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Abstract. A recent work by Guo, Johansson, and Nguyen (Eprint’23)
proposes a promising adaptation of Sieving techniques from lattices to
codes, in particular, by claiming concrete cryptanalytic improvements on
various schemes. The core of their algorithm reduces to a Near Neigh-
bor Search (NNS) problem, for which they devise an ad-hoc approach.
In this work, we aim for a better theoretical understanding of this ap-
proach. First, we provide an asymptotic analysis which is not present in
the original paper. Second, we propose a more systematic use of well-
established NNS machinery, known as Locality Sensitive Hashing and
Filtering (LSH/F). LSH/F is an approach that has been applied very
successfully in the case of sieving over lattices. We thus establish the
first baseline for the sieving approach with a decoding complexity of
20.117n for the conventional worst parameters (full distance decoding,
where complexity is maximized over all code rates). Our cumulative im-
provements eventually enable us to lower the hardest parameter decoding
complexity for SievingISD algorithms to 20.101n. This approach outper-
forms the BJMM algorithm (Eurocrypt’12) but falls behind the most
advanced conventional ISD approach by Both and May (PQCrypto’18).
As for lattices, we found the Random-Spherical-Code-Product (RPC) to
give the best asymptotic complexity. Moreover, we also consider an al-
ternative that seems specific to the Hamming Sphere, which we believe
could be of practical interest as it plausibly hides less sub-exponential
overheads than RPC.

1 Introduction

One of the central problems in coding theory is given as follows. Given a linear
code, find a small codeword in this code. Concretely, given a parity check matrix
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H ∈ F(n−k)×n of a code of dimension k, length n, and defined over a field F, find
e ∈ Fn such that

He = 0 and |e| < w

for some bound 0 ≤ w ≤ n and | · | is a metric defined over F. In this work, we
focus on the case where F = F2 and | · | is the Hamming metric. Thus, we are
interested in finding small Hamming weight codewords in a binary linear code.
Specifically, we consider the case of random binary linear codes, i.e., H is chosen

uniformly at random from F(n−k)×n
2 .

The problem of finding small Hamming weight codewords is a building block
in all known efficient decoding algorithms for random linear codes. Information
Set Decoding (ISD) algorithms [30,23], for example, construct such codewords by
enumerating them in a clever way, while the Statistical Decoding approach [5]
requires an oracle that returns a set of small weight codewords. In order to
instantiate the oracle, [5] uses the above-mentioned ISD algorithms.

In the world of Euclidean lattices, a very similar problem occurs, namely,
the problem of finding a short lattice vector in the Euclidean metric. For find-
ing those short vectors there are (at least) two different established approaches.
Concretely, there exist enumeration-based algorithms [14,18] as well as sieving
algorithms [27,1,20]. While the former carefully prune the enumeration space,
the latter saturate the space with many lattice vectors to the point where pair-
wise sums start producing short vectors. Drawing inspiration from sieving-based
techniques in lattices, one can naturally ask:

Is there a sieving-type algorithm for finding small-weight codewords?

Given how natural this question is, it seems fair to assume that it has been
investigated by various experts over the years. However, it was not until recently
that the first satisfying answer was given by Guo, Johansson, and Nguyen [16]
(GJN) in the form of their sieving-style ISD algorithm.

Any sieving algorithm (either for codes or for lattices) starts by generating a
(large) list of vectors (either codewords or lattice vectors). A sieving step consists
of finding a pair e, e′ from the list such that their sum produces a short(-er)
vector. Codes resp. lattices are closed under addition, hence the newly produced
vector is a codeword resp. a lattice vector, and is qualitatively better than the
original elements from the list.

The sieving-style ISD approach from [16] now uses two key ingredients that
differ from the lattice setting and make the sieving especially effective for finding
short codewords. First, instead of applying the sieving technique to the full code,
it is applied only to a subcode within the conventional ISD framework [15].
Essentially, the enumeration routine of the ISD procedure is substituted with a
sieving-style algorithm for finding small codewords. The second main difference
to the lattice setting is that, instead of starting with large codewords which
become shorter through the sieving steps, the weight is kept equal throughout
all sieving iterations. However, the “quality” of elements improves in each step
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as lists contain codewords from supercodes, where the codimension increases in
each step until codewords eventually belong to the input code.

The fundamental task of finding a pair e, e′ that produces a short sum is
called the near neighbor problem and has been extensively studied in various
settings [17,24,28,1,8]. Concretely, if we denote by

Snw ⊂ Fn
2 the set of binary vectors of weight w,

we are interested in the following formulation of the problem.

Definition 1.1 (w-Near Neighbor Search (informal)). Given a list of vec-
tors L ⊂ Snw of weight w, find all pairs x,y ∈ L2 s.t. |x+ y| = w.

Interestingly, this problem variant, where the input vectors all lie on the
sphere Snw, has not attracted much attention yet. It was studied in the context
of different input distributions in [11]. It was shown there that the fastest known
algorithms for a uniformly random list L ⊂ Fn

2 , without further tweaks, do not
perform well in the case of fixed-weight input vectors. Recent works [4,9] studied
a slightly more general version of the problem, where the input and output weight
can differ. Esser [9] shows that advanced algorithms for this problem have the
potential to improve the state of the art of ISD algorithms and provides a first
algorithm for solving the problem. Carrier [4] provides advanced algorithms by
showing how to efficiently adapt the concepts from the uniformly random input
list case to the sphere. Most recently, in the context of the introduction of sieving-
style ISD, GJN [16] specified a new algorithm for solving the w-near neighbor
search used as a subroutine in the sieving step.

Here we see room for improvement and systematization: lattice sieving has
benefited greatly from the Locality-Sensitive Filtering (LSF) framework, both
in terms of clarity and efficiency. We study the translation of this framework to
the Hamming case resulting in improved algorithms for the near neighbor search
and, consequently, in improved SievingISD instantiations.

1.1 Our contributions

The contribution of this work is twofold. First, motivated by the relevance of
the w-near neighbor search in the context of SievingISD [16] and in general
ISD algorithms [9], we provide improved algorithms solving the problem from
Definition 1.1. As this problem might be of independent interest, we provide
those results in their full generality, allowing application in an arbitrary context.
Our second contribution is to provide improved SievingISD instantiations based
on these new near neighbor routines. In this context, we initiate the asymp-
totic study of the SievingISD framework and establish the asymptotic complex-
ity exponent of the GJN algorithm. Further, we show that the new algorithms
significantly improve the GJN running time and provide a comparison to the
state-of-the-art of conventional ISD algorithms.
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Near Neighbor Algorithms. In order to construct new algorithms solving the w-
near neighbor search we formulate the Locality-Sensitive-Filtering framework in
the Hamming metric; this framework is a generic method for solving the near
neighbor problem and was originally proposed in the context of lattices [1] as
a generalization of Locally-Sensitive-Hashing techniques [19]. We show how to
adapt it to the Hamming metric and provide several concrete instantiations of
this framework.

We also obtain the GJN algorithm as one of those instantiations. In this
context we establish the asymptotic complexity of the GJN near neighbor algo-
rithm, later serving as a foundation when analyzing its use in the SievingISD
framework. We then give a series of algorithms resulting in significantly im-
proved asymptotic complexities. The asymptotically fastest algorithm uses the
most recent techniques based on Random Product Codes (RPCs). We were only
recently pointed to an existing analysis of RPCs for the Hamming sphere in the
Thesis of Carrier [4]. Because Carrier’s Thesis [4] is only available in French we
preferred to leave our own analysis in Section 4.2, but original credit should go
to [4].

Moreover, we give an additional algorithm (Hash-opt) particular to the
Hamming case which has high potential in practice: paying only a slight asymp-
totic penalty in comparison to RPC, it improves hidden sub-exponential factors
considerably. In Fig. 1 we illustrate the complexity exponent ϑ, where the time
complexity of the algorithms is equal to |L|ϑ, for varying weight and fixed list
size. We compare the previous approaches of GJN (GJN) and Esser (Esser)
against the fastest instantiation RPC-opt and the more practical instantiation
Hash-opt, as well as a quadratic search baseline, corresponding to ϑ = 2. It
can be observed that the new algorithms improve the running time significantly
for all weights.

SievingISD Instantiations. We study the asymptotics of SievingISD algorithms.
We focus on the worst-case complexity in the full-distance decoding setting, the
established measure for comparing the performance of decoding procedures. We
establish the asymptotic worst case complexity of the GJN SievingISD algorithm
as 20.117n. This shows that the algorithm improves on Prange’s original ISD al-
gorithm [29] but, opposed to initial assumptions [16], falls behind the modern
ISD algorithm by May, Meurer and Thomae (MMT) [23]. The new SievingISD
instantiations based on RPC-opt and Hash-opt improve significantly by de-
creasing worst case complexity to 20.1001n and 20.1007n respectively. As illustrated
in Fig. 2, this improvement is larger than the improvement made by any pre-
vious ISD algorithm over its predecessor.1 Moreover, RPC-opt and Hash-opt
improve drastically over the MMT algorithm and even slightly over the ISD
algorithm by Becker, Joux, May, Meurer (BJMM) [2].

1Due to the chosen precision, Fig. 2 shows equality between Sisd-RPC-opt and
Sisd-Hash-opt. However, in higher precision and for fixed rate Sisd-RPC-opt out-
performs Sisd-Hash-opt.
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Fig. 1: Comparison of the running time of different algorithms solving the w-near
neighbor search for fixed list size |L| = 20.05n.
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Fig. 2: Comparison of the asymptotic worst case runtime exponent c in the full
distance setting for different SievingISD and conventional ISD algorithms. Run-
time is of the form 2cn.

Note that the conventional ISD algorithm by Both and May [3], which incor-
porates the algorithmic refinements of more than a decade, still has the lowest
runtime exponent. However, we show that the recently introduced framework
of SievingISD allows for competitive instantiations, already coming close to the
best conventional ISD procedures. Moreover, practical applications usually resort
to the MMT algorithm [12,13] due to lower overheads. We propose a practical
SievingISD variant Sisd-Hash-opt which has a strong potential to lead to more
efficient implementations, as it improves significantly on the MMT runtime.

In practical scenarios, memory is often limited, which puts a burden on ISD
algorithms, SievingISD as well as conventional ISD, which require high amounts
of memory for their enumeration subroutines. However, those algorithms are able
to reduce the enumeration effort and with it the memory requirements at the cost
of an increased runtime, resulting in a time-memory trade-off. In the extreme
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case of only a polynomial amount of memory being available, they interpolate to
the running time of the original ISD algorithm by Prange. In Fig. 3, we compare
the resulting time-memory trade-offs of Sisd-Hash-opt and Sisd-RPC-opt
against those of Sisd-GJN and Both-May. Additionally, we compare against
two recently proposed improvements of the MMT and BJMM trade-offs due to
Esser and Zweydinger [13], labeled EZ-MMT and EZ-BJMM respectively.
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Fig. 3: Time-memory trade-off curves of SievingISD instantiations in comparison
to conventional ISD trade-offs (k = 0.5n, full distance, i.e., w ≈ 0.11n).

We observe that the new SievingISD instantiations outperform Sisd-GJN for
all memory parameters. Moreover, the Sisd-RPC-opt trade-off behavior comes
close to the one of Both-May for moderate amounts of memory. In terms of
practical instantiations, we find that Sisd-Hash-opt outperforms the recent
trade-offs by Esser and Zweydinger for any memory larger than 20.015n (EZ-
MMT) or 20.035n (EZ-BJMM), respectively, further supporting its practical
potential.

On heuristics. Our LSF algorithms that perform the near neighbor search do
not rely on any heuristics. We rely on heuristics only when we apply these al-
gorithms to solve the decoding problem. Note that, in the application to ISD,
the input vectors to a near neighbor routine are not independent since they
are constructed as pairwise sums of (potentially non-independent) vectors in
the previous sieving step. Roughly speaking, we assume that the input list el-
ements provided at any step behave like uniformly random and independent
vectors from the sphere Snw ⊂ F2 (for a more formal statement see Heuristic 1).
However, we show in extensive experiments (see Section 6) that this building
of iterative sums does not negatively influence the output list distribution. We
note that exactly the same situation occurs in lattices: LSF-based near neighbor
search techniques exhibit provable correctness and runtime [1], but efficient lat-
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tice sieving algorithms that rely on these LSF routines are heuristic. Moreover,
similar assumptions arose in other contexts [31,21,10], which have later been
substantiated by the corresponding proofs [25,7,22].

1.2 Technical Overview

This section aims to provide intuition and a simpler description of the algorithms
following the LSF framework in the Hamming metric to solve the problem from
Definition 1.1. Therefore, we omit some technical details (including Landau no-
tations) for the sake of clarity. Rigorous descriptions and proofs are presented
later in the main chapters.

