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Abstract. As various industries and government agencies increasingly
seek to build quantum computers, the development of post-quantum con-
structions for different primitives becomes crucial. Lattice-based cryp-
tography is one of the top candidates for constructing quantum-resistant
primitives. In this paper, we propose a decentralized Private Stream
Aggregation (PSA) protocol based on the Learning with Errors (LWE)
problem. PSA allows secure aggregation of time-series data over multiple
users without compromising the privacy of the individual data. In almost
all previous constructions, a trusted entity is used for the generation of
keys. We consider a scenario where the users do not want to rely on a
trusted authority. We, therefore, propose a decentralized PSA (DPSA)
scheme where each user generates their own keys without the need for a
trusted setup. We give a concrete construction based on the hardness of
the LWE problem both in the random oracle model and in the standard
model.
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1 Introduction

The growing interest in building quantum computers has led to a widespread
need for the development of post-quantum cryptographic protocols. Lattice-
based cryptography is among the best candidates for post-quantum cryptog-
raphy due to its versatility and resistance to quantum attacks. The hardness of
lattice-based cryptographic algorithms is based on the assumed worst-case hard-
ness of lattice problems. A well-known computational problem based on lattices
is the Learning with Errors (LWE) problem introduced in [19]. In this paper, we
focus on constructing a Private Stream Aggregation (PSA) protocol based on
the LWE problem.

In various real-world scenarios, a data aggregator may seek to collect data
from multiple organizations or individuals to compute various statistics over the
data. However, a significant challenge in such applications is to ensure the pri-
vacy of the participants, particularly when the aggregator is not trusted. Certain
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examples of such applications include personal identifiable information such as
social security numbers, financial data such as credit card details, medical data
such as health records, or educational data such as transcripts, etc. This mo-
tivated the construction of private stream aggregation protocols that preserves
individual data privacy and enables secure aggregation of time-series data across
multiple users.

In a PSA protocol, there are multiple clients and one untrusted aggregator.
Each client sends an encrypted message over a time period, usually called a
timestamp (also called a label in some papers [15]), to the aggregator and the
aggregator decrypts the sum of the messages over that time period without the
knowledge of the individual messages. Timestamps are used to prevent the aggre-
gator from mixing ciphertexts with different timestamps which in turn prevents
the leakage of information about the values of individual clients. The security
of a PSA protocol is captured by the notion of aggregator obliviousness which
requires that the aggregator learns nothing more than the aggregated sum. A
PSA protocol remains secure even in situations where the aggregator colludes
with a subset of clients. In this case, the aggregator can only learn the sum of
the messages from the non-colluding clients. A possible application scenario for
PSA is Smart Grids where PSA can be used to collect and analyze real-time
energy consumption data from different households or businesses for load bal-
ancing, energy management, or renewable energy integration, while maintaining
the privacy of the customers. Another possible application is Traffic Management
where it can be used to collect and analyze real-time traffic data from different
sensors or vehicles for traffic prediction, route optimization, or accident preven-
tion, while preserving the privacy of individuals. Private stream aggregation can
also be applied in federated learning to enable the aggregation of locally trained
models from multiple devices, while preserving privacy. In federated learning,
each device trains a model on its local data and sends the updated model to a
centralized server for aggregation. However, the privacy of local data is a major
concern in this process.

Furthermore, to provide an additional layer of privacy protection, differential
privacy can be used with PSA [21]. Private stream aggregation with differential
privacy involves the addition of noise to the data prior to aggregation. The
amount of noise added is defined by a privacy budget that limits the amount
of information that can be revealed about an individual. Various PSA construc-
tions consider the distributed model of differential privacy, where the clients add
differentially private noise to their data [21,24] before encryption. In this paper,
we do not explicitly consider differential privacy in our construction. However,
similar procedures can be adopted as in previous works [21] to add differentially
private noise to the inputs.

A closely related notion to private stream aggregation is Multi-Client Func-
tional Encryption (MCFE) for inner products. In contrast to traditional public
key encryption that either decrypts the entire message or nothing, Functional
Encryption (FE) allows a user to learn specific functions of the encrypted data
without disclosing any other information. More specifically, in FE, a secret key
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sk is associated to a function f and the ciphertext cty encrypts a message x and
decrypting ctx with sk reveals f(x) and nothing else. In Inner Product Func-
tional Encryption (IPFE), the ciphertext cty is associated to a message vector
x and the secret keys sk, can be generated with respect to some vector y, while
the decryption of ctx with sky recovers the inner product (x,y). In inner prod-
uct MCFE, there are multiple clients and one or more aggregators. Each user
encrypts their input z; using a secret key sk; and sends the ciphertext ct,, to
the aggregator. Using the functional key sky, the aggregator recovers the inner
product (x,y) = Y. z;y; where x := (z1,22,...) and y := (y1, 2, ...). Observe
that for the all ones vector y = (1,...,1), this is exactly a PSA scheme. There-
fore, PSA can be seen as a specific case of MCFE for the evaluation of inner
products where only a single key corresponding to the vector y = (1,...,1) is
revealed to the aggregator.

1.1 Owur Contributions

Almost all known PSA schemes [4,7,13,15,21,23,24,27] use a trusted authority
for key generation that generates the client keys for encryption and aggrega-
tor key for decryption. However, since the main goal of PSA is to allow an
untrusted aggregator to perform aggregate statistics without compromising in-
dividual data, the use of a trusted authority is not aligned with the objectives of
PSA. The use of a trusted authority can be avoided by decentralizing the setup
and key generation procedure.

In this paper, we propose a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We take
inspiration from the decentralized multi-client functional encryption scheme pro-
posed in [12]. In the DPSA scheme, the clients generate their own keys and share
it with the aggregator in a secure way such that the aggregator does not learn
the individual client keys and only learns the aggregator decryption key which
is equal to the sum of the client keys. We first give a construction in the ran-
dom oracle model using a hash function modeled as a random oracle. We then
show how to modify it into a construction in the standard model using a weak
pseudorandom function (PRF). For the standard model we modify the ideas
from [26] to achieve a construction with unbounded timestamps. Our scheme
achieves aggregator oblivious security with static corruptions based on the LWE
problem. If instantiated with a trusted setup, the protocol achieves aggregator
obliviousness with adaptive corruptions. We also discuss possible solutions for
practical deployments such as clients joining and leaving the system. Further, we
provide example parameter choices for the proposed scheme based on the LWE
assumption and show that our scheme achieves competitive ciphertext sizes to
that of SLAP [24] for equivalent plaintext spaces.

