Bilinear Groups

Assume an efficient algorithm G that takes as input a security parameter 1𝜆 and outputs G := (𝑝,G1,G2,G𝑇 , 𝑒). Here
G1, G2 and G𝑇 are cyclic groups of prime order 𝑝, 𝑒 : G1 × G2 → G𝑇 is a non-degenerate bilinear map, and all
group operations and bilinear map are efficient. Let G1 = ⟨𝑔1⟩, G2 = ⟨𝑔2⟩ and 𝑔𝑇 = 𝑒(𝑔1, 𝑔2), we employ implicit
representation of group elements: for a matrix M = (𝑚𝑖 𝑗) over Z𝑝, define [M]𝑠 = 𝑔M𝑠 = (𝑔𝑚𝑖 𝑗

𝑠 ) for all 𝑠 ∈ {1, 2, 𝑇 }; given
[A]1, [B]2, we write 𝑒( [A]1, [B]2) = [AB]𝑇 . We review matrix Diffie-Hellman (MDDH) assumption [EHK+13]; it is shown
that it is implied by 𝑘-Lin [EHK+13].

Assumption 1 ((𝑘, ℓ, 𝑑)-MDDH over G𝑠, 𝑠 ∈ {1, 2}) Let 𝑘, ℓ, 𝑑 ∈ N with 𝑘 < ℓ. We say that the (𝑘, ℓ, 𝑑)-MDDH assump-
tion holds in G𝑠 if for all PPT adversariesA, the following advantage function is negligible in 𝜆.

AdvMDDH
A,𝑠,𝑘,ℓ,𝑑 (𝜆) =

�� Pr[A(G, [M]𝑠, [SM]𝑠) = 1] − Pr[A(G, [M]𝑠, [U]𝑠) = 1]
��

where G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆), M← Z𝑘×ℓ𝑝 , S← Z𝑑×𝑘𝑝 and U← Z𝑑×ℓ𝑝 .

2.2 Slotted Registered Attribute-Based Encryption

We review the notion of slotted registered attribute-based encryption (Reg-ABE) adapted from [HLWW23]. The formal
definition of Reg-ABE can be found in Appendix A along with a brief overview of “slotted Reg-ABE =⇒ Reg-ABE”.

Algorithms. A slotted registered attribute-based encryption (Reg-ABE) for predicate 𝑃 : 𝑋 ×𝑌 → {0, 1} consists of six
efficient algorithms:

– Setup(1𝜆 , 𝑃, 1𝐿) → crs: It takes as input the security parameter 1𝜆 , description of predicate 𝑃 and the upper bound
1𝐿 of the number of slots, outputs a common reference string crs.

– Gen(crs, 𝑖) → (pk𝑖 , sk𝑖): It takes as input crs and slot number 𝑖 ∈ [𝐿], outputs key pair (pk𝑖 , sk𝑖).
– Ver(crs, 𝑖, pk𝑖) → 0/1: It takes as input crs, 𝑖, pk𝑖 and outputs a bit indicating whether pk𝑖 is valid.
– Agg(crs, (pk𝑖 , 𝑦𝑖)𝑖∈[𝐿]) → (mpk, (hsk 𝑗) 𝑗∈[𝐿]): It takes as input crs and a series of pk𝑖 with 𝑦𝑖 ∈ 𝑌 for all 𝑖 ∈ [𝐿],

outputs master public key mpk and a series of helper keys hsk 𝑗 for all 𝑗 ∈ [𝐿]. This algorithm is deterministic.
– Enc(mpk, 𝑥,m) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 and message m, outputs a ciphertext ct.
– Dec(sk, hsk, ct) → m/⊥: It takes as input sk, hsk, ct and outputs m or a special symbol ⊥.

For Setup, input 𝑃 has different meanings for different predicates: for span program, it indicates the number of at-
tributes; for inner-product predicates, it indicates the dimension of vectors, see Section 4 and Appendix D. We also
note that we use two different indices 𝑖 and 𝑗 for pk𝑖 and hsk 𝑗 , respectively; both of them range from 1 to 𝐿 but this
convention will simplify the exposition.

Completeness. For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], we have

Pr
[
Ver(crs, 𝑖, pk𝑖) = 1

��crs← Setup(1𝜆 , 𝑃, 1𝐿); (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖)
]
= 1.
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Correctness. For all 𝜆, 𝐿 ∈ N, all 𝑃, all 𝑖∗ ∈ [𝐿], all crs← Setup(1𝜆 , 𝑃, 1𝐿), all (pk𝑖∗ , sk𝑖∗ ) ← Gen(crs, 𝑖∗), all {pk𝑖}𝑖∈[𝐿]\{𝑖∗ }
such that Ver(crs, 𝑖, pk𝑖) = 1, all 𝑥 ∈ 𝑋 and 𝑦1, . . . , 𝑦𝐿 ∈ 𝑌 such that 𝑃(𝑥, 𝑦𝑖∗ ) = 1, and all m, we have

Pr
[
Dec(sk𝑖∗ , hsk𝑖∗ , ct) = m

��(mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk𝑖 , 𝑦𝑖)𝑖∈[𝐿]); ct← Enc(mpk, 𝑥,m)
]
= 1.

Compactness. For all 𝜆, 𝐿 ∈ N, all 𝑃, and all 𝑖 ∈ [𝐿], we have

|mpk| = poly(𝜆, 𝑃, log 𝐿) and |hsk𝑖 | = poly(𝜆, 𝑃, log 𝐿).

Security. For all stateful adversaryA, the advantage

Pr


𝑏 = 𝑏′

����������
𝐿← A(1𝜆); crs← Setup(1𝜆 , 𝑃, 1𝐿)
(pk∗𝑖 , 𝑦∗𝑖 )𝑖∈[𝐿] , 𝑥

∗,m∗0,m
∗
1 ← AOGen( ·) ,OCor( ·) (crs)

(mpk, (hsk 𝑗) 𝑗∈[𝐿]) ← Agg(crs, (pk∗𝑖 , 𝑦∗𝑖 )𝑖∈[𝐿])
𝑏← {0, 1}, ct∗ ← Enc(mpk, 𝑥∗,m∗

𝑏
); 𝑏′ ← A(ct∗)


− 1

2

is negligible in 𝜆, where the oracles work as follows with initial setting C = ∅ andD𝑖 = ∅ for all 𝑖 ∈ [𝐿]:

– OGen(𝑖): run (pk, sk) ← Gen(crs, 𝑖), setD𝑖 [pk] = sk and return pk.
– OCor(𝑖, pk): returnD𝑖 [pk] and update C = C ∪ {(𝑖, pk)}.

and, for all 𝑖 ∈ [𝐿], we require that

D𝑖 [pk∗𝑖 ] = ⊥ =⇒ Ver(crs, 𝑖, pk∗𝑖 ) = 1,

(𝑖, pk∗𝑖 ) ∈ C ∨ D𝑖 [pk∗𝑖 ] = ⊥ =⇒ 𝑃(𝑥∗, 𝑦∗𝑖 ) = 0.

We use AdvsReg-ABE
A (𝜆) to denote the advantage function. Note that [HLWW23] showed that there is no need to give

mpk and hsk1, . . . , hsk𝐿 toA explicitly and to consider post-challenge queries.

2.3 Predicate Encodings

We review the notion of predicate encoding [Wee14,CGW15]; for simplicity, we use the formulation in [ABS17,ACGU20].
A predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} has a (𝑛, 𝑛𝑐, 𝑛𝑘)-predicate encoding if: For all 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , there exist

C𝑥 ∈ Z𝑛×𝑛𝑐𝑝 , K𝑦 ∈ Z𝑛×𝑛𝑘𝑝 , a𝑦 ∈ Z1×𝑛𝑘
𝑝 , d𝑥, 𝑦 ∈ Z1×(𝑛𝑘+𝑛𝑐 )

𝑝

such that, letting

M𝑥, 𝑦 =

(
a𝑦 0𝑛𝑐
K𝑦 C𝑥

)
∈ Z(1+𝑛)×(𝑛𝑘+𝑛𝑐 )𝑝

we have

– correctness: for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑃(𝑥, 𝑦) = 1:

M𝑥, 𝑦d⊤𝑥, 𝑦 = e⊤1 ;

– security: for 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such that 𝑃(𝑥, 𝑦) = 0 and for all 𝛼 ∈ Z𝑝:

{𝑥, 𝑦, 𝛼, (𝛼∥w)M𝑥, 𝑦} ≈𝑠 {𝑥, 𝑦, 𝛼, (0∥w)M𝑥, 𝑦}, w← Z𝑛𝑝.

Also, we require that (1) given 𝑃, one can efficiently determine 𝑛, 𝑛𝑐, 𝑛𝑘 ; (2) given 𝑥, one can efficiently compute C𝑥 ;
(3) given 𝑦, one can efficiently compute K𝑦 and a𝑦; (4) given both 𝑥 and 𝑦, one can efficiently compute d𝑥, 𝑦 .
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2.4 Quasi-Adaptive Non-Interactive Zero-Knowledge Argument

We review the notion of quasi-adaptive non-interactive zero-knowledge argument (QA-NIZK) tailored for linear space
over group [JR13,KW15]. In this paper, we require a stronger unbounded simulation soundness in [GHR15,LPJY15].

Algorithms. A Quasi-adaptive Non-interactive Zero-knowledge Argument (QA-NIZK) for linear space over bilinear
group G [JR13,KW15] consists of four efficient algorithms:

– LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1) → (crs, td): It takes as input the security parameter 1𝜆 , language parameter 1𝑛, 1𝑚, 1ℓ,
and a matrix [M]1 ← G𝑛×𝑚

1 defining a linear space, outputs common reference string crs and trapdoor td.
– LPrv(crs, [Y]1,X) → 𝜋: It takes as input crs, a matrix [Y]1 ∈ G𝑛×ℓ

1 with witness X ∈ Z𝑚×ℓ𝑝 , outputs a proof 𝜋.
– LVer(crs, [Y]1, 𝜋) → 0/1: It takes as input crs, [Y]1 and 𝜋, outputs a bit indicating the validity of 𝜋.
– LSim(crs, td, [Y]1) → 𝜋: It takes as input crs, td, [Y]1, outputs a simulated proof 𝜋.

Perfect Completeness. For all 𝜆, M, and all X,Y such that Y = MX:

Pr
[
LVer(crs, [Y]1, 𝜋) = 1

�� (crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1); 𝜋← LPrv(crs, [Y]1,X)
]
= 1.

Perfect Zero-knowledge. For all 𝜆, M, (crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1), and all X,Y such that Y = MX:

LPrv(crs, [Y]1,X) ≡ LSim(crs, td, [Y]1).

Stronger Unbounded Simulation Soundness. For all adversaryA, the advantage

Pr


( [Y∗]1, pk∗) ∉ Q ∧
Y∗ ∉ span(M) ∧
LVer(crs, [Y∗]1, 𝜋∗) = 1

��������
M← Z𝑛×𝑚𝑝

(crs, td) ← LGen(1𝜆 , 1𝑛, 1𝑚, 1ℓ, [M]1)
( [Y∗]1, 𝜋∗) ← ALSim(crs,td,· ) (1𝜆 , crs,M)


is negligible in 𝜆, where Q records all queries to LSim(crs, td, ·) along with responses. We use AdvUSS

A,𝑛,𝑚,ℓ (𝜆) to denote
the advantage function. Note that our definition is stronger in the sense that the adversary is given M instead of [M]1,
this allows us to manipulate M in reduction (see the proof of Lemma 5 and [GHR15,LPJY15] for more discussions).

Scheme from Pairings. Due to the simplicity and efficiency, we choose to use QA-NIZK in [KW15] for the case ℓ = 1. It
is direct to verify that this scheme achieves stronger unbounded simulation soundness (defined above) under MDDH
assumption; see Appendix B. For general ℓ > 1, we simply employ ℓ parallel fresh instances.

3 Our Slotted Registered ABE

This section presents our slotted Reg-ABE via predicate encoding from 𝑘-Lin assumption. By the generic transforma-
tion in [HLWW23], this yields a Reg-ABE scheme via predicate encoding under the 𝑘-Lin assumption, cf. Appendix A.
We provide some concrete instances in Section 4 and Appendix D.

3.1 Scheme

Assuming a QA-NIZK Π = (LGen, LPrv, LVer, LSim) for linear space over bilinear groups, our slotted Reg-ABE scheme
for predicates that have predicate encoding works as follows in the prime-order bilinear group:

11



– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

A← Z𝑘×(2𝑘+1)
𝑝 , B← Z(𝑘+1)×𝑘

𝑝 , k← Z1×(2𝑘+1)
𝑝 .

Compute parameter (𝑛, 𝑛𝑐, 𝑛𝑘) from 𝑃, see Section 2.3. For all 𝑖 ∈ [𝐿], sample

V𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 , W𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛

𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)
𝑝 , r𝑖 ← Z1×𝑘

𝑝 .

For all 𝑖 ∈ [𝐿], write A𝑖 =

(
A
R𝑖

)
∈ Z(3𝑘+2)×(2𝑘+1)

𝑝 and run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1).

Output

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
We note that we employ 𝑖 as the index for V’s and W’s while 𝑗 is the index for r’s; both of them range from 1 to 𝐿.
One exception is the terms with k, which is conceptually V𝑖Br⊤𝑗 with 𝑖 = 𝑗. This is different from our notation in
Section 1.2. Note that we do not use td1, . . . , td𝐿 in the actual scheme.

– Gen(crs, 𝑖) : Sample U𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 . Define M𝑖 =

(
T𝑖

Q𝑖

)
=

(
AU𝑖

R𝑖U𝑖

)
= A𝑖U𝑖 ∈ Z(3𝑘+2)×(𝑘+1)

𝑝 and run

𝜋𝑖 ← LPrv(crs𝑖 , [M𝑖]1,U𝑖).

Fetch [R𝑖]1 and {[Br⊤
𝑗
]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[ AU𝑖︸︷︷︸

T𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸ ︷︷ ︸
h⊤
𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Write M𝑖 =

(
T𝑖

Q𝑖

)
and check

LVer(crs𝑖 , [M𝑖]1, 𝜋𝑖)
?
= 1.

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [A]1, [h⊤𝑖, 𝑗]2)

?
= 𝑒( [T𝑖]1, [Br⊤𝑗 ]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , 𝑦𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], computeK𝑦𝑖 from 𝑦𝑖 , and parse pk𝑖 =

(
[T𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
. Output:

mpk =

(
[A]1,

[ ∑︁
𝑖∈[𝐿]
((AV𝑖 + T𝑖) (a𝑦𝑖 ⊗ I𝑘+1) + AW𝑖 (K𝑦𝑖 ⊗ I𝑘+1))

]
1

,

[ ∑︁
𝑖∈[𝐿]

AW𝑖

]
1

, [Ak⊤]𝑇

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

(
[ Br⊤𝑗︸︷︷︸

k⊤0

]2, [V 𝑗Br⊤𝑗 + k
⊤︸        ︷︷        ︸

k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

((V𝑖Br⊤𝑗 + h
⊤
𝑖, 𝑗)a𝑦𝑖 +W𝑖 (I𝑛 ⊗ Br⊤𝑗 )K𝑦𝑖 )︸                                                          ︷︷                                                          ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

W𝑖 (I𝑛 ⊗ Br⊤𝑗 )︸                       ︷︷                       ︸
K3

]
2

)
.
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– Enc(mpk, 𝑥,m): Sample s← Z1×𝑘
𝑝 and compute C𝑥 . Output:

ct𝑥 =

(
[ sA︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]
((sAV𝑖 + sT𝑖) (a𝑦𝑖 ⊗ I𝑘+1) + sAW𝑖 (K𝑦𝑖 ⊗ I𝑘+1))︸                                                               ︷︷                                                               ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

sAW𝑖 (C𝑥 ⊗ I𝑘+1)︸                      ︷︷                      ︸
c2

]
1

, [sAk⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ct𝑥): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = [k⊤0 , k⊤1 ,K2,K3]2, ct𝑥 = ( [c0, c1, c2]1, 𝐶).

Compute C𝑥 from 𝑥 and recover

[z1]𝑇 = 𝑒( [c1∥c2]1, [I𝑛𝑘+𝑛𝑐 ⊗ k⊤0 ]2), [z2]𝑇 = 𝑒( [c0]1, [K2∥K3C𝑥]2),
[𝑧3]𝑇 = 𝑒( [c0U𝑖∗ ]1, [k⊤0 ]2), [𝑧4]𝑇 = 𝑒( [c0]1, [k⊤1 ]2).

Compute d𝑥, 𝑦𝑖∗ from 𝑥 and 𝑦𝑖∗ and output

𝑧 = [(z1 − z2)d⊤𝑥, 𝑦𝑖∗ − 𝑧3 − 𝑧4]𝑇 · 𝐶.