The input contains a list L ⊂ Snw of uniform random and independent vectors.
We denote by |L| = N the list size. In the following, we call any pair x,y ∈ L
with |x+y| = w a solution to the near neighbor search. Notice that |x∧y| = w/2
for x,y ∈ Snw, implies that x,y is a solution to the near neighbor search,2 where
∧ is applied coordinate-wise. Therefore, we can also search for pairs with a
predefined coordinate-wise AND.

The idea of LSF is to apply a certain relation to list vectors such that if two
vectors collide under this relation, they are likely to be a solution. Specifically,
in LSF we create a set Cf ⊂ Fn

2 of filters or centers3 that divide the Hamming
space into (possibly overlapping) regions. Each element x ∈ L is assigned to a
filter c if and only if |x ∧ c| = α for some integer α. List elements assigned to
the same c form a bucket :

Bucketc,α = {x ∈ L : |x ∧ c| = α}.

Note that if two uniform random vectors x,y happen to be assigned to the
same bucket, they have a certain (large) overlap in support (positions of 1’s)
with c, so they are more likely to have overlap in support with each other. This
principle lies at the heart of Algorithm 1, which is a simplified version of the
more formal Algorithm 4, specified later.

To ease the description of the algorithm we introduce Bα,x – the set of valid
filters which a fixed x was assigned to.

Bα,x := {c ∈ Cf : |x ∧ c| = α}.

With that, the near neighbor search in Algorithm 1 consists of two steps: buck-
eting, which assigns each x to Bucketc,α for c ∈ Bα,x, and checking, which for
each x searches for a matching element in Bucketc,α for all c ∈ Bα,x.

Notice that Algorithm 1 does not specify how Cf should be chosen, nor the
parameter α that determines the bucketing phase. By specifying these two in-
puts, we obtain an instantiation of Algorithm 1. Interestingly, the recent GJN

2Precisely, those pairs are guaranteed to be of distance smaller or equal to w. However,
the overwhelming fraction is of distance exactly w.

3We use those terms interchangeably and even sometimes use the term filter centers
to refer to the elements from the set Cf .
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Algorithm 1: Near Neighbor Search (simplified)

Input : L ⊆ Sn
w,

Cf set of filter centers,
α – parameter

Output: list L′ containing pairs x,y ∈ L2 with |x+ y| = w

1 Bucketing Phase:
2 for x ∈ L do
3 Put x into Bucketc,α ∀c ∈ Bα,x

4 Checking Phase:
5 L′ = ∅
6 for x ∈ L do
7 for c ∈ Bα,x do
8 for y ∈ Bucketc,α do
9 if |x ∧ y| = w/2 then

10 store (x,y) in L′

11 return L′

approach [16] can be obtained as an instantiation of Algorithm 1 as we detail
below. However, as we show next, other choices of Cf and α lead to faster rou-
tines. In all the instantiations that we describe below, the following notations
should be kept in mind

⋄ N = |L| s.t. the expected number of solutions is N ,
⋄ F = |Snα | =

(
n
α

)
,

⋄ P = |Swα | =
(
w
α

)
,

⋄ D = E
[
|Bα,x ∩ Bα,y|

]
for some fixed pair x,y s.t. |x+ y| = w.

We describe the improvements in a progressive manner for didactic reasons start-
ing at the GJN approach. In the later rigorous analysis in Section 4 we then skip
certain, less effective variants. Whenever a variant has a counterpart in that
section we specify the corresponding statement in parenthesis for fast reference.

Sieving by Guo-Johansson-Nguyen (Lemma 4.2). The main idea of the GJN
sieving algorithm is to exploit the fact that for x,y satisfying |x| = |y| = w such
that |x+y| = w, there exists a c of weight w/2 such that |x∧c| = |y∧c| = w/2.
Moreover, given two vectors x,y of weight w, the existence of such a c implies
that |x+ y| ≤ w.

The GJN algorithm enumerates all those c and assigns x to a filter c if
|x∧c| = w/2. In the context of Algorithm 1 this means the set of filters contains
all vectors on the Hamming sphere of radius w/2, i.e., Cf = Snw/2, and the

bucketing parameter is chosen as α = w/2. This implies that there are |Cf | =
F =

(
n

w/2

)
filters, while any vector x ∈ L is stored within P =

(
w

w/2

)
buckets.

Let us now consider the runtime of this instantiation. From the above, the
cost for the bucketing phase amounts to NP . For the cost of the checking phase,
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we note that this parametrization gives (almost) no false positives and no false
negatives. Put differently, a pair of vectors found in the same bucket is (almost
always)4 of distance w and each pair of distance w is found. Furthermore, those
pairs are found exactly once, i.e., there are no duplicate pairs, since the valid c
is in fact unique as c = x ∧ y. This implies that the cost of the checking phase
is exactly the number of solutions, which, due to our choice of N , is N , giving
time and memory

T = NP and M = T = NP.

Sieving with False-Positives. While the GJN algorithm fits the LSF framework,
this LSF instantiation is just too restrictive. In particular, efficient LSF instanti-
ations try to balance the cost of the bucketing and checking phases to minimize
the time complexity. Usually, those instantiations give rise to false positives, that
is, pairs ending up in the same bucket, but not being as close as desired. Those
are then simply discarded during the checking phase.

To implement this idea, we change the parameters of the filters from having
weight w/2 to any smaller value. In particular, we choose the centers c now on
the α-sphere for α < w/2, i.e., Cf = Snα . Note that this changes the amount of
filters to |Cf | = F =

(
n
α

)
, while each element x ∈ L can be found in P =

(
w
α

)
buckets. Finding all centers associated with a vector x, i.e., all c ∈ Cf such that
|x ∧ c| = α remains efficient, by simple subset enumeration.

Therefore the bucketing phase has cost NP as before (now for updated P )
and on expectation, there are NP/F elements in each bucket as the probability
that x lands in a certain bucket is P/F . The checking phase iterates for every
list element over all elements in the associated buckets, which gives a total of
NP · (NP/F ) = (NP )2/F checks. The overall complexity is summarized as

T = NP + (NP )2/F and M = NP.

Note that this instantiation still does not allow for any false negative, meaning
all pairs of distance w are detected. In fact, each such pair is detected by exactly(
w/2
α

)
many centers.

Sieving with False Negatives. While it is optimal if every pair of distance w
is detected exactly once, the previous instantiation detects any such pair D =(
w/2
α

)
times. In the following, we therefore discard most of the bucket centers

c randomly, only keeping a 1/D fraction of them. Then on expectation, every
pair is still detected in one of the non-discarded buckets. This can be realized
by defining the set Cf to only include those centers for which H(c) = 0 for some
random function H : Snα → [D].

Since every list element H has to be evaluated for all P possible centers
to determine which centers are valid, the cost of the bucketing phase remains
unchanged. However, since the expected amount of considered filters is now only
|Cf | = F/D, every element is found in only P/D =

(
w
α

)
/D different buckets,

4The almost is related to the fact that |x ∧ y| = w/2 actually implies |x+ y| ≤ w.
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which reduces the cost of the checking phase and the memory consumption by
a factor of D, resulting in

T = NP + (NP )2/(DF ) and M = NP/D. (1)

Faster Sieving with False-Negatives (Theorem 4.3). Next, we mitigate the neces-
sity of looping over all P possible centers in order to decide which centers belong
to Cf by specially crafting H. Precisely, we craft H such that for a given x the
set of valid centers Bα,x (of expected size P/D) can be computed in time less
than P . For our concrete construction, consider a random binary linear code CH
(independent from the original input code) with co-dimension r ≈ logD. With
this code, define the hash function as follows

H(c) = 0 ⇐⇒ c ∈ CH.

In turn, we expect only 1/2r ≈ 1/D random centers to evaluate to zero under
this hash function.

Determining a valid center boils down to finding weight-α codewords in a
random binary code. It might appear that we came back to the original problem
of finding small-weight codewords, but it turns out that the effective length of
the code CH is much smaller than n, hence the search for small-weight codewords
is easier. In particular, denoting by Tdecode the running time of finding weight-α
codewords in CH, the overall complexity of this sieving subroutine is

T = N · (P/D + Tdecode) + (NP )2/(DF ) and M = NP/D. (2)

Later in our formal analysis we use Prange’s algorithm [29] to instantiate a
decoder for CH.

Repeating Faster Sieving with False Negatives (Corollary 4.1). In order to im-
prove the memory of the above algorithm, we do not consider all filters at
once but rather repeat bucketing and checking phases for smaller sets of size
|Cf | = F/(D · R), for a repetition parameter R. Each individual run then uses
less time and memory while after R repetitions we expect to find all the solu-
tions. Concretely, we reduce the size of |Cf | by choosing smaller codes CH, with
co-dimension r ≈ log(DR), for the construction of H. Since in each individual
run, we consider only a 1/R fraction of the filters, the relevant expectations are
reduced by that factor, leading to a time and memory complexity of

T = R ·
(
N · (P/(DR) + T ′

decode) + (NP )2/(DRF )
)

and M = NP/(DR)

= N · (P/D +R · T ′
decode) + (NP )2/(DF ) and M = NP/(DR). (3)

Here T ′
decode denotes the time complexity to determine the set Bα,x for a given

x, corresponding to finding weight-α codewords in the, now smaller, code CH.
Note that interestingly this technique also allows decreasing the time complexity
in comparison to Eq. (2), since by tweaking the code parameters we can ensure
that over all executions we still reduce the overhead for finding valid centers,
i.e., we ensure R · T ′

decode < Tdecode.
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Sieving with Random Product Codes (RPC) (Theorem 4.4). Finally, we describe
a technique that does not introduce any asymptotic overhead for finding valid
centers, i.e., we construct the set Bα,x for any element x in time |Bα,x|.

The way we achieve this is by using random product spherical codes. We

construct Cf = C(1)f × C(2)f × . . . × C(t)f as the Cartesian product of t sets (or

non-linear codes) C(i)f . The sets themselves contain a random selection of vectors

of length n/t on the α/t-sphere, i.e., C(i)f ⊂ S
n/t
α/t . The cardinality of each set is

|C(i)f | = t
√
F/D, such that overall |Cf | = F/D centers are considered.

A list element x = (x1, . . . ,xt) is now stored in the bucket associated with
c = (c1, . . . , ct). Interestingly, bucketing remains efficient because of the product

structure. For an element x ∈ L first all partial centers c1 of C(1)f are found that
can be extended to valid bucket center, i.e., those with |x1 ∧ c1| = α/t. Then
the algorithm iteratively proceeds with the next partial center. Once all partial
centers have been found, those are again combined product-wise to determine all
buckets in which x has to be stored. Using this strategy together with a careful
selection of parameters allows to decrease the cost of the bucketing phase to
NP/D. In total the complexities become

T = NP/D + (NP )2/(DF ) and M = NP/D.

Smaller RPCs with Repetitions (Corollary 4.2). We again apply the technique of
repeating the algorithm R times on smaller initial sets |Cf | = F/(DR). However,
since in comparison to Eq. (3) there is no overhead in finding valid centers
involved, we fix the repetition amount to R = P/D. This leads to an optimal
memory complexity that is linear in the initial list size N , while maintaining the
same time complexity, which gives

T = NP/D + (NP )2/(DF ) and M = N.

Experiments. The source code for our experiments from Section 6 as well as the
scripts used for the numerical optimization of the SievingISD instantiations are
available at https://github.com/setinski/Sieving-For-Codes.

2 Preliminaries

We use non-bold letters for scalars, small bold letters for vectors, and capital
bold letters for matrices. We denote by F2 the binary finite field and by Fn

2 the
corresponding vector space of dimension n. We use standard Landau notation,
where Õ (·) omits polylogarithmic factors. All logarithms are base 2. We define
H(ω) := −ω log(ω) − (1 − ω) log(1 − ω) to be the binary entropy function. For
a vector x we denote by |x| := |{xi | xi ̸= 0}| the Hamming weight of x, which
counts the number of non-zero coordinates in x. The sphere of radius w in Fn

2 is
defined as Snw := {x ∈ Fn

2 | |x| = w}, which is of size |Snw| =
(
n
w

)
.
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Coding theory. A binary linear [n, k] code C is a k-dimensional subspace of Fn
2 ,

where n is called its length and k its dimension. Such a code can be represented

efficiently via a parity-check matrix H ∈ F(n−k)×n
2 . The code C is then given as

C := {c ∈ Fn
2 | Hc = 0}.

We make use of common transformations referred to as puncturing and short-
ening of codes.

