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Abstract

Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy pro-
tection where we encode a program or functionality in a quantum state such that a user in
possession of k copies cannot create k+ 1 copies, for any k. Introduced by Aaronson (CCC’09)
over a decade ago, copy protection has proven to be notoriously hard to achieve. Previous work
has been able to achieve copy-protection for various functionalities only in restricted models: (i)
in the bounded collusion setting where k → k+1 security is achieved for a-priori fixed collusion
bound k (in the plain model with the same computational assumptions as ours, by Liu, Liu,
Qian, Zhandry [TCC’22]), or, (ii) only k → 2k security is achieved (relative to a structured
quantum oracle, by Aaronson [CCC’09]).

In this work, we give the first unbounded collusion-resistant (i.e. multiple-copy secure) copy-
protection schemes, answering the long-standing open question of constructing such schemes,
raised by multiple previous works starting with Aaronson (CCC’09).

More specifically, we obtain the following results.

• We construct (i) public-key encryption, (ii) public-key functional encryption, (iii) signature
and (iv) pseudorandom function schemes whose keys are copy-protected against unbounded
collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum)
subexponentially secure iO and LWE.

• We show that any unlearnable functionality can be copy-protected against unbounded
collusions, relative to a classical oracle.

• As a corollary of our results, we rule out the existence of hyperefficient quantum shadow
tomography,

– even given non-black-box access to the measurements, assuming subexponentially
secure iO and LWE, or,

– unconditionally relative to a quantumly accessible classical oracle,

and hence answer an open question by Aaronson (STOC’18).

We obtain our results through a novel technique which uses identity-based encryption to
construct multiple copy secure copy-protection schemes from 1-copy → 2-copy secure schemes.
We believe our technique is of independent interest.

Along the way, we also obtain the following results.

• We define and prove the security of new collusion-resistant monogamy-of-entanglement
games for coset states.

• We construct a classical puncturable functional encryption scheme whose master secret
key can be punctured at all functions f such that f(m0) ̸= f(m1). This might also be of
independent interest.

Keywords: Quantum cryptography, copy-protection, unclonable cryptography, shadow to-
mography
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1 Introduction

The no-cloning principle, a fundamental implication of quantum mechanics, shows that arbitrary
unknown quantum states cannot be copied. This simple principle allows us to imagine applications
that are classically impossible. Indeed, it has found a wide range of applications in cryptography,
starting with the work of Wiener [Wie83] where he puts forward the notion of quantum money,
where we imagine that there is a bank producing quantum states, called banknotes, that are se-
cure against counterfeiting: any (malicious) user in possession of k banknotes for any k cannot
produce k+ 1 authentic banknotes. The interesting notion of quantum banknotes (i.e., unclonable
authenticatable quantum states) also led Aaronson [Aar09] to pose the following question:

Can we use quantum information to copy-protect functionalities/programs, where
user(s) in possession of some number of copies of a program P cannot produce more

working copies?

In more detail, we want to achieve the following. A vendor encodes a functionality1 into a quantum
state, and a user in possession of such a state can use it to evaluate the functionality any number
of times, and we want to achieve a → b copy-protection: any malicious user(s) in possession of a
such copies of the program cannot produce b working copies. Similar to quantum money, this is
an impossible feat in a classical world since classical information can be readily copied any amount
of times. Therefore, in a classical world, once you are given a single working copy of the program,
you can make any number of copies of it.

Perhaps surprisingly, [Aar09] showed copy-protection using quantum information is indeed pos-
sible: relative to a structured2 quantum oracle, any unlearnable program can be copy-protected in a
way that is k → k+r secure (for any [polynomial] k and some r > k). That is, in the construction of
[Aar09], the adversary is prevented from doubling their number of working copies. Later, Aaronson
et al. [ALL+21] showed that relative to a classical structured oracle (that depends on the program
being copy protected) model, any unlearnable program can be copy-protected, but this time only
in the 1-copy→ 2-copy setting.

Copy-Protecting Decryption Keys, PRFs and Signing Keys In a related line of work,
Georgiou and Zhandry [GZ20] started the study of single-decryptor encryption, that is, copy-
protection for decryption functionality (i.e. secret keys) of a public-key encryption (PKE) scheme
where an adversary tries to create k + 1 working decryption keys given only k copy-protected
keys. More formally, in this model, a pirate adversary obtains the classical public key and k copy-
protected quantum secret keys of the scheme. Then, it produces k + 1 freeloader adversaries that
are possibly entangled but not communicating3, and these freeloaders are presented with classical
challenge ciphertexts. We require that they cannot all succeed in decrypting simultaneously. [GZ20]
also gave a 1→ 2 secure copy-protection scheme relative to a structured oracle. Later, Coladangelo
et al. [CLLZ21] showed how to construct a 1→ 2 copy-protected public-key encryption using coset
states, this time in the plain model, assuming quantum hardness of LWE, (post-quantum) subex-
ponentially secure indistinguishability obfuscation and one-way functions. They also construct

1For example, a proprietary software or a decryption program/key of an encryption system that is used to distribute
encrypted content

2The oracle used in this construction takes as input a function and a value, evaluates the function on the value,
or takes as input a function and outputs a Haar random state associated with it.

3If they were allowed to communicate, one freeloader could hold the secret key and all the other freeloaders would
simply send their challenge ciphertexts to him to decrypt and send back the result.
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1 → 2 copy-protection schemes for pseudorandom functions (PRF), based on the same assump-
tions. Liu et al. [LLQZ22] constructed bounded collusion-resistant PKE and PRF schemes, by
showing through an elegant proof that the k-way parallel repetitions of the schemes of [CLLZ21]
are bounded k → k + 1 copy-protection secure. Further, they also construct a bounded k → k + 1
copy-protection secure scheme for the signing keys of a signature scheme. However, for all schemes
of [LLQZ22], the collusion-bound k is fixed during setup, the sizes of the schemes grow (linearly)
with the bound k and the copy-protected key generation is stateful.

Collusion-Resistant Copy-Protection Unfortunately, none of the previous work satisfy the
most-general notion of unbounded collusion-resistant copy-protection where we require k → k + 1
security for all polynomials k (that is not known and hence the size of the scheme does not depend
on it).

In particular, all schemes of [ALL+21], [CLLZ21] and [LLQZ22] can easily be broken when
the adversary obtains multiple copies. Any 2 users (in case of the first two works) or k + 1 users
(for the fixed k value, in case of [LLQZ22])4 with copy-protected keys can create an anonymous
classical program/string (which can be copied/distributed any number of times) that can be used
to decrypt any ciphertext in case of encryption schemes, or evaluate/sign any input in case of
general programs, PRFs and signatures. The only other scheme, that of [Aar09], is only k → 2k
secure rather than k → k+1, and more importantly, since it relies on structured quantum oracles,
it cannot even be heuristically instantiated since we do not have any (even candidate) constructions
of general-purpose quantum circuit obfuscation. In fact, [LLQZ22] argues that even any extension
of the scheme of [Aar09] would require such obfuscation, since it uses Haar random states and there
is evidence that these states cannot be classically verified ([LLQZ22, Kre21]).

We believe that the security guarantees of the previous work ([ALL+21], [CLLZ21], [LLQZ22])
are very unrealistic in the age of the Internet: the users can actually mount the anonymous attacks
described above through classical channels, by simply measuring their key and sending the classical
measurement result to other parties or posting it online!

