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Abstract. An (n, t)-Verifiable Secret Sharing (VSS) scheme allows a
dealer to share a secret among n parties, s.t. all the parties can verify
the validity of their shares and only a set of them, i.e., more than t, can
access the secret. In this paper, we present Π, as a unified framework for
building VSS schemes in the honest majority setting. Notably, Π does
not rely on homomorphic commitments; instead requires a random oracle
and any commitment scheme that extra to its core attributes hiding and
binding, it might be homomorphic and/or post-quantum (PQ) secure.

(i) When employing Discrete Logarithm (DL)-based commitments, Π
enables the construction of two novel VSS schemes in the RO model,
namedΠP andΠF. Compared to the well-known Pedersen and Feld-
man VSS schemes, both ΠP and ΠF require O(1) (resp. O(t)) ex-
ponentiations in the verification (resp. reconstruction) process, as
opposed to O(t) (resp. O(t2)), albeit at the expense of a constant
factor slower sharing and increased communication.

(ii) By instantiating Π with a hash-based commitment, we obtain a
novel PQ-secure VSS scheme, labeled ΠLA (pronounced [paI"la]1).
ΠLA outperforms the recent protocol by Atapoor, Baghery, Cozzo,
and Pedersen from Asiacrypt’23 by a constant factor in all metrics.
ΠLA can also be seen as an amplified version of the simple VSS
scheme, proposed by Gennaro, Rabin, and Rabin at PODC’98.

(iii) Building upon ΠF, we construct a Publicly VSS (PVSS) scheme,
labeled ΠS, that can be seen as a new variant of Schoenmakers’
scheme from Crypto’99. To this end, we first define the Polynomial
Discrete Logarithm (PDL) problem, as a generalization of DL and
then build a variant of the Schnorr Proof of Knowledge (PoK) scheme
based on the new hardness assumption. We think the PDL relation
and the associated PoK scheme can be independently interesting for
Shamir-based threshold protocols.

We believe Π is general enough to be employed in various contexts such
as lattices, isogenies, and an extensive array of practical use cases.

Keywords: Verifiable Secret Sharing · Polynomial Discrete Logarithm

1 In Turkish, ’Pay’ (pronounced [paI]) is a noun for Share and ’Payla’ means Share it.



1 Introduction

Secret sharing schemes have become foundational tools in threshold cryptog-
raphy and secure multi-party computation. These schemes facilitate the secure
distribution of sensitive information among multiple parties, allowing only qual-
ified shareholders to reconstruct the original secret collaboratively.

Traditional secret sharing schemes, like Shamir’s protocol [25], assume the
presence of honest parties but lack provisions for security against malicious ones.
To address this concern, Verifiable Secret Sharing (VSS) schemes [13, 15] have
been developed, aiming to withstand various attacks, including incorrect share
distribution by the dealer and malicious behavior by parties during the recon-
struction phase. A Non-Interactive VSS (NI-VSS) scheme allows a dealer to
non-interactively (in the happy path) distribute a secret among n parties, such
that all the parties can verify the validity of their shares, and similar to a typi-
cal secret sharing scheme, only a specific number of them can access the secret.
Numerous VSS schemes are built on regular secret-sharing protocols, adding ver-
ifiability features on top [1,4,13,15,18–20,22,24]. Many of known VSS schemes
like Feldman [15] and Pedersen [22] use Shamir secret sharing and exploit the ho-
momorphic property of the Discrete Logarithm (DL) and Pedersen commitment
to achieve verifiability. To this end, the dealer sends the shares securely to parties
and publishes the homomorphic commitments to the coefficients of the underly-
ing secret polynomial. Then, they leverage the homomorphic property of the DL
group to convince the shareholders that the secret sharing is performed correctly.
Publicly Verifiable Secret Sharing (PVSS) schemes additionally allow an exter-
nal verifier to verify the validity of the distributed shares (that are encrypted
under the public key of the shareholders) in a single round [9, 17,20,24,27].

In [18, Section 2], Gennaro, Rabin, and Rabin (GRR) proposed a simple VSS
scheme for n ≥ 2t+1 that does not need homomorphic commitments. However,
their construction achieves a weaker security in terms of reconstruction. Namely,
from the n distributed shares, any different t+ 1 honest shareholders might re-
construct a different secret. The reason is that in their construction [18, Fig.
1], the dealer does not prove that all the shares are generated using a unique
degree-t polynomial f(X). To deal with this concern, they propose an amplified
version of their simple construction, that uses homomorphic commitments (i.e.,
Pedersen commitment) and achieves the stronger notion of extractability, which
guarantees that any different t+ 1 honest shareholders reconstruct a unique se-
cret f(0). The VSS schemes in plain model, which are based on homomorphic
commitments, e.g., [4, 15, 18, 22], have at the best O(tλ) communication com-
plexity and require O(n) or O(t) exponentiations, in the sharing and verification
sides, respectively, where λ denotes the security parameter. In [2, Section 3.1],
Backes, Kate, and Patra proposed the first VSS scheme for n ≥ 2t+ 1, that do
not require homomorphic commitments. However, their construction uses bivari-
ate polynomials [4] to achieve verifiability, that requires O(n2) commitments and
O(n2λ) bits of broadcast, O(n2λ) bits of private communication in the sharing
phase and also imposes O(n2λ) broadcasts in the reconstruction phase. In an
elegant recent work, Atapoor, Baghery, Cozzo, and Pedersen (ABCP) [1] intro-
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duced the first Post-Quantum (PQ) secure VSS scheme for n ≥ 2t + 1 which
uses a quantum Random Oracle (RO) and a (collapsing) hash-based commitment
scheme and boasts computational and communication costs of O(n) and O(nλ),
respectively. Notably, their scheme relies solely on lightweight operations, such as
hashing and polynomial evaluations, making it significantly more efficient than
previous schemes in this setting. In a different setting, Shoup and Smart [26] also
recently unveiled a novel lightweight asynchronous VSS scheme that similarly
employs a random oracle (or a random beacon) and lightweight cryptographic
operations, specifically hashing and polynomial evaluations. Shoup and Smart’s
scheme is tailored for the asynchronous communication model and necessitates
at least 2/3 of the participants to be honest. Both the mention works [1, 26]
have used hash-based commitments to build PQ secure and lightweight VSS
schemes. Our study is in the synchronous setting, assumes that the majority
of parties are honest, and aims to harness the strengths of both lightweight
and heavyweight cryptography. More precisely, we aim to construct new VSS
schemes that either improve existing constructions in terms of efficiency or by
sacrificing PQ security (and lightweightness), can achieve unique features such
as Information-Theoretical (IT) unpredictability (such as Pedersen VSS [22]) or
public verifiability (as in Schoenmakers PVSS [24]). These features cannot be
achieved in VSS schemes that use hash-based commitments.

The starting point for ABCP [1] is the construction of a PQ-secure Non-
Interactive Threshold Zero-Knowledge (NI-TZK) proof scheme for the following
n-distributed relations R1, . . . , Rn:

Ri = {(fi, f(X))|f(i) = fi}, i = 1, · · · , n. (1)

Here f(X) represents a witness polynomial in X of degree (at most) t with
coefficients defined over the ring ZN , and fi are the shares received by n parties.

NI-TZK proofs are formally defined and studied by Boneh et al. [7]. In a
NI-TZK proof scheme, a prover aims to convince n verifiers, holding a piece of
the statement, e.g., fi, that the main statement, e.g., f1 ∥ · · · ∥ fn (hidden from
an individual verifier) belongs to a specific language. Similar to the typical cases,
such proof systems must be complete, meaning that if the main statement is in
language, an honest prover will be able to convince honest verifiers. They should
satisfy soundness, meaning that if the main statement is not in the language, then
all verifiers will reject the verification except for a negligible probability. However,
in some cases a subset of verifiers, e.g., up to t of them, may be malicious and
collude with an adversarial prover. Finally, they need to satisfy a variant of ZK,
so-called Threshold ZK (TZK)2, as introduced by Boneh et al. [7]. TZK implies
that any subset of the verifiers up to t, should learn no additional information
about the main statement, beyond their own shares of statement and the fact
that the main statement belongs to the language.

ABCP [1] coined the term ”Shamir relation” to describe the n-distributed
relation in Eq. (1). Then, they used the proposed PQ-secure NI-TZK for the

2 We adopt the term ”Threshold ZK” from [1] to refer this variant of zero-knowledge,
and it is called ”Strong ZK” in [7].
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Shamir relation and built an extremely efficient computationally secure VSS
scheme in the majority-honest setting, which uses hash functions and polyno-
mial evaluations. Drawing upon the NI-TZK proofs, they also introduced a new
approach for secret reconstruction in VSS schemes. In certain scenarios, this ap-
proach can lead to the development of more efficient threshold protocols, such
as Distributed Key Generation (DKG) protocols and threshold signatures.

1.1 Our Contributions

Π: A Unified Framework for VSS Schemes. We present a unified frame-
work Π designed for constructing VSS schemes in the honest majority setting.
The framework is based on Shamir secret sharing and draws inspiration from the
VSS scheme recently introduced by Atapoor, Baghery, Cozzo, and Pedersen [1]
and the simple construction presented by Gennaro, Rabin, and Rabin [18]. In
its general form, Π uses a (classic or quantum) random oracle, and does not
necessarily need a homomorphic commitment scheme (as in Feldman [15] and
Pedersen [22] schemes). Nevertheless, the option remains to instantiate it with
homomorphic commitments, to construct new VSS schemes that are more effi-
cient than current schemes, or achieve unique properties such as Public Verifia-
bility (PV) [24] and IT unpredictability [22]. At its core, the framework boasts
a general and efficient construction, enabling the construction of VSS schemes
with diverse features.

Sharing. In the main construction of Π, given a secret f0, a hiding and binding
commitment scheme C, and a (classic or quantum) random oracle H, the dealer
proceeds as follows: 1) Does Shamir secret sharing: samples a random degree-t
polynomial f(X) with free term f0 and sets fi = f(i) for i = 1, . . . , n. 2) Samples
another random degree-t polynomial r(X) and sets ri = r(i) for i = 1, . . . , n.
3) Sets ci = C(fi, ri) (or ci = C((fi, ri), γi), where γi = γ(i) are evaluations
of a new random degree-t polynomial γ(X) in point i) for i = 1, · · · , n and
z(X) = r(X) + d · f(X); where d = H(c1, . . . , cn). Finally, securely transmit fi
(and the randomizer γi employed in the commitment C, if applicable) to party Pi,
and publish πShare := (z(X), c1, . . . , cn). In general, sharing can be as efficient as
performing two (or three) Shamir secret sharing in addition to n commitments.

Verification. In the general form, given (fi, z(X), {ci}ni=1), to verify the received
share fi (and γi if applicable), party Pi checks if z(X) is a degree-t polyno-
mial, computes d = H(c1, . . . , cn) and checks if ci = C(fi, z(i) − d · fi) (or
ci = C((fi, z(i)−d ·fi), γi)). If the checks do not pass, Pi broadcasts a complaint
against the dealer. If player Pj broadcasted a complaint, then the dealer broad-
casts the share fj (and γj if applicable), such that cj = C(fj , z(j) − d · fj) (or
cj = C((fj , z(j) − d · fj), γj)). If the dealer does not follow the protocol, he is
disqualified, otherwise the protocol continues as usual.

Reconstruction. Each shareholder broadcasts their shares fi (and γi if applica-
ble). Subsequently, the disclosed shares are verified using the verification process
of the target VSS scheme. Following verification, t + 1 valid shares are utilized
for the reconstruction of the secret polynomial f(X) (and γ(X) if applicable),
resulting in the main secret s = f(0).
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Security. We show that, given a secure commitment scheme, in the majority-
honest scenario where t+1 of the parties are honest, with n ≥ 2t+1, the general
construction satisfies verifiability (implied by soundness against prover and tma-
licious verifiers), and unpredictability (implied by threshold zero-knowledge) in
the random oracle model. These properties ensure that a malicious dealer cannot
convince honest parties except with a negligible probability. Consequently, any
set of t+1 honest parties will be able to collectively reconstruct a unique secret
f0 = f(0) in the reconstruction phase.