Definition 2.1 (Code puncturing). For a linear [n, k] code C and a binary
vector x ∈ Fn

2 with |x| = n′ we define by πx : c 7→ c ∧ x the puncturing function
relative to the support of x, and πx(C) to be the corresponding punctured code.

Note that if the support of x is an information set of C, πx is bijective (when
implicitly restricted to C), in which case we can define π−1

x to return the unique
pre-image in C.

Definition 2.2 (Code shortening). For a linear [n, k] code C and a binary
vector x ∈ Fn

2 with |x| = n′ we define by σx(C) := {c ∈ C | c ∧ x̄ = 0}, the code
shortened in the coordinates where x has support. Here x̄ := 1+x is the bitwise
complement of x.

Problem definitions. A central problem in coding theory underlying the security
of many code-based primitives is the syndrome decoding problem, defined as
follows.

Definition 2.3 (Syndrome Decoding Problem (SDP)). Let C ⊆ Fn
2 be a

linear [n, k] code given via a parity check matrix H ∈ F(n−k)×n
2 . Given a weight

w ∈ N and a syndrome s ∈ Fn−k
2 , find a vector e ∈ Snw satisfying He = s.

In the remainder of this work, we study the problem of codeword finding instead,
given in the following definition.

Definition 2.4 (Codeword Finding Problem (CFP)). Let C ⊆ Fn
2 be a

linear [n, k] code. Given a fixed weight w ∈ N, find a vector e ∈ Swn ∩ C.

We consider w to be linear in n, concretely for our asymptotic results, we
choose w to match the Gilbert-Varshamov bound, i.e., w = H−1(1−k/n)n, where
H−1(·) is the inverse of the binary entropy function on the interval [0, 0.5]. This
guarantees that for both the SDP as well as the CFP the solution is unique.

Note that both problems are equivalent under the weight, length, and di-
mension preserving5 polynomial reductions, implying that our results translate
one-to-one to the SDP case. Observe that any solution e to codeword finding
satisfies He = 0 and, hence, forms a solution to SDP for syndrome s = 0. Now,
any SDP instance with solution e′ defined by H, s can be transformed into an

5Precisely, either length and weight or dimension increase by one depending on the
chosen reduction.
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instance (H′, s′ = 0), by letting H′ = (H | s). Now, this forms a CFP instance
with increased weight w + 1, length n+ 1, and solution (e′, 1).

To solve those problems, ISD algorithms can be applied. The following lemma
states the complexity of the original ISD algorithm by Prange to find all code-
words of weight w in a given code.

Lemma 2.1 (Prange, [29]). Given a binary linear [n, k] code C. Then for
w ≤ n − k, Prange’s algorithm returns all weight w codewords in C in time

T = Õ
((

n
w

)/(
n−k
w

))
and memory M = Õ (1).

3 The Information Set Decoding (ISD) Framework

The information set decoding (ISD) framework consists of the following 3 steps.
The first step samples x ∈ Snn′ and verifies if the dimension of the punctured code
πx(C) is equal to k. If that is the case, the support of x contains an information set
of C, and the algorithm continues.6 In the second step, the algorithm computes
N weight w′ codewords of the punctured code πx(C) using a sieving oracle. In
the third and final step, the algorithm checks if any of these codewords (from
the punctured code) yields a codeword of weight w in the original code when
lifted using π−1

x . The procedure is detailed in Algorithm 2.

Algorithm 2: ISD

Input : An [n, k] code C, parameters w and n′ > k. An oracle O returning N
distinct uniformly random weight-w′ codewords in a given code.

Output: e ∈ C such that |e| = w
1 repeat
2 Choose random x ∈ Fn

2 with |x| = n′ and dim(πx(C)) = k
3 L← O(πx(C), w′)
4 if ∃ y ∈ L : |π−1

x (y)| = w then
5 return π−1

x (y)

There are many ways to instantiate the oracle O in Algorithm 2, and we will
refer to Algorithm 2 as SievingISD when this oracle is a sieving algorithm, that
is an oracle as templated in Algorithm 3.

Theorem 3.1 (Complexity of ISD). Let C be an [n, k] code and w ≤
H−1(1 − k/n)n be an integer. Let TO and MO be the expected time and the
expected memory complexities of the oracle O used in Algorithm 2. Then Algo-
rithm 2 returns a weight-w codeword in C, if such exists, in expected time and
memory

T = Õ
(
(p1p2)

−1 · TO

)
and M = MO,

6This happens at least with constant probability [6] so it will be omitted from the
asymptotic analysis of the running time of the algorithm.
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for any n′, w′ ensuring p2 ≤ 1, where

p1 :=

(
n′

w′

)(
n− n′

w − w′

)/(n
w

)
and p2 := N · 2n

′−k
/(n′

w′

)
.

Proof. Note that x is chosen randomly and as long as y′ := πx(e) = w′, we have
y′ ∈ πx(C) ∩ Sn

′

w′ , which implies that y′ can be contained in L. Further, as long
as dim(πx(C)) = k, πx is bijective which reveals e = π−1

x (y′), once y′ is found.
Regarding the success probability of the algorithm, first, it must be the case

that e has weight w′ when projected onto the support of x, that is |e∧ x| = w′.
This happens with probability

p1 =

(
n′

w′

)(
n− n′

w − w′

)/(n
w

)
If this first condition is fulfilled, we need to consider whether e∧x is included

in L. Note that there are on expectation
(
n′

w′

)/
2n

′−k codewords of weight w′ in
πx(C). The probability that e∧x is included in a list of size N sampled uniformly
at random from the set of small codewords is therefore

p2 = 1−
(
1− 2n

′−k
/(n′

w′

))N

= Θ

(
N · 2n

′−k
/(n′

w′

))
. (4)

Here, the last equality follows from the fact that for the oracle to be feasible it
must hold

N ≤
(
n′

w′

)
· 2k−n′

, (C 1)

i.e., there must exist N distinct codewords of weight w′ in πx(C). Note that this
inequality translates to p2 ≤ 1.

The time complexity of the algorithm is the time per iteration divided by the
success probability. We already saw that the success probability is p1p2, while
one iteration is dominated by the time it takes to query the oracle, which is TO,
resulting in the claimed running time. Besides the list L, the algorithm stores
only elements of polynomial size, therefore the memory complexity is equal to
the memory complexity of the oracle, which is at least N . ⊓⊔

The Sieving Subroutine Algorithm 2 has access to an oracle O returning
N distinct weight-w′ codewords for a given code. In our work, the oracle is
instantiated using the sieving routine detailed in Algorithm 3.

This routine starts with an arbitrary list of small-weight words of length n′,
i.e., a list L ⊂ Fn′

2 = C0. Note that choosing small-weight words from C0 is
efficient. The algorithm proceeds iteratively using a tower of codes C0 ⊂ C1 ⊂
. . . ⊂ Cn′−k = C′. In each iteration i a new list of short codewords belonging
to code Ci is constructed from sums of elements of the current list; until in
iteration n′ − k the constructed list finally contains codewords from C′ = Cn′−k.
A possible choice for the tower of codes is, for example, Ci’s whose parity-check
matrix consists of the first i rows of the parity-check matrix from C′.
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Algorithm 3: O: Sieving

Input : [n′, k]-code C′, N and w′.
Output: set L = {e ∈ C′ : |e| = w′} with |L| = N

1 Choose a tower of codes Fn′
2 = C0 ⊂ C1 ⊂ · · · ⊂ Cn′−k = C′, with dimension

decrements of 1.

2 Choose N random distinct vectors of Fn′
2 of weight w′ as initial set L

3 for i = 1 to n′ − k do
4 L← {x+ y s.t. |x+ y| = w′ and (x,y) ∈ L2} ∩ Ci
5 Discard some elements if |L| > N

6 Return L

For constructing the list in iteration i we first apply a near neighbor sub-
routine, which finds all words of weight w′ that can be constructed via pairwise
sums from the current list; after which we filter the list for codewords belonging
to the current code Ci.

Maintaining the list size. Note that, since all used codes Ci are linear and two
subsequent codes’ dimension differs by one, the filtering discards on expectation
half of the constructed elements. Through all iterations, we aim at maintaining
a steady list size of N , by discarding elements if necessary. Therefore, the list
L must be large enough so that at least N many pairs (x,y) ∈ L2 sum to
short vectors. Accounting for a loss of half of the vectors, since on expectation
#Ci/#Ci+1 = 2, and for the fact that we take every pair twice, this requires

N ≥ 4 ·
(
n′

w′

)/( w′

w′/2

)(
n′ − w′

w′/2

)
(C 2)

In the following, we choose N up to a constant factor equal to this lower bound.

Finding Short Sums. In the application of the near neighbor routine to ISD we
rely on a certain heuristic, common to the sieving setting. Informally, we treat
elements contained in the lists in each iteration as independently and uniformly
sampled from the w′-sphere Sn′

w′ . This allows us to study algorithms that solve
the w-near neighbor search to construct L. This problem is defined as follows.

Definition 3.1 (w-Near Neighbor Search). Given a list of uniformly and
independently distributed vectors L ⊂ Snw of weight w with |L| = N , find a
(1− o(1))-fraction of pairs x,y ∈ L2 s.t. |x+ y| = w.

We refer to this problem as NNS(N,n,w) while we refer to (L, n,w) as an instance
of the problem.

Our heuristic assumption is that the time and memory complexity of algo-
rithms solving the w-near neighbor search is only mildly affected by the de-
pendencies between list elements if constructed as pairwise sums over multiple
iterations as in Algorithm 3. We formalize this in the following heuristic.
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Binary-Sieve Heuristic Let n′ ∈ N, κ, ω, λ be positive constants. Let k = κn′,
w′ = ωn′ and |L| = N = 2λn

′
satisfying Constraints Eq. (C 1) and Eq. (C 2).

Then, we assume that:

1. The running time and memory complexity of any algorithm applied to the
near neighbor search instance (L, n′, w′) for L from Line 4 of Algorithm 3
is at most affected by a factor of 2o(n

′) in comparison to L being sampled
uniformly and independently from Sn′

w′ .
2. The probability of any element being present in the finally returned list L in

Line 6 of Algorithm 3 is up to a 2o(n
′) factor equal to the probability that L ⊂

C ′∩Sn′

w′ is drawn uniformly at random. Formally, Pr
[
c ∈ L | c ∈ C′ ∩ Sn′

w′

]
≥

p2/2
o(n′) for p2 from Eq. (4).

The first part of the heuristic ensures that we can use algorithms solving the
w-near neighbor search in order to construct the list L in each iteration. The
second part is necessary to ensure that the success probability (see Eq. (4)) of
Algorithm 2 is not significantly impacted and the runtime statement of Theo-
rem 3.1 remains valid when instantiating the oracle with Algorithm 3.

Note that an analogous heuristic is used by lattice sieving algorithms [1,
Section 7]. Also in the binary case, heuristics about the mild effect of stochastic
dependencies from iterative sums are commonly used as, for example, in the
context of Learning Parity with Noise (LPN) [21,10], the generalized birthday
problem (GBP) [31] or even by other ISD algorithms [23,2,24]. Those heuristics
have been put to the test experimentally [10,12] and most of them have been
proven in later works [25,7,22]. In addition, we provide experiments verifying the
heuristic in our precise context in Section 6.

Relying on this heuristic, the running time of the oracle (Algorithm 3) is
asymptotically equal to the time required to solve the w-near neighbor search.
We summarize this in the following theorem.

Theorem 3.2 (Complexity of the Sieving Oracle). Let n′ ∈ N, κ, ω, λ
be positive constants. Let k = κn′, w′ = ωn′ and |L| = N = 2λn

′
satisfying

Constraints Eq. (C 1) and Eq. (C 2). Further, let TNNS and MNNS be the time
and memory complexities to solve the NNS(N,n′, w′) Then, under the Binary-
Sieve Heuristic the time and memory complexity of Algorithm 3 is

TO = Õ (TNNS) and MO = Õ (MNNS) .

Proof. Note that N is exponential in n′. Therefore, the running time of Al-
gorithm 3 is dominated by the construction of the list in Line 4. Under the
Binary-Sieve Heuristic the running time to construct this list is Õ (TNNS) and
the memory needed is Õ (MNNS). ⊓⊔

Theorem 3.2 motivates the further study of algorithms to solve the w-near neigh-
bor search problem in the following section. Later in Section 5 we study the
performance of SievingISD, i.e., Algorithm 2 in combination with Algorithm 3,
instantiated using those near neighbor search routines.
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4 Near Neighbor Search in the Hamming Metric

In this section, we present different algorithms solving the w-near neighbor search
from Definition 3.1. We first recall the general locality sensitive hashing (LSH)
or locality sensitive filter (LSF) framework for near neighbor search – a frame-
work that forms the basis for many of the best known algorithms to find near
neighbors [24,1,11]. We then show that the recently presented algorithm by Guo-
Johansson-Nguyen [16] already falls into this framework. We proceed by present-
ing and analyzing different improvements.