Completeness. For all 𝜆, 𝐿 ∈ N, all 𝑃, all 𝑖 ∈ [𝐿], all crs← Setup(1𝜆 , 𝑃, 1𝐿) and (pk𝑖 , sk𝑖) ← Gen(crs, 𝑖), we have

pk𝑖 =
(
[T𝑖 ,Q𝑖]1, {[H𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
=

(
[AU𝑖 ,R𝑖U𝑖]1, {[U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
for some U𝑖 ← Z(2𝑘+1)×(𝑘+1)

𝑝 and 𝜋𝑖 ← LPrv(crs𝑖 , [A𝑖U𝑖]1,U𝑖), where (crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1) and A𝑖 =

(
A
R𝑖

)
with A← Z𝑘×(2𝑘+1)

𝑝 , R𝑖 ← Z(2𝑘+2)×(2𝑘+1)
𝑝 . Then

– Write M𝑖 =

(
T𝑖

Q𝑖

)
=

(
AU𝑖

R𝑖U𝑖

)
, we have LVer(crs𝑖 , [M𝑖]1, 𝜋𝑖) = 1 by the perfect completeness of Π (see Section 2.4) and

the fact that M𝑖 = A𝑖U𝑖 ;
– For each 𝑗 ∈ [𝐿] \ {𝑖}, we have 𝑒( [A]1, [U𝑖Br⊤𝑗 ]2) = 𝑒( [AU𝑖]1, [Br⊤𝑗 ]2) by the definition of bilinear map 𝑒 (see

Section 2.1) and the fact that A · U𝑖Br⊤𝑗 = AU𝑖 · Br⊤𝑗 .

This ensures that Ver(crs, 𝑖, pk𝑖) = 1 by the specification of Ver and readily proves the completeness.

Correctness. For all 𝜆, 𝐿 ∈ N, all 𝑃, all 𝑖∗ ∈ [𝐿], all crs← Setup(1𝜆 , 𝑃, 1𝐿), all (pk𝑖∗ , sk𝑖∗ ) ← Gen(crs, 𝑖∗), all {pk𝑖}𝑖∈[𝐿]\{𝑖∗ }
such that Ver(crs, 𝑖, pk𝑖) = 1, for all 𝑦1, . . . , 𝑦𝐿 ∈ 𝑌 and 𝑥 ∈ 𝑋 with 𝑃(𝑥, 𝑦𝑖∗ ) = 1 and all m, we have:

sk𝑖∗ = U𝑖∗ ,

ct𝑥 =

(
[ sA︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]
((sAV𝑖 + sT𝑖) (a𝑦𝑖 ⊗ I𝑘+1) + sAW𝑖 (K𝑦𝑖 ⊗ I𝑘+1))︸                                                               ︷︷                                                               ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

sAW𝑖 (C𝑥 ⊗ I𝑘+1)︸                      ︷︷                      ︸
c2

]
1

, [sAk⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)

hsk𝑖∗ =

(
[ Br⊤𝑖∗︸︷︷︸

k⊤0

]2, [V𝑖∗Br⊤𝑖∗ + k
⊤︸         ︷︷         ︸

k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{𝑖∗ }

((V𝑖Br⊤𝑖∗ + h
⊤
𝑖,𝑖∗ )a𝑦𝑖 +W𝑖 (I𝑛 ⊗ Br⊤𝑖∗ )K𝑦𝑖 )︸                                                           ︷︷                                                           ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{𝑖∗ }

W𝑖 (I𝑛 ⊗ Br⊤𝑖∗ )︸                        ︷︷                        ︸
K3

]
2

)

where
Ah⊤𝑖,𝑖∗ = T𝑖Br⊤𝑖∗ ∀𝑖 ∈ [𝐿] \ {𝑖

∗} and AU𝑖∗ = T𝑖∗ . (9)
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Note that here we actually consider hsk 𝑗 for 𝑗 = 𝑖∗ and sk𝑖 for 𝑖 = 𝑖∗ and all above equalities are ensured by Ver and
Gen. Then, as in Section 2.3, let

M𝑥, 𝑦𝑖 =

(
a𝑦𝑖 0𝑛𝑐
K𝑦𝑖 C𝑥

)
, ∀𝑖 ∈ [𝐿],

we have

z1 =
∑︁
𝑖∈[𝐿]
(sAV𝑖 + sT𝑖 ∥sAW𝑖) (M𝑥, 𝑦𝑖 ⊗ I𝑘+1) (I𝑛𝑘+𝑛𝑐 ⊗ Br⊤𝑖∗ )

=
∑︁
𝑖∈[𝐿]
(sAV𝑖 + sT𝑖 ∥sAW𝑖) (I1+𝑛 ⊗ Br⊤𝑖∗ )M𝑥, 𝑦𝑖 (10)

=
∑︁
𝑖∈[𝐿]
(sAV𝑖Br⊤𝑖∗ + sT𝑖Br⊤𝑖∗ ∥sAW𝑖 (I𝑛 ⊗ Br⊤𝑖∗ ))M𝑥, 𝑦𝑖

z2 =
∑︁

𝑖∈[𝐿]\{𝑖∗ }
(sAV𝑖Br⊤𝑖∗ + sAh

⊤
𝑖,𝑖∗ ∥sAW𝑖 (I𝑛 ⊗ Br⊤𝑖∗ ))M𝑥, 𝑦𝑖

𝑧3 = sAU𝑖∗Br⊤𝑖∗

𝑧4 = sAV𝑖∗Br⊤𝑖∗ + sAk
⊤

and then

𝑧 = [(z1 − z2)d⊤𝑥, 𝑦𝑖∗ − 𝑧3 − 𝑧4]𝑇 · [sAk⊤]𝑇 ·m
= [(sAV𝑖∗Br⊤𝑖∗ + sT𝑖∗Br⊤𝑖∗ ∥sAW𝑖∗ (I𝑛 ⊗ Br⊤𝑖∗ ))M𝑥, 𝑦𝑖∗d

⊤
𝑥, 𝑦𝑖∗
− sAU𝑖∗Br⊤𝑖∗ − (sAV𝑖∗Br⊤𝑖∗ + sAk

⊤)]𝑇 · [sAk⊤]𝑇 ·m (11)

= [(sAV𝑖∗Br⊤𝑖∗ + sT𝑖∗Br⊤𝑖∗ ) − sAU𝑖∗Br⊤𝑖∗ + sAk
⊤ − (sAV𝑖∗Br⊤𝑖∗ + sAk

⊤)]𝑇 ·m (12)

= m (13)

Here, equality (10) follows from the property of tensor product: (M ⊗ I) (I ⊗ a⊤) = M ⊗ a⊤ = (I ⊗ a⊤)M for matrices of
proper size; equality (11) follows from the fact that Ah⊤

𝑖,𝑖∗ = T𝑖Br⊤𝑖∗ for all 𝑖 ∈ [𝐿] \ {𝑖∗} (see equality (9)); equality (12)
follows from the correctness of predicate encoding; equality (13) follows from the fact that T𝑖∗ = AU𝑖∗ (see equality (9)).
This proves the correctness.

Compactness. Assume 𝑃 has (𝑛, 𝑛𝑐, 𝑛𝑘)-predicate encoding, our slotted Reg-ABE has the following properties:

|mpk| = (𝑛𝑘 + 𝑛) · poly(𝜆) and |hsk 𝑗 | = (𝑛𝑘 + 𝑛) · poly(𝜆)

We also have
|crs| = 𝐿2 · 𝑛 · poly(𝜆) and |ct| = (𝑛𝑘 + 𝑛𝑐) · poly(𝜆).

Here crs1, . . . , crs𝐿 contribute 𝐿 · poly(𝜆) according to the efficiency of the pairing-based QA-NIZK scheme by Kiltz and
Wee [KW15] and the fact that the size of language description is poly(𝜆).

Security. We have the following theorem. Given pairing-based QA-NIZK in [KW15], our slotted Reg-ABE scheme uses
prime-order bilinear group and the security can be reduced to MDDH assumption.

Theorem 1. Assume Π = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect completeness, perfect zero-knowledge and
stronger unbounded simulation soundness for linear space defined in Section 2.4, our slotted Reg-ABE scheme achieves
the security defined in Section 2.2 under MDDH assumption.

3.2 Proof

We prove the following technical lemma; this immediately proves Theorem 1.
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Lemma 1. For all adversariesA, there exist adversaries B1 and B2 such that:

AdvsReg-ABE
A (𝜆) ≤ 𝐿 · AdvUSS

B1
(𝜆) + (2𝐿 + 2𝐿 · 𝑄 + 1) · AdvMDDH

B2
+ negl(𝜆)

where 𝐿 is the number of slots, 𝑄 is the maximum number of queries on a slot made by A and Time(B1), Time(B2) ≈
Time(A).

Game Sequence. Let 𝐿 be the number slots chosen by the adversary, crs be the common reference string, 𝑥∗ be
the challenge “attribute”, (m∗0,m∗1) be challenge message pair, (pk∗𝑖 , 𝑦∗𝑖 )𝑖∈[𝐿] be challenge public keys and challenge
“policy” to be registered and ct∗ be the challenge ciphertext. For all 𝑖 ∈ [𝐿], define 𝐷𝑖 = {pk𝑖 : D𝑖 [pk𝑖] = sk𝑖 ≠ ⊥}
which records responses to OGen(𝑖) and 𝐶𝑖 = {pk𝑖 : (𝑖, pk𝑖) ∈ C} which records public keys in 𝐷𝑖 that have been sent
to OCor(𝑖, ·). Recall that, we require that, for each 𝑖 ∈ [𝐿],

pk∗𝑖 ∉ 𝐷𝑖 =⇒ Ver(crs, 𝑖, pk∗𝑖 ) = 1,

pk∗𝑖 ∈ 𝐶𝑖 ∨ pk∗𝑖 ∉ 𝐷𝑖 =⇒ 𝑃(𝑥∗, 𝑦∗𝑖 ) = 0.

Note that pk𝑖 serves as a general entry in 𝐷𝑖 while pk∗𝑖 is the specific challenge public for slot 𝑖; there can be more than
one assignment for pk𝑖 since the adversary can invokeOGen(𝑖) for many times. We prove the Lemma 1 via dual-system
method using the following game sequence.

– G0: Real game. Recall that we have
• crs is in the form:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬
where crs𝑖 ∈ LGen(1𝜆 ,G1, [A𝑖]1) and A𝑖 =

(
A
R𝑖

)
.

• For each 𝑖 ∈ [𝐿], each pk𝑖 ∈ 𝐷𝑖 is in the form:

pk𝑖 =
(
[AU𝑖 ,R𝑖U𝑖]1, {[U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
where 𝜋𝑖 ← LPrv(crs𝑖 , [M𝑖]1,U𝑖) and M𝑖 =

(
AU𝑖

R𝑖U𝑖

)
; note that U𝑖 is the corresponding secret key sk𝑖 .

• For all 𝑖 ∈ [𝐿], pk∗𝑖 is in the form:

pk∗𝑖 = ( [T
∗
𝑖 ,Q

∗
𝑖 ]1, {[h

∗
𝑖, 𝑗
⊤]2} 𝑗∈[𝐿]\{𝑖} , 𝜋∗𝑖 )

such that Ver(crs, 𝑖, pk∗𝑖 ) = 1 which means LVer
(
crs𝑖 ,

[
T∗
𝑖

Q∗
𝑖

]
1
, 𝜋∗

𝑖

)
= 1 and Ah∗

𝑖, 𝑗
⊤ = T∗

𝑖
Br⊤

𝑗
for each 𝑗 ∈ [𝐿] \ {𝑖}.

• ct∗ for 𝑥∗ and (m∗0,m∗1) is in the form:

ct∗ =

(
[ sA︸︷︷︸

c∗0

]1,
[ ∑︁
𝑖∈[𝐿]
((sAV𝑖 + sT∗𝑖 ) (a𝑦∗

𝑖
⊗ I𝑘+1) + sAW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))︸                                                                ︷︷                                                                ︸

c∗1

]
1

,

[ ∑︁
𝑖∈[𝐿]

sAW𝑖 (C𝑥∗ ⊗ I𝑘+1)︸                       ︷︷                       ︸
c∗2

]
1

, [sAk⊤]𝑇 ·m∗𝑏︸           ︷︷           ︸
𝐶∗

)

where 𝑏← {0, 1} is the secret bit.
– G1: Identical to G0 except that, for all 𝑖 ∈ [𝐿] and all pk𝑖 ∈ 𝐷𝑖 , we replace 𝜋𝑖 in pk𝑖 with

𝜋𝑖 ← LSim (crs𝑖 , td𝑖 , [M𝑖]1) where M𝑖 =

(
AU𝑖

R𝑖U𝑖

)
.

We have G1 ≡ G0. This follows from the perfect zero-knowledge of Π. See Lemma 3 for more details.
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– G2: Identical to G1 except that we sample s← Z1×𝑘
𝑝 along with A and replace all R𝑖 in crs with

R̂𝑖 = R̃𝑖

(
sA
I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)

𝑝

We have G2 ≈𝑠 G1. This follows from the fact that both R𝑖 (in G1) and R̂𝑖 (in G2) are truly random since matrix(
sA
I2𝑘+1

)
is full rank. See Lemma 4 for more details.

– G3: Identical to G2 except that we replace sT∗
𝑖

with e1R̃−1
𝑖
Q∗
𝑖

in c∗1; namely, we have

c∗1 =
∑︁
𝑖∈[𝐿]
((sAV𝑖 + e1R̃−1

𝑖 Q∗𝑖 ) (a𝑦∗
𝑖
⊗ I𝑘+1) + sAW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1)).

We have G3 ≈𝑐 G2. This follows from stronger unbounded simulation soundness of Π along with the fact that

LVer(crs𝑖 , [M∗𝑖 ], 𝜋
∗
𝑖
) = 1 for all 𝑖 ∈ [𝐿] where M∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
. Assume pk∗𝑖∗ ∉ 𝐷𝑖∗ , i.e., pk∗𝑖∗ is malicious. In the reduction,

we guess 𝑖∗ ← [𝐿] and obtain A, R̂𝑖∗ , crs𝑖∗ as input; we simulate honestly as in G3 except that for all pk𝑖∗ ∈ 𝐷𝑖∗ ,
we make an oracle query [M𝑖∗ ]1 and get 𝜋𝑖∗ in it; we finally output ( [M∗

𝑖∗ ]1, 𝜋
∗
𝑖∗ ) in pk∗𝑖∗ ∉ 𝐷𝑖∗ . Observe that once

it happens that e1R̃−1
𝑖∗ Q

∗
𝑖∗ ≠ sT∗

𝑖∗ , we must have M∗
𝑖∗ ∉ span(A𝑖∗ ). When pk∗𝑖∗ ∈ 𝐷𝑖∗ , we always have G3 ≡ G2. See

Lemma 5 for more details.
– G4: Identical to G3 except that we replace all sA with c← Z1×(2𝑘+1)

𝑝 ; in particular, we generate all R̂𝑖 as follows:

R̂𝑖 = R̃𝑖

(
c

I2𝑘+1

)
, R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)

𝑝

and generate the challenge ciphertext as follows:

ct∗ =

(
[ c︸︷︷︸

c∗0

]1,
[ ∑︁
𝑖∈[𝐿]
(( c V𝑖 + e1R̃−1

𝑖 Q∗𝑖 ) (a𝑦∗
𝑖
⊗ I𝑘+1) + c W𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))︸                                                                       ︷︷                                                                       ︸

c∗1

]
1

,

[ ∑︁
𝑖∈[𝐿]

c W𝑖 (C𝑥∗ ⊗ I𝑘+1)︸                       ︷︷                       ︸
c∗2

]
1

, [ c k⊤]𝑇 ·m∗𝑏︸          ︷︷          ︸
𝐶∗

)
.

We have G4 ≈𝑐 G3. This follows from MDDH assumption which ensures that ( [A]1, [sA]1) ≈𝑐 ( [A]1, [c]1) when
A ← Z𝑘×(2𝑘+1)

𝑝 , s ← Z1×𝑘
𝑝 and c ← Z1×(2𝑘+1)

𝑝 . This is analogous to the transition from normal ciphertext to semi-
functional ciphertext in the dual-system method [Wat09]. See Lemma 6 for more details.

– G5,ℓ, (ℓ ∈ [0, 𝐿]): Identical to G4 except we change [V 𝑗Br⊤𝑗 + k
⊤]2 for all 𝑗 ∈ [ℓ] as follows:

[V 𝑗Br⊤𝑗 + k
⊤ + c⊥𝛼 ]2

where c⊥ ∈ Z2𝑘+1
𝑝 such that cc⊥ = 1 and Ac⊥ = 0 and 𝛼← Z𝑝. We have that

• G5,0 = G4; the two games are exactly identical, since [0] = ∅;
• G5,ℓ ≈𝑐 G5,ℓ−1 for all ℓ ∈ [𝐿]; this is analogous to the transition from normal keys to semi-functional keys

one-by-one in the dual-system method. However, the situation is much more complicated in the context of
Reg-ABE, we will describe the sub-sequence of games for this step later in Section 3.3.

– G6: Identical to G5,𝐿 except that we replace term 𝐶∗ in ct∗ as 𝐶∗ ← G𝑇 . We have G6 ≡ G5,𝐿. This follows from the
following statistical argument:

(

crs︷            ︸︸            ︷
Ak⊤, k⊤ + c⊥𝛼,

𝐶∗ in ct∗︷︸︸︷
ck⊤ ) ≡ (Ak⊤, k⊤, ck⊤ − 𝛼)

when k← Z1×(2𝑘+1)
𝑝 and the fact that [𝛼]𝑇 only appears in 𝐶∗. We can prove the statement via change of variable

k⊤ ↦→ k⊤ − c⊥𝛼. See Lemma 7 for more details.

