
Scalable Mixed-Mode MPC

Radhika Garg∗ Kang Yang† Jonathan Katz‡ Xiao Wang§

Abstract

Protocols for secure multi-party computation (MPC) supporting mixed-mode computation
have found a lot of applications in recent years due to their flexibility in representing the function
to be evaluated. However, existing mixed-mode MPC protocols are only practical for a small
number of parties: they are either tailored to the case of two/three parties, or scale poorly for
a large number of parties.

In this paper, we design and implement a new system for highly efficient and scalable mixed-
mode MPC tolerating an arbitrary number of semi-honest corruptions. Our protocols allow
secret data to be represented in Encrypted, Boolean, Arithmetic, or Yao form, and support
efficient conversions between these representations.

1. We design a multi-party table-lookup protocol, where both the index and the table can be
kept private. The protocol is scalable even with hundreds of parties.

2. Using the above protocol, we design efficient conversions between additive arithmetic secret
sharings and Boolean secret sharings for a large number of parties. For 32 parties, our
conversion protocols require 1184× to 8141× less communication compared to the state-
of-the-art protocols MOTION and MP-SPDZ; this leads to up to 1275× improvement in
running time under 1 Gbps network. The improvements are even larger with more parties.

3. We also use new protocols to design an efficient multi-party distributed garbling protocol.
The protocol could achieve asymptotically constant communication per party.

Our implementation is available at [GYKW23].

1 Introduction

Protocols for secure multi-party computation (MPC) allow a set of parties to jointly compute on
their private data while revealing nothing beyond the output. In principle, general-purpose MPC
protocols can evaluate an arbitrary program by first representing that program as a Boolean or
arithmetic circuit; this will typically not be very efficient. Mixed-mode MPC protocols, on the other
hand, allow different parts of a program to be represented (and securely computed) using different
models of computation, e.g., part of the computation can be represented as a Boolean circuit and
another part is represented using an arithmetic circuit. These protocols are of particular interest
because they allow different parts of the program to be represented in the most suitable form
and, therefore can achieve greater efficiency than utilizing a monolithic representation. As a result,
they have found many applications, e.g., privacy-preserving machine learning and private biometric
matching.
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The first general-purpose MPC protocol supporting mixed-mode computation is TASTY [HKS+10],
which supports conversions between garbled circuits and computation using additive homomorphic
encryption in the two-party setting. It was later improved by the ABY protocol [DSZ15] that
supports Boolean circuits (via garbled circuits or the GMW protocol) and arithmetic circuits (via
Beaver triples). Follow up works further improve the efficiency in the two-party setting by mov-
ing some operations to offline [PSSY21, BCD+20]. Other works have looked at decreasing the
corruption threshold (e.g., [MR18, PS20, DEK21]), and have shown efficiency improvements in
the three-party and four-party settings with one corruption (thus honest majority). In the multi-
party case, tolerating any number of corruptions, Rotaru and Wood [RW19] proposed mixed-mode
MPC protocols supporting Boolean and arithmetic circuits for both the semi-honest and malicious
settings. This was further improved in subsequent work [DEF+19, EGK+20, BDST22].

Although there has been huge progress in bringing mixed-mode MPC to practical use, state-of-
the-art protocols are still far from satisfactory in the following aspects:

• Supporting MPC with massive participants. Most existing mixed-mode MPC protocols
are specifically tailored for 2–4 parties with a single corrupted party, which is useful but not
sufficient. Protocols that can support an arbitrary number of parties [RW19, DEF+19, EGK+20,
BDST22], require at least quadratic total communication complexity, rendering them inefficient
for a massive number of participants.

• Supporting high corruption thresholds. Most protocols supporting mixed-mode compu-
tation (including all the aforementioned protocols for 2–4 parties) only allow one party to be
corrupted. Exceptions are the work of Rotaru and Wood [RW19] and followup works [DEF+19,
EGK+20, BDST22] that tolerate an arbitrary number of corruptions, and MPClan [KPPS23]
that assumes an honest majority.

• Constant round complexity. There has been a long line of work in bringing garbled circuits
to the multi-party setting to reduce round complexity. However, all existing solutions require
the total communication quadratic in the number of parties [DI05, LPSY15, BLO17, WRK17,
HOSS18, BCO+21]. The only exception is [BGH+23], with total communication independent of
the number of parties but in the honest-majority setting.

Note that although there exists MPC protocols for Boolean or arithmetic circuits tolerating an
arbitrary number of corruptions and with communication linear in the number of parties, all existing
conversion protocols (as required by mixed-mode MPC) still require quadratic communication.

1.1 Our Contribution

In this work, we design and implement a scalable MPC protocol for mixed-mode computation. We
focus on the semi-honest setting with all-but-one corruptions. Our system is designed to run with a
large number of parties and, crucially use encrypted representations to reduce the communication
complexity in computing using each format and in converting between them. In details:

1. Multi-party private lookup table. We design a multi-party table-lookup protocol that takes
as input a public/secret-shared table and a secret-shared index, and outputs the table value
at the given index in an encrypted representation. Encrypted representation can be further
switched to arithmetic secret sharings with a small cost. The protocol requires communication
linear in the number of parties and is thus highly scalable.

2. Multi-party secret-sharing conversions. Based on the lookup-table protocol, we design
efficient conversions between Boolean and arithmetic additive secret sharings. Conversion from
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a Boolean sharing to an arithmetic sharing is viewed as a private-index lookup in a size-2 table.
Thus, the protocol has similar communication complexity as the lookup protocol and is highly
scalable.

3. Linear-complexity multi-party garbled circuits. Based on a different variant of our table-
lookup protocol, we design the first multi-party garbled-circuit protocol, tolerating an arbitrary
number of semi-honest corruptions, with total communication linear in the number of par-
ties. The protocol requires lattice-based additively homomorphic encryption in the private-key
setting, and thus is not competitive with existing approaches for a small number of parties.
However, we estimate that the inbound communication per party is better than quadratic-cost
protocols [BLO16, WRK17] for more than 128 parties.

4. Implementation and comparison. We propose optimizations to fully utilize the features of
our protocols, and implement the protocols in a project to be open-sourced. Compared to the
state-of-the-art work MOTION [BDST22] in the same setting, for 32 parties, our system reports
up to 1184× improvement in communication for arithmetic-to-Boolean (A2B) conversion and
20× improvement in communication for Boolean-to-arithmetic (B2A) conversion. For 64 parties,
the running time of our protocols has 369× improvement for A2B and 2247× improvement for
B2A, compared to another state-of-the-art work MP-SPDZ [Kel20]. Note that compared to
MOTION, MP-SPDZ is less efficient but supports more parties such as 64 parties under the
same hardware configuration. Our protocols improve the communication cost of MP-SPDZ for
64 parties by a factor of 8819× for A2B and 15384× for B2A.

2 Technical Overview

Notation. We use κ and ρ to denote the computational and statistical security parameters,
respectively. For a finite set S, we use x← S to denote that x is sampled uniformly from S. For a
distribution D, we denote by x← D sampling x according to the distribution D. For two integers
a, b with a ≤ b, we use [a, b] to denote the set {a, . . . , b}. We use upper-case letters like T (or bold
lower-case letters like x) to denote a column vector. For a vector (or bit-string) x, x[j] denotes
the j-th component of x, where x[0] is the first component of x. All arithmetic operations are
computed over a finite field Zp, where p is a prime and ℓ = ⌈log p⌉ is the length of a field element.
We use [[x]] to denote a homomorphic encryption (HE) ciphertext on a message x, ⟨x⟩a to denote an
arithmetic additive sharing over Zp, and ⟨x⟩b to denote a Boolean additive sharing with x ∈ {0, 1}.
Let P1, . . . , Pn be n parties. We use ⟨x⟩ai or ⟨x⟩bi to denote the share held by Pi.

2.1 Mixed-Mode MPC: Prior Solutions

Rotaru and Wood [RW19], who proposed doubly authenticated bits (daBits), is the first work for
mixed-mode MPC in the multi-party setting tolerating any number of corruptions. Note that in
the semi-honest setting, secret sharing without authentication is sufficient, but we still use daBit
to refer to the underlying semi-honest construction. A daBit (in the semi-honest setting) refers
to a secret bit r that is secret shared both in Boolean domain (namely ⟨r⟩b) and in arithmetic
domain (namely ⟨r⟩a) over Zm for some m. Suppose that n parties hold the secret sharing of a
bit r, i.e., ⟨r⟩b = (r1, . . . , rn). Party Pi, with share ri, further secret shares the bit ri in Zm so
that all parties hold ⟨ri⟩a. Now all parties need to compute ⟨r⟩a = ⟨r1⟩a ⊕ . . . ⊕ ⟨rn⟩a. Note that
because arithmetic sharings do not support XOR operations directly, they need to be simulated
using multiplication based on the fact that x ⊕ y = x + y − 2 · x · y. Because there are a total

3



n− 1 number of XOR operations to compute, this protocol requires O(n) multiplications over Zm

for each bit in the Boolean-to-arithmetic conversion. Even using multiplication triples with linear
communication, the total communication for one conversion, which requires ℓ daBits, would be
O(n2ℓ3) bits where ℓ is the bit length of the number to be converted.

An alternative approach by Escudero et al. [EGK+20] is to generate extended daBit (edaBit)
in the form of (⟨r⟩a, ⟨r0⟩b, . . . , ⟨rℓ−1⟩b), where r =

∑
j∈[0,ℓ−1] rj · 2j ∈ Zm. Their protocol works as

follows: each party Pi picks a random ri ∈ Zm and then secretly shares ri to all parties in both
Boolean and arithmetic sharings, i.e., ⟨ri⟩a and ⟨ri⟩b. The arithmetic sharing ⟨r⟩a =

∑
i∈[1,n]⟨ri⟩a,

which can be computed for free, and Boolean sharings (⟨r0⟩b, . . . , ⟨rℓ−1⟩b) =
∑

i∈[1,n]⟨ri⟩b, which re-

quires computing O(nℓ) multi-party AND triples. Using silent OT protocols [BCG+19, YWL+20],
this requires O(n3ℓ) bits of communication with a small underlying constant; or one can use thresh-
old FHE to get O(n2ℓ) where the underlying constant is at least 64, the ciphertext expansion to
encrypt bits [CGGI17].

Once these (extended) daBit correlations are generated, the actual conversion can be performed
easily by securely evaluating a circuit with size linear in the bit length, which is very cheap compared
to the cost of generating the triples in the offline phase.

Conclusion. The above methods can be viewed as a trade-off between a larger number of parties
(n) and high bit-length (ℓ). Based on these methods, follow-up works [DEF+19, BDST22] further
optimized the concrete efficiency when m = 2ℓ, but their best variations still have a complexity of
either O(n2ℓ3) or O(n3ℓ).

2.2 Mixed-Mode MPC: Our Protocols

Our high-level idea is that since homomorphic encryption (HE) is a crucial tool to obtain linear
communication-complexity monolithic-circuit MPC, we could also get linear communication con-
versions based on it. In particular, it is already known how to convert in linear complexity between
additive secret sharings and the corresponding ciphertexts, with a secret key secretly shared among
all parties.

Secure table lookup in the multi-party setting. Building towards scalable conversions, we
first propose an efficient multi-party table lookup protocol. Suppose that we have a table T of size
m = 2ℓ containing elements in Zp. First, we run a cheap arithmetic sharing to encryption protocol
so that P1 holds the ciphertexts of all table entries, namely [[T ]] = ([[T [0]]], . . . , [[T [m − 1]]]) where
T [i] is the i-th table entry. If T has multiple outputs, i.e., T [i] has multiple elements, then all the
entries corresponding to i can be packed in a single ciphertext [[T [i]]]. Then, P1 picks a random
string r1 ← {0, 1}ℓ and locally permutes all ciphertexts to obtain [[T1]] such that T1[j] = T [j⊕r1] for
each j ∈ [0,m−1]. P1 re-randomizes the permuted ciphertexts, and sends the resulting ciphertexts
to P2, who picks a random r2 ← {0, 1}ℓ and performs a permutation to obtain [[T2]] such that
T2[j] = T1[j ⊕ r2] for all j ∈ [0,m − 1]. Now P2 sends all ciphertexts [[T2]] to the next party after
re-randomization. Finally, Pn obtains the ciphertexts that encrypt a table permuted by all parties;
in other words, Pi holds r

i as the share of r, and the ciphertexts on the permuted table [[Tn]] such
that for each j ∈ [0,m− 1], Tn[j] = T [j ⊕ r1 ⊕ . . .⊕ rn] = T [j ⊕ r]. Now with this setup, a private
lookup to this table on index j can be performed efficiently given a Boolean sharing ⟨j⟩b: the parties
compute locally and reconstruct ⟨j ⊕ r⟩b = ⟨j⟩b⊕⟨r⟩b to Pn, who fetches [[Tn[j⊕r]]] = [[T [j]]]. Then
all parties convert it to an arithmetic sharing of the underlying plaintext T [j].

Boolean-to-arithmetic (B2A) conversion. Our main idea for efficient conversion from Boolean
to arithmetic secret sharing is to view this conversion as a lookup of a public table using a private
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Figure 1: Example for permutation of packed table [[(a, b, c, d)]] using r1 = 0 and r2 = 1.

index. In more detail, we use a public table of size 2 with 0 and 1 in Zp. To convert the Boolean
sharing ⟨x⟩b of an integer x to its arithmetic sharing, we essentially just want to perform a table
lookup for each XOR-shared bit in ⟨x⟩b. This produces an arithmetic sharing of each bit in x just
like daBit, which can further be locally combined to an arithmetic sharing of x.