Computational Complexity of Shadow Tomography Lastly, aside from theoretical interest
in the unbounded collusion setting in and of itself, we note that it is a theoretically important
problem also due to its intimate connection to the computational complexity of another important
problem, shadow tomography [Aar18] (see Section 1.1 and Section 12).

The above state of affairs leaves open the following natural question also raised explicitly in
several previous works [Aar09, AC12, CLLZ21, LLQZ22]:

Can we use quantum information to construct unbounded collusion-resistant
copy-protection schemes?

In this work, we answer the above question positively, in the plain model, with computational
assumptions matching the previous work.

1.1 Our Results

In this work, we resolve the long-standing open problem of constructing fully collusion-resistant
copy-protection schemes by constructing such schemes for public-key encryption, public-key func-
tional encryption, signatures and pseudorandom functions, all in the plain model.

4We re-emphasize that the size of the scheme (e.g. ciphertext and public-key sizes) grows with the set k value, so
it cannot be set arbitrarily large.
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Copy-Protecting Decryption Keys (Section 7 and Section 8) We construct encryption
schemes where the secret keys are copy-protected.

Theorem 1. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
subexponentially secure LWE, there exists a public-key encryption scheme with fully collusion-
resistant copy-protected secret keys.

Our computational assumptions above match5 the assumptions made by [CLLZ21] to achieve
1→ 2 copy-protection and those made by [LLQZ22] to achieve k → k+1 bounded collusion-resistant
copy-protected public-key encryption schemes.

Theorem 2. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
subexponentially secure LWE, there exists a public-key functional encryption scheme with fully
collusion-resistant copy-protected secret keys.

Prior to our work, the only construction of functional encryption with copy-protected secret
keys (given by Kitagawa and Nishimaki [KN22]) was in the 1→ 2 copy-protection setting, based on
assumptions same as ours, and in a weaker security model where no key queries were allowed after
seeing the challenge ciphertext (see Section 2.6 for more details). Furthermore, on top of matching
the assumptions previous work used for constructing copy-protected public-key encryption, the iO
assumption we make for our copy-protected FE scheme can be considered necessary since functional
encryption is known to be equivalent to indistinguishability obfuscation (up to subexponential
security loss) [BV18].

Since functional encryption can be used to construct identity-based encryption [Sha85] and
attribute-based encryption [SW05, GPSW06] in a straightforward manner, our work also gives
the first identity-based encryption and attribute-based encryption schemes with collusion-resistant
copy-protected secret keys. Through copy-protected identity-based encryption, we can also obtain
unclonable identity cards, first suggested by [Aar09].

Copy-Protecting PRF and Signature Keys (Section 10 and Section 9) We also construct
copy-protection schemes for a family of pseudorandom functions (PRF) and signing keys of a
signature scheme.

Theorem 3. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
subexponentially secure LWE, there exists a PRF and a signature scheme with fully collusion-
resistant copy-protected keys.

Copy-Protecting All Unlearnable Functionalities We also show how to copy-protect any
unlearnable functionality, relative to a classical oracle.

Theorem 4. Assuming post-quantum subexponentially secure one-way functions6, for any un-
learnable functionality, there exists a fully collusion-resistant copy-protection scheme relative to an
efficient classical oracle.

5 More specifically, our assumptions exactly match the assumptions made by [LLQZ22], but [CLLZ21] assumes
polynomially secure LWE whereas we assume subexponentially secure LWE. We emphasize that [CLLZ21] still assume
subexponentially secure iO and subexponentially secure one-way functions.

6We can also achieve this result unconditionally, if we do not insist that the classical oracle is efficient.
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This supersedes7 both [Aar09], which uses a structured quantum oracle and only satisfies k → 2k
copy-protection, and [ALL+21] which uses a structured classical oracle but only satisfies 1 → 2
copy-protection.

Impossibility of Hyperefficient Shadow Tomography (Section 12) Shadow tomography,
introduced by Aaronson [Aar18], is the following task: Given many copies of a mixed state ρ
and a list of binary measurements {E1, . . . , EM}, estimate the acceptance probabilities Tr(Eiρ) of
measurements Ei within additive error ε, for all measurements i ∈ [M ]. This task has important
ramifications for quantum information theory, since it means that we can learn many properties
of a quantum state without needing to do a full tomography of it, which necessarily requires
exponentially many copies of the state [OW16]. It has also found many applications in cryptography,
such as (i) [Aar18] who shows that unconditional copy-protection is not possible (ii) [BGHD+23]
who shows that unconditional PKE cannot exist even if we allow public-keys to be quantum and
(iii) [KT24] who shows that unconditional one-way state generators cannot exist. Lastly, shadow
tomography also has connections to the question of classical vs. quantum advice, and the related
complexity classes BQP/poly and BQP/qpoly. Note that in general, and in particular in all of
these applications, the measurement set is indexed by all possible strings in some support and M
is exponential in the security parameter or in the number of qubits. In fact, the case M = poly(λ)
can be trivially solved in polynomial (M/ε2) time with polynomially many copies, by estimating
each Tr(Eiρ) for i ∈ [M ] simply by actually performing the measurements Ei multiple times on
separate copies.

[Aar18] showed that shadow tomography can be performed in a sample-efficient manner; using
poly(n, logM, 1ε ) copies of an n-qubit state ρ, however, their scheme is not computationally efficient,

with time complexity Õ(M)8. In light of above, they posed the following as an open question: is
hyperefficient shadow tomography possible? That is, is it possible to perform shadow tomography
with time complexity poly(n, logM, 1ε )? Note that in this case, we ask that the set of measure-
ments {Ei}i∈M be implemented by a uniform quantum algorithm E that on input i, τ , applies the
measurement Ei to the state τ . We will be given this quantum circuit E as input and we are asked
to output a quantum circuit C such that C(i) estimates Tr(Eiρ) for all i.

9

Previously, hyperefficient shadow tomography was ruled out only relative to quantum oracles
[Aar18, AK07, Kre21], where we only get oracle access to the measurement circuit E. Through
a generic attack on copy-protection schemes using shadow tomography given by [Aar18, SW22],
a corollary of our results is the impossibility of hyperefficient shadow tomography, answering the
open question of [Aar18].

Corollary 1. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
LWE, there does not exist a hyperefficient shadow tomography algorithm.

Corollary 2. Assuming post-quantum subexponentially secure one-way functions10, relative to an
efficient classical oracle, there cannot exist a hyperefficient shadow tomography algorithm.

7Note that Theorem 4 and similar results of [Aar09, ALL+20] cannot be securely instantiated in the plain model
for all unlearnable functionalities, since [ALP21] proves that there exists an unlearnable functionality that cannot be
copy-protected in the plain model.

8As noted above, M is exponential in the security parameter or in the number of qubits.
9Without these assumptions, even reading the descriptions of all measurements or outputting all the estimates

would take Ω(M) time.
10Similar to before, we can achieve this result unconditionally if we do not insist on efficient oracles
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We note that making computational assumptions is necessary, since, hyperefficient shadow
tomography is possible given access to PP oracle.11

Technical Contributions and Additional Results An important contribution of our work
is a novel technique to construct collusion-resistant copy-protection schemes which relies on using
identity-based encryption (IBE). We use this technique in all of our constructions and we believe
it to be of independent interest. Our technique could be considered an analogue of the technique
of using digital signatures to construct full-fledged (i.e. collusion-resistant) quantum money from
single banknote schemes [LAF+09, FGH+12, AC12]. We also define and prove the security of new
collusion-resistant monogamy-of-entanglement games [CLLZ21, CV22] for coset states to prove the
security of our schemes. See Section 5 for details.