It’s crucial to mention that when we use Π to build VSS schemes aiming
to satisfy computational unpredictability, the dealer commits to random values
{fi, ri}ni=1, where possess sufficient entropy. Consequently, there is no need for
an additional randomizer in the commitment process, even if z(i) = ri+d·fi and
d are public. However, when we use Π to build an VSS scheme that satisfies IT
unpredictability, like Pedersen scheme, i.e., in case the secret f0 does not have
enough entropy, the dealer must use an additional randomizer in the commit-
ment (e.g., an extension of Pedersen commitment with three random generators
from [8]). Then, the use of a separate randomizer, i.e., γi, becomes essential. As
can be seen, the strength of the new framework lies in its simplicity and general-
ity and it is flexible enough to be tailored for constructing various VSS schemes
with distinct properties. In addition to Shamir’s secret sharing, it only requires
a secure commitment scheme and a classic/quantum RO. Commitment schemes
and classic/quantum RO can be efficiently constructed respectively using various
fundamental primitives (such one-way functions) and hash functions, rendering
Π a unified framework for building VSS schemes that can also achieve IT unpre-
dictability, public verifiability and/or PQ security. Leveraging Π, we present a
range of novel and efficient VSS schemes that, in general, can outperform current
alternatives, particularly in the verification and reconstruction phases.

New VSS Schemes from DL-Based (Homomorphic) Commitments. By
instantiating Π with standard Pedersen commitment scheme [22], we introduce
an efficient alternative for the well-known Feldman scheme [15], labeled as ΠF.
When dealing with an extension of Pedersen commitment (i.e., using three ran-
dom generators, instead of two) Π enables the construction of a novel IT-secure
VSS scheme referred to as ΠP. Similar to the Pedersen scheme, in ΠP, fewer
than t parties learn nothing about the main secret, ensuring IT unpredictability.

In terms of efficiency, both ΠF and ΠP require O(1) (resp. O(t)) exponentia-
tions in the verification (resp. reconstruction) process, as opposed to O(t) (resp.
O(t2)) in the Feldman [15] and Pedersen [22] schemes, where t represents the
threshold parameter. This improvement comes at the cost of a constant factor of
overhead in the sharing phase and communication and using a random oracle.

More Efficient VSS Scheme from Hash Functions. Through the in-
stantiation of Π using a quantum RO and a non-homomorphic commitment
scheme, such as those based on hash functions, we obtain a novel PQ-secure
VSS scheme, named ΠLA. It can be viewed as an alternative to the recent
scheme by ABCP [1], which similarly employs a quantum RO and a hash-based
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commitment scheme. Compared to the ABCP VSS scheme [1], ΠLA outper-
forms by constant factor in terms of all efficiency metrics. From a different view,
ΠLA can be seen as an amplified version of the weak VSS scheme proposed by
GRR in [18, Section 2], as their simple construction also uses non-homomorphic
commitments to commit (fi, ri) for i = 1, . . . , n. However, compared to their
weak VSS scheme, ΠLA satisfies the stronger notion of constructability, i.e., any
different set of t+ 1 honest parties will reconstruct a unique secret.

Generalizing DL Relation and Schnorr’s Protocol Over Polynomials.
The well-known Schnorr ID protocol [23] allows one to prove knowledge of wit-
ness for the relation RDL = {(g, F ), f | F = gf} where g is the group generator,
f ∈ Zq is the witness value, which can also be interpreted as a degree-0 polyno-
mial with a single coefficient defined over Zq. In Sec. 5, we generalize RDL rela-
tion over polynomials and introduce the Polynomial Discrete Logarithm (PDL)
relation denoted as RPDL, which is defined as follows,

RPDL = {(g, xi, Fi), f(X) | Fi = gf(xi)} for i = 1, 2, . . . , n.

Here, f(X) ∈ Zq[X]t is a (at most) degree t ≤ n−1 witness polynomial with coef-
ficients from Zq, and {xi}ni=1 are n distinct elements from Zq. Then, we present
a Non-Interactive Zero-Knowledge (NIZK) Proof-of-Knowledge (PoK) scheme
πPDL based on Schnorr’s protocol, that allows a prover to prove knowledge of
a witness for RPDL relation. We believe πPDL can be a useful proof scheme for
constructing threshold protocols based on Shamir secret sharing, specifically for
n ≥ 2t+ 1 and x1 = 1, . . . , xn = n.

To the best of our knowledge, this marks the first explicit definition of the
PDL problem, even though it has been implicitly employed in certain prior VSS
schemes and protocols [9,10,15,24]. In [10], Cascudo and David similarly defined
a slightly different variant of RPDL and built a sigma protocol for this variant.
However, there are some issues in their proposed sigma protocol, which will
be discussed in detail in Sec. 5. They also presented a probabilistic verification
protocol for the RPDL relation, which achieves soundness, in contrast to our
proposed NIZK proof πPDL. A detailed comparison of our construction with
theirs is provided later in this paper.

A Novel PVSS Scheme Based on DL. Using the new NIZK PoK scheme
πPDL, and building upon a variant of VSS schemeΠF, we introduce a novel Pub-
licly Verifiable Secret Sharing (PVSS) scheme, designated as ΠS. ΠS serves as
a more efficient alternative to Schoenmakers’ PVSS scheme from Crypto’99 [24].
Compared to Schoenmakers’ scheme [24], ΠS streamlines the verification com-
plexity from O(nt) to O(n), accelerates the sharing phase by more than two
times, and reduces the communication cost slightly. In essence, ΠS improves all
efficiency metrics in Schoenmakers’ scheme with no additional expense. In [9,10],
Cascudo and David have proposed different variants of Schoenmakers’ PVSS
scheme, all reducing the verification complexity to O(n). In comparison to their
schemes from [9], ΠS generally demonstrates superior efficiency. Notably, its ver-
ification process is at least 3−4× faster than the verification of their schemes. In
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their later work [10], Cascudo and David extended and optimized their RO-based
scheme from [9] to support packed secret sharing. Notably, we found that ΠS

shares similarities with the unpacked case of their scheme [10]. Using optimiza-
tion employed in ΠS, the unpacked version of their scheme can achieve the same
performance to ΠS. It is important to note that ΠS is developed in a generic
manner, with its security reduced to the PDL problem, providing a clearer and
simpler security proof. The scheme by Cascudo and David [10] relies on a sigma
protocol tailored for a variant of the RPDL relation. However, in their security
proof of sigma protocol [10, Proposition 1], there is a lack of a clear reduction to
a hardness assumption, and their security proof for special soundness lacks an
extraction algorithm. We elaborate more on this matter later in Sec. 5.

Efficiency Comparisons of New Schemes. Table 1 provides a summary of per-
formance metrics for the proposed VSS and PVSS schemes, including ΠF, ΠP,
and ΠLA, as well as the PVSS scheme ΠS. These metrics are compared with
relevant schemes from the literature [1,9,10,15,22,24]. In [21], authors proposed
a VSS scheme in the Common Reference String (CRS) and RO models, which

Table 1. A comparison of new VSS and PVSS schemes with those of Feldman [15],
Pedersen [22], Schoenmakers [24], Cascudo-David [9,10], and ABCP [1]. Commu.: Com-
munication, DL: Discrete Logarithm, PDL: Polynomial Discrete Logarithm, DDH:
Decisional Diffie-Hellman, DBS: Decisional Bilinear Square, IT-U: Information The-
oretically Unpredictable, Classic: Classical security, PQ: Post-quantum security, RO:
Random Oracle, Plain: Plain Model, BC: Broadcast, n: Number of parties, t: thresh-
old parameter (t ≈ n/2), PG: Pairing Operation, EG: Exponentiation in group G, MG:
Multiplication in group G, PE : degree-t Polynomial Evaluation, H: Hashing, |G|: G
element size, |Zq|: Zq element size, |ZN |: ZN element size, |H|: Output size of H.

(P)VSS & Security Share Dealer’s Commu. Verification Reconstruction

Feldman [15] 0.5n EG Private: 1n|Zq| t EG + t2 EG +
(DL, Plain, Classic) 1n PE BC: 0.5n|G| t MG t2 MG

Sec. 4.1, ΠF 2n EG Private: 1n|Zq| 2 EG + 2t EG +
(DL, RO, Classic) 2n PE BC: n|G|+ 0.5n|Zq| 1 PE + 1 H t PE + t H
Pedersen [22] 1n EG Private: 2n|Zq| t EG t2 EG

(DL, Plain, IT-U) 2n PE BC: 0.5n|G| + t MG + t2 MG

Sec. 4.2, ΠP 3n EG Private: 2n|Zq| 3 EG + 3t EG +
(DL, RO, IT-U) 3n PE BC: n|G|+ 0.5n|Zq| 1 PE + 1 H t PE + t H
ABCP [1] 2n H Private: 1n|ZN | 1 PE t PE

(Hash, RO, PQ) 2n PE BC: 2n|H|+ 0.5n|ZN | + 3 H + 3t H
Sec. 4.3, ΠLA 1n H Private: 1n|ZN | 1 PE + t PE +
(Hash, RO, PQ) 2n PE BC: n|H|+ 0.5n|ZN | + 2 H + 2t H
Sch. [24]-PVSS 4.5n EG Private: — nt+ 4n EG 5t EG

(DDH, RO, Classic) 1n PE BC: 1.5n|G|+ n|Zq| + 2.5n MG + t MG

Cas-Dav [9]-PVSS 2n EG Private: — 2n PG + 2t PG +
(DBS, Plain, Classic) 1n PE BC: 2n|G| n EG + n MG t EG + t MG

Cas-Dav [9]-PVSS 4n EG Private: — 5n EG 5t EG
(DDH, RO, Classic) 1n PE BC: 2n|G|+ n|Zq| + 3n MG + t MG

Sec. 6, ΠS & [10] 2n EG Private: — 2n EG + 5t EG +
(PDL, DDH, RO, Classic) 2n PE BC: n|G|+ 0.5n|Zq| n PE +n MG t MG
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can have O(λ) online communication size. However, their scheme relies on strong
assumptions in bilinear groups and requires a trusted CRS of size O(nλ).

1.2 Implications of New Results

The new framework for building VSS schemes can lead to new directions in
construction of VSS schemes and threshold cryptographic protocols, with con-
siderable implications. We expect any cryptographic construction that uses ei-
ther of the VSS schemes of Feldman [15], Pedersen [22], ABCP [1], or PVSS
schemes [9, 10, 20, 24], or a variation of them, can be potentially affected by the
new results. Considering NIST’s Threshold Cryptography project3, which seeks
to standardize threshold schemes for cryptographic primitives, we think the im-
plications of our results can extend beyond theoretical implications, offering
practical promise for improving real-world (threshold) cryptographic systems.
Delving into the details of revisiting concrete threshold protocols lies beyond
the scope of this paper. It is worth noting that the practical usage of new VSS
schemes (i.e., ΠF, ΠP, and ΠLA) differs significantly from previous schemes. In
practice, utilizing the new VSS schemes involves constructing a NI-TZK proof
for specific languages tailored for a target application. An example construction
for such NI-TZK proofs can be found in [1, Sec. 4.1].

In this vein, our generalized variant of Schnorr’s NIZK PoK scheme to the
PDL relation (defined in Eq. (3)) can be a useful tool for constructing threshold
cryptographic protocols based on Shamir secret sharing. Notably, the idea behind
it is general enough for versatile deployment across PQ secure contexts.

