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Abstract. Lattice reduction algorithms such as BKZ (Block-Korkine-
Zolotarev) play a central role in estimating the security of lattice-based
cryptography. The subroutine in BKZ which �nds the shortest vector in
a projected sublattice can be instantiated with enumeration algorithms.
The enumeration procedure can be seen as a depth-�rst search on some
�enumeration tree� whose nodes denote a partial assignment of the co-
e�cients, corresponding to lattice points as a linear combination of the
lattice basis with the coe�cients. This work provides a concrete analy-
sis for the cost of quantum lattice enumeration based on Montanaro's
quantum tree backtracking algorithm. More precisely, we give a con-
crete implementation in the quantum circuit model. We also show how
to optimize the circuit depth by parallelizing the components. Based on
the circuit designed, we discuss the concrete quantum resource estimates
required for lattice enumeration.
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1 Introduction

A Euclidean lattice is the set of all integral linear combinations of n linearly
independent basis vectors b1, · · · ,bn ∈ Qm. Lattices have attracted consider-
able interest in recent years as they can be used to construct cryptographic
schemes which are conjectured to be quantum-resistant. The bene�ts of using
lattices are re�ected by three out of the four selected schemes (Kyber [ABD+21],
Dilithium [BDK+21] and Falcon [FHK+20]) in NIST's Post-Quantum Cryptog-
raphy Standardization process [NIS16] having their security rely on the presumed
intractability of lattice problems.

A fundamental computational problem in lattice-based cryptography is the
approximated shortest vector problem, denoted SVPγ where γ ≥ 1 is called the
approximation factor. In SVPγ , one is given a lattice basis as input, and asked
to �nd a nonzero lattice point of length within a factor γ of the length of the
shortest nonzero vector. Lattice reduction algorithms such as Block-Korkine-
Zolotarev (BKZ) [SE94] and its variants [GNR10,CN11,MW16,AWHT16] are
considered as the most practical algorithms for solving the approximated short-
est vector problem, balancing the quality (e.g., approximation factor) and run-
time. Thus they play a central role in estimating the security of lattice-based
cryptography. A lattice reduction algorithm relies on subroutines to �nd short-
est vectors in smaller dimensional projected sublattices. This smaller dimen-
sion is a parameter of the algorithm called the �block size�. There are two
main families of algorithms for instantiating this subroutine: algorithms based
on sieving [AKS01,NV08,MV10b,BDGL16] and algorithms based on enumera-
tion [Kan83,FP85,SE94]. Sieving algorithms have better asymptotic performance
but require much more memory. This paper focuses on enumeration algorithms.

The enumeration procedure can be seen as a depth-�rst search on some �enu-
meration tree�, where a tree path encodes a partial assignment of the coe�cients.
Classically, the enumeration algorithm explores the tree nodes in a depth-�rst
way as far as possible along a branch before backtracking. During the search, the
algorithm only needs to hold the information for the nodes in the current path
(e.g., from the root to the node being searched), thus requiring polynomial mem-
ory w.r.t the lattice dimension. This is one of the main bene�ts of using enumera-
tion for lattice reduction. On the other hand, such a tree backtracking algorithm
requires local knowledge before each iteration and thus cannot be instantiated
straightforwardly by a quantum search algorithm such as Grover [Gro96]. Recall
that Grover's algorithm assumes black-box access to every point in the input
domain. In a tree backtracking scenario, these points are the coe�cients of the
linear combinations, which need not to be known in advance. This motivates the
study of quantum algorithms for lattice enumeration.
Prior and related work. Montanaro presented an interesting quantum algo-
rithm [Mon18] to solve the tree backtracking problem. The approach is based on
the use of a quantum walk algorithm of Belovs [Bel13]. Montanaro's algorithm
was originally presented in the context of solving the constraint satisfaction prob-
lem (CSP). A standard approach to solve CSP is via tree backtracking. Let Tu be
an upper bound on the number of nodes in the tree and n be the tree depth. Mon-
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tanaro's �rst algorithm detects the existence of a solution in the tree in O(
√Tun)

steps using quantum phase estimation. This provides a quadratic speed-up to
the classical tree backtracking algorithm. A second algorithm of Montanaro uses
the aforementioned detection algorithm to locate the solution, by applying the
�rst algorithm iteratively, on each child of a node, which contains the solution.
This leads to, at most, a polynomial increase in the running-time, e.g., it �nds a
solution in time O(

√
T n1.5 log n), where T is the number of nodes in the tree. In

lattice enumeration, the bound T (or Tu) is usually super-exponential in terms
of the input dimension n. Both algorithms use poly(n) space.

In a classical tree backtracking algorithm, it often happens that the actual
number of nodes visited T ′ is much smaller than the tree size T , for example,
if the classical algorithms are optimized to search the most promising branches
�rst. Ambainis and Kokainis [AK17] described a quantum algorithm which is
better for such cases. More precisely, their quantum algorithm solves the search
tree backtracking problem in Õ(

√
T ′n1.5) steps, i.e., achieving the same com-

plexity (up to logarithmic factors) as before but now in T ′, the number of nodes
examined in the classical algorithm, instead of in T , the total number of nodes.

As lattice point enumeration can be phrased as a tree backtracking proce-
dure, a natural question is whether one can apply Montanaro's algorithm to the
problem of lattice point enumeration. It has been brie�y mentioned in previ-
ous work [ADPS16,ABB+17,PLP16] that Montanaro's algorithm can be used to
speed up enumeration. Applicability was later con�rmed in the work by Aono,
Nguyen and Shen [ANS18], with more details given. They also proposed methods
to apply the quantum algorithm to the extreme pruned enumeration, including
both cylinder pruning and discrete pruning. Their work targeted a higher level,
focusing on asymptotic strategies for optimizing the extreme pruning in the
quantum backtracking algorithm, without going into detail about the quantum
circuit and resource estimates. Indeed, they left as an open question in [ANS18]:
�We stress that this is just a �rst assessment of quantum enumeration. If one is
interested in more precise estimates, such as the number of quantum gates, one
would need to assess the quantum cost of the algorithm of Montanaro and that
of Ambainis and Kokainis�. This is the research question that we are focusing
on in this paper.

In terms of concrete estimates, Campbell, Khurana and Montanaro [CKM19]
and Martiel and Remaud [MR20] have both considered the implementation of
Montanaro's backtracking algorithm in the context of graph coloring and SAT
(satis�ability) problems, where the �rst work focuses on optimizing the circuit
depth and the second work focuses on optimizing memory.

Recently, Albrecht, Prokop, Shen and Wallden [APSW22] considered how
Noisy Intermediate Scale Quantum (NISQ) devices can be used to solve lattice
enumeration. More precisely, they describe a mapping that encodes the SVP
problem into the ground state of a Hamiltonian operator and use variational
quantum algorithms such as the Variational Quantum Eigensolver [PMS+14,MRBAG16]
to solve the encoded optimization problem. Their simulated experiments show
that between 1000 and 1600 qubits are su�cient to encode the SVP for a 180-
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dimensional lattice, which matches the current record dimension [DSvW21a] in
the �Darmstadt SVP Challenge�. Compared to [APSW22], our implementation is
based on the quantum circuit model, which assumes fault-tolerant components.

Very recently, Bindel, Bonnetain, Tiepelt and Virdia [BBTV23] proposed to
use a hybrid classical-quantum enumeration algorithm, which starts with classic
enumeration and then switches to quantum enumeration for subtrees at a certain
level. They state that their �results for combined classical-quantum enumeration
suggest that current quantum enumeration with cylinder pruning techniques are
unlikely to provide practical speedups against cryptographic instances of lattice
problems in a MaxDepth setting.�

Finally, there is no doubt that estimating the quantum resources required
plays an important role in the cryptanalysis for post-quantum era. Substantial
progress has been made for various problems, including Grover's algorithm for
AES [GLRS16,BNS19,JNRV20], Shor's algorithm for ECDLP [RNSL17,BBVL21],
algorithms by Kuperberg, Regev and Childs-Jao-Soukharev for CSIDH [BLMP19,BS20],
and quantum lattice sieving for SVP [AGPS20]. This work aims to �ll the gap
for resource estimates of quantum lattice enumeration.

Contribution. To the best of our knowledge, no prior work has considered the
concrete design and resource estimates for lattice enumeration in the quantum
circuit model. In this work, we provide a concrete implementation of Monta-
naro's algorithm for lattice enumeration, together with resource estimates, in
the quantum circuit model.

Overall, Montanaro's algorithm conducts phase estimation for an operator
U := RBRA on the root of the enumeration tree. We will describe the imple-
mentation in a modular approach: starting with the general phase estimation
circuit, and the implementation of operators RA and RB and their components,
and then covering the implementation of some predicate function P , which is
used as an oracle inside the implementation of the operators RA and RB .

Our implementation is based on the so-called �Cli�ord+T� approach, which
forms a universal gate set. This choice of gate set is motivated by fault-tolerant
computation. The non-Cli�ord gates in our implementation consist of To�oli
and T gates, where To�oli gates can be constructed using T gates. Their fault-
tolerant implementation is often more expensive compared to Cli�ord gates.
Thus we will optimize the circuit by optimizing the T depth. We will also show
how to parallelize the circuit components to optimize the T depth of the circuit.
Such optimization is motivated by NIST's Post-Quantum Cryptography Stan-
dardization process [NIS16]. NIST suggests that quantum attacks are restricted
to a �xed circuit depth, namely the �maxdepth� parameter. This parameter
is derived from the di�culty of running extremely long serial computations on
quantum computers. Example values for �maxdepth� range from 240 logical gates
to 296 logical gates, making the circuit depth the crucial parameter.

For simplicity of discussion, our implementation is designed for Montanaro's
detection algorithm (e.g., see Theorem 1). The solution �nding algorithm (e.g.,
see Theorem 2) and the improved method by Ambainis and Kokainis [AK17] use
the detection algorithm as a main computational component.
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Based on the proposed circuit, we will also discuss the quantum resource
estimates required for lattice enumeration. The complexity of quantum attacks
can be measured in terms of circuit depth and size. Overall, our circuit has T
depth and size bounded respectively by

32
√
T n·

[
16np(logB + 2 log n+ p0.158) +O(n logB) + 8d2 log(d

√
T n) + 4d2 log d+O(d2)

]
;

32
√
T n·

[
8(d+ 1)(14pn2(B + 1) +O(n2B)) + 8d2 log(d

√
T n) + 16d2 log d+O(d2)

]
,

where n is the lattice dimension, d is the degree of the enumeration tree (maxi-
mum number of children for any node), p is the precision required in the arith-
metic and B bounds the coe�cients size. This is presented in parameterized form
since one can adapt these parameters given a concrete input. We also keep some
of the lower-order terms coming from di�erent components of the estimate.