Locality Sensitive Filtering. Define first a set Cf ⊂ Fn
2 of filter vectors c that

divide the Hamming space into regions. Concretely, for an integer α let

Regionc,α = {x ∈ Fn
2 : |x ∧ c| = α}. (5)

Notice that for a sufficiently large α, two vectors that lie in the same region
have large overlapping support with a fixed vector c, hence their sum has a high
chance of being of small Hamming weight. A bucket associated to center c is
defined as Bucketc,α = Regionc,α ∩ L.

The idea of LSH/F is to assign all vectors from L to Bucketc,α,∀c ∈ Cf .
Therefore, for all x ∈ L, we first find all valid filters defined as the set

Bα,x := {c ∈ Cf : |x ∧ c| = α}.

For a fixed x, the procedure of determining and returning those valid filters is
called ValidFilters in Algorithm 4. We denote the step of assigning all elements
to each of its buckets as bucketing phase. Subsequently, the search for close pairs
is carried out only within each Bucketc,α, which we refer to as checking phase.

Complexity of Algorithm 4 Let us give a general lemma stating the com-
plexity and correctness of Algorithm 4 to which we refer in our later analyses.

Lemma 4.1 (Complexity of Algorithm 4). Let x,y be s.t. |x| = |y| =
|x + y| = w and TValidFilters denote the time to compute the set Bα,x for any
given x ∈ L. Then Algorithm 4 returns a list containing x,y in expected time T
and expected memory M , where

T = Õ
(
N · (TValidFilters + E

[
|Bα,x|

]
· E
[
|Bucketc,α|

]
)
)
and

M = Õ
(
N · E

[
|Bα,x|

])
with probability q := Pr [∃c ∈ Cf : c ∈ Bα,x ∩ c ∈ Bα,y] whenever E

[
|Bα,x|

]
≥ 1.

Proof. Note that the algorithm recovers a w-close pair x,y whenever there is a
c ∈ Cf for which c is a valid filter for both, x and y. More formally, a w-close
pair x,y whenever ∃c ∈ Cf : c ∈ Bα,x and c ∈ Bα,y since, in that case, x is stored
in Bucketc,α in the bucketing phase, while y checks Bucketc,α in the checking
phase for close pairs.
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Algorithm 4: Near Neighbor Search

Input : NNS(L, n,w) instance where L ⊆ Sn
w, description of the set Cf of

bucket centers c, bucketing parameter α
Output: list L′ containing pairs x,y ∈ L2 with |x+ y| = w

1 Bucketing Phase:
2 for x ∈ L do
3 for c ∈ ValidFilters(Cf ,x, α) do
4 store x in Bucketc,α

5 Checking Phase:
6 L′ = ∅
7 for x ∈ L do
8 for c ∈ ValidFilters(Cf ,x, α) do
9 for y ∈ Bucketc,α do

10 if |x ∧ y| = w/2 then
11 store (x,y) in L′

12 return L′

The running time of the algorithm is dominated by the checking phase. The
bucketing can be performed in the expected time

TBucket = Õ (N · TValidFilters) ,

where TValidFilters is the expected time to retrieve the set Bα,x for a fixed x via
the ValidFilters function. The checking phase performs the same identifica-
tion of valid centers. Additionally, for all returned valid centers it explores the
corresponding bucket to find w-close pairs. Note that this exploration can be
performed in time linear in the size of the bucket. Hence, we have

TCheck = TBucket + Õ
(
N · E

[
|Bα,x|

]
· E
[
|Bucketc,α|

])
.

Note that the expected bucket size is given by

E
[
|Bucketc,α|

]
=

N · E
[
|Bα,x|

]
|Cf |

, (6)

since there are expected N · E
[
||Bα,x||

]
elements stored among all buckets and

the probability of any of those elements being located in a specific bucket is
1/|Cf |. The total running time of Algorithm 4 therefore amounts to

T = TBucket + TCheck = Õ
(
N · (TValidFilters + E

[
|Bα,x|

]
· E
[
|Bucketc,α|

]
)
)
,

while the expected memory is given by

M = Õ
(
N
(
1 + E

[
|Bα,x|

]))
= Õ

(
N · E

[
|Bα,x|

])
,

as long as E
[
|Bα,x|

]
≥ 1. ⊓⊔
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The main differences of all following instantiations of Algorithm 4 lie in the
precise choice of Cf and the definition of the ValidFilters function.

The GJN algorithm We first show that the GJN algorithm already falls into
the framework of Algorithm 4 and establish its asymptotic complexity for a later
classification of our improvements.

The main idea of the GJN near neighbor algorithm is to exploit the fact that
for x,y satisfying |x| = |y| = w and |x+ y| = w, there exists a c of weight w/2
such that |x∧ c| = |y ∧ c| = w/2. Moreover, given two vectors x,y of weight w,
the existence of such a c implies that |x+ y| ≤ w.

In the context of Algorithm 4 the GJN algorithm chooses Cf = Snw/2 and

α = w/2. For a given x the valid centers c are found by simple enumeration
of all weight w/2 words restricted to the support of x. That is the function
ValidFilters is defined as

ValidFilters(Snw/2,x, w/2) returns BSn
w/2

,w/2,x := {c ∈ Snw/2 : |x∧c| = w/2}.
(7)

Note that this set can be efficiently enumerated in time |BSn
w/2

,w/2,x| =
(

w
w/2

)
.

Lemma 4.2 (LSF via GJN). Let n,w ∈ N, w < n. Further, let Cf := Snw/2,

α := w/2 and ValidFilters as defined in (7). Then Algorithm 4 solves the
NNS(N,n,w) using expected time T and expected memory M , where

T = M = Õ
(
N ·

(
w

w/2

))
.

Proof. Note that for any w-close pair x,y with |x| = |y| = w, it holds that
c∗ = x ∧ y is of weight |c∗| = w/2. Also it implies |x ∧ c∗| = |y ∧ c∗| = w/2.
Therefore we have c∗ ∈ BSn

w/2
,w/2,x as well as c∗ ∈ BSn

w/2
,w/2,y implying that

any such pair x,y, is recovered with probability q = 1 (compare to Lemma 4.1).
The ValidFilters function can be computed in time TValidFilters =

Õ
(
|BSn

w/2
,w/2,x|

)
= Õ

((
w

w/2

))
, while the expected bucket size is given (com-

pare to Eq. (6)) as

E
[
|Bucketc,α|

]
=

N · E
[
|BSn

w/2
,w/2,x|

]
|Snw/2|

=
N ·

(
w

w/2

)(
n
w

) .

The expected time complexity therefore becomes (see Lemma 4.1)

T = Õ

(
N

(
w

w/2

)
·

(
1 +

(
w

w/2

)(
n
w

) )) = Õ
(
N

(
w

w/2

))
,

while the expected memory amounts to the same value, since M =

Õ
(
N · E

[
|BSn

w/2
,w/2,x|

])
= Õ

(
N
(

w
w/2

))
. ⊓⊔
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Improved instantiations of the Framework While the GJN algorithm
chooses the set Cf = Snw/2 to be all vectors on the w/2-sphere, our following

algorithms choose Cf ⊂ Snv with v < w/2.
Notice here that choosing the subset Cf too small might lead to false neg-

atives, i.e., close pairs that never fall into the same bucket and, hence, remain
undetected. On the other hand, to optimize the running time, we aim at choosing
Cf of minimal size while still detecting all pairs. To determine this lower bound
on |Cf |, we analyze the number of centers on the v-sphere that can identify a
given close pair, which we call D in the following (analogous to Section 1.2). We
then show that a 1/D fraction of all centers, i.e. |Cf | ≥ |Sn

v |/D, is sufficient to
identify all pairs.

Aligned with the lattice sieving literature, our analysis uses a geometric in-
terpretation of the algorithm. Let us first recall the definition of a region from
Eq. (5)):

Regionc,v := {x ∈ Fn
2 : |x ∧ c| = α}.

We can then define a spherical cap as the intersection of the sphere with a region7

and thus obtain the following definition.

Definition 4.1 (Spherical cap). For c ∈ Snw, integers 0 ≤ α,w ≤ n, a spher-
ical cap is defined by Cc,w,α := Snw ∩ Regionc,v ≡ {x ∈ Snw : |x ∧ c| = α}.

The volume of a cap is defined as the number of elements included in the cap
and can be computed as follows.

Theorem 4.1 (Cap volume). Fix integers 0 ≤ α ≤ w ≤ n and fix c ∈ Snv .
Then the volume of Cc,w,α is C n

v,w,α := Vol(Cc,w,α) =
(
v
α

)
·
(
n−v
w−α

)
.

Proof. The first binomial in the product defines the number of possible place-
ments of α-many 1’s in x ∈ Cc,w,α that we should put in the support of c.
The second binomial defines the number of possible placements of the remaining
(w − α)-many 1’s of x in the 0-positions of c. ⊓⊔

Note that the spherical cap Cc,w,α includes all values x on the w-sphere which
are associated with the bucket center c. In turn Cx,v,α = BSn

v ,α,x describes the
set of bucket centers c on the v-sphere to which a fixed element x is associated.
Therefore, the set of bucket centers that is able to identify a fixed pair of distance
w, is formed as the intersection of two spherical caps, which we call a spherical
wedge in the following.

Definition 4.2 (Spherical wedge). Fix integers 0 ≤ α, v ≤ n. For x,y ∈ Fn
2

of weight w a (spherical) wedge is defined as

Wn
x,y,v,α := Cx,v,α ∩ Cy,v,α ≡ Snv ∩ Regionx,α ∩ Regiony,α

≡ {c ∈ Snv : |c ∧ x| = |c ∧ y| = α}.
7The previously defined regions can also be interpreted as half-spaces common in the
lattice sieving literature.

20



Now the number of centers able to identify a fixed pair x,y is the number
of elements in Wn

x,y,v,α, or alternatively its volume Vol(Wn
x,y,v,α). The following

lemma specifies this volume for a fixed pair x,y of distance w.

Theorem 4.2 (Wedge volume). Fix integers 0 ≤ α, v ≤ n. For x,y ∈ Fn
2 of

weight w s.t. |x+ y| = w it holds that

W n
w,v,α := Vol(Wn

x,y,v,α) =

w/2∑
e=0

(
w/2

e

)(
w/2

α− e

)2(
n− 3w/2

v − 2α+ e

)
Proof. The statement of the theorem follows from counting the possibilities to
place the v ones in c on the positions where either x or y have support, none of
them have support or both of them have support.

Concretely, denote the number of 1-entries of c on the positions where x and
y have support by e. We have e ∈ [0, w/2], since |x∧y| = w/2. Since c ∈ Wn

x,y,v,α

implies that c overlaps with the support of x (resp. y) in exactly α positions
there must be additional α− e ones in c among the w/2 positions where only x
(resp. y) has support. The remaining v−2α+e ones of c then have to be placed
among the n− 3w/2 positions where neither x nor y have support. ⊓⊔

The volume of the wedge describes how often a close pair is identified con-
sidering all bucket centers c on Sv. Throughout this quantity is labeled D. The
following remark shows how to obtain the previous value of D from Theorem 4.2.

Remark 4.1 (Obtain D via Theorem 4.2). Note that for α = v, it follows that
the only e for which the term of the sum in Theorem 4.2 is well defined is e = v.
This in turn gives Vol(Wn

x,y,v,α) =
(
w/2
v

)
which exactly matches the previously

stated value of D in Section 1.2.

Note that asymptotically W n
w,v,α is equal to the maximal addend of the sum

in Theorem 4.2. The following remark shows how to obtain the value of e for
which the term in the sum is maximized numerically.

Remark 4.2 (Maximal addend in Theorem 4.2). The value of e for which the
addend in the sum of Theorem 4.2 becomes maximized does not seem to have a
compact representation. However, it can be computed numerically. In particular,
approximating the binomials via

(
a
b

)
≈ 2aH(b/a) and then taking the partial

derivative wrt. e, leads to the following cubic

e (w′/2 + α− e)
2
(v− 2α+ e) = (w′/2− e)(α− 2)2(n− 3w′/2− v+2α− e). (8)

A similar equation appears in the Thesis of Carrier [4, Eq. 8.10]. This cubic
has one real and two imaginary roots. The real root gives the maximal addend.
To obtain the integer solution the value can be rounded up- or downwards,
depending on which one is larger.