1.2 Related Work

The notion of PSA was introduced by Shi et al. in [21]. They proposed a construc-
tion based on the Decisional Diffie-Hellman (DDH) assumption. The decryption
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procedure is inefficient due to its requirement for computing a discrete logarithm.
Subsequent works [7,14,17] focused on constructing PSA with better efficiency
and larger plaintext space. Leontiadis et al. introduced PSA with verifiability of
the aggregated sum [18] followed by a construction by Emura [13]. These works
are not post-quantum secure and can be broken easily by a quantum computer
using Shor’s algorithm [22].

A number of post-quantum PSA constructions have been proposed in previ-
ous works. Valovich proposed a PSA scheme from key homomorphic weak PRFs
and gave an instantiation based on the LWE problem [26]. Their construction
achieves a weaker variant of aggregator obliviousness (AO) called non-adaptive
AQO in the standard model. Further, the set of timestamps needs to be fixed
at the setup and therefore their scheme only supports a bounded number of
timestamps. Our scheme in the standard model follows a similar design policy
as Valovich but we show how to get unbounded number of timestamps using
a PRF. Becker et al. proposed a generic PSA scheme called LaPS [4] based on
the LWE problem. Their construction can be instantiated using any additively
homomorphic encryption scheme. However, their scheme uses two layers of en-
cryption where the homomorphically encrypted input is encoded again using an
Augmented-LWE (A-LWE) term. Further, their construction does not rely on
timestamps directly and they only give a brief description on how to extend the
scheme to work with timestamps. Takeshita et al. proposed two PSA schemes
called SLAP [24] using two different fully homomorphic encryption schemes.
Their schemes achieve aggregator obliviousness based on the RLWE problem in
the random oracle model. The authors also implement their scheme and show
their improvements over the LaPS protocol. In a subsequent work [23], Takeshita
et al. proposed a variant of their SLAP protocol with better efficiency.

Other post-quantum secure works that do not use the RLWE problem include
[15,27]. Ernst et al. proposed a PSA scheme using key-homomorphic PRFs [15]
based on the Learning with Rounding (LWR) problem. Currently, this is one of
the most efficient schemes that achieve smaller ciphertexts compared to previous
works. Another efficient PSA scheme using labeled secret sharing schemes (LaSS)
was proposed in [27]. However, it is not efficient for a large number of users due
to multiple rounds of communication to generate shared keys among the users
which leads to key sizes quadratic in the number of users.

All of these schemes rely on a trusted setup for key generation. There are
brief discussions in [15,27] on how to modify their schemes to avoid a central
authority. Recently, Brorsson et al. proposed a distributed setup PSA protocol
called DIPSAUCE [10] that does not rely on a trusted party. Their protocol is
a distributed setup variant of the protocol in [27]. In contrast to the other PSA
schemes, no key is required for aggregating the sum of the inputs. However,
their distributed key generation procedure relies on a Public Key Infrastructure
(PKI) to provide the keys to each user which in turn is usually implemented as
a central authority. Further DIPSAUCE relies on a randomness beacon and care
should be taken not to introduce a trusted party to realize the beacon.
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Another line of work focuses on constructing secure aggregation protocols for
the aggregation of model updates in distributed machine learning [5,6,8,16,25].
These works are not directly comparable to ours as their work has a distinct fo-
cus, specifically designed to meet the requirements of distributed machine learn-
ing.

We give a comparison of the various PSA schemes described in this section
with respect to different characteristics in Table 1.

Table 1: Comparison of different PSA schemes with respect to different char-
acteristics

Scheme Decentralized | Timestamps | Assumption Post-
Setup quantum
security
Shi et al. [21] X unbounded DDH X
Valovich [26] X bounded LWE v
LaPS [4] X none (R)LWE 4
SLAP [24] X unbounded RLWE 4
Ernst et al. [15] X unbounded LWR v
Waldner et X unbounded |security of LaSS v
al. [27]
DIPSAUCE [10] v unbounded |security of LaSS v
Our Scheme v unbounded LWE v

1.3 Organization

We organize the paper as follows. Section 2 contains some necessary background
and definitions. In Section 3, we formally define the DPSA protocol and give a
concrete construction based on the LWE problem in the ROM. In Section 4, we
give a construction in the standard model based on LWE.

2 Preliminaries

Notation: A denotes the security parameter. For a set S, a <—g S means that a
is sampled uniformly at random from S. For a probability distribution X over a
set S, x + X means that z is sampled from S according to the distribution X. A
distribution X over the set of integers is said to be B-bounded if it is supported
on [—B, B]. For a number z, [z], |z| and |z] denotes the rounding x up, down
and to the closest integer respectively. We use ‘log’ to denote a logarithm to the
base 2. For a prime ¢, Z, denotes the set of integers in the interval (—¢/2, ¢/2]NZ.
For some a € Z, we use (a mod ¢) and [a], interchangeably to denote the modular
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reduction of a by ¢ into the interval (—q/2,q/2] N Z. We use lowercase boldface
letters (e.g., a) to denote row vectors and uppercase boldface letters (e.g., A)
to denote matrices. The notation [n] denotes the set of integers {1,2,...,n}. An
arbitrary negligible function is denoted by negl(-) where the function negl(z) :
N — R is called negligible if for every ¢ € N, there exists an integer 7. such that
Inegl(z)| < % for all > 7.

2.1 Lattices

A k dimensional lattice A is a discrete additive subgroup of R¥ given by the set
of all integer linear combinations of I < k linearly independent vectors in R¥
where [ is called the rank of A. We are interested in g-ary integer lattices. A
g-ary lattice can be thought of as a discrete additive subgroup of ZZ . A vector
v is in the lattice A if v mod ¢ € A. Given a matrix B € ZEIX’“, the following are
two k dimensional g-ary lattices.

Aq(B):{veZ’;\v:w-B modqforsomewGZlq}

A;‘(B):{VEZI; | v-B” =0 mod q}

2.2 Learning with Errors

Learning with Errors is the problem of solving a system of noisy linear equations
over Zq [19]. It can be defined as follows.

Definition 1 (Learning with errors). Let X' be a probability distribution on
Z ands be a secret vector chosen uniformly at random from Zy for somen,q € N.
Let As x be the distribution that generates a pair (a,b = (a,s) +e) € Zy X Z,
obtained by choosing a vector a <—g Zq and an error e < X. Given polynomially
many samples from As x, the learning with errors problem is to output the vector
s € Zg with overwhelming probability.

The decisional LWE problem is to distinguish the distribution As x from the
uniform distribution over Zy X Z,. We use LWE,, ; x to denote the LWE problem
with parameters n,q, X.

The decisional LWE problem has been shown to be at least as hard as the
LWE search problem [19,20]. There are known quantum and classical reductions
of LWE to approximating short vector problems in lattices [9,20]. In these reduc-
tions, the noise distribution X is usually considered to be a discretized Gaussian
distribution that is indistinguishable from a B-bounded distribution for some
appropriate B.