For cryptographic size lattices, it is reasonable to expect d ≈ n,B ≈ n2, p ≈
3n under common heuristics (e.g., see discussions in Subsections 4.4 & 4.5).
Let log(T ) ≈ c · n log n where c denotes the dominating constant and c ≤
1
2e [ABF+20,ABLR21]. The T-depth and size is about

(128cn3 log n+O(n2.158))
√
T n and (10752n6 +O(n5))

√
T n.

It is tempting to plug-in the best tree size estimate log(T ) ≈ 0.125n log n −
0.654n + 25.84 from [ABLR21] so c ≈ 0.125. However, we stress that this is
not accurate, as the classical simulation [ABLR21] involves extensive extreme
pruning steps and preprocessing, whose implementation and impacts are left as
future work (see discussions in the next subsection).
Comparison and discussion. The security of lattice-based schemes is often
estimated by a lattice reduction algorithm like BKZ, instantiated with sieving
as the SVP solver. Sieving algorithms have been shown to be faster than enu-
meration in the classical setting, both asymptotically and in practice [ADH+19].
Concrete experiments were also demonstrated in [ADH+19,DSvW21b]. However,
the comparison of concrete resources in the quantum world is considerably more
complicated and has not been thoroughly studied, to the best of our knowledge.

Let d be the lattice dimension. The best lattice sieving algorithm [BDGL16]
has a running-time of 20.292d+o(d) and memory requirement of 20.210d+o(d), us-
ing locality sensitive hashing. This has been adapted to a quantum sieving
algorithm [Laa15], which runs asymptotically in 20.265d+o(d) and also requires
a quantum memory of 20.210d+o(d). This was improved in [CL21] and further
in [BCSS23], by replacing the Grover oracle with quantum random walks. This
results in the fastest quantum sieving algorithm known to date with a complex-
ity of 20.2563d+o(d) [BCSS23]. All of these works focus on resource estimates in
an asymptotic sense, i.e., without detailing the circuit design or concrete re-
sources. One exception is [AGPS20], which provides concrete quantum resource
estimates (with Grover-based search) for several dominant parts of lattice sieving
algorithms: a primary optimization target of [AGPS20] is the implementation of
the �popcount� operation in sieving. Quantum enumeration via backtracking al-
gorithm has been studied in [ANS18] in the query model, where the concrete cost
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for each query is not detailed. As a result, the actual cost may be signi�cantly
higher than the asymptotic estimate. This has also been stressed in [ABLR21]
as an open question, e.g., �This suggests an analogous investigation to [AGPS20]
for quantum enumeration as a pressing research question�. Our paper aims to
take a step forward in understanding this question for quantum enumeration.
Our work is similar to [AGPS20] in philosophy, providing a concrete implemen-
tation of the dominant arithmetic for lattice enumeration. Therefore, similar
to [AGPS20], our estimates are neither upper bounds nor lower bounds.

Given the (limited) research results in quantum enumeration and sieving, it
is premature to conclude the crossover point between quantum enumeration and
quantum sieving at this stage. This work does not fully settle this question, but
takes a step forward in better understanding of where the crossover points will be
based on gate design and qubit resources for quantum enumeration. We highlight
several open questions that will be most critical in answering this question.

First, the dominating term in our estimates is the O(
√
T n) term due to the

phase estimation. It would be interesting to investigate quantum algorithms for
parallelizing the phase estimation step in order to reduce the depth even further.
Second, the concrete cost of extreme pruning in quantum enumeration requires
further study. It has been proposed [ANS18] that one can run Montanaro's algo-
rithm on a combined tree with all re-randomized bases. This has the advantage
of enclosing the number of trees within the square root in the complexity. In an
intuitive manner, all re-randomized bases can be fed in, inevitably increasing the
memory. By comparison, in the classical setting, each enumeration can occur se-
quentially after another, so memory is not increased. Alternatively, Montanaro's
algorithm can be run on each basis separately to control the memory while sacri-
�cing the running time. Third, a binary tree conversion oracle is used in [ANS18]
with some overheads, whose concrete cost is unknown. Investigating the over-
head introduced by the transformation will provide a more precise picture for
quantum enumeration. This paper focuses on the `backbone' implementation so
we will leave these questions for future research.

2 Preliminaries

Notations.We let lower-case bold letters denote column vectors and upper-case
bold letters denote matrices. A matrix B = (b1,b2, · · · ,bn) is presented in a
column-wise way. We let matrix indices start with index 1. For a vector x, we
use ‖x‖ to denote its `2-norm. For n ≥ 1 and r > 0, we let Vn(r) denote the
volume of the n-dimensional ball of radius r. We also let vn denote the volume

of an n-dimensional unit ball where vn = πn/2/Γ (1 + n/2) ≈
(
2π e
n

)n/2
/
√
nπ.

We denote by log the logarithm to base 2 and by ln the natural logarithm
Euclidean lattices. A lattice L is an additive discrete subgroup of Qm. Equiv-
alently, it can be described as the set of all integral linear combinations of n
linearly independent basis vectors: Let B = (b1, · · · ,bn) ∈ Qm×n be a full rank
matrix. The lattice L generated by B is de�ned as L(B) = {Bx | ∀x ∈ Zn}.
Let n be the rank (or dimension) of the lattice L. It is called a full rank lat-
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tice when m = n. The matrix B is called a basis of L(B). Given a matrix
B and a vector v, we let πi(v) denote the orthogonal projection of v onto
the linear subspace (b1, · · · ,bi−1)⊥. Further, we let πi(B[i:j]) denote the block
(πi(bi), . . . , πi(bj−1)), let πi(L[i:j)) denote the corresponding lattice generated
by πi(B[i:j]), and let B∗ = [b∗1, · · · ,b∗n] denote the Gram�Schmidt orthogonal-
ization of B, thus b∗i = πi(bi). The volume (or determinant) of L(B) is de�ned
as vol(L(B)) =

∏
i≤n ‖b∗i ‖, which does not depend on the choice of basis of L.

The norm of a shortest non-zero vector in L is denoted by λ1(L) which is
called the minimum of the lattice L. Let L be a rank-n lattice. Minkowski's
convex body theorem states that λ1(L) ≤ 2 · v−1/nn · vol(L)1/n. The analysis
of lattice algorithms often relies on heuristic assumptions such as the so-called
Gaussian Heuristic (GH). Let S be a measurable set in the span of L. The
Gaussian Heuristic states that the number of lattice points in S is |L ∩ S| ≈
vol(S)/vol(L). When S is an n-dimensional ball of radius r, the latter quantity
is about (vn · rn)/vol(L). Taking vn · rn ≈ vol(L), we see that λ1(L) is about
GH(L) := v

−1/n
n · vol(L)1/n ≈

√
n/(2π e) · vol(L)1/n. The Gaussian heuristic

holds for random lattices, see [BL21] for de�nitions of distributions. Let B be
a lattice basis for L. We de�ne the Root Hermite Factor of the basis B as
δ(B) = (‖b1‖/vol(L)1/n)1/(n−1). Here, we use the normalization by the (n− 1)-
th root (sometimes it is de�ned by normalization with the n-th root).

Two fundamental average-case problems used in lattice-based cryptography
are the short integer solution problem (SIS) [Ajt96,MR04] and the learning with
errors problem (LWE) [Reg05]. Algorithms for solving the LWE and SIS prob-
lems often involve algorithms for solving worst-case problems such as the ap-
proximated shortest vector problem (SVPγ). On input a lattice basis B, SVPγ
asks to �nd a non-zero lattice vector v ∈ L(B) such that ‖v‖ ≤ γ · λ1(L(B)).
When γ = 1, it is exact SVP.

Lattice algorithms. The di�culty of solving SVPγ varies with respect to
its approximation factor γ, which is usually a function of the rank n of the
lattice. When γ = 2Ω(n), the LLL algorithm [LLJL82] �nds a SVPγ solution
in polynomial time. The time complexities of the best known algorithms that
�nd the exact solutions (e.g. γ = 1) are at least exponential in the dimen-
sion of the lattice: representative exact algorithms include enumeration algo-
rithms [Kan83,FP85,SE94], sieving algorithms [AKS01] and Voronoi cell algo-
rithms [MV10a]. Most cryptographic constructions rely on lattice problems with
approximation factors that are polynomial or slightly sub-exponential in n. In
such a regime, the best practical algorithms are lattice reduction algorithms such
as Block-Korkine-Zolotarev (BKZ) [Sch87,CN11,HPS11]. Given a input basis,
these output a basis made of relatively short vectors.

For a lattice basis B, let µi,j := 〈bi,b∗j 〉/〈b∗j ,b∗j 〉. It is size-reduced if ∀i ≥ j,
|µi,j | ≤ 1/2, HKZ-reduced (Hermite-Korkine-Zolotarev) if it is size-reduced and
satis�es: ‖b∗i ‖ = λ1(πi(L[i:n))), ∀i ≤ n, and BKZ-β reduced with blocksize β
if it is size-reduced and satis�es ‖b∗i ‖ = λ1(πi(L[i,min(i+β−1,n)])), ∀i ≤ n. BKZ
algorithms, such as [SE94], take as inputs a block-size β and a basis B of a lat-
tice L, and output a basis which is close to being BKZ-β reduced. A typical BKZ
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algorithm invokes SVP solvers on consecutive local blocks πk(B[k,min(k+β−1,n)])
for all k < n (this is called a BKZ tour). After each run of the SVP-solver, if we
�nd λ1(πk(B[k,min(k+β−1,n)])) < α · ‖b∗k‖ for some relax factor α ≥ 1, then BKZ
updates this block by inserting the shorter vector found by the SVP-solver at
index k. LLL reductions are used whenever there is an update on the basis. The
BKZ tours are repeated and the whole algorithm terminates when no change oc-
curs at all during a tour or some termination condition is met. A useful heuristic
is the Geometric Series Assumption (GSA) introduced in [Sch03], which states
that the Gram-Schmidt norms {‖b∗i ‖}i≤n of a BKZ-β reduced basis behave as
a geometric series, i.e., there exists a constant r > 1 such that ‖b∗i ‖/‖b∗i+1‖ ≈ r
for all i < n, where r ≈ β1/β asymptotically.
Lattice enumeration. Lattice reduction algorithms such as BKZ make calls to
exact (or approximate) SVP oracles of smaller dimensions. These SVP solvers
can be instantiated by the aforementioned exact SVP algorithms. In this work,
we focus on exact SVP solvers instantiated by enumeration. In short, such al-
gorithms proceed with an exhaustive search for all (or partial) lattice vectors
within a certain region. We review the algorithms of [Kan83,FP85,SE94].