1.3 Outline

In Sec. 2, we present an overview of some preliminary concepts. In Sec. 3, we
introduce the new framework Π devised for constructing VSS schemes. Leverag-
ing Π, in Sec. 4 we present several new VSS schemes, with different features. In
Sec. 5, we generalizing DL problem and Schnorr protocol over polynomials and
present an efficient NIZK PoK scheme, that can be a useful tool for Π, while
also preserving potential interest for different purposes. In Sec. 6, we present an
efficient PVSS scheme. Finally, we conclude the paper in Sec. 7.

2 Preliminaries

2.1 Notation, Fields, Groups, Exceptional Sets

We let λ denote a security parameter. We use the assignment operator ← to
denote uniform sampling from a set Ξ, e.g. x ← Ξ. Throughout this paper p
and q denote two large primes such that q divides p−1, G is the unique subgroup
of Z⋆

p of order q, and g is a generator of cyclic group G of prime order q. One can
test if an element a ∈ Z⋆

p is in G, by checking if aq = 1. The group G is chosen

3 More on https://csrc.nist.gov/Projects/Threshold-Cryptography/.
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such that computing DL of h ∈ G, i.e., logg h, is hard in this group. We write Zq

and Zq[X]t for polynomials of degree t in the variable X and with coefficients
in finite field Zq, with known prime q. When we refer to groups we assume they
have known prime order and efficient algorithms to compute group operations.
It will be assumed that all parties know p, q, g, and N .

2.2 Shamir and Verifiable Secret Sharing

A (t + 1, n)-Shamir secret sharing scheme [25] allows n parties to individually
hold a share fi of a secret f0, such that any subset of t parties or less are unable to
learn any information about the secret f0, while any subset of at least t+1 parties
are able to efficiently reconstruct the secret f0. In more detail, this is achieved
via polynomial interpolation over the ring ZN (or field Zq). A secret polynomial
f(x) ∈ ZN [x]t is chosen and its free term is set to be the secret f0, namely
f(0) = f0. Each party Pi for i ∈ {1, · · · , n} is assigned the secret share fi = f(i).
Then any subset Q ⊆ {1, . . . , n} of at least t+1 parties can reconstruct the secret

f0 via Lagrange interpolation by computing f0 = f(0) =
∑

i∈Q fi · LQ
0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod N), are the Lagrange basis polynomials evaluated at

0. Any subset of less than t + 1 parties are unable to find f0 = f(0), as this is
information theoretically hidden from the other shares.

If ZN is a ring, the difference of any elements in {1, . . . , n} must be invertible
modulo N , thus {1, . . . , n} must be an exceptional set (defined in Def. 2.1). This
is the case if n is less than the smallest prime divisor q of N . In the case where
more than q parties want to participate in the protocol, we would have to work
in a subgroup ZN ′ ⊂ ZN such that the smallest divisor of N ′ is larger than q.
Next we recall the definition of (super)exceptional sets.

Definition 2.1 (Exceptional set [3, 5, 14]). An exceptional set (modulo N)
is a set Ξk = {c1, . . . , ck} ⊆ ZN , where the pairwise difference of all distinct
elements is invertible modulo N . If further the pairwise sum of all elements is
invertible modulo N , Ξk is called a superexceptional set (modulo N).

Verifiable Secret Sharing. Standard secret sharing schemes are secure against
passive attacks. In many applications, a secret sharing scheme needs to be secure
against the malicious dealer or parties with active attacks. This is achieved
through VSS schemes, which allow a dealer to share a secret among a group of
individuals in a verifiable manner [13]. VSS schemes allow a dealer to distribute
the secret in a verifiable manner, so that the shareholders can verify the validity
of the shares and only a specific number of them can access the secret.

2.3 Sigma Protocols

Next, we recall the definition of sigma protocols (Σ-protocols). Here the algo-
rithms are Probabilistic Polynomial-Time (PPT), unless mentioned. Let X =
X(λ) and W = W (λ) be sets. Let R be a relation on X × W that defines a
language L = {x ∈ X : ∃w ∈ W,R(x,w) = 1}. Given x ∈ L, an element w ∈ W

9



such that R(x,w) = 1 is called a witness. Let relation generator R be a PPT
algorithm such that R(1λ) outputs pairs (x,w) such that R(x,w) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V . P holds a
witness w for x ∈ L and V is given x. In first round, P sends a commitment
value a to V , and then in second round, V answers with a randomly sample
challenge value d. Finally, P answers with a response z, and V verifies the proof
and outputs true or false. The triple trans := (a, d, z) is called a transcript
of the Σ-protocol. A Σ-protocol is supposed to satisfy Completeness, Honest
Verifier Zero-Knowledge (HVZK), and Special Soundness defined below.

Definition 2.2 (Completeness). A Σ-protocol with parties (P, V ) is complete
for R, if for all (x,w) ∈ R, the honest V will always accept the honest P .

Definition 2.3 (HVZK). A Σ-protocol with parties (P, V ) satisfies HVZK for
R, if there exists a PPT algorithm S that given x ∈ X, can simulate the trans
of the scheme, s.t. for all x ∈ L, (x,w) ∈ R,

trans(P (x,w)↔ V (x)) ≈ trans(S(x)↔ V (x))

where trans(P (·)↔ V (·)) indicates the transcript of the Σ-protocol with (P, V ),
and ≈ denotes the indistinguishability of transcripts.

Definition 2.4 (Special Soundness). A Σ-protocol with parties (P, V ) is spe-
cial sound for R, if there exists a PPT extractor E, such that for any x ∈ L,
given two valid transcripts (a, d, z) and (a, d′, z′) for the same message a but
d ̸= d′, then E(a, d, z, d′, z′) outputs a witness w for the relation R.

Withing the Random Oracle (RO) model, using Fiat-Shamir transform [16],
a public-coin, complete, HVZK, and special soundness Σ-protocol can be turned
into a Non-Interactive Zero-Knowledge (NIZK) proof or argument of knowledge.

2.4 Chaum-Pedersen Protocol for DL Equality

Let G be a group with hard DL, and g, h be two group elements, where g is
the group generator. Let a prover aim to convince a verifier that for the public
statement g, h, a, b, he knows a witness x which holds in the following relation,

RDLEQ = {(g, h, a, b), x | a = gx ∧ b = hx}. (2)

This relation is known as DL EQuality (DLEQ). In [12], Chaum and Pedersen
introduced an efficient NIZK proof of knowledge for DLEQ, as summarized in
Fig. 1. This protocol is widely employed in various cryptographic protocols (e.g.,
threshold decryption, e-voting systems, PVSS schemes, etc.).
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Prover: Given the statement (g, h, a, b) ∈ G and the witness value x ∈ Zq, proceed
as follows and output a proof π.
1. Sample r ←$ Zq uniformly at random; and set c1 = gr and c2 = hr.
2. Set d← H(a, b, c1, c2), where H is a random oracle.
3. Set z = r + d · x mod q; and Return π := (d, z)

Verifier: Given the statement (g, h, a, b) ∈ G and the proof π = (d, z), checks if
d = H(a, b, gz

ad ,
hz

bd
) and outputs true or false.

Fig. 1. Chaum-Pedersen NIZK proof of knowledge for DLEQ [12].

3 A Unified Framework for VSS Schemes

The GRR simple VSS scheme [18] allows a dealer to perform Shamir secret shar-
ing and convince n verifiers that any t+1 of them can reconstruct a secret [18]. In
their simple scheme, to share f0, the dealer first does Shamir secret sharing and
obtains the shares {fi}ni=1. Then, it samples another degree-t polynomial r(X)
and sets ri = r(i) for i = 1, . . . , n. After that, it commits to {fi}ni=1 with {ri}ni=1,
by setting ci = C(fi, ri), where C can be any commitment scheme. At the end,
it securely sends (fi, ri) to Pi, and broadcasts {ci}ni=1. Although their scheme is
highly efficient, it lacks the guarantee of a unique reconstructed secret. In certain
scenarios, such as robust cloud storage, this lack of uniqueness might not be a
concern since computations on the shares are not required. However, when par-
ties aim to perform computations on a unique value f(0), they must get sure that
they all possess distinct evaluations of a unique degree-t polynomial f(X). This
condition ensures that Lagrange interpolation with any of t+ 1 points will lead
to a unique secret f(0). This property, termed verifiable secret and polynomial
sharing, is described by GRR [18]. To achieve verifiable secret and polynomial
sharing, the recent PQ-secure VSS scheme by ABCP [1] leverages a hash-based
NI-TZK proof scheme for the Shamir relation, which is proven to satisfy com-
putational TZK and computational soundness in the quantum RO model. In a
different setting, the recent lightweight asynchronous VSS scheme by Shoup and
Smart [26] also relies on hash-based (thus non-homomorphic) commitments and
either a random beacon or a random oracle to achieve the mentioned property.

In this section, we introduce Π, designed for constructing VSS schemes with
the flexibility to use both non-homomorphic and homomorphic commitments.
It is based on Shamir secret sharing, works in the honest majority setting and
in certain cases (i.e., in case of PVSS scheme) operates on the assumption that
each shareholder has registered his/her Public Key (PK), that can facilitate
secure communications. Π combines the strengths of the simple VSS scheme
from [18], and the standard VSS scheme from [1], to achieve the best of both.
Alternatively, it can be viewed as an optimized and generalized version of the
ABCP VSS scheme [1]. WithΠ, we achieve an efficient approach to building VSS
schemes with various properties, like IT unpredictability and public verifiability.

3.1 Our Definitions

Before going through the construction of Π, we summarize our definition of VSS
schemes, which are adapted from [1,22,24].
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Definition 3.1. An (n, t, f0)-VSS consists of four PPT algorithms of (Initial-
ization, Share, Verification, Reconstruction) as follows:

1. Initialization: In this phase, the public keys of parties are registered, public
parameters are sampled and all shared with the parties.

2. Share(n, t, f0)→ ({fi}ni=1, πShare): It secret shares f0 and outputs the shares
{f1, · · · , fn}, and a (non-interactive) threshold proof πShare to prove the
validity of the shares. Note that, πShare can only be verified by at least t+ 1
of the shares (or commitments/encryption of the shares).

3. Verification(n, t, {fi}ni=1, πShare)→ true/false: Given n, threshold value t,
the shares {fi}ni=1 (or commitments/encryptions of them), and the threshold
proof πShare, generated by Share, the algorithm outputs either true/false.

4. Reconstruction({fi}i∈Q,|Q|=t+1)→ {f0, false}: Given any t+ 1 of the shares,

e.g., {fi}t+1
i=1, it returns either the main secret f0, or false.

A VSS further has two requirements, defined as follows [1, 24].

- Verifiability constraint: A shareholder must be able to verify the validity
of the received share. If they all are valid, then Reconstruction should produce
a unique secret f0 when run on any t+ 1 distinct valid shares.

- Unpredictability: The protocol must be unpredictable, meaning that there
is no strategy for selecting t shares of the secret that would enable someone
to predict the secret f0 with a significant advantage.

These definitions use TZK proofs over shared data [7] to prove the validity of
the distributed shares, which their verification requires at least t+1 honest par-
ties. Similar to the definition of threshold ZK [1,7], in some cases, the definition
of unpredictability can be strengthened by requiring that given the individual
statements (i.e., shares) of the t corrupted parties, the view of the adversary
can be simulated. This means that the adversary gains no knowledge more than
what publicly can be computed from the execution of the VSS protocol.

3.2 Construction of Π and Security Proofs

Let, D be a dealer and P1, . . . , Pn are n participants of a VSS scheme. Let C be
a hiding and binding commitment scheme that is verifiable. Namely,

1. given c = C(m, γ), it is hard to learn any information about (m, γ),
2. it is infeasible (or computationally hard) to find two pairs (m, γ) and (m′, γ′)

s.t., C(m, γ) = C(m′, γ′),
3. given (c,m, γ) anyone can efficiently verify if c = C(m, γ).