The idea is simple, but to make it highly efficient, extensive protocol optimization is required to
incorporate state-of-the-art optimization on HE schemes. In particular, the description above does
not assume packing, which is important in reducing ciphertext expansion. To make it compatible
with packing, we design a customized protocol for size-2 table lookup. The main challenge is to
independently permute the encrypted entries within each table that are all packed into the same
ciphertext as efficiently as possible. For illustration, suppose that we have two size-2 tables, namely
(a, b) and (c, d). To fully utilize packing, they will be packed in one ciphertext as e = [[(a, b, c, d)]].
The key observation is that for a pair-wise swap, any slot after the swap can only come from its
immediate neighbors, and thus shifting by one slot is sufficient. In more detail, we locally left shift
and right shift e so that e1 = [[(b, c, d, a)]] and e−1 = [[(d, a, b, c)]]. Suppose that we use bits r1 and
r2 to indicate whether we should swap the table entries. Then the final result is

(r1, r1, r2, r2) ∗ e+ (r1, 0, r2, 0) ∗ e1 + (0, r1, 0, r2) ∗ e2,

which can be computed with three scalar multiplications, all in one layer. We illustrate an example
in Figure 1. To finish up one party’s computation, it needs to re-randomize the ciphertext using the
circuit-privacy technique such as noise flooding [Gen09, AJL+12] to ensure that r1 and r2 cannot
be inferred from the resulting ciphertext.

Arithmetic-to-Boolean (A2B) conversion. Our protocol for arithmetic-to-Boolean conversion
follows similar ideas as above but with some extra complications. Our end goal is to generate
edaBit correlations over Zp, but the above protocol only generates edaBit correlations over Z2ℓ ,
which can be higher than p for some probability. Thus, we need a protocol to perform secure
rejection sampling efficiently. The simplest way is to perform a secure comparison, but the cost
would be high. Furthermore, to be compatible with the mainstream lattice-based scheme, p must
be NTT-friendly, imposing more restriction. In Section 5.2, we discuss how to pick p so that
comparing a private integer and p takes only 2 multiplication operations.

With the above described optimizations, our conversion protocols have a running time linear in
the number of parties. We observe a significant improvement in running time and communication
compared to the prior state-of-the-art work. Furthermore, we estimate the cost of several end-to-
end applications using mixed-mode circuits. We observe an improvement of about 1490× in the
monetary cost for running biometric matching with 64 parties.

2.3 Scalable Multi-Party Garbled Circuits

As mentioned in the introduction, all existing multi-party garbled circuit (GC) protocols in the
all-but-one corruption setting require total communication quadratic in the number of parties. The
closest is [BLO17], which achieves linear online communication for the GCs (i.e., the function-
dependent phase) by using a key and message homomorphic PRF, which can be built from, e.g.,
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lattice-based assumptions. However, to distributedly generate the garbled circuits in the preprocess-
ing phase (i.e., producing the additive sharings of keys), it still requires communication quadratic
in the number of parties.

We build on the prior work [BLO17], and achieve the total communication linear in the num-
ber of parties. In their protocol, each wire w is associated with two keys kw,0 and kw,1 and a
random mask λw. These keys and masks are additively shared among all parties. Due to the
key-homomorphic property, the parties can evaluate their shares of the PRF values locally and
later combine them together. Ignoring some details, the protocol works as follows. For each
gate g with input wires u, v and output wire w, for each α, β ∈ {0, 1}, each party Pi computes
PRFki

u,α+ki
v,β

(g∥α∥β) + ⟨kw,ew,α,β
⟩ai , where ew,α,β = g((λu ⊕ α), (λv ⊕ β)) ⊕ λw, k

i
u,α,k

i
v,β are the

shares of Pi for two keys ku,α,kv,β and ⟨kw,ew,α,β
⟩ai is the arithmetic share of Pi on the key kw,ew,α,β

.
The main communication cost is to compute ⟨kw,ew,α,β

⟩a. In [BLO17], this was accomplished by an
OT-based protocol, which requires the O(n2)-communication for n parties.

Our key observation is that the computation of ⟨kw,ew,α,β
⟩a can be viewed as a secure table

lookup. In particular, computing an arithmetic sharing ⟨kw,ew,α,β
⟩a boils down to computing a

Boolean sharing ⟨ew,α,β⟩b, which can be generated in a small communication using one random
Beaver triple over binary field. We use ⟨ew,α,β⟩b to perform a table lookup, which has an efficient
instantiation with O(n)-communication in previous discussions. For every AND gate, we need
to compute 4 private table lookups, each corresponding to one arithmetic sharing ⟨kw,ew,α,β

⟩a
with α, β ∈ {0, 1}. For each XOR gate, we need to compute only one private table lookup. In
particular, for each XOR gate with input wires u, v and output wire w, we observe that ew,α,β =
α ⊕ λu ⊕ β ⊕ λv ⊕ λw, and thus one table value is kw,ew,0,0 = kw,ew,1,1 and the other value in the
table is kw,ew,1,0 = kw,ew,0,1 .

3 Preliminaries

We use the standard ideal/real paradigm [Can00] to prove the security of our protocols in the
presence of a semi-honest, static adversary.

3.1 Additive Secret Sharings

We use ⟨x⟩t to denote an additive sharing over a finite field F in the multi-party setting, where
the superscript t ∈ {a, b} indicates the type of sharings. In particular, ⟨x⟩a denotes an arithmetic
sharing over a field F = Zp where p is a prime; ⟨x⟩b represents a Boolean sharing over a field F = F2.
Then, we define the following algorithms for two types of additive sharings.

• ⟨x⟩t ← Share(x) : The party Pj , who holds the secret x, runs this algorithm to generate an
additive sharing ⟨x⟩t. Specifically, this algorithm samples ⟨x⟩ti ← F for i ∈ [1, n−1] and computes
⟨x⟩tn := x−

∑
i∈[1,n−1]⟨x⟩ti ∈ F.

• x ← Rec(⟨x⟩t, i) : Given all shares ⟨x⟩t1, . . . , ⟨x⟩tn, Pi can run this algorithm to reconstruct the
secret x. Specifically, this algorithm outputs x :=

∑
j∈[1,n]⟨x⟩tj ∈ F.

• x← Open(⟨x⟩t) : The open procedure is run as follows:

1. All parties run Rec(⟨x⟩t, 1) such that P1 obtains x.

2. P1 sends x to all other parties.
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It is well-known that additive secret sharings satisfy the linear property. That is, for any constants
c0, c1, . . . , cℓ, given additive sharings ⟨x1⟩t, . . . , ⟨xℓ⟩t, the parties P1, . . . , Pn can locally compute
⟨y⟩t :=

∑ℓ
i=1 ci · ⟨xi⟩t + c0 such that y =

∑ℓ
i=1 ci · xi + c0 ∈ F. If t = b, the addition operation of

two elements in F2 corresponds to the XOR operation of two bits. In this case, we can just write
z = x ⊕ y and ⟨z⟩b = ⟨x⟩b ⊕ ⟨y⟩b instead of z = x + y ∈ F2 and ⟨z⟩b = ⟨x⟩b + ⟨y⟩b. For a vector
x ∈ Fℓ, we use ⟨x⟩t to denote (⟨x[0]⟩t, . . . , ⟨x[ℓ − 1]⟩t). By ⟨x⟩ti[j], we denote the share of ⟨x[j]⟩t
held by the party Pi.

3.2 Threshold Homomorphic Encryption

We use threshold homomorphic encryption (THE) to encrypt messages and perform operations over
ciphertexts. In most cases, we only need THE to support linear combination (including addition
and scalar multiplication) and rotation operations over ciphertexts. In a few special cases (e.g.,
producing Beaver triples as shown in Appendix 3.3), we require THE to additionally support one
multiplication operation over two ciphertexts (i.e., depth-1 THE). Let P = {P1, . . . , Pn} be the set of
n parties. Our protocols work in the full-threshold setting, i.e., the secret key is shared by all parties
using additive secret sharing, and no party (even if n − 1 parties collude) can recover the secret
key. LetM be the plaintext space. Following the previous work [AJL+12, BGG+18, MTBH21], a
THE scheme overM consists of the following algorithms and protocols:

• Setup: pp← Setup(1κ). On input κ, the setup algorithm outputs a set of public parameters pp,
which is an implicit input to the following algorithms and protocols.

• Key Generation: Every party Pi generates a share of a secret key by running ski ← SecKeyGen(pp).
The secret key sk is identical to

∑
i∈[1,n] ski. All parties jointly produce a public key pk by exe-

cuting a multi-party key-generation protocol pk←
∏

PubKeyGen(sk1, . . . , skn).

• Encryption: [[m]]← Encpk(m). On input a public key pk and a plaintextm ∈M, the encryption
algorithm outputs a ciphertext [[m]].

• Evaluation: We consider the following operations:

– Linear combination : Given ciphertexts [[m1]], . . . , [[mℓ]] and public coefficients c0, c1, . . . , cℓ,
one can compute a ciphertext [[m]] =

∑ℓ
i=1 ci · [[mi]] + c0 such that m =

∑ℓ
i=1 ci ·mi + c0.

– Multiplication : Given two ciphertexts [[m1]], [[m2]], any party can compute the ciphertext
[[m3]] = [[m1]] · [[m2]] such that m3 = m1 ·m2.

In the above definition, we abuse the notation for the sake of simplicity and use the same notation
+, · to denote the addition and multiplication operations over both ciphertexts and plaintexts.
From the context, it is clear that these operations over ciphertexts are actually different from
that over plaintexts.

• Decryption: Given sk =
∑

i∈[1,n] ski and a ciphertext [[m]], one party can run Decsk([[m]]) to
obtain a plaintext m. Given the secret key’s shares sk1, . . . , skn and a ciphertext [[m]], all parties
jointly execute the decryption protocol

∏
Dec(sk1, . . . , skn, [[m]]) to let some party Pi obtain m.

Given a ciphertext ct = f([[m1]], . . . , [[mℓ]]) for some function f , we require that the probability
that Decsk(ct) ̸= f(m1, . . . ,mℓ) is negligible in κ. We also require that the THE scheme satisfies
the standard CPA security. Informally, for any probabilistic polynomial time (PPT) adversary A
who corrupts at most n − 1 parties, for plaintexts m0,m1 chosen by A, the probability that A
distinguishes Encpk(m0) from Encpk(m1) is negligible in κ.
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Circuit privacy. For a ciphertext [[m]] = f([[m1]], . . . , [[mℓ]]) that will be decrypted, it is desirable
that no parties (except for the party evaluating [[m]] with f) could learn the secret function f , even
if they hold secret key sk. This is modeled as circuit privacy, whose formal definition can be found
in [BdMW16]. As in prior work [dCJV20], we define an algorithm CP(ct, pk), which takes as input
an evaluated ciphertext ct and public key pk, and outputs a ciphertext ct′ with circuit privacy.
We adopt the noise-flooding technique [AJL+12] to achieve circuit privacy (see Appendix A.1 for
details). More efficient technique called “divide-and-round” [dCJV20] can also be applied to our
protocols.

Instantiation and packing. In the implementation, we adopt a threshold version of the BGV-
HE scheme [BGV12], which is outlined in Appendix A.1. Other full-threshold HE schemes, such
as the BFV-THE scheme [Bra12, FV12, MTBH21] can also be applied in our protocols. For the
BGV-THE scheme, every ciphertext is defined over a ring Rq = R/qR, and any plaintext lies in a
ring Rp = R/pR, where R = Z[X]/(XN + 1) is a polynomial ring with integer coefficients modulo
XN + 1, N is a power-of-two integer, and p, q ∈ N are co-prime. Based on the packing technique,
we can pack N plaintexts in a single ciphertext where every plaintext in Zp is placed in a different
slot and support parallel evaluation of plaintexts using the single instruction multiple data (SIMD)
operations. Suppose that a prime p = 1 (mod 2N) is used. We can view a ring element a ∈ Rp

as a vector in (Zp)
N . When using the packing technique, we often use m ∈ (Zp)

N and [[m]] to
denote a vector of plaintexts and its ciphertext, unless otherwise specified. Note that it is natural
to generalize the evaluation of ciphertexts without packing into that with packing. Due to the
usage of packing, we need to perform the following operations to rotate or permute the plaintext
slots in a single ciphertext.

• Rotation: Any party can run [[m′]] ← Rotatepk([[m]], r) such that m′ is a vector obtained by
cyclically left-shifting (resp., right-shifting) the components of m by r if r > 0 (resp., r < 0).

• Permutation: Any party can run [[u]]← Permpk([[m]], π) such that u = (m[π(0)],m[π(1)], . . . ,
m[π(N − 1)]), where π is a permutation. The permutation operation can be realized by a linear
combination of multiple rotations.

It is well known that the BGV-THE scheme is CPA secure under the ring-LWE assumption [LPR10].

3.3 Arithmetic Black Box and Conversions

We model MPC via the arithmetic black-box (ABB) model [KOS16], which is an ideal functional-
ity FABB defined in Figure 2. This functionality allows a set of n parties to input/output secret-
shared values and evaluate arbitrary circuits performing addition and multiplication operations. As
in [EGK+20], we define an extended version of the ABB model, which handles values in both arith-
metic and Boolean domains and thus can evaluate any arithmetic/boolean circuits. Furthermore,
this functionality is also extended to allow the parties to encrypt values and evaluate the addition
of two ciphertexts. Without loss of generality, suppose that the plaintext space for encryption is
Zp. Here, we do not allow the parties to evaluate the multiplication of two ciphertexts, as our
protocols do not require it when invoking functionality FABB. This functionality abstracts away
the underlying details of secret sharings, encryption, and MPC.

Instantiation for FABB. We can use a THE scheme to encrypt values and perform a linear
combination of encrypted values. We adopt additive secret sharings to securely compute the linear
combination and multiplication of secret values. Due to the linear property of additive secret
sharings, the linear combination of multiple sharings can be locally computed. For multiplication
of two secret sharings, we consider two cases:
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Functionality FABB

This functionality operates over a finite field Zp (resp., F2) for arithmetic secret-shared values (resp.,
Boolean secret-shared values), and interacts with parties P1, . . . , Pn.

Input: Upon receiving (Input, Pi, type, id, x) from a party Pi and (Input, Pi, type, id) from all other
parties, where type ∈ {arith, bool}, id is a fresh identifier, and either x ∈ Zp or x ∈ {0, 1} depending on
type, store (id, type, x).