Finally, using the techniques we employ to prove the security of our functional encryption
scheme, we also give a construction of a classical functional encryption scheme where the master
secret key can be punctured such that the resulting master key allows issuing keys only for functions
f that satisfy f(m0) = f(m1). This allows us to remove the interaction/key queries after the
challenge ciphertext in the usual functional encryption security game (Definition 6), since the
adversary can issue their own keys using the punctured master secret key. This might also be of
independent interest. See Section 6.4 for details.

Theorem 5. Assuming subexponentially secure indistinguishability obfuscation and one-way func-
tions, there exists a functional encryption scheme whose master secret key can be punctured at all
functions f such that f(m0) ̸= f(m1).

2 Technical Overview

2.1 Public-Key Encryption with Copy-Protected Secret Keys

Let us first describe our security model, which is the same as previous work [Aar09, GZ20, CLLZ21,
LLQZ22]. We consider a public-key encryption scheme with classical ciphertexts, a classical public-
key and an additional (quantum) algorithm QKeyGen. The copy-protected key generation algorithm
QKeyGen, on input the classical secret key, outputs a reusable quantum state that can be used to
decrypt any number of times. For security, we will require that a user with k copy-protected
secret keys cannot create k + 1 keys. More formally, in an anti-piracy game (Definition 24) for
public-key encryption, we have an adversary, called a pirate. This adversary is given the public key
pk, and then for any (polynomial) number of rounds, it queries for quantum copy-protected secret
keys. After it is done, it outputs pairs of challenge messages (m0

ℓ ,m
1
ℓ )ℓ∈[k+1] and k + 1 (possibly

entangled) freeloader adversaries, where k is the number of copy-protected keys it has queried.
Then, the challenger samples challenge bits bℓ, and presents each freeloader with Enc(pk,mbℓ

ℓ ).
The freeloaders output their predictions b′ℓ, and the adversary wins if b′ℓ = bℓ for all ℓ ∈ [k + 1].
We require that no efficient adversary can win with probability better than 1/2 + negl(λ). The
baseline success probability is 1/2, since the pirate adversary can output k of its keys to the first
k freeloaders, and let the last freeloader randomly guess the challenge bit bk+1.

1→ 2 Copy-Protection Secure Construction of Coladangelo et al. [CLLZ21]

As a warm-up, we will recall the 1→ 2 copy-protection secure construction based on coset states,
given by [CLLZ21], which also forms the base of our construction.

11We thank an anonymous reviewer for pointing out this remark.
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A coset state [CLLZ21, VZ21] is a state of the form
∑

a∈A(−1)⟨s
′,a⟩|a+ s⟩ =:

∣∣As,s′〉 where
A ⊆ Fn2 is a subspace and s, s′ ∈ Fn2 . [CLLZ21, CV22] showed that coset states satisfy a property
called strong monogamy-of-entanglement (MoE), which is as follows. Consider the following game
between an adversary tuple A0,A1,A2 and a challenger. Challenger uniformly at random samples a
subspace A ⊆ Fn2 of dimension n/2 and elements s, s′ ∈ Fn2 , and submits

∣∣As,s′〉 and the obfuscated
programs12 iO(A + s), iO(A⊥ + s′) to the adversary A0. Then, the adversary A0 outputs two
(entangled) registers R1,R2, for A1,A2. Then, A1,A2 receive their registers and also the description
of the subspace A (but not the vectors s, s′ of course). Finally, A1 is required to output a vector in
A+ s and A2 is required to output a vector in A⊥+ s′. Strong MoE property says that no efficient
adversary can win this game with non-negligible probability. In a variation used implicitly by
[CLLZ21] and later formalized in a different context by [ÇGLZR24], we present A0 with multiple,
say c many, independent coset states (called a coset state tuple) and the corresponding membership
checking programs, and require that A1,A2 each output vectors in Ai+ si or A

⊥
i + s′i for all i ∈ [c],

depending on random challenge strings r1, r2 ∈ {0, 1}c presented to them. By a reduction to the
original version, it can be shown that no efficient adversary can win this game with non-negligible
probability (Theorem 23). We call this variation the multi-challenge version.

Now, we move onto the copy-protected public-key encryption construction of [CLLZ21]. During

setup, we sample a coset tuple (Ai, si, s
′
i)i∈[c]. The coset state tuple

∣∣∣Ai,si,s′i〉i∈[c(λ)] becomes the

copy-protected quantum secret key, and we output pk = (iO(Ai + s), iO(A⊥i + s′i))i∈[c(λ)] as the
public key. Finally, to encrypt a messagem, we sample a random string r and an indistinguishability
obfuscation OP← iO(PCtpk,r,m), where PCtpk,r,m is a program that takes is input vectors (vi)i∈[c]
and, checks if they are in correct cosets with respect to r. That is, we require v ∈ Ai + si if the
i-th bit of r is 0 and v ∈ A⊥i + s′i if it is 1. The program PCtpk,r,m outputs the message m if and
only if the vectors pass the test. We output (OPCt, r) as the ciphertext. To decrpyt a message, we
simply apply QFT (quantum Fourier transform) to our coset state tuple at indices where (r)i = 1.
Then, it is easy to see that running OPCt coherently on our key and measuring the result gives us
m with probability 113.

On a high level, the security follows by multi-challenge MoE game, since the two freeloaders, to
decrypt their ciphertexts, must be querying the programs PCt(1),PCt(2) at the correct vectors with
respect to r1, r2 respectively, which is exactly the challenge in the MoE game. The proof is more
involved since (i) iO is used rather than ideal oracles and (ii) the freeloaders can be entangled. We
discuss this further in the upcoming sections.

Challenges for Collusion-Resistant Copy-Protection

First, we note that the construction of [CLLZ21] is trivially insecure when the adversary is given

two copies of the secret key: The adversary can measure one copy of the state
∣∣∣Ai,si,s′i〉 in the

computational basis and the other copy in the Hadamard basis, thus obtaining vectors vi ∈ Ai+ si
and wi ∈ A⊥i +s′i for all i ∈ [c]. Using these vectors, one can decrypt any ciphertext and since these
vectors are classical information, the pirate adversary can indeed produce any number of working
secret keys. Thus, the scheme only satisfies 1→ 2 unclonability.

One natural solution, argued by [LLQZ22], is to try and employ quantum states that already
possess a collusion-resistant unclonability guarantee, such as Haar random states or their computa-

12Here, we overload the notation to let A+ s also denote the program that takes as input a vector v and outputs
1 if v ∈ A+ s, and 0 if not, and similarly for A⊥ + s.

13By Gentle Measurement Lemma (Lemma 2), this also means that we can revert the quantum key back to its
original state after decrypting a ciphertext.
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tional neighbor, pseudorandom states. This is indeed the approach employed by [Aar09] to achieve
k → 2k copy-protection relative to a structured quantum oracle. However, the problem is that there
is no known way of verifying such states or employing these states to construct a copy-protection
scheme without the use of quantum oracles, and there is evidence that this is an inherent property
of such states [LLQZ22, Kre21].