The general construction of Π appears in Fig. 2, which uses a computation-
ally/perfectly hiding commitment scheme C and a (classic or quantum) random
oracle H. Intuitively, the general construction employs an efficient and general
NI-TZK proof scheme for the Shamir relation, made non-interactive using the
Fiat-Shamir transform [16]. It is also important to note that in Π, instead of
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Initialization: Parties P1, · · · , Pn generate parameters for C and each one registers a
PK to facilitate secure communications. For the sake of simplicity, we presume
the existence of a dealer D and P1, · · · , Pn parties who will receive the shares.

Share: Given (n, t), random oracle H, to share f0, the dealer D proceeds as follows:
1. Sample a uniformly random polynomial f(X) and r(X) of degree t with

coefficients in a ring ZN (or a field Zq), subject to f(0) = f0.
2. For i = 1, 2, · · · , n: set fi := f(i), and ri := r(i).
3. For i = 1, 2, · · · , n: set ci = C(fi, ri) (or set ci = C((fi, ri), γi), where

γi = γ(i) are obtained by evaluating a new random degree-t polynomial
γ(X) in point i).

4. Set z(X) = r(X)+ d · f(X) and πShare := (c1, . . . , cn, z(X)), where d is the
challenge value obtained from the random oracle, i.e., d := H(c1, . . . , cn);

5. Send share fi (and γi if applicable) securely to Pi and broadcast πShare.
Verification: Given πShare := (c1, . . . , cn, z(X)), and the individual shares:

1. Each party Pi first checks if z(X) is a degree t polynomial, and then com-
putes d := H(c1, . . . , cn) and uses his/her share fi (and γi if applicable)
and checks if ci = C(fi, z(i)− d · fi) (or ci = C((fi, z(i)− d · fi), γi)). If the
verification of Pi fails, then Pi broadcasts a complain against the dealer.

2. If the number of shareholders complaining against the dealer exceeds a
threshold value t, the dealer will be disqualified, and the verification process
will result in a false outcome.

3. In case a shareholder Pi raises a complaint about the verification of their
part, the dealer will broadcast fi = f(i) (and γi if applicable) to enable ev-
eryone to verify it using the verification equation. If the verification passes,
the protocol continues as usual. However, if it fails, the dealer will be dis-
qualified, leading to a false verification outcome. Since the disqualification
decision is solely based on the information broadcasted, all honest share-
holders will ultimately reach a consensus either on a set of qualified parties
Q ⊆ {P1, P2, · · · , Pn} or on rejecting the final verification.

Reconstruction: Each party Pi broadcasts the secret value fi (and γi if applicable).
A party Pi is said to be confirmed if ci = C(fi, z(i)−d · fi) (or ci = C((fi, z(i)−
d · fi), γi)), where d := H(c1, . . . , cn). Consider fi values of any t+ 1 confirmed
parties and interpolate f(X) of degree t that pass through those points.Finally,
the output is f0 = f(0) or false (if t+ 1 valid shares were not obtained).

Fig. 2. Π: A Unified Framework for Building VSS Schemes. In the general construction,
H represents an instantiation for the quantum/classic random oracle, and C((·, ·), ·)
(resp. C(·, ·)) is a perfectly (resp. computationally) hiding and computationally (resp.
perfectly) binding commitment scheme.

having separate commitments to the (secret) shares and the randomizers used
in the first round of the interactive (threshold) proof schemes, e.g., as in Schnorr
protocol (or in ABCP PQ-secure VSS scheme [1]), we use a single polynomial
commitment to commit to both (secret) shares (i.e., individual private state-
ments) and the randomizers simultaneously.

Security. We prove the security of Π in the following theorem.

Theorem 3.1 (A Unified Framework for VSS Schemes). If the commit-
ment scheme C is computationally (resp. perfectly) hiding and perfectly (resp.
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computationally) binding and H is a (classic/quantum) random oracle, then the
generic construction given in Fig. 2 is a secure VSS scheme. That is, (i) the Re-
construction protocol results in a unique secret distributed by the dealer for any
qualified set of shareholders, (ii) any non-qualified set of shareholders is unable
to recover (or learn anything about) the secret.

Proof. The proof of this theorem can be regarded as an extension of the proof
found in [18, Theorem 1]. Furthermore, we demonstrate that our proposed con-
struction can also satisfy the verifiable secret and polynomial sharing property.
On another front, this proof can also be seen as a slightly simplified version of
the proof in [1, Theorem 3.1], where the commitments are merged and in some
instantiations the quantum RO is relaxed to classic RO. It’s worth noting that
following a valid sharing phase, any coalition of t + 1 honest parties is capable
of reconstructing the witness polynomial f(X).

As mentioned in the Verification algorithm, since the disqualification decision
is solely based on public (broadcast) information, all honest shareholders ulti-
mately reach the same decision. Moreover, if the dealer will be honest and follow
the Share algorithm, then the Verification algorithm will return true, and all the
honest shareholders will get a valid and distinct share of a unique secret.

Verifiability. In the majority-honest scenario where t+1 of the parties are honest,
with n ≥ 2t + 1, this property is achieved via the random oracle H and the
binding property of the commitment scheme C. Assume w.l.o.g. that at least
P1, . . . , Pt+1 parties are honest. Let f(X), r(X) and z(X) := r(X) + d · f(X)
be the polynomials of degree t determined by values fi, ri, and d · fi + ri, for
1 ≤ i ≤ t+1, where d is obtained from the random oracle, i.e., d = H(c1, . . . , cn).
If ci = C(fi, z(i)−d·f(i)) for all i = 1, · · · , t+1, then define fi := f(i). Otherwise,
set fi := 0.

The dealer has committed (in a distributed fashion) himself to the dis-
tinct values c1, . . . , cn by broadcasting πShare := (c1, . . . , cn, z(X)) and sending
{fi}ni=1 to n ≥ 2t+1 parties, where at least t+1 of them are honest. Therefore,
the values fi and ri := z(i) − d · fi for 1 ≤ i ≤ t + 1 are set at the end of the
sharing phase, and consequently the polynomial f(x) is set. Then, the value of f0
is well-defined at the end of the sharing phase, and given a degree-t polynomial
z(X), and opening of t+1 commitments with points ri := z(i)−d·fi, enables the
reconstruction of degree-t polynomials r(X) := z(X)− d · f(X) and f(X) using
Lagrange interpolation. Consequently, any t + 1 honest parties will be able to
collectively reconstruct the secret f(0). Looking from a different perspective, one
may notice that the general construction uses a special sound sigma protocol with
designated verification. Given two acceptable transcripts (c1, . . . , cn, d, z(X))
and (c1, . . . , cn, d

′ ̸= d, z′(X)), obtained by rewiring the prover (i.e., the dealer),
from the verification equation, we can write C(fi, z(i)−d·fi) = C(fi, z′(i)−d′ ·fi)
for i = 1, . . . , n, where n ≥ 2t+ 1. Then, relying on the binding property of the
commitment scheme C, we can conclude that z(i) − d · fi = z′(i) − d′ · fi, and

therefore fi =
z(i)− z′(i)

d− d′
for i = 1, . . . , n. Assuming that d − d′ is invertible
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modulo N (or q), given any set of t+ 1 valid shares, an extractor can extract a
unique degree-t polynomial from the dealer.

As a result, similarly, at the end of the Reconstruction phase, any set of t+1
honest parties can reconstruct a unique degree-t polynomial and output a unique
value f0. Assume by contradiction that they reconstruct f ′

0 ̸= f0 by choosing
t + 1 values f ′

1, . . . , f
′
t+1, such that ci = C(f ′

i , z(i) − d · f ′
i). This means that

the t-degree polynomials f ′(X), and r′(X) interpolated by the points f ′
i and

z(i)−d ·f ′
i (resp.) have the property that C(f ′

i , z(i)−d ·f ′(i)) = C(f ′
i , r

′(i)) = ci
for i = 1, . . . , t+1, but f ′(X) ̸= f(X) (as they differ in the free term), thus there
must be an index j such that f ′(j) ̸= f(j). Since each degree-t polynomial gets
unique with its t+ 1 distinct evaluations, then the values (z(j)− d · f ′(j)) and
(z(j) − d · f(j)) are a double opening for the commitment scheme C, which is
known to either the dealer or Pj , which contradicts the hypothesis (the binding
property of C).

Unpredictability. If the dealer is honest in the sharing phase, then the adversary
sees t points on a polynomial of degree t (i.e., f(X)) plus a masked degree-t
polynomial z(X) := r(X)+d·f(X) and all the commitment values ci := C(fi, ri)
for i = 1, . . . , n. But as we assume that given d and zi = ri + d · fi obtaining
(random values) fi and ri from ci is hard (or infeasible in some cases), then from
commitments {ci}ni=1 and the masked degree-d polynomial z(X), obtaining the
values of f(X) or r(X) in other points is computationally hard (or infeasible).
Note that t evaluations of a degree-t polynomial, information theoretically does
not reveal any information about the target polynomial. Hence, the adversary
cannot recover (or learn any information about) other points, including the secret
value f(0), from (c1, . . . , cn, d, z(X)). In other words, given the individual shares
(i.e., statements) of t (corrupted) parties, it is possible to simulate the view of the
adversary. To this end, w.l.o.g., given the shares {fi}ti=1, the simulator samples
two random degree-t polynomials r′(X) and f ′(X), such that f ′(i) = fi for i =
1, . . . , t. Then, the simulator sets c′i = C(f ′(i), r′(i)) for i = 1, . . . , n and z′(X) :=
r′(X) + d · f ′(X), where d = H(c′1, . . . , c′n). At the end, the simulator returns
(c′1, . . . , c

′
n, d, z

′(X)) as the simulated transcript. It’s worth noting that the proof
can naturally be extended to the scenario where the dealer commits to (fi, ri)
using a perfectly hiding commitment scheme, such as a variant of Pedersen’s
scheme with three random generators [8,22]. In that case, the simulation can be
perfect and the resulting VSS scheme can achieve IT unpredictability. ⊓⊔

Efficiency. As in Shamir secret sharing, the process of sharing f0 among n parties
with a threshold of t requires the dealer to compute n evaluations of a degree-t
polynomial f(X). Subsequently, to generate πShare, the dealer needs to compute
an additional set of n evaluations for r(X) (and γ(X) if applicable). This process
also involves generating n commitments and performing t subtractions between
the coefficients of f(X) and r(X), and a single query to the random oracle H,
which should ideally be highly efficient in practice. During the verification phase,
parties take part in the verification of Π (outlined in Fig. 2) and disseminate
the final output to the network. As part of this procedure, each party needs
to evaluate a degree-t polynomial z(X) and compute a query to the random
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oracle and a single commitment. Regarding communication, the dealer broad-
casts (c1, . . . , cn, z(X)), which consists of n commitments and t+ 1 polynomial
coefficients. The dealer also securely sends a share to each participant.

4 Constructing VSS Schemes Via Π

The strength of Π lies in its generality, simplicity, and efficiency, as it only
requires a secure commitment scheme C and a (quantum or classic) random
oracle H. Commitment schemes are one of the core primitives in cryptography,
and can be built efficiently. A true random oracle might not exist in real life, but
with some estimations, they usually are built using cryptographic hash functions.

In this section, we employ different commitment schemes for C and utilize Π
to build several VSS schemes. The proposed schemes exhibit various trade-offs in
terms of efficiency and security. To achieve this goal, we commence by revisiting
established constructions from the existing literature. Subsequently, leveraging
Π, we introduce an alternative scheme for each VSS scheme.

4.1 ΠF: A Novel VSS Scheme from Pedersen Commitment

Overview of Feldman VSS Scheme. One of the primary computationally
secure VSS schemes is Feldman’s scheme, which is based on Shamir and was pro-
posed by Feldman in [15]. In Feldman’s scheme, given (n, t) and group generator
g1, to share a high-entropy secret f0, the dealer proceeds as follows:

1. Sample a uniformly random degree-t polynomial f(X) := f0 + a1X + · · ·+
atX

t with coefficients in Zq, subject to f(0) = f0.
2. For i = 1, 2, · · · , n: set fi := f(i).