Random: Upon receiving (Random, type, id) from all parties where type ∈ {arith, bool} and id is a fresh
identifier, sample r ← Zp or r ← {0, 1} relying on type, store (id, type, r).

Encrypt: Upon receiving (Enc, id, id′) from all parties where id is present in memory, retrieve (id, type, x)
and store (id′, enc, x).

Linear combination: Upon receiving (LinComb, type, id, id′, c0, c1, . . . , cℓ) from all parties, where
(id[j], type) for j ∈ [1, ℓ] are present in memory, and cj ∈ Zp (resp., cj ∈ {0, 1}) for j ∈ [0, ℓ]
if type ∈ {arith, enc} (resp., type = bool), retrieve (id[j], type, xj) for j ∈ [1, ℓ], then compute

y :=
∑ℓ

j=1 cj · xj + c0 modulo p if type ∈ {arith, enc} and modulo 2 if type = bool. Store (id′, type, y).

Multiply: Upon receiving (Mult, type, id1, id2, id3) from all parties where (id1, type) and (id2, type) are
present in memory and type ∈ {arith, bool}, retrieve (id1, type, x) and (id2, type, y), compute z := x · y
modulo p if type = arith and modulo 2 if type = bool, and store (id3, type, z).

Output: Upon receiving (Output, Pi, type, id) from all parties, where (id, type) is present in memory,
retrieve (id, type, x) and then output it to Pi.

Figure 2: Functionality for the MPC black box.

Functionality FConv

This functionality has all of the same features as FABB with the following additional commands.

From Boolean to Arithmetic: Upon receiving (B2A, id, id′) from all parties where (id, bool) is present
in memory, retrieve (id, bool, x) and store (id′, arith, x).

From Arithmetic to Boolean: Upon receiving (A2B, id, id0, . . . , idℓ−1) from all parties where (id, arith)
is present in memory and ℓ = ⌈p⌉, retrieve (id, arith, x) and store (idi, bool, xi) for i ∈ [0, ℓ − 1] where

x =
∑ℓ−1

i=0 xi · 2i mod p.

From Encryption to Arithmetic: Upon receiving (E2A, id, id′) from all parties where (id, enc) is
present in memory, retrieve (id, enc, x) and store (id′, arith, x).

From Arithmetic to Encryption: Upon receiving (A2E, id, id′) from all parties where (id, arith) is
present in memory, retrieve (id, arith, x) and store (id′, enc, x).

Figure 3: Functionality for the black box of conversions.

• Arithmetic sharings : We can compute the multiplication of two arithmetic sharings ⟨x⟩a and
⟨y⟩a using threshold HE that supports 1-depth multiplications. Specifically, every party Pi with
i ̸= 1 runs [[⟨x⟩ai ]]← Encpk(⟨x⟩ai ) and [[⟨y⟩ai ]]← Encpk(⟨y⟩ai ), and then sends ([[⟨x⟩ai ]], [[⟨y⟩ai ]]) to P1

who computes [[x]] :=
∑n

i=1[[⟨x⟩ai ]] and [[y]] :=
∑n

i=1[[⟨y⟩ai ]], where [[x]]1, [[y]]1 are computed by P1

by running Encpk(·). Then, P1 locally computes [[z]] := [[x]] · [[y]] and sends [[z]] to all other parties.
Finally, all parties call the E2A command of FConv to convert [[z]] into ⟨z⟩a. This needs to send
at most 3.5(n − 1) HE ciphertexts in total, when the E2A command of FConv is instantiated by
the protocol shown in Figure 15 of Section A.3.
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Functionality FPrep−LUT

Let M = 2m be the length of a public/private table. This functionality has all of the same features as
FABB shown in Figure 2, with the following additional commands.

Public masked table: Upon receiving (MaskedPubTab, T, id1, id2) from all parties, where T ∈ (Zp)
M

is a vector defining a public table, and id1, id2 are two vectors of fresh identifiers with respective length
m and M , sample r ← {0, 1}m, write r = (r0, . . . , rm−1) with rj ∈ {0, 1} for j ∈ [0,m − 1], store
(id1[j], bool, rj) for j ∈ [0,m− 1], and store (id2[j], arith, T [r ⊕ j]) for j ∈ [0,M − 1].

Private masked table: Upon receiving (MaskedPriTab, id1, id2, id3) from all parties, where
(id1[j], arith) for all j ∈ [0,M −1] are present in memory, and id2, id3 are two vectors of fresh identifiers
with respective length m and M , retrieve (id1[j], arith, T [j]) for j ∈ [0,M − 1], set the vector T accord-
ingly, sample r ← {0, 1}m with r = (r0, . . . , rm−1), store (id2[j], bool, rj) for j ∈ [0,m − 1], and store
(id3[j], arith, T [r ⊕ j]) for j ∈ [0,M − 1].

Figure 4: Functionality for masked lookup tables.

• Boolean sharings : We can use the above approach based on threshold HE to multiply two Boolean
sharings ⟨x⟩b, ⟨y⟩b, where XOR is simulated by multiplication and addition operations. In this
way, the communication complexity of O(n) can be achieved, but the computation complexity is
high. Alternatively, we can adopt the standard protocol based on correlated oblivious transfer
(COT) to perform pairwise bit multiplications, and then locally combine the shares of these bit
multiplications to obtain Boolean sharing ⟨z⟩b with z = x ∧ y. We can use the recent PCG-
like COT protocols (e.g., [BCG+19, YWL+20]) to generate COT correlations. Although the
COT approach has the communication complexity of O(n2), it allows us to obtain much faster
computation.

We can adopt the Beaver’s multiplication technique to improve the online performance. In this
case, the online communication per multiplication is 4(n − 1) log p bits (resp., 4(n − 1) bits) in
total for t = a (resp., t = b). In the offline phase, the parties first generate a random Beaver triple
(⟨x⟩t, ⟨y⟩t, ⟨z⟩t) with z = x · y and t ∈ {a, b}, where ⟨x⟩t, ⟨y⟩t are random additive sharings jointly
produced by the parties, and ⟨z⟩t is computed as described above. In the online phase, given
additive sharings ⟨u⟩t, ⟨v⟩t associated with actual inputs, the parties can consume the random
Beaver triple (⟨x⟩t, ⟨y⟩t, ⟨z⟩t) to generate an additive sharing ⟨w⟩t with w = u ·v using the standard
Beaver approach [Bea92].

Functionality for arithmetic, Boolean and encryption conversions. Our protocol would
securely realize functionality FConv shown in Figure 3. This functionality allows the parties to con-
vert between arithmetic secret-shared values and Boolean secret-shared values and also allows them
to convert between arithmetic secret-shared values and encrypted values. We omit the conversions
between Boolean secret-shared values and encrypted values, as they can be realized by performing
Boolean-to-arithmetic and arithmetic-to-encryption conversions. As for the conversions between
arithmetic secret-shared values and encrypted values, we w.l.o.g. assume that the space of secret
values for arithmetic sharings is the same as that of HE plaintexts. We show how to perform
efficient conversions between arithmetic sharings and encrypted values in Appendix A.3 and will
present our conversion protocols between arithmetic sharings and Boolean sharings in Section 5.
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Functionality FLUT

Let M = 2m be the length of a public/private table. This functionality has all of the same features as
FABB shown in Figure 2, with the following additional commands.

Public table lookup: Upon receiving (PubTabLookup, T, id1, id2) from all parties, where T ∈ (Zp)
M

is a vector defining a public table, and (id1[j], bool) for j ∈ [0,m − 1] are present in memory, retrieve
(id1[j], bool, x[j]) for j ∈ [0,m− 1], set x ∈ {0, 1}m and store (id2, arith, T [x]).

Private table lookup: Upon receiving (PriTabLookup, id1, id2, id3) from all parties, where
(id1[j], arith) for all j ∈ [0,M − 1] and (id2[j], bool) for j ∈ [0,m − 1] are present in memory, re-
trieve (id1[j], arith, T [j]) for j ∈ [0,M − 1] and (id2[j], bool, x[j]) for j ∈ [0,m − 1], set T ∈ (Zp)

m and
x ∈ {0, 1}m accordingly, and store (id3, arith, T [x]).

Figure 5: Functionality for MPC using look-up tables.

4 Multi-Party Lookup-Table Protocol

In this section, we present a multi-party lookup-table protocol with linear communication com-
plexity, where either the table is public, or a private table is secretly shared. We separate the
lookup-table protocol into two sub-protocols, where the preprocessing sub-protocol generates a
masked table and the online sub-protocol realizes the lookup table using the masked table. We
model the preprocessing of public/private masked tables in functionality FPrep−LUT shown in Fig-
ure 4. Functionality FPrep−LUT samples a random string r to permute the table T , which is equiv-
alent to generating the additive sharings of masked table T ′ and r, where T ′[j] = T [r ⊕ j] for
j ∈ [0,M − 1]. By invoking FPrep−LUT, our online protocol securely realizes functionality FLUT

shown in Figure 5. Both functionalities FPrep−LUT and FLUT are an extension of the lookup-table
functionality [KOR+17] to additionally support private tables. In both FPrep−LUT and FLUT, we
w.l.o.g. assume that the table size is power-of-two. As in [KOR+17], we also let FPrep−LUT and
FLUT involve the commands defined in functionality FABB shown in Figure 2. In Section 4.1 and
Section 4.2, we describe two preprocessing protocols for generating masked tables. Then, we present
the online protocol in Section 4.3.

Our conversion and multi-party garbling protocols shown in the next sections only need a
lookup-table protocol for size-2 tables. Therefore, we first describe the multi-party lookup-table
protocol for size-2 tables. Then, we show how to construct a multi-party lookup-table protocol
for any polynomial-sized tables, which may be of independent interest for other applications, e.g.,
secure AES evaluation.

4.1 Preprocessing for Masked Two-Sized Tables

In Figure 6, we show a multi-party preprocessing protocol Πsize2
prepLUT for masking the tables that

have only two entries. This protocol works in the FE2A-hybrid model, where FE2A consists of the
commands defined in FABB (shown in Figure 2) and the E2A command defined in FConv (shown in
Figure 3). Besides, this protocol adopts a THE scheme supporting packing and SIMD, where the
THE scheme adopts the plaintext space (Zp)

N for a prime p, and the number of plaintext slots is
N (power of two).

Theorem 1. Protocol Πsize2
prepLUT (shown in Figure 6) securely realizes functionality FPrep−LUT with

size-2 tables (shown in Figure 4) against semi-honest adversaries in the FE2A-hybrid model, assum-
ing that the THE scheme is CPA secure and satisfies circuit privacy.

The proof of Theorem 1 is provided in Appendix B.1.
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Protocol Πsize2
prepLUT

Inputs: Parties P1, . . . , Pn have the following inputs:

• Case 1 : Let T ∈ (Zp)
2 be a public vector corresponding to a size-2 public table. Case 2 : Let ⟨T ⟩a

be an arithmetic sharing w.r.t. a private vector T ∈ (Zp)
2 that is related to a size-2 private table.

• The THE scheme with Enc and Rotate. Suppose that the public parameters and public key pk have
been established.

Preprocessing of a masked size-2 table:

1. All parties call the (Random) command of functionality FE2A to sample a vector of random Boolean

sharings ⟨r⟩b with r = (r0, r1, . . . , rN/2−1) ∈ {0, 1}
N/2

.

2. P1 obtains a ciphertext [[m]] where m[2j] = T [0] and m[2j + 1] = T [1] for j ∈ [0, N/2 − 1], by
executing the following depending on whether T is public or not.

• In Case 1, P1 sets m as above and runs [[m]]← Encpk(m).

• In Case 2, every party Pi sets mi ∈ (Zp)
N as m[2j] = ⟨T ⟩ai [0] and m[2j + 1] = ⟨T ⟩ai [1] for

j ∈ [0, N/2 − 1], and then runs [[mi]] ← Encpk(mi). For each i ̸= 1, Pi sends [[mi]] to P1, who
computes [[m]] :=

∑
i∈[1,n][[mi]].

3. From i = 1 to n, the parties execute the following steps:

(a) P1 sets c0 := [[m]]. If i ̸= 1, Pi gets ci−1 from Pi−1.

(b) Pi computes two ciphertexts t1 ← Rotatepk(ci−1, 1) and t2 ← Rotatepk(ci−1,−1).
(c) Pi initializes three zero-vectors h = h1 = h2 = 0N , and for each j ∈ [0, N/2 − 1], does the

following:

i. If ⟨rj⟩bi = 0, then set h[2j] = h[2j + 1] = 1.

ii. If ⟨rj⟩bi = 1, then set h1[2j] = h2[2j + 1] = 1.

(d) Pi computes ci := h · ci−1 + h1 · t1 + h2 · t2, and then update ci as a circuit-private ciphertext
CP(ci, pk).

(e) If i ̸= n, Pi sends ci to Pi+1. If i = n, Pn sends cn to all parties.

4. The parties call functionality FE2A to convert ciphertext cn into arithmetic sharings ⟨T ′
i ⟩a for i ∈

[0, N/2− 1], where T ′
i [j] = T [ri ⊕ j] for i ∈ [0, N/2− 1], j ∈ {0, 1}.

5. The parties output additive sharings ⟨ri⟩b and ⟨T ′
i ⟩a for i ∈ [0, N/2− 1].

Figure 6: Protocol for the preprocessing of masked size-2 tables in the FE2A-hybrid model.

Communication complexity. In a standard way, a polynomial number of random Boolean
sharings can be generated using random seeds and a pseudo-random generator (PRG), and thus
the communication to generate the sharings can be amortized to negligible. Let |ct| be the size of
a THE packed ciphertext. When the table is private, the generation of ciphertext [[m]] takes the
communication cost of (n−1)|ct| bits. The step (3) needs 2(n−1)|ct| bits of communication in total.
The protocol (shown in Figure 15 of Section A.3) instantiating the (E2A) command of functionality
FE2A takes communication of (n− 1)|ct|/2 bits. Overall, protocol Πsize2

prepLUT (Figure 6) has the total
communication cost of at most 3.5(n−1)|ct| bits, and thus achieves the communication complexity
linear in the number of parties.