Observe that, in G6, the challenge ciphertext ct∗ is independent of 𝑏 and the adversary’s advantage is exactly 0.
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3.3 From G5,ℓ−1 to G5,ℓ

We proveG5,ℓ−1 ≈𝑐 G5,ℓ which completes our proof of Lemma 1. For this, we need the following sub-sequence of games
for each ℓ ∈ [𝐿]:

– G5,ℓ−1,0: Identical to G5,ℓ−1. We recall crs and pk𝑖 ∈ 𝐷𝑖 in the following form, where we highlight rℓ-related terms
using dashed boxes which will be changed in this sub-sequence.

crs =

©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [Br

⊤
ℓ ,VℓBr⊤ℓ + k

⊤]2 ,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖Br⊤ℓ ,W𝑖 (I𝑛 ⊗ Br⊤ℓ )]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®®¬
,

pk𝑖 =

{ (
[AU𝑖 , R̂𝑖U𝑖]1, {[U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [U𝑖Br⊤ℓ ]2 , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ, R̂ℓUℓ]1, {[UℓBr⊤𝑗 ]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ
)

if 𝑖 = ℓ

Clearly, we have G5,ℓ−1,0 = G5,ℓ−1; all changes are conceptual.
– G5,ℓ−1,1: Identical to G5,ℓ−1,0 except that we replace all Br⊤ℓ with d⊤ℓ ← Z

𝑘+1
𝑝 in crs; in particular, we change the

dashed boxed term as follows:

[ d⊤ℓ ,Vℓ d⊤ℓ + k
⊤]2,

{
[V𝑖 d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2, [U𝑖 d⊤ℓ ]2

}
𝑖∈[𝐿]\{ℓ}

We have G5,ℓ−1,1 ≈𝑐 G5,ℓ−1,0. This follows from MDDH assumption w.r.t. [B]2 which ensures that ( [B]2, [Br⊤ℓ ]2) ≈𝑐
( [B]2, [d⊤ℓ ]2) when B← Z(𝑘+1)×𝑘

𝑝 , rℓ ← Z1×𝑘
𝑝 , dℓ ← Z1×(𝑘+1)

𝑝 . See Lemma 8 for more details.
– G5,ℓ−1,2: Identical to G5,ℓ−1,1 except that we change the dashed boxed terms as follows:

[d⊤ℓ ,Vℓd⊤ℓ + k
⊤ + c⊥𝛼 ]2,

{
[V𝑖d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2, [U𝑖d⊤ℓ ]2

}
𝑖∈[𝐿]\{ℓ}

We have G5,ℓ−1,2 ≈𝑐 G5,ℓ−1,1. We provide an overview of the proof in Section 3.4.
– G5,ℓ−1,3: Identical toG5,ℓ−1,2 except that we replace all d⊤ℓ withBr⊤ℓ where r⊤ℓ ← Z

𝑘
𝑝 in crs; in particular, we generate

crs as follow:
[ Br⊤ℓ ,Vℓ Br⊤ℓ + k

⊤ + c⊥𝛼]2,
{
[V𝑖 Br⊤ℓ ,W𝑖 (I𝑛 ⊗ Br⊤ℓ )]2, [U𝑖 Br⊤ℓ ]2

}
𝑖∈[𝐿]\{ℓ}

We have G5,ℓ−1,3 ≈𝑐 G5,ℓ−1,2. Analogous to G5,ℓ−1,1 ≈𝑐 G5,ℓ−1,0, it follows from MDDH assumption w.r.t. [B]2 which
ensures that ( [B]2, [Br⊤ℓ ]2) ≈𝑐 ( [B]2, [d

⊤
ℓ ]2) when B ← Z(𝑘+1)×𝑘

𝑝 , rℓ ← Z1×𝑘
𝑝 , dℓ ← Z1×(𝑘+1)

𝑝 . See Lemma 10 for
more details.

Observe that, we have G5,ℓ−1,3 = G5,ℓ and this proves G5,ℓ−1 ≈𝑐 G5,ℓ.

3.4 From G5,ℓ−1,1 to G5,ℓ−1,2

We review G5,ℓ−1,1 and G5,ℓ−1,2 in the following form. Here we use solid boxes to indicate the difference between two
games and use dashed boxes to highlight those terms that are relevant to our proof.

crs =

©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [d

⊤
ℓ ,Vℓd⊤ℓ + k

⊤ + c⊥𝛼 ]2 ,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®®¬
,

pk𝑖 =

{ (
[AU𝑖 , R̂𝑖U𝑖]1, {[U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [U𝑖d⊤ℓ ]2 , 𝜋𝑖

)
if 𝑖 ≠ ℓ(

[AUℓ, R̂ℓUℓ]1, {[UℓBr⊤𝑗 ]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ
)

if 𝑖 = ℓ

c∗1 = (cVℓ + e1R̃−1
ℓ Q∗ℓ) (a𝑦∗

ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +

∑︁
𝑖∈[𝐿]\{ℓ}

((cV𝑖 + e1R̃−1
𝑖 Q∗𝑖 ) (a𝑦∗

𝑖
⊗ I𝑘+1) + cW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))
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c∗2 = cWℓ (C𝑥∗ ⊗ I𝑘+1) +
∑︁

𝑖∈[𝐿]\{ℓ}
cW𝑖 (C𝑥∗ ⊗ I𝑘+1)

we define c⊥ ∈ Z2𝑘+1
𝑝 and d⊥ ∈ Z1×(𝑘+1)

𝑝 such that Ac⊥ = 0, cc⊥ = 1, d⊥B = 0 and d⊥dℓ = 1. We will proof G5,ℓ−1,2 ≈𝑐
G5,ℓ−1,1 by considering two cases: (1) pk∗ℓ is honest; (2) pk∗ℓ is corrupted or maliciously generated by the adversary.

Useful Lemma. Before we proceed, we prepare the following lemma.

Lemma 2. For all B ← Z(𝑘+1)×𝑘
𝑝 and d⊥ ← Z1×(𝑘+1)

𝑝 such that d⊥B = 0. For any adversary A, there exist an adversary
B2 such that �� Pr[A(M, [R]1,B, d⊥,MU, [RU]1, UB) = 1]−

Pr[A(M, [R]1,B, d⊥,MU, [RU + u⊤d⊥ ]1, UB) = 1]
��

≤ 2 · AdvMDDH
B2

+ negl(𝜆)

where M← Z(𝑘+1)×(2𝑘+1)
𝑝 , R← Z(2𝑘+2)×(2𝑘+1)

𝑝 , U← Z(2𝑘+1)×(𝑘+1)
𝑝 and u← Z1×(2𝑘+2)

𝑝 .

Before proving the lemma, we give some intuition by investigating a simplified version without B and d:

M, [R]1,MU, [RU]1 ≈𝑐 M, [R]1,MU, [Û]1

where M,R,U are defined as before and Û ← Z(2𝑘+2)×(𝑘+1)
𝑝 . If we encode M and MU over G1, this is simply MDDH

assumption and there is nothing special. The main point here is that we give out M directly to the adversary. This
allows it to get the kernel space of M which is crucial for its future application. Looking ahead, we will set M =

(A
c
)

and want to know/simulate c⊥. However, this hurts the indistinguishability; the adversary can recover U and check
whether the last term is truly random. At this point the shape of M saves us. Note that M is a wide matrix rather than
a square one. The main idea behind the proof is that given M,MU, there is still some entropy left inside [RU]1 so that
we can argue its pseudorandomness even given [R]1 as MDDH. A detailed proof of the lemma is as follows.

Proof. We prove the lemma with the following argument:

M, [R]1, B, d⊥, MU, [RU]1, UB

≈𝑐 M, [ R̃D ]1, B, d⊥, MU, [ R̃D U]1, UB // MDDH

≈𝑠 M, [R̃D]1, B, d⊥, MU, [R̃DU + R̃ũ⊤d⊥ ]1, UB // change of variable

≈𝑐 M, [ R ]1, B, d⊥, MU, [ R U + u⊤ d⊥]1, UB // MDDH

where R̃ ← Z(2𝑘+2)×𝑘
𝑝 , D ← Z𝑘×(2𝑘+1)

𝑝 and ũ ← Z1×𝑘
𝑝 . We justify each step as follows: The first ≈𝑐 follows from MDDH

assumption w.r.t. [R̃]1 which ensures that [R]1 ≈𝑐 [R̃D]1. The second ≈𝑠 follows from change of variable

U ↦→ U + D⊥ũ⊤d⊥

where ũ← Z1×𝑘
𝑝 andD⊥ ∈ Z(2𝑘+1)×𝑘

𝑝 such thatDD⊥ = I andMD⊥ = 0; this uses the fact that
(M
D
)

has full rank w.h.p. The
third ≈𝑐 follows from MDDH assumption w.r.t. [R̃]1 which ensures that [R̃, R̃(D∥ũ⊤)]1 ≈𝑐 [R̃, (R∥u⊤)]1. This readily
proves the lemma. ⊓⊔

Honest Case. In this case, we have pk∗ℓ = ( [T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐷ℓ \ 𝐶ℓ. Namely, we know U∗ℓ (such that

T∗ℓ = AU∗ℓ and Q∗ℓ = R̂ℓU∗ℓ) and U∗ℓ is hidden from the adversary. We can write the dashboxed terms in c∗1 as follows:

(cVℓ + cU∗ℓ ) (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1)
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and replace R̂ℓ in crs with a random Rℓ as in G1. We prove G5,ℓ−1,2 ≈𝑐 G5,ℓ−1,1 in this case using the following argument
for all 𝑏 ∈ {0, 1}:

A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼 //crs, pkℓ

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ]1,U
∗
ℓB //ct∗, pk∗ℓ

≈𝑐 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ + û⊤d⊥ ]1,U∗ℓB // Lemma 2

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + c⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ + cU∗ℓ + 𝑣ℓd⊥ + 𝑢ℓd⊥ ; AU∗ℓ, [RℓU∗ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB // change of variable

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + c
⊥𝑣ℓ +���𝑏c⊥𝛼

c, cVℓ + cU∗ℓ + 𝑣ℓd
⊥ + 𝑢ℓd⊥; AU∗ℓ, [RℓU∗ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB // statistic

where û← Z1×(2𝑘+2)
𝑝 and 𝑣ℓ, 𝑢ℓ ← Z𝑝. We justify each step as below: The first ≈𝑐 uses Lemma 2 with M =

( A
c
)
, R = Rℓ,

U = U∗ℓ and u = û; in the reduction, we sample Vℓ, 𝛼 and c⊥. The second ≈𝑠 uses change of variables

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓd⊥.

The last ≈𝑠 is straight-forward with the observation that û⊤ hides Rℓc⊥𝑢ℓ. See a more detailed proof in Lemma 9.

Corrupted & Malicious Case. In this case, we have pk∗ℓ = ( [T∗ℓ,Q
∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐶ℓ ∪ 𝐷ℓ. It is required

that 𝑃(𝑥∗, 𝑦∗ℓ) = 0. We prove G5,ℓ−1,2 ≈𝑠 G5,ℓ−1,1 in this case using the following argument for all 𝑏 ∈ {0, 1}:

A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑏c
⊥𝛼 //crs

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1), cWℓ (C𝑥∗ ⊗ I𝑘+1) //ct∗

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) + 𝑣ℓa𝑦∗

ℓ
⊗ d⊥ +wℓK𝑦∗

ℓ
⊗ d⊥ , cWℓ (C𝑥∗ ⊗ I𝑘+1) + wℓC𝑥∗ ⊗ d⊥

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c
⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +�����

𝑣ℓa𝑦∗
ℓ
⊗ d⊥ +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c
⊥𝑣ℓ +���𝑏c⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

where 𝑣ℓ ← Z𝑝 and wℓ ← Z𝑛𝑝. We justify each step as follows: The first ≈𝑠 uses the change of variables:

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and Wℓ ↦→Wℓ + c⊥ (wℓ ⊗ d⊥)

The second ≈𝑠 uses the fact that 𝑃(𝑥∗, 𝑦∗ℓ) = 0 and the security of predicate encoding defined in Section 2.3. The last
≈𝑠 is straight-forward. See a more detailed proof in Lemma 9.

4 Concrete Slotted Reg-ABE

This section presents our concrete slotted Reg-ABE for arithmetic branching programs (ABP), derived from the generic
scheme in Section 3. We use the predicate encoding of arithmetic span programs (ASP) [CGW15, Appendix A] which
captures ABP [IW14]. As mentioned before, we employ the pairing-based QA-NIZK scheme by Kiltz and Wee, see Ap-
pendix B. Our concrete slotted Reg-ABE for span program and zero inner-product predicate and slotted RBE are de-
ferred to Appendix D.
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Preliminaries. An Arithmetic Span Program [IW14], denoted by 𝑉 , is defined by (Y,Z) ∈ Z𝑚×ℓ𝑝 × Z𝑚×ℓ𝑝 where

𝑉 (x) = 1 ⇐⇒ x ∈ Z1×𝑚
𝑝 satisfies 𝑉 ⇐⇒ ∃𝝎 ∈ Z1×𝑚

𝑝 such that e1 = 𝝎(diag(x) · Y + Z).

Here we use notation: diag(x) :=
©«
𝑥1

. . .

𝑥𝑚

ª®®®¬ ∈ Z
𝑚×𝑚
𝑝 for x = (𝑥1, . . . , 𝑥𝑚) and note that diag(x) = diag(x)⊤. We review

the predicate encoding for ASP predicate (ciphertext-policy variant):

𝑃(𝑉, x) = 1⇐⇒ 𝑉 (x) = 1

as follows [CGW15, Appendix A.6]: let 𝑛 = 2𝑚 + ℓ, 𝑛𝑐 = 2𝑚 and 𝑛𝑘 = 𝑚 + 1, define

CY,Z =

©«
I𝑚 0𝑚×𝑚

0𝑚×𝑚 I𝑚
Y⊤ Z⊤

ª®®®¬ , Kx =

©«
0⊤𝑚 diag(x)
0⊤𝑚 I𝑚
e⊤1 0ℓ×𝑚

ª®®®¬ , ax = (1∥0𝑚), dx,Y,Z = (1∥𝝎∥ − 𝝎 · diag(x)∥ − 𝝎)

where 0𝑚 is a row zero vector of size 𝑚. Note that we work with read-once ASP as in [CGW15].

Scheme. Our concrete slotted Registered CP-ABE for read-once ASP from SXDH (1-Lin) assumption works as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

a← Z1×3
𝑝 , b⊤ ← Z2

𝑝, k← Z1×3
𝑝 .

For all 𝑖 ∈ [𝐿], sample
V𝑖 ← Z3×2

𝑝 , W𝑖 ← Z3×2(2𝑚+ℓ)
𝑝 , R𝑖 ← Z4×3

𝑝 , 𝑟𝑖 ← Z𝑝.

For all 𝑖 ∈ [𝐿], write A𝑖 =
( a
R𝑖

)
and sample

a′𝑖 ← Z
1×2
𝑝 , b′⊤𝑖 ← Z

2
𝑝, K

′
𝑖 ← Z

5×2
𝑝 , K′𝑖,0,K

′
𝑖,1 ← Z

2×2
𝑝

and compute
P𝑖 = A⊤𝑖 K

′
𝑖 , p𝑖,0 = a′𝑖K

′
𝑖,0, p𝑖,1 = a′𝑖K

′
𝑖,1;

c′⊤𝑖 = K′𝑖b
′⊤
𝑖 , c′⊤𝑖,0 = K′𝑖,0b

′⊤
𝑖 , c′⊤𝑖,1 = K′𝑖,1b

′⊤
𝑖 .

For all 𝑖 ∈ [𝐿], set
crs𝑖 = ( [a′𝑖 , P𝑖 , p𝑖,0, p𝑖,1]1, [b

′⊤
𝑖 , c′⊤𝑖 , c′⊤𝑖,0, c

′⊤
𝑖,1]2) td𝑖 = K′𝑖 .

Output

crs =
©«
[a]1, [ak⊤]𝑇 ,

{
crs𝑖 , [R𝑖 , aV𝑖 , aW𝑖]1

}
𝑖∈[𝐿]{

[b⊤𝑟 𝑗 ,V 𝑗b⊤𝑟 𝑗 + k⊤]2
}
𝑗∈[𝐿]{

[V𝑖b⊤𝑟 𝑗 ,W𝑖 (I2𝑚+ℓ ⊗ b⊤𝑟 𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
– Gen(crs, 𝑖) : Sample U𝑖 ← Z3×2

𝑝 . Define M𝑖 =
( t𝑖
Q𝑖

)
=

( aU𝑖
R𝑖U𝑖

)
, sample s⊤

𝑖
← Z2

𝑝, and compute

𝜋𝑖 = [U⊤𝑖 P𝑖 + s
⊤
𝑖 (p𝑖,0 + p𝑖,1)︸                      ︷︷                      ︸
𝜋𝑖,0

, s⊤𝑖 a
′
𝑖︸︷︷︸

𝜋𝑖,1

]1

Fetch [R𝑖]1 and {[b⊤𝑟 𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[ aU𝑖︸︷︷︸

t𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖b⊤𝑟 𝑗︸  ︷︷  ︸
h⊤
𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .
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– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
and fetch [b⊤

𝑖
, c′⊤

𝑖
, c′⊤

𝑖,0, c
′⊤
𝑖,1]2 from crs𝑖 in crs. Write M𝑖 =( t𝑖

Q𝑖

)
and parse 𝜋𝑖 = [𝜋𝑖,0, 𝜋𝑖,1]1, check

𝑒( [𝜋𝑖,0]1, [b′⊤𝑖 ]2)
?
= 𝑒( [M⊤𝑖 ]1, [c

′⊤
𝑖 ]2) · 𝑒( [𝜋𝑖,1]1, [c

′⊤
𝑖,0 + c

′⊤
𝑖,1]2)

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [a]1, [h⊤𝑖, 𝑗]2)

?
= 𝑒( [t𝑖]1, [b⊤𝑟 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , x𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse

pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
.