3. Compute c0 = gf01 and cj = g
aj

1 for j = 1, 2, · · · , t.
4. Set πShare := (c0, c1, . . . , ct); Sends share fi securely to party Pi and broad-

cast πShare as the proof.

Then, to verify their received shares, given πShare := (c0, c1, . . . , ct), and the

individual shares {fi}ni=1: each party Pi uses his/her share fi and checks if gfi1 =∏t
j=0 c

ij

j and outputs either true or false. For n ≥ 2t + 1, if all n parties
return true, then the final Verification will return true. Otherwise, any possible
conflict between the dealer and the parties will be solved using a known conflict
resolution approach (also used in Π).

ΠF: An Efficient Alternative to Feldman Scheme. By instantiating Π
with a Pedersen commitment [22], with two random group generators (g1, g2) ∈
G, i.e. by setting ci := gfi1 gri2 , we obtain a novel VSS scheme, referred to as ΠF.
This scheme provides an alternative construction to the Feldman scheme [15].
In Fig. 3, we provide a concise overview of ΠF, focusing solely on the steps that
deviate from our general construction Π.

Under DL assumption, Theorem 3.1 and its security proof can be adapted for
ΠF. Note that, as in the Feldman scheme, in ΠF, f0 should contain sufficient
entropy, and the new VSS scheme is, at best, secure against computationally
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Share: Given two random group generators g1 and g2, the parameters n and t, to
share f0, the dealer follows the steps outlined in Fig. 2, specifically, with the
following deviations:
3. For i = 1, 2, · · · , n: Compute ci = gfi1 gri2 .

Verification: Given g1, g2, πShare := (c1, . . . , cn, z(X)), and the shares {fi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, and then

computes d = H(c1, . . . , cn) and uses his/her share fi and checks if

ci = gfi1 g
z(i)−d·fi
2 . If the verification of Pi fails, then Pi broadcasts a com-

plain against the dealer.
Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party

Pi broadcasts the secret value fi. A party Pi is said to be confirmed if ci =
gfi1 g

z(i)−d·fi
2 , where d := H(c1, . . . , cn). Consider fi values of any t+1 confirmed

parties and interpolate f(X) of degree t that pass through those points. Finally,
the output is f0 = f(0) or false (if t+ 1 valid shares were not obtained).

Fig. 3. ΠF: A novel VSS scheme based on discrete logarithm.

bounded (classical) adversaries. In terms of efficiency, ΠF can have considerably
faster verification and reconstruction compared to the Feldman scheme. However,
this advantage comes at the cost of approximately 2.5-3 × slower sharing and
2× increased communication. Please refer Tab. 1 for the details.

4.2 ΠP: A Novel VSS Scheme from Pedersen Commitment

Overview of Pedersen VSS Scheme. The Pedersen VSS scheme is a varia-
tion of Feldman’s scheme [15] that uses a perfectly hiding commitment scheme.
In Pedersen VSS scheme, the commitment takes the form of a Pedersen com-
mitment, denoted as ci = gai

1 gbi2 , where ai, bi are the coefficients of two degree-t
polynomials. This approach ensures that fewer than t parties receive no informa-
tion about the secret, thereby achieving information-theoretical unpredictability.
In the Pedersen scheme, given two random group generators g1 and g2, and pa-
rameters n and t, the process of sharing f0 is done as follows:

1. Sample two random degree-t polynomials f(X) := f0+a1X+ · · ·+atX
t and

r(X) := r0 + b1X + · · ·+ btX
t with coefficients in Zq, subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and ri := r(i).

3. Compute c0 = gf01 gr02 and cj = g
aj

1 g
bj
2 for j = 1, 2, · · · , t.

4. Set πShare := (c0, c1, . . . , ct); Sends share (fi, ri) securely to party Pi and
broadcast πShare as the proof.

Then, to verify their received shares, given πShare := (c0, c1, . . . , ct), and the
individual shares {fi, ri}ni=1: each party Pi uses his/her share (fi, ri) and checks

if gfi1 gri2 =
∏t

j=0 c
ij

j and outputs either true or false. The rest of the verification
is similar to the Feldman scheme.

ΠP: An Efficient Alternative to Pedersen Scheme. Instantiating Π with
an extended variant of the Pedersen commitment scheme from [8], specifically by
employing three randomly chosen group generators (g1, g2, g3) ∈ G, leads to the
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Share: Given three random group generators (g1, g2, g3), the parameters (n, t), to
share f0, the dealer follows the steps outlined in Fig. 2, but, with the following
deviations:
3. Sample a new degree-t polynomial γ(X) with coefficients in Zq. For i =

1, 2, · · · , n, compute γi = γ(i) and set ci = gfi1 gri2 gγi
3 .

4. Compute the challenge value d := H(c1, . . . , cn); Check if g1 ̸= gd2 and if the
check passed, set z(X) = r(X) + d · f(X) and πShare := (c1, . . . , cn, z(X)).
Otherwise, restart the protocol from step 3;

5. Send shares (fi, γi) securely to party Pi and broadcast πShare as the proof.
Verification: Given random group generators (g1, g2, g3), a proof πShare :=

(c1, . . . , cn, z(X)), and the shares {fi, γi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, computes chal-

lenge value d = H(c1, . . . , cn) and then uses his/her shares (fi, γi) and

checks if ci = gfi1 g
z(i)−d·fi
2 gγi

3 . If the verification of Pi fails, then Pi broad-
casts a complain against the dealer.

Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party
Pi broadcasts the secret values fi and γi. A party Pi is said to be confirmed
if ci = gfi1 g

z(i)−d·fi
2 gγi

3 , where d := H(c1, . . . , cn). Consider fi values of any
t+1 confirmed parties and interpolate f(X) of degree t that pass through those
points. Finally, the output is f0 = f(0) or false (if t+ 1 valid shares were not
obtained).

Fig. 4. ΠP: A novel IT-secure VSS scheme from Pedersen commitments.

construction of a novel DL-based VSS scheme denoted asΠP. This scheme can be
considered as an alternative to the Pedersen VSS scheme. In ΠP, commitments
ci are computed using a variant of the Pedersen commitment, i.e., ci = gfi1 gri2 gγi

3

for i = 1, . . . , n, where γi = γ(i) are new randomizers obtained by evaluating
a new random degree-t polynomial γ(X) for i = 1, . . . , n. The purpose of the
new randomizer γi is to achieve IT unpredictability. Thus, in order to ensure its
effect is not canceled, before computing the value z(X) = r(X) + d · f(X), the
dealer additionally checks if g1 ̸= gd2 and continues if the check passes. This check
is necessary to ensure that the simulation of the transcript is perfect, and the
protocol satisfies IT unpredictability against up to t shareholders. At the end,
along with the share fi, the dealer also sends the randomizer γi to party Pi. Then,
given public values (g1, g2, g3, ci, z(X)) and secret values (fi, γi), party Pi first
checks if z(X) is a degree t polynomial, and then computes d = H(c1, . . . , cn) and
verifies if ci = gfi1 g

z(i)−d·fi
2 gγi

3 and outputs either true or false. The description
of ΠP is summarized in Fig. 4.

Under DL assumption, Theorem 3.1 and its security proof can be adapted
for ΠP. Notably in this case, since the commitment to (fi, ri) is perfectly hiding
and g1 ̸= gd2 , the simulation of transcript is perfect and the resulting VSS scheme
can achieve IT unpredictability, and a computationally unbounded adversary A
who controls up to t parties, cannot learn anything about the other shares and
the main secret from the transcript of the protocol, i.e., (c1, . . . , cn, d, z(X)).
Note that in this case, there is a negligible probability that the dealer may need
to repeat step 3 in the sharing phase. The resulting VSS scheme ΠP surpasses
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Pedersen VSS scheme [22] in the verification and reconstruction phases. Please
refer to Tab. 1 for detailed comparisons.

4.3 ΠLA: A Novel VSS Scheme from Hash Functions

Overview of the RO-based VSS Scheme of ABCP. Recently, Atapoor, Baghery,
Cozzo, and Pedersen [1], proposed a general construction and showed that given
a NI-TZK proof scheme for the Shamir relation, given in eq. (1), one can build
a VSS scheme based on Shamir secret sharing. Following their initial result,
they built a NI-TZK proof scheme for the Shamir relation, and then used it to
construct a novel PQ-secure VSS scheme. Their resulting VSS scheme uses NI-
TZK proofs, which use a quantum RO and a quantum computationally hiding
commitment scheme, which both are built from hash functions. Their construc-
tion is extremely efficient and outperforms the prior computationally secure VSS
schemes from the literature. In their scheme, given n and t, to share the secret
f0, the dealer proceeds as follows:

1. Sample two random degree-t polynomials r(X) := r0+ b1X+ · · ·+ btX
t and

f(X) := f0+a1X+ · · ·+atX
t with coefficients in ZN , subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and ri := r(i), and also samples two vectors
of randomnesses yi, y

′
i.

3. Compute ci = C(f(i), yi) and c′i = C(r(i), y′i) for i = 1, 2, · · · , n, where C is
a quantum computationally hiding commitment scheme.

4. Set the challenge value d = H(c1, . . . , cn, c′1, . . . , c′n), where H is an RO.
5. Set the response z(X) = r(X)− d · f(X);
6. Finally, set πShare := (c1, . . . , cn, c

′
1, . . . , c

′
n, z(X)); Sends share fi and the

randomnesses (yi, y
′
i) securely to party Pi and broadcast πShare as the proof.

Verification. To verify their received shares, given πShare := (c1, . . . , cn, c
′
1, . . . , c

′
n,

z(X)), and the individual shares {fi}ni=1 and randomnesses {yi, y′i}ni=1: each
party Pi uses his/her share (fi, yi, y

′
i) and proceeds as follows: 1) checks if

C(fi, yi) = ci; 2) computes the challenge value d = H(c1, . . . , cn, c′1, . . . , c′n);
3) checks if C(z(i) + dfi, y

′
i) = c′i; and outputs either true or false. The rest of

the verification, i.e., conflict resolution, is the same as in Π (given in Fig. 2).

Reconstruction. The reconstruction phase can be done in a way similar to that of
Π. In [1], authors also introduced and employed a novel reconstruction approach
based on NI-TZK proofs, where the dealer discloses the main secret, and the par-
ties subsequently utilize their shares to confirm the authenticity of the revealed
secret f̂0. Intuitively, in this approach, the dealer employs the VSS scheme as a
distributed commitment to prove the authenticity of the disclosed secret f̂0.

ΠLA: More Efficient VSS Scheme from Hash Functions. By instantiating Π
with a non-homomorphic commitment scheme, like those based on hash func-
tions, we obtain a novel PQ-secure VSS scheme in the quantum random oracle
model, named ΠLA. In ΠLA, in case f0 and fi for i = 1, . . . , n have enough en-
tropy, commitments ci are computed as ci = H(fi, ri) for i = 1, . . . , n, where H
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Share: Given a secure hash function H, quantum random oracle H, the parameters
n and t, to share f0, the dealer follows the steps outlined in Fig. 2, but, with
the following deviations:
3. For i = 1, 2, · · · , n: Compute commitments ci = H(fi, ri) (or set ci =

H(fi, ri, γi), where γi = γ(i) are obtained by evaluating a new random
degree-t polynomial γ(X) in point i).

Verification: Given H and H, πShare := (c1, . . . , cn, z(X)), and the shares {fi}ni=1:
1. Each party Pi first checks if z(X) is a degree t polynomial, and if so,

computes d = H(c1, . . . , cn) and then uses his/her share fi and checks if
ci = H(fi, z(i) − d · fi) (or ci = H((fi, z(i) − d · fi), γi)). If the verification
of Pi fails, then Pi broadcasts a complain against the dealer.