In the next lemma, we formalize that choosing the size of Cf to be larger than
Vol(Sn

v )/D = Vol(Sn
v )/W

n
w,v,α indeed guarantees to identify every w-close pair

with overwhelming probability.
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Lemma 4.3 (Amount of Filters). Let n ∈ N be sufficiently large, w,α, v =
Θ(n) be integers. Let x,y ∈ Snw satisfy |x ∧ y| = w. Further, let Cf ⊂ Snv be a

random subset of size |Cf | ≥ poly(n) · Vol(Sn
v )

Vol(Wn
x,y,v,α) =

poly(n)·(nv)
W n

w,v,α
. Then we have

q = Pr [∃c ∈ Cf : c ∈ Bα,x ∩ Bα,y] = Pr
[
∃c ∈ Cf : c ∈ Wn

x,y,v,α

]
≥ 1− negl(n).

Proof. We have

q = 1−
(
1−

W n
w,v,α

Vol(Snv )

)|Cf |

≥ 1−
(
1−

W n
w,v,α

Vol(Snv )

) poly(n)·Vol(Sn
v )

W n
w,v,α

≥ 1−exp(− poly(n))

⊓⊔

4.1 LSF via Coded Hashing

Our first improved version relies on a hash function to select the random subset
Cf . While not leading to the asymptotically fastest variant, it already comes
close and has comparably low overhead and therefore might be well suited for
practical settings.

Note that in order to select a random subset of filters Cf ⊂ Snv of size
Vol(Snv )/2r we can define a random hash function H : Snv → [2r] and define
Cf := {c ∈ Snv | H(c) = 0}. Put differently, we discard all filters c ∈ Snv with
H(c) ̸= 0. However, without further tweaks, this would still require looping over
all possible filters in Snv and evaluating H in order to decide if the respective
filter should be discarded or not. In turn, this would only improve the checking
phase, but not the bucketing phase.

To overcome this problem, we design a hash function that, for any given
x ∈ L, identifies more efficiently the valid centers c ∈ Bα,x. The hash function is
instantiated via a random binary linear code CH of length n and dimension n−r.
Notice here that for such a code, any filter c ∈ Cf is contained as a codeword
with probability Pr [c ∈ CH] = 1

2r . The hash function thus outputs 0 if and only
if c ∈ CH. Therefore, the problem of identifying valid bucket centers reduces to
finding codewords of weight v in CH.

Let us now take α = v, where Cf ⊂ Snv . For a given list element x ∈ L, the
support of valid bucket centers c ∈ Bα,x overlaps entirely with the support of x,
i.e. x ∧ c = c. This implies that for c ∈ Bα,x we have

H(c) = 0⇔ c ∈ CH ⇔ c ∈ σx(CH),

where σx(CH) denotes a shortened code. This further means we only need to find
short codewords in σx(CH), which is presumably easier. We detail the procedure
to identify valid bucket centers for a given list element x in Algorithm 5.

Lemma 4.4 (ValidFilters for Coded Hashing). Let CH be a [n, n−r] code
and Cf = Snv ∩CH, v ∈ N . Then Algorithm 5 returns the set Bv,x in time

(
w
v

)/(
r
v

)
.
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Algorithm 5: ValidFilters (coded hashing)

Input : Sn
v and random [n, n− r] code CH describing Cf = Sn

v ∩ CH, list
element x ∈ Sn

w, bucketing parameter v
Output: Bv,x := {c ∈ Cf : |x ∧ c| = v}

1 return {σ−1
x (c) | c ∈ σx(CH) with |c| = v}

Proof. Note that by the above argumentation the sets

Bv,x := {c ∈ Snv ∩ CH : |x ∧ c| = v} and {c ∈ σx(CH) : |c| = v}

are identical, implying the correctness of the algorithm. We use Prange’s algo-
rithm to find all short codewords in σx(CH). Note that σx(CH) has an effective
length of |x| = w and dimension w − r. The asymptotic cost of Prange’s algo-
rithm to find all weight v codewords in σx(CH) is, as per Lemma 2.1,

(
w
v

)/(
r
v

)
.
⊓⊔

The following theorem establishes the running time using our approach of a
coded hash function.

Theorem 4.3 (LSF via Coded Hashfunction). Let n ∈ N, w, v = Θ(n).

Further let α := v, CH be a random binary [n, n−r] code for r := log
(
w/2
v

)
−log n,

Cf = Snv ∩ CH and ValidFilters as defined in Algorithm 5. Then Algorithm 4
solves the NNS(N,n,w) using expected time T and expected memory M , where

T = Õ

(
N ·

(
w

v

)
·

((
r

v

)−1

+
N
(
w
v

)(
n
v

)
· 2r

))
and M = Õ

(
N ·

(
w

v

)/(w/2
v

))
.

Proof. Note that |Cf | = Snv ∩ CH = {c ∈ CH : |c| = v}. Therefore we have

E
[
|Cf |
]
=

(
n
v

)
2r

=
n ·Vol(Snv )(

w/2
v

) =
n ·Vol(Snv )

Ww,v,α
,

where the last equality follows from the fact that α = v (compare to Remark 4.1).
Assuming that this construction of Cf via a random linear code resembles a ran-
dom subset of Snv of size E

[
|Cf |
]
, we can apply Lemma 4.3, which ensures that ev-

ery close pair is stored in the same bucket at least once with overwhelming prob-
ability. The correctness now follows from the correctness of the ValidFilters

function (see Lemma 4.4) and Algorithm 4 (see Lemma 4.1).
Note that the set of valid filters is of size

E
[
|Bv,x|

]
= E

[
|{c ∈ σx(CH) : |c| = v}|

]
=

(
w

v

)/
2r = Θ̃

((
w

v

)/(w/2
v

))
.

Therefore the condition E
[
|Bv,x|

]
≥ 1 of Lemma 4.1 is satisfied. Due to

Lemma 4.4 the set Bv,x can be computed in time TValidFilters =
(
w
v

)/(
r
v

)
. The
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expected bucket size is given by

E
[
|Bucketc,α|

]
=

N · E
[
|Bv,x|

]
|Cf |

=
N
(
w
v

)(
n
v

) .

Eventually, by plugging in those quantities into the time complexity given by
Lemma 4.1 we obtain the claim, namely

T = Õ

(
N ·

((
w

v

)/(r
v

)
+

N
(
w
v

)2(
n
v

)
· 2r

))
and M = Õ

(
N ·

(
w

v

)/
2r
)
. ⊓⊔

We also explored the use of more advanced ISD algorithms for the
ValidFilters definition from Algorithm 5. However, this resulted only in very
small improvements, which is why we stay with the simple Prange formula here.

Saving Memory Through Repetitions In order to ensure a high success
probability we only need to classify the input elements according to enough
filters Cf (see Lemma 4.3). Thereby, it is possible to interleave the bucketing and
checking phases. We can, for example, first execute the bucketing phase for half of
the filters, perform the checking phase, and then repeat the process for the second
half of the filters. Note that the size of all buckets is halved (on expectation)
in the repeated execution. Hence, as long as the buckets dominate the memory
consumption, we obtain a memory improvement with such modification.

More generally, in the following, we execute the algorithm on an initial set of
filters C′f of size |C′f | = |Cf |/2d. We compensate for the reduced size of the filter
set by repeating the algorithm 2d times. Overall, this improves the memory
complexity by a factor of 2d as formalized in the following corollary.

Corollary 4.1 (LSF via Coded Hashfunction with Repetitions). Let
n ∈ N, w, v = Θ(n). Further let, α := v, CH be a random binary [n, n−r] code for
log
(
w
v

)
−log n ≥ r ≥ log

(
w/2
v

)
−log n, Cf = Snv ∩CH and ValidFilters as defined

in Algorithm 5. Define d := r−(log
(
w/2
v

)
− log n). Then 2d sequential repetitions

of Algorithm 4 on fresh randomness solve the NNS(N,n,w) using expected time
T and expected memory M , where

T = Õ

(
2d ·N ·

(
w

v

)
·

((
r

v

)−1

+
N
(
w
v

)(
n
v

)
· 2r

))
and M = Õ

(
N ·

(
w

v

)/
2r
)
.

Proof. Over all 2d iterations, the list elements are still classified with respect to

2d · E
[
|Cf |
]
=

2d
(
n
v

)
2r

=
n ·Vol(Snv )(

w/2
v

) =
n ·Vol(Snv )

Ww,v,α
,

filters as required by Lemma 4.3.
Note that the time of the algorithm and the memory consumption remain

the same as before, now for potentially updated r. Overall, the running time
suffers an additional 2d factor due to the sequential repetitions. ⊓⊔
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Interestingly, as we show in Section 5, this repetition approach also leads to
an improvement in the time complexity, due to the more optimal choice of r
with respect to the decoding routine used within the ValidFilters function.

4.2 LSF via Random Product Codes

Our fastest instantiation of Algorithm 4 uses random product codes (RPC) to
define the set of centers Cf . Similarly to the Coded Hashing algorithm, LSF
with RPC also comes with a memory-optimal version. Throughout this section,
we refer to these algorithms as RPC and RPC-opt for the usual and memory
optimal versions respectively. We now give the description of both algorithms.

Prior work. The techniques and analysis of this subsection turned out to be
quite similar to part of the Thesis of Carrier [4, Sec. 8.2]. As it is only available
in French, we preferred to keep the details in this document, but the original
credit should got to Carrier.

Definition 4.3 (Random product code). A random product code C is an
element drawn uniformly at random from the set

Rn,v,t := {C = C(1) × . . .× C(t) | C(i) ⊆ Sn/tv/t with |C(i)| = t
√
|C|}.

In the following we choose Cf = C(1)f × C(2)f × . . . × C(t)f ∈ Rn,v,t. Analogous
to this product structure, we redefine our regions, or half-spaces, as

Region(t)c,α := {x = (x1, . . .xt) ∈ (Fn/t
2 )t | |xi ∧ ci| = α/t ∀i}. (9)

Similarly, redefine Bα,x – the set of valid centers for an x ∈ Snw as

B(t)α,x = {c ∈ Cf | x ∈ Region(t)c,α}. (10)

We first detail how to efficiently find all valid filters c ∈ B(t)α,x for a given list
element. Afterward, we show that the product structure affects the necessary
size of Cf to guarantee success only by a subexponential factor in comparison to
the non-product case.

Identifying valid Bucket Centers We identify valid bucket centers by exploiting

the product structure of Cf . For a given list element x = (x1, . . . ,xt) ∈ (Fn/t
2 )t

we first find all valid partial centers ci ∈ C(i)f with |xi ∧ ci| = α/t individually.
Then we obtain the full list of valid bucket centers c ∈ Cf by product-wise com-
bination of the valid partial centers. This procedure is detailed in Algorithm 6.
The following lemma shows that the runtime of the algorithm for large enough
t is optimal, i.e., it is asymptotically equal to the output size.

Lemma 4.5. Let Cf ∈ Rn,v,t be an RPC. Then Algorithm 6 returns the set B(t)α,x

in time
T = t · t

√
|Cf |+ |B(t)α,x|. (11)
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Algorithm 6: ValidFilters (RPC)

Input : sets C(i)f ⊂ S
n/t

v/t defining an RPC Cf = C(1)f × . . .× C(t)f , list element

x = (x1, . . . ,xt) ∈ Sn
w, bucketing parameter α

Output: B(t)
α,x

1 Li = ∅
2 for i = 1 to t do

3 Li := {ci ∈ C(i)f : |xi ∧ ci| = α/t}
4 return L1 × L2 × . . .× Lt

Proof. Note that each list Li computed in Line 3 of Algorithm 6 contains exactly
the elements from C(i) which have the desired overlapping support with xi.
Therefore, elements of the product c ∈ L1 × . . . × Lt are precisely those for
which x ∈ Regionc,α and vice versa.

The time complexity of Algorithm 6 is composed of the time it takes to
construct the Li’s and the time to construct the final product. All these times
are linear in the involved list sizes, leading to the lemma’s statement. ⊓⊔

Product of random subcodes. Recall that our centers c ∈ Cf are now a concatena-
tion of t vectors of length n/t on the v/t-sphere rather than length-n vectors on
the v-sphere. A similar analysis as in the previous section thus requires, instead
of considering caps or wedges from Fn

2 , to consider the volume of the Carte-

sian product of t caps or wedges in Fn/t
2 . The following lemmata show that for

t = o( n
logn ) the Cartesian product of t caps (resp. wedges) in Fn/t

2 approximates

a cap (resp. wedge) in Fn
2 up to a subexponential factor in n.

The proofs of both lemmata require the following fact on binomial coeffi-
cients.