Output:

mpk =

(
[a]1,

[ ∑︁
𝑖∈[𝐿]

(
(aV𝑖 + t𝑖) ((1∥0𝑚) ⊗ I2) + aW𝑖

( ©«
0𝑚 diag(x𝑖)
0𝑚 I𝑚
e⊤1 0ℓ×𝑚

ª®®®¬ ⊗ I2

))]
1

,

[ ∑︁
𝑖∈[𝐿]

aW𝑖

]
1

, [ak⊤]𝑇

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

(
[ b⊤𝑟 𝑗︸︷︷︸

k⊤0

]2, [V 𝑗b⊤𝑟 𝑗 + k⊤︸         ︷︷         ︸
k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

©«(V𝑖b⊤𝑟 𝑗 + h⊤𝑖, 𝑗) (1∥0𝑚) +W𝑖 (I2𝑚+ℓ ⊗ b⊤𝑟 𝑗)
©«
0𝑚 diag(x𝑖)
0𝑚 I𝑚
e⊤1 0ℓ×𝑚

ª®®®¬
ª®®®¬︸                                                                                       ︷︷                                                                                       ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

W𝑖 (I2𝑚+ℓ ⊗ b⊤𝑟 𝑗)︸                             ︷︷                             ︸
K3

]
2

)
.

– Enc(mpk, (Y,Z),m): Sample 𝑠← Z𝑝. Output:

ctY,Z =

(
[ 𝑠a︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]

(
(𝑠aV𝑖 + 𝑠t𝑖) ((1∥0𝑚) ⊗ I2) + 𝑠aW𝑖

( ©«
0𝑚 diag(x𝑖)
0𝑚 I𝑚
e⊤1 0ℓ×𝑚

ª®®®¬ ⊗ I2

))
︸                                                                                ︷︷                                                                                ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

𝑠aW𝑖

( ©«
I𝑚 0𝑚×𝑚

0𝑚×𝑚 I𝑚
Y⊤ Z⊤

ª®®®¬ ⊗ I2

)
︸                                     ︷︷                                     ︸

c2

]
1

, [𝑠ak⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ctY,Z): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = [k⊤0 , k⊤1 ,K2,K3]2, ct𝑥 = ( [c0, c1, c2]1, 𝐶).

recover

[z1]𝑇 = 𝑒( [c1∥c2]1, [I3𝑚+1 ⊗ k⊤0 ]2), [z2]𝑇 = 𝑒

(
[c0]1,

[
K2∥K3

©«
I𝑚 0𝑚×𝑚

0𝑚×𝑚 I𝑚
Y⊤ Z⊤

ª®®®¬
]

2

)
,

[𝑧3]𝑇 = 𝑒( [c0U𝑖∗ ]1, [k⊤0 ]2), [𝑧4]𝑇 = 𝑒( [c0]1, [k⊤1 ]2).
Compute 𝝎 such that e1 = 𝝎(diag(x𝑖∗ ) · Y + Z), output

m′ = [(z1 − z2) · (1∥𝝎∥ − 𝝎 · diag(x𝑖∗ )∥ − 𝝎)⊤ − 𝑧3 − 𝑧4]𝑇 · 𝐶.
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Appendix

A Registered Attribute-Based Encryption

Algorithms. A registered attribute-based encryption (Reg-ABE) for predicate 𝑃 : 𝑋 × 𝑌 → {0, 1} consists of six algo-
rithms:

– Setup(1𝜆 , 𝑃) → crs: It takes as input the security parameter 1𝜆 , description of predicate 𝑃, outputs a common
reference string crs.

– Gen(crs, aux) → (pk, sk): It takes as input crs and the public state aux, outputs key pair (pk, sk).
– Reg(crs, aux, pk, 𝑦) → (mpk, aux′): It takes as input crs, aux, and pk along with 𝑦 ∈ 𝑌 , outputs master public key
mpk and updated state aux′.

– Enc(mpk, 𝑥,m) → ct: It takes as input mpk, 𝑥 ∈ 𝑋 and message m, outputs a ciphertext ct.
– Upd(crs, aux, pk) → hsk: It take as input crs, aux, pk, outputs a helper key hsk.
– Dec(sk, hsk, ct) → m/⊥/getupd: It take as input sk, hsk, ct and outputs m or a special symbol ⊥ to indicate a

decryption failure, or a special flag getupd to indicate the need of an updated helper key.

Correctness. For all stateful adversaryA, the following advantage function is negligible in 𝜆:

Pr[𝑏 = 1|crs← Setup(1𝜆 , 𝑃); 𝑏 = 0;AORegNT( ·,· ) ,ORegT( ·) ,OEnc( ·,·,· ) ,ODec( ·) (crs)]

where the oracles work as follows with initial setting aux = ⊥, E = ∅, R = ∅ and 𝑡 = ⊥:

– ORegNT(pk, 𝑦): run (mpk, aux′) ← Reg(crs, aux, pk, 𝑦), update aux = aux′, append (mpk, aux) to R and return
( |R|,mpk, aux);

– ORegT( 𝑦∗): run (pk∗, sk∗) ← Gen(crs, aux) , (mpk, aux′) ← Reg(crs, aux, pk∗, 𝑦∗), update aux = aux′, compute
hsk∗ ← Upd(crs, aux, pk∗), append (mpk, aux) to R, return (𝑡 = |R |,mpk, aux, pk∗, sk∗, hsk∗);

– OEnc(𝑖, 𝑥,m): let R[𝑖] = (mpk,★), run ct← Enc(mpk, 𝑥,m), append (𝑥,m, ct) to E and return ( |E |, ct);
– ODec( 𝑗): let E[ 𝑗] = (𝑥 𝑗 ,m 𝑗 , ct 𝑗), compute m′

𝑗
← Dec(sk∗, hsk∗, ct 𝑗); if m′

𝑗
= getupd, run hsk∗ ← Upd(crs, aux, pk∗)

and recompute m′
𝑗
← Dec(sk∗, hsk∗, ct 𝑗). Set 𝑏 = 1 when m′

𝑗
≠ m 𝑗 .

with the following restrictions:

– there exists one query to ORegT; (we can consider 𝑦∗, pk∗, sk∗, hsk∗ to be global;)
– for query (𝑖, 𝑥,★) to OEnc, it holds that 𝑖 ≥ 𝑡, R[𝑖] ≠ ⊥ and 𝑃(𝑥, 𝑦∗) = 1;
– for query ( 𝑗) to ODec, it holds that E[ 𝑗] ≠ ⊥.

Compactness and Efficiency. Let R be defined as before. Compactness means that

|mpk𝑖 | = poly(𝜆, par, log 𝑖), |hsk∗ | = poly(𝜆, par, log |R |);

where we let R[𝑖] = (mpk𝑖 ,★) for all 𝑖 ∈ [|R|] and par is a parameter depending on the predicate 𝑃. Furthermore,
update efficiency means that the number of invocations of Upd in ODec is at most 𝑂(log |R |) and each invocation costs
poly(log |R |) time (in RAM model).

Security. For all stateful adversaryA, the advantage

Pr

𝑏 = 𝑏′

��������
crs← Setup(1𝜆 , 𝑃);
𝑥∗,m∗0,m

∗
1 ← AORegCK( ·,· ) ,ORegHK( ·) ,OCorHK( ·) (crs);

𝑏← {0, 1}, ct∗ ← Enc(mpk, 𝑥∗,m∗
𝑏
), 𝑏′ ← A(ct∗)

 −
1
2

is negligible in 𝜆, where the oracles as follows with initial setting aux,mpk = ⊥, R = ∅, C = ∅ andD being a dictionary
withD[pk] = ∅ for all possible pk:
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– ORegCK(pk, 𝑦): run (mpk′, aux′) ← Reg(crs, aux, pk, 𝑦), update mpk = mpk′, aux = aux′, D[pk] = D[pk] ∪ { 𝑦},
append pk to C and return (mpk, aux);

– ORegHK( 𝑦): run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk, 𝑦), update mpk = mpk′, aux =

aux′,D[pk] = D[pk] ∪ { 𝑦}, append (pk, sk) to R and return ( |R|,mpk, aux, pk);
– OCor(𝑖): let R[𝑖] = (pk, sk), append pk to C and return sk;

with the following restrictions:

– for query 𝑖 to OCor, it holds that R[𝑖] ≠ ⊥;
– for all 𝑦 ∈ ⋃

pk∈C D[pk], it holds that 𝑃(𝑥∗, 𝑦) = 0.

We use Adv𝑅𝑒𝑔−𝐴𝐵𝐸A (𝜆) to denote the advantage function.

From Slotted Reg-ABE to Reg-ABE. To transform a slotted Reg-ABE to a full-fledged Reg-ABE, we need the “power-of-
two” approach from [HLWW23]. Suppose a full-fledged Reg-ABE mostly supports 𝐿 = 2ℓ users, this approach needs ℓ+1
copies of slotted Reg-ABE with 1, 2, 4, · · · , 2ℓ slots. And the public state aux = (D1,D2,mpk) consists of the following
terms:

– D1 [𝑘, 𝑖] = (pk, 𝑦): where 𝑘 ∈ [0, ℓ] and 𝑖 ∈ [2𝑘]. And this dictionary assigns a user’s (pk, 𝑦) to the slot 𝑖 of the
2𝑘-slotted Reg-ABE scheme.

– D2 [𝑘, 𝑛] = hsk: where 𝑘 ∈ [0, ℓ] and 𝑛 ∈ [𝐿]. And this dictionary assigns a hsk of slotted Reg-ABE to the 2𝑘-slotted
Reg-ABE scheme and the user index 𝑛.

– mpk = (ctr,mpk0, · · · ,mpkℓ) denotes the current master public key. Where (mpk𝑘)𝑘∈[0,ℓ] denote the master public
keys of ℓ+1 copies of slotted Reg-ABE, and ctrdenotes the number of currently registered users. When no registered
user, we initial set mpk = ⊥ = (0,⊥, · · · ⊥).

When no registered user, we initial set aux = ⊥ = (∅, ∅,⊥).
Assuming a slotted Reg-ABEΠ𝑠 = (𝑠.Setup, 𝑠.Gen, 𝑠.Ver, 𝑠.Agg, 𝑠.Dec), the full-fledged Reg-ABE from "power-of-two"

approach is as follow:

– Setup(1𝜆 , 𝑃, 1𝐿) : Compute ℓ = log(𝐿), for all 𝑘 ∈ [0, ℓ], run crs𝑘 ← 𝑠.Setup(1𝜆 , 𝑃, 1(2𝑘 ) ). Output

crs = (crs0, · · · , crsℓ)

– Gen(crs, aux) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] and aux = (D1,D2,mpk), where mpk =
(
ctraux, (mpk𝑘)𝑘∈[0,ℓ]

)
. For all

𝑘 ∈ [0, ℓ], compute
𝑖𝑘 = (ctr (mod 2𝑘)) + 1

and run (pk𝑘 , sk𝑘) ← 𝑠.Gen(crs𝑘 , 𝑖𝑘). Set ctr′ = ctr and output

pk = (ctr′, pk0, · · · , pkℓ) and sk = (ctr′, sk0 · · · , skℓ)

– Reg(crs, aux, pk, 𝑦) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] , aux = (D1,D2,mpk), and pk =
(
ctr′, (pk𝑘)𝑘∈[0.ℓ]

)
; where mpk =

(ctr, (mpk𝑘)𝑘∈[0,ℓ]). For all 𝑘 ∈ [0, ℓ], do the following operates:
• Compute 𝑖𝑘 = (ctr (mod 2𝑘)) + 1.
• Check if Ver(crs𝑘 , 𝑖𝑘 , pk𝑘) = 1 and ctr′ = ctr. If the check passes, set ctr = ctr+ 1, if the check fails, the algorithm

halts and output (mpk, aux).
• UpdateD1 [𝑘, 𝑖𝑘] = (pk, 𝑦)
• If 𝑖𝑘 = 2𝑘 : compute (mpk′𝑘 , (hsk𝑘, 𝑗) 𝑗∈[2𝑘 ]) ← 𝑠.Agg(crs𝑘 , (D1 [𝑘, 𝑖])𝑖∈[2𝑘 ]). Update mpk𝑘 = mpk′𝑘 , and for all

𝑗 ∈ [2𝑘], updateD2 [𝑘, ctr + 1 − 2𝑘 + 𝑗] = hsk𝑘, 𝑗 .
Update the master public key mpk = (ctr, (mpk0, · · · ,mpkℓ) and aux = (D1,D2,mpk), output (mpk, aux).
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– Enc(mpk, 𝑥,m) : Fetch mpk = (ctr, (mpk𝑘)𝑘∈[0,ℓ]). For all 𝑘 ∈ [0, ℓ], compute:

ct𝑘 =


⊥ if mpk𝑘 = ⊥
𝑠.Enc(mpk𝑘 , 𝑥,m) if mpk𝑘 ≠ ⊥

Output
ct = (ctr, ct0, · · · , ctℓ)

– Upd(crs, aux.pk) : Fetch crs = (crs𝑘)𝑘∈[0,ℓ] , aux = (D1,D2,mpk), and pk =
(
ctr′, (pk𝑘)𝑘∈[0.ℓ]

)
; where mpk =

(ctr, (mpk𝑘)𝑘∈[0,ℓ]). Output

hsk =


⊥ if ctr′ ≥ ctr

(

hsk0︷           ︸︸           ︷
D2 [0, ctr + 1], · · ·

hskℓ︷           ︸︸           ︷
D2 [ℓ, ctr + 1]) if ctr′ < ctr

– Dec(sk, hsk, ct) : Fetch sk = (ctr′, (sk𝑘)𝑘∈[0,ℓ]), hsk = (hsk𝑘)𝑘∈[0,ℓ] and ct = (ctr, (ct𝑘)𝑘∈[0,ℓ]). Proceed as follows:
• If ctr′ ≥ ctr: output ⊥.
• Otherwise, compute ctr = (𝑎ℓ, · · · , 𝑎0)2 and ctr′ = (𝑏ℓ, · · · , 𝑏0)2. We denote 𝑘𝑑 as the maximum 𝑘(∈ [0, ℓ])

such that 𝑎𝑘 ≠ 𝑏𝑘 . If hsk𝑘𝑑 = ⊥: output getupd.
• Otherwise, output 𝑠.Dec(sk𝑘𝑑 , hsk𝑘𝑑 , ct𝑘𝑑 ).

And [HLWW23, Appendix 6] proved that perfect correctness, compactness, and efficiency (defined in Section 2.2) of
the slotted Reg-ABE scheme Π𝑠 implies perfect correctness, compactness, and efficiency (defined in Appendix A) of the
Reg-ABE construction presented above.

B QANIZK with Stronger Soundness

We review the pairing-based QA-NIZK for linear space in [KW15] based on Kernel Diffie-Hellman Assumption [MRV16]
and verify that the proof works well for stronger simulation soundness defined in Section 2.4. We review the Kernel
Diffie-Hellman Assumption [MRV16] as follows and note that it is implied by MDDH assumption 2.1.

Assumption 2 ((𝑘, ℓ)-KerMDH for 𝑠 ∈ {1, 2}) Let 𝑘, ℓ ∈ Nwith 𝑘 < ℓ. We say that the (𝑘, ℓ)-KerMDH assumption holds
in G𝑠 if for all PPT adversariesA, the following advantage function is negligible in 𝜆.

AdvKerMDH
A,𝑠,𝑘,ℓ (𝜆) = Pr[Mc⊤ = 0 ∧ c ≠ 0 | [c]3−𝑠 ← A(G, [M]𝑠)]

where G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆) and M← Z𝑘×ℓ𝑝 .

Scheme. The QA-NIZK scheme in [KW15] works as follows. When applying it to our slotted Reg-ABE scheme, M cor-
responds to A𝑖 , D corresponds to M𝑖 and crs′ corresponds to crs𝑖 where additional subscript is using to indicate slot.

– LGen(1𝜆 ,G1, [M]1 ∈ G(3𝑘+2)×(2𝑘+1)
1 ): Sample

A′ ← Z𝑘×(𝑘+1)
𝑝 , B′ ← Z(𝑘+1)×𝑘

𝑝 , K′ ← Z(3𝑘+2)×(𝑘+1)
𝑝 , K′0,K

′
1 ← Z

(𝑘+1)×(𝑘+1)
𝑝

Compute
P = M⊤K′, P0 = A′K′0, P1 = A′K′1;

C′ = K′B′, C′0 = K′0B
′, C′1 = K′1B

′ .

And output
crs′ = ( [A′, P, P0, P1]1, [B′,C′,C′0,C′1]2) td = K′
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– LPrv(crs′, [D]1 ∈ G(3𝑘+2)×(𝑘+1)
1 ,U ∈ Z(2𝑘+1)×(𝑘+1)

𝑝 ): Sample S← Z(𝑘+1)×𝑘
𝑝 , output

𝜋 = [U⊤P + S(P0 + P1)︸                ︷︷                ︸
𝜋0

, SA′︸︷︷︸
𝜋1

]1

– LVer(crs′, [D]1, 𝜋): Parse 𝜋 = [𝜋0, 𝜋1]1 and check

𝑒( [𝜋0]1, [B′]2)
?
= 𝑒( [D⊤]1, [C′]2) · 𝑒( [𝜋1]1, [C′0 + C′1])

if this pass, output 1; otherwise, output 0.
– LSim(crs′, td, [D]1): Sample S← Z(𝑘+1)×𝑘

𝑝 , output

𝜋 = [D⊤K′ + S(P0 + P1)︸                  ︷︷                  ︸
𝜋0

, SA′︸︷︷︸
𝜋1

]1

Perfect Completeness. For all 𝜆 ∈ N, all M ∈ Z(3𝑘+2)×(2𝑘+1)
𝑝 , all U ∈ Z(2𝑘+1)×(𝑘+1)

𝑝 , D ∈ Z(3𝑘+2)×(𝑘+1)
𝑝 such that D = MU,

let crs′ ← LGen(1𝜆 ,G1, [M]1), 𝜋← LPrv(crs′, [D]1,U), where

𝜋 = [𝜋0, 𝜋1]1 = [U⊤P + S(P0 + P1), SA′]1.