Reconstruction: Using the reconstruction approach outlined in Fig. 2, each party
Pi broadcasts the secret value fi (and γi if applicable). A party Pi is said
to be confirmed if ci = H(fi, z(i) − d · fi) (or ci = H((fi, z(i) − d · fi), γi)),
where d := H(c1, . . . , cn). Consider fi values of any t+ 1 confirmed parties and
interpolate f(X) of degree t that pass through those points. Finally, the output
is f0 = f(0) or false (if t+ 1 valid shares were not obtained).

Fig. 5. ΠLA: A novel PQ-secure VSS scheme from hash functions.

is a well-defined secure hash function and the coefficients of f(X) and r(X) are
sampled randomly from ring ZN

4. Then, given (fi, c1, . . . , cn, z(X)), party Pi

first checks if z(X) is a degree t polynomial, and then computes d = H(c1, . . . , cn)
and verifies if ci = H(fi, z(i) − d · fi) and outputs either true or false. In the
case f0 and {fi}ni=1 lack enough entropy, the dealer can act as in Fig. 4 and use
an additional randomizer γi := γ(i) in the commitments, i.e., ci = H(fi, ri, γi)
for i = 1, . . . , n. Accordingly, to verify their shares, for the last check party Pi

uses (fi, γi) and verifies if ci = H(fi, z(i)− d · fi, γi) and outputs either true or
false. The description of ΠLA is summarized in Fig. 5.

Under pre-image resistance and collision resistance of hash function H and
the security of quantum random oracle H, Theorem 3.1 and its security proof
can be extended for ΠLA. The proof, can also be written similar to the proof of
Theorem 2 in [1]. Note that in this case ci hides fi, ri against computationally
bounded (quantum) adversaries. ΠLA outperforms the ABCP scheme [1], by
a constant factor in terms of all efficiency metrics (please refer to Tab. 1, and
Tab. 2).

4.4 Efficiency Comparisons of New VSS Schemes

We conducted an analysis of the asymptotic costs for the proposed VSS schemes
(ΠF,ΠP,ΠLA) and compared them to relevant constructions from existing lit-
erature. A summary of the results can be found in Table 1.

4 Note that, in this case the challenge value d is sampled from an exceptional set.
Therefore, when ZN is a cryptographically sized field, we can achieve a negligible
error rate in ΠLA, i.e. below 2−λ. In cases where ZN is a ring, it’s possible to
encounter situations where the largest exceptional set has a size of k < 2λ. In such
scenarios, the dealer needs to amplify the soundness error rate in a standard manner
by repeating the protocol l = ⌈λ/ log k⌉ times.
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Table 2. Implementation results of VSS schemes Pedersen [22], ΠP, ABCP [1], and
ΠLA. n: Number of parties, t: Threshold value, |Zq| = |ZN | = |G| = |H| = 256 bits.

(n, t) Metrics Pedersen [22] ΠP ABCP [1] ΠLA

Sharing 74.8 msec 222.1 msec 2.2 msec 1.7 msec
Verification 10.7 msec 7.1 msec 0.13 msec 0.10 msec

(32, 15) Dealer’s Broadcast 0.5 KB 1.5 KB 2.5 KB 1.5 KB
Dealer’s Private Com. 2.0 KB 2.0 KB 1.0 KB 1.0 KB

Sharing 303 msec 897 msec 13.2 msec 11.4 msec
Verification 99.2 msec 8.3 msec 0.37 msec 0.33 msec

(128, 63) Dealer’s Broadcast 2.0 KB 6.0 KB 10.0 KB 6.0 KB
Dealer’s Private Com. 8.0 KB 8.0 KB 4.0 KB 4.0 KB

Sharing 1.29 sec 3.71 sec 0.13 sec 0.12 sec
Verification 552 msec 12.5 msec 1.2 msec 1.1 msec

(512, 255) Dealer’s Broadcast 8.0 KB 24.0 KB 40.0 KB 24.0 KB
Dealer’s Private Com. 32.0 KB 32.0 KB 16.0 KB 16.0 KB

Sharing 6.45 sec 16.77 sec 1.81 sec 1.78 sec
Verification 2.32 sec 28.3 msec 4.9 msec 4.8 msec

(2048, 1023) Dealer’s Broadcast 32.0 KB 96.0 KB 160.0 KB 96.0 KB
Dealer’s Private Com. 128.0 KB 128.0 KB 64.0 KB 64.0 KB

Sharing 47.1 sec 98.8 sec 28.6 sec 28.5 sec
Verification 9.38 sec 0.092 sec 0.020 sec 0.018 sec

(8192, 4095) Dealer’s Broadcast 128 KB 384 KB 640 KB 384 KB
Dealer’s Private Com. 512 KB 512 KB 256 KB 256 KB

Sharing 149.0 sec 279.8 sec 112.0 sec 111.5 sec
Verification 18.7 sec 0.178 sec 0.070 sec 0.050 sec

(16384, 8191) Dealer’s Broadcast 256 KB 768 KB 1280 KB 768 KB
Dealer’s Private Com. 1024 KB 1024 KB 512 KB 512 KB

Empirical Performance of Pedersen, ΠP, ABCP, and ΠLA Schemes.
In addition, we assessed the practical performance of ΠP and ΠLA through a
prototype implementation in SageMath and compared their performance with
the Pedersen scheme and the recently proposed ABCP construction [1]. We used
the source code implementations for the Pedersen and ABCP schemes from [1] 5.
Our experiments are done using the elliptic curve Ed25519 and the hash function
SHA256 for both commitment and random oracle, on a laptop with Ubuntu 22.04
LTS, a 11th Gen Intel(R) Core(TM) i9-11950H at base frequency 2.60GHz, and
128GB of memory. Both the sharing and verification algorithms are executed in
single-thread mode. We have summarized our implementation results for various
parameter sets in Tab. 2.

Upon comparing the implementation outcomes of the Pedersen scheme with
those ofΠP, it becomes apparent thatΠP yields a remarkable acceleration in the
verification phase. Notably, ΠP achieves verification times that are 12×, 82×,
and 102× faster in comparison to the Pedersen scheme for the parameter pairs
(n, t) equal to (128, 63), (2048, 1023), and (16384, 8191), respectively. In terms
of communication costs, ΠP demands a slightly larger data broadcast from the
dealer, amounting to 3× compared to 1× in the Pedersen scheme. We highlight

5 Available on https://github.com/Baghery/VSS-ABCP23.
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that these achievements within ΠP are accompanied by a slightly slower sharing
phase, resulting in speeds ranging from 1.88−3.0× in comparison to the baseline
of 1× in Pedersen scheme. Moreover, it’s worth noting that the disparity in costs
becomes less pronounced as the values of (n, t) increase. For instance, in the case
of (n, t) = (16384, 8191), the sharing phase of ΠP is approximately 88% slower
than the sharing phase of the Pedersen scheme. We believe that this gap and the
verification time can be reduced through various optimization techniques. One
optimization approach is to use improved algorithms for evaluating polynomi-
als at multiple points. Another optimization can be the employment of a more
efficient perfectly hiding commitment scheme.

Regarding, ΠLA, we can see that it is slightly more efficient than the recent
construction by ABCP [1] in terms of computation and communication costs.
Notably, owing to their reliance on lightweight cryptography and polynomial
evaluations exclusively, both ΠLA and ABCP [1] exhibit swifter performance
thanΠP and the Pedersen scheme [22], which relies on asymmetric cryptography.

Regarding the efficiency of the reconstruction phase in all studied and new
DL-based VSS schemes, as shown in Table 1, we observe that the new schemes
require t times fewer exponentiations but at the cost of t polynomial evaluations.
By a rough estimation, if we multiply the verification time of each VSS scheme by
t, we can obtain a rough estimation of the time required for secret reconstruction.
For instance, for (n, t) = (16384, 8191), the secret reconstruction phase for ΠP

could be approximately 8191× faster compared to the Pedersen VSS. We note
that in practice, this gap can be narrowed by employing multi-exponentiation
techniques in both schemes, and we expect it can be more effective for the
Pedersen VSS scheme.

It is also worth mentioning that our implementation is done using SageMath,
and it remains relatively basic, functioning as a single-threaded process without
specific optimizations. Given that our proposed schemes heavily rely on polyno-
mial evaluations, an effective optimization is to employ more efficient algorithms
for the evaluation of a polynomial at multiple points, as outlined in [28].

5 Generalizing DL and Schnorr Over Polynomials

This section introduces an efficient NIZK PoK scheme that can serve as a tool
for Π while maintaining relevance for other threshold schemes and applications.

Let G be a group with hard DL, and g be the group generator. Let a prover
aim to convince a verifier that for the public statement F ∈ G, he knows a witness
f ∈ Zq which holds in relation RDL = {(g, F ), f | F = gf}. Schnorr’s known ID
protocol [23] allows a prover to efficiently achieve this goal. In the NIZK version
of Schnorr’s ID protocol, given g, f , a prover samples a randomness r ∈ Zq, sets
Γ = gr, and publishes Γ and z = r + d · f mod q as the proof, where d is the
challenge value obtained from the random oracle H, i.e., d := H(F, Γ ). Then,
given the statement (g, F ) and the proof (Γ, z), a verifier first sets d = H(F, Γ ),
and then checks if gz = ΓF d, and returns true or false.

22



Next, we generalize Schnorr’s ID protocol and present a NIZK PoK scheme
for the Polynomial DL (PDL) relation RPDL, defined as follows,

RPDL = {(g, xi, Fi), f(X) | Fi = gf(xi)}, i = 1, 2, . . . , n, (3)

where f(X) ∈ Zq[X]t is a (at most) degree t ≤ n − 1 witness polynomial with
coefficients defined over Zq, and x1, . . . , xn are n distinct elements from Zq. The
RPDL relation is base on the PDL problem defined as follows.

Definition 5.1 (Polynomial Discrete Logarithm Problem). Let G be a
finite cyclic group of order q generated by g. Given F1, . . . , Fn from G and distinct
elements x1, . . . , xn from Zq, find a polynomial f(X) ∈ Zq[X]t of (at most)
degree t, where 0 ≤ t ≤ n− 1, such that Fi = gf(xi) for all i = 1, . . . , n.

In other words, an algorithm A has advantage ϵ in solving PDL in G if

Pr[A(x1, . . . , xn, g, g
f(x1), . . . , gf(xn)) = f(X)] ≥ ϵ

where f(X) ∈ Zq[X]t is (at most) a degree-t polynomial with 0 ≤ t ≤ n− 1, and
the probability is over the random choice of generator g ∈ G∗ and the distinct
choice of x1, . . . , xn in Zq. We say that the (t, ϵ)-PDL assumption holds in G if
no t-time algorithm has advantage at least ϵ in solving the PDL problem in G.

Occasionally we drop the t and ϵ and refer to the PDL assumption in G. It can
be seen that the hardness of the PDL problem can be reduced to that of the
DL problem. As an instance, let A be an adversary against the PDL problem,
and (g, h := gf ) be the challenge values for the DL problem. Then, one can
construct an adversary B that acts as follows. B sets F1 := h, x1 := 1, x2 := 2,
and additionally samples another random element F2 fromG, and sends the tuple
(g, x1, x2, F1, F2) to the adversary A. If A returns f(X) such that F1 = gf(1)

and F2 = gf(2), then B returns f(1) as the answer to the DL challenge.
We assume t + 1 ≤ n in the PDL problem, however, it’s worth noting that

as we increase n, we add more evaluations of f(X) into the statement. Thus, we
anticipate the existence of an upper bound for n (for a specific t), and we leave
it as an interesting feature research question.

Generalization of Schnorr Protocol. In Fig. 6, we introduce a generalized
version of Schnorr’s NIZK PoK protocol, which enables a prover to generate a
NIZK proof of knowledge for the relation RPDL, as defined in Eq. (3).