Another natural solution, used by [LLQZ22], is to independently sample a new coset state tuple∣∣∣A(j)
i,si,s′i

〉
i∈[c(λ)]

whenever a copy-protected secret key is requested rather than giving out the same

key state multiple times. In this case, the ciphertext program also takes as input the index j
of the key the decryption procedure is using, and verifies the input vectors with respect to that
coset tuple. Therefore, they need to include the corresponding obfuscated membership checking
programs for each possible key in the public-key, since otherwise the ciphertexts would not be
decryptable by that key. Therefore, we can only have k different key states for a fixed k chosen
during setup (which is when pk is created). Therefore, the construction of [LLQZ22] only achieves
k → k+1 copy-protection where the collusion-bound k needs to be known at the time of setup, and
the size of the scheme (public key, ciphertexts) grows with k, since the scheme basically consists
of k independent instances of the 1 → 2 secure scheme of [CLLZ21]. Furthermore, similar to the
scheme of [CLLZ21], this scheme becomes trivially insecure once given k + 1 keys, since we will
have obtained one of the coset state tuples twice.

Our Solution: Pseudorandom Coset States and Identity-Based Encryption

As discussed above, if we are sampling independent coset states for each copy-protected key query,
we need to have an a-priori bound on the number of different keys. In the unbounded setting,
since there are exponentially many cosets, it is not possible to verify all possible cosets using a
polynomial size public key pk.

Our solution to this is to compress the public-key by using pseudorandom coset states rather
than truly random ones. We sample a PRF key K and include it in the classical secret key. Then,
whenever we need to sample a copy-protected quantum secret key using our classical secret key,
we sample a random identity string id from {0, 1}λ and then sample a coset state tuple using the
randomness F (K, id). Our public-key will be an obfuscated program OPMemK (with PRF key K
embedded) that takes in an id, some vectors (vi)i∈[c] and a basis r, and verifies the vectors (vi)i∈[c]
with respect to r and the coset tuple associated with id. We now have a polynomial size public-key
that allows us to verify any possible (honest) coset state tuple.

A high level intuition for security is as follows, where for now we assume we use ideal oracles
instead of iO. By PRF security, the adversary’s view is indistinguishable from having obtained k
independent coset state tuples since for any efficient adversary that obtains any (polynomial) num-
ber of quantum secret keys, they will all have unique identity strings with overwhelming probability.
Note that we still need to argue that one cannot produce k + 1 working keys from k independent
coset state tuples, which we discuss how to argue in Section 2.2.

However, in reality, we are using iO and not ideal oracles. Now, the first problem is that, the
coset state tuples that the adversary obtains during key query phase are no longer pseudorandom,
since the adversary does not only have query access to the PRF but rather has the PRF key K
inside pk. A standard solution when using PRFs and indistinguishability obfuscation is to puncture
the PRF key at some inputs. Let id1, . . . , idk be the identity strings of the k copy-protected keys
obtained by the adversary. We can try to puncture the PRF key at id1, . . . , idk, but this would make
the size of our public-key dependent on k. A much more important problem is that the adversary is
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not required to run PCt on only one of idi, and in fact, PCt might be leaking14 m. Or, the adversary
somehow might be obtaining the hidden message m by running it on some unrelated identity id
and vectors that pass the verification of PMem for id15. The latter is because the adversary has
access to K in some form (i.e. inside PMem), therefore, it might be somehow obtaining F (K, id)
for some id. To rule this possibility out, we would need to puncture the PRF key at all strings in
{0, 1}λ!

To solve this problem and to puncture the PRF key only at few points, we first want to make
sure that the adversary can obtain the hidden message m only by running PCt on an identity string
associated with one of the copy-protected keys it did obtain. To ensure this, we use the following
approach based on identity-based encryption (IBE)(Definition 15). When PCt is queried on some
id and some vectors (uj)j , after verifying that the vectors are in the correct cosets with respect to
id and r, the program PCt outputs an IBE encryption of m under the identity id, rather than m
in the clear. We will also change our copy-protected key generation algorithm to output the IBE
secret key associated with id. Now, we will be able to argue that if an adversary is able to decrypt
a ciphertext and obtain m, then it must have obtained IBE.Enc(pk, idi,m) for some idi. This is
because by the security of IBE, the adversary cannot decrypt ciphertexts under identities other than
id1, . . . , idk - the only identities for which it has obtained the IBE secret keys. Above in turn means
that the adversary must have run PCt on idi and the correct vectors for the coset tuple associated
with idi. In essence, we are forcing the adversary the clone one of the original copy-protected secret
keys rather than coming up with a new key. Hence, we will eventually reduce to the MoE security
of the coset state tuple associated with some idi. Now, we need to only puncture the PRF key
at (at most) k points! This is still too many.16 However, we observe the following: the adversary
obtains k secret keys skid1 , . . . , skidk of the IBE scheme while there are k+1 freeloaders. Hence, by
pigeonhole principle, two of the k+1 freeloaders must be using the same key skidi for some i ∈ [k],
and hence, the same coset state tuple - the one associated with idi. As a result, we will only need
to puncture the PRF key K at idi. See Section 7.2 for the full scheme.

2.2 Proving Security

In this section, we give a high-level overview of the security proof of our public-key encryption
construction. Our goal is to reduce the security of our scheme to the monogamy-of-entanglement
game (see Section 2.1 and Theorem 24), which we will do so by extracting coset vectors (vi)i∈[c]
from the freeloader adversaries. On a high level, our proof uses ideas from [CLLZ21, ALL+21] for
simultaneous extraction from entangled adversaries. The security proof of our functional encryption
construction follows similarly and we refer the reader to Section 8 for details.

Note that in general, applying an extraction (which is essentially a measurement) on one of
the freeloader adversaries might irreversibly damage the other ones since they are entangled. We
will first make the testing of the freeloaders projective, which will allow us to argue that we can
extract vectors from entangled adversaries since (i) repeating a projective measurement always
gives the same outcome and does not change the state, (ii) acting (e.g. extracting) on some part of
a state, informally, does not change the behaviour of projective measurements on the other part too
much (Theorem 9). Now, let us briefly discuss projective implementations, introduced by Zhandry
[Zha20]. Let E = {E1, E0 = I − E} be a binary POVM. [Zha20] shows that there is a projective

14Since we are not using black-box obfuscation for PCt.
15Since we are not using black-box obfuscation for PMem.
16Remember that when obfuscating a program using iO, all programs that we will move between must be of the

same size. Thus, if we are puncturing the PRF key at k points, our initial obfuscated public-key program needs to
be padded to a size that depends on k.
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measurement (indexed by a finite subset of R0≤·≤1) denoted PI(E) such that the following procedure
has the same output distribution as applying E to ρ, for any state ρ.17

1. Apply PI(E) to ρ obtain a value p ∈ [0, 1].

2. Output 1 with probability p.

Essentially, the projective implementation estimates the probability that E accepts ρ, and does
so through a projective measurement. Note that PI(E) in general is inefficient, however, it can
be approximated efficiently [Zha20]. We will ignore this issue in this section - see Section 7.3 for
details.