We have
𝑒( [U⊤P + S(P0 + P1)]1, [B′]2) = 𝑒( [D⊤]1, [C′]2) · 𝑒( [SA′]1, [C′0 + C′1])

This follows from the definition of bilinear map 𝑒 (see Section 2.1), and the fact that U⊤P · B′ = U⊤M⊤ · K′B′ = D⊤ · C′

and the fact that P𝑏B′ = A′C′
𝑏

where 𝑏 ∈ {0, 1}.

Perfect Zero-knowledge. For all 𝜆 ∈ N, all M ∈ Z(3𝑘+2)×(2𝑘+1)
𝑝 , let crs′ ← LGen(1𝜆 ,G1, [M]1), and all U ∈ Z(2𝑘+1)×(𝑘+1)

𝑝 ,
D ∈ Z(3𝑘+2)×(𝑘+1)

𝑝 such that D = MU, we have

(U⊤P + S(P0 + P1), SA′) ≡ (D⊤K′ + S(P0 + P1), SA′).

This follows from the fact that U⊤ · P = U⊤M⊤ · K′ = D⊤ · K′.

Proof Sketch of Unbounded Simulation Soundness. In [KW15], they prove the unbounded simulation soundness
via the following game sequence, we will show that this game sequence can also prove the strong soundness, which
mean that the M is public.

– H0: This is the real game as define in Secntion 2.4. The adversary can get M ∈ Z(3𝑘+2)×(2𝑘+1)
𝑝 and we have

crs′ = ( [A′,M⊤K′︸︷︷︸
P

, A′K′0︸︷︷︸
P0

, A′K′1︸︷︷︸
P1

]1, [B′, K′B′︸︷︷︸
C′

, K′0B
′︸︷︷︸

C′0

, K′1B
′︸︷︷︸

C′1

]2) and td = K′

where A′ ← Z𝑘×(𝑘+1)
𝑝 , B′ ← Z(𝑘+1)×𝑘

𝑝 , K′ ← Z(3𝑘+2)×(𝑘+1)
𝑝 , K′0,K

′
1 ← Z

(𝑘+1)×(𝑘+1)
𝑝 . For any query [D]1, the output

of LSim(crs′, td, [D]1) is
𝜋 = [D⊤K′ + S(P0 + P1)︸                  ︷︷                  ︸

𝜋0

, SA′︸︷︷︸
𝜋1

]1

with the challenge ( [D∗]1, 𝜋∗), parse 𝜋∗ = [𝜋∗0, 𝜋∗1]1 and the LVer check:

𝑒( [𝜋∗0]1, [B′]2)
?
= 𝑒( [(D∗)⊤]1, [C′]2) · 𝑒( [𝜋∗1]2, [C′0 + C′1])
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– H1: Identical to H0, except that on input [D∗]1 and 𝜋∗ = [𝜋∗0, 𝜋∗1]1, the LVer check

[𝜋∗0]1
?
= [(D∗)⊤K′ + 𝜋∗1 (K′0 + K′1)]1

We have H1 ≈𝑐 H0, [KW15] argued this follows from the KerMDH assumption for [B]2 defined in Section 2.1, even
if M is public, this argument can still hold.

– H2: Identical to H1 except that we generate 𝜋 as follow

𝜋 = [D⊤K′ + vd⊥ + S(P0 + P1)︸                             ︷︷                             ︸
𝜋0

, SA′︸︷︷︸
𝜋1

]1

where v← Z𝑘+1
𝑝 and d⊥ ∈ Z𝑘+1

𝑝 such that d⊥B′ = 0. We have H2 ≈𝑐 H1, [KW15] argued this follows from the MDDH
assumption for [A′]1 (the details are analogous to our proof of G5,ℓ ≈𝑐 G5,ℓ−1 in Section 3.2), even if M is public,
this argument can still hold.

– H3: Identical to H2 except that we replace K′ with K′+ud⊥, where u← Z3𝑘+2
𝑝 . We have H3 ≈𝑠 H2 and the advantage

in H3 is negligible. [KW15] argued this follows from
• C′ = (K′ + ud⊥)B′ = K′B′ completely hides u;
• P = M⊤ (K + ud⊥) leaks M⊤u;
• D⊤ (K′ + ud⊥) + vd⊥ = D⊤K′ + (v + u)d⊥ in 𝜋0 completely hides u.

Since M ∈ Z(3𝑘+2)×(2𝑘+1)
𝑝 , even if M is public, the probability that adversary can recover the correct u from M⊤u is

at most 1/𝑝2𝑘+1, which is negligible in 𝜆.

C Lemmata

Let Advxxx
A (𝜆) be the advantage ofA in Gxxx defined in Section 3, we present all lemmata and their proofs.

Lemma 3. (G0 ≡ G1). For any adversaryA, we have Adv0
A (𝜆) = Adv1

A (𝜆).

Proof. Observe that the only difference between game G0 and G1 is that we replace 𝜋𝑖 in G0 with 𝜋𝑖 in G1 for all 𝑖 ∈ [𝐿]
and all (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 , where

– 𝜋𝑖 ← LPrv(crs𝑖 , [M𝑖]1,U𝑖)
– 𝜋𝑖 ← LSim(crs𝑖 , td𝑖 , [M𝑖]1)

here, we have (crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1), A𝑖 =
(A
R𝑖

)
← Z(3𝑘+2)×(2𝑘+1)

𝑝 and M𝑖 =
(AU𝑖
R𝑖U𝑖

)
. The lemma follows from

the perfect zero-knowledge of Π which ensures that 𝜋𝑖 ≡ 𝜋𝑖 . ⊓⊔

Lemma 4. (G1 ≡ G2). For any adversaryA, we have Adv1
A (𝜆) = Adv2

A (𝜆).

Proof. Observe that the only difference between G1 and G2 is that the challenger samples s in advance and replaces
the R in G1 with

R̂𝑖 = R̃𝑖

(
sA
I2𝑘+1

)
, R̃← Z(2𝑘+2)×(2𝑘+2)

𝑝

in G2. This follows from the following statistical argument: For all s ∈ Z1×𝑘
𝑝 and A ∈ Z𝑘×(2𝑘+1)

𝑝 , we have

R𝑖 ≡ R̃𝑖

(
sA
I2𝑘+1

)
when R𝑖 ← Z(2𝑘+2)×(2𝑘+1)

𝑝 and R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)
𝑝 . This is justified by the fact that

( sA
I2𝑘+1

)
is column full-rank. This

readily proves the lemma. ⊓⊔

Lemma 5. (G2 ≈𝑐 G3). For any adversaryA, there exist algorithm B1 such that Time(B1) ≈ Time(A) and

|Adv3
A (𝜆) − Adv

2
A (𝜆) | ≤ 𝐿 · AdvUSS

B1
(𝜆) + negl(𝜆).
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Proof. Define events Bad1, . . . , Bad𝐿 in G2 and G3 as follows:

– Bad𝑖 , 𝑖 ∈ [𝐿]: it holds that D𝑖 [pk∗𝑖 ] = ⊥ and M∗
𝑖
∉ span(A𝑖) where pk∗𝑖 =

(
[T∗

𝑖
,Q∗

𝑖
]1, {[H∗𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖

)
, and

A𝑖 =

(
A
R𝑖

)
, M∗

𝑖
=

(
T∗
𝑖

Q∗
𝑖

)
.

Observe that G3 and G2 are identical except that Bad1 ∨ · · · ∨ Bad𝐿 happens. By the differential lemma and union
bound, for any adversaryA, we have

|Adv3
A (𝜆) − Adv

2
A (𝜆) | ≤

∑︁
𝑖∗∈[𝐿]

Pr[Bad𝑖∗ ] .

It remains to bound Pr[Bad𝑖∗ ] and show that it is negligible. This follows from the unbounded simulation soundness
of Π defined in Section 2.4, guessing 𝑖∗ ← [𝐿], on input A𝑖∗ =

( A
R̂𝑖∗

)
, crs𝑖∗ , and having access to oracle LSim(crs𝑖∗ , td𝑖∗ , ·),

where (crs𝑖∗ , td𝑖∗ ) ← LGen(1𝜆 ,G1, [A𝑖∗ ]1), the algorithms B1 works as follow:

(Setup) Sample
s← Z1×𝑘

𝑝 , B← Z(𝑘+1)×𝑘
𝑝 , k⊤ ← Z2𝑘+1

𝑝 .

Compute
[Ak⊤]𝑇

using k we sampled and A from the input. Sample R̃𝑖∗ such that:

R̂𝑖∗ = R̃𝑖∗

(
sA
I2𝑘+1

)
,

here using A, R̂𝑖∗ from the input and s we sampled. For all 𝑖 ∈ [𝐿] \ {𝑖∗}, sample R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)
𝑝 and compute

R̂𝑖 = R̃𝑖

(
sA
I2𝑘+1

)
,

here using A from the input and s, R̃𝑖 we sampled. For all 𝑖 ∈ [𝐿], sample

V𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 , W𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛

𝑝 , r⊤𝑖 ← Z
𝑘
𝑝.

and compute [AV𝑖 ,AW𝑖]1 from V𝑖 ,W𝑖 we sampled and A from the input. For all 𝑖 ∈ [𝐿] \ {𝑖∗}, using A from the
input and R̂𝑖 we have computed, run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1) where A𝑖 =

(
A
R̂𝑖

)
.

Fetch crs𝑖∗ from the input and all remaining terms in crs do not involve A and can be simulated honestly. Output:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
(Query) For all 𝑖 ∈ [𝐿] \ {𝑖∗} and each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is generated as:

pk𝑖 =
(
[ AU𝑖︸︷︷︸

T𝑖

, R̂𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

with U𝑖 , [T𝑖]1 is computed using A from the input, [Q𝑖]1 is computed using R̂𝑖 we have computed; [h𝑖, 𝑗]2 is com-
puted from [Br⊤

𝑗
]2 in crs we have simulated, and

𝜋𝑖 ← LSim(crs𝑖 , td𝑖 , [M𝑖]1) where [M𝑖]1 =

[
T𝑖

Q𝑖

]
1
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can be computed using [T𝑖 ,Q𝑖]1 we have computed and crs𝑖 , td𝑖 we have generated. And each (pk𝑖∗ , sk𝑖∗ ) ∈ 𝐷𝑖∗ is
generated as:

pk𝑖∗ =
(
[AU𝑖∗︸︷︷︸

T𝑖∗

, R̂𝑖∗U𝑖∗︸︷︷︸
Q𝑖∗

]1, {[U𝑖∗Br⊤𝑗︸  ︷︷  ︸
h𝑖∗ , 𝑗

]2} 𝑗∈[𝐿]\{𝑖∗ } , 𝜋𝑖∗
)

and sk𝑖∗ = U𝑖∗ .

with U𝑖∗ , [T𝑖∗ ,Q𝑖∗ ]1 are computed using A and R̂𝑖∗ from the input; [h𝑖∗ , 𝑗]2 is computed from [Br⊤
𝑗
]2 in crs we have

simulated and 𝜋𝑖∗ is obtained by query [M𝑖∗ ]1 =

[
T𝑖∗

Q𝑖∗

]
1

to oracle: LSim(crs𝑖∗ , td𝑖∗ , ·).

(Challenge) On input the challenge (𝑥∗, (m∗0,m∗1), (pk
∗
𝑖 , 𝑦
∗
𝑖
)𝑖∈[𝐿]), ifD𝑖∗ [pk∗𝑖∗ ] ≠ ⊥, B1 halts and outputs ⊥; otherwise,

B1 do the following checks for all 𝑖 ∈ [𝐿] \ {𝑖∗}:
– WhenD𝑖 [pk∗𝑖 ] = ⊥, check: Ver(crs, 𝑖, pk∗𝑖 )

?
= 1 ∧ 𝑃(𝑥∗, 𝑦∗

𝑖
) ?
= 0, abort if not.

– When (𝑖, pk∗𝑖 ) ∈ C, check 𝑃(𝑥∗, 𝑦∗
𝑖
) ?
= 0, abort if not.

parse pk∗𝑖 =
(
[T∗

𝑖
,Q∗

𝑖
]1, {[h∗𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖

)
; using s, R̃𝑖 we have sampled, [AV𝑖 ,AW𝑖]1, [Ak⊤]𝑇 in crs we have

simulated, return the challenge ciphertext with secret bit 𝑏 as follow:

ct𝑥∗ =

(
[ sA︸︷︷︸

c∗0

]1,
[ ∑︁
𝑖∈[𝐿]
((sAV𝑖 + e1R̃−1

𝑖 Q∗𝑖 ) (a𝑦∗
𝑖
⊗ I𝑘+1) + sAW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))︸                                                                        ︷︷                                                                        ︸

c∗1

]
1

,

[ ∑︁
𝑖∈[𝐿]

sAW𝑖 (C𝑥∗ ⊗ I𝑘+1)︸                       ︷︷                       ︸
c∗2

]
1

, [sAk⊤]𝑇 ·m∗𝑏︸           ︷︷           ︸
𝐶∗

)
.

With above simulation, we can observe that for all 𝑖∗ ∈ [𝐿], we have Pr[Bad𝑖∗ ] ≤ AdvUSS
B1
+ negl(𝜆). So, we have

|Adv3
A (𝜆) − Adv

2
A (𝜆) | ≤

∑︁
𝑖∈[𝐿]

Pr[Bad𝑖] ≤ 𝐿 · AdvUSS
B1
+ negl(𝜆).

This proves the lemma. ⊓⊔

Lemma 6. (G3 ≈𝑐 G4). For any adversaryA, there exist algorithm B2 such that Time(B2) ≈ Time(A) and

|Adv3
A (𝜆) − Adv

4
A | ≤ AdvMDDH

B2
(𝜆) + negl(𝜆).

Proof. This follows from the (𝑘, 2𝑘 + 1, 1)-MDDH assumption:

( [A]1, [sA]1) ≈𝑐 ( [A]1, [c]1)

where A ← Z𝑘×(2𝑘+1)
𝑝 , s ← Z1×𝑘

𝑝 and c ← Z1×(2𝑘+1)
𝑝 . On input [A]1, [t]1 where t = sA or t = c, the algorithm works as

follow:

(Setup) Sample
B← Z(𝑘+1)×𝑘

𝑝 , k⊤ ← Z1×(2𝑘+1)
𝑝 .

Compute [Ak⊤]𝑇 from k we sampled and [A]1 from the input. For all 𝑖 ∈ [𝐿], sample

V𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 , W𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛

𝑝 , R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)
𝑝 , r𝑖 ← Z1×𝑘

𝑝

and compute

[R̂𝑖]1 =

[
R̃𝑖

(
t

I2𝑘+1

)]
1

and [AV𝑖 ,AW𝑖]1

from R̃𝑖 ,V𝑖 ,W𝑖 we sampled and [A, t]1 from the input. For all 𝑖 ∈ [𝐿], using [R̂𝑖]1 we have computed and [A]1
from the input, compute

[A𝑖]1 =

[
A
R̂𝑖

]
1
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and run
(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1).

All remaining terms in crs do not involve A and can be simulated honestly. Output:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
(Query) For all 𝑖 ∈ [𝐿] and each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is generated honestly as:

pk𝑖 =
(
[ AU𝑖︸︷︷︸

T𝑖

, R̂𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

with U𝑖 , [T𝑖]1 is computed using [A]1 from the input; [Q𝑖]1 is computed using [R̂𝑖]1 we have computed; [h𝑖, 𝑗]2 is
computed from [Br⊤

𝑗
]2 in crs we have simulated, and

𝜋𝑖 ← LSim(crs𝑖 , td𝑖 , [M𝑖]1), where [M𝑖]1 =

[
T𝑖

Q𝑖

]
1

can be computed using crs𝑖 , td𝑖 we have generated and [T𝑖 ,Q𝑖]1 we have computed.
(Challenge) On input the challenge (𝑥∗, (m∗0,m∗1), (pk

∗
𝑖 , 𝑦
∗
𝑖
)𝑖∈[𝐿]), B1 do the following checks for all 𝑖 ∈ [𝐿]:

– WhenD𝑖 [pk∗𝑖 ] = ⊥, check: Ver(crs, 𝑖, pk∗𝑖 )
?
= 1 ∧ 𝑃(𝑥∗, 𝑦∗

𝑖
) ?
= 0, abort if not.

– When (𝑖, pk∗𝑖 ) ∈ C, check 𝑃(𝑥∗, 𝑦∗
𝑖
) ?
= 0, abort if not.

parse pk∗𝑖 =
(
[T∗

𝑖
,Q∗

𝑖
]1, {[h∗𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖

)
, using R̃𝑖 ,V𝑖 ,W𝑖 , k we have sampled, using [t]1 from the input, return

the challenge ciphertext with secret bit 𝑏 ∈ {0, 1} as follow:

ct𝑥∗ =

(
[ t︸︷︷︸

c∗0

]1,
[ ∑︁
𝑖∈[𝐿]
((tV𝑖 + e1R̃−1

𝑖 Q∗𝑖 ) (a𝑦∗
𝑖
⊗ I𝑘+1) + tW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))︸                                                                   ︷︷                                                                   ︸

c∗1

]
1

,

[ ∑︁
𝑖∈[𝐿]

tW𝑖 (C𝑥∗ ⊗ I𝑘+1)︸                     ︷︷                     ︸
c∗2

]
1

, [tk⊤]𝑇 ·m∗𝑏︸        ︷︷        ︸
𝐶∗

)
.