Theorem 5.1 (A NIZK Proof of Knowledge for RPDL). Let g be the
generator of G, {Fi}ni=1 ∈ G, {xi}ni=1 be n distinct elements from Zq, and t be
the (maximum) degree of witness polynomial f(X). Assuming PDL is hard, for
0 ≤ t < n, the protocol πPDL (described in Fig. 6) is a NIZK PoK for RPDL in
the RO model.

Proof. We first prove the security of the interactive case, and then using standard
Fiat-Shamir transform, extend it to the non-interactive case in the RO model.
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Prover: Given the statement (g, x1, . . . , xn, F1, . . . , Fn) and the witness polynomial
f(X), proceed as follows and output a proof π.
1. Sample a degree-t polynomial r(X) ∈ Zq[X]t; Set {Γi = gr(xi)}ni=1.
2. Set d← H(F1, . . . , Fn, Γ1, . . . , Γn), where H is a random oracle.
3. Set z(X) = r(X) + d · f(X) (mod q);
4. Return π := (Γ1, . . . , Γn, z(X))

Verifier: Given statement (g, {xi, Fi}ni=1) and π := (Γ1, · · · , Γn, z(X)), the verifier
first checks if z(X) is a degree-t polynomial. If so, then sets d← H(F1, . . . , Fn,
Γ1, . . . , Γn) and checks if: gz(xi) = Γi(Fi)

d for i = 1, . . . , n, and outputs true

or false. Note that to make the communication shorter, as in Schnorr’s ID
protocol, alternatively, the prover could publish π := (d, z(X)), and then
the verifier would need to check if z(X) is a degree-t polynomial and d =

H(F1, . . . , Fn,
gz(x1)

Fd
1

, . . . , gz(xn)

Fd
n

).

Fig. 6. πPDL: An efficient NIZK proof of knowledge for RPDL.

Completeness. If the prover and verifier honestly follow the protocol, for i =
1, . . . , n, we have

gz(xi) = gr(xi)+df(xi) = gr(xi) + (gf(xi))
d
= ΓiF

d
i .

Special Soundness: Let (Γi, d, z(X)) and (Γi, d
′, z′(X)) be two acceptable tran-

scripts with the same commitments and different challenge values, that are ob-
tained by rewinding. Then, from the verification equation, we know that for
i = 1, . . . , n :

gz(xi) = Γi(Fi)
d , gz

′(xi) = Γi(Fi)
d′

.

This implies that, for i = 1, . . . , n:

gz(xi)−z′(xi) = F d−d′

i ⇒ Fi = g
z(xi)−z′(xi)

d−d′ .

Since z(X) is a degree-t polynomial, therefore, if all the n ≥ t+1 of the checks

pass, from fi := z(xi)−z′(xi)
d−d′ for i = 1, . . . , n, we can obtain n ≥ t + 1 distinct

evaluations of a unique degree-t polynomial at points x1, . . . , xn. Considering
the fact that any degree-t polynomial can be determined from its t+ 1 distinct
evaluations, using Lagrange interpolation, w.l.o.g. an extractor can use {fi}t+1

i=1

and reconstruct (extract) a unique degree-t polynomial f(X), which is a witness
(resp. solution) for RPDL relation (resp. PDL problem).

Honest Verifier Zero-Knowledge (HVZK): Next, we show that given the state-
ment (g, {xi, Fi}ni=1) and the challenge value d, a simulator can simulate the
transcript of the protocol. To this end, the simulator first randomly samples a

degree-t polynomial z′(X) ∈ Zq[X]t. Then, for i = 1, . . . , n: sets Γ ′
i = gz′(xi)

Fd
i

.

Finally, the simulator returns ({Γ ′
i}ni=1, z

′(X)) as the simulated proof. As it can
be seen, since z′(X) is sampled randomly, therefore {Γ ′

i}ni=1 are also random,
and the simulated proof is indistinguishable from the real one.
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Since the interactive scheme is public coin, and satisfies completeness, (per-
fect) special soundness, and (computational) HVZK, then, in the random oracle
model, using Fiat-Shamir transform [16], it can be turn into a NIZK proof of
knowledge scheme for RPDL (defined in eq. (3)). ⊓⊔

Efficiency of πPDL and Related works. In πPDL, a prover needs to evaluate
a degree-t polynomial in n points, and compute n EXP in G and a single hash.
Subsequently, the prover publishes a proof π := (d, z(X)), comprising t+2 field
elements. On the other side, a verifier needs to evaluate a degree-t polynomial
in n points, and compute 2n EXP, and 1 hashing operation.

In [6,11], authors introduced two different generalizations of the DL problem:
the q-Diffie-Hellman Inverse [11] and the Generalized Diffie-Hellman [6]. In both
cases, the adversary finally needs to compute a group element. In contrast, in the
PDL problem, the adversary is tasked with computing a degree-t polynomial. To
the best of our knowledge, this is the first time that the problem PDL (given in
Eq. (3)) is explicitly defined and a NIZK PoK is presented for it. However, it is
worth noting that it has been implicitly used in previous VSS schemes [9,10,15,
24]. In Feldman VSS scheme [15], given a set of commitments {cj}tj=0, one can

compute gf(i) for arbitrary value of i using the formula gf(i) =
∏t

j=0 c
ij

j . In [10],
Cascudo and David also developed a sigma protocol for a variant of RPDL. In

this variation, they utilize different generators, specifically Fi = g
f(i)
i , instead

of Fi = gf(i). However, when examining the proof of special soundness in their
sigma protocol [10, Proposition 1], certain steps are unclear. Notably, there is
an absence of a definitive statement and reduction to a hardness assumption.
In other words, their proof of special soundness lacks an extraction algorithm.
Furthermore, in their work [10], they introduce a probabilistic check protocol
for RPDL and specify that they have no prover. In a general sense, their check
protocol uses locally computable checks based on [9]. In this approach, verifiers
employ a random codeword from the dual code of the Reed-Solomon code, which
was used in the statement. However, in essence, their check protocol can be seen
as a non-interactive proof scheme that, in comparison to our NIZK proof of
knowledge scheme πPDL, achieves soundness. Tab. 3 compares the performance
metrics for our proposed NIZK proof of knowledge πPDL and compares it with
the probabilistic check protocol from [10].

Table 3. A comparison of NIZK PoK πPDL with Cascudo and David’s probabilistic
check protocol for RPDL [10]. n: # Elements in the statement, t: degree of the witness
polynomial, EG: Exponentiation in group G, MG: Multiplication in G, PE : degree-t
Polynomial Evaluation, H: Hashing, |Zq/G|: Zq/G element size, |π|: proof size, |stat|:
Statement size.

Proof Schemes Prover |π|+ |stat| Verification

Check Protocol [10] n EG + n PE n |G| n EG + n PE + n MG

πPDL, Fig. 6 n EG + n PE + 1 H t |Zq| + n |G| 2n EG + n PE + 1 H
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6 ΠS: A Novel PVSS Scheme from DL

Building upon the new VSS scheme ΠF (from Sec. 4.1) and leveraging the new
NIZK PoK scheme πPDL (from Sec. 5), we present a novel PVSS scheme in this
section. It offers a more efficient alternative to Schoenmakers’ scheme [24]. For
further context, we have provided an overview of Schoenmakers’ construction [24]
in App. A, while here we introduce the new scheme.

ΠS: An Efficient Alternative to Schoenmakers Scheme. Let g be a ran-
dom generator of group G. In the initialization step, a party Pi generates a secret
key si ←$ Zq and registers hi = gsi , as its public key.

In a PVSS scheme, the dealer encrypts the shares under the public keys of
the parties and subsequently proves the validity of these encrypted shares. This
means ensuring that all the encrypted shares are distinct evaluations of a unique
degree-t polynomial f(X). Next, we show that building uponΠF and incorporat-
ing the NIZK PoK πPDL (shown in Fig. 6) for n ≥ 2t+1, we can develop a more
efficient PVSS scheme, designated as ΠS. In ΠS, instead of committing to the
shares, the dealer initially encrypts the shares fi under the public key hi by com-
puting yi = hfi

i for i = 1, . . . , n. Subsequently, the dealer employs a minimally
modified version of the prover from πPDL. This modified prover operates with
the inputs (h1, . . . , hn, 1, . . . , n, y1, . . . , yn) instead of (g, 1, . . . , n, y1, . . . , yn), and
generates a NIZK proof (d, z(X) = r(X) + df(X)). In this adapted version of

πPDL, the prover, for i = 1, . . . , n, sets ci = h
r(i)
i instead of the original pro-

tocol’s ci = gr(i). At the end, the dealer discloses {yi}ni=1 as the encryptions of
shares and πShare := (d, z(X)) as the proof 6. Its important to note that, in ΠS,
similar to Schoenmakers’ scheme [24], the secret is equal to gf(0).

Verification. Given ({hi, yi}ni=1, d, z(X)), to verify the shares, a public verifier
first checks if z(X) is a degree-t polynomial. If so, it checks if d = H(y1, . . . , yn,
h
z(1)
1

yd
1

, . . . ,
hz(n)
n

yd
n

), and outputs either true or false.

Reconstruction. The reconstruction phase can be done in the same way as in
Schoenmakers’ PVSS scheme [24], which we summarized before. Note that, as in
Schoenmakers’ scheme, to reconstruct the secret gf(0), the parties do not learn
and use the values of f(i), rather than Fi = gf(i). Also, they do not expose their
secret keys, and party Pi can reuse his/her key pair (hi, si) in several runs of the
PVSS scheme. The description of ΠS is summarized in Fig. 7.

6 It’s important to note that this variant of πPDL shares similarities with the sigma
protocol proposed in [10], but with two key differences. In our case, we make an
assumption that n ≥ 2t + 1 (as opposed to their protocol where it’s n > t) and
crucially we require at least t + 1 of the public key owners to be honest and not
collude with the dealer. Under these assumptions, we are able to prove the special
soundness of this variant, and given the secret keys of t+1 honest parties, construct
an efficient extraction algorithm that extracts a PDL witness from the prover (i.e.,
the dealer). For more details, please refer to the proof of Theorem 6.1.
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Initialization: As in Π, given the generator g for G, parties register a PK hi := gsi .

Share: Given {hi}ni=1, the parameters n and t, to share f0, the dealer acts as follows:
- Samples a uniformly random polynomial f(X) of degree t with coefficients
in Zq, subject to f(0) = f0.

- For i = 1, 2, · · · , n: sets yi := hfi
i as the encryption of fi = f(i).

- Runs a minimally modified version of the prover of πPDL (outlined in Fig. 6)
with (hi, i, yi)

n
i=1 and obtains πShare := (d, z(X) = r(X) + df(X)).

- Broadcasts {yi}ni=1 as the encryption of shares, and πShare as the proof.

Verification: Given {hi}ni=1, ciphertexts {yi}ni=1, and the proof πShare := (d, z(X)),
a verifier first checks if z(X) is a degree-t polynomial. If so, it checks if d =

H(y1, . . . , yn, h
z(1)
1

yd
1

, . . . , h
z(n)
n

yd
n

) and returns true or false.

Reconstruction: Based on the reconstruction approach outlined in Fig. 2 and [24]
parties proceed as follows.
1. They first use their secret key si, and obtain their share Fi := gfi from yi

by computing Fi = y
1/si
i . Then, they publish Fi plus a NIZK proof that

the value Fi is a correct decryption of yi. To this end, the party Pi needs to
prove knowledge of an si such that, (hi = gsi) ∧ (yi = F si

i ), which can be
done by the NIZK proof scheme for the DLEQ relation (given in Fig. 1).

2. Then, given any t + 1 valid values of Fi, w.l.o.g. for i = 1, . . . , t + 1, the
secret gf(0), can be obtained by Lagrange interpolation,∏t+1

i=1 F
λi
i =

∏t+1
i=1(g

fi)λi = g
∑t+1

i=1 fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i
is a Lagrange coefficients.