Reducing noise growth. Every ciphertext ci produced by Pi for i ≥ 2 is computed by performing
rotation and scalar-multiplication operations over ciphertext ci−1. In this case, the noise will grow
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with the number of parties, which will lead to very large parameters. To solve the issue, we
reduce the noise growth by refreshing every ciphertext ci with the Bootstrapping operation. This
optimization is described in Section 7.1, and keeps the ciphertext size almost constant. Instead of
bootstrapping every ciphertext, one only needs to bootstrap the ciphertexts {cj} where j = i · k
for i ∈ [1, n/k] and some integer k ≥ 2, by tuning the parameters.

Special case that table entries are in (Zp)
N . When each table entry is taken from the message

space of the packed THE scheme (i.e., T [0], T [1] ∈ (Zp)
N ), we can use a simpler approach to

generate a masked lookup table. The special case occurs in the application of our multi-party
garbling protocol shown in Section 6. The preprocessing protocol for the special case is the same
as the protocol Πsize2

prepLUT shown in Figure 6, except for the following differences:

1. A random Boolean sharing ⟨r⟩b with r ∈ {0, 1} (instead of r ∈ {0, 1}N/2) is generated.

2. A THE ciphertext on a public/private table T is computed as ([[x]], [[y]]), where x = T [0] and
y = T [1].

3. From i = 1 to n, Pi does the following:

(a) If i = 1, set c0 = ([[x]], [[y]]). If i ̸= 1, receive ci−1 from Pi−1.

(b) Parse ciphertext ci−1 = ([[xi−1]], [[yi−1]]). If ⟨r⟩bi = 1, then swap ([[xi−1]], [[yi−1]]) and update
ci−1 accordingly. Otherwise, keep ci−1 unchanged.

(c) Compute THE ciphertexts with circuit privacy ci := (CP(ci−1[0], pk),CP(ci−1[1], pk)).

Through the above approach, only one table (instead of N/2 tables) is masked for each protocol
execution. In the special case, it is unnecessary to bootstrap ciphertexts, as only circuit-privacy
operations are involved and noise growth is slower. Therefore, for the special case, this protocol is
more computation-efficient than the protocol Πsize2

prepLUT. The security of the improved protocol for
the special case is easy to be proved in the presence of semi-honest adversaries following the proof
of Theorem 1.

4.2 Preprocessing for Masked Poly-Sized Tables

Now, we describe the multi-party preprocessing protocol for masking any polynomial-sized tables.
This protocol still works in the FE2A-hybrid model, and adopts the threshold HE scheme to encrypt
the public/private table. This protocol makes the parties sequentially permute the encrypted table,
and requires more rotation operations compared to the protocol Πsize2

prepLUT shown in Figure 6. The
details of the protocol is shown in Figure 7. Similarly, to control the noise growth, we would adopt
the bootstrapping technique to refresh evaluated ciphertexts. For the sake of simplicity, we do not
involve the packing technique for the THE scheme. Below, we will give the overview how to adopt
the packing technique to optimize the protocol for moderate-sized tables.

Theorem 2. Protocol Πpolysize
prepLUT (shown in Figure 7) securely realizes functionality FPrep−LUT with

poly-sized tables (shown in Figure 4) against semi-honest adversaries in the FE2A-hybrid model,
assuming that the THE scheme is CPA secure and satisfies circuit privacy.

The proof of Theorem 2 can be found in Appendix B.2.

Optimization with packing. When a packed THE scheme is adopted, we can further optimize
the protocol if the table size M is two times smaller than the number of slots N . Let L = ⌊N/M⌋.
In this case, we can encrypt and permute L tables packed in a single ciphertext. In particular,
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Protocol Πpolysize
prepLUT

Inputs: Parties P1, . . . , Pn have the following inputs:

• Case 1 : Let T ∈ (Zp)
M be a vector corresponding to a size-M public table. Case 2 : Let ⟨T ⟩a be an

arithmetic sharing w.r.t. a vector T ∈ (Zp)
M related to a size-M private table. Let m be the length

of indices, i.e., M = 2m.

• The THE scheme with Enc and Perm. Suppose that the public parameters and public key pk have
been established.

Preprocessing of a masked size-M table:

1. All parties call the (Random) command of FE2A to sample random Boolean sharings ⟨r⟩b with r ∈
{0, 1}m.

2. P1 computes a ciphertext [[T ]] by executing the following depending on if T is public.

• In Case 1, P1 runs [[T ]]← Encpk(T ).

• In Case 2, every party Pi runs [[T
i]]← Encpk(⟨T ⟩ai ). For i ̸= 1, Pi sends [[T

i]] to P1, who computes
[[T ]] :=

∑
i∈[1,n][[T

i]].

3. From i = 1 to n, the parties execute the following steps:

(a) If i = 1, P1 sets [[T0]] := [[T ]]. If i ̸= 1, Pi receives [[Ti−1]] from Pi−1.

(b) Pi defines πi as πi(j) = j ⊕ ⟨r⟩bi ∈ {0, 1}
m

for j ∈ [0,M − 1], and then runs [[Ti]] ←
Permpk([[Ti−1]], πi). Then Pi updates [[Ti]] as a circuit-private ciphertext CP([[Ti]], pk).

(c) If i ̸= n, Pi sends [[Ti]] to Pi+1. If i = n, Pn sends [[Tn]] to all other parties.

4. The parties call FE2A to convert ciphertext [[Tn]] into a vector of arithmetic sharings ⟨T ′⟩a with
T ′[j] = T [r ⊕ j] for j ∈ [0,m− 1].

5. The parties output additive sharings ⟨r⟩b and ⟨T ′⟩a.

Figure 7: Protocol for the preprocessing of masked poly-sized tables in the FE2A-hybrid model.

every party can permute each encrypted table independently and randomly. For a moderate table
size M , we can select a suitable parameter N to obtain a better efficiency.

Communication complexity. The analysis of communication complexity of protocol Πpolysize
prepLUT

(shown in Figure 7) is totally similar to that of protocol Πsize2
prepLUT (shown in Figure 6). In partic-

ular, Πpolysize
prepLUT has the total communication cost of at most 3.5(n − 1)|ct| bits and thus a linear

communication complexity. When the packing optimization as described above is used, a single
protocol execution can be used to generate L = ⌊N/M⌋ masked lookup tables.

4.3 Online Protocol for Lookup Table

The online lookup-table protocol follows the known approach [IKM+13, DNNR17, KOR+17, DKS+17,
BHS+23], and allows the table to be public or private. The detailed protocol is shown in Figure 8,
and works in the FPrep−LUT-hybrid model. This protocol takes an input a vector of Boolean sharings
⟨x⟩b with x ∈ {0, 1}m and outputs an arithmetic sharing ⟨T [x]⟩a. In the FPrep−LUT-hybrid model,
protocol ΠLookup shown in Figure 8 only needs the communication of 2(n − 1)m bits, where m is
the length of a table entry.
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Protocol ΠLookup

Input: Parties P1, . . . , Pn have the following inputs:

• Let M = 2m is the table length.

• Case 1 : Let T ∈ (Zp)
M be a public vector corresponding to a public-table map f : {0, 1}m → Zp

such that T [j] = f(j) for j ∈ {0, 1}m. Case 2 : Let ⟨T ⟩a be the arithmetic sharing of a private vector
T related to a private-table map.

• ⟨x⟩b is the Boolean sharings of a private index x ∈ {0, 1}m.

Preprocessing of masked table: In Case 1 (resp., Case 2), all parties call the (MaskedPubTab, T )
(resp., (MaskedPriTab)) command of functionality FPrep−LUT to generate a masked table (⟨r⟩b, ⟨T ′⟩a)
with r ∈ {0, 1}m and T ′[j] = T [r ⊕ j] for j ∈ [0,M − 1].

Online table lookup: Given (⟨r⟩b, ⟨T ′⟩a) and ⟨x⟩b, the parties generate ⟨T [x]⟩a as follows:

1. All parties locally compute ⟨u⟩b := ⟨x⟩b ⊕ ⟨r⟩b.

2. The parties run the Open(⟨u⟩b) procedure such that they obtain u = x⊕ r ∈ {0, 1}m.

3. The parties locally compute ⟨T [x]⟩a := ⟨T ′⟩a[u].

Figure 8: Online lookup-table protocol.

Protocol ΠB2A

Inputs: P1, . . . , Pn hold Boolean sharings ⟨x⟩b where x ∈ (F2)
ℓ and ℓ = ⌈log p⌉ is the length of an

element in Zp.

Conversion from Boolean to arithmetic sharings:

1. All parties set a pubic vector T = (0, 1) corresponding to a public lookup-table fT (j) = j for
j ∈ {0, 1}.

2. For j ∈ [0, ℓ − 1], the parties call the (PubTabLookup) command of functionality FLUT on input
(T, ⟨x[j]⟩b) to obtain ⟨T [x[j]]⟩a = ⟨x[j]⟩a.

3. The parties compute and output ⟨x⟩a :=
∑ℓ−1

j=0 2
j · ⟨x[j]⟩a, where x =

∑ℓ−1
j=0 2

j · x[j] mod p.

Figure 9: Protocol for converting Boolean sharings to arithmetic sharings in the FLUT-hybrid model.

Theorem 3. Protocol ΠLookup (shown in Figure 8) securely realizes functionality FLUT in the
presence of semi-honest adversaries in the FPrep−LUT-hybrid model.

The proof of Theorem 3 is postponed to Appendix B.3.

5 Conversions of Sharings from LUT

We first show how to convert Boolean sharings into arithmetic sharings in the FLUT-hybrid model.
Then, we describe the protocol to convert arithmetic sharings into Boolean sharings in the FLUT-
hybrid model.
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Protocol ΠA2B

Inputs: Parties P1, . . . , Pn hold an arithmetic sharing ⟨x⟩a with x ∈ Zp. Let ℓ = ⌈log p⌉.

Conversion from arithmetic to Boolean sharings:

1. All parties call the (Random) command of FLUT to sample a vector of Boolean sharings ⟨r⟩b with
r ∈ (F2)

ℓ.

2. The parties execute ΠB2A shown in Figure 9 to obtain an arithmetic sharing ⟨r⟩a with r =
∑ℓ−1

j=0 2
j ·

r[j].

3. If (2ℓ−p)/2ℓ > 1/2ρ, all parties call the LinComb and Mult commands of FLUT on input ⟨r⟩b to check

if r =
∑ℓ−1

j=0 2
j · r[j] < p. If r ≥ p, the parties go back to step 1.

4. All parties locally compute ⟨u⟩a := ⟨x⟩a − ⟨r⟩a. Then, the parties run Rec(⟨u⟩a, 1) to make P1

reconstruct u = (x − r) mod p, and locally define a vector of Boolean sharings ⟨u⟩b via letting P1

set ⟨u⟩b1[j] as the j-th bit of the bit-decomposition of u ∈ Zp and letting Pi for i ̸= 1 set ⟨u⟩bi [j] = 0
for j ∈ [0, ℓ− 1].

5. The parties call the Input, LinComb and Mult commands of FLUT on input (⟨u⟩b, ⟨r⟩b) to compute a

modulo-addition circuit, which takes as input u, r ∈ {0, 1}ℓ and outputs u+ r mod p. Functionality

FLUT returns ⟨x⟩b to the parties, where x =
∑ℓ−1

j=0 2
j · x[j] mod p.

6. The parties output ⟨x⟩b with x ∈ (F2)
ℓ.

Figure 10: Protocol for converting arithmetic sharings to Boolean sharings.

5.1 Boolean to Arithmetic Conversion

In Figure 9, we show a LUT-based protocol that converts a vector of Boolean sharings ⟨x⟩b into
an arithmetic sharing ⟨x⟩a with x =

∑ℓ−1
j=0 2

j · x[j] mod p. Specifically, all parties compute an
arithmetic sharing for each bit x[j] by defining a public table T = (0, 1) and calling FLUT. Then,
the parties locally sum the arithmetic sharings on all bits to get ⟨x⟩a. The communication cost
of protocol ΠB2A shown in Figure 9 totally depends on ℓ executions of the protocol that securely
realizes FLUT. Thus, ΠB2A has the communication complexity of O(nℓ|ct|/N) bits.

Theorem 4. Protocol ΠB2A (shown in Figure 9) securely realizes the B2A command of functionality
FConv against semi-honest adversaries in the FLUT-hybrid model.

The proof of Theorem 4 is given in Appendix B.4.

5.2 Arithmetic to Boolean Conversion

In Figure 10, we describe a protocol to convert an arithmetic sharing ⟨x⟩a to Boolean sharings ⟨x⟩b
with x =

∑ℓ−1
j=0 2

j · x[j] mod p. This protocol also works in the FLUT-hybrid model where FLUT

involves the commands defined in FABB (shown in Figure 2), and invokes ΠB2A (shown in Figure 9)
as a sub-protocol. Specifically, the parties sample a vector of random Boolean sharings ⟨r⟩b and
run ΠB2A to get ⟨r⟩a, where r ∈ (F2)

ℓ and r =
∑ℓ−1

j=0 2
j · r[j] mod p. They open u = x − r, and

jointly compute a modulo-addition circuit with input ⟨u⟩b and ⟨r⟩b to obtain ⟨x⟩b, where ⟨u⟩b can
be locally computed by the parties given u.

If (2ℓ−p)/2ℓ ≤ 1/2ρ, then r =
∑ℓ−1

j=0 2
j ·r[j] mod p is indistinguishable from a uniform element

in Zp except with probability at most 1/2ρ, where r is a random vector in (F2)
ℓ. Otherwise, we

need a check if r < p to assure that r is random in Zp and re-sample ⟨r⟩b if r ≥ p. In general, the
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parties compute a comparison circuit with input ⟨r⟩b to decide if r < p. In the special case that
p = 232 − 230 +1 used in our implementation, we provide a more efficient approach to determine if
r < p. Particularly, the parties do the following:

1. During executing sub-protocol ΠB2A, all parties store the arithmetic sharings ⟨r[j]⟩a for j ∈
[0, ℓ− 1].

2. The parties set ⟨a⟩a := ⟨r[ℓ− 1]⟩a and ⟨b⟩a := ⟨r[ℓ− 2]⟩a, and compute ⟨c⟩a :=
∑ℓ−3

j=0⟨r[j]⟩a.