In our anti-piracy game (Definition 24), we assume that the pirate adversary outputs each
freeloader as (U, σ) where U is a unitary and σ is some quantum state. We interpret this as a
quantum circuit18 (with some hardwired quantum state) that takes in a challenge ciphertext and
outputs a prediction b′. The challenger executes the freeloader using an appropriate universal
quantum circuit. Now, let D be a ciphertext distribution and let (Ui,Ri) be a freeloader output
by the pirate adversary (where Ri denotes the register containing the quantum part), and consider
the following measurement on Ri.

1. Sample b← {0, 1}.

2. Sample ct← D(mb
i).

3. Execute U(cti,Ri), measure the first qubit of the output registers in computational basis to
obtain b′.

4. Output 1 if b′ = b.

When we set D to be the honest ciphertext distribution where we encrypt m as PKE.Enc(pk,m),
we see that the above measurement exactly corresponds to the testing of the freeloader in the
anti-piracy game. Now, consider a modified game (parameterized by some inverse polynomial
γ(λ)) where instead of performing this measurement directly, the challenger performs its projective
implementation PID, and the adversary is said to win if the output is > 1/2 + γ(λ) for all k + 1
freeloaders. Essentially, we are estimating the success probabilities of the freeloaders and comparing
it to the baseline. Note that since PID is projective, once we apply it and obtain a value p, the
post-measurement state will again give p when its tested again for D. [CLLZ21] proves that this
modified game is stronger: it implies the security of the original anti-piracy game. Hence, we will
prove security with respect to this stronger game.19

Now, we move onto a sketch of the security proof of our scheme. The idea is to test the
freeloaders with respect to multiple challenge ciphertext distributions to pinpoint two freeloaders
that use the same coset state tuple, and then extracting coset vectors from them and violating its
1→ 2 MoE security. Let us assume that an adversary wins the (modified) anti-piracy game (with
probability 1/p(λ) where p(·) is a polynomial), meaning that applying PID yields > 1/2+γ(λ) for all
k+ 1 freeloaders simultaneously with probability > 1/p(λ). We define ciphertext distributions Dj ,
for all j ∈ {0, 1, . . . , 2λ}, representing all possible identity strings in {0, 1}λ (plus, the dummy upper

17We can equivalently say that the expected value of PI(E) · ρ is Tr[E1ρ]
18Note that while U is a unitary, this definition is enough to capture general quantum circuits since the adversary

can also include empty workspace qubits inside σ, along with some quantum information obtained from the copy-
protected keys.

19There is a caveat here that we need to prove security with respect to this game for all inverse polynomial γ(λ)
so that it implies security with respect to the original game.
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bound 2λ). We define Dj so that an encryption of a message m is (iO(PCtj), r) where PCtj is the
program that works as the honest ciphertext program if the input id satisfies id ≥ j, and otherwise
it replaces its hardcoded message m with ⊤ at the beginning. Observe that D0 corresponds to
the honest ciphertext distribution, since id < 0 is never satisfied. Similarly, D2λ corresponds to
the dummy ciphertext distribution where the message is not actually contained in the ciphertext.
Now, consider the following thought experiment. We apply the measurements PIDi sequentially
from j = 0 to j = 2λ, to all k + 1 freeloaders. Let qℓ,j denote the outcomes for each freeloader
ℓ ∈ [k + 1]. Intuitively, a non-negligible jump/gap between qℓ,j and qℓ,j+1 for j ∈ {0, . . . , 2λ − 1}
will mean that the freeloader ℓ is querying the ciphertext program at some vectors that are correct
for the coset tuple associated with j. Since D0 is the honest ciphertext distribution of this scheme,
the step j = 0 corresponds to the original security game and hence we get qℓ,0 > 1/2 + γ for all
ℓ ∈ [k + 1] by assumption. We will also have qℓ,2λ ≤ 1/2 for all ℓ ∈ [k + 1] since the step j = 2λ

corresponds to the ciphertext distribution D2λ that does not actually contain the message, and
therefore no freeloader20 can succeed with probability better than 1/2 against D2λ . Previous works
([AC12, LLQZ22]) use a pigeonhole principle to reduce k → k + 1 security to 1 → 2 unclonability
security, where they conclude that two freeloaders must have a large gap between |qℓ,j − qℓ,j+1| at
the same jump point j, meaning that they are utilizing the same coset state tuple ([LLQZ22]) or
two quantum money banknotes must come from the same initial banknote ([AC12]); where they
randomly guess this critical index and place the 1 → 2 challenge there. However, the problem in
our case is that the possible jump points jℓ are in {0, 1, . . . , 2λ − 1}, whereas we only have k + 1
freeloaders. This creates a multitude of problems: (i) we cannot conclude that there will be a
non-negligible jump since the average step between qℓ,0 and qℓ,2λ is γ/2λ, which is negligible, (ii)
even if there is a non-negligible jump, we cannot apply the pigeonhole principle to guarantee that
there is a pair of freeloaders ℓ, ℓ′ that have the jump index jℓ = jℓ′ since we have 2λ slots for
k + 1 freeloaders. Further, note that even if both of the previous concerns worked out and the
two freeloaders’ non-negligible jump indices coincide, we cannot actually test the freeloaders with
respect to all Dj to find it or randomly guess it since there are exponentially many possibilities.
However, a careful reader might guess that thanks to the IBE security, the challenge ciphertext
distributions above actually collapse around k points: j = id1, . . . , idk, the identity strings of the
secret keys obtained by the adversary. That is, we claim that jumps can only happen at indices j
that correspond to some idi. The reason is that, informally, the difference between Dj and Dj+1

only occurs when the obfuscated ciphertext program is evaluated at id = j, in which case the output
is IBE encryptions of m and ⊤ respectively, both under the identity j. However, if j is not one of
idi, then the different outputs of these programs will be IBE ciphertexts that are indistinguishable
to the adversary, by the security of IBE. Therefore, no freeloader can detect this change, and there
cannot be a jump between qℓ,j and qℓ,j+1. This (i) allows us to conclude that for each freeloader
there must be a γ/k jump (which is non-negligible) at one of j = id1, . . . , idk, and (ii) since the
jump points are now all in {id1, . . . , idk}, we can apply a pigeonhole argument to say that there
is two freeloaders have the same jump point since there are k + 1 freeloaders with k jump slots.
However, note that the ciphertext programs are only iO programs and not ideal oracles, therefore,
the above argument is only informal and needs to be proven. Overall, while the above intuitions are
the crux of our technique, formalizing these requires care and the full proof delicately intertwines
all these observations, whilst also dealing with further technical problems. We refer the reader
to Section 7.3 for the full proof. We also need some new results on collusion-resistant MoE for
pseudorandom coset states, which we prove in Section 5.