Given a basis B of L and a good upper bound R for the length of a shortest
vector in L, an enumeration algorithm outputs a shortest vector v with ‖v‖ ≤ R
if such a vector exists. To �nd v, the enumeration algorithm searches over a
tree formed by all vectors of norm bounded by R. This can be achieved by
writing v =

∑n
j=1 vjbj =

∑n
j=1(vj +

∑n
i=j+1 µi,jvi)b

∗
j and bounding each of

the projections:

‖πn+1−l(v)‖2 =

n∑
j=n+1−l

(vj +

n∑
i=j+1

µi,jvi)
2‖b∗j‖2 ≤ R2, ∀ 1 ≤ l ≤ n. (1)

The Schnorr-Euchner algorithm [SE94] conducts a depth �rst search of the enu-
meration tree. More precisely, the algorithm starts with l = 1 and �xes some vn
in a bounded range as determined by ‖πn(v)‖2 ≤ R2. Inductively, assume the
algorithm has proceeded to level l ≥ 2 and hence all vn+2−i for 2 ≤ i ≤ l are
�xed. Using ‖πn+1−l(v)‖2 ≤ R2, a permissible range for the coe�cient vn+1−l
can be derived. The algorithm backtracks when the range becomes invalid and
succeeds when it reaches a leaf. This procedure thus creates an enumeration
tree of depth n and only requires poly(n) memory. The running time of an
enumeration-based algorithm depends heavily on the quality of the input lattice
basis B. In Kannan's enumeration algorithm [Kan83], a strong preprocessing is
performed before enumeration, to achieve a quasi-HKZ shape. Subsequent anal-
ysis [HS07] shows the Kannan's enumeration achieves a worst-case running-time
of nn/2e+o(n). Heuristically the number of enumerated lattice vectors can be es-
timated using the Gaussian heuristic. To speed up the enumeration, Schnorr and
Hörner [SH95] proposed a technique known as tree pruning. The idea is to reduce
the search space by performing the search on a subset of all possible solutions,
which are more likely to be short. An improved algorithm, namely extreme prun-
ing, was proposed by Gama, Nguyen and Regev [GNR10]. The main idea is to
heavily prune the enumeration tree and repeat the procedure by rerandomizing
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H

(a) H-gate (b) NOT

•

(c) CNOT

×
×

(d) SWAP

T

(e) T-gate

Fig. 1: Basic quantum gates.

the basis. They also proposed methods for choosing the pruning parameters to
optimize the running-time versus success probability. This leads to the current-
state-of-the-art of enumeration-based lattice reduction algorithms, which has
been adopted in BKZ 2.0 [CN11] and implemented in the fplll library [dt22]
and the progressive preprocessing lattice reduction library [AWHT16]. In this
work, for convenience, it is su�cient to assume the bound R in inequality (1)
can be replaced by some number Rl := f(R, l,B) where f can be pre-computed.

Quantum circuits. In this work, we will formulate the quantum architecture
based on the quantum circuit model. As stated before, the gate count uses the
�Cli�ord+T� gate set. Such choice of gate set is motivated by fault-tolerant
computation, as many quantum error correcting codes can naturally implement
Cli�ord gates. The T-gate is non-Cli�ord and used to implement the useful
To�oli gate. As fault-tolerant implementation of T-gates is more involved than
for Cli�ord gates, our resource estimates minimize T-depth and T-gate count

We assume the implementations of the following gates are the primitive build-
ing blocks and give their circuit notation in Figure 1.

The Hadamard-gate (denoted H) acts on a single qubit. In outer product
notation, H = 1√

2
(|0〉 〈0|+ |1〉 〈0|+ |0〉 〈1| − |1〉 〈1|). We denote |+〉 := H |1〉 and

|−〉 := H |0〉. The multi-bit H gate is de�ned as H⊗n := H⊗· · ·⊗H with n such H
gates. The NOT-gate (sometimes called the X-gate) is a single-qubit gate, which
�ips the bit when the inputs are from the standard basis. As outer product,
NOT = |1〉 〈0| + |0〉 〈1|. The CNOT-gate is a two-qubit operation, where the
�rst qubit is usually referred to as the control qubit and the second qubit as the
target qubit. As outer product, CNOT = |00〉 〈00|+|01〉 〈01|+|10〉 〈11|+|11〉 〈10|.
The SWAP-gate is a two-qubit operation that swaps the state of the two input
qubits. As outer product, SWAP = |00〉 〈00| + |11〉 〈11| + |01〉 〈10| + |10〉 〈01|.
The SWAP gate can be implemented for free by reassigning the labels, assuming
distance between qubits does not matter. The T-gate is a single-qubit gate,
which rotates the Z-axis of the Bloch sphere by 45' degree. As outer product,
T = |0〉 〈0|+eiπ/4 |1〉 〈1|. The Eastin-Knill theorem [EK09] shows that not all the
unitary operators in a universal operator set can be implemented transversally.
Implementations often choose the T-gate as the non-transversal gate.

We will also use several controlled gates that can be implemented from the
above primitive quantum gates. This includes the To�oli gate and controlled-Z
gate, with their circuit notation given in Figure 2. The To�oli gate can be de-
composed into smaller quantum gates, which can be made fault-tolerant. Among
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•
•

(a) To�oli gate

• • •
• • •
• = •

•

(b) 3-To�oli gate, using 3 Tof-
foli gates and 1 ancillary qubit

• •
Z = H H

(c) Controlled Z gate

Fig. 2: Synthesized quantum gates.

them, the most expensive gate is the T-gate. A standard decomposition of the
To�oli gate into the Cli�ord+T set can be found in [NC11], which has a T-count
of 7 with a T-depth of 6. This has been improved in the design of [AMMR13]
which has a T-count of 7 and a T-depth of 3. This appears to be the best T-depth
without ancillas. With ancillas, the T-depth can be reduced to 1, as described
in [Sel13]. This is mostly useful when the T-gate is expensive and ancillas are
cheap. In terms of T-gate count, [Jon13] describes a probabilistic circuit which
has a T-count of 4 using one ancilla bit.

The To�oli gate can be extended into a multi-To�oli gate. The simplest
design for an n-To�oli gate (where n > 2) starts by applying a To�oli gate
from the �rst 2 control qubits onto an ancillary qubit, the intermediate result.
Then it repeatedly applies a To�oli gate with the next control qubit and the
current intermediate result onto a new ancillary qubit to get a new intermediate
result. Finally, it copies the result onto the target qubit with a CNOT-gate, or
replaces the last ancillary qubit with the target qubit. It also needs to clean up
the intermediate results with To�oli gates, using in total 2n − 2 To�oli gates,
n − 1 ancillary qubits and a CNOT gate. If the last ancillary qubit is replaced
with the target, 2n− 3 To�oli gates and n− 2 ancillary qubits su�ce.

The Z gate is a gate to �ip the phase of the |1〉 state. In outer product form,
Z = |0〉 〈0| − |1〉 〈1|. The Z gate can be implemented by putting a NOT gate
between 2 Hadamard gates. It can be controlled by replacing the NOT gate with
a CNOT, To�oli or multi-To�oli gate.

The Ry(θ) gate rotates by θ/2 degrees around the y-axis of the Bloch sphere.
In outer product form, Ry(θ) = cos(θ/2) |0〉 〈0|−sin(θ/2) |0〉 〈1|+sin(θ/2) |1〉 〈0|+
cos(θ/2) |1〉 〈1|. To get it, we �rst need to introduce the Rx(θ) and Rz(θ) gates,
rotating around the x- and z-axes respectively. The Rz(θ) gate can be made from
the base set using 4 log( 1ε ) + O(log(log( 1ε )) T-gates for ε accuracy [RS16]. The
Rx(θ) gate can be made using Rx(θ) = HRz(θ)H, which then can be turned
into the Ry(θ) gate using Ry(θ) = T 2Rx(θ)T

6. So to get Ry(θ) we need 8 T
gates, 2 Hadamard gates, and a Rz(θ)-gate. The Ry(θ) gate can be decomposed
into NOTRy(−θ/2)NOTRy(θ/2), meaning it can be made controllable by re-
placing the NOT gates with CNOT, To�oli or multi-To�oli gates. Finally, the
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Hadamard gate can be decomposed into Ry(
π
4 )ZRy(−π4 ). By making the Z gate

controllable, we can make a controllable Hadamard gate.
Cost model. We make a number of assumptions for our quantum resource
cost model. We assume a full capacity of parallelism, e.g., the circuit can run
any number of gates simultaneously as long as these gates act independently
on di�erent qubits. The time complexity of the circuit depends on its depth,
which is why we mainly focus on To�oli and T gates. We use To�oli and T gates
simultaneously, and as noted above, the To�oli gate can be implemented using
a circuit of T gates with T-depth 1. Some component may involve a polynomial
number of ancillas, which we sometimes trade o� in favor of a smaller circuit
depth. Overall we aim to optimize the circuit depth and then the circuit size.

3 Quantum Tree Backtracking

Our implementation focuses on the quantum tree backtracking algorithm of Mon-
tanaro [Mon18], based on the electric network framework [Bel13], for detecting
a solution. Montanaro's algorithm was presented for solving the so-called con-
straint satisfaction problem (CSP). Some further background on tree backtrack-
ing for solving the CSP is given in Appendix B. In this section, we provide some
details about Montanaro's algorithm, to facilitate our concrete implementation
and circuit presented in Section 4.

It can be seen that lattice enumeration allows for tree backtracking, which
we will denote as �enumeration trees�. Indeed, inequality (1) suggests that, at
the l-th (l ≥ 2) level of the tree, vn+2−l, . . . , vn are already determined. To go
down the tree, it remains to bound and select a value, if it exists, for vn+1−l
according to Inequality (1). We let d denote the maximal number of choices of
vi. Thus this can be represented by a tree with up to n layers and degree d.

3.1 Montanaro's algorithms

A �rst algorithm of Montanaro detects whether the tree contains a solution for
some predicate P in O(

√
T n) steps where T is an upper bound on the tree size

and n is the height of the tree. This is given in Theorem 1.

Theorem 1 ([Mon18, Theorem 1.1]). Let T be an upper bound on the
number of vertices in a tree formed by some constraint. Then for any 0 < δ < 1
there is a quantum algorithm which, given T , evaluates a predicate P and a
function h (which determines how to extend a given partial assignment) for
O(
√
T n log(1/δ)) times each, outputs true if there exists x such that P (x) is true,

and outputs false otherwise. The algorithm uses poly(n) qubits, O(1) auxiliary
operations per use of P and h, and fails with probability at most δ.