3. The parties call the (Mult) command of FLUT on input (⟨a⟩a, ⟨b⟩a, ⟨c⟩a) to obtain ⟨d⟩a with
d = a · b · c ∈ Zp.

4. The parties run d← Open(⟨d⟩a), and output the bit indicating r < p if d = 0 or r ≥ p if d ̸= 0.

Theorem 5. Protocol ΠA2B (shown in Figure 10) securely realizes the A2B command of function-
ality FConv against semi-honest adversaries in the FLUT-hybrid model.

The proof of Theorem 5 is deferred to Appendix B.5.

Communication complexity. We analyze the communication complexity of protocol ΠA2B when
instantiating the functionality FLUT. In step 1, random Boolean sharings can be computed with the
PRG seeds that are established in the setup phase. As before, we ignore the communication cost to
generate these seeds, as it can be amortized to negligible. In step 2, ΠB2A has the communication
complexity of O(nℓ|ct|/N) bits where |ct| is the size of a THE ciphertext. In step 3, if p =
232−230+1, we need the communication complexity of O(n|ct|/N) bits using THE to multiply two
arithmetic sharings; otherwise, we require the O(n2ℓ) communication complexity using the OT-
based GMW protocol [GMW87] to compute the comparison circuit. In step 4, the open procedure
needs the communication of O(nℓ) bits. In step 5, we use the GMW protocol to compute the
modulo-addition circuit, which requires O(n2ℓ)-bit communication. Overall, the communication
complexity of protocol ΠA2B is O(nℓ|ct|/N+n2ℓ) bits. In addition, the term O(n2ℓ) can be reduced
to O(nℓ) when using THE to multiply two Boolean sharings in the GMW protocol. Therefore, the
protocol ΠA2B is able to achieve the communication complexity linear in the number of parties.

6 Scalable Multi-Party Garbling

We present how to generate multi-party garbled circuits (MPGCs) using a key-homomorphic ad-
ditive homomorphic encryption (AHE) scheme in the private-key setting and private table lookup.
Building upon this, we describe a scalable MPC protocol with linear communication complexity and
O(n) rounds. In Appendix A.2, we show that the BGV-AHE scheme [BGV12] in the private-key
setting is key-homomorphic.

6.1 Private-Key AHE with Key Homomorphism

We provide the definition of key-homomorphic AHE schemes in the private-key setting. Let K
and M denote the secret-key space and message space, respectively. We always assume that
K ⊆ M ⊆ FN where F is some finite field (e.g., F = Zp) and N is a parameter determining the
length of vectors. The private-key AHE scheme with the key-homomorphic property involves the
following algorithms:

• Setup: pp ← Setup(1κ). The setup algorithm is defined as in the threshold HE scheme shown
in Section 3.2.
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Protocol ΠMPGC

Inputs: Parties P1, . . . , Pn have 1) a Boolean circuit C with the set of circuit-input wires I, the set of
circuit-output wiresO and the set of all AND and XOR gates G; 2) a Boolean sharing ⟨xw⟩b for each input
bit xw ∈ {0, 1}; 3) a key-homomorphic private-key AHE scheme equipped with (SecKeyGen,Enc,Dec).
Suppose that the set of public parameters pp has been established.

Preprocessing phase for generating multi-party garbled circuit:

1. All parties call functionality FLUT to sample a random Boolean sharing ⟨λw⟩b for every wire w. Then
for each wire w, every party Pi samples two secret keys ki

w,0,k
i
w,1 by running SecKeyGen(pp), such

that ki
w,0[0] = 0, and ki

w,1[0] = 0 if i ̸= 1 or ki
w,1[0] = 1 if i = 1. These keys constitute two vectors of

arithmetic sharings ⟨kw,0⟩a and ⟨kw,1⟩a where kw,0 =
∑

i∈[1,n] k
i
w,0, kw,1 =

∑
i∈[1,n] k

i
w,1, kw,0[0] = 0

and kw,1[0] = 1.

2. For every gate g ∈ G with input wires u, v and output wire w, the parties generate a Boolean sharing

⟨ew,α,β⟩b for all α, β ∈ {0, 1}, where ew,α,β
def
= g((λu ⊕ α), (λv ⊕ β))⊕ λw ∈ {0, 1}.

(a) If g is an AND gate, then ew,α,β = λuλv ⊕ βλu ⊕ αλv ⊕ αβ ⊕ λw. In this case, all parties call
the (Mult) command of functionality FLUT on input (⟨λu⟩b, ⟨λv⟩b) to compute a Boolean sharing
⟨λuλv⟩b. Then, the parties locally compute ⟨ew,α,β⟩b = ⟨λuλv⟩b ⊕ β⟨λu⟩b ⊕α⟨λv⟩b ⊕ ⟨λw⟩b ⊕αβ
for each α, β ∈ {0, 1}.

(b) If g is a XOR gate, then ew,α,β = λu ⊕ λv ⊕ (α ⊕ β) ⊕ λw. The parties locally compute
⟨ew,α,β⟩b = ⟨λu⟩b ⊕ ⟨λv⟩b ⊕ ⟨λw⟩b ⊕ (α⊕ β).

3. For the output wire w of each gate g ∈ G, all parties generate ⟨kw,ew,α,β
⟩a for all α, β ∈ {0, 1} as

follows:

(a) The parties define a vector of arithmetic sharings ⟨T ⟩a such that ⟨T [j]⟩a = ⟨kw,j⟩a for j ∈ {0, 1}.
(b) If g is an AND gate, then for each α, β ∈ {0, 1}, all parties call the (PriTabLookup) command of

functionality FLUT on input (⟨T ⟩a, ⟨ew,α,β⟩b) to obtain ⟨kw,ew,α,β
⟩a.

(c) If g is a XOR gate, the parties perform the following steps:

i. Call the (MaskedPriTab) command of functionality FPrep−LUT on input ⟨T ⟩a to generate
⟨T ′⟩a and ⟨r⟩b such that r ∈ {0, 1} is a random bit and T ′[j] = T [r ⊕ j] for j ∈ {0, 1}.

ii. Locally compute ⟨u⟩b := ⟨ew,0,0⟩b ⊕ ⟨r⟩b, and then execute Open(⟨u⟩b) to obtain u =
ew,0,0 ⊕ r ∈ {0, 1}.

iii. Set ⟨kw,ew,0,0
⟩a = ⟨kw,ew,1,1

⟩a = ⟨T ′⟩a[u] and ⟨kw,ew,0,1
⟩a = ⟨kw,ew,1,0

⟩a = ⟨T ′⟩a[u⊕ 1].

4. For the output wire w of each gate g ∈ G, for each α, β ∈ {0, 1}, all parties compute a garbled row
ggw,α,β as follows:

(a) Every party Pi sets a secret key ski := ki
u,α + ki

v,β , and runs [[⟨kw,ew,α,β
⟩ai ]] ←

Encski((g, α, β), ⟨kw,ew,α,β
⟩ai ).

(b) For each i ̸= 1, Pi sends [[⟨kw,ew,α,β
⟩ai ]] to P1, who computes [[kw,ew,α,β

]] :=
∑

i∈[1,n][[⟨kw,ew,α,β
⟩ai ]],

where [[kw,ew,α,β
]] =

∑
i∈[1,n] Encski((g, α, β), ⟨kw,ew,α,β

⟩ai ) = Encsk((g, α, β),kw,ew,α,β
), where

sk =
∑

i∈[1,n] ski.

5. Now, P1 obtains a garbled circuit GC = {(ggw,0,0, ggw,0,1, ggw,1,0, ggw,1,1)}w∈W , where for each α, β ∈
{0, 1}, ggw,α,β = [[kw,ew,α,β

]] and W is the set of output wires of all gates in G.

Figure 11: Protocol for multi-party garbling in the (FPrep−LUT,FLUT)-hybrid model.

• Key Generation: sk ← SecKeyGen(pp). On input pp, the key-generation algorithm outputs a
secret key sk ∈ K.
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Protocol ΠMPGC, continued

Online phase for evaluating multi-party garbled circuit: When ⟨xw⟩b for all w ∈ I are known,
the parties execute the following:

6. For each w ∈ I, all parties locally compute ⟨ew⟩b = ⟨xw⟩b ⊕ ⟨λw⟩b, and then the parties run
Open(⟨ew⟩b) to obtain a masked bit ew = xw ⊕ λw.

7. For each w ∈ I, every party Pi with i ̸= 1 sends ki
w,ew to P1, who computes kw,ew :=

∑
i∈[1,n] k

i
w,ew .

8. In a topological order, for each gate g ∈ G with input wires u, v and output wire w, P1 holds
(ku,eu , eu) and (kv,ev , ev), and then computes kw,ew := Decku,eu+kv,ev

((g, eu, ev), ggw,eu,ev ) and sets
ew := kw,ew [0].

9. For each w ∈ O, P1 sets ⟨yw⟩b1 := ew ⊕ ⟨λw⟩b1 and Pi for each i ̸= 1 sets ⟨yw⟩bi := ⟨λw⟩bi , and the
parties output ⟨yw⟩b.

Figure 12: Protocol for multi-party garbling in the (FPrep−LUT,FLUT)-hybrid model, continued.

• Encryption: [[m]]sk,t ← Encsk(t,m). On input sk, a label t and a vector of messages m ∈ M,
the encryption algorithm outputs a ciphertext [[m]]sk,t. Suppose that the scheme is instantiated
by a lattice-based AHE such as private-key BGV [BGV12] shown in Appendix A.2. In this case,
t is used to retrieve/derive a vector a and then a is used to encrypt m, which has been used
in [BLO17]. When the context is clear, we simply write [[m]]sk,t as [[m]].

• Decryption: m ← Decsk(t, [[m]]). On input the secret key sk, a label t and a ciphertext [[m]],
the decryption algorithm outputs a vector of messages m.

• Key-homomorphic [AJL+12]: Given two ciphertexts [[m1]]sk1,t and [[m2]]sk2,t under different
secret keys sk1, sk2 and the same label t, any party can locally compute a ciphertext [[m3]]sk3,t =
[[m1]]sk1,t + [[m2]]sk2,t such that sk3 = sk1 + sk2 and m3 = m1 +m2.

A ciphertext [[m]], which is obtained by running the encryption algorithm or performing key-
homomorphic addition operations, should be decrypted to the correct message m with overwhelm-
ing probability. We need that the AHE scheme satisfies a simple variant of the CPA security.
Specifically, any PPT adversary A can make a query (mi, ti) to the encryption oracle which re-
turns [[mi]]sk,ti to A for each i ∈ [1, ℓ] where ℓ is the number of oracle queries, and then A can choose
two message-label pairs (m∗

0, t
∗
0) and (m∗

1, t
∗
1) with t∗0, t

∗
1 /∈ {t1, . . . , tℓ}. Then the probability that

A distinguishes [[m∗
0]]sk,t∗0 from [[m∗

1]]sk,t∗1 is negligible in κ. Furthermore, the CPA security holds
for a polynomial number of secret keys, which is guaranteed using a standard hybrid argument.
When a lattice-based AHE scheme is adopted, t uniquely determines a used in encryption, and the
security notion is naturally equivalent to the standard CPA security. In the private-key setting,
we show that the BGV scheme with a single level [BGV12] is a key-homomorphic AHE scheme,
which is described in Appendix A.2. Alternatively, the BFV-AHE scheme [Bra12, FV12] is another
candidate.

6.2 Multi-Party Garbled Circuits

In Figure 11 and Figure 12, we give the details of the MPC protocol based on multi-party garbled
circuits. Without loss of generality, we assume that only one party P1 can evaluate the garbled
circuit, which is easy to be extended to support that all parties are able to evaluate the garbled
circuit. To be compatible with the conversion protocols between arithmetic sharings and Boolean
sharings shown in Section 5, we consider that the inputs and outputs of the parties are Boolean
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sharings. In a general case that the inputs are secret bits, the parties can run the Share algorithm
to generate corresponding Boolean sharings. To make P1 get the output, the parties can send the
shares of the Boolean sharings on circuit-output wires to P1 who reconstructs the output bits by
running the Rec algorithm. We can use a standard approach to support that all parties obtain
different outputs.

We divide the MPC protocol into two phases: the preprocessing phase and online phase. In the
preprocessing phase, for each wire w, the parties generate the Boolean sharing of a random mask
⟨λw⟩b, and we refer to ew = zw ⊕ λw as a masked value where zw ∈ {0, 1} is an actual value for
w. For each wire w, every party Pi samples two random keys ki

w,0,k
i
w,1 for the private-key AHE

scheme, where the sums of these keys are the keys kw,0,kw,1 encrypted in the garbled circuit. As
in prior work [BLO17], we set the first components of vectors kw,0,kw,1 are 0 and 1 respectively,
which allows the evaluator to extract the masked value ew from kw,ew . At first glance, this loses
one dimension of the secret key, which slightly reduces security. On the one hand, when using
BGV as the AHE scheme, the secret keys can be sampled uniformly from R3, and have already
sufficiently high entropy to guarantee the security. On the other hand, as we need only private-key
AHE, the secret keys can actually be sampled uniformly from Rq (instead of R3) where q ≫ 3.
For each gate with output wire w, the parties also compute the Boolean sharings of four masked
values ⟨ew,α,β⟩b for all α, β ∈ {0, 1}, where α, β enumerate all four possible values of masked values
on input wires of the gate. These Boolean sharings ⟨ew,α,β⟩b for each α, β ∈ {0, 1} can be used
to generate arithmetic sharings ⟨kw,ew,α,β

⟩a using our table-lookup approach. Through the key-
homomorphic addition operations of the private-key AHE scheme, for each gate with input wires
u, v and output wire w, the parties jointly compute the garbled rows like the classical Yao’s GC.