The security of our protocol is based on a variant of the decisional LWE
problem where along with the noise, the secret s is chosen from the distribution
X.

Definition 2 (LWE problem with short secrets). Let X' be a probability
distribution on Z and s be a secret vector chosen from the distribution X over
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Zy for somen,q € N. Let As x be the distribution defined in Definition 1. Then,
the decision LWE problem with short secrets is to distinguish the distribution
As x from the uniform distribution over Z{; X Lg. We use ss-LWE,, 4 x to denote
the LWE problem with short secrets.

A reduction from the short secret variant exists to the decisional LWE prob-
lem as shown in [2].

Lemma 1 ( [2]). Let n,q, X be as described above. If there exists a distinguish-
ing algorithm A for the decision LWE problem with short secrets, then there
exists a distinguishing algorithm B for the decision LWE problem that runs in
roughly the same time as A, with B making O(n?) calls to its oracle and satis-
fying AdvgVE(X) = AdvsyYWE(N).

In this paper, we consider an extended form of the problem where the secret
is a matrix. We consider the LWE distribution with N > 1 secrets s1,...,Sn
for some N = poly(n). Then Ag y is defined as the distribution that generates
a pair (a,b :=a-S' + e) obtained by choosing a g Zy and an error vector
e «g XN where the i-th row of S € ZflVX" is the secret s;. Using a standard
hybrid argument, it can be shown that distinguishing S from uniformly random
is as hard as the LWE,, 4 » problem.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) is an efficiently computable deterministic func-
tion that is computationally indistinguishable from a truly random function.

Definition 3 (PRF). A pseudorandom function family F = {Fk} ke, with
keyspace ICy is a family of functions F : X — Y such that Fi can be computed
in poly(X) time and for any x € X, Fi(x) cannot be distinguished from a random
function (RF) in polynomial time. For all PPT adversaries A, the advantage of
A in distinguishing a PRF from a RF is given by

Adv"RF(\) = | PrlAFEO(\) = 1] — PrARFO()) = 1]| < negl())

3 Decentralized Private Stream Aggregation

In this section, we formally define a decentralized PSA (DPSA) scheme and give
a concrete construction based on the LWE problem. Consider a scenario with £
users for some ¢ € N and an untrusted aggregator. We consider the users to be
semi honest, i.e., honest but curious. Each user generates private data x;; with
respect to some time stamp ¢ and wishes to compute the sum Zle x;,+ securely
and privately. In Private Stream Aggregation (PSA) the sum can be computed by
the aggregator given only the encrypted values of the user’s data while preserving
the user’s privacy. The users encrypt their data x;; using a user specific secret
key sk; before sending it to the aggregator. The aggregator then performs the
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aggregating function on the encrypted data and recovers the sum of the input
data using an aggregator decryption key dkg. In a centralized PSA scheme, the
encryption and decryption keys are generated by a trusted setup. Since the setup
in DPSA is decentralized, the users need to generate the aggregator decryption
key themselves apart from their own encryption keys. Each user generates a share
of the aggregator key and sends it to the aggregator in a secure way without
revealing their individual keys. Upon receiving the partial keys from all the users,
the aggregator can recover its decryption key for aggregation.

Definition 4 (Decentralized Private Stream Aggregation). A decentral-
ized private stream aggregation scheme over a message space M consists of the
following PPT algorithms:

Setup(1*,1%): This is a procedure between the users. It takes the security param-
eter \ and the number of users ¢ and generates the public parameters pp and
their own secret keys sk; for i € [£]. The public parameters pp is an implicit
input to the rest of the algorithms.

AggKeyGenShare(i, sk;): It takes user index i and secret key sk; and outputs the
partial aggregator key dk;.

AggKeyGen({dki};cjg): It takes the partial aggregator keys dk; for i € [{] and
computes aggregator decryption key dky = Zle dk;.

Enc(i,ski,x; ¢, t): It takes as input the user index i, the secret key sk;, timestamp
t and input data x; + € M and outputs a ciphertext ct; ;.

AggDec(dko, {cti ¢ }icpq, t): It outputs the aggregated sum x; = Zle Xi¢ from
the ciphertexts {ct; + }icpq using dko for the time period t.

Here, the Setup algorithm is run between the users to generate the public
parameters pp and their secret keys sk;. The users compute partial aggregator
keys dk; using AggKeyGenShare and sends dk; to the aggregator. The aggregator
computes its decryption key dko using dko <— AggKeyGen({dk;};c[¢). Each user i
then encrypts their input x; ; at timestamp ¢ such that ct; ; < Enc(4, sk;, x; ¢, t).
The aggregator outputs x; <— AggDec(dko, {ct; t}ic[g,t). The algorithms Setup,
AggKeyGenShare and AggKeyGen are run only once in the beginning of the pro-
tocol.

Correctness: The above DPSA scheme DPSA=(Setup, AggKeyGenShare, Ag-
gKeyGen, Enc, AggDec) is said to be correct if for any A\, ¢ € N, any message
x;+ € M, it holds that

(pp, {ski}icie) + Setup(1*,19)
{dki}icj < AggKeyGenShare(i, sk;)
dko <+ AggKeyGen({dki}icig)

cti ¢ < Enc(i, ski, X4, t)

¢
Pr | AggDec(dko, {cti ¢ }icpe), t) = me : =1
i=1
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Security: The security of a private stream aggregation scheme is captured by
the notion of aggregator obliviousness. It requires that the aggregator does not
learn anything more than the aggregated value of their input values at each
time period. If some parties collude with the aggregator then it requires that
the aggregator only learns the aggregated value of the honest users and nothing
more. Further, each user encrypts their data only once every time period.

Definition 5 (Aggregator Obliviousness for DPSA). The aggregator obliv-
iousness security for a DPSA scheme can be defined in terms of the security ex-
periment AOg(A, £, A) given in Figure 1. No adversary A should be able to win
this game with non-negligible advantage.

AOg (A, ¢, A)
L: (pp, {ski}ier) + Setup(1*,1%)
2: /B « AQCorr(~),QEnc(-,»,»,-),QChaIIenge(-,~,~,~)(pp)
3: if condition (x) is satisfied then
4: output 3
5: else

6 output 0

Fig. 1: Aggregator Obliviousness experiment for DPSA

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:

e Corruption oracle QCorr(i): The adversary submits an integer i €
{1,...,¢} and gets back the i-th user’s secret key sk;. If the adversary submits
i =0, then it gets dk; < AggKeyGenShare(j, sk;) for all j € [(].

o Encryption oracle QEnc(i,x;,,t): The adversary submits (i,%;4,t) and
receives ct; ¢, < Enc(i, ski,x; ¢,t) from the challenger.

e Challenge oracle QChallenge(U, {xY,. }icu, {xi - Yieu,t*): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t* and for each i € U, the adversary chooses two sets of
inpuls X ., X} ,.. The challenger randomly samples b < {0,1} and returns
Cti e < Enc(sk;, X ,.,t*) for alli € U if b= 0 and ct; 4+ + Enc(sk;, X} 1., t*)
forallieU if b=1.