20Here, we are talking about any freeloader program/state, not necessarily the initial ones, since the state of the
freeloaders has changed since we already applied the previous tests PIDj for j = 0, . . . , 2λ − 1
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2.3 Public-Key Functional Encryption with Copy-Protected Functional Keys

In the setting of functional encryption, we now have functional keys, where a functional key for a
function f allows one to obtain f(m) given the encryption Enc(m), and nothing else. Similar to
PKE (Section 2.1), for functional encryption with copy-protected keys, we require that an adversary
that obtains k copy-protected (functional) keys cannot create k+1 working keys (for any functions).
We also allow the adversary to obtain classical functional keys. See Section 8.1 for details of our
model. We move onto our construction. The starting point is our public-key encryption scheme.
To generate a quantum copy-protected key for a function f , we sample a random id as before, but
now we generate the coset tuple using the randomness F (K, id||f) rather than F (K, id). Basically,
the coset states are now associated with both the function f and a random id. We note that the
random identity is still required, since we allow the adversary to query for multiple copy-protected
keys for the same function f . We also change our ciphertexts so that they now output an IBE
encryption of f(m) under the identity id||f , rather than outputting an encryption of m. We refer
the reader to Section 8.2 for the full construction.

Proving Security: Building and Using Puncturable Functional Encryption

Proof of security for our FE scheme will be similar to the proof of our PKE scheme (Section 2.2).
In particular, we will now identify identity string-function pairs (associated with the functional
keys) with elements of {0, 1, . . . , 2λ ·2λ}, and have ciphertext distributions Di for all such elements.
While we have 22λ jump points, similar to PKE, we can argue that they can occur only at k
points: j = id1||f1, . . . , idk||fk, where f1, . . . , fk are the functions the pirate adversary has queried
in copy-protected mode and id1, . . . , idk are the associated identity strings in the same order.
The reason is that, for other values, either (i) the adversary will not have the IBE secret key
for the identity id||g (meaning that it has not queried for the function g), or (ii) we will have
g(m0) = g(m1) (if it has queried for the function g in the classical mode). Thus, Di and Di+1 will
be indistinguishable at points other than ones listed above; either by IBE security or since the PCt
will output g(m0) = g(m1) in both distributions.

There is one caveat left. As discussed before, in our copy-protection security proofs, we crucially
rely on projective implementations [Zha20] to estimate the success of the freeloader adversaries for
the task where they are given an encryption of mb with random b ← {0, 1} and they output a
prediction b′ for it. This allows us to simultaneously extract vectors from two entangled freeloader
adversaries. While projective implementations are in general inefficient, [Zha20] also gives an effi-
cient algorithm (called approximated projective implementation) that approximates it well, using a
technique similar to the celebrated witness-preserving QMA amplification result of [MW04]. Cru-
cially, we note that above decryption process between the challenger and freeloader, for which we
estimate the success probability, is non-interactive (i.e., not single round). However, in a copy-
protected functional encryption security game, the freeloader adversaries will be allowed to query
for more functional keys after they receive their challenge ciphertexts, for any polynomial number
of rounds. Therefore, we will not able to use the approximated projective implementation as-is
to estimate the success probability of a freeloader adversary for functional encryption. While one
solution might be to try and generalize approximate projective implementations to interactive pro-
cedures, given that the original technique of [MW04] also only applies to QMA (which is single
round), this might be a challenging task.

We side-step the issue above using a classical solution. We define a variation of our scheme
where the challenger gives the freeloader adversaries a punctured master secret key pmsk along
with their challange ciphertext. This punctured key has the challenge messages m0,m1 chosen
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by the adversary hardcoded, and it takes in a function f and outputs the secret key for f if
f(m0) = f(m1). Then, since the freeloader adversaries can simulate (using this punctured key
pmsk) themselves any key queries that they want to make after seeing the challenge ciphertext, we
remove the interaction between the freeloaders and the challenger. As a result, we are again able
to use approximate projective implementations in our technique.

The only remaining challenge is making sure that our functional encryption construction is
still secure when the adversaries obtain this punctured master secret key, which is an obfuscated
program that contains the master secret key msk. While pmsk will only answer the queries on
functions that the adversary was allowed to query for anyways, the problem is that we are using
indistinguishability obfuscation rather than black-box obfuscation to compute psmk. To resolve this
issue, we upgrade our FE construction to use an identity-based encryption scheme with puncturable
master secret keys (Section 6). In such a scheme, we are able to produce a master secret key that
can issue identity keys for any identity other than the identity it was punctured at. When we are
proving the security of our functional encryption scheme, we will construct hybrids corresponding
to all possible id||f . Moving between each hybrid, we only need to rely on the security of IBE at
this identity. Therefore, in our security proof, we will not only use a puncturing argument inside
our obfuscated ciphertext program PCt, but we will also puncture the IBE master secret key inside
pmsk at id||f . Thus, we will be able to rely on the security of IBE even when the adversary has
pmsk. We refer the reader to Section 8.3 for the full proof.

2.4 PRFs and Signature Schemes with Copy-Protected Secret Keys

Let us first describe the setting. In the case of PRFs, we imagine a quantum key generation
algorithm that, given the PRF key K, can generate copy-protected keys that can be used to
evaluate the PRF F (K, ·) any number of times. For copy-protection, we require that given k such
keys, the adversary cannot create k + 1 freeloaders that can distinguish F (K,x) versus a random
string from the co-domain of F , given uniformly at random x.21 See Section 10 for more details.
In the case of signatures, we have copy-protected re-usable signing keys that can sign any message.
Similar to above, given k such keys, pirate outputs k+1 freeloaders, and we ask the freeloaders to
sign random messages.22 See Section 10 and Section 9 for more details.

Our signature scheme will be the same as our PRF scheme, where the signature on m will be
the PRF evaluation F (K,m), with the difference from the PRF scheme being that we will also
have a verification key. Similar to the signature scheme construction of Sahai and Waters [SW14],
the verification key will be an obfuscated program that verifies a message-signature pair (m,σ) by
checking f(σ) = f(F (K,m)) where f is a one-way function. Due to these similarities, we only
discuss our signature scheme here.

In our signature scheme, a copy-protected signing key will consist of two parts: (i) a coset state
tuple generated using the randomness F (K ′′, id) for random id, similar to our PKE scheme; (ii) an
obfuscated signing program PSignK . The program PSignK will take as input a message m, along
with id and vectors (vi)i∈[c]. Similar to the ciphertext programs PCt in our PKE construction,

PSignK will verify that the vectors (vi)i∈[c] are in the correct cosets Ai + si or A
⊥
i + s′i, depending

on the i-th bit of m, where the tuple (Ai, si, s
′
i) is associated with id. Informally, since the chal-

lenge messages m1,m2 are random, similar to r1, r2 in the PKE case, we will be able to violate the

21Note that x being randomized and being revealated after the splitting is required, since otherwise the pirate
can evaluate the PRF before splitting into freeloaders, and it can simply give the classical evaluation results to the
freeloaders.

22As in the case of PRFs, known/deterministic messages can be signed before the split by the pirate, hence, random
challenge messages are required.
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monogamy-of-entanglement game, given freeloader adversaries that can sign these message - arriv-
ing at a contradiction. However, since we are using iO and not black-box obfuscation to obfuscate
PSignK , some information about K might leaking, allowing the adversary to sign messages without
querying the program with correct vectors. Similar to [CLLZ21, LLQZ22], we use the hidden trigger
technique of [SW14] to solve this issue and reduce the security of our signature scheme to that of
our copy-protected PKE scheme.