(α, β) garbled row ggw,α,β

(0, 0) Enc
(g,0,0)
sk=ku,0+kv,0

(kw,ew,0,0)

(0, 1) Enc
(g,0,1)
sk=ku,0+kv,1

(kw,ew,0,1)

(1, 0) Enc
(g,1,0)
sk=ku,1+kv,0

(kw,ew,1,0)

(1, 1) Enc
(g,1,1)
sk=ku,1+kv,1

(kw,ew,1,1)

Table 1: Garbled table for each gate g with wires u, v, w.

In the online phase, for each circuit-input wire w, all parties open ew, and then every party
sends ki

w,ew to P1 who reconstructs the key kw,ew . Then, P1 can evaluate the garbled circuit by
decrypting the corresponding garbled rows. Finally, for each circuit-output wire w, the parties can
locally compute a Boolean sharing ⟨yw⟩b. In the following theorem, we prove that protocol ΠMPGC

securely realizes the standard MPC functionality FMPC. In the following theorem, we prove that
protocol ΠMPGC securely realizes functionality FMPC, which is defined as follows:

• Upon receiving (Input, id,xi) from every party Pi, where id are vectors of fresh identifiers and
xi ∈ {0, 1}m, compute x :=

⊕
i∈[1,n] x

i and store (id[j],x[j]) for each j ∈ [0, . . . ,m− 1].

• Upon receiving (Eval, id, id′, C) from all parties, where (id[j],x[j]) for each j ∈ [0, . . . ,m− 1] is
present in memory and C : {0, 1}m → {0, 1}ℓ is a Boolean circuit, compute y := C(x) and then
store (id′[j],y[j]) for each j ∈ [0, . . . , ℓ− 1].

Theorem 6. Protocol ΠMPGC (shown in Figures 11 and 12) securely realizes functionality FMPC

against semi-honest adversaries in the (FPrep−LUT,FLUT)-hybrid model, assuming that the key-
homomorphic AHE scheme is CPA secure.
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The proof of Theorem 6 can be found in Appendix B.6.

Complexity analysis. Below, we first analyze the communication complexity of the protocol
ΠMPGC. Let A and R denote the number of AND gates and the number of XOR gates respectively.
In the step (1), random Boolean sharings are generated with the PRG seeds that are established
in the setup phase. We ignore the communication cost generating the PRG seeds as it can be
amortized. In the step (2), all parties compute one binary Beaver triple for each AND gate, which
requires the communication complexity of at most O(n|ct|A) bits if |ct| ≫ n, where |ct| is the
AHE ciphertext size. In the step (3), the parties take the communication of O(n|ct|(A + R)) bits
to generate the arithmetic sharings of all secret keys using the table-lookup approach. In the
step (4), for each gate, every party Pi sends 4|ct|-bit ciphertexts to P1; and thus this step takes
O(n|ct|(A + R))-bit communication. Overall, the communication complexity in the preprocessing
phase is O(n · |ct| · |C|) and thus is linear in the number of parties, where |C| = A+R denotes the
circuit size. As all gates can be garbled in parallel, the preprocessing phase takes O(n) rounds.

In the online phase, in the step (6), O(n|I|) bits are taken to open the masked bits on all
circuit-input wires; in the step (7), O(n · |sk| · |I|) bits are needed to transfer the secret keys on
all circuit-input wires, where |I| is the number of circuit-input wires and |sk| is the size of secret
keys for private-key AHE. The total communication in the online phase is O(n · |sk| · |I|) bits. The
computation cost for evaluating a garbled circuit is |C| decryption operations and independent of
the number of parties. The rounds of the online phase is three rounds and can be reduced to two
rounds when the Open procedure is realized by letting every party send its share to all other parties
rather than P1.

7 Implementation Optimizations

We discuss two optimizations for the preprocessing protocols of masked lookup tables Πsize2
prepLUT

(Figure 6) and Πpolysize
prepLUT (Figure 7), along with one optimization for the scalable MPC protocol

ΠMPGC (Figure 11).

7.1 Optimizations for Lookup Table Protocol

Bootstrapping. In protocol Πsize2
prepLUT (shown in Figure 6), we use the packing technique to reduce

the communication cost incurred by ciphertext expansion, which in turn requires a customized
private pair-wise swapping. To obtain the communication complexity linear in the number of
parties, the underlying THE scheme requires a budget to support the number of scale-multiplication
and rotation operations that is linear in the number of all parties. However, for a large number
of parties, it would require a very large size of parameters. We use bootstrapping to refrain from
having a large budget. We consider two approaches to realize bootstrapping for threshold HE.

1. Non-interactive bootstrapping: All parties run an MPC protocol to generate a bootstrapping
key, and then use the key to bootstrap HE ciphertexts and thus reduce the noise size.

2. Interactive bootstrapping: The parties can convert an evaluated HE ciphertext to a vector of
arithmetic sharings, and then convert it back to a fresh HE ciphertext, following the previous
work [MTBH21].

The non-interactive bootstrapping allows us to achieve communication complexity linear in the
number of parties. Our implementation adopts interactive bootstrapping as it is more efficient
for most of the reasonable network configurations. However, the communication complexity is
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now quadratic in the number of parties with a very small constant (≈ 0.1). Both bootstrapping

approaches as described above can also be applied in protocol Πpolysize
prepLUT (Figure 7) in the same way.

Pipelining. Our protocols (i.e., Πsize2
prepLUT and Πpolysize

prepLUT) do not require a party to remain active
after it sends a HE ciphetext to the next party. This enables us to pipeline the computation, such
that the computation complexity is linear in the number of parties rather than quadratic. Instead
of processing all the ciphertexts at once and sitting idle, each party processes one ciphertext, then
sends it to the next party and starts processing the next ciphertext. For a small number of parties
where bootstrapping is not required, this method of pipelining works.

When interactive bootstrapping is involved, the parties are idle but waiting for a bootstrapping
request to respond. To handle such case, we use the system called poll. On one thread, every party
executes the protocol regularly as if the ring structure works (i.e., receiving a ciphertext from the
previous party, processing it, and sending it to the next party), and on the other thread, it listens
for any ready bootstrapping request and responds to it. We allow the maximum multiplicative
depth for the underlying THE scheme to be 10, and choose the minimum budget that requires the
same number of bootstrapping requests as with a budget of 10.

We evaluate the performance of the protocol Πsize2
prepLUT with and without pipelining. The per-

formance evaluation is reported in Figure 13a. As shown in the figure, with pipelining the running
time scales linearly with the number of parties rather than quadratically as without pipelining.

7.2 Optimization for Multi-Party Garbling

In the MPGC protocol (shown in Figures 11 and 12), every garbler Pi with i ̸= 1 sends four AHE
ciphertexts for each gate to the evaluator P1, who combines all the ciphertexts into a garbled
circuit. When the circuit is large or the number of parties n is large, P1 needs a very large
bandwidth to receive these ciphertexts. When the bandwidth of P1 is not sufficient, this would
form an efficiency bottleneck. To solve the efficiency issue, we adopt a different communication
pattern. That is, we let Pn send the AHE ciphertexts to Pn−1, who combines these ciphertexts with
the AHE ciphertexts computed by itself; and then Pn−1 sends the resulting ciphertexts to Pn−2 and
so on. This amortizes the O(n) communication of P1 to constant communication for every party.
Nevertheless, this increases the round complexity from one round to n − 1 rounds. To reduce the
rounds, we can adopt a binary-tree architecture to transfer AHE ciphertexts. In particular, all the
parties are arranged in a binary tree such that each node only interacts with its children and parent
nodes. Two children nodes Pi and Pi+1 send the AHE ciphertexts to their parent node Pi+2, who
aggregates the AHE ciphertexts from three parties and then sends the resulting ciphertexts to the
parent node of Pi+2. The communication bandwidth of every party is at most 2× larger than the
first approach, and the rounds are reduced from n − 1 to log n. In addition, the AHE ciphertexts
generated by every party Pi can be sent in a pipelined way.

8 Performance Evaluation

8.1 Summary of Evaluation

We summarize the key findings from our performance evaluation below.

1. We show that pipelining protocol Πsize2
prepLUT (Figure 6) improves its execution time from quadratic

in the number of parties to almost linear in the number of parties.

2. We compare our conversion protocols with the state-of-the-art works MOTION [BDST22] and
MP-SPDZ [Kel20].
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Figure 13: Microbenchmarks of our protocols. (a) The running time of protocol Πsize2
prepLUT with and

without pipelining optimization. (b) Running time of the offline phase of our Boolean-to-arithmetic and
arithmetic-to-Boolean conversion protocols.

(a) In terms of running time, for 64 parties, our protocols improve MP-SPDZ by a factor of
2247× for B2A conversion and 369× for A2B conversion.

(b) In terms of communication cost, for 64 parties, our protocols improve MP-SPDZ by a factor
of 15384× for B2A conversion and 8819× for A2B conversions; for 32 parties, we improve
MOTION by factor of 20× for B2A and 1184× for A2B.

3. When applying our protocol on end-to-end applications, we achieve 8242× improvements in
communication and up to 1490× improvements in monetary cost.

4. Protocol ΠMPGC (Figure 11) reduces the inbound communication per party of optimized BMR [BLO16]
by about 56 GB for evaluating an AES circuit among 128 parties. Note that the inbound com-
munication is an efficiency bottleneck of multi-party distributed garbling, as a central party
receives garbled circuits from all other parties.

8.2 Evaluation Setup

We implemented our protocols using EMP-toolkit [WMK16] for correlated OT and OpenFHE [BBB+22]
for threshold homomorphic encryption. The implementation is open-sourced at [GYKW23]. All
experiments are conducted on AWS of instance type m5.2xlarge. We consider three settings with
up to 128 parties, which are described as follows:

1. Local setting: The network bandwidth is up to 10 Gbps with 0.1 ms latency.

2. LAN setting: The network bandwidth is up to 1 Gbps with 0.1 ms latency.

3. WAN setting: The network bandwidth is up to 200 Mbps with 100 ms latency.

For threshold HE in the public-key setting, we choose the parameters that achieve the 128-bit
security level [ACC+19]. The plaintext prime p is equal to 232−230+1, the length of the ciphertext
prime q is more than 530 bits, and the number of slots N = 65536.

8.3 Performance of Conversions

We evaluate the performance of conversion protocols ΠA2B and ΠB2A in the offline phase and the
online phase, respectively. We compare the performance of our conversion protocols with the
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Figure 14: Performance comparison for the conversion protocols of our framework, MO-

TION [BDST22] and MP-SPDZ [Kel20]. For the MOTION benchmarks for 32 parties, each party

runs on a machine with double the resources than all other benchmarks.

Protocol Setting 2 4 8 16 32 64

B2A
Local 0.038 0.046 0.05 0.066 0.11 0.494
LAN 0.038 0.049 0.06 0.09 0.157 3.461
WAN 0.066 0.076 0.181 0.357 0.988 4.696

A2B
Local 0.012 0.002 0.003 0.004 0.006 0.05
LAN 0.006 0.004 0.006 0.012 0.023 0.049
WAN 0.157 0.087 0.12 0.147 0.209 0.333

Table 2: Performance of the online phase of our conversion protocols. Running time is measured
in milliseconds (ms), and the first row (2∼64) is the number of parties. Running time is amortized over
many conversions.

state-of-the-art protocols MOTION [BDST22] and MP-SPDZ [Kel20] for semi-honest security with
all-but-one corruption. When using m5.2xlarge, MOTION can only execute up to 16 parties due
to their high requirement of hardware resources. When we increase the instance size to m5.4xlarge,
MOTION can be successfully executed with 32 parties; to further scale MOTION with 64 parties,
one would need to use even larger machines. We note that our framework relies on the RLWE
assumption, while MOTION (and MP-SPDZ, resp.) depend on LPN (and Minicrypt, resp.).

Execution time of offline phase. We evaluate the performance of the offline phase for our
conversion protocols up to 128 parties in all three settings. The performance for ΠB2A and ΠA2B

is reported in Figure 13b, which shows that the performance is linear in the number of parties.
The execution time for the WAN setting grows faster than that in the LAN setting due to the
communication overhead.

We compare the execution time with MOTION and MP-SPDZ for B2A and A2B conversions in
Figure 14a and Figure 14b, respectively. We observe that our framework outperforms the existing
conversion protocols in all three settings. Compared to MP-SPDZ, our B2A (resp., A2B) protocol
improves the running time of the offline phase by a factor of 2247× (resp., 369×) for 64 parties.
Compared to MOTION, in the offline phase, the running-time improvement of our B2A (resp.,
A2B) protocol is up to 15× (resp., 20×) for 32 parties.

Execution time of online phase. The online phase of our conversion protocols is interchangeable
with that of MOTION and MP-SPDZ. We evaluate the online running time for our protocols in
all three network settings. Benchmarks for the online time can be found in Table 2. We note that
the running time of the online phase is at most 10% of the offline time.

Communication cost of conversions. We benchmark the total communication required by each
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Triples Setting 2 4 8 16 32 64

Boolean
Local 0.7 3.6 8.2 8.1 17 34.2
LAN 0.7 3.5 8.5 9.3 18.6 37.2
WAN 0.7 3.5 14.9 24.1 49.2 99.5

Arithmetic
Local 11.4 26.7 46.7 61 94.6 174.9
LAN 12.6 27.9 63.4 109.3 191.1 418.2
WAN 11.4 27.9 128 312.2 674 1621.5

Table 3: Performance of Beaver triple generation. Running time in microseconds (µs) for Boolean
sharings (using Ferret-COT) and arithmetic sharings (using BGV THE).

#Parties Biomatch Kmeans MNIST Gauss Dist. Merge DB

4 1.93 6.16 25.49 0.07 0.24
16 9.7 17.79 94.44 0.27 1.18
64 64.97 76.6 387.7 1.52 8.51

Table 4: Performance of end-to-end applications. Performance estimation in seconds (s) for running
the end-to-end applications in the LAN setting.

conversion using our protocols, MOTION and MP-SPDZ. The comparison of the total communi-
cation cost is reported in Figure 14c. The multi-party LUT protocol used as the main building
block in our conversion protocols does not require parties to communicate with every other party;
thus, our system requires a significantly smaller amount of communication — up to 20× less than
MOTION and 15384× less than MP-SPDZ for B2A and 1184× less than MOTION and 8819× less
than MP-SPDZ for A2B.