Finally, the adversary outputs a guess b’ for the value of b and the experiment
outputs B depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let E be the set of users for which an encryption query
has been made at time t*. Let Q= := U U E= be the set of users for which A
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recetves an encryption or a challenge ciphertext at timestamp t*. The condition
(x) is satisfied if all of the following conditions hold:

~UNCS = 0: The set of users specified duirng the Challenge phase must be
uncorrupted at the end of the game.

- Adversary A has not queried QEnc(i,x;,t*) for the same ¢ and t*. Other-
wise, this would violate the encrypt-once policy.

~UNEx = 0: The adversary cannot query challenge ciphertexts to the users
in E. In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t*.

— If the adversary has compromised the aggregator and Qi+ UCS = [{], then
the following condition must be satisfied.

0o _ 1
E wiyt*—g T 4

ieu ieu
We set B < b if the above conditions are satisfied, otherwise we set 8 = 0.

A DPSA scheme is said to be aggregator oblivious if for any PPT adversary
A, there exists a negligible function negl such that

AdViopsa(N, €) = | Pr[AOg (A, £, A) = 1] — Pr[AO1 (), £, A) = 1]| < negl()\)

If an adversary can corrupt the parties only at the beginning of the protocol,
then we say that the scheme is secure against static corruptions. On the other
hand, if an adversary can corrupt the parties dynamically during the execution
of the protocol, then we say that the scheme is secure against adaptive corrup-
tions. For static security, the corruption queries are sent by the adversary before
obtaining the public parameters.

3.1 Our Construction

Our concrete DPSA scheme over the plaintext space M := Zp can be described
in terms of the following PPT algorithms.

Setup(1*,1%): This is a protocol between the users. Let H be a hash function
mapping from the domain of all timestamps onto Zg. Let X be a B-bounded
distribution over Z. Each user generates a matrix S;<—gX"™*"™ and interactively
generates secret shares V; < Zg*™ of 0 such that Zle V,; = 0 mod q. Output
public parameters pp = (p, ¢, n, ¢, H, X) and user secret keys sk; = (S;, V;) for
i € [¢]. The public parameters pp is an implicit input to all the algorithms.

AggKeyGenShare(i, sk;): Given user index i and secret key sk; = (S;, V;), com-
pute partial aggregator key dk; = S; + V; (mod q).
AggKeygen({dk;}icfq): Given {dk;};c[¢, compute aggregator decryption key

4 4

4
dkg := dei = (Si+Vi)=)_ 8 (mod q) =S (1)

=1 =1
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Enc(i, sk, x; ¢, t): Given input x;; € Z; and timestamp ¢, sample e;; + A™.
Set y, := H(t) € Z; and compute the ciphertext ct;; as

ctit =Xt +y,-S; +p-e (mod q) (2)

AggDec (dko, {cti7t}i6[4],t): Compute y, = H(t) and output the aggregated sum

4
()] ®

i=1

Correctness: The correctness of the sum can be verified as follows:

L

L £
D ctie—y,-Sg (mod ) =) Xis+p-) e (mod q) (4)
=1 i=1

=1

The magnitude of the sum of the errors is bounded by ¢ - p - B where B is
the maximum bound on the error distribution X. The magnitude of the sum
of the inputs is bounded by ¢ - £. If %7(1 +2B) < 4, then Zle Xit +Dp-
Ele e;; (mod ¢) = Ele Xt +D- Ele e, and reducing it modulo p removes
the error and recovers the sum Zle X ¢

3.2 Aggregator Obliviousness

We show that the proposed construction achieves aggregator obliviousness with
static corruptions in the encrypt-once security model under the hardness of the
LWE problem.

Theorem 1. For any PPT adversary A against the aggregator obliviousness
game, there exists a PPT adversary B against the LWE problem such that

AdVIP (N, 0) < (863 + 4£2) - AdvRVE(N)

Proof. We use similar ideas from [15] to prove this Theorem. WLOG, we assume
that the adversary queries the QChallenge oracle only at one timestamp t* that
has not been queried to the QEnc oracle.

We proceed via a series of Games G; for i € {0,1,2,3} described in Fig 4 of
Appendix B. A summary of the transitions is provided in Table 2. We denote
the advantage of A in game G; using Adv 4(G;). Similar to [15], we consider two
cases. I) When the adversary corrupts the aggregator: The adversary can decrypt
the sum in this case and therefore, we need to make sure that the sum remains
unchanged throughout the games. II) When the adversary does not corrupt the
aggregator: In this case we can directly go from game Ggy to Gs using a hybrid
argument over all the users.

Game Gg: This is the AQy game where the challenge query is answered with
the encryption of x?,.
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Table 2: A summary of the games used in the proof of Theorem 1. Change in
each game is highlighted with a square box

Game cti ¢ Justification
Go Cit < yt0~ Si+p-eiq
cti¢ < Xt + Cit
C:.',t —y. - Si+p-es

AQ( game

G 7 r; + S5(0) LWE assumption
Cti,e < Xi4 + Ciye

c;’,t <Y S: +p-ei

Ga Cit < Ciy +1i, 1 < 55(0)

information-
1 .
Ctit < X; ¢ + Cit theoretic

Cz’,t(*yt'si"‘p'ei,t‘

i LWE assumption
cti e < Xt +Cit

Game G;: In Game G;, we change the way the vectors c; ; in QChallenge are
generated. The challenge query is still answered with encryptions of th but we
add a share of a perfect u-out-of-u secret sharing of zero denoted by r; + SS(0)
to c; s where p is the number of users in the challenge query. We need to make
this change in such a way that the aggregate sum on decryption remains the
same. The transition from Gy to G; can be proved via a hybrid argument over
the ¢ users relying on the LWE assumption.