Hidden triggers, introduced by [SW14] to construct deniable encryption, is a sparse set of inputs
that can be efficiently sampled and are pseudorandom, even given a program that uses these inputs.
In the case of [CLLZ21, LLQZ22], their set of hidden trigger inputs are special encodings of the
ciphertexts of their copy-protected PKE scheme. Using this technique, they embed a separate
thread in PSignK that detects if the message m is a trigger input, and in that case, executes the
embedded ciphertext program PCt (which is a PKE encryption of F (K,m)) in this input instead
of normal execution. This allows them to reduce the task of finding the signature F (K,m) for a
messagem to the task of decrypting a PKE ciphertext encrypting F (K,m) (hence reducing security
to their PKE scheme), by undetectably replacing the random challenge messages to be signed with
hidden triggers.

In our case, two new issues arise. First, as discussed, to achieve collusion-resistance, our PKE ci-
phertext programs crucially output IBE ciphertexts upon successful coset vector verification, mean-
ing that they are randomized programs, which makes it more challenging to encode them as hidden
triggers. We solve this issue as follows. Inside the ciphertext program, we expand the hidden
signature F (K,m) using a PRG (since there are various length requirements on the input-output
size to be able to use the hidden trigger technique), and we use part of the expanded string as a
PRF key to supply randomness to IBE.Encrypt.

Secondly, the previous work [CLLZ21, LLQZ22] crucially rely on puncturing the PRF key K
at all the challenge points m1, . . . ,mk+1, to replace these challenge messages with hidden trigger
inputs and utilize the hidden thread in PSign. However, in our case, we would have to puncture
PRF key at k+1 points since we have k+1 freeloaders/challenges, where k is not a-priori bounded
- this is not possible since the sizes of the punctured key and the obfuscated programs would need
to grow with k. We solve this issue by making our hidden trigger inputs publicly generatable, that
is, by arguing that hidden trigger inputs are indistinguishable from uniform strings even given a
program that generates these inputs (which needs to include the PRF key K). This allows us to
only prove that a single challenge message is indistinguishable from a single hidden trigger input,
and then we simply rely on the hybrid lemma to conclude the same result for any number of
challenge messages, since the trigger inputs can now be generated by the adversary itself during
the hybrid lemma argument. We use a new prefix-puncturing (Definition 4) argument for the PRF
key K to achieve publicly-generatable hidden triggers for our scheme. The full proof is technical,
we refer the reader to Section 9.5 and Appendix D for the full proofs. We believe our technique
might be of independent interest and might find applications in classical cryptography.

2.5 Impossibility of Hyperefficient Shadow Tomography

As discussed in the introduction, an important corollary of our result is the impossibility of hyper-
efficient shadow tomography. Suppose a shadow tomography procedure exists. We now describe
a generic attack on copy-protection, given by [Aar18] and adapted to the case of copy-protecting
decryption keys by [SW22], that uses shadow tomography. Let s(λ) be the size of the ciphertexts
of a public-key encryption scheme PKE with collusion-resistant copy-protected secret keys, for 1-
bit messages. Then, define the set of measurements {Ect}ct∈{0,1}s(λ) as follows: Ect is the binary
measurement PKE.Dec(·, ct). That is, given a state (which will be a copy-protected secret key in
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our case), Ect is the binary measurement implemented by running PKE.Dec on ρ and accepting if it
outputs 1. Then, it is easy to see that once we obtain the estimates of the acceptance probabilities
of all Ect for the state ρ where ρ is the copy-protected secret key, when we are given a ciphertext
ct, we can simply use this estimate to tell if ct is an encryption of 1 or 0, since Ect would accept ρ
if ct is an encryption of 1, and reject it otherwise. Since these estimates are classical values, given
some number of keys we can perform shadow tomography and then we can create any number of
decryption programs.

The attack above is used by [Aar18, SW22] to conclude that unconditional collusion-resistant
copy-protection is impossible, since [Aar18] gives a shadow tomography procedure that uses polyno-
mially many copies of a state ρ, however, the procedure takes exponential time. Now, the question
is, does there exist a hyperefficient shadow tomography procedure? We observe that the mea-
surement set {Ect}ct∈{0,1}s(λ) above is actually implemented by a uniform algorithm: PKE.Dec(·, ·).
Hence, if there exists a hyperefficient shadow tomography (Definition 49) procedure, it would out-
put (a classical description of) a quantum circuit that can estimate all Ect, given time and number
of copies that are both poly

(
|ρ|, log

(
2s(λ)

))
= poly(λ). However, this would break the security of

our collusion resistant copy-protected PKE scheme (Section 7), since we can query for sufficiently
many keys, perform the shadow tomography and freely distribute the resulting classical informa-
tion. Thus, we conclude that hyperefficient shadow tomography is not possible. We refer the reader
to Section 12 for more details.

2.6 Related Works

Copy-Protection See Section 1 for an overview of work on copy-protecting general function-
alities [Aar09, ALL+21], secret keys of a PKE scheme [GZ20, CLLZ21, LLQZ22], PRF keys
[CLLZ21, LLQZ22], and signing keys [LLQZ22]. Kitagawa and Nishimaki [KN22] defined func-
tional encryption with copy-protected functional keys in the weaker 1-copy→ 2-copy model where
the adversary can only obtain one copy-protected functional key and the freeloaders cannot query
for more functional keys after receiving their challenge ciphertexts. They showed how to construct
secure schemes in this model from any public-key encryption scheme with copy-protected secret
keys, using iO. Coladangelo, Majenz, and Poremba [CMP20] and Ananth et al. [AKL+22] showed
how to construct copy-protection for point functions and compute-and-compare functions in the
quantum random oracle model.

Secure Leasing Ananth and La Placa [ALP21] introduced secure software leasing, which is a
weaker version of copy-protection where the adversaries are only prevented from creating two copies
of their program that can both be run using the honest evaluation algorithm. [ALP21] also show
that even this weaker notion is impossible to achieve for all unlearnable programs in the plain
model23, based on some standard assumptions. Various work also define a variant where we require
that the adversary cannot produce at the same time a working copy (now allowed to be run with any
algorithm) and a valid deletion certificate for a program that passes the verification of the software
vendor. Note that both of these variants are implied by copy-protection [KN22, ÇGLZR24]: we
can always let the deletion certificate to be the copy-protected program itself and the deletion
certificate verification procedure can simply test the returned program on various inputs. Various
works [ALP21, ALL+21, KNY21, KN22, BGG+23] construct secure leasing schemes for various
primitives such as functional encryption, PRFs, indistinguishability obfuscation, based on various
assumptions. As discussed above, since our schemes are unclonable, they also give publicly verifiable

23Note that the results of [Aar09] and [ALL+21] do not contradict this since they are in the oracle model.
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securely leasable schemes for the same primitives, such as functional encryption.

Functional Encryption [CGJS15] construct delegatable functional encryption from hierarchical
identity-based encryption (HIBE) and indistinguishability obfuscation where the ciphertext is an
obfuscated program that outputs a HIBE ciphertext, similar to our FE construction. Bitansky and
Vaikuntanathan [BV18], Kitagawa et al. [KNT22] and Yang et al. [YAL+19] construct what they
call puncturable functional encryption, however, their definitions are completely different from ours
(and each other) and are incomparable to our model. In the first two, they construct symmetric-
key functional encryption whose secret keys can be punctured at a message or a tag. The goal is
to construct indistinguishability obfuscation and succinctness is an important property for their
functional encryption schemes. In [YAL+19], they construct a scheme where a functional key can
be punctured at a ciphertext. Different from both works, in our classical functional encryption
scheme with puncturable master key (Section 8), we will have a public-key scheme whose master
secret key can be punctured at all functions that are not differentiating m0,m1.