Fact 1 (Bounds on binomial coefficient [26, Lemma 10.2]) For 0 ≤ b ≤
a, it the following holds

1

a+ 1
2aH(b/a) ≤

(
a

b

)
≤ 2aH(b/a),

where H := −x log(x)− (1− x) log(1− x) is the binary entropy function.

Lemma 4.6 (Approximating Caps in Fn
2 ). Let t = o

(
n

logn

)
. Then for

α,w, v = Θ(n) the following holds(
C

n/t
v/t,w/t,α/t

)t 1

poly(n)
≤ C n

v,w,α ≤
(
C

n/t
v/t,w/t,α/t

)t
· 2o(n).

Proof. The result follows directly from the application of Fact 1 to Theorem 4.1.
As C n

v,w,α is a product of two binomials, the lower bound on C n
v,w,α comes apply-

ing twice the fact that for any b ≤ a,
(
a
b

)
/
(
a/t
b/t

)t
≥ 1/(a + 1). The upper bound

follows from
(
a
b

)
/
(
a/t
b/t

)t
≤
(
a
t + 1

)t
and our choice of t. ⊓⊔
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Lemma 4.7 (Approximating Wedges in Fn
2 ). Let t = o

(
n

logn

)
. Then for

α,w, v = Θ(n), the following holds(
W

n/t
w/t,v/t,α/t

)t
· 2−o(n) ≤ W n

w,v,α ≤
(
W

n/t
w/t,v/t,α/t

)t
· 2o(n).

Proof. From Theorem 4.2 and Remark 4.2 we know that W n
w,v,α can be approx-

imated up to a polynomial factor by only considering its maximum addend.
Precisely this follows from the fact that the volume is the sum of w/2 = Θ(n)
addends, while each of the addends is the product of three binomials, all expo-
nential in n.

Similarly, if we consider the maximal addend in the sum of W
n/t
w/t,v/t,α/t we

approximate the total sum within a factor of (w/2)/t = Θ
(
n
t

)
. Therefore, via

this we obtain an approximation of
(
W

n/t
w/t,v/t,α/t

)t
within a factor of (n/t)t =

2o(n), since t = o
(

n
logn

)
.

Recall that the maximal addend in W n
w,v,α is defined by the real solution

to Eq. (8). Let us denote it by e⋆. Replacing w,α, v in Eq. (8) by respectively
w/t, α/t, v/t, it follows that e⋆/t is the real solution to this modified qubic equa-

tion. Hence, e⋆/t defines the maximal addend in W
n/t
w/t,v/t,α/t.

Therefore, the statement of the lemma follows if we can show that those two
volume approximations still differ at most by a factor of 2o(n). To this end, we
compare the approximation of W n

w,v,α which is(
w/2

e⋆

)(
w/2

α− e⋆

)2(
n− 3w′/2

v − 2α+ e⋆

)
(12)

against the corresponding approximation of
(
W

n/t
w/t,v/t,α/t

)t
given by(

w/2t

e⋆/t

)t(
w/2t

α/t− e⋆/t

)2t(
n/t− 3w′/2t

v/t− 2α/t+ e⋆/t

)t

. (13)

From Fact 1 it holds that(
1

a/t+ 1

)t

2aH(b/a) ≤
(
a/t

b/t

)t

≤ 2aH(b/a).

Now to show the lower bound on W n
w,v,α as in the lemma’s statement, consider(

a
b

)
/
(
a/t
b/t

)t
≥ 1

a+1 = Ω(1/n), where the inequality follows from taking the lower

bound on
(
a
b

)
and the upper bound on

(
a/t
b/t

)t
. The statement follows from noticing

that a = Θ(n) in the three binomial coefficients from Equation (12).
Similarly, the upper bound on W n

w,v,α follows again from the inequalities on

the binomial coefficients. It holds that
(
a
b

)
/
(
a/t
b/t

)t
≤
(

1
a/t+1

)−t

≤
(
a
t

)t
. Since

a = Θ(n), for any t = o
(

n
logn

)
, it holds that

(
a
t

)t
< 2o(n), from which the

statement follows. ⊓⊔
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The main application of random product codes in sieving is, for a given x ∈ L,
finding all relevant filters efficiently. This implies that we require two properties
to be satisfied by a random product code: it should be efficiently decodable and
it should behave like a random code in the sense that the success probability
for C ← Rn,v,t to ‘capture’ a pair x,y ∈ L should be (up to subexponential
in n factors) the same as for a random code C ⊂ Snv . The first property – the
decodability – is elaborated on in Lemma 4.5, while the next theorem shows the
‘randomness’ property.

Lemma 4.8 (Amount of Filters for RPCs). Let n be sufficiently large,

w,α, v = Θ(n), t = o
(

n
logn

)
be integers. Let x,y ∈ Snw satisfy |x ∧ y| = w.

Further, let C ∈ Rn,v,t be an RPC and P = {πi}i∈[n(n/t+1)3t] be a selection of
independent random permutations on n elements. Denote by q the probability
that there exists a π ∈ P and a c ∈ C such that c ∈ Wn

π(x),π(y),v,α. Then

q ≥ min

{
|C| ·

W n
w,v,α

Vol(Snv ) · 2o(n)
, 1− negl(n)

}
.

Proof. Denote by x̄ = (x̄1, . . . , x̄t) = π(x) , ȳ = (ȳ1, . . . , ȳt) = π(y), for π ∈ P .
We first show that with overwhelming probability over the choice of P there is
at least one π ∈ P for which

|x̄i| = |ȳi| = |x̄i + ȳi| =
w

t
for all i = 1, . . . , t. (14)

Note that this requires that exactly w/(2t) out of the w/2 coordinates where
only x, exactly w/(2t) out of the w/2 coordinates where only y, and exactly
w/(2t) out of the w/2 coordinates where x and y are non-zero, must be present
in each of the x̄i (resp. ȳi). For any permutation π this happens with probability

qπ = Pr
[
|x̄i| = |ȳi| = |x̄i + ȳi| =

w

t
: |x| = |y| = |x+ y| = w

]
=

((
n/t

w/(2t)

)(
n−w/(2t)
w/(2t)

)(
n−w/t
w/(2t)

))t
(

n
w/2

)(
n−w/2
w/2

)(
n−w
w/2

) ≥
(

1

n/t+ 1

)3t

.

The probability that there exists at least one π among the n(n/t+ 1)3t permu-
tations in P that is suitable is then given by

1− (1− qπ)
n(n/t+ 1)3t > 1− exp(−n) = 1− negl(n).

In the following, we restrict our analysis to a suitable permutation π satisfy-
ing Eq. (14).

We denote the product of subwedges defined by the x̄i, ȳi as

Π :=

t∏
i=1

Wn/t
x̄i,ȳi,v/t,α/t

.
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Note that it holds

Π ⊂ Wn
x̄,ȳ,v,α. (15)

Indeed, any z = (z1, . . . , zt) ∈ Π satisfies |zi∧x̄i| = |zi∧ȳi| = α/t and |zi| = v/t.
It implies that |z∧ x̄| = |z∧ ȳ| = α and |z| = v. Therefore, z ∈ Wn

x̄,ȳ,v,α. Denote

by qi the probability that ci ∈ C(i) is inWn/t
x̄i,ȳi,v/t,α/t

, where C = C(1)×. . .×C(t).

From the Inclusion (15), it follows that q > q1 · q2 · . . . · qt. Moreover,

qi = 1−

1−
W

n/t
w/t,v/t,α/t

Vol(Sn/tv/t )

|C(i)|

.

Now, since we restrict our analysis to the permutation π satisfying Eq. (14)
we can apply Lemma 4.7 to approximate the wedge volume as

W
n/t
w/t,v/t,α/t ≥

(
W n

w,v,α

)1/t
2o(n)/t

,

from which it follows that

qi ≥ 1− (1− q̄i)
|C(i)|

with q̄i =
(W n

w,v,α)
1/t

Vol(Sn/tv/t )2
o(n)/t

.

Let |C(i)| = X/q̄i. Recall that for all i = 1, . . . , t we have |C(i)| = t
√
|C| or,

equivalently,

|C| = |C(i)|t = Ww,v,αX
t

Vol(Snv ) · 2o(n)
, (16)

where we use the fact that Vol(Sn/tv/t ) = 2o(n)Vol(Snv ).
We now make three case distinctions based on the size of X.

Case X > 2o(n)/t. We directly obtain

qi ≥ 1− (1− q̄i)
X/q̄i > 1− exp(−X) = 1− negl(n),

and ultimately q >
∏t

i=1 qi = 1− negl(n).

Case 1 ≤ X < 2o(n)/t. Here we can bound qi as in the previous case, namely

qi ≥ 1− exp(−X) ≥ 1− exp(−1),

giving q >
∏t

i=1 qi = 2−o(n). Note that for this choice ofX we also have (compare
to Eq. (16))

|C| = Ww,v,α

Vol(Snv ) · 2o(n)
,

and hence q ≥ 2−o(n) = |C| · W n
w,v,α

Vol(Sn
v )·2o(n) as claimed.
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Case X < 1. In that case, we obtain

qi ≥ 1− (1− q̄i)
|C(i)| = |C(i)| · q̄i −Θ

(
(|C(i)| · q̄i)2

)
= Θ(|C(i)| · q̄i),

where the last equality follows from the fact that |C(i)| · q̄i = X < 1 This

immediately gives q >
∏t

i=1 qi = Θ(|C(i)| · q̄i)t = |C| ·
W n

w,v,α

Vol(Sn
v )·2o(n) , concluding

the proof. ⊓⊔

Now we are ready to give the complexity of Algorithm 4 when Cf is instan-
tiated with a random product code. Before giving the statement, we remind
the reader that C n

v,w,α = Vol(Cc,w,α) represents the volume of a cap centered at
c, |c| = v, on the sphere Snw, while C n

w,v,α = Vol(Cx,v,α) represents the volume
of a cap centered at x, |x| = w, on the sphere Snv . The former gives rise to the
expected size of a bucket, while the latter describes all valid centers for x.

Theorem 4.4 (LSF via RPC). Let n ∈ N, w, v, α = Θ(n) ∈ N and

t = Θ(
√
n) ∈ N. Further, let Cf ∈ Rn,v,t be an RPC such that |Cf | = 2o(n)·Vol(Sn

v )
W n

w,v,α
,

with |Cf | · q = 1− negl(n) for q as defined in Lemma 4.8.
Denote by P = {πi}i∈[n(n/t+1)3t] a selection of independent random permuta-
tions on n elements. Instantiate the function ValidFilters using Algorithm 6.
Let (L, n,w) be a NNS(N,n,w) instance. Then the iterative execution of Algo-
rithm 4 on input (π(L), n, w), Cf , α, for all π ∈ P solves the NNS(N,n,w) with
overwhelming probability within expected time T and expected memory M , where

T = 2o(n) ·N ·
(
w
α

)(
n−w
v−α

)
W n

w,v,α

(
1 +

N
(
w
α

)(
n−w
v−α

)(
n
v

) )
and M = 2o(n) ·N ·

(
w
α

)(
n−w
v−α

)
W n

w,v,α

.

Proof. Fix any pair x,y ∈ L of distance w. We consider in the following an
execution of Algorithm 4 on the list π(L) for a π ∈ P that satisfies Eq. (14),
i.e., it gives the desired weight distribution on x,y. We have already shown in
the proof of Lemma 4.8 that for a collection of size, |P | = n(n/t + 1)3t such a
π exists with overwhelming probability over the choice of P . Now Lemma 4.8
ensures that for our choice of |Cf |, there is at least one filter c ∈ Cf that leads to
the recovery of the pair x,y with probability 1− negl(n).

Let us now analyze the complexity using Lemma 4.1. Thanks to Lemma 4.5,

we have TValidFilters = t t
√
|Cf |+ |B(t)α,x|. Note that for our choice of Cf we have

E
[
|B(t)α,x|

]
=
∑
c∈Cf

Pr
[
|ci ∧ xi| =

α

t
∀i
]
= |Cf |

C n
w/t,v/t,α/t

Vol(Sn/tv/t )

t

= 2o(n)
(
w
α

)(
n−w
v−α

)
W n

w,v,α

,

where the last equality follows from our choice of |Cf | and the approximation(
Cn

w/t,v/t,α/t

Vol(Sn/t

v/t
)

)t

≥ Cn
w,v,α

2o(n)Vol(Sn
v )

given by Lemma 4.6. Note that E
[
|B(t)α,x|

]
≥ 1 as
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for any x ∈ Snw, a cup defined by x contains a wedge defined by this x, there-
fore the ratio between their volumes is greater than 1 and hence, the condition
of Lemma 4.1 is satisfied. Therefore, on expectation

TValidFilters = 2o(n)
(
w
α

)(
n−w
v−α

)
W n

w,v,α

,

since Bα,x as well as Cf are of size exponential in n and t = Θ(
√
n).