In the lattice enumeration context, an upper bound T is often super-exponential
in n and the tree height n can be the lattice dimension. An upper bound T on
the tree size is an input in the above theorem. This detection algorithm can
be modi�ed to actually locate the solution, via repeated applications on the
subtrees. This leads to Montanaro's second algorithm:
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Theorem 2 ([Mon18, Theorem 1.2]). Let T be the number of vertices in
a tree formed by some constraint. Then for any 0 < δ < 1 there is a quantum
algorithm which makes O(

√
T n1.5 log n log(1/δ)) evaluations of each of P and

h, and outputs x such that P (x) is true, or �not found� if no such x exists. If
we are promised that there exists a unique x0 such that P (x0) is true, there is a
quantum algorithm which outputs x0 making O(

√
T n log3 n log(1/δ)) evaluations

of each of P and h. In both cases the algorithm uses poly(n) space, O(1) auxiliary
operations per use of P and h, and fails with probability at most δ.

In the second algorithm in Theorem 2, T denotes the actual number of ver-
tices in the tree, which needs not to be given as an input to the algorithm. In
both algorithms, the tree degree d is assumed to be O(1) in the analysis.

The main essence of Theorem 1 is an algorithm to determine the presence
of a solution given a tree root. This detection algorithm also serves as the main
computational component in Theorem 2. We will thus focus on the algorithm
in Theorem 1 for detecting a solution. During the algorithm, the state is a
superposition of all the possible paths in the tree, and the primary tool we need
from quantum computing is phase estimation, as described in Theorem 3.

Theorem 3 ([Kit96,CEMM98]). Assume a unitary U is given as a black
box. There exists a quantum algorithm that, given an eigenvector ψ of U with
eigenvalue eiφ, outputs a real number w such that |w − φ| ≤ δ with probability
at least 9/10. Moreover, the algorithm uses O(1/δ) controlled applications of U
and 1

δ poly(log(1/δ)) other elementary operations.

To get a precision of δ = 2−s for some positive integer s, we need to apply
controlled-U 2s times and use O(s2) more gates to perform a quantum Fourier
transform on s qubits. Also in practice, we end up only caring about being able
to distinguish the eigenvalue 1 = ei0 from other eigenvalues, so we only need
to check if the output w is close to 0 or not. We then construct a single `walk
step' U , that re�ects over superpositions of nodes and their children, except for
marked leaves. We construct this walk step such that it keeps the sign of the
uniform superposition over the vertices and the path from the root to a leaf that
contains a solution. If we had a path, we could use phase estimation to detect if
the eigenvalue of this path was one. However, if we had a path, we could just test
if the leaf contains a solution. Instead, we use that the root is `close enough' to
a path and test the eigenvalue of the root. If a marked vertex (one that contains
a solution) exists, it is likely that phase estimation would output eigenvalue 1.
On the other hand, if the tree does not contain a solution, it is less likely that
phase estimation would output eigenvalue 1, since 1 is `not very close' to the
uniform superposition of vertices. Thus, by repeating the phase estimation with
high precision, we can eventually get the desired con�dence.

The walk steps Montanaro introduced use a di�usion operator Dx which acts
on the Hilbert space spanned by a node |x〉 and its children. Let dx denote the
degree of the node |x〉 and x→ y mean y is a child of x. Dx is de�ned as:

• If x is marked, Dx is the identity.
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• If x is not marked and not the root, it changes the sign of the uniform
superposition of x and its children y and leaves any orthogonal superpositions
alone. This can be described by a Householder transformation, e.g.:

Dx := I − 2 |ψx〉 〈ψx| , with |ψx〉 := (1/
√
dx)(|x〉+

∑
y,x→y

|y〉).

• At the root, Dr := I − 2 |ψr〉 〈ψr| where

|ψr〉 = (1/
√

1 + drn)(|r〉+
√
n
∑
y,r→y

|y〉).

It is worthwhile to note the Dx operator a�ects the node x and its children
simultaneously. Montanaro's algorithm splits the tree into vertices of even and
odd distance from the root, called set A for even and set B for odd, using that
trees are bipartite. Each step of the `walk' consists of applying RBRA where
RA =

⊕
x∈ADx and RB = |r〉 〈r| +⊕x∈B Dx. The operator RA applies the

di�usion operator to all vertices of even distance from the root (including the
root) and their children, changing the sign of any ψx (or ψr), but leaving or-
thogonal states untouched. The operator RB acts similarly on vertices of odd
distance together with the root, and the |r〉 〈r| in RB actually leaves the root un-
touched. Now this operator has been constructed such that we have two possible
eigenvectors |φ〉 , |η〉 not orthogonal to |r〉 with eigenvalue 1, where

|φ〉 = √n |r〉+
∑

x 6=r,x;x0

(−1)l(x) |x〉 and |η〉 = |r〉+√n
∑
x 6=r

|x〉 ,

where l(x) is the distance of x to the root and x ; x0 means every x on the
path to a marked vertex x0 (including x0). If no marked vertex exists |η〉 has
eigenvalue 1 else |φ〉 has eigenvalue 1. Finally we apply quantum phase estimation
of RBRA to |r〉, and check if it has eigenvalue 1. This returns 1 with probability
greater than 1/2 if a marked vertex exists and smaller than 1/4 if it does not
[Mon18, Lemma 2.4]. To conclude, Montanaro's tree backtracking algorithm for
detecting a solution is described in Algorithm 1. Montanaro showed that this
detection algorithm fails with probability at most δ when the phase estimation
is invoked for K = dγ log(1/δ)e times for some universal constant γ.

3.2 Quantum lattice enumeration

Aono, Nguyen and Shen [ANS18] adapted the algorithms by Montanaro [Mon18]
and Ambainis and Kokainis's [AK17] to the context of lattice point enumeration.
They obtain the following theorems:

Theorem 4 ([ANS18, Theorem 7 & 8]). For any δ > 0, given an LLL-
reduced basis B and a radius R together with a pruning function f , there is a
quantum algorithm that outputs a shortest non-zero vector v in L(B)∩Pf (B,R),
with correctness probability ≥ 1−δ, in time O(

√
T n3β poly(log(n), log(1/ε), log(β))),

where β is the bit-size of input vectors. Applying this to Kannan's algorithm leads
to a quantum enumeration algorithm of nn/4e+o(n) · poly(log(n), log(1/ε), β).
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Algorithm 1 Detecting a solution (Alg. 2 of [Mon18]), universal constants β, γ.

Input: Operators RA, RB , a failure probability δ, upper bounds on the depth n and
the number of vertices T .
Output: Solution exists or not.

Repeat the following subroutine K = dγ log(1/δ)e times:
(a) Apply phase estimation to the operator RBRA on |r〉 with precision β/

√
T n.

(b) If the eigenvalue is 1, accept; otherwise, reject.
If the number of acceptances is at least 3K/8, return �solution exists�; otherwise,
return �no solution�.

There are two interesting modi�cations in [ANS18]. First, one can transform
a tree of depth n and degree d to a binary tree of depth n log d. The access to
the predicate of the original tree can be modi�ed e�ciently to a predicate access
to the transformed tree. For an LLL-reduced basis, the enumeration tree has
d ≤ 2n and thus leads to a binary tree of depth O(n2). The main idea in the
proof of Theorem 4 is to apply Montanaro's [Mon18] second algorithm iteratively
on the transformed binary tree. Second, [ANS18] proposes to run the quantum
algorithm on a combined tree, consisting of m rerandomized bases, in the ex-
treme pruning setup. This leads to a factor of O(

√
m) savings on the quantum

enumeration, compared to calling the procedure m times sequentially. Our work
focuses on the implementation aspects. Thus we do not repeat the details on
extreme pruning and the binary tree transform, as already given in [ANS18].

4 Using Backtracking for Enumeration

In this section, we describe the circuit for the quantum lattice enumeration, based
on Montanaro's tree backtracking [Mon18]. We also give the resource estimate,
which is based on a design optimized w.r.t the T-depth. Overall, the algorithm
conducts phase estimation of some operator RBRA on the root of subtrees. We
make the implementation modular, starting with the phase estimation, and the
implementation of RA or RB , and then the implementation of the predicate
which is used as an oracle inside the implementation of RA and RB .

4.1 Phase estimation

To start with, the main algorithm of Montanaro [Mon18] (see Algorithm 1)
detects if there exists a solution in a given subtree. Note that Step (a) in Algo-
rithm 1 can run in parallel, thus the main computation is the phase estimation
step of the operator RBRA on the input |r〉 where |r〉 denotes the root of the tree.
For completeness, Figure 3 shows a general phase estimation circuit. Step (a) in
Algorithm 1 implies that, for the correctness of phase estimation, one requires
the precision to be ≈ β/

√
T n (note β is some universal constant independent of

the input size). This means that controlled-U operators show up O(
√
T n) times.

In [CKM19], Campbell, Khurana and Montanaro have given a more precise
estimate on the hidden constant. For example, to achieve a failure probability
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δ ≤ 0.1 (see Algorithm 1 for δ), one can take the number of repetitions K = 79
and then the number of controlled-U operators can be bounded by 32

√
T n. Note

that the input |0〉⊗m takes m = O(log(T n)) qubits. Asymptotically, T upper-
bounds the tree size which is about ncn+o(n) where c ≤ 1

2e [ABF+20,ABLR21].
Thus m is about O(n log n). The quantum Fourier transform (QFT) step can be
constructed in O(log2(T n)) primitive gates. We will see in Subsection 4.2 that
the input to the U operators requires about Θ(n log d) qubits.

|0〉 H · · · •

QFT

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|r〉 U20 U21 · · · U2s−1 |r〉

Fig. 3: Circuit for phase estimation where U := RBRA.

4.2 Implementation of RA and RB

In the phase estimation algorithm, e.g., Figure 3, a key step is the controlled-U
operator. We consider implementing a single step of the operator U = RBRA.
Montanaro provides a high level description to implement RA =

⊕
x∈ADx, with

RB being analogous, in Algorithm 3 of [Mon18]. We implement this algorithm
for lattice enumeration step by step and give the number of gates and ancillary
qubits required.