Lemma 2 (Transition from Gg to Gy). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|Adv_4(Go) — Adv.4(Gy)| < 2¢h(h — 1) - AdvE(N)

Proof. To prove this transition, we use a sequence of hybrid games Gg; for [ € [{]
defined in Fig 5 of Appendix B. Note that, Gy := Gg.1 and Gy := Gg¢. The goal
in each hybrid game is to add a perfect secret share of 0 to the LWE mask
Cit =y, S; +p-e; of one more user. Let p := |U| where U := {i1,...,i,} is
the set of users specified by A during QChallenge. Let K := min(u,l). If K > 2
in hybrid step [, then a share of a perfect K-out-of-K secret sharing of 0 is added
to the LWE masks of the first K users in /. This can be done using two users at
a time and the condition K > 2 is needed to go from one hybrid to another. To
prove the indistinguishability of G; from Gy, it suffices to show that the adjacent
games Gg;—1 and Gg; are computationally indistinguishable. Precisely, we have

4

|Adv.(Go) — Adva(Gr)| =) |Adva(Goi1) — Adva(Go.)|
=1

If there is an adversary A that can distinguish Gg;_1 from Gg;, then there
exists an adversary B against the LWE,, ;, x» assumption. We consider the case
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K > 2. In Gg,—1, we have secret shares added to ¢;; =y, - SiT +p- e of the
first K — 1 users in Y. To add a share of a perfect K-out-of-K secret sharing of
0 to the K-th user in U, B first guesses the first and the K-th users of U such
that i} <—g [HS], i} <5 [HS]\ {i}} where HS = [¢] \ CS is the set of honest
users. B then samples S; < X™*™ and V; «g Zp*" for i € [{]\ {17,i%}. It
can therefore set sk; := (S;,V;) for i € CS and send them to A. It also samples
aggregator key Sy «— X™*™ uniformly at random. If the guess is incorrect, the
simulation aborts the game and outputs 0. If the guess is correct then it replaces
Cis t with a random vector b, <—g ZZI’ using the LWE assumption on Si;. To
make sure that the sum Sy = Zle S, is satisfied, we need to modify Cix i as
Ciz t 1= H(t)-Sg— H(t) Zje[[]\{i;‘,i}} S; — by. Then c¢;; 4 and ¢z ¢ + ug are
indistinguishable where ux «g Z;. Then, replace ¢;: ; back with y, S;E +p-et
using the LWE assumption on S;=.

The guessing of the users i} and i} incurs a security loss of h(h — 1) where h
is the number of users in HS. Therefore for all I € {2,..., ] there exists a PPT
adversary B such that

|Adv_4(Go.i—1) — Adv.a(Go,)| < h(h —1) - Advg'E

Summing up for all the hybrid games, it leads to a security loss of ¢h(h — 1).
Since the reduction is applied twice, total loss is 2¢h(h—1). Therefore, we obtain
a PPT adversary B such that

|Adv_4(Go) — Adv4(Gy)| < 20h(h — 1) - Advi'E O

Now, we are in game G; and QChallenge(U, {x} ;. }icu, {X} ;- }iews, t*) in Gy
is answered with x?’t* +Ci . + Zjeu\{il} u; for i =i, and x?’t* + ¢ —u for
i € U\ {i1}. This is clear that these shares form a perfect u out of p secret
sharing of 0. Further, the corruption queries in G; are answered as follows.
On input ¢ € [CS], B returns the key sk; to A. If the adversary corrupts the
aggregator, then QCorr queries are answered with partial decryption keys for
the honest users because the keys for the corrupted users can be generated by
the adversary itself. To answer QCorr(0), B first generates secret shares of 0 for
all the honest users, R; <— 55(0) and computes

dki; =So— D (S; +V,) + R,
JE[CS]
dks = — Z (S; + V) + R
JEHS\ {4} i}

Game Gs: In this game, all the challenge queries are answered with encryptions
of x;, instead of x,. This is possible because the secret shares hide all the
information on the individual ciphertexts.

Lemma 3 (Transition from G; to G3). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that
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Adv(Gy) — Adva(Ga)| < 2- Advg"®())

Proof. Let Q;« be the set of users for which A has a ciphertext at timestamp ¢*
and let HS be the set of honest users. We consider the following two cases here.

Case 1 (Qi; = HS): In this case, the adversary receives a ciphertext for all
the honest users at timestamp t* either from the encryption oracle or from the
challenge oracle. Then Q;+ UCS = [{] and the condition Y7, ,, XV 1. = 7,0, Xj 4
must be satisfied. Let r; be the pads added to the ciphertexts of the users in U/
at the end of game G;, where

S ow if i=i
r; = { iet\(in} (5)
—u; if ield \ {Zl}

These r;’s are perfect secret shares of 0. Therefore {th +cit+r; ey and {X%,t +
Ci,t + Ti}icy are perfect secret shares of Y, ., (%0, +¢iy) and Y, o, (%}, + Ciy)
respectively. Since, D, X?,t* =D icu Xz{t*, {X?,t +c¢i 141 ticy and {X}7t+ci)t +
r;}icu are perfect secret shares of the same secret and are therefore perfectly
indistinguishable from each other.

Case 2 (Qi« # HS): In this case, there exists an honest user from which the
adversary does not get a ciphertext at timestamp t*. Therefore the condition
S icuXvie = YicuXi does not hold in this case. Since HS is known in ad-
vance, it is possible to identify an user in HS \ Q- that is not in U. B then
chooses two such users iy, € HS \ Q¢+ and i,, € U and simulates the ciphertexts
as follows. For ¢ = i,, BB sets ¢;; = b, where b, is a random vector in ZZL. For
i =1ip, Bsets c;y = H(t)-So — Eie[l}\ih H(t) - S; + e; 4. Next, we change the
challenge queries from encryption of x?’t to encryptions of le,t' For b € {0,1},
we have Y, (%0, +¢iy) = Dictiy (x2, 4 cit) + %2, 4 ¢y, 4. Since ¢;, ;4 is a
random vector in Z7, {x?,t + ¢t + ri}ticu and {X%,t + ¢; ¢ + v bicu are secret
shares of a random value. Therefore, they are indistinguishable from each other.
Finally, we change the random vector with an LWE mask again. 0

Game Gj3: In this game we remove the secret shares from the challenge cipher-
texts. Therefore, this game is identical to AO; where the challenge queries are
answered with encryptions of x; ,.