8.4 Performance of Boolean/Arithmetic Triples

For completeness, we benchmark the performance of triple generation for arithmetic and Boolean
circuits in Table 3. With increasing number of parties, we observe that the cost of arithmetic triple
generation increases slower than the cost of Boolean triple generation. This is because we use COT
to generate the Boolean triples. This can be replaced by THE. However, using THE increases the
computational overhead significantly.

8.5 Performance for End-to-End Applications

We estimate the performance of several end-to-end applications using mixed-mode circuits gener-
ated by Silph [CZO+23]. The applications are listed with the number of operations in Table 6. The
performance estimation to run the end-to-end applications is given in Table 4.

Monetary cost analysis. We analyze the monetary cost of running the applications among 64
parties using our framework and MP-SPDZ. Suppose that we run the instances in a single region,

Protocol Biomatch Kmeans MNIST Gauss Dist. Merge DB

Ours 0.54 1.55 2.97 0.02 0.08
MP-SPDZ 803.3 399.8 102.45 21.75 10.05

Table 5: Comparison of monetary cost for our framework and MP-SPDZ [Kel20]. The monetary
cost estimates in USD for running the applications among 64 parties.
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Applications #AND #MULT #B2A #A2B

Biomatch 23,205 1024 1028 256
Kmeans 1,568,660 8800 118 116
MNIST 1,624,460 666,600 1192 1

Gauss Dist. 8275 14 15 7
Merge DB 3930 200 201 1

Table 6: The number of operations using mixed-mode circuits for end-to-end applications.

and the communication cost is USD 0.01 per GB. We run each party on AWS of instance type
m5.2xlarge, which costs USD 0.384 per hour. A detailed comparison is given in Table 5. We
observe that MP-SPDZ is up to 1490× more expensive than our framework.

8.6 Communication Cost of MPGC

The OpenFHE library [BBB+22] does not support private-key AHE, and so we only give a conser-
vative estimation of the communication cost of our protocol ΠMPGC (Figure 11). For the parameters
with 128-bit security level, we select the plaintext prime p to be 216+1, the length of the ciphertext
prime q is more than 45 bits, and the number of slots N = 4096. We find that our protocol has
constant inbound and outbound communication per party. We report the inbound and outbound
communication per party when securely computing an AES-128 circuit with 128 parties using our
protocol ΠMPGC and the optimized BMR protocol [BLO16]. Both inbound and outbound commu-
nication for ΠMPGC is 51.12 GB. The inbound and outbound communication for BMR is 107.37 GB
and 0.33 GB, respectively. Compared to BMR, the inbound communication per party for ΠMPGC

is lower, while the outbound communication is higher.
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A BGV Homomorphic Encryption

A.1 Public-Key BGV Full-Threshold HE Scheme

We outline a full-threshold version of the public-key BGV HE scheme. We refer the reader
to [BGV12, HS15, KPR18, MTBH21] for more details (e.g., rotation and bootstrapping). The
set of public parameters pp defines the following parameters:

• The number of slots N . The plaintext modulus p and the ciphertext modulus q such that p and
q are co-prime and n · p < q where n is the number of parties, i.e., the plaintext and ciphertext
are defined in Rp and Rq respectively.

• The standard variance σ defines a discrete Gaussian distribution χ(σ). For circuit privacy based
on noise flooding, σcp defines another discrete Gaussian distribution χ(σcp), where σcp is expo-
nentially larger than σ.

• The polynomial ring R3 where the coefficients are picked from {−1, 0, 1}. Let Z be the distribu-
tion in which sampling one polynomial in R3 such that each coefficient is 1 with probability 1/4,
−1 with probability 1/4 and 0 with probability 1/2.

• Let H be the distribution sampling one polynomial in R3 such that at least h coefficients are
non-zero for some parameter h. A common random polynomial a← Rq.

Given the above public parameters, the BGV-THE scheme has the following algorithms:

• SecKeyGen(pp): Each party Pi samples si ← H and sets ski = si.

• ΠPubKeyGen(sk1, . . . , skn): Each party Pi samples ei ← χ(σ) and computes bi := −a·si+p·ei ∈ Rq.
For each i ̸= 1, Pi sends bi to P1. Then, P1 computes b :=

∑n
i=1 bi ∈ Rq and sends b to all other

parties. The parties P1, . . . , Pn output pk = (a, b).

• Encpk(m): To encrypt a message m ∈ Rp
∼= (Zp)

N , sample v ← Z, e0, e1 ← χ(σ), and compute
c0 := b · v + p · e0 +m ∈ Rq and c1 := a · v + p · e1 ∈ Rq. Output a ciphertext [[m]] = (c0, c1).

• Decsk([[m]]): On input a secret key sk =
∑

i∈[1,n] ski and [[m]] = (c0, c1), write s = sk, compute

m′ := c0 + s · c1 ∈ Rq and set m := m′ mod p. Protocol ΠDec(sk1, . . . , skn, [[m]]) is not used in
our lookup table protocols, and thus is omitted.

Circuit privacy with noise flooding [Gen09]. The transformation algorithm CP([[m]]) is per-
formed as follows:

1. Sample two large noises e′0, e
′
1 ← χ(σcp), and then run [[0]]← Encpk(0; (e

′
0, e

′
1)), where Enc adopts

e′0, e
′
1 (instead of sampling noises from χ(σ)) to encrypt zero.

2. Output a circuit-private ciphertext ct := [[m]] + [[0]].

The above approach can transform an evaluated ciphertext to a ciphertext with circuit privacy,
using exponentially large noises to flood the noises underlying the ciphertext [[m]].
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A.2 Private-Key Key-Homomorphic BGV-AHE

Below, we outline the private-key BGV-AHE scheme with the key-homomorphic property. We refer
the reader to [BGV12, JVC18] for more details. Let {t1, . . . , tℓ} be the set of all possible labels.
As such, the set of public parameters pp in the private-key setting also define the parameters
p, q,N and the error distribution χ(σ). Differently, pp now defines a set of random polynomials
a1, . . . , aℓ ← Rq, where each polynomial ai corresponds to a label ti. If the set of labels is large,
then the size of pp is very large. We have the following two approaches to solve the issue:

• Let F : {0, 1}κ×{0, 1}κ → Rq be a random oracle. Sample a random key key← {0, 1}κ, and any
party can compute ai := F(key, ti) for each i ∈ [1, ℓ]. Now, pp only needs to involve key, but this
approach adds a random-oracle computation for each encryption.

• For the application of the MPGC protocol (described in Section 6), each label ti corresponds to a
triple (g, α, β) where g is a gate and α, β ∈ {0, 1}. In this application, following the work [BLO17],
we can only put random polynomials a1, . . . , a8·fout ∈ Rq into pp, where fout is the maximal fan-
out of the circuit. Using the algorithm in [BLO17], one can assign a random polynomial ai into
the encryption of each garbled row, such that any two gates sharing an input wire do not share
any of the random polynomials. In this way, pp includes 8 · fout polynomials in Rq but less
computation is required.

In the following, we give the construction of the private-key BGV-AHE scheme.

• SecKeyGen(pp): Sample s← Rq and output sk = s.

• Encsk(t,m): On input a message m ∈ Rp, a label t and a secret key sk = s, retrieve a from pp
according to t, sample e ← χ(σ) and compute c := a · s + p · e +m ∈ Rq. Output a ciphertext
[[m]] = c.

• Decsk(t, [[m]]): On input a ciphertext [[m]] = c, a label t and sk = s, retrieve a from pp based on
t, compute m′ := c− a · s ∈ Rq, and output m := m′ mod p.

• Key-homomorphic addition: Given two ciphertexts c1 = a · s1 + p · e1 + m1 and c2 =
a · s2+ p · e2+m2, any party can compute c3 := c1+ c2 = a · (s1+ s2)+ p · (e1+ e2)+ (m1+m2).
Let s3 = s1 + s2, e3 = e1 + e2 and m3 = m1 +m2. Then c3 = a · s3 + p · e3 +m3.

Under the ring-LWE assumption, it is easy to prove that the above private-key BGV-AHE scheme
satisfies the CPA security (in Section 6.1), following prior works [BGV12, AJL+12].

A.3 Conversions between BGV-THE Encryption and Arithmetic Sharings

We show how to convert between the BGV ciphertexts and arithmetic sharings, where the public-
key BGV-THE scheme (shown in Appendix A.1) is used for encryption. In Figure 15, we describe
the conversion protocol from BGV public-key encryption to arithmetic sharings. This protocol
follows the protocol in [MTBH21], except for replacing BFV THE with BGV THE. In Figure 15,
the noise ei is sampled from a discrete Gaussian distribution χ(σcp), which is used to keep si
private based on noise flooding. The BGV-THE scheme supports the packing technique, and thus
a single ciphertext encrypts a vector in (Zp)

N and the protocol would output a vector of arithmetic
sharings. It is easy to prove that protocol ΠE2A (Figure 15) securely realizes the (E2A) command
of functionality FConv (Figure 3) under the ring-LWE assumption following the work [MTBH21].

For conversion from arithmetic sharings to encryption of BGV-THE, the protocol is constructed
as follows:
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Protocol ΠE2A

Inputs: Parties P1, . . . , Pn hold the following inputs:

• The set of public parameters pp for public-key BGV-THE.

• A ciphertext [[x]] = (c0, c1) with x ∈ Rp and c0, c1 ∈ Rq.

• Pi holds a share of the secret key ski = si.

Conversion from encryption to arithmetic sharings:

1. For each i ̸= 1, Pi samples ei ← χ(σcp) and ⟨x⟩ai ← Rp, and then sends hi := si ·c1+p ·ei−⟨x⟩ai ∈ Rq

to P1.

2. The party P1 computes ⟨x⟩a1 := s1 · c1 + c0 +
∑n

i=2 hi.

3. All parties output ⟨x⟩a with x ∈ (Zp)
N .

Figure 15: Protocol for converting BGV HE encryption into arithmetic sharings.

1. P1, . . . , Pn are given a vector of arithmetic sharings ⟨x⟩a with x ∈ (Zp)
N and a public key pk

for BGV-THE.

2. For i ∈ [1, n], Pi encodes ⟨x⟩ai into a polynomial in Rp and then runs [[⟨x⟩ai ]]← Encpk(⟨x⟩ai ).

3. For i ̸= 1, Pi sends [[⟨x⟩ai ]] to P1. Then, P1 computes [[x]] :=
∑

i∈[1,n][[⟨x⟩ai ]] and sends it to all
other parties.

It is easy to see that if the BGV-THE scheme is CPA secure, then the above protocol securely
realizes the (A2E) command of functionality FConv (shown in Figure 3).

B Formal Proofs of Our Protocols

In the proofs of security for our protocols, we need to prove that the joint distribution of the outputs
of the adversary and honest parties in the real-world execution is computationally indistinguishable
from that of the simulator and honest parties in the ideal-world execution. In particular, the ideal
functionality allows the corrupted parties to input their shares, and samples random shares for
honest parties such that the sum of all shares is identical to the secret. For all our proofs, we use H
andM to denote the set of honest parties and the set of corrupted parties, respectively. Simulator
S simulates the view of adversary A, and always outputs whatever A outputs. Below, we give the
detailed proofs of all theorems one by one.

B.1 Proof of Theorem 1

Theorem 7 (Theorem 1, restated). Protocol Πsize2
prepLUT (shown in Figure 6) securely realizes func-

tionality FPrep−LUT with size-2 tables (shown in Figure 4) against semi-honest adversaries in the
FE2A-hybrid model, assuming that the THE scheme is CPA secure and satisfies circuit privacy.

Proof. We construct a PPT simulator S given access to functionality FPrep−LUT with size-2 tables
that runs the PPT adversary A as a subroutine, and emulates functionality FE2A. Specifically, the
simulation is constructed as follows:

1. For generating a vector of Boolean sharings ⟨r⟩b, S emulates FE2A by recording the shares of
corrupted parties on ⟨r⟩b sent by A to FE2A.
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2. If the table is private, for i ∈ H, S sends a fresh zero-ciphertext [[0]] to A, and initializes
[[m]] := [[0]] if P1 is honest. If the table is public and P1 is honest, S initializes [[m]] following the
protocol specification.

3. For each i ∈ H, S generates a fresh zero-ciphertext [[0]] and sends it to A.

4. For each arithmetic sharing ⟨T ′
i ⟩a with i ∈ [0, N/2 − 1], S emulates FE2A by recording the

corrupted parties’ shares sent by A to FE2A.

5. For each i ∈ [0, N/2 − 1], S sends the shares of corrupted parties about ⟨ri⟩b and ⟨T ′
i ⟩a to

functionality FPrep−LUT.

It is easy to see that the simulation of FE2A is perfect. Under the assumption that the THE scheme
is CPA secure, the simulation in the above step (2) using a zero ciphertext is computationally
indistinguishable from the real ciphertexts. Furthermore, under the assumption that the THE
scheme satisfies circuit privacy, the simulation in the above step (3) using a zero ciphertext is also
computationally indistinguishable from the real ciphertext. In both worlds, the output shares of
corrupted parties and honest parties satisfy that their sum is the correct value. Therefore, the
joint distributions of the adversary’s view and the honest parties’ outputs are computationally
indistinguishable in both worlds.

B.2 Proof of Theorem 2

Theorem 8 (Thoerem 2, restated). Protocol Πpolysize
prepLUT (shown in Figure 7) securely realizes func-

tionality FPrep−LUT with poly-sized tables (shown in Figure 4) against semi-honest adversaries in
the FE2A-hybrid model, assuming that the THE scheme is CPA secure and satisfies circuit privacy.

Proof. We construct a PPT simulator S given access to functionality FPrep−LUT with polynomial-
sized tables that runs the PPT adversary A as a subroutine, and emulates FE2A. Specifically, the
simulation is constructed as follows:

1. For generating a vector of Boolean sharings ⟨r⟩b with r ∈ {0, 1}m, S emulates FE2A by recording
the shares of corrupted parties about ⟨r⟩b sent by A to FE2A.