Fig. 7. ΠS: An efficient PVSS scheme from discrete logarithm.

Security. The security of ΠS can be proven in the random oracle model through
some modifications in the proof of Theorem 5.1 and by referencing [24, Theorem
1, 2] under the PDL and Decisional Diffie-Hellman (DDH) assumptions.

Theorem 6.1 (Security of PVSS Scheme ΠS). Under the PDL and De-
cisional Diffie-Hellman (DDH) assumptions, the VSS scheme ΠS (outlined in
Fig. 7), is a secure PVSS scheme against an static adversary in the random ora-
cle model. That is, (i) the Reconstruction protocol results in the secret distributed
by the dealer for any qualified set of shareholders, (ii) any non-qualified set of
shareholders is unable to recover any (partial) information on the secret.

Proof. We need to show that for any group of t+1 honest parties (referred to as
a qualified set), the reconstruction protocol outlined in Fig. 7 results in a unique
secret gf(0), distributed by the dealer. Additionally, we need to show that the
new scheme satisfies unpredictability, meaning that, any subset of up to t parties
is unable to recover any (partial) information on the secret.

To begin, akin to the proof of Theorem 5.1, for proving the special sound-
ness of the interactive variant of the NIZK proof scheme employed during the
sharing phase, we can argue as follows. Given two acceptable transcripts of the
(interactive) protocol, denoted as (ci, d, z(X)) and (ci, d

′, z′(X)) for i = 1, . . . , n,
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from the verification equation, we know that

h
z(i)
i = ci(yi)

d , h
z′(i)
i = ci(yi)

d′
for i = 1, . . . , n .

This implies that,

h
z(i)−z′(i)
i = yd−d′

i ⇒ yi = h
z(i)−z′(i)

d−d′
i for i = 1, . . . , n .

Then, if all n ≥ 2t+1 of the checks in the verification process successfully, given
the reconstruction protocol detailed in Fig. 7, any set of t+1 honest parties can

decrypt {yi}i∈Q,|Q|=t+1, as Fi := y
1/si
i , and rewrite the last equation as below,

gz(i)−z′(i) = F d−d′

i ⇒ Fi = g
z(i)−z′(i)

d−d′ for i ∈ Q, |Q| = t+ 1.

Now, since z(X) is a degree-t polynomial, and since from fi := z(i)−z′(i)
d−d′ for

i ∈ Q, |Q| = t + 1, we obtain t + 1 distinct evaluations of a degree-t polyno-

mial z(X)−z′(X)
d−d′ , therefore an extractor can use {fi}i∈Q,|Q|=t+1 and reconstruct

(extract) a unique degree-t polynomial f(X), which is a witness for the RPDL

relation (or PDL problem). This implies that, any set of t + 1 honest parties,

can use their individual (decrypted) shares Fi := y
1/si
i , employ Lagrange inter-

polation (as in Fig. 7), and evaluate a unique degree-t polynomial f(X) in the
exponent for i = 0, 1, . . . , n. By evaluating gf(X) at point 0, they can obtain a
unique secret value gf(0).

Regarding unpredictability, it’s important to first note that directly breaking
the encryption used in the PVSS scheme implies breaking the Computational
Diffie-Hellman (CDH) assumption. Because, given g, hi = gsi , yi = hfi

i = gsifi ,
an adversary would need to compute gfi . It is not a difficult task to show that if
an adversary A, manages to compute gfi with some success probability, we can
construct another adversary B which employs A as a subroutine and breaks the
CDH assumption with the same success probability. However, this alone does not
show that parties cannot obtain partial information about the secret gf0 . Fur-
thermore, we show that the view of up to t parties is simulatable. To achieve this
goal, a simulator proceeds as follows. W.l.o.g., it first samples f(1), . . . , f(t) ran-

domly from Zq and sets F1 = gf(1), . . . , Ft = gf(t), and y1 = h
f(1)
1 , . . . , yt = h

f(t)
t ,

where h1, . . . , ht are public keys of the t parties. Then, he samples Ft+1 = gft+1

randomly, without knowing ft+1. Since the point ft+1 = f(t+1) is only given im-
plicitly, we cannot compute the point f(t+2), . . . , f(n). It suffices, however, that
we can compute Ft+2 = gft+2 , . . . , Fn = gfn by Lagrange interpolation, which
also yields the remaining shares. The simulator, now deviates from the protocol
by computing the public keys hi of parties {Pi}ni=t+1 as hi := gwi for random
wi ∈ Zq. Then, the simulator sets yi = Fwi

i for i = t + 1, . . . , n. This leads to

obtain h1, . . . , hn and y1 = h
f(1)
1 , . . . , yn = h

f(n)
n , as required. Next, we note that

the underlying proof scheme (i.e., a variant of πPDL from Fig. 6) is honest-verifier
zero-knowledge in the interactive case (and ZK in the non-interactive case). Akin
to the proof of Theorem 5.1, given the (simulated) statement {hi, yi}ni=1 and the
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challenge value d, the simulator can sample a random degree-t polynomial z′(X)

and set c′i := h
z′(i)
i /ydi for i = 1, . . . , n. This results in a simulated transcript

which under Decisional Diffie-Hellman (DDH) assumption is indistinguishable
from the real view of up to t parties.

Note that the statement that parties cannot get any partial information
from (hsi

i = gsifi , hi = gsi) about the random secret si and fi holds under the
assumption that ElGamal encryption is semantically secure, which is known to
be equivalent to the DDL assumption. Recall that in ElGamal cryptosystem,
given the public key (g, h = gf ), an encryption of message m = 1 is equal to
(hs, gs), where s is a random value from Zq. ⊓⊔

Efficiency. Compared to Schoenmakers’ scheme [24] and its variants introduced
in [9], ΠS offers a better efficiency in general. However, it’s worth noting that by
applying the same optimization as used in ΠS to reduce the proof length, the
unpacked version of Cascudo and David’s scheme [10] can achieve a performance
level on par with ΠS. For a detailed comparison, please refer to Table 1.

7 Conclusion

We introduced Π, as a unified framework for building VSS protocols based on
Shamir secret sharing [25] that works in the honest majority setting, achieves
optimal resilience, and does not necessarily require a homomorphic commitment,
rather than a secure commitment scheme and a random oracle.

Leveraging Π, we proposed three VSS schemes, so-called ΠF,ΠP, ΠLA,
and a PVSS scheme, labeled ΠS, which each satisfies different properties. ΠF

and ΠP are two RO-based alternatives to the well-known VSS schemes pro-
posed by Feldman [15] and Pedersen [22], while offering a faster verification and
reconstruction. ΠLA is another instantiation of Π in the quantum random or-
acle model which compared to the recent VSS scheme proposed by Atapoor,
Baghery, Cozzo, and Pedersen [1] it is slightly more efficient in terms of both
computational and communication costs. ΠS is a variation of Schoenmakers’
construction [24] and represents a highly efficient PVSS scheme.

We evaluated the empirical performance of our proposed VSS schemes ΠP

and ΠLA via a prototype implementation, and compared them with Peder-
sen [22] and ABCP [1] constructions. Our asymptomatic comparisons and imple-
mentation results confirm that in general the proposed constructions, outperform
the state-of-the-art VSS schemes in the majority-honest setting. Particularly,
ΠLA can be an attractive scheme for post-quantum threshold cryptography.

We instantiated Π with DL-based and hash-based commitments. However,
it is general enough to be instantiated with different commitment schemes, par-
ticularly those that are based on PQ-secure cryptographic assumptions.

As a tool for Π, we proposed a novel NIZK proof scheme that might be
independently interesting. Specifically, we have defined an extended version of
the discrete logarithm relation over polynomials, named RPDL, and presented a
new variant of Schnorr’s NIZK proof of knowledge scheme for the RPDL relation.
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We think that this new NIZK Proof of Knowledge scheme for the RPDL relation
can be a useful tool for the development of more efficient threshold protocols
based on Shamir secret sharing. As an example, we have already incorporated it
within PVSS scheme ΠS.

At the end, we highlight that the notable efficiency and general nature of
the new framework makes it a valuable tool for constructing more efficient VSS
schemes and revisiting a wide range of threshold protocols (e.g. DKG protocols,
threshold signatures, threshold decryption, and more). Delving into the details
of such protocols lies beyond the main scope of this paper. Future research can
explore the further applications of Π and integration of new VSS schemes and
the new NIZK proof scheme into various cryptographic protocols.
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A Overview of Schoenmakers PVSS Scheme

In Crypto 99, Schoenmakers [24] proposed a PVSS scheme, based on Feldman’s
scheme, which allows a dealer to encrypt the shares under the public key of the
parties, and then generate a publicly-verifiable non-interactive ZK proof to show
that the secret sharing and encryptions are done correctly.

Let g, h be two random generators of the group G. In the initialization step,
a party Pi generates a secret key si ←$ Zq and registers yi = gsi , as its pub-
lic key. Then, given n and t, to share a high-entropy secret f0, the dealer of
Schoenmakers’ construction proceeds as follows:
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1. Sample a uniformly random degree-t polynomial f(X) := f0 + a1X + · · ·+
atX

t with coefficients in Zq, subject to f(0) = f0.

2. For i = 1, 2, · · · , n: set fi := f(i) and y′i = y
f(i)
i .

3. Set c0 = hf0 and cj = haj for j = 1, 2, · · · , t.
4. Let xi =

∏t
j=0 c

ij

j , for i = 1, 2, · · · , n. Then, the dealer shows that the
encrypted shares y′i are consistent by producing a proof of knowledge of the

unique f(X), 1 ≤ i ≤ n, satisfying: xi = hf(i) ∧ y′i = y
f(i)
i .

5. To generate the proof for above relation, the dealer uses an extended version
of Chaum-Pedersen PoK scheme for DLEQ [12] and acts as follows:
(a) For i = 1, 2, · · · , n, it samples ri ←$ Zq, and sets ai = hri and bi = yrii .
(b) Using Fiat-Shamir transform, feeds {ai, bi, xi, y

′
i}ni=1 into the random

oracle H, an obtains a challenge value d ∈ Zq.
(c) For i = 1, 2, · · · , n: computes zi = ri − d · fi mod q.

6. Publish πShare := (h, cj , yi, y
′
i, d, zi) for 0 ≤ j ≤ t, and 1 ≤ i ≤ n.

Verification. To verify the shares, given πShare := (h, cj , yi, y
′
i, d, zi) for 0 ≤ j ≤

t, and 1 ≤ i ≤ n, the verifier acts as follows:

- For 1 ≤ i ≤ n: computes xi =
∏t

j=0 c
ij

j .

- For 1 ≤ i ≤ n: using (h, d, xi, yi, y
′
i, zi), computes ai and bi, as follows

ai := hzixd
i , bi := yzii (y′i)

d

and checks if the hash of {ai, bi, xi, y
′
i}ni=1 matches the challenge value d. If

so returns true, otherwise returns false.

Reconstruction. To reconstruct the secret gf0 , the parties proceed as follows.

1. They first use their secret key si, and obtain their share Fi := gfi from yi
by computing Fi = y

1/si
i . Then, they publish Fi plus a NIZK proof that the

value Fi is a correct decryption of yi. To this end, the party Pi needs to
prove knowledge of an si such that, (hi = gsi) ∧ (yi = F si

i ), which is done
using Chaum-Pedersen [12] proof system for DLEQ (described in Fig. 1).

2. Then, given any t+1 valid values of Fi, w.l.o.g. for i = 1, . . . , t+1, the secret
gf(0), can be obtained by Lagrange interpolation,∏t+1

i=1 F
λi
i =

∏t+1
i=1(g

fi)λi = g
∑t+1

i=1 fiλi = gf(0) = gf0 ,

where λi =
∏

j ̸=i
j

j−i is a Lagrange coefficient.
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