Lemma 4 (Transition from G, to G3). For all PPT adversary A, that cor-
rupts the aggregator, there exists a PPT adversary B such that

|Adv.4(Gg) — Adv.a(Gs)| < 2¢h(h — 1) - AdvE'E(\)

Proof. This is symmetric to the transition from Gg to G; applying the changes
backwards. O

For the case when the adversary does not corrupt the aggregator, we can
directly go from Gg to Ggs.
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Lemma 5 (Transition from Gy to G3). For all PPT adversaries A, that do
not corrupt the aggregator, there exists a PPT adversary B such that

[AdvA(Go) — Adv.a(Gs)| < 201 - AdvEYE(N)

Proof. In this case, the adversary does not corrupt the aggregator and we can
directly go from Gy to Gz using a hybrid argument over all the users. Let U :=
{i1,...,1,} be the set of users specified in the challenge phase. The hybrid game
H; is given by

H Enc(i,x?,.,t*) if i=1, for 7>1
1s Cipr = " o
ot Enc(i,x; ., t*) if i =i, for 7<1I

In other words, in H;, the challenge query is answered with encryptions of x}’t*
for i € {i1,...,4;} and with encryptions of th* for the rest of the users. Note
that Gg = Hp and Gz = Hy. It suffices to show that the adjacent games H;_;
and H; are computationally indistinguishable. Let A be an adversary that can
distinguish H;_; and H;. Then there exists an adversary B against the LWE
problem. In H;_1, the challenge query for users i, with 7 < [ — 1 is answered
with encryptions of Xght* and for users i, with 7 > [ — 1, it is answered with
encryptions of x?ﬂt*. The simulation B first guesses the user i; <—g [HS] and
replaces ¢; 4« = H(t*)- SZT +p-e; - for i = 4; with a random vector by~ using the
LWE assumption on S;. Then X?,t* + c¢; ¢+ is computationally indistinguishable
from x;t* +c¢; ¢~ for i = i;. Then, change c; s~ back to ¢; »» = H(t*)- S: +p-ei
for i = 14;.

The guessing of the user 4; incurs a loss of h where h is the number of
uncompromised users and this leads to ¢h for £ hybrid games. Total loss in this
case is 20h. Therefore, there is a PPT adversary B such that

|Adv_4(Go) — Adv4(Gs)| < 20h - Advg'E(N) O
O

3.3 Parameters

In this section, we describe how to choose parameters for the proposed scheme
for correctness and security. The LWE problem is parameterised by n, g, X where
X is a discrete Gaussian distribution with mean 0 and standard deviation o. The
choice of n, g, 0 determines the security level of the scheme. For correctness, we
need 2‘7”(1 +2B) < 2.

We use the the LWE estimator [1] and the condition for correctness to deter-
mine parameters for a security level of 128 bits. Given n, modulus ¢ is determined
for an error distribution with standard deviation o = 3.2. We give example pa-
rameters for 128 bit security level in Table 3 when the secret is sampled from
the error distribution.

Further, we compare the size of the ciphertexts between our DPSA scheme
and the noise scaled version of SLAP as shown in Table 4. For a smaller number
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of users, the ciphertext size of the proposed DPSA scheme is either the same as
or smaller than that of the SLAP scheme. However, for a larger number of users,
the SLAP scheme has a slightly better ciphertext size compared to the proposed
DPSA scheme.

Table 3: Example parameters for the DPSA scheme with LWE dimension n,
modulus ¢ and noise distribution with standard deviation ¢ = 3.2 for 128-bit
security level for varying number of users £ and plaintext modulus p

No. of users logp n log q Ciphertext
bytes
100 16 1200 29 4350
1000 16 1400 31 5425
10000 32 2510 51 16001
1013 32 4892 80 48920
10'° 128 13800 183 315675
102 128 17300 203 438987

Table 4: Comparison of ciphertext size between SLAP and our DPSA scheme

No. of logp log q Ciphertext bytes
users
SLAPys DPSA SLAPys DPSA
1000 16 28 31 16384 5425
10000 32 48 51 16384 16001
10%° 128 184 183 196608 315675
102 128 204 203 262144 438987

3.4 Decentralized Setup

In the proposed DPSA construction, the setup is an interactive protocol between
the users who generate their own keys and share it with the aggregator in a secure
way. The aggregator then recovers the aggregate key for decryption which is the
sum of the user keys. The users can generate their keys by sampling S; uniformly
at random from X"*"(Z,) and setting sk; = S; for i € [¢]. To share the key
with the aggregator, each user adds a random pad to their key which when
added sums to zero. These random pads can be generated using a secret sharing
protocol among the users. Each user U; generates secret shares {V;1,...,V;}
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of 0 and shares V; ; with user U; for j € [¢]\ {i}. User U; then generates its pad
as'V; = Z§:1 V; ; for i € [¢] which is added to its secret key and the partial key
S; 4+ V; is sent to the aggregator. When these partial keys are added together,
the V;s sum to zero and the aggregator recovers Sg = Zle S;.

The communication cost per client during setup is sending one share to every
other user and sending the partial key to the aggregator. The computational cost
involves generating its share V; and computing the partial aggregator key dk;.
The setup is executed only once in the beginning of the protocol and does not
affect the overall performance of the scheme.

3.5 Client Failures

If a client fails to submit its input messa%e, then the aggregator cannot evaluate
the sum because the equation So = ), ; S; does not satisfy (because of the
missing ciphertext) and the decryption outputs a random value. Chan et al. [11]
proposed a generic solution to deal with this problem and it is applicable to all
PSA schemes. They use differential privacy and allow the aggregator to learn
partial sums of the user’s inputs such that the total sum can always be computed
for the non-failing clients.

Their idea is to use a binary tree where the leaf nodes represent the clients
and the intermediate nodes represent the partial sums of the clients beneath
that node. Technically, the aggregator and the clients run an instance of the
PSA protocol for each intermediate node. Therefore, each client generates log ¢
ciphertexts using log ¢ secret keys corresponding to the number of nodes from
the client to the root of the binary tree. The aggregator is given an aggregator
key for each intermediate node. The aggregator will always be able to compute
the sum for the non-failing clients, albeit with an increase in noise in the overall
sum. For example, consider the binary tree in Figure 2 [11] for ¢ = 8. The
notation [¢, j] denotes the sum of the inputs of clients {i,...,j}. If client 4 fails,
the aggregator fails to obtain the sums [4,4], [3,4] and [1,4]. The aggregator
then uses the blocks corresponding to the black nodes in the tree to compute
the sum of the remaining clients.

3.6 Optimizing Peer-to-Peer Communication

As a byproduct of the fault tolerance technique, we can also use the binary
tree to reduce peer-to-peer communication among the clients during the setup
phase. Instead of generating secret shares for all the £ — 1 clients, each client can
now generate shares only for those clients with whom they share an intermediate
node. This will reduce the communication cost per client during the setup phase.

3.7 Dynamic Join and Leave

Dynamic Join: Chan et al. [11] proposed the idea to create a tree with more
leaf nodes than the number of clients to accommodate future client joining. In a
centralized scheme, the trusted setup generates secret keys for every leaf node.
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5 6 7 8

Fig. 2: When client 4 fails, the aggregator uses the partial sums corresponding
to the black nodes

The additional clients that have not joined the protocol yet are considered as
failed until they join. Once a new client joins it receives a secret key from the
setup. However, the trusted party needs to be present when a new client joins.
In our DPSA scheme, we can use this technique as follows. When a new client
Uy41 joins the protocol before the computation of a new sum, the client first
generates a uniformly random Sy 1 € X™*™ and sets Sy as its secret key. The
client can broadcast its joining to the other clients through a bulletin board.
Then each client that shares an intermediate node with the new client, chooses
a new secret key and generates secret shares of zero and send these shares to the
other clients that they share a node with. Using these shares, the clients then
generate new aggregator keys and shares them with the aggregator. This is done
for all the log# nodes.