Implementation of RA (and RB). The input of the algorithm is:

• An integer |l〉 which is the depth we are at, ranging from 0 (indicating we
are at the root) to n (indicating we are at a leaf). This corresponds to the
value l as in Inequality (1) for lattice enumeration.
• An array |v〉 = |v1〉 . . . |vn〉 which is the path in the tree, and each vi ∈
[d] ∪ {∗}, where [d] = {1, . . . , d}, and ∗ denotes unassigned. Each element
of [d] corresponds to one child of the node. The indices i correspond to the
values i in Inequality (1).
• Access to an oracle P , which given a path in the tree |l〉 |v〉 returns true,
false or indeterminate.
• Access to a heuristic h to determine the next index to branch on. In the
lattice enumeration context, this simply decreases from n to 1.
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The input thus requires dlog ne + ndlog d + 1e qubits where the coe�cients
vi are the dominating terms. The algorithm also needs some ancillary qubits:
(1) Hanc which stores a ∈ [d] ∪ {∗} and starts in |∗〉. (2) Hchildren which stores
an array S ⊆ [d] and starts empty. Note Hanc,Hchildren take up dlog d+ 1e and d
qubits respectively. The algorithm also uses some extra qubits to do intermediate
computations that we will describe later.

We now describe the algorithm (Algorithm 3 of Montanaro [Mon18]) and its
implementation. Note, to be consistent with the description of Algorithm 3 of
Montanaro [Mon18], the indices are from 1 to n. This should be reversed outside
this subsection when considering our application as in Inequality (1).

Step 1. If P (|l〉 |v〉) is true, return. To implement this step, we call P and save the
output of P (|l〉 |v〉) in an ancillary qubit |c1〉 where c1 = 1 when P returned
NOT true and 0 otherwise, which we will use later.

Step 2. If l is odd, subtract h((i1, v1), . . . , (il−1, vl−1)) from il and swap a with vl.
To implement this step, we swap a and vl controlled by the least signi�cant
qubit of l. This uses dlog d + 1e To�oli gates and twice that many CNOT
gates. The subtraction is not relevant for lattice enumeration context.

Step 3. If a 6= ∗, subtract 1 from l. To implement this step, we need to �rst �nd
out whether a = ∗, using a dlog d + 1e-To�oli gate onto an ancillary qubit
c3 = 1(a 6= ∗) and some NOT gates depending on how we represent ∗. As
described in Section 2, we can implement the i-To�oli gate trivially using
2i−3 To�oli gates and i−2 ancillary qubits, starting and ending in |0〉. Then
we do a controlled reverse incrementer circuit on l controlled by c3, using
Gidney's design [Gid15]. The incrementer circuit (using the n− 2 zeroed bit
design) uses 2dlog ne − 4 To�oli gates, dlog ne − 1 CNOT gates and 1 NOT
gate using dlog ne − 2 ancillary qubits. To make it controllable, we convert
the CNOT gates into To�oli gates, additionally controlled by c3, and the
NOT gate into a CNOT gate also controlled by c3.

Step 4. This is skipped.
Step 5. For each w ∈ [d]: If P (|l + 1〉 |v1〉 ... |vl〉 |w〉) is not false, set S = S ∪ {w}.

|S〉 is implemented as a string of d qubits, each representing one entry of [d].
For each w ∈ [d] we access P , check whether the result is false or not, and

change the appropriate qubit of |S〉, which starts as the |0〉d state. We repeat
this step d times for a total of d uses of the oracle P and CNOT gates. We
leave d ancillary qubits with the intermediate results to decrease calls to P .

Step 6. If l = 0, perform the operation I − 2 |φn,S〉 〈φn,S | on a. Otherwise, perform
the operation I − 2 |φ1,S〉 〈φ1,S | on a. This is the step where we perform Dx.
To do this, we need the function Uα,S :

|∗〉 7→ 1√
α|S|+ 1

(
|∗〉+√α

∑
i∈S
|i〉
)
.

Uα,S maps |∗〉 into |φα,S〉. We can then do

Uα,S (I − 2 |∗〉 〈∗|)U−1α,S = I − 2 |φα,S〉 〈φα,S | .
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The operator I − 2 |∗〉 〈∗| requires a check whether |a〉 = |∗〉 and applies a
conditional Z gate if |a〉 = |∗〉, using a dlog d+1e+1-To�oli gate. Additionally
condition the Z gate on c1 as well as the relevant qubit used in the Fourier
transform. No other step has to be controlled to make RBRA controllable.

Step 7. Uncompute S and j by reversing Steps 5 and 4, making d more uses of P .
Step 8. If a 6= ∗, add 1 to l. If l is now odd, add h((i1, v1), . . . , (il−1, vl−1)) to il and

swap vl with a. (Now a = ∗ again.) Another uncomputation step, reverse
Steps 3, 2 & 1 with the same cost.

The number of gates required and the number of additional qubits needed is
summarized in Table 1.

Table 1: Summary of circuit and gates required. Ancillary qubits are required
until they are subtracted, zeroed qubits are required only for one step and are
returned to zero in that step.

Step TOF CNOT P calls Ancillas Zeroed qubits
1 0 0 1 1 0
2 dlog d+ 1e 2dlog d+ 1e 0 0 0
3 5dlog d+ 1e − 8 2 0 1 dlog d+ 1e − 2
5 0 d d d 0
6 2U−1

α,S + 2dlog d+ 1e − 1 2U−1
α,S 0 0 U−1

α,S

7,8 6dlog d+ 1e − 8 d+ 2dlog d+ 1e+ 2 d+ 1 −(d+ 2) dlog d+ 1e − 2

As described in Subsection 4.3, the cost of U−1α,S is:

2dlog ne+ dlog de(2d2 + 8d+ 2) +
5

2
d2 +

11

2
d+ 1

TOF gates, d2dlog d+ 1e+ d2 + 3d CNOT gates, 2d+ 1 + dlog de zeroed qubits

taking into account the cost saving of doing U−1α,S(I− 2 |φ1,S〉 〈φ1,S |)Uα,S and an
additional T-depth of

4d2(log(d/ε) + 5/2)− 12d(log(d/ε) + 5/2) + 8 log(d/ε) + 20

due to error correction for maximum error ε.
Parallelizing Steps 5 & 7. In the case where calls to P dominate the cost,
which we will see is our case, Step 5 and its inverse Step 7 can easily be paral-
lelized by making d copies of |l〉 |v〉 and then calling P to |l + 1〉 |v1〉 . . . |vl〉 |w〉
for each w ∈ [d] in parallel. This reduces the depth of RA from 2d+2 calls to P
to 4 calls to P . The additional cost is 2d(dlog ne+ ndlog d+ 1e) CNOT gates.

4.3 The function Uα,S

Performing the map Uα,S for variable degree requires us to implement the map

|S〉 |0〉 7→ |S〉 1√
|S|

∑
Si∈S

|i〉 .
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For this we will need d+1 ancillary qubits for the transformation starting in |1〉,
which we will call |σ〉, and |s〉 of size dlog de to store the size of S. To calculate the
size of S we calculate the Hamming weight of the string |S〉, which we will put
into ancillary qubit array |s〉. To implement the Hamming weight function, we
need at most 2d− 2 To�oli gates, using the design from [BP05] (lower bounding
the Hamming weight of d to 1). The classical design can be turned into a quantum
circuit by replacing the conjunction gates with To�oli gates and XOR gates with
CNOT gates, with an additional d− 1 To�oli gates to clean up zeroed ancillary
space. The CNOT complexity of this is bounded by 4d − 2, modifying adder
design which is described in [BP05]. We also need to distinguish the cases: use a
dlog ne-To�oli gate to get ancillary qubits |β〉 = 1(l = 0). Next we �x the state
of |∗〉 by applying a rotation. To do this, we have to repeat for i = 0, . . . , d:

1. Check if s = i using some NOT gates and one dlog de-To�oli gate to add
everything together, putting the result in ancillary qubit |c6〉.

2. Controlled by |c6〉 and |β〉 perform the rotation |1〉 → 1√
ni+1

|0〉+
√

ni
ni+1 |1〉

on the last qubit of |σ〉 using Rsin−1( 1√
ni+1

), R− sin−1( 1√
ni+1

) and 2 TOF gates.

3. Controlled by |c6〉 and NOT |β〉 perform the rotation |1〉 → 1√
i+1
|0〉 +√

i
i+1 |1〉 on the last qubit of |σ〉 using Rsin−1( 1√

i+1
), R− sin−1( 1√

i+1
) and 2

TOF gates.
4. Uncompute |c6〉. This can be done with only 1 To�oli gate by ignoring the

cleanup of the dlog de-To�oli gate in Step 1 and keeping the ancillary qubits
around, cleaning them up now.

This also provides a sketch for creating the rest of the desired superposition.
Figure 4 shows an example of how to create a uniform superposition over 3
qubits. We will do the same over a variable number of qubits.

|1〉 Ry(θ) • • •

|1〉 H •

|1〉

Fig. 4: Circuit to turn |111〉 into (|100〉+ |010〉+ |001〉) /
√
3. θ = 2 cos−1(1/

√
3).

The remaining d qubits of |σ〉 will function as the d elements of S. We will
also need d more ancillary qubits to save some multi-To�oli gates, |t1〉 , . . . , |td〉
starting in |0〉. For i = 1, . . . , d:

1. Apply a To�oli gate to |ti〉 controlled by |ti−1〉 and |σi−1〉 to make sure |σ〉
is 1 up to this point. At i = 1 use a CNOT gate controlled by |σd+1〉 instead.

2. Now, for j = 1, . . . , d+ 1− i:
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(a) Check if |s〉 = j using some NOT gates and one dlog de-To�oli gate,
putting the result in |Ti,j〉.

(b) If j > 2: controlled by |Ti,j〉, |ti〉 and |Si〉 perform the rotation |1〉 →
1√
j
|0〉 +

√
j−1
j |1〉 on |σi〉 using Rsin−1( 1√

j
), R− sin−1( j−1√

j
), 4 TOF gates

and 2 CNOT gates.
(c) If j = 2: controlled by |Ti,j〉, |ti〉 and |Si〉 perform a NOT gate and a

conditional Hadamard gate on |σ〉i to perform the rotation |1〉 → |+〉,
using 4 TOF gates and 3 CNOT gates.

(d) If j = 1: controlled by |Ti,j〉, |ti〉 and |Si〉 perform a 3-To�oli gate on
|σi〉 to perform |1〉 → |0〉.

(e) Uncompute |Ti,j〉, using the same strategy as for c6.
3. Perform a conditional decrementer gate on |s〉 conditioned by Si so it is equal

to the number of remaining entries of |S〉.
We can optionally uncompute |t1〉 , . . . , |td〉 at the end using half of a d-To�oli
gate (Step 1 is the �rst half of this d-To�oli gate). |s〉 is always |0〉 at the �nal
step of the algorithm. Apply a NOT gate to every qubit of |σ〉 to see that we
are close to the desired superposition:

|β〉 |σ〉 = |0〉
(

1√
|S|+1

(∣∣0d1〉+∑Si∈S
∣∣0i−110d−i0〉))

+ |1〉
(

1√
n|S|+1

(∣∣0d1〉+√n∑Si∈S
∣∣0i−110d−i0〉)) .