Observe that when t = cA, the simulation is identical to G3; when t = c, the simulation is identical to G4. This readily
proves the lemma. ⊓⊔

Lemma 7. (G5,𝐿 ≈𝑠 G6). For any adversaryA, we have

|Adv5,𝐿
A (𝜆) − Adv

6
A (𝜆) | = 0

Proof. First, in the process of simulating crs, we program k⊤ in both G5,𝐿 and G6 as follow:

k⊤ ↦→ k⊤ − c⊥𝛼

where k⊤ ← Z2𝑘+1
𝑝 , 𝛼← Z𝑝 Due to the fact that Ac⊥ = 0, We can simulate the crs as follow:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
And observe that for secret bit 𝑏, the challenge ciphertext 𝐶∗ in G5,𝐿 is:

𝐶∗ = [ck⊤ − 𝛼]𝑇 ·m∗𝑏

this follows form the fact that cc⊥ = 1. After substitute k⊤ ↦→ k⊤ − c⊥𝛼, we can observe 𝛼 only correlate to 𝐶∗ and [𝛼]𝑇
is uniformly distribute overG𝑇 . It implies that the distribution of 𝐶∗ is identical to a random coin inG𝑇 , just like in G6.
This readily prove the lemma. ⊓⊔
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Lemma 8. (G5,ℓ−1,0 ≈𝑐 G5,ℓ−1,1). For any adversaryA, there exist algorithm B2 such that Time(B2) ≈ Time(A) and

|Adv5,ℓ−1,0
A (𝜆) − Adv5,ℓ−1,1

A | ≤ AdvMDDH
B2

(𝜆) + negl(𝜆).

Proof. This follows from the (𝑘, 𝑘 + 1, 1)-MDDH assumption:

[B]2, [Br⊤ℓ ]2 ≈𝑐 [B]2, [d
⊤
ℓ ]2

where B ← Z(𝑘+1)×𝑘
𝑝 , rℓ ← Z1×𝑘

𝑝 and dℓ ← Z1×(𝑘+1)
𝑝 . On input [B]2, [t⊤]2 where t⊤ = Br⊤ℓ or t⊤ = d⊤ℓ , the algorithm

works as follow:

(Setup) Sample
A← Z𝑘×(2𝑘+1)

𝑝 , k← Z1×(2𝑘+1)
𝑝 , c← Z1×(2𝑘+1)

𝑝 , 𝛼← Z𝑝.

Compute
[Ak⊤]𝑇 and c⊥ ∈ Z2𝑘+1

𝑝 ,

such that cc⊥ = 1 and Ac⊥ = 0, with A, k, c we sampled. For all 𝑖 ∈ [𝐿], sample

V𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 , W𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛

𝑝 , R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)
𝑝 ,

and compute

[R̂𝑖]1 =

[
R̃𝑖

(
c

I2𝑘+1

)]
1
, [AV𝑖 ,AW𝑖]1

from R̃𝑖 ,V𝑖 ,W𝑖 ,A, c we sampled. For all 𝑗 ∈ [𝐿] \ {ℓ}, sample

r 𝑗 ← Z1×𝑘
𝑝 .

For all 𝑗 ∈ [ℓ − 1], compute
[Br⊤𝑗 ,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2,

using r 𝑗 ,V 𝑗 , k, 𝛼 we sampled, c⊥ we computed and [B]2 from the input. And compute

[t⊤,Vℓt⊤ + k⊤]2,

using Vℓ, k we sampled and [t⊤]2 from the input. For all 𝑗 ∈ [𝐿] \ [ℓ], compute

[Br⊤𝑗 ,V 𝑗Br⊤𝑗 + k
⊤]2,

using r 𝑗 ,V 𝑗 , k we sampled and [B]2 from the input. For all 𝑗 ∈ [𝐿] \ {ℓ} and all 𝑖 ∈ [𝐿] \ { 𝑗}, compute

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2,

using V𝑖 ,W𝑖 , r 𝑗 we sampled and [B]2 from the input. For all 𝑖 ∈ [𝐿] \ {ℓ}, compute

[V𝑖t⊤,W𝑖 (I𝑛 ⊗ t⊤)]2,

using V𝑖 ,W𝑖 we sampled and [t⊤]2 from the input. For all 𝑖 ∈ [𝐿], using [R̂𝑖]1 we have computed and [A]1 we
sampled, run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1), where [A𝑖]1 =

[
A
R̂𝑖

]
1

Output:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [t

⊤,Vℓt⊤ + k⊤]2,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖t⊤,W𝑖 (I𝑛 ⊗ t⊤)]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®¬ .
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(Query) For all 𝑖 ∈ [𝐿] and each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is generated as:

(pk𝑖 , sk𝑖) =
{ (
[

T𝑖︷︸︸︷
AU𝑖 ,

Q𝑖︷︸︸︷
R̂𝑖U𝑖 ]1, {[

h𝑖, 𝑗︷ ︸︸ ︷
U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [

h𝑖,ℓ︷︸︸︷
U𝑖t⊤ ]2, 𝜋𝑖

)
, U𝑖 if 𝑖 ≠ ℓ(

[ AUℓ︸︷︷︸
Tℓ

, R̂ℓUℓ︸︷︷︸
Qℓ

]1, {[UℓBr⊤𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ
)
, Uℓ if 𝑖 = ℓ

with U𝑖 , [T𝑖 ,Q𝑖]1 are computed from [A, R̂𝑖]1 in crs we have simulated; [h𝑖,ℓ]2 is computed using [t⊤]2 from the
input; remaining [h𝑖, 𝑗]2 is computed using [B]2 from the input and r⊤

𝑗
we have sampled; and

𝜋𝑖 ← LSim(crs𝑖 , td𝑖 , [M𝑖]1), where [M𝑖]1 =

[
T𝑖

Q𝑖

]
1

can be computed using crs𝑖 , td𝑖 we have generated and [T𝑖 ,Q𝑖]1 we have computed.
(Challenge) On input the challenge (𝑥∗, (m∗0,m∗1), (pk

∗
𝑖 , 𝑦
∗
𝑖
)𝑖∈[𝐿]), B2 do the following checks for all 𝑖 ∈ [𝐿]:

– WhenD𝑖 [pk∗𝑖 ] = ⊥, check: Ver(crs, 𝑖, pk∗𝑖 )
?
= 1 ∧ 𝑃(𝑥∗, 𝑦∗

𝑖
) ?
= 0, abort if not.

– When (𝑖, pk∗𝑖 ) ∈ C, check 𝑃(𝑥∗, 𝑦∗
𝑖
) ?
= 0, abort if not.

parse pk∗𝑖 =
(
[T∗

𝑖
,Q∗

𝑖
]1, {[h∗𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖

)
, using c, R̃𝑖 ,V𝑖 ,W𝑖 , k we have sampled, return the challenge ciphertext

with secret bit 𝑏 ∈ {0, 1} as follow:

ct𝑥∗ =

(
[ c︸︷︷︸

c∗0

]1,
[ ∑︁
𝑖∈[𝐿]
((cV𝑖 + e1R̃−1

𝑖 Q∗𝑖 ) (a𝑦∗
𝑖
⊗ I𝑘+1) + cW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))︸                                                                    ︷︷                                                                    ︸

c∗1

]
1

,

[ ∑︁
𝑖∈[𝐿]

cW𝑖 (C𝑥∗ ⊗ I𝑘+1)︸                     ︷︷                     ︸
c∗2

]
1

, [ck⊤]𝑇 ·m∗𝑏︸         ︷︷         ︸
𝐶∗

)
.

Observe that when t⊤ = Br⊤ℓ , the simulation is identical to G5,ℓ−1,0; when t⊤ = d⊤ℓ , the simulation is identical to G5,ℓ−1,1.
This readily proves the lemma. ⊓⊔

Lemma 9. (G5,ℓ−1,1 ≈𝑐 G5,ℓ−1,2). For any adversaryA, there exist algorithm B2 such that Time(B2) ≈ Time(A) and

|Adv5,ℓ−1,1
A (𝜆) − Adv5,ℓ−1,2

A (𝜆) | ≤ 2𝑄 · AdvMDDH
B2

+ negl(𝜆)

where 𝑄 is the maximum number of queries on a slot made byA.

Proof. Recall that in these two games, the crs are in the following form:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [d

⊤
ℓ ,Vℓd⊤ℓ + k

⊤ + 𝑏c⊥𝛼 ]2,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®®¬
where 𝑏 = 0 in G5,ℓ−1,1, and 𝑏 = 1 in G5,ℓ−1,2. For all 𝑖 ∈ [𝐿] and for each pk𝑖 ∈ 𝐷𝑖 , we have

(pk𝑖 , sk𝑖) =
{ (
[AU𝑖 , R̂𝑖U𝑖]1, {[U𝑖Br⊤𝑗 ]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [U𝑖d⊤ℓ ]2, 𝜋𝑖

)
,U𝑖 if 𝑖 ≠ ℓ(

[AUℓ, R̂ℓUℓ]1, {[UℓBr⊤𝑗 ]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ
)
,Uℓ if 𝑖 = ℓ

And we recall c∗1 and c∗2 in the following terms:

c∗1 = ((cVℓ + e1R̃−1
ℓ Q∗ℓ) (a𝑦∗

ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1)) +

∑
𝑖∈[𝐿]\{ℓ} ((cV𝑖 + e1R̃−1

𝑖
Q∗
𝑖
) (a𝑦∗

𝑖
⊗ I𝑘+1) + cW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))

c∗2 = cWℓ (C𝑥∗ ⊗ I𝑘+1) +
∑

𝑖∈[𝐿]\{ℓ} cW𝑖 (C𝑥∗ ⊗ I𝑘+1)

And we define c⊥ ∈ Z2𝑘+1
𝑝 and d⊥ ∈ Z1×(𝑘+1)

𝑝 such that

Ac⊥ = 0, cc⊥ = 1; d⊥B = 0, d⊥d⊤ℓ = 1 (14)

On slot ℓ, regarding the challenge public key pk∗ℓ, we will discuss two cases: (1) pk∗ℓ is honest, which means that pk∗ℓ ∈
𝐷ℓ \ 𝐶ℓ; (2) pk∗ℓ is corrupted or maliciously generated by the adversary, which means that pk∗ℓ ∈ 𝐶ℓ ∪ 𝐷ℓ.
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Honest Case. In this case, we have pk∗ℓ = ( [AU∗ℓ, R̃ℓU∗ℓ]1, {[U
∗
ℓBr
⊤
𝑗
]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ), where the U∗ℓ is honestly generated

by challenger and is hidden from the adversary. And we can write the first term in c∗1 as follows:

(cVℓ + cU∗ℓ ) (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1)

which means that the we can directly simulate cU∗ℓ and don’t need to program c into R̂ℓ, thus, we replace R̂ℓ in crs
with a random Rℓ analogous to the proof of Lemma 4. To prove the indistinguishability of G5,ℓ−1,1 and G5,ℓ−1,2 in
this case, we firstly recall the related terms which is known by adversary as follows:

A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼 // in crs, pkℓ

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ]1,U
∗
ℓB // in ct∗. pk∗ℓ

And we establish a series of argument as below:
1. We argue that:

A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ]1,U
∗
ℓB

≈𝑐 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼 (15)

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ + û⊤d⊥ ]1,U∗ℓB

where û← Z1×(2𝑘+2)
𝑝 . We define events Bad1, . . . , Bad𝑄 in the honest case as follows:

– Bad𝑞, 𝑞 ∈ [𝑄]: on slot ℓ, adversary honestly chooses the 𝑞th pkℓ returned toOGen(ℓ) as the challenge public
key pk∗ℓ, and when simulating this pk∗ℓ, the simulator uses [Q∗ℓ]1 which is [RℓU∗ℓ]1 or [RℓU∗ℓ + û

⊤d⊥]1.
Observe that the distributions in our argument will occur when Bad1∨· · ·∨Bad𝑄, and the advantage between
the distributions in our argument is bounded by

∑
𝑞∈[𝐿] Pr[Bad𝑞]. It remains to bound Pr[Bad𝑞] and show that

it is negligible. This follows from Lemma 2 whihc ensure that:( A
c
)
, [Rℓ]1, B, d⊥,

(
AU∗ℓ
cU∗ℓ

)
, [RℓU∗ℓ]1, U∗ℓB

≈𝑐
( A
c
)
, [Rℓ]1, B, d⊥,

(
AU∗ℓ
cU∗ℓ

)
, [RℓU∗ℓ + û⊤d⊥ ]1, U∗ℓB

Guessing 𝑞 ∈ [𝐿], on input A, c, [Rℓ]1, B, d⊥, T∗ℓ, ĉ, [Q∗ℓ]1 and B̂ where T∗ℓ = AU∗ℓ, ĉ = cU∗ℓ, B̂ = U∗ℓB; [Q∗ℓ]1 =

[RℓU∗ℓ]1 or [Q∗ℓ]1 = [RℓU∗ℓ + û
⊤d⊥]1, there exist algorithm B works as follows:

(Setup) Sample
k← Z1×(2𝑘+1)

𝑝 , 𝛼← Z𝑝, dℓ ← Z1×(𝑘+1)
𝑝 .

Compute
[Ak⊤]𝑇 and c⊥ ∈ Z2𝑘+1

𝑝

such that cc⊥ = 1 and Ac⊥ = 0, with A, c from the input and k we sampled. For all 𝑖 ∈ [𝐿], sample

V𝑖 ← Z(2𝑘+1)×(𝑘+1)
𝑝 , W𝑖 ← Z(2𝑘+1)×(𝑘+1)𝑛

𝑝

and compute
[AV𝑖 ,AW𝑖]1

using V𝑖 , W𝑖 we sampled and A from the input. For all 𝑖 ∈ [𝐿] \ {ℓ}, sample

R̃𝑖 ← Z(2𝑘+2)×(2𝑘+2)
𝑝 ,

and compute

[R̂𝑖]1 =

[
R̃𝑖

(
c

I2𝑘+1

)]
1
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using R̃𝑖 we sampled and c from the input. For all 𝑗 ∈ [𝐿] \ {ℓ}, sample

r 𝑗 ← Z1×𝑘
𝑝 .

For all 𝑗 ∈ [ℓ − 1], compute
[Br⊤𝑗 ,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2,

using r 𝑗 ,V 𝑗 , k, 𝛼 we sampled, c⊥ we computed and B from the input. With 𝑏 = 0 when simulate G5,ℓ−1,1

and 𝑏 = 1 when simulate G5,ℓ−1,2, compute

[d⊤ℓ ,Vℓd⊤ℓ + k
⊤ + 𝑏c⊥𝛼]2,

using dℓ,Vℓ, k, 𝛼 we sample. For all 𝑗 ∈ [𝐿] \ [ℓ], compute

[Br⊤𝑗 ,V 𝑗Br⊤𝑗 + k
⊤]2,

using r 𝑗 ,V 𝑗 , k we sampled and B from the input. For all 𝑗 ∈ [𝐿] \ {ℓ} and all 𝑖 ∈ [𝐿] \ { 𝑗}, compute

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2,

using V𝑖 ,W𝑖 , r 𝑗 we sampled and B from the input. For all 𝑖 ∈ [𝐿] \ {ℓ}, compute

[V𝑖d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2,

with V𝑖 ,W𝑖 , dℓ we sampled. For all 𝑖 ∈ [𝐿] \ {ℓ}, using [R̂𝑖]1 we have computed and A from the input, run

(crs𝑖 , td𝑖) ← LGen(1𝜆 ,G1, [A𝑖]1), where [A𝑖]1 =

[
A
R̂𝑖

]
1

Using A and [Rℓ]1 from the input, run

(crsℓ, tdℓ) ← LGen(1𝜆 ,G1, [Aℓ]1), where [Aℓ]1 =

[
A
Rℓ

]
1

Output:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿] , {[R̂𝑖]1}𝑖∈[𝐿]\{ℓ} , [Rℓ]1{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [d

⊤
ℓ ,Vℓd⊤ℓ + k

⊤ + 𝑏c⊥𝛼]2,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖d⊤ℓ ,W𝑖 (I𝑛 ⊗ d⊤ℓ )]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®¬ .
(Query) For all 𝑖 ∈ [𝐿] \ {ℓ} and each (pk𝑖 , sk𝑖) ∈ 𝐷𝑖 is generated as:

pk𝑖 =
(
[ AU𝑖︸︷︷︸

T𝑖

, R̂𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖Br⊤𝑗︸ ︷︷ ︸
h𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖,ℓ} , [U𝑖d⊤ℓ︸︷︷︸
h𝑖,ℓ

]2, 𝜋𝑖
)

and sk𝑖 = U𝑖 .

withU𝑖 , [T𝑖]1 is computed usingA from the input, [Q𝑖]1 is computed using [R̂𝑖]1 we have simulated; [h𝑖,ℓ]2
is computed using [d⊤ℓ ]2 we have simulated, remaining [h𝑖, 𝑗]2 is computed using B from the input and r 𝑗
we have sampled; and

𝜋𝑖 ← LSim(crs𝑖 , td𝑖 , [M𝑖]1), where [M𝑖]1 =

[
T𝑖

Q𝑖

]
1

can be computed using crs𝑖 , td𝑖 we have generated and [T𝑖 ,Q𝑖]1 we have computed. And on slot ℓ, except
for the 𝑞th-round query on OGen(ℓ), other (pkℓ, skℓ) ∈ 𝐷ℓ is generated as:

pkℓ =
(
[ AUℓ︸︷︷︸

Tℓ

, RℓUℓ︸︷︷︸
Qℓ

]1, {[UℓBr⊤𝑗︸ ︷︷ ︸
hℓ, 𝑗

]2} 𝑗∈[𝐿]\{ℓ} , 𝜋ℓ
)

and skℓ = Uℓ
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with Uℓ we generated, [Tℓ,Qℓ]1 are computed using A and [Rℓ] from the input, [hℓ, 𝑗]2 is computed using
B from the input and r 𝑗 we have sampled, and

𝜋ℓ ← LSim(crsℓ, tdℓ, [Mℓ]1), where [Mℓ]1 =

[
Tℓ

Qℓ

]
1

can be computed using crsℓ, tdℓ we have generated and [Tℓ,Qℓ]1 we have computed. As for the 𝑞th-round
query on OGen(ℓ), we return the pk∗ℓ as follows:

pk∗ℓ = ( [T
∗
ℓ,Q

∗
ℓ]1, {[ B̂r

⊤
𝑗︸︷︷︸

h∗
ℓ, 𝑗

]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ)

with T∗ℓ and [Q∗ℓ]1 from the input; and [h∗
ℓ, 𝑗
]2 is computed using B̂ from the input and r 𝑗 we have sampled,

and

𝜋∗ℓ ← LSim(crsℓ, tdℓ, [M∗ℓ]1), where [M∗ℓ]1 =

[
T∗ℓ
Q∗ℓ

]
1

can be computed using crsℓ, tdℓ we have generated and [Tℓ,Qℓ]1 we have computed. Note that in Bad𝑞,
the adversary will choose pk∗ℓ as a challenge public key honestly, and in honest case, we have pk∗ℓ ∉ 𝐶ℓ,
which means that the simulation can still finish even if it doesn’t know the sk∗ℓ = U∗ℓ from the input.