Dynamic Leave: If some clients leave the protocol before the evaluation of a new
sum, we can consider them as permanently failed. For the remaining clients, one
possible solution is to run the Setup again. This will update their pads V;, which
now consist of shares from the remaining users. Similarly, the aggregator receives
a new key consisting of partial keys from the remaining users. Since the setup is
decentralized, the users do not need to depend on a trusted entity to generate
the updated pads or the updated aggregator key which makes it more practical
than having a centralized setup.

4 DPSA in the Standard Model

In this section, we give a possible construction of a DPSA scheme in the standard
model. We use similar ideas from [26] that uses a weak PRF to construct a PSA
scheme based on the LWE problem. However, in [26], the number of timestamps
is bounded as it needs to be fixed in the setup phase. We show how to get
unbounded timestamps using a PRF. Let Fy := {Fs | Fs : Zy — Zy,S € Zy*"}
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such that Fg(t) = t-S' + e. Here F; is a randomized weak pseudorandom
function family as described in [2,3]. Let Fo = {Fg | Fx : Z — Zy, K € K)} be
a PRF family such that Fi (i) = t; € Zj. Then, a DPSA scheme in the standard
model can be described in terms of the following algorithms.

Setup(1*,1%): This is a protocol between the users. Each user generates a
matrix S; <« Zyp*" and interactively generates V; < Z7*" such that

Zle V,; = 0mod ¢q. Choose PRF key K <+ K, and output public parame-
ters pp = (p,q,n, ¢, K,X) and each user’s secret key sk; = (S;,V;). Since the
PRF key is a public information, one of the clients can choose this key and
broadcast it to the other clients.

AggKeyGenShare(i, sk;): Given user index i and secret key sk; = (S;, V;), com-
pute partial aggregator key dk; = S; + V; (mod q).

AggKeygen({dk;}icpq): Given {dk;};c[q, compute aggregator decryption key

L L

4
dko := Y dki =Y (Si+ Vi) =>_S; (mod q) =S, (6)

=1 =1

Enc(i, sk, x;¢,t): Given input x;; € Z; and a timestamp t = t;, generate a
vector t; = Fx(j) € Zgq. Sample e; 1 < X™ and compute the ciphertext ct;; as

ctir = U)J "X+t Sl-T +e;+ (mod q) (7)

AggDec(dko, {cti7t}i6[4],t): Given timestamp ¢ = t;, generate the vector t; =
Fi(j) € Z; and compute the aggregated sum as

¢
X = H“: (; ctiy —t;-Sg (mod q)>-Hp (8)

Correctness: Correctness follows similarly as described in Section 3.1. At
timestamp ¢ = ¢;, we have

‘ ¢
ZCti,t —t;- SJ (mod ¢q) = Z LZJ "X+ Zeivt (mod q) 9)
i=1 ;

i=1 =1

Observe that for an odd prime gq,

2] [ b (S Ewa) o

% i i=1
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To make sure that [%J . Zle Xit+ Zle e, does not flow over the modulus g,

we need to ensure that

L 1 £ 4
Sy (X Y,
=1 =1

i=1

< (11)

4
2

oo

This is satisfied when £(p + 2B) < 4.

Security: The security of the above DPSA scheme can be proved using the
same proof strategy as described in Section 3.2. It can be proved using a hybrid
argument consisting of the games outlined in Table 5. Here Gy corresponds to
the AOQy game where QChallenge queries are answered with an encryption of X?,t
and Gz corresponds to the AO; game where the challenge queries are answered
with an encryption of x},.

The transition from Gy to G; consists of adding perfect secret shares of 0
denoted by r; < SS(0) to the challenge ciphertexts. It can be achieved by
replacing the PRF Fg, (t;) with a random function (RF) and using a sequence
of hybrid games as described in Lemma 2. Transition from Gy to G2 can be done
similarly by changing the PRF with an RF for the two users as described in
Case 2 of Lemma 3. Case 1 follows directly from Lemma 3. Finally, transition
from Gs to Gs consists of making the changes backwards.

Table 5: Hybrid games for the AO security of the DPSA scheme in the standard
model. Change in each games is highlighted with a square box

Game cti ¢ Justification
G() Cit < qur (tj) 0
Ctii < Cit + [a/p] - X5y
cii — Is, (t))
Gy 7 r; < SS(0) |ci: indistinguishable

AOy game

Ctiy « Ciu + la/p) - %0, from random
Ciyp ¢ Fs, (t;)
G Cit = Ciy +Ti, Ti & 55(0) information-
Ctit ¢ Cit + lg/p] - Xiy theoretic

cit < Fs,(ty)

Gs c;,: indistinguishable

ctit < cit + |q/p) ‘le,t from random

5 Conclusion

In this paper, we presented a decentralized private stream aggregation (DPSA)
protocol that does not rely on a trusted authority for key generation. We gave a
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formal definition of a DPSA scheme and presented a concrete construction based
on the LWE problem both in the random oracle model as well as the standard
model. We proved the security of the DPSA scheme under the aggregator obliv-
iousness notion with static corruptions. Further, we discussed possible solutions
for practical deployments such as clients joining and leaving the system. In ad-
dition, we provided sample parameters for the concrete construction based on
the LWE assumption, and demonstrated that our scheme achieves comparable
ciphertext sizes to that of SLAP [24] for equivalent plaintext spaces.
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Appendix
A Private Stream Aggregation

Definition 6 (Private Stream Aggregation [21]). A private stream aggre-
gation scheme over an input space M consists of the following PPT algorithms:

Setup(1*, 1‘7): Takes as input the security parameter A and number of users £ and
generates public parameters pp, user secret keys sk; and aggregator decryption
key dko. Each user gets the corresponding secret key sk; for i € [€] and the
aggregator receives the decrption key dky. The public parameters pp is implicitly
an input to all the algorithms.

Enc(i,ski,xi ¢, t): Takes as input the user index i, the secret key sk;, the input
x;+ € M and generates an encryption of x;: using sk;. Outputs the ciphertext
Cti,t-

AggDec(dko, {cti ¢ }icpq,t): Takes the aggregator decryption key dky and cipher-
texts {ctii}icig for the time period t and outputs the aggregated sum x; =

Ef:1 Xt

Correctness: The above PSA scheme PSA=(Setup, Enc, AggDec) is said to be
correct if for any A, ¢ € N, any message x;; € M, it holds that

(PP, {ski}icqq dko) < Setup(1*,1°)

: =1
cti ¢ < Enc(3,sks, x4, 1)

4
Pr | AggDec(dko, {cti ¢ }icr: t) = Y Xi
=1

Definition 7 (Aggregator Obliviousness for PSA). The aggregator obliv-
tousness security for a PSA scheme can be defined in terms of the security ex-
periment AOg(A, ¢, A) given in Figure 3. No adversary A should be able to win
this game with non-negligible advantage.