Next, apply NOT to qubits of |a〉 so |∗〉 → |0〉. Then, for each i = 1, . . . , d + 1,
apply CNOTs controlled by |σi〉 to |a〉 to set it to |Si〉 for i = 1, . . . , d and |∗〉
for i = d+1. Finally, uncompute |σ〉 with d+1 dlog d+1e-To�oli gates and |β〉
with a dlog ne-To�oli gate. The number of To�oli gates in Uα,S is

2dlog ne+ dlog de(2d2 + 8d+ 2) +
5

2
d2 +

15

2
d− 1,

the number of CNOT gates is d
2dlog d+1e+d2+7d−2 and the number of ancil-

lary qubits is 2d+ 1 + dlog de, skipping uncomputation of |β〉 and |t1〉 , . . . , |td〉.
However, since we do U−1α,S �rst, some operation on |a〉 and then Uα,S , we can
skip the computation of |s〉 as well, saving 2d−2 To�oli gates and 4d−2 CNOT
gates, and only uncompute |β〉 , |t1〉 , . . . , |td〉 instead of computing them.
Dealing with errors from the rotations. When applying the rotation gates,
we introduce an error [RS16]. Because the �nal superposition will have up to
d rotations1 applied, the total maximum error is max(εi, 1 − Πi=1,...,d(1 − εi))
where εi is the error at layer i. If we want to bound the error by some target ε, we
can set εi to 1− d

√
1− ε ≈ ε/d. Since each rotation gate has worst case T-depth

4 log(1/εi) + 10 [Sel15,RS16, Section 8.3] and we do a total of d(d+ 1)− 4d+ 2
rotations, we get a total T-depth of 4d2(log(d/ε) + 5/2)− 12d(log(d/ε) + 5/2) +
8 log(d/ε) + 20, which is dominated by 4d2 log(d/ε) and cannot be parallelized.

1 At each i = 1, . . . , d, only 0 or 1 rotation gates actually introduce this error. Con-
ditional rotation gates where the condition is not met cancel the error introduced,
since NOTRz(−θ)NOT = Rz(θ), meaning they have the same error.
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4.4 Bounds and arithmetic in the predicate

A predicate function P is used in Step 1, 5, 7 & 8 for the implementation of RA
(and RB) in Subsection 4.2. In this subsection, we will discuss some bounds and
the main arithmetic used in the predicate. The implementation of the predicate
and resources are presented in Subsection 4.5.

The predicate takes inputs of the form |l〉 |vn〉 · · · |vn−l+1〉 |∗〉 for 1 ≤ l ≤ n
and checks whether it satis�es Inequality (1). It returns one of false, satis�ed
or true. Note that the true is triggered when the inequality is satis�ed and the
level is l = n. Thus we may simply assume P (•) returns either false or satis�ed.
Observe that here we denote the index i in reverse order to be consistent with
the notation in Inequality (1). Thus the main computational step at the l-th
level (e.g., with input |l〉) in the predicate is to check if vj satis�es:∑

j≥n+1−l︸ ︷︷ ︸
(III)

(
∑
i≥j︸︷︷︸
(II)

µi,j · vi︸ ︷︷ ︸
(I)

)2 ·‖b∗j‖2︸ ︷︷ ︸
(IV )

≤ R2, (2)

where R is the enumeration radius (e.g., R = ‖b1‖ or R = GH(L)). In the case of
pruning, R can be replaced by a pruning function Rl that can be pre-computed
classically. For convenience, we mark the steps of the computation by (I)− (IV )
that we will refer to later.
Simpli�ed model. We make a few simpli�cations to the description, to avoid
the implementation becoming overly complicated and unreadable. First, Step 5 of
Algorithm 3 of Montanaro [Mon18] (see Subsection 4.2) asks to check ∀w ∈ [d],
if P (|l + 1〉 |vn〉 ... |vn−l+1〉 |w〉) is not false. These superpositions |vi〉 and |w〉
stand for indices of the nodes (say, as the children). However, to compute the
predicate, one requires the superpositions corresponding to the actual values of
the vi. It is not e�cient to store these superpositions, but one can compute them
on-demand given the inputs |l + 1〉 |vn〉 ... |vn−l+1〉. We denote such a procedure
as a �translator� which translates the input indices into the concrete values.
The algorithm will start with the �rst index |vn〉 (indexing to children) and then
compute the concrete value corresponding to the index. One does this iteratively,
and similarly for the new input |w〉, it determines which (indices of) children |w〉
to keep in the walk (e.g., set S = S ∪ {w} in Step 5). This procedure invokes at
most n executions of the predicate P in serial with inputs {|vn〉 · · · |vn−i+1〉} for
i = 1 to l. We will factor such depth/size increment into the �nal estimate. Note
that Step 5 for di�erent inputs |w〉 can be parallelized. Thus, we may abuse the
notation for vi, which denotes both the index of the node and the actual value.

In the predicate, we will need to use the elements µi,j and ‖b∗i ‖2, which are
classic data. The address indices (e.g., i, j) are also classic, so this can be done in
a quantum circuit model using a universal quantum gate set. The Gram-Schmidt
coe�cients µij for i > j take about n2/2 registers, each of p bits. We will need
the squared vector norm ‖b∗i ‖2 for all i, which takes n · p bits. We will omit
this circuit for simplicity. There might be a need to use the qRAM for the case
of extreme pruning, but in this work, we only need to store/access the classical
information so a plain quantum circuit would work.
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Let d denote the maximum degree of the enumeration tree, B be a bound
for maxi|vi| and n denote the tree depth (e.g., the lattice dimension or the
transformed binary tree height as in [ANS18]). In enumeration, �oating-point
arithmetic is also needed, thus we denote p as the precision required. We will
discuss p, d,B as functions of n.

Precision requirement. In a standard implementation of lattice enumeration
and lattice reduction, one uses �oating-point numbers to speed up the compu-
tation (instead of working in Q). For example, this is the approach used in the
fplll library [dt22] and the progressive lattice reduction library [AWHT16].

To guarantee the correctness of lattice enumeration, one would require suf-
�cient precision working over �oating point numbers. Equivalently, this is the
required precision for the enumeration tree to contain the solution node. The
precision required in lattice enumeration over �oating point numbers has been
studied in [PS08]. Theorem 3 of [PS08] shows that to solve SVP-γ where γ = 1.01
the precision of the �oating point numbers used needs to be Θ(n) for an n-
dimensional lattice to guarantee correctness. Similarly, the precision required
in an LLL reduction over �oating point numbers (one can think of this as the
starting step of a lattice reduction algorithm) cannot be too small. This has
been studied in Theorem 1 of [NS05]. Asymptotically, a �oating-point precision
log2(3)n ≈ 1.6n + o(n) su�ces. In practice, however, the constant 1.6 can be
reduced to about 0.3 in folklore. Heuristically, the enumeration works on a more
reduced basis than LLL-reduced and it requires smaller precision than that of
LLL. Thus we will use the folklore value and assume the precision p′ required
for a correct enumeration is p′ ≈ 0.3n.

Our targeted dimension n for lattice enumeration would be about 400. For
example, Kyber-512 [ABD+21] requires BKZ blocksize 406, Dilithium (security
level 2) [BDK+21] requires blocksize 423 and Falcon-512 requires [FHK+20]
blocksize 411. This heuristically requires a precision of p′ ≈ 120 bits. For larger
dimension, the precision can be increased as needed.

Bounds on tree degree. The enumeration tree size T can be bounded by
nn/2e+o(n), by the analysis in [HS07]. In practice, the tree size can be estimated
using the Gaussian heuristic, given the lengths of Gram-Schmidt vectors. In an
ideal case, d = O(n) by taking dn ≈ nn/2e+o(n) if one assumes the nodes are
uniformly distributed over a perfect d-ary tree. This argument is not true. For
example, in a LLL-reduced basis, b∗n could already be about 2n−1 times smaller
than the enumeration radius R (say, ‖b1‖). Thus the number of vn can be al-
ready huge. The situation is much better if the input basis is preprocessed. It is
conceptually simpler to assume the basis is already well-preprocessed: e.g., we
assume the input basis is already HKZ reduced and revisit the enumeration. Al-
ternatively, one can preprocess the basis with blocksize n−o(n) which amortizes
the running-time and leads to a similar quality (e.g., see Theorem 5 of [ABF+20]
for a similar approach). We discuss several methods to bound d. For convenience,
we let di denote the maximum degree for nodes at the i-th level in the tree. This
corresponds to the maximum number of choices for vi over �xed {vi+1, . . . , vn}'s.
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To begin, we bound the number of choices for vn. One can model the geometry
of an HKZ-reduced basis with the following (logarithmic) Gram�Schmidt length
pro�le, following the same approach as in [HPS11,ABF+20].

uk = (ln k)/2 + (u1 + u2 + · · ·+ uk)/k, ∀k ≤ n, and u1 = 0. (3)

In this equation, we let u1, . . . , un be the Gram�Schmidt log-norms in reversed
order of an HKZ-reduced basis. The low-order terms are omitted. Lemma 2 of
in [ABF+20] bounds the ui by

(ln2 k)/4 + (ln k)/2 ≤ uk < (ln2 k)/4 + (ln k)/2 + 1.

Thus the number of choices for vn can be bounded by 2‖b1‖/‖b∗n‖ + 1 ≈
2eun−u1 +1 ≈ n(lnn)/4. We have assumed the HKZ Gram�Schmidt pro�le �tting
the exact form in Equation (3). Alternatively, if one can bear with the Geomet-
ric Series Assumption (though it seems not plausible for the HKZ case) of ratio
r ≈ n1/n, one can obtain a much better bound for vn which is about n. We
can then bound degrees for the remaining vi. Observe that, when the Gram-
Schmidt vectors have a non-increasing length pro�le (e.g., ∀i, ‖bi‖∗ ≥ ‖bi+1‖∗),
the number of choices for vi is no larger than the number of choices for vi+1.