(Challenge) On input the challenge (𝑥∗, (m∗0,m∗1), (pk
∗
𝑖 , 𝑦
∗
𝑖
)𝑖∈[𝐿]),B do the following checks for all 𝑖 ∈ [𝐿] \{ℓ}:

– WhenD𝑖 [pk∗𝑖 ] = ⊥, check: Ver(crs, 𝑖, pk∗𝑖 )
?
= 1 ∧ 𝑃(𝑥∗, 𝑦∗

𝑖
) ?
= 0, abort if not.

– When (𝑖, pk∗𝑖 ) ∈ C, check 𝑃(𝑥∗, 𝑦∗
𝑖
) ?
= 0, abort if not.

For all 𝑖 ∈ [𝐿] \{ℓ}, parse pk∗𝑖 =
(
[T∗

𝑖
,Q∗

𝑖
]1, {[h∗𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋

∗
𝑖

)
, using R̃𝑖 ,V𝑖 ,W𝑖 we have sampled; c, ĉ from

the input and Vℓ,Wℓ, k we have sampled, we compute the challenge ciphertext with secret bit 𝑏′ ∈ {0, 1}
as follow:

c∗0 = c
c∗1 = ((cVℓ + ĉ) (a𝑦∗

ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1))

+∑𝑖∈[𝐿]\{ℓ} ((cV𝑖 + e1R̃−1
𝑖
Q∗
𝑖
) (a𝑦∗

𝑖
⊗ I𝑘+1) + cW𝑖 (K𝑦∗

𝑖
⊗ I𝑘+1))

c∗2 =
∑

𝑖∈[𝐿] cW𝑖 (C𝑥∗ ⊗ I𝑘+1)
𝐶∗ = [ck⊤]𝑇 ·m∗𝑏′

And return
ct𝑥∗ =

(
[c∗0, c∗1, c∗2]1, 𝐶∗

)
With above simulation and along with Lemma 2, we can observe that for all 𝑞 ∈ 𝑄, there exist B2 such
that Pr[Bad𝑞] ≤ 2 · AdvMDDH

B2
+ negl(𝜆). So, we can readily prove that the advantage of argument (15) is

bounded by 2𝑄 · AdvMDDH
B2

+ negl(𝜆).
2. We argue that:

A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + 𝑏c
⊥𝛼

c, cVℓ + cU∗ℓ; AU∗ℓ, [RℓU∗ℓ + û
⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + c⊥𝑣ℓ + 𝑏c⊥𝛼 (16)

c, cVℓ + cU∗ℓ + 𝑣ℓd⊥ + 𝑢ℓd⊥ ; AU∗ℓ, [RℓU∗ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

where 𝑣ℓ, 𝑢ℓ ← Z𝑝. We change the variables as follows:

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and U∗ℓ ↦→ U∗ℓ + c
⊥𝑢ℓd⊥.

With the fact (14), when simulating crs, we have

A(Vℓ + c⊥𝑣ℓd⊥) = AVℓ, (Vℓ + c⊥𝑣ℓd⊥)B = VℓB, (Vℓ + c⊥𝑣ℓd⊥)d⊤ℓ + 𝑏c
⊥𝛼 = Vℓd⊤ℓ + c

⊥𝑣ℓ;
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when simulating the challenge public key pk∗ℓ on slot ℓ, we have

A(U∗ℓ + c
⊥𝑢ℓd⊥) = AU∗ℓ, (U

∗
ℓ + c

⊥𝑢ℓd⊥)B = U∗ℓB;

when simulating c∗1, we have

c(Vℓ + c⊥𝑣ℓd⊥) = cVℓ + 𝑣ℓd⊥, c(U∗ℓ + c
⊥𝑢ℓd⊥) = cU∗ℓ + 𝑢ℓd

⊥.

This readily prove the argument (16).
3. We argue that:

A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + c
⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ + cU∗ℓ + 𝑣ℓd
⊥ + 𝑢ℓd⊥; AU∗ℓ, [RℓU∗ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

≈𝑠 A, c⊥,B, [Rℓ]1, d⊤ℓ ,AVℓ,VℓB,Vℓd⊤ℓ + c
⊥𝑣ℓ +���𝑏c⊥𝛼 (17)

c, cVℓ + cU∗ℓ + 𝑣ℓd
⊥ + 𝑢ℓd⊥; AU∗ℓ, [RℓU∗ℓ + Rℓc⊥𝑢ℓd⊥ + û⊤d⊥]1,U∗ℓB

This argument follows from the fact that û only appears in pk∗ℓ, it implies that û can hide Rℓc⊥𝑢ℓ; which means
that 𝑢ℓ will not be revealed by pk∗ℓ. Thus, 𝑢ℓ is sufficient to hide 𝑣ℓ which only appears with 𝑢ℓ in c∗1 and appears
with 𝑏𝛼 in crs, and is sufficient to hide 𝑏𝛼. This readily prove the argument (17).

With argument (15), (16) and (17), we can readily prove the lemma in the honest case.
Corrupted & Malicious Case. In this case, we have pk∗ℓ = ( [T∗ℓ,Q

∗
ℓ]1, {[h

∗
ℓ, 𝑗
⊤]2} 𝑗∈[𝐿]\{ℓ} , 𝜋∗ℓ) ∈ 𝐶ℓ ∪ 𝐷ℓ. And it is re-

quired that 𝑃(𝑥∗, 𝑦∗ℓ) = 0. To prove the indistinguishability of G5,ℓ−1,1 and G5,ℓ−1,2 in this case, we firstly recall the
related terms which is known by adversary as follows:

A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑏c
⊥𝛼 // in crs

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1), cWℓ (C𝑥∗ ⊗ I𝑘+1) // in ct∗

And we establish a series of argument as below:
1. We argue that:

A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + 𝑏c
⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1), cWℓ (C𝑥∗ ⊗ I𝑘+1)

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c⊥𝑣ℓ + 𝑏c⊥𝛼 (18)

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) + 𝑣ℓa𝑦∗

ℓ
⊗ d⊥ +wℓK𝑦∗

ℓ
⊗ d⊥ , cWℓ (C𝑥∗ ⊗ I𝑘+1) + wℓC𝑥∗ ⊗ d⊥

where 𝑣ℓ ← Z𝑝 and wℓ ← Z𝑛𝑝. We change the variables as follows:

Vℓ ↦→ Vℓ + c⊥𝑣ℓd⊥ and Wℓ ↦→Wℓ + c⊥ (wℓ ⊗ d⊥).

With the fact (14), when simulating crs, we have

A(Vℓ + c⊥𝑣ℓd⊥) = AVℓ, (Vℓ + c⊥𝑣ℓd⊥)B = VℓB, (Vℓ + c⊥𝑣ℓd⊥)d⊤ℓ = Vℓd⊤ℓ + c
⊥𝑣ℓ

and
A(Wℓ + c⊥ (wℓ ⊗ d⊥)) = AWℓ, (Wℓ + c⊥ (wℓ ⊗ d⊥)) (I𝑛 ⊗ B) = Wℓ (I𝑛 ⊗ B);

when simulating c∗1 and c∗2, we have

c(Vℓ + c⊥𝑣ℓd⊥) = cVℓ + 𝑣ℓd⊥, c(Wℓ + c⊥ (wℓ ⊗ d⊥)) = cWℓ + (wℓ ⊗ d⊥).

This readily prove the argument (18).
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2. We argue that:

A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ c
⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) + 𝑣ℓa𝑦∗

ℓ
⊗ d⊥ +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c
⊥𝑣ℓ + 𝑏c⊥𝛼 (19)

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +�����

𝑣ℓa𝑦∗
ℓ
⊗ d⊥ +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

This argument follows from the fact that 𝑃(𝑥∗, 𝑦∗ℓ) = 0, so that 𝑣ℓ in c∗1 can be hidden by wℓ with the security
of predicate encoding defined in Section 2.3.

3. We argue that:

A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c
⊥𝑣ℓ + 𝑏c⊥𝛼

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

≈𝑠 A, c⊥,B, d⊤ℓ ,AVℓ,VℓB,AWℓ,Wℓ (I𝑛 ⊗ B),Vℓd⊤ℓ + c
⊥𝑣ℓ +���𝑏c⊥𝛼 (20)

c, cVℓ (a𝑦∗
ℓ
⊗ I𝑘+1) + cWℓ (K𝑦∗

ℓ
⊗ I𝑘+1) +wℓK𝑦∗

ℓ
⊗ d⊥, cWℓ (C𝑥∗ ⊗ I𝑘+1) +wℓC𝑥∗ ⊗ d⊥

This argument follows from the fact that 𝑣ℓ only appears with 𝑏𝛼 in crs, and it is sufficient to hide 𝑏𝛼.
With argument (18), (19) and (20), we can readily prove the lemma in the corrupted and malicious case. ⊓⊔

Lemma 10. (G5,ℓ−1,2 ≈𝑐 G5,ℓ−1,3). For any adversaryA, there exist algorithm B2 such that Time(B2) ≈ Time(A) and

|Adv5,ℓ−1,2
A (𝜆) − Adv5,ℓ−1,3

A | ≤ AdvMDDH
B2

(𝜆) + negl(𝜆).

Proof. The proof is analogous to Lemma 8, except that we replace Vℓt⊤ + k⊤ with Vℓt⊤ + k⊤ + c⊥𝛼 in the setup phase
of simulation. Namely, the simulation have the following change in crs:

crs =
©«
[A]1, [Ak⊤]𝑇 ,

{
crs𝑖 , [R̂𝑖 ,AV𝑖 ,AW𝑖]1

}
𝑖∈[𝐿]{

[Br⊤
𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼]2
}
𝑗∈[ℓ−1] , [t

⊤,Vℓt⊤ + k⊤]2,
{
[Br⊤

𝑗
,V 𝑗Br⊤𝑗 + k

⊤ + c⊥𝛼 ]2
}
𝑗∈[𝐿]\[ℓ]{

[V𝑖Br⊤𝑗 ,W𝑖 (I𝑛 ⊗ Br⊤𝑗 )]2
}
𝑗∈[𝐿]\{ℓ},𝑖∈[𝐿]\{ 𝑗} ,

{
[V𝑖t⊤,W𝑖 (I𝑛 ⊗ t⊤)]2

}
𝑖∈[𝐿]\{ℓ}

ª®®®¬ .
Observe that when t⊤ = d⊤ℓ , the simulation is identical to G5,ℓ−1,2; when t⊤ = Br⊤ℓ , the simulation is identical to G5,ℓ−1,3.
This readily proves the lemma. ⊓⊔

D More Concrete Slotted Reg-ABE

D.1 Slotted Reg-ABE for Span Program

This section present a concrete slotted Reg-ABE for boolean span program. We use the predicate encoding of (mono-
tone) boolean span programs [CGW15, Appendix A.5].

Preliminaries. A (monotone) boolean span program [CGW15, Appendix A.5], denoted by 𝑉 , is defined by Y ∈ Z𝑚×ℓ𝑝

where
𝑉 (x) = 1 ⇐⇒ x ∈ {0, 1}1×𝑚 satisfies Y⇐⇒ ∃𝝎 ∈ Z1×𝑚

𝑝 such that e1 = 𝝎 · diag(x)Y

Here we use notation: diag(x) :=
©«
𝑥1

. . .

𝑥𝑚

ª®®®¬ ∈ Z
𝑚×𝑚
𝑝 for x = (𝑥1, . . . , 𝑥𝑚) and note that diag(x) = diag(x)⊤. We review

the predicate encoding for boolean span program predicate (ciphertext-policy variant):

𝑃(𝑉, x) = 1⇐⇒ 𝑉 (x) = 1
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as follows [CGW15, Appendix A.5]: let 𝑛 = 𝑚 + ℓ, 𝑛𝑐 = 𝑚 and 𝑛𝑘 = 𝑚 + 1, define

CY =

(
I𝑚
Y⊤

)
, Kx =

(
0𝑚 diag(x)
e⊤1 0ℓ×𝑚

)
, ax = (1∥0𝑚), dY.x = (1∥𝝎∥ − diag(x) · 𝝎)

where 0𝑚 is a row zero vector of size 𝑚. Note that we work with read-once boolean span program as in [CGW15].

Scheme. Our concrete slotted Registered CP-ABE for read-once boolean span program from SXDH (1-Lin) assumption
works as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

a← Z1×3
𝑝 , b⊤ ← Z2

𝑝, k← Z1×3
𝑝 .

For all 𝑖 ∈ [𝐿], sample
V𝑖 ← Z3×2

𝑝 , W𝑖 ← Z3×2(𝑚+ℓ)
𝑝 , R𝑖 ← Z4×3

𝑝 , 𝑟𝑖 ← Z𝑝.

For all 𝑖 ∈ [𝐿], write A𝑖 =
( a
R𝑖

)
and sample

a′𝑖 ← Z
1×2
𝑝 , b′⊤𝑖 ← Z

2
𝑝, K

′
𝑖 ← Z

5×2
𝑝 , K′𝑖,0,K

′
𝑖,1 ← Z

2×2
𝑝

and compute
P𝑖 = A⊤𝑖 K

′
𝑖 , p𝑖,0 = a′𝑖K

′
𝑖,0, p𝑖,1 = a′𝑖K

′
𝑖,1;

c′⊤𝑖 = K′𝑖b
′⊤
𝑖 c′⊤𝑖,0 = K′𝑖,0b

′⊤
𝑖 , c′⊤𝑖,1 = K′𝑖,1b

′⊤
𝑖 .

For all 𝑖 ∈ [𝐿], set
crs𝑖 = ( [a′𝑖 , P𝑖 , p𝑖,0, p𝑖,1]1, [b

′⊤
𝑖 , c′⊤𝑖 , c′⊤𝑖,0, c

′⊤
𝑖,1]2) td𝑖 = K′𝑖 .

Output

crs =
©«
[a]1, [ak⊤]𝑇

{
crs𝑖 , [R𝑖 , aV𝑖 , aW𝑖]1

}
𝑖∈[𝐿]{

[b⊤𝑟 𝑗 ,V 𝑗b⊤𝑟 𝑗 + k⊤]2
}
𝑗∈[𝐿]{

[V𝑖b⊤𝑟 𝑗 ,W𝑖 (I𝑚+ℓ ⊗ b⊤𝑟 𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
– Gen(crs, 𝑖) : Sample U𝑖 ← Z3×2

𝑝 . Define M𝑖 =
( t𝑖
Q𝑖

)
=

( aU𝑖
R𝑖U𝑖

)
, sample s⊤

𝑖
← Z2

𝑝, and compute

𝜋𝑖 = [U⊤𝑖 P𝑖 + s
⊤
𝑖 (p𝑖,0 + p𝑖,1)︸                      ︷︷                      ︸
𝜋𝑖,0

, s⊤𝑖 a
′
𝑖︸︷︷︸

𝜋𝑖,1

]1

Fetch [R𝑖]1 and {[b⊤𝑟 𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[ aU𝑖︸︷︷︸

t𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖b⊤𝑟 𝑗︸  ︷︷  ︸
h⊤
𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
and fetch [b⊤

𝑖
, c′⊤

𝑖
, c′⊤

𝑖,0, c
′⊤
𝑖,1]2 from crs𝑖 in crs. Write M𝑖 =( t𝑖

Q𝑖

)
and parse 𝜋𝑖 = [𝜋𝑖,0, 𝜋𝑖,1]1, check

𝑒( [𝜋𝑖,0]1, [b′⊤𝑖 ]2)
?
= 𝑒( [M⊤𝑖 ]1, [c

′⊤
𝑖 ]2) · 𝑒( [𝜋𝑖,1]1, [c

′⊤
𝑖,0 + c

′⊤
𝑖,1]2)

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [a]1, [h⊤𝑖, 𝑗]2)

?
= 𝑒( [t𝑖]1, [b⊤𝑟 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.