What remains is to argue on E
[
|Bucketc,α|

]
. From the proof of Lemma 4.1,

it follows that

E
[
|Bucketc,α|

]
=

N · E
[
|B(t)α,x|

]
|Cf |

= 2o(n) ·N ·
(
w
α

)(
n−w
v−α

)
Vol(Snv )

Collecting all the expectations and applying Lemma 4.1, obtain

T = N ·

(
2o(n)

(
w
α

)(
n−w
v−α

)
W n

w,v,α

+ 2o(n)
(
w
α

)(
n−w
v−α

)
W n

w,v,α

·N ·
(
w
α

)(
n−w
v−α

)
Vol(Snv )

)
,

which is equivalent to the theorem’s statement.

Due to Lemma 4.1, the memory complexity is given by M = N · E
[
|B(t)α,x|

]
as it is stated in the theorem. ⊓⊔

Saving Memory Through Repetitions in case of RPC Analogously
to Corollary 4.1, we exploit the idea of choosing a smaller set of filters and
repeating Algorithm 6 for many of these smaller sets.

Concretely, we independently choose (omitting subexponential factors for

brevity) d :=
Cn

w,v,α

W n
w,v,α

-many RPCs Cf ∈ Rn,v,t each of size |Cf | = Vol(Sn
v )

Cn
w,v,α

. First,

this choice of |Cf | yields the expected number of buckets per x ∈ L to be 1,

i.e., E
[
|B(t)α,x|

]
= 1, which follows from the proof of Theorem 4.4. Second, thanks

to Lemma 4.8, the success probability of each run with a smaller RPC is still at

least |Cf | ·
W n

w,v,α

Vol(Sn
v ) , thus repeating the algorithm d times bounds from below the

success probability q of finding a good pair x,y as

q ≥ 1−
(
1− |Cf | ·

W n
w,v,α

Vol(Snv )

)d

=

(
1−

W n
w,v,α

C n
w,v,α

)d

≥ 1− 1

e
.

This success probability can be made overwhelming by choosing a slightly larger

d, e.g., d = 2o(n)
Cn

w,v,α

W n
w,v,α

.

This leads to the following corollary. Compared to the result from The-
orem 4.4, it has asymptotically the same running time but achieves optimal
memory. A similar statement is given in the Thesis of Carrier [4, Cor. 8.2.6].

Corollary 4.2 (Memory optimal LSF via PRC). Let n ∈ N, w, v, α =
Θ(n) ∈ N and t = Θ(

√
n) ∈ N. Further, let R = {Cf ∈ Rn,v,t}i∈[d] be a set of
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independently chosen RPCs with |Cf | = 2o(n) · Vol(Sn
v )

Cn
w,v,α

, and d = 2o(n)
Cn

w,v,α

W n
w,v,α

. De-

note by P = {πi}i∈[n(n/t+1)3t] a selection of independent random permutations
on n elements. Instantiate the function ValidFilters using Algorithm 6.
Let (L, n,w) be a NNS(N,n,w) instance. Then the iterative execution of Algo-
rithm 4 on input (π(L), n, w), Cf , α, for all π ∈ P, Cf ∈ R, solves the NNS(N,n,w)
with overwhelming probability within expected time T and expected memory M ,
where

T = 2o(n) ·N ·
(
w
α

)(
n−w
v−α

)
W n

w,v,α

(
1 +

N
(
w
α

)(
n−w
v−α

)(
n
v

) )
and M = 2o(n) ·N.

Proof. As argued above, for our choice of |Cf |, per each execution of Algorithm 4,

we have E
[
|B(t)α,x|

]
= 2o(n). From Lemma 4.1 this already gives the statement for

the memory M .

Smaller choice of |Cf | also leads to TValidFilters = 2o(n), and

E
[
|Bucketc,α|

]
=

N · E
[
|B(t)α,x|

]
|Cf |

= 2o(n)N ·
C n
w,v,α

Vol(Snv )
= 2o(n)N ·

(
w
α

)(
n−w
v−α

)(
n
v

) .

Therefore, one iteration of Algorithm 4 has complexity

2o(n)N ·

(
1 +N ·

(
w
α

)(
n−w
v−α

)(
n
v

) )
.

Repeating Algorithm 4
(
2o(n)

Cn
w,v,α

W n
w,v,α

)
-many times gives the statement. ⊓⊔

5 Results and Performance Comparisons

Each of the presented algorithms to solve the w-near neighbor search from Sec-
tion 4 leads to an instantiation of the SievingISD algorithm (Algorithm 2) via
the machinery presented in Section 3. The SievingISD framework dictates spe-
cific parameters for the w-near neighbor search problem NNS(N,n′, w′) solved
within the ISD routine. While n′ and w′ are optimization parameters chosen
to minimize the running time, N is chosen equal to the lower bound given in
Constraint (C 2), to ensure that there are again N close vectors.

Note that algorithms solving the w-near neighbor search might be of in-
dependent interest for a broader range of parameters. Therefore, in order to
allow for a more general categorization, we compare the performance of the near
neighbor search algorithms for a wider range of parameters first, independent of
the choices in SievingISD. However, this comparison already allows us to draw
conclusions on possible speedups obtained via those algorithms in the context
of the SievingISD framework. Subsequently, we study the resulting SievingISD
instantiations in more detail.
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5.1 Performance of Near Neighbor Algorithms

In the comparison of algorithms to solve the w-near neighbor search we re-
fer to the algorithms as GJN ([16], Lemma 4.2), Hash (Theorem 4.3), Hash-
opt (Corollary 4.1), RPC (Theorem 4.4) and RPC-opt (Corollary 4.2). Addi-
tionally, we compare those algorithms against a quadratic search baseline that
naively computes all list pairs to find those which are close, and against an
algorithm recently proposed by Esser [9].
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Fig. 4: Comparison of the running time of different algorithms solving the w-near
neighbor search for fixed list size (left) and fixed weight (right).

On the left in Fig. 4 we compare the running time of the different algo-
rithms for different relative weights ω := w/n and fixed list size N = 20.05n.
A choice that roughly corresponds to the list sizes encountered in the later
SievingISD application. All algorithms, with the exception of GJN, outperform
the quadratic-search baseline for all weights ω < 0.5. Furthermore, the fastest
algorithms presented in this work outperform the previous approaches, GJN and
Esser, for all weights. Note that RPC and RPC-opt obtain the same running
time since RPC-opt corresponds to a pure memory improvement. Interestingly,
the same repetition approach leads to a significant time improvement in the
context of Hash-opt over Hash. This is because the extra degree of freedom
allows to optimization of the code parameters to reduce the overhead for finding
valid bucket centers in Hash-opt via Lemma 4.4.

Additionally, the graph depicts the expected amount of solutions, calculated
as E[#Solutions] =

(
n
w

)
/2n−k, as an orange dashed line. It can be observed that

all algorithms, except Esser, obtain a running time that is (roughly) linear
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in the number of existing solutions for very small weights. For larger weights
the complexities diverge, while all algorithms (except GJN) converge to the
quadratic search baseline for weight ω = 0.5.

In the SievingISD application, we are interested in the performance of the
algorithms when the amount of solutions is equal to the list size, i.e., the point
on the dashed orange line at ϑ = 1. This is the case for ω ≈ 0.02748, which is
highlighted by a black dotted line in the plot. We find that the new algorithm
from Section 4.1 significantly improves on GJN in that regime, indicating an
improved SievingISD algorithm. On the other hand, all new algorithms obtain
similar complexities in that regime, implying that they show similar performance
within the SievingISD framework. The algorithm by Esser performs worse than
GJN in that regime indicating no improvement in the SievingISD context.

On the right in Figure 4 we consider for completeness the running time of
the algorithms for fixed weight and variable list size. Again, the SievingISD
relevant instantiation, where the amount of solutions is equal to the list size, is
highlighted via a black dotted line.

5.2 Performance of SievingISD Instantiations

In this section, we detail the performance of the SievingISD instantiations ob-
tained via the w-near neighbor search algorithms from Section 4. We then com-
pare the obtained complexities against the state of the art of ISD algorithms.

Obtaining Different SievingISD Instantiations Recall, that Theorem 3.1
states the running time of any SievingISD algorithm depending on the time
complexity of an oracle to find short codewords of weight w′ in a given code. We
then instantiate this oracle via a sieving routine (see Algorithm 3). Under the
Binary-Sieve Heuristic (Heuristic 1) the complexity of this sieving algorithm is
equal to the complexity of solving the w′-near neighbor search.

Different SievingISD algorithms are obtained by instantiating the near neigh-
bor search routine, used within the sieving routine, with the different algo-
rithms from Section 4. We refer to the obtained instantiations as: Sisd-GJN
(Lemma 4.2), Sisd-Hash (Theorem 4.3), Sisd-Hash-opt (Corollary 4.1), Sisd-
RPC (Theorem 4.4) and Sisd-RPC-opt (Corollary 4.2).

Notice here that the near neighbor search instance solved within the sieving
routine corresponds to the NNS(N,n′, w′) problem, forN matching Eq. (C 2), and
n′, w′ as defined in Theorem 3.1. We then obtain the running time of different
instantiations by replacing TNNS from Theorem 3.2 with appropriate statements.

In order to compare the complexities of different instantiations, we follow the
common practice of modeling the running time and memory as 2c(k,w)n, where c
is a constant that depends on k and w. Therefore, we approximate all binomial
coefficients via the upper bound given in Fact 1. Note that this leads to at most
a polynomial divergence, asymptotically subsumed by the fact that we always
round the constant c(k,w) upwards. We then consider k = κn, w = ωn, for
constants κ, ω, and model any additional optimization parameter oi, such as n′
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Type Algorithm κ cT (κ, ω) cM (κ, ω)

SievingISD

Sisd-GJN [16] 0.44 0.1169 0.0279
Sisd-Hash 0.44 0.1007 0.0849
Sisd-Hash-opt 0.44 0.1007 0.0830
Sisd-RPC 0.44 0.1001 0.0852
Sisd-RPC-opt 0.44 0.1001 0.0636

Conventional
ISD

Prange [29] 0.45 0.1207 0.0000
MMT [23] 0.45 0.1116 0.0541
BJMM [2] 0.43 0.1020 0.0728
Both-May [3] 0.42 0.0951 0.0754

Table 1: Worst case running time 2cT (κ,ω)n and corresponding memory usage
2cM (κ,ω)n for different ISD algorithms. Running time is maximized for given κ
using ω = H−1(1− κ) equal to the Gilbert-Varshamov bound.

and w′, as oi = ôin. For given κ, ω, we then perform a numerical minimization of
the running time over the choice of the ôi, resulting in the complexity exponent
c(k,w), or c(κ, ω), as the constant only depends on κ and ω.

Worst case Complexities A common measure to compare the performance of
algorithms to solve the syndrome decoding problem is their worst case complex-
ity. Therefore one considers w = ωn matching the Gilbert-Varshamov bound,
i.e., ω = H−1(1−κ), with H−1 being the inverse of the binary entropy function
in the interval [0, 0.5]. The worst case running time is then obtained by maximiz-
ing the constant c(κ, ω) over all possible choices of the rate κ. The following table
states the worst case running times for the different SievingISD instantiations
in comparison to the best known ISD algorithms.8

We observe that the new SievingISD instantiations obtain a significant im-
provement over the running time of the original Sisd-GJN proposal from [16].
Still, they do not yet reach the best time complexity exponent for conventional
ISD algorithms, given by the Both-May algorithm [3]9. However, the new al-
gorithms yield the first improvement over the running time of the BJMM al-
gorithm, which does not follow the conventional ISD paradigm. Furthermore,
our more practical instantiations Sisd-Hash and Sisd-Hash-opt, still slightly
outperform the BJMM algorithm, while significantly improving on the MMT
algorithm, which is usually the preferred choice in practice [12,13].

In Fig. 5 we compare the running time exponent of the different SievingISD
instantiations, Sisd-GJN, Sisd-Hash-opt and Sisd-RPC-opt for all rates κ
against conventional ISD procedures. We find that the Sisd-GJN instantiation
falls in between the running times of Prange and of MMT. The improved

8For obtaining the numerical exponents of conventional ISD procedures we use the
code available at https://github.com/Memphisd/Revisiting-NN-ISD.

9See [5,9] for a correction of the initial result.
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SievingISD instantiations offer BJMM comparable running times. We observe
that for rates κ ≤ 0.6 our best SievingISD instantiations even outperform the
BJMM algorithm. It can also be observed that our more practical Sisd-Hash-
opt instantiation generally suffers only a slight overhead in terms of time com-
plexity compared to our best Sisd-RPC-opt variant, as it was also suggested
by the comparison in Section 5.1.
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Fig. 5: Runtime exponent for different ISD and SievingISD variants as a function
of the rate κ using ω := H−1(1− κ).