A better method, in practice, is to use the concrete values of each R/‖b∗i ‖ to
bound the degree di. This also works when the Gram-Schmidt vectors' lengths
are not monotonic. Note the maximum number of choices di for vi can be solely
bounded by R and ‖b∗i ‖. To facilitate a running example discussion, we take
d ≈ n2 (the exponent 2 is motivated by plugging n ≈ 400 into the asymptotic
n(lnn)/4). The �nal estimates will be given in a parameterized form and can be
adapted to other parameters.
Bounds on coe�cients. We will also need to bound B = maxi|vi|. This will
be used to determine the arithmetic discussed in the next paragraph. If a basis
satis�es the so-called dual Korkine-Zolotarev condition, then B can be bounded
by n1.5 [HR14]. However, a dual Korkine-Zolotarev reduction requires to solve
the SVP problem. Albrecht, Prokop, Shen and Wallden [APSW22] have bounded

each |vi| ≤ R · ‖b†i‖, where b†i denotes the i-th vector in the dual basis of B (see
Lemma 1 of [APSW22]). This gives a useful method to compute the bound in

practice, e.g., one can set some radius R and then take the largest ‖b†i‖ to bound
B. This can be done classically before the start of quantum tree backtracking.
We can also bound B by Inequality (2). Following our running example, vn
can be bounded by n2. Working backwards on Inequality (2) and using that
‖µi,j‖ ≤ 1/2, the largest vi can be bounded by O(n4) in our example.
Fixed-point arithmetic. To compute the predicate, Inequality (2) involves
�oating point addition and multiplications of p′-bits. To the best of our knowl-
edge, the quantum circuits for �oating point arithmetic are much more expensive
than those for integer arithmetic. To deal with the lack of e�cient circuits, we
will normalize the numbers to �xed-point numbers, with adequate precision.

For example, Haener, Soeken, Roetteler and Svore [HSRS18] have studied
�oating-point addition and multiplication circuits based on reversible networks
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that are obtained from a LUT-Based hierarchical reversible logic synthesis ap-
proach [SRWDM17]. A hand-optimized circuit is also proposed in the same work,
that improves the automatically generated circuits. In general, �oating-point
circuits require shifting and re-normalization gates, which are expensive to con-
struct in general. For example, the �oating-point circuit described in [SRWDM17]
for a 64-bit adder has T-count 26348 and T-depth 7224.

The method of [HSRS18] works for general �oating-point arithmetic. We
observe that the computation in Inequality (2) is often simpler than generic
�oating-point arithmetic. For example, Step (I) in Inequality (2) involves integer-
�oating point multiplication µi,j · vi. One can use repeated additions

∑
#vi

µi,j
and thus this boils down to an addition of two �oating points. This �oating
point arithmetic can be emulated by integer arithmetic with the same preci-
sion/mantissa, as long as no over�ow happens. We can use the quantum circuit
for integer addition by Takahashi, Tani and Kunihiro [TTK10]. Their construc-
tion has size 7p+O(1), with circuit depth 5p+O(1) and To�oli depth 2p+O(1).

We will need to set the precision to accommodate su�cient mantissa and
to avoid over�ow. Starting with the precision p′ (say, ≈ 120 in our running-
example) for the �oating-point mantissa. Step (I) of Inequality (2) increases the
bit size by at most logB. Step (II) of Inequality (2) increases the bit size by
at most log n. The squaring and multiplication after Step (II) increase the bit
size by at most 4 times. In the end, Step (III) has a summation of at most n
items. Therefore, one can set the precision p = 4(p′ + log(B) + log(n)) + log(n).
This is ≈ 4p′ + 21 log n for our running example. Thus one can use �xed-point
arithmetic such as the integer arithmetic with precision p.

To do this, we can normalize the µi,j and ‖b∗i ‖2 before starting the quantum
step (e.g., similar normalization on the exponent has been used in the fplll
library [dt22] for a di�erent context). When the µi,j 's (and ‖b∗i ‖2) have similar
magnitudes among themselves (e.g., similar exponents in the �oating-point rep-
resentation), the normalization will not cancel out any values. We have assumed
the µi,j and ‖b∗i ‖2 have similar magnitudes (e.g., see Appendix A for experi-
ments on this). If this is not the case, one can use more precision to take care
of this. For values ‖b∗i ‖2, the maximal di�erence on the magnitude heuristically
happens on ‖b1‖2/‖b∗n‖2. This is asymptotically nlnn/2 for an HKZ reduced
basis and thus adds ≈ ln2 n to the precision. The distribution of µi,j has been
studied in the context of random sampling methods in [Sch03], and assumed
to be uniform in [−1/2, 1/2] in those scenarios. If we assume so, an additional
precision of O(log n) with some small hidden constant is su�cient. In exper-
iments, they seem to concentrate towards the boundary for those i ≈ j for
LLL-reduced bases (see [NS06] for the distribution of µi,j in experiments). In
Appendix A, we demonstrate further experiments on this. To summarize, one
can take p ≈ 4p′ + 4 logB + log2 n+ 7 log n ∈ Θ(n).

For our running example, e.g., p ≈ 10p′ is su�cient for our targeted dimen-
sion. The value 10 here is chosen for convenience and can be substituted by a
practical value given the input, which is likely to be much smaller.
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4.5 Implementation of the predicate

The circuit of predicate P is given in Figure 5a which consists of several com-
ponents as plotted in Figure 5b. We start with the description of the registers.
First, the inputs of the predicate are superpositions |l〉 and |vi〉. We need two
input registers: for |l〉 this is log n bits, and for |vi〉 this is n log d bits. We also
need to access classic data µi,j and ‖b∗i ‖2, and this can be done by using univer-
sal quantum gate set. We need an addressing register of log n bits and an output
register of (n2/2+n)·p bits. In total, the input size is log n+n log d+(n2/2+n)·p
bits. We also need poly(n) ancillary qubits for intermediate results that we will
omit in the discussion. The circuit starts by looking at the input |l〉 and decides
the routing to the arithmetic components. We will thus focus on the arithmetic
gates which are the dominating components.
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Fig. 5: Predicate circuit.
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For �xed l and vi, the main task is to compute the left-hand side of In-
equality (2). We describe the implementation and resource estimate. In Fig-
ure 5b, each of the boxes An−l+1 denotes a subcircuit, which computes the

terms sj :=
(∑

i≥j µi,jvi

)
for j ≥ n− l+ 1. For a �xed input l, there are l such

terms sj to compute in the circuit An−l+1. The computation of sj , for di�erent
indices j, can be parallelized by making at most n copies of each |vi〉 (observe
that the same vi's are used at most n times in di�erent indices j). One can also
note that Ak ⊂ Ak−1 for k ∈ (1, n] as Ak computes all the terms required by
Ak−1 except sk−1. Thus Al can be regarded as a subcircuit of Al−1. The pred-
icate circuit starts by looking at the input |l〉 and deciding the routing to the
required An−l+1. We discuss the computation in An−l+1.

Step 1. First, the circuit computes each of the terms µi,j · vi (for �xed i, j), one
can use repeated addition of at most B numbers at precision p. A serial
implementation requires a depth O(B) of adders. One can parallelize this
using a binary tree of adders. This has a depth of dlogBe in terms of adders.
Using [TTK10], each circuit (for computing a single µi,jvi) has a To�oli
depth of ≈ (2p + O(1)) log(B) and circuit size bounded by about (7p +
O(1))B.

Step 2. Within the computation of sj for a �xed j, the computation of at most n
terms µi,jvi for di�erent i can be parallelized. Thus the circuit has about
the same depth as in Step 1, but with an increment of n times on the size.

Step 3. To compute sj =
(∑

i≥j µi,jvi

)
for a single j, one can again use a binary

tree of adders. This adds the To�oli depth by (2p+O(1)) log(n) and circuit
size by (7p+O(1))n.

Step 4. As discussed above, the computation of sj for di�erent indices j can be made
in parallel by making at most n copies of the input. This process requires a
poly number of the CNOT gates which we will omit. Therefore the circuit
depth remains similar and size increases by at most n times. The circuit
discussed so far has To�oli depth of 2p(logB+log n)+O(logB)+O(log n) and
size about n2(7p(B+1)+O(B)+O(1)). This completes all the computation
in An−l+1 for the input l.

Step 5. Given all sj 's for j ≥ n− l+1, we need to compute
∑
j≥n−l+1 s

2
j‖b∗j‖2. This

involves squaring, multiplication and a �nal summation.

− The squaring and multiplication are done by the subcircuit MulFF in
Figure 5a. Computing s2j‖b∗j‖2 for di�erent j can be done in parallel. For
integer squaring/multiplication, we use the quantum circuit designed by
Parent, Roetteler and Mosca [PRM17]. This is a Karatsuba based circuit
which �ts our input size. Their construction has (To�oli) size and depth
bounded by 98p1.585 and p1.158 respectively.

− The �nal summation, over s2j‖b∗j‖2 for all j ≥ n − l + 1, can be im-
plemented by a binary tree of adders, which has a To�oli depth (2p +
O(1)) log n and circuit size (7p+O(1))n.

Step 6. There is a �nal comparison to decide the returned value, which we ignore.
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Taking into account the P †, the predicate circuit has To�oli depth about
4p(logB+2 log n+p0.158)+O(logB)+O(log n). For usual parameters, O(log n)
subsumes in O(logB) where the hidden constants are small integers. Thus it be-
comes 4p(logB+2 log n+ p0.158)+O(logB). The precision p ≈ 1.2n+4 logB+
log2 n + 7 log n ∈ Θ(n) for most inputs of interest. If the bound B is large, the
term (4p logB) (e.g., this term corresponds to the repeated addition of O(B)
terms) dominates the running-time. If the bound B = poly(n), the multiplica-
tion 4p1.158 could dominate the running-time. The To�oli size is bounded by
14pn2B+n2O(B)+14n2p+O(n2). Note the constant in O(B) is small, but the
constant in O(n2) subsumes terms like 196p1.585.

We discuss several usual cases that are relevant in either theory or practice,
depending on the relation of B with respect to dimension.

(i) In an LLL-reduced basis, B ≈ 2n which will dominate the size. The To�oli
depth is about 4p(n+O(n0.158)) and size is about (14p+O(1))n22n.

(ii) For an HKZ-reduced basis, B ≈ nlnn. The To�oli depth is bounded by
4p(p0.158 +O(log2 n)) and size is about (14p+O(1))n2nlnn.

(iii) In our running-example, we took B ≈ n4 and p = 3n, the To�oli depth and
size have order 12n(6 log n+ (3n)0.158) +O(log n) and 42n7 +O(n6)).

(iv) In practice, for cryptographic size lattices, it is reasonable to have B ≈ n2.
The To�oli depth and size have order 4p(4 log n + p0.158) + O(log n) and
14pn4 +O(n4).

Finally, we note this is a single evaluation of the predicate. As discussed
in the �Simpli�ed Model� paragraph of Subsection 4.4, one needs to iteratively
compute the values, which scales the depth/size by a factor of at most n.