2. If the table is private, for i ∈ H, S sends a fresh zero-ciphertext [[0]] to A, and initializes
[[m]] := [[0]] if P1 is honest. If the table is public and P1 is honest, S initializes [[m]] following the
protocol description.

3. For each i ∈ H, S generates a fresh zero-ciphertext [[0]] and sends it to A.

4. For generating arithmetic sharing ⟨T ′⟩a, S emulates FE2A by recording the shares of corrupted
parties on ⟨T ′⟩a sent by A to FE2A.

5. S sends the shares of corrupted parties about ⟨r⟩b and ⟨T ′⟩a to functionality FPrep−LUT.

The simulation of FE2A is perfect. Under the assumption that the THE scheme is CPA secure
and satisfies circuit privacy, the simulation using zero ciphertexts is computationally indistinguish-
able from the real ciphertexts. In both the ideal-world execution and real-world execution, the
output shares of corrupted parties and honest parties satisfy the correct correlation on additive
sharings. Thus, the joint distributions of the adversary’s view and the honest parties’ outputs are
computationally indistinguishable in both worlds.
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B.3 Proof of Theorem 3

Theorem 9 (Theorem 3, restated). Protocol ΠLookup (shown in Figure 8) securely realizes func-
tionality FLUT in the presence of semi-honest adversaries in the FPrep−LUT-hybrid model.

Proof. We construct a PPT simulator S given access to functionality FLUT that runs the PPT
adversary A as a subroutine, and emulates functionality FPrep−LUT. Specifically, the simulation is
constructed as follows:

1. S emulates FPrep−LUT by recording the shares of corrupted parties w.r.t. ⟨r⟩b and ⟨T ′⟩a received
from A.

2. Given the shares of corrupted parties on input sharings ⟨x⟩b, S computes the shares of corrupted
parties w.r.t. ⟨u⟩b = ⟨x⟩b ⊕ ⟨r⟩b.

3. S samples u ← {0, 1}m, and then samples the shares of honest parties uniformly such that the
sum of the shares of all parties is equal to u. Then, S sends the shares of honest parties to A
during the Open(⟨u⟩b) procedure.

4. S sends the shares of corrupted parties about ⟨T [x]⟩a to functionality FLUT.

Clearly, the simulation of FPrep−LUT is perfect. In the real protocol execution, u is uniform in
{0, 1}m due to the uniformity of r. Therefore, the simulation of string u is also perfect. In both
worlds, the output shares of corrupted parties and honest parties satisfy the correct correlation
about arithmetic sharings. Overall, the joint distributions of the adversary’s view and the honest
parties’ outputs are perfectly indistinguishable in both worlds.

B.4 Proof of Theorem 4

Theorem 10 (Theorem 4, restated). Protocol ΠB2A (shown in Figure 9) securely realizes the B2A
command of functionality FConv against semi-honest adversaries in the FLUT-hybrid model.

Proof. The simulation is fairly straightforward by simply emulating the functionality FLUT. In
particular, a PPT simulator S emulates FLUT by recording the shares of corrupted parties on
⟨T [x[j]]⟩a for j ∈ [0, ℓ− 1] sent by a PPT adversary A to FLUT. Then, S computes the corrupted
parties’ shares on ⟨x⟩a following the protocol specification, and sends them to functionality FConv.
It is clear that the simulation is perfect, and A sees nothing from the protocol. In both worlds, the
output shares of all parties satisfy the correct correlation, which completes the proof.

B.5 Proof of Theorem 5

Theorem 11 (Theorem 5, restated). Protocol ΠA2B (shown in Figure 10) securely realizes the A2B
command of functionality FConv against semi-honest adversaries in the FLUT-hybrid model.

Proof. We construct a PPT simulator S given access to functionality FConv that runs the PPT
adversary A as a subroutine, and emulates functionality FLUT. Specifically, the simulation is
constructed as follows:

1. S emulates FLUT by recording the shares of corrupted parties on Boolean sharings ⟨r⟩b received
from A.

2. S invokes the simulator for ΠB2A to simulate the generation of arithmetic sharing ⟨r⟩a. During
the procedure, S records the shares of corrupted parties on ⟨r⟩a.
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3. If (2ℓ − p)/2ℓ > 1/2ρ, then S emulates FLUT by sampling r′ ← {0, 1}ℓ and outputting the bit
that indicates if

∑
j∈[0,ℓ−1 2

j · r′[j] < p to A. If
∑

j∈[0,ℓ−1 2
j · r′[j] ≥ p, S restarts the protocol

simulation.

4. Given the shares of corrupted parties on ⟨x⟩a, S computes the corrupted parties’ shares about
⟨u⟩a = ⟨x⟩a − ⟨r⟩a. S samples u← Zp and the shares of honest parties uniformly such that the
shares of all parties sum to u. Then, S sends u to A.

5. S emulates FLUT by recording the shares of corrupted parties about ⟨x⟩b sent by A to FLUT.
Then, S sends these shares to functionality FConv.

It is easy to see that the simulation of FLUT is perfect. Following the proof of Theorem 4, the
simulation of sub-protocol ΠB2A is also perfect. If (2ℓ − p)/2ℓ > 1/2ρ, through the “rejection-
sampling” procedure, we guarantee that r =

∑
j∈[0,ℓ−1 2

j · r[j] is uniform in Zp. Otherwise, the
distribution of r is identical to the uniform distribution in Zp, except with probability at most 1/2ρ.
For the simulation checking if r < p, S samples a random string r′ that has the same distribution
as the real string r, and simulates the output bit by deciding if

∑
j∈[0,ℓ−1 2

j ·r′[j] < p. Clearly, this
is perfectly indistinguishable from the real protocol execution. From the uniformity of r ∈ Zp, we
have that u is uniform in Zp except with probability at most 1/2ρ in the real protocol execution.
Therefore, the simulation of u is statistically indistinguishable from the real protocol execution.
In both the real-world execution and ideal-world execution, the output shares of all parties satisfy
the correct correlation about arithmetic sharings. In conclusion, the joint distributions of the
adversary’s view and the honest parties’ outputs are statistically indistinguishable in both worlds.

B.6 Proof of Theorem 6

Theorem 12 (Theorem 6, restated). Protocol ΠMPGC (shown in Figures 11 and 12) securely re-
alizes functionality FMPC against semi-honest adversaries in the (FPrep−LUT,FLUT)-hybrid model,
assuming that the key-homomorphic AHE scheme is CPA secure.

Proof. We construct a PPT simulator S given access to functionality FMPC that runs a PPT
adversary A as a subroutine, and emulates functionalities FPrep−LUT and FLUT. Specifically, the
simulator is constructed as follows:

1. For each wire w, S emulates FLUT by recording the shares of corrupted parties on ⟨λw⟩b sent by
A to FLUT.

2. For each AND gate g with input wires u, v, S emulates FLUT by recording the shares of corrupted
parties about ⟨λuλv⟩b received from A. Following the protocol specification, for each gate g with
output wire w, S computes the corrupted parties’ shares on ⟨ew,α,β⟩b for each α, β ∈ {0, 1}.

3. For the output wire w of each gate g, S simulates the generation of ⟨kw,ew,α,β
⟩a for each α, β ∈

{0, 1}.

• If g is an AND gate, S emulates FLUT by receiving the corrupted parties’ shares on ⟨kw,ew,α,β
⟩a

from A.
• If g is a XOR gate, S emulates FPrep−LUT by recording the shares of corrupted parties on
⟨T ′⟩a and ⟨r⟩b sent by A to FPrep−LUT. Then, S computes the corrupted parties’ shares about
⟨u⟩b = ⟨ew,0,0⟩b ⊕ ⟨r⟩b. S samples u ← {0, 1} and the shares of honest parties such that the
shares of all parties are sum to u. For Open(⟨u⟩b), S sends the shares of honest parties on
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⟨u⟩b to A. Following the protocol specification, S computes the shares of corrupted parties
on ⟨kw,ew,α,β

⟩a.

4. For generating garbled rows in the step 4, S simulates as follows:

(a) For each wire w, S samples a masked value ew ← {0, 1} at random. Thus, for each gate g
with input wires u, v, S knows masked values eu, ev ∈ {0, 1}.

(b) S can obtain the “active path” indicating which garbled rows A can decrypt. That is, for
each gate g with input wires u, v, A can only decrypt the garbled row indexed by (g, eu, ev).

(c) For each wire w, following the protocol specification, S generates ki
w,ew ← SecKeyGen(pp)

for i ∈ H.
(d) For each gate g with input wires u, v and output wire w, for each α, β ∈ {0, 1} and i ∈ H, S

sets [[ki
w,ew,α,β

]] = [[0]] if (α, β) ̸= (eu, ev) and computes [[ki
w,ew,eu,ev

]]← Encki
u,eu

+ki
v,ev

((g, eu, ev),

ki
w,ew), where [[0]] is a fresh zero ciphertext. Then, for i ∈ H, S sends [[ki

w,ew,α,β
]] for each

α, β ∈ {0, 1} to A.
(e) If P1 is honest, S receives the AHE ciphertexts from A for each corrupted party Pi ∈M.

5. Through the above step, S simulates a garbled circuit GC. In the online phase, S holds the
corrupted parties’ shares on all input bits.

6. For each circuit-input wire w ∈ I, S computes the shares of corrupted parties about ⟨ew⟩b =
⟨xw⟩b⊕⟨λw⟩b, and samples the honest parties’ shares on ⟨ew⟩b such that the shares of all parties
sum to ew chosen by itself. S simulates the Open(⟨ew⟩b) procedure by sending the shares of
honest parties to A.

7. For each circuit-input wire w ∈ I, on behalf of every honest party Pi, S sends ki
w,ew to A. If P1

is honest, S also receives the keys of corrupted parties from A.

8. For each circuit-output wire w ∈ O, for each corrupted party Pi ∈M, S sets its share on ⟨yw⟩b
as ⟨λw⟩bi if i ̸= 1, or computes its share on ⟨yw⟩b by ew ⊕ ⟨λw⟩b1 otherwise. Then, S sends the
shares of corrupted parties on ⟨yw⟩b to functionality FMPC.

It is clear that the simulation of FLUT and FPrep−LUT is perfect. For the output wire w of each
XOR gate, a bit u = ew,0,0 ⊕ r is opened in the real protocol execution. Since r is a uniform bit,
u ∈ {0, 1} is random. In the ideal-world execution, S directly samples a random bit u and opens it
by sending the shares of honest parties. Therefore, the distribution of u is the same in both worlds.
Furthermore, the shares of honest parties on ⟨u⟩b are uniform under the condition that the sum
of all shares is equal to u in both worlds. Hence, these shares sent by S during the Open(⟨u⟩b)
procedure have the identical distribution in both worlds.

As for the simulation of garbled circuits, we first consider the case that P1 is corrupted. The
evaluator P1 knows all the keys and masked values in the active path, and thus is able to decrypt
all the AHE ciphertexts received from every honest party Pi in the active path in the real protocol
execution. In the ideal-world execution, these AHE ciphertexts sent by every honest party Pi are
generated honestly by S following the protocol specification. Therefore, the AHE ciphertexts of
every honest party in the active path have the identical distribution in both worlds. Differently,
the AHE ciphertexts sent by every honest party outside the active path encrypt the corresponding
keys in the real protocol execution, while these ciphertexts encrypt the zero vector in the ideal-
world execution. We can bound the difference in two worlds by a hybrid argument based on the
assumption that the private-key AHE scheme is CPA secure. Specifically, for each honest party Pi,
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we prove that the real AHE ciphertexts are computationally indistinguishable from the ciphertexts
on 0 under the assumption that the private-key AHE scheme is CPA secure. Let ℓ be the number of
all gates in the circuit and G0 be the real protocol execution. For each j ∈ [1, ℓ], we define Gj which
is the same as Gj−1 except that for the j-th gate, the four corresponding real AHE ciphertexts sent
by honest party Pi are replaced with four fresh ciphertexts on 0. For each j ∈ [1, ℓ], we bound the
difference between Gj−1 and Gj assuming the CPA security of the AHE scheme. In particular, we
can replace each AHE ciphertext w.r.t. the j-th gate sent by honest party Pi in Gj−1 with a fresh
ciphertext on 0. Adversary A cannot distinguish each replaced ciphertext from a real ciphertext,
which is directly guaranteed by the CPA security of the private-key AHE scheme. Note that no
two ciphertexts are created with the same secret key and label (g, α, β). Overall, the real AHE
ciphertexts are computationally indistinguishable from the ciphertexts on 0. If P1 is honest, the
analysis is the same, where A learns less information in this case.

In the online phase of the real protocol execution, the opened bit ew for each circuit-input wire
w is the XOR of the real input bit xw and random mask λw. We first consider the case that P1

is corrupted. From the above analysis w.r.t. AHE ciphertexts used to generate a garbled circuit,
we have that ew,α,β for the output wire w of each gate and α, β ∈ {0, 1} except for the opened bit
ew = ew,eu,ev are kept secret under the assumption that the private-key AHE scheme is CPA secure.
That is, for each wire w, A only learns ew. Therefore, in the real protocol execution, λw for each
wire w is a uniform bit, which guarantees that ew is random in {0, 1}. In the ideal-world execution,
ew ∈ {0, 1} is sampled at random by S. Thus, the distribution of ew for each circuit-input wire
w is computationally indistinguishable in both worlds. Furthermore, the keys sent in the online
phase have the same distribution in both worlds. If P1 is honest, then A learns less information,
e.g., ew for each wire w that is not in I is kept unknown for A. In this case, the distributions
of ew and the keys are also computationally indistinguishable in both worlds. In both the real-
world execution and ideal-world execution, the shares of all parties on circuit-output bits satisfy
the correct correlation of Boolean sharings. In conclusion, the joint distributions of the adversary’s
view and the honest parties’ outputs are computationally indistinguishable in both worlds.
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