Time-Memory Trade-Offs Table 1 indicates that more advanced algorithms
obtain time improvement by spending higher amounts of memory. In fact, all
modern ISD algorithms, conventional as well as those following the SievingISD
framework, use an exponential amount of memory in order to obtain their best
runtime exponents. In the following, we show that our SievingISD instantiations
also significantly improve the time-memory trade-off potential of the early algo-
rithm by Guo-Johansson-Nguyen and also outperform some of the conventional
ISD trade-offs and recently proposed improvements.

Note that all ISD algorithms can be interpolated to the memoryless algo-
rithm by Prange. This memoryless endpoint for the SievingISD algorithms cor-
responds to the choice of n′ = k, w′ = 0 in Theorem 3.1. Then, by gradually
increasing the sieving effort through larger choices of n′, w′ one obtains a contin-
uous time-memory trade-off, i.e., an instantiation of the algorithm for any fixed
amount of memory. A similar interpolation is possible for conventional ISD al-
gorithms. In Fig. 6 we compare the time-memory trade-off curves resulting from
our SievingISD instantiations for rate κ = 0.5 and ω = H−1(0.5) ≈ 0.11 against
the initial approach by Guo, Johansson and Nguyen. We observe that the new
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algorithms improve the time complexity for any fixed amount of memory. Inter-
estingly, our practical Sisd-Hash-opt instantiation yields a better time-memory
trade-off curve than Sisd-RPC, even though Sisd-RPC offers the better time
complexity in the unlimited memory case. The best trade-off is obtained via our
Sisd-RPC-opt instantiation.
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Fig. 6: Time-memory trade-off curves of different SievingISD instantiations, for
κ = 0.5 and ω = H−1(0.5).

Additionally, in Fig. 7 we compare our best theoretical and practical instan-
tiations, i.e., Sisd-RPC-opt and Sisd-Hash-opt, against time-memory trade-
offs based on the MMT and BJMM algorithm, recently proposed by Esser and
Zweydinger [13], labeled EZ-BJMM and EZ-MMT. We also give the implicit
trade-off resulting from the interpolation of the Both-May algorithm to Prange’s
memoryless procedure.

For high amounts of memory, unsurprisingly, Both-May offers the best in-
stantiations, as it achieves the best running time in the unlimited memory case.
However, note that our Sisd-RPC-opt instantiation for memories smaller than
20.04n achieves a similar trade-off behaviour. For very small instantiations with
less than 20.02n the EZ-BJMM achieves the best runtime. Considering prac-
tical instantiations, we find that our Sisd-RPC-opt outperforms the usually
applied EZ-MMT for any memory larger than 20.015n and even the EZ-BJMM
for memories larger than 20.035n.

6 Collisions and unique solutions

In this section, we provide practical experiments verifying our heuristic assump-
tion. Informally, our Heuristic 1 states that the dependencies introduced by
constructing the elements as iterative sums do not affect the performance of
the near neighbor algorithms, especially in later sieving iterations. Further, we
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assume that the probability of any short vector being contained in the final list
is also not influenced by those dependencies.

Note that both assumptions hold true if the list throughout all sieving itera-
tions remains close enough to a list where each element is drawn uniformly and
independently at random.

In the following we first model the amount of uniquely generated vectors
in each near neighbor search iteration in the uniform random case. We then
compare this theoretical model against our experimental data.

6.1 Model

Let N ∈ N be the input list size to the near neighbor algorithm. Recall that we
want to choose N according to Eq. (C 2) such that there exist again N close
vectors as pairwise sums of this input list. On average, half of these vectors
already belong to the next code in the tower and could be directly forwarded
to the next sieving step. However, as this complicates the theoretical model and
might introduce additional dependencies, we disregard those vectors. Instead,
we only use the other half as an input list for the near neighbor search.10 The
expected number of newly generated vectors of weight w is, hence

K :=
M(M − 1)

2

(
w

w/2

)(
n−w
w/2

)(
n
w

) , (17)

where M = N/2 is the expected number of vectors used for forming the pairs,

which gives M(M−1)
2 pairs in total, and

( w
w/2)(

n−w
w/2 )

(nw)
is the probability that a given

pair sums to weight w.

10As a side-effect, all generated sums are then included in the next code in the tower
since the sum of two vectors, each of which does not belong to the next code, does
belong to this next code.
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Amount of unique vectors. We observe here that two different pairs of vectors
might have the same sum, in which case we obtain a collision between the newly
generated vectors. Next we estimate the number of (multi-)collisions that occur
or, equivalently, we count the number of uniquely generated vectors.

If we model the newly generated pairs as being uniform and independent in
the set of possible solutions Di = Snw ∩ Ci, the answer is given via the following
lemma, where the set Di has expected size Di ≈

(
n
w

)
2−i.

Lemma 6.1 (Unique Solutions). Let UK be a random variable that counts
the number of different elements obtained in a list that consists of K uniformly
and independently sampled elements from a set of size D. Its expectation is

E[UK ] =
1− cK

1− c
,

where c = 1− 1/D.

Proof. We set up the following recurrence relation that describes the effect on
UK when adding a newly generated sample to the list

UK+1 = UK +XK .

In this relation XK ∈ {0, 1} is a random variable that is equal to 1 if a newly
generated vector does not collide with the previously generated ones and 0 oth-
erwise. The probability that XK = 1 knowing UK is p = 1−UK/D. By linearity
of expectation, we have

E[UK+1] = E[UK ] + E[XK ] = 1 + E[UK ](1− 1/D), (18)

Note further that E[U1] = 1 (if there is only one element generated, there can

be no collision). It remains to observe that E[UK ] = 1−cK

1−c where c =
(
1− 1/D)

is a solution to Eq. (18) and that it satisfies the initial condition E[U1] = 1.

6.2 Experiments

We implemented a simple quadratic sieve to obtain practical data points for the
comparison to the theoretical model. Our code is available at https://github.
com/setinski/Sieving-For-Codes.

In Fig. 8a we present the comparison between the modeled prediction for the
number of newly generated vectors from Eq. (17) and the experimental data we
obtained by running the sieve algorithm. The subsequent Fig. 8b illustrates the
number of collisions generated in each sieving step in 10 independent experiments
in comparison to the theoretical model provided by Lemma 6.1.

In the experiments, we set N = 4.1 ·
(
n
w

)/(
w

w/2

)(
n−w
w/2

)
according to the Con-

straint Eq. (C 2) for maintaining the list size, with a very small margin (note the
constant 4.1 rather than 4). We start from a random list of weight-w codewords
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from the full code Fn
2 , and perform iterative sieving steps until no short vec-

tors are found anymore. Note that Constraint Eq. (C 1) states that we require
N ≤

(
n
w

)
2−i = Di for N different solutions to exist. We therefore expect to start

seeing more collisions when Di approaches N , i.e., we reach saturation of the
sphere, which leads to a degeneration of the list size.

Model vs. Experiments. Recall that the theoretical model from Eq. (17) pre-
dicts the outcome of the experiment in case of independent and uniformly at
random drawn list elements. We observe in our experiments that the dependen-
cies introduced through multiple iterations lead to a slightly higher number of
newly generated vectors than predicted (Fig. 8a). However, note that the num-
ber quickly converges to a stable value after a few sieving steps, indicating that
the effect does not amplify further.

On the other hand, we also observe that the overall number of collisions is
higher than predicted (Fig. 8b). The theoretical model for the number of colli-
sions is obtained as the difference between the newly generated vectors (Eq. (17))
and the expected amount of uniquely generated vectors (Lemma 6.1). Here, the
theoretical model from Lemma 6.1 predicts the outcome of the experiment in
case the weight-w vectors are sampled uniformly and independently at random
from the set Di in each sieving step i. This assumption makes the theoretical
analysis cleaner, but potentially introduces deviations as vectors are, even in
the case of lists containing independent elements, constructed as pairwise sums.
The difference between the experimental data and the theoretical prediction is
therefore likely caused by dependencies as well as a slight bias in the theoretical
modeling.

However, we find that the number of extra solutions outweighs the number of
collisions, implying that in total we findmore unique solutions in the experiments
than given by the theoretical prediction (see Fig. 8c). This effect can also be
observed for other sets of parameters, as depicted in Fig. 9, where we observed
the number of uniquely generated vectors in 10 independent experiments for
different code lengths n and a fixed small weight w.

Relation to Heuristic 1. Let’s first discuss the second part of Heuristic 1. Here
the heuristic states that the probability of any vector being contained in the list
after i sieving steps is about N/Di. This ensures that once a suitable subcode
in Algorithm 2 is chosen, the target vector is returned with this probability.
Our experiments now show that we generate even more unique solutions than
the theoretical model predicts. Note that this does not imply that those unique
solutions are uniformly distributed. However, in the context of the SievingISD
algorithm the subcode used for the sieving routine (and with it the target vector)
are randomly drawn in every iteration. For a uniformly random target vector,
the probability bound is implied as long as N distinct weight-w codewords are
returned.

The first part of the heuristic makes an assumption about the time com-
plexity of the iterative application of the near neighbor algorithms. Overall our
experiments indicate that the list distributions do not significantly deviate from
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the theoretical model. While this supports the heuristic, full verification can only
be achieved by implementing the different near neighbor approaches. Our simple
quadratic sieve does not deviate in runtime, as it always obtains the worst case
complexity of N2.

Extending the Experiments. Our experiments indicate the validity of the heuris-
tic assumption. However, an in-depth verification requires a more elaborate im-
plementation effort. This includes especially the more advanced near neighbor
routines to verify the first part of the heuristic for those concrete procedures.
This would then also allow us to extend the experiments to even larger param-
eters currently inaccessible to our implementation.

41



0 5 10 15 20 25 30
20

26

212

218

sieving step i

G
en

er
a
te
d
so
lu
ti
o
n
s
(K

)

Experiments

Model

N

(a) Generated solutions (including collisions) after sieving step i.

0 5 10 15 20 25 30
20

26

212

218

sieving step i

C
o
ll
is
io
n
s
(K
−

E[
U

K
])

Experiments

Model

N

(b) Amount of collisions generated in the i-th sieving step.

0 5 10 15 20 25 30
20

26

212

218

sieving step i

U
n
iq
u
e
so
lu
ti
o
n
s
(E

[U
K
])

Experiments

Model

Number of solutions
(n
w

)
/2i

N

(c) Amount of uniquely generated solutions after sieving step i.

Fig. 8: Theoretical prediction and experimental data for n = 256, w = 6 in a
logarithmic scale
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(a) n = 256, w = 4
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(b) n = 512, w = 4
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(c) n = 1024, w = 4

Fig. 9: Amount of unique solutions in theoretical prediction vs. experimental
data for different parameter sets (in a logarithmic scale)
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de codes correcteurs. Ph.D. thesis, Sorbonne université (2020)
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11. Esser, A., Kübler, R., Zweydinger, F.: A faster algorithm for finding closest
pairs in hamming metric. In: Bojanczyk, M., Chekuri, C. (eds.) 41st IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2021, December 15-17, 2021, Virtual Conference. LIPIcs,
vol. 213, pp. 20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20, https://doi.org/

10.4230/LIPIcs.FSTTCS.2021.20

12. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer,
Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_16

13. Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum: Improving
ISD in theory and practice. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 360–390. Springer, Heidelberg (Apr 2023). https:
//doi.org/10.1007/978-3-031-30589-4_13

44

https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-319-70503-3_24
https://doi.org/10.1007/978-3-319-70503-3_24
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.1007/978-3-319-96881-0_22
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-031-30589-4_13
https://doi.org/10.1007/978-3-031-30589-4_13


14. Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given
norm. In: van Hulzen, J.A. (ed.) Computer Algebra. pp. 194–202 (1983)

15. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based
cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 88–105. Springer, Heidelberg (Dec 2009). https://doi.org/10.1007/

978-3-642-10366-7_6
16. Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding

algorithm. Cryptology ePrint Archive, Report 2023/247 (2023), https://eprint.
iacr.org/2023/247

17. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: 30th ACM STOC. pp. 604–613. ACM Press (May
1998). https://doi.org/10.1145/276698.276876

18. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting. p. 193–206. STOC ’83 (1983). https://doi.org/10.1145/800061.808749

19. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (Aug 2015). https://doi.org/
10.1007/978-3-662-47989-6_1

20. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spher-
ical locality-sensitive hashing. In: Lauter, K.E., Rodŕıguez-Henŕıquez, F. (eds.)
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