4.6 Summary of resource estimates

We summarize the resource estimates developed from the previous subsections.
In a single controlled-RBRA operator, there are two expensive operations. First,
the predicate is called in Steps 1 and 5, where the latter can be parallelized. One
can scale the depth by 2 and size by d + 1. In addition, the uncomputation in
Steps 7 and 8 scale the depth by another factor of 2 and size by d+ 1. Second,
the operation I − 2 |φ1,S〉 〈φ1,S | is performed on |a〉 in Step 6. We factor out the
To�oli gates and give the resource estimates in terms of T size and depth. We
use the To�oli gate as implemented in [Sel13] where To�oli uses four T-gates
and has a T-depth of one. Overall, the circuit has T-depth bounded by

16np(logB + 2 log n+ p0.158) +O(n logB) + 8d2 log(d/ε) + 4d2 log d+O(d2)

and T-size bounded by

8(d+ 1)(14pn2(B + 1) +O(n2B)) + 8d2 log(d/ε) + 16d2 log d+O(d2)

In practice, for cryptographic size lattices where n ' 400, it is reasonable to
expect d ≈ n,B ≈ n2 and p ≤ 3n (see Appendix A for experiments on this),
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where the T-depth and size have order 48n2.158+8n2 log(n/ε)+O(n2 log n) and
336n6 + 8n2 log(n/ε) +O(n5).

Overall, we aim for a constant failure probability of δ ≈ 0.1. The number of
controlled-U operators applied can be bounded by about 32

√
T n (see [CKM19]).

We factor out the total error into ε by a scalar of
√
T n and the T-depth and

size have order O(
√
T n (n2.158 + n2 log T )) and O(

√
T n (n6 + n2 log(T ))).

One can also apply the resource estimates on the transformed binary tree,
following the method proposed in [ANS18]. In such a case, one should also mod-
ify the tree height from n to n log d in the analysis, as well as investigate the
overheads brought in due to the transformation. We leave this as future work.

A Experiments supporting the heuristics

In this section, we provide some additional experiments to verify some heuristics
we have made in the previous section for the resource estimates. These heuristic
arguments are not strictly required for the quantum resource estimates as the
estimates were presented in parameterized form (in terms of tree depth, degree,
bound for vi and precision). However, readers may �nd them useful for a more
precise estimate given practical parameters of cryptographic relevance.

A.1 Experiments on the bounds for d and B

First, Subsection 4.4 uses a running example where d ≈ n2, B ≈ n4. It was
also used that: �in practice, for cryptographic size lattices, it is reasonable to
expect d ≈ n,B ≈ n2, p ≈ 3n� for a well-preprocessed basis. Notice that such
heuristics are not asymptotically correct, even on a HKZ reduced basis. However,
we are mostly interested in practical parameters for cryptographic size lattices.
We conduct some experiments to verify that it is reasonable to bound d ≈ n and
B ≈ n2.

In the �rst experiment (Figure 6), we took the top-25 solved SVP prob-
lems from the SVP Challenge project2, and checked the bound for B with re-
spect to the actually found short vector v as well as the bound for d (given a
preprocessed basis). The dimensions of these solved SVP problems are {140 −
158, 160, 162, 170, 176, 178, 180}. In case there are multiple solutions, we take the
solution v of the smallest norm. For each input basis of dimension n, we pre-
process the basis by BKZ−(dn3 e) and then compute the coe�cients of v with
respect to the reduced basis {bi}i. The BKZ preprocessing is conducted using
FPYLLL3 with early abort and the default extreme pruning pro�le.

In the end, we compute two values: the maximum size of vi's as in v =
∑
i vibi

and ‖v‖/‖b∗n‖. The �rst value can be used as B and the second value can be
used to bound d (assuming a non-decreasing Gram�Schmidt length pro�le). We
also scale the �rst value by 1/n2 and the second value by 1/n to give an idea

2 https://www.latticechallenge.org/svp-challenge/
3 https://github.com/fplll/fpylll

https://www.latticechallenge.org/svp-challenge/
https://github.com/fplll/fpylll
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Fig. 6: Bounds d and B, based on solved SVP Challenges.

about B/n2 and d/n (other scaling factors could be chosen). The results are
plotted in Figure 6, where the x-axis denotes the input dimension and the y-axis
denotes the two ratios (red/blue). One can observe that, in these experiments,
the ratios maxi|vi|/n2 and (‖v‖/‖b∗n‖)/n are always smaller than 0.2. Thus it
seems reasonable to assume the bounds d ≈ n,B ≈ n2.

In the second experiment (Figure 7), we further check the bound for B in both
experiments and simulations, using the Gaussian heuristic. In the simulation, we
generate lattices of rank n = {60, 68, 76, · · · , 500} using the SVP Challenge gen-
erator. Each lattice is preprocessed by BKZ−(dn3 e) in simulation. In the end of
simulation, the ratio (GH/‖b∗n‖)/n is recorded, where GH denotes the expected
length of shortest vectors indicated by the Gaussian heuristic. It seems that the
ratio follows a slightly quadratic function. Fitting using NumPy4 gives a curve
of 1.8886×10−6 ·n2+0.0003 ·n+0.0454 which is plotted in Figure 7. One can see
this grows very slowly with n. Furthermore, we also conduct BKZ experiments:
we generate lattices of rank n = {60, 64, 68, · · · , 192} using the SVP Challenge
generator. For each rank, we generate 32 random instances with di�erent seeds.
The lattices are then preprocessed by BKZ−(dn3 e). The BKZ preprocessing is
conducted using FPYLLL with early abort and the default extreme pruning
pro�le. In the end, the average ratio (GH/‖b∗n‖)/n is recorded. One can see the
experimental results follow very closely with the simulated results (but slightly
larger, possibly due to the use of early abort in experiments). One can also notice
these bases are weakly reduced, e.g., compared to a HKZ reduced basis. Using
heavier preprocessing will lead to even smaller values on bounds B and d. We
leave it for future work to develop better practical bounds.

4 https://numpy.org/

https://numpy.org/
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Fig. 7: Bound B, based on BKZ experiments and simulations.

A.2 Experiments on the bounds for µi,j

Subsection 4.4 also assumed that the µi,j 's have similar magnitude (see the
�Precision requirement� paragraph) in a somewhat reduced basis, so one does
not need to increase the precision too much to take care of this.

The distribution of µi,j has been studied in [Sch03] in the context of random
sampling methods, which is assumed to be uniform in [−1/2, 1/2]. By such as-
sumption, the maximal ratio on the magnitude of various µi,j is roughly O(n2).
Thus an additional precision of O(log n) with some small hidden constant is
su�cient. In experiments, they seem to concentrated towards the boundary for
those i ≈ j for LLL-reduced bases, e.g., see [NS06] for the distribution of µi,j in
experiments. We conduct further experiments: we generate random q-ary lattices
using the �IntegerMatrix.random� function in FPYLLL whose dimensions range
from n = 140 to 320 with a stepping of 2. We process the basis with LLL. In the
end, we compute the ratio (1/mini,j µi,j)/n

2 for i > j. For each dimension n, we
generated and ran 32 random instances, and calculated the average ratios. We
also veri�ed the values of µi,j using SageMath's �Matrix� object5 with rational
entries to calculate the Gram-Schmidt coe�cient for very high precision (e.g., to
avoid potential over�ow in �oating-point numbers). The results are plotted in
Figure 8, where the x-axis denotes the input dimension and the y-axis records
the logarithm (base 2) of the averaged ratios. One can observe that the logarithm
of the averaged ratios log2((1/mini,j µi,j)/n

2) is bounded from above by some
small constant (≈ 6.1 in this experiment).

Heuristically, the variance in the size of µi,j can grow for more reduced bases.
Thus we conduct further experiments to check the magnitude of the µi,j 's for

5 https://www.sagemath.org/

https://www.sagemath.org/
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Fig. 8: Experiments on the bound for µi,j in LLL/BKZ reduced basis.

reduced bases preprocessed by larger blocksizes. We generate random q-ary lat-
tices ranging from n = 40 to 140 and preprocess the basis with BKZ-n2 . In the
end, we compute the same ratio (1/mini,j µi,j)/n

2. For each dimension n, we
generated and ran 128 random instances, and calculated the average ratios. The
results are also given in Figure 8. One can observe that the logarithm of the
averaged ratios is also bounded from above by some small constant (≈ 4.3 in
this experiment). Thus it seems reasonable to assume an additional precision of
O(log n) with some small hidden constant in the �xed precision arithmetic.

B Constraint satisfaction problem and tree backtracking

A common use of tree backtracking is for solving the so-called constraint satis-
faction problem (CSP). This is also the context for which the original algorithm
of Montanaro [Mon18] focused on. We give some background on this.

In CSP, we assign values from a �xed list to a �xed number of variables, thus
using a tree structure is a natural way to go through every possible answer. For
example the boolean satis�ability problem, or SAT, gives us n variables we can
assign as either true or false. The question is, given a series of logic statements,
can we make the �nal result true? As a concrete example for n = 3, we consider
statement (x1 ∨ x2) ∧ (¬x2 ∨ x3). To solve this, one can construct a full tree
with n + 1 layers, each node having 2 children (denoting, true or false), which
would allow us to see all possible answers and see if we have a solution. The root
corresponds to having no assigned values, with layer i in the full tree assigning
true or false to variable xi, as seen in Figure 9.
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Fig. 9: Full tree (left) and backtracking tree (right) to solve (x1∨x2)∧(¬x2∨x3).

Continuing to explore the tree, we can see that if we assign false to both
x1 and x2, it is not sensible to continue down this path in the tree. We would
prefer to cut our losses, go back a bit and continue to the next possibility.
This strategy is called backtracking, see also Figure 9. Instead of only checking
at the leaves whether our assignment is correct, at each node we check some
predicate function, that checks the partial assignment and returns true, false
or indeterminate to see how our current assignment is doing. If this predicate
returns false, we stop the path there and try to make di�erent choices, if it
returns indeterminate or true we continue. Furthermore, assigning a value to x2
�rst will solve either (x1 ∨ x2) or (¬x2 ∨ x3). To decide what to assign, we need
some heuristic to decide what is the best variable to look at next, in this case
looking at the variable that appears in the most parts that are not true yet.

Lattice enumeration constructs such trees as well, which we will denote as
�enumeration trees�. Inequality (1) suggests that, at the l-th (l ≥ 2) level of the
tree, vn+2−l, . . . , vn are already determined. To go down the tree, it remains to
bound and select a value (if it exists) for vn+1−l according to Inequality (1). We
let d denote the maximal number of choices of vi. Thus this can be represented
by a tree with up to n layers and degree d.
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