The challenger first runs the Setup algorithm and returns the public param-
eters pp to the adversary. The adversary makes queries to the following oracles:
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AOg (A, ¢, A)
(pp, {ski}ticrg, dko) < Setup(1*,1°).
. ﬁFAQCorr(-),QEnc(-,»,»,-),QChaIIenge(-,-,-,-)(pp)
if condition (x) is satisfied then
output 3
else
output 0

AN R

Fig. 3: Aggregator Obliviousness experiment for PSA

e Corruption oracle QCorr(i): The adversary submits an integer i €
{1,...,£} and gets back the i-th user’s secret key sk;. If the adversary submits
i =0, then it gets the aggregator decryption key dky.

e Encryption oracle QEnc(i,x;,t): The adversary submits (i,X;¢,t) and
receives ct; ¢, < Enc(i, sk;,x; 4, t) from the challenger.

e Challenge oracle QChallenge(U, {x{,. }icu, {X] 1+ Yicu, t*): This query can
be made only once by the adversary. The adversary selects a set of users U
and time period t* and for each i € U, the adversary chooses two sets of
inputs X?,t*! X;t*. The challenger randomly samples b < {0,1} and returns
Cti» Enc(ski,xg’t*,t*) foralli cU if b =0 and ct; 4= Enc(ski,xl{t*,t*)
foralliel if b=1.

Finally, the adversary outputs a guess b’ for the value of b and the experiment
outputs B depending on the following conditions.

Let CS be the set of corrupted users, HS be the set of honest users at the
end of the game and let E be the set of users for which an encryption query
has been made at time t*. Let Q= := U U E= be the set of users for which A
receives an encryption or a challenge ciphertext at timestamp t*. The condition
(%) is satisfied if all of the following conditions hold:

~UNCS = 0: The set of users specified during the Challenge phase must be
uncorrupted at the end of the game.

- Adversary A has not queried QEnc(i,x;,t*) for the same i and t*. Other-
wise, this would violate the encrypt-once policy.

~UNEx = 0: The adversary cannot query challenge ciphertexts to the users
in Ex. In other words, the adversary cannot get a challenge ciphertext from
users for which it has queried the encryption oracle at time t*.

— If the adversary has compromised the aggregator and Q- UCS = [{], then
the following condition must be satisfied.

0o _ 1
E mi,t*—g T; 4

ieU €U
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We set 8 < ' if the above conditions are satisfied, otherwise we set 3 = 0.
A PSA scheme is said to be aggregator oblivious if for any PPT adversary
A, there exists a negligible function negl such that

AdViCpsa (N, €) = | Pr[AOg (A, £, A) = 1] — Pr[AO1 (A, £, A) = 1]| < negl()\)

B Games for the proof of Theorem 1
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Go|G1 Gz | G3

CS + A(1*,1%)

(PP, {ski }ie(g)  Setup(1*,1°).

B« _A(.)Cor(z),QEnc(z,v,v,v),QChallenge(~,~,~,~)(pp7 {Ski}iecs)
Output A if condition () is satisfied; otherwise output 0

QCorr(i)

if i € [CS] then
return sk;
if 4 = 0 then
dk; < AggKeyGenShare(j,sk;) Vj € HS

for all j € [HS] do R <5 Z)*" s.t. » =0

Jje[HS] R;

if j =iy, dk; =So—
ifj =ik, dkj = —

(S:i + Vi) +R;

ZiE’HS\{il,iK}(Si + Vi) +R;
if j =i, for 7 € HS\ {i1,ix}, dk; = S; + V; + R,

i€CS

return {dk;};cns

QEnc(4,xi,¢,1)

cty,¢  Enc(pp, ski, Xi,¢, t)
return ct; ;

QChallenge(U, {x?)t* Yieu, {x;)” Yieu,t™)

Let U := {i17-~-7iu}
for all 7 € {2,...,u} do u, <5 Zy
for all i € U do
Cjpx 1= Yyx -S;r +pre; = € Zg; e 1x — X"

if © > 2 then
ifi=i1, e =cipe+ " ur
) —
ifi =i, for 7 € {2,...,u}, ¢ 4x =c; 4+ —ur

Cti ¢ i= X?Yﬁ +ci ¢+ (mod q)

cti¢ = x;,t* +c; ¢+ (mod q)

return ct; ¢

Fig. 4: Games for the proof of Theorem 1. Here HS := [¢] \ CS. Condition ()
is given in Definition 5.
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Goy_1 forl e {1, - ,f}:

CS «+ A(1*,1%)

i <5 [HS), i s [HS]\ {iT}

(PP, {ski }ie(g) « Setup(1*,1°)

B AQCEr(:),QEnc(:,+,e,),QChallenge(151) (o sk Vsecs)

Output S if condition (x) is satisfied AND the game was not aborted; otherwise
output 0

QCorr(i)

if ¢ € [CS] then
return sk;
if 4 = 0 then
dk; < AggKeyGenShare(j,sk;) Vj € HS
for all j € [HS] do R g Zy "™ s.t. Z

=

JEIHS] R; =0

if j =11, dk; = Sg — ZiECS(Si + Vl) + R;
if j =ik, dk; = 72%%\“1”}(& + Vi) +R;
if j =i for 7 € HS\ {i1,ix}, dk; =S; + V; + R;
return {dk;};cns
QEnc(i, xi,¢,t)
cit=y,-S] +p-eir
If i =7, ci,t = by, by <5 Z
Ifi=ij,cip=H(t) So— H(t) Y,

Cti,t = Xi,t + Cit
return ct; ;

S;—b
JelNGif iy T T

QChallenge(U, {x} ,« Yicus {X] 4« bicu, t*)

Let U := {41,...,i,} and K = min(u,!l)
for all 7 € {2,...,K} do u; <5 Zy
for all i € U do -
Cipx = Yex + Sy + P e x
if K > 2 then
if i1 # 47 and ix # i} then abort game
e K
if © =41, Cj 4% = Cj 4% + ZT:2 u,
ifi =i, for 7 € {2,..., K}, ¢; 4x =cC; 4+ —us
Cty gx = x?,t* + ¢, (modgq)
return ct; ¢

Fig. 5: Games for the proof of Lemma 2
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