40



– Agg(crs, (pk𝑖 , x𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse

pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
.

Output:

mpk =

(
[a]1,

[ ∑︁
𝑖∈[𝐿]

(
(aV𝑖 + t𝑖) ((1∥0𝑚) ⊗ I2) + aW𝑖

( (
0𝑚 diag(x𝑖)
e⊤1 0ℓ×𝑚

)
⊗ I2

))]
1

,

[ ∑︁
𝑖∈[𝐿]

aW𝑖

]
1

, [ak⊤]𝑇

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

(
[ b⊤𝑟 𝑗︸︷︷︸

k⊤0

]2, [V 𝑗b⊤𝑟 𝑗 + k⊤︸         ︷︷         ︸
k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

(
(V𝑖b⊤𝑟 𝑗 + h⊤𝑖, 𝑗) (1∥0𝑚) +W𝑖 (I𝑚+ℓ ⊗ b⊤𝑟 𝑗)

(
0𝑚 Ix𝑖
e⊤1 0ℓ×𝑚

) )
︸                                                                                  ︷︷                                                                                  ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

W𝑖 (I𝑚+ℓ ⊗ b⊤𝑟 𝑗)︸                           ︷︷                           ︸
K3

]
2

)
.

– Enc(mpk,Y,m): Sample 𝑠← Z𝑝. Output:

ctY =

(
[ 𝑠a︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]

(
(𝑠aV𝑖 + 𝑠t𝑖) ((1∥0𝑚) ⊗ I2) + 𝑠aW𝑖

( (
0𝑚 diag(x𝑖)
e⊤1 0ℓ×𝑚

)
⊗ I2

))
︸                                                                                ︷︷                                                                                ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

𝑠aW𝑖

((
I𝑚
Y⊤

)
⊗ I2

)
︸                        ︷︷                        ︸

c2

]
1

, [𝑠ak⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ctY): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = [k⊤0 , k⊤1 ,K2,K3]2, ct𝑥 = ( [c0, c1, c2]1, 𝐶).

recover

[z1]𝑇 = 𝑒( [c1∥c2]1, [I2𝑚+1 ⊗ k⊤0 ]2), [z2]𝑇 = 𝑒

(
[c0]1,

[
K2∥K3

(
I𝑚
Y⊤

) ]
2

)
,

[𝑧3]𝑇 = 𝑒( [c0U𝑖∗ ]1, [k⊤0 ]2), [𝑧4]𝑇 = 𝑒( [c0]1, [k⊤1 ]2).
Compute 𝝎 such that e1 = w · diag(x𝑖∗ )Y, output

m′ = [(z1 − z2) (1∥𝝎∥ − 𝝎 · diag(x𝑖∗ ))⊤ − 𝑧3 − 𝑧4]𝑇 · 𝐶.

D.2 Slotted Reg-ABE for zero inner-product

This section present a concrete slotted Reg-ABE for zero inner product. We use the predicate encoding of inner product
from [CGW15, Appendix A.1].

Preliminaries. We review the predicate encoding for zero inner-product:

𝑃(x, y) = 1⇐⇒ xy⊤ = 0 where (x, y) ∈ Z1×𝑚
𝑝 × Z1×𝑚

𝑝 .

as follows [CGW15, Appendix A.1]: let 𝑛 = 𝑚 + 1, 𝑛𝑐 = 𝑚 and 𝑛𝑘 = 1, define

Cx =

(
x
I𝑚

)
, Ky =

(
0
y⊤

)
, ay = (1), dx,y = (1∥ − y)
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Scheme. Our concrete slotted Reg-ABE for zero inner product from SXDH (1-Lin) assumption works as follows:

– Setup(1𝜆 , 𝑃, 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

a← Z1×3
𝑝 , b⊤ ← Z2

𝑝, k← Z1×3
𝑝 .

For all 𝑖 ∈ [𝐿], sample
V𝑖 ← Z3×2

𝑝 , W𝑖 ← Z3×2(𝑚+1)
𝑝 , R← Z4×3

𝑝 , 𝑟𝑖 ← Z𝑝.

For all 𝑖 ∈ [𝐿], write A𝑖 =
( a
R𝑖

)
and sample

a′𝑖 ← Z
1×2
𝑝 , b′⊤𝑖 ← Z

2
𝑝, K

′
𝑖 ← Z

5×2
𝑝 , K′𝑖,0,K

′
𝑖,1 ← Z

2×2
𝑝

and compute
P𝑖 = A⊤𝑖 K

′
𝑖 , p𝑖,0 = a′𝑖K

′
𝑖,0, p𝑖,1 = a′𝑖K

′
𝑖,1;

c′⊤𝑖 = K′𝑖b
′⊤
𝑖 c′⊤𝑖,0 = K′𝑖,0b

′⊤
𝑖 , c′⊤𝑖,1 = K′𝑖,1b

′⊤
𝑖 .

For all 𝑖 ∈ [𝐿], set
crs𝑖 = ( [a′𝑖 , P𝑖 , p𝑖,0, p𝑖,1]1, [b

′⊤
𝑖 , c′⊤𝑖 , c′⊤𝑖,0, c

′⊤
𝑖,1]2) td𝑖 = K′𝑖 .

Output

crs =
©«
[a]1, [ak⊤]𝑇

{
crs𝑖 , [R𝑖 , aV𝑖 , aW𝑖]1

}
𝑖∈[𝐿]{

[b⊤𝑟 𝑗 ,V 𝑗b⊤𝑟 𝑗 + k⊤]2
}
𝑗∈[𝐿]{

[V𝑖b⊤𝑟 𝑗 ,W𝑖 (I𝑚+1 ⊗ b⊤𝑟 𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
– Gen(crs, 𝑖) : Sample U𝑖 ← Z3×2

𝑝 . Define M𝑖 =
( t𝑖
Q𝑖

)
=

( aU𝑖
R𝑖U𝑖

)
, sample s⊤

𝑖
← Z2

𝑝, and compute

𝜋𝑖 = [U⊤𝑖 P𝑖 + s
⊤
𝑖 (p𝑖,0 + p𝑖,1)︸                      ︷︷                      ︸
𝜋𝑖,0

, s⊤𝑖 a
′
𝑖︸︷︷︸

𝜋𝑖,1

]1

Fetch [R𝑖]1 and {[b⊤𝑟 𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[ aU𝑖︸︷︷︸

t𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖b⊤𝑟 𝑗︸  ︷︷  ︸
h⊤
𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
and fetch [b⊤

𝑖
, c′⊤

𝑖
, c′⊤

𝑖,0, c
′⊤
𝑖,1]2 from crs𝑖 in crs. Write M𝑖 =( t𝑖

Q𝑖

)
and parse 𝜋𝑖 = [𝜋𝑖,0, 𝜋𝑖,1]1, check

𝑒( [𝜋𝑖,0]1, [b′⊤𝑖 ]2)
?
= 𝑒( [M⊤𝑖 ]1, [c

′⊤
𝑖 ]2) · 𝑒( [𝜋𝑖,1]1, [c

′⊤
𝑖,0 + c

′⊤
𝑖,1]2)

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [a]1, [h⊤𝑖, 𝑗]2)

?
= 𝑒( [t𝑖]1, [b⊤𝑟 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , y𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse

pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
.

Output:

mpk =

(
[a]1,

[ ∑︁
𝑖∈[𝐿]

(
(aV𝑖 + t𝑖) + aW𝑖

((
0
y⊤
𝑖

)
⊗ I2

))]
1

,

[ ∑︁
𝑖∈[𝐿]

aW𝑖

]
1

, [ak⊤]𝑇

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

(
[ b⊤𝑟 𝑗︸︷︷︸

k⊤0

]2, [V 𝑗b⊤𝑟 𝑗 + k⊤︸         ︷︷         ︸
k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

(
(V𝑖b⊤𝑟 𝑗 + h⊤𝑖, 𝑗) +W𝑖 (I𝑚+1 ⊗ b⊤𝑟 𝑗)

(
0
y⊤
𝑖

))
︸                                                              ︷︷                                                              ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

W𝑖 (I𝑚+1 ⊗ b⊤𝑟 𝑗)︸                           ︷︷                           ︸
K3

]
2

)
.
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– Enc(mpk, x,m): Sample 𝑠← Z𝑝. Output:

ctx =

(
[ 𝑠a︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]

(
(𝑠aV𝑖 + 𝑠t𝑖) + 𝑠aW𝑖

((
0
y⊤
𝑖

)
⊗ I2

))
︸                                               ︷︷                                               ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

𝑠aW𝑖

((
x
I𝑚

)
⊗ I2

)
︸                       ︷︷                       ︸

c2

]
1

, [𝑠ak⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ctx): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = [k⊤0 , k⊤1 ,K2,K3]2, ct𝑥 = ( [c0, c1, c2]1, 𝐶).

recover

[z1]𝑇 = 𝑒( [c1∥c2]1, [I𝑚+1 ⊗ k⊤0 ]2), [z2]𝑇 = 𝑒

(
[c0]1,

[
K2∥K3

(
x
I𝑚

) ]
2

)
,

[𝑧3]𝑇 = 𝑒( [c0U𝑖∗ ]1, [k⊤0 ]2), [𝑧4]𝑇 = 𝑒( [c0]1, [k⊤1 ]2).
Output

m′ = [(z1 − z2) (1∥ − y𝑖∗ )⊤ − 𝑧3 − 𝑧4]𝑇 · 𝐶.

D.3 Slotted Registration-Based Encryption (RBE)

This section present a concrete slotted Registration-Based Encryption (RBE). We use the predicate encoding from
[LW10] for IBE.

Preliminaries. We review the predicate encoding for IBE:

𝑃(id′, id) = 1⇐⇒ id′ = id

as follows [LW10]: let 𝑛 = 2 and 𝑛𝑐 = 𝑛𝑘 = 1, define

Cid′ =

(
1
id′

)
, Kid =

(
1
id

)
, aid = (1), d𝑥, 𝑦 = (1,−1).

Scheme. Our concrete slotted RBE works as follows:

– Setup(1𝜆 , 1𝐿) : Run G := (𝑝,G1,G2,G𝑇 , 𝑒) ← G(1𝜆). Sample

a← Z1×3
𝑝 , b⊤ ← Z2

𝑝, k← Z1×3
𝑝 .

For all 𝑖 ∈ [𝐿], sample
V𝑖 ← Z2×2

𝑝 , W𝑖 ← Z2×4
𝑝 , R← Z4×3

𝑝 , 𝑟𝑖 ← Z𝑝.

For all 𝑖 ∈ [𝐿], write A𝑖 =
( a
R𝑖

)
and sample

a′𝑖 ← Z
1×2
𝑝 , b′⊤𝑖 ← Z

2
𝑝, K

′
𝑖 ← Z

5×2
𝑝 , K′𝑖,0,K

′
𝑖,1 ← Z

2×2
𝑝

and compute
P𝑖 = A⊤𝑖 K

′
𝑖 , p𝑖,0 = a′𝑖K

′
𝑖,0, p𝑖,1 = a′𝑖K

′
𝑖,1;

c′⊤𝑖 = K′𝑖b
′⊤
𝑖 c′⊤𝑖,0 = K′𝑖,0b

′⊤
𝑖 , c′⊤𝑖,1 = K′𝑖,1b

′⊤
𝑖 .

For all 𝑖 ∈ [𝐿], set
crs𝑖 = ( [a′𝑖 , P𝑖 , p𝑖,0, p𝑖,1]1, [b

′⊤
𝑖 , c′⊤𝑖 , c′⊤𝑖,0, c

′⊤
𝑖,1]2) td𝑖 = K′𝑖 .

Output

crs =
©«
[a]1, [ak⊤]𝑇

{
crs𝑖 , [R𝑖 , aV𝑖 , aW𝑖]1

}
𝑖∈[𝐿]{

[b⊤𝑟 𝑗 ,V 𝑗b⊤𝑟 𝑗 + k⊤]2
}
𝑗∈[𝐿]{

[V𝑖b⊤𝑟 𝑗 ,W𝑖 (I2 ⊗ b⊤𝑟 𝑗)]2
}
𝑗∈[𝐿],𝑖∈[𝐿]\{ 𝑗}

ª®®®¬ .
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– Gen(crs, 𝑖) : Sample U𝑖 ← Z3×2
𝑝 . Define M𝑖 =

( t𝑖
Q𝑖

)
=

( aU𝑖
R𝑖U𝑖

)
, sample s⊤

𝑖
← Z2

𝑝, and compute

𝜋𝑖 = [U⊤𝑖 P𝑖 + s
⊤
𝑖 (p𝑖,0 + p𝑖,1)︸                      ︷︷                      ︸
𝜋𝑖,0

, s⊤𝑖 a
′
𝑖︸︷︷︸

𝜋𝑖,1

]1

Fetch [R𝑖]1 and {[b⊤𝑟 𝑗]2} 𝑗∈[𝐿]\{𝑖} from crs and output

pk𝑖 =
(
[ aU𝑖︸︷︷︸

t𝑖

, R𝑖U𝑖︸︷︷︸
Q𝑖

]1, {[U𝑖b⊤𝑟 𝑗︸  ︷︷  ︸
h⊤
𝑖, 𝑗

]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖
)

and sk𝑖 = U𝑖 .

– Ver(crs, 𝑖, pk𝑖) : Parse pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
and fetch [b⊤

𝑖
, c′⊤

𝑖
, c′⊤

𝑖,0, c
′⊤
𝑖,1]2 from crs𝑖 in crs. Write M𝑖 =( t𝑖

Q𝑖

)
and parse 𝜋𝑖 = [𝜋𝑖,0, 𝜋𝑖,1]1, check

𝑒( [𝜋𝑖,0]1, [b′⊤𝑖 ]2)
?
= 𝑒( [M⊤𝑖 ]1, [c

′⊤
𝑖 ]2) · 𝑒( [𝜋𝑖,1]1, [c

′⊤
𝑖,0 + c

′⊤
𝑖,1]2)

For each 𝑗 ∈ [𝐿] \ {𝑖}, check
𝑒( [a]1, [h⊤𝑖, 𝑗]2)

?
= 𝑒( [t𝑖]1, [b⊤𝑟 𝑗]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pk𝑖 , id𝑖)𝑖∈[𝐿]): For all 𝑖 ∈ [𝐿], parse

pk𝑖 =
(
[t𝑖 ,Q𝑖]1, {[h⊤𝑖, 𝑗]2} 𝑗∈[𝐿]\{𝑖} , 𝜋𝑖

)
.

Output:

mpk =

(
[a]1,

[ ∑︁
𝑖∈[𝐿]

(
(aV𝑖 + t𝑖) + aW𝑖

((
1
id𝑖

)
⊗ I2

))]
1

,

[ ∑︁
𝑖∈[𝐿]

aW𝑖

]
1

, [ak⊤]𝑇

)
and for all 𝑗 ∈ [𝐿]

hsk 𝑗 =

(
[ b⊤𝑟 𝑗︸︷︷︸

k⊤0

]2, [V 𝑗b⊤𝑟 𝑗 + k⊤︸         ︷︷         ︸
k⊤1

]2,
[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

(
(V𝑖b⊤𝑟 𝑗 + h⊤𝑖, 𝑗) +W𝑖 (I2 ⊗ b⊤𝑟 𝑗)

(
1
id𝑖

))
︸                                                           ︷︷                                                           ︸

K2

]
2

,

[ ∑︁
𝑖∈[𝐿]\{ 𝑗}

W𝑖 (I2 ⊗ b⊤𝑟 𝑗)︸                        ︷︷                        ︸
K3

]
2

)
.

– Enc(mpk, id′,m): Sample 𝑠← Z𝑝. Output:

ctid′ =

(
[ 𝑠a︸︷︷︸

c0

]1,
[ ∑︁
𝑖∈[𝐿]

(
(𝑠aV𝑖 + 𝑠t𝑖) + 𝑠aW𝑖

((
1
id𝑖

)
⊗ I2

))
︸                                               ︷︷                                               ︸

c1

]
1

,

[ ∑︁
𝑖∈[𝐿]

𝑠aW𝑖

((
1
id′

)
⊗ I2

)
︸                       ︷︷                       ︸

c2

]
1

, [𝑠ak⊤]𝑇 ·m︸         ︷︷         ︸
𝐶

)
.

– Dec(sk𝑖∗ , hsk𝑖∗ , ctid′ ): Parse

sk𝑖∗ = U𝑖∗ , hsk𝑖∗ = [k⊤0 , k⊤1 ,K2,K3]2, ct𝑥 = ( [c0, c1, c2, c3]1, 𝐶).

recover

[z1]𝑇 = 𝑒( [c1∥c2]1, [I2 ⊗ k⊤0 ]2), [z2]𝑇 = 𝑒

(
[c0]1,

[
K2∥K3

(
1
id′

) ]
2

)
,

[𝑧3]𝑇 = 𝑒( [c0U𝑖∗ ]1, [k⊤0 ]2), [𝑧4]𝑇 = 𝑒( [c0]1, [k⊤1 ]2).

Output
m′ = [(z1 − z2) (1,−1)⊤) − 𝑧3 − 𝑧4]𝑇 · 𝐶.
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