2.7 Organization

In Section 4, we recall some technical results and also show some new ones for projective imple-
mentations, which are needed in our copy-protection security proofs.

In Section 5, we show some new collusion-resistant monogamy-of-entanglement results for coset
states, which are again needed in our proofs.

In Section 6, we show how to construct a puncturable identity-based encryption scheme (which is
needed for our copy-protected FE scheme) and a puncturable functional encryption scheme (which
uses techniques similar to our copy-protected FE scheme and might be of independent interest).

In Section 7, Section 8, Section 9, Section 10 we give our copy-protected public-key encryp-
tion, public-key functional encryption, signature and PRF schemes with collusion-resistant copy-
protected keys, respectively, along with their security proofs.

In Section 11, we give collusion-resistant copy-protection schemes for all unlearnable function-
alities.

In Section 12, we show the impossibility of hyperefficient shadow tomography.

3 Preliminaries

3.1 Notation

All of our assumptions (e.g. existence of one-way functions) will be implicitly post-quantum.
We write λ to denote the security parameter. We write poly(·) to denote a polynomial function.

We write f(λ) ≤ negl(λ) or f(λ) < negl(λ) and say that f(·) is negligible if for any polynomial p(·),
there exits λ0 such that f(λ) < 1

p(λ) for all λ > λ0. We will write subexp(·) to mean a subexponential

function, meaning, f(n) = 2n
c
for some constant 0 < c < 1 and all sufficiently large n.

We say that an algorithm is efficient if it is quantum polynomial time (QPT), that is, there
exists a uniform family of polynomial size quantum circuits that computes it. Unless otherwise
stated, we will consider non-uniform QPT adversaries. We use the term subexponentially secure
to mean either that the advantage of any QPT or subexponential time adversary is subexp(−λ),
the distinction will be clear from context. In our constructions, we will rely on the subexponential
security of the underlying primitives for specific subexponential functions, such as 2−λ

c
-security.

However (unless otherwise specified) this is equivalent to assuming subexponential security for any
subexponential function, since we can scale the security parameter by a polynomial.
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We write |X −Y | to denote the total variation distance between two classical random variables
and we write ∥ρ− σ∥Tr to denote the trace distance between two quantum random variables (i.e.
density matrices) ρ, σ. For a sequence of (classical or quantum) random variables X = {Xλ}λ, Y =
{Yλ}λ, we write X ≈ε Y to mean |X − Y | < ε or ∥X − Y ∥Tr < ε(λ); and we write X ≈cε Y
to mean

∣∣Pr[A(1λ, X) = 1
]
− Pr

[
A(1λ, Y ) = 1

]∣∣ < ε(λ) for any appropriately (will be clear from
context) bounded (i.e computational) adversary A. Both are only for all sufficiently large λ. In
both cases we omit ε when ε = negl(λ) and we will omit specifying the adversarial constraint when
the constraint is that the adversary runs in polynomial time.

We will writeM to denote a message space (e.g., {0, 1}m(λ)).
For a string x, we will write (x)i to denote the i-th character/bit.
We assume that the reader is familiar with the basics of quantum information theory. We

will use the quantum register model, where a register is an object that has a quantum state that
evolves when we act on it. We will usually write R to denote a quantum register and H to denote a
Hilbert space. We refer the reader to [NC10] and [Wat18] for a comprehensive review of quantum
information theory.

Wherever we use indistinguishability obfuscation iO, we assume that the obfuscated circuits
are appropriately padded.

3.2 Puncturable Pseudorandom Functions

In this section, we introduce puncturable pseudorandom functions.

Definition 1 ([SW14]). A puncturable pseudorandom function (PRF) is a family of functions
{F : {0, 1}c(λ) × {0, 1}m(λ) → {0, 1}n(λ)}λ∈N+ with the following efficient algorithms.

• F.Setup(1λ) : Takes in a security parameter and outputs a key in {0, 1}c(λ).

• F (K,x) :24 Takes in a key and an input, outputs an evaluation of the PRF.

• F.Puncture(K,S) : Takes as input a key and a set S ⊆ {0, 1}m(λ), outputs a punctured key.

We require the following.

Correctness. For all efficient distributions D(1λ) over the power set 2{0,1}
m(λ)

, we require

Pr

∀x ̸∈ S F (KS , x) = F (K,x) :
S ← D(1λ)

K ← KeyGen(1λ)
KS ← Puncture(K,S)

 = 1.

Puncturing Security We require that any stateful QPT adversary A wins the following game
with probability at most 1/2 + negl(λ).

1. A outputs a set S.

2. The challenger samples K ← KeyGen(1λ) and KS ← Puncture(K,S)

3. The challenger samples b← {0, 1}. If b = 0, the challenger submits KS , {F (K,x)}x∈S to the
adversary. Otherwise, it submits KS , {ys}s∈S to the adversary where ys ← {0, 1}n(λ) for all
s ∈ S.

24We overload the notation and write F to both denote the function itself and the evaluation algorithm.
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4. The adversary outputs a guess b′ and we say that the adversary has won if b′ = b.

Definition 2 (Injective PRF [SW14]). A PRF family F is said to be statistically injective with
failure probability ε(λ) if, with probability 1 − ε(λ) over the sampling of the key K, the function
F (K, ·) is injective.

Definition 3 (Extracting PRF [SW14]). A PRF family F with input space {0, 1}m(λ) and output
space {0, 1}n(λ) is said to be extracting with error ε(λ) for min-entropy k(λ) if for any distribution
of X over {0, 1}m(λ), we have (K,F (K,X)) ≈ε(λ) (K,U) where K ← F.Setup(1λ) and U is sampled

uniformly at random from {0, 1}n(λ).

Theorem 6 ([SW14, GGM86, Zha12a]). Let n(·),m(·), e(λ), k(λ) be efficiently computable func-
tions.

• If (post-quantum) one-way functions exist, then there exists a (post-quantum) puncturable
PRF with input space {0, 1}m(λ) and output space {0, 1}n(λ).

• If we assume subexponentially-secure (post-quantum) one-way functions exist, then for any
c > 0, there exists a (post-quantum) 2−λ

c
-secure25 puncturable PRF against subexponential

time adversaries with input space {0, 1}m(λ) and output space {0, 1}n(λ).

• If (post-quantum) one-way functions exist, then there exists a puncturable extracting PRF with
error 2−e(λ) for min-entropy k(λ), with input space {0, 1}m(λ) and output space {0, 1}n(λ), if
m(λ) ≥ k(λ) ≥ n(λ) + 2 · e(λ) + 2. The same result follows for the subexponential case as
above.

• If (post-quantum) one-way functions exist, then there exists a puncturable statistically injective
PRF with error 2−e(λ), with input space {0, 1}m(λ) and output space {0, 1}n(λ), if n(λ) ≥
2 ·m(λ) + e(λ). The same result follows for the subexponential case as above.

We also introduce PRFs with prefix puncturing, similar to puncturable PRFs and prefix con-
strained PRF keys [BW13]26.

Definition 4. A prefix puncturable pseudorandom function (PRF) is a PRF {F : {0, 1}c(λ) ×
{0, 1}m(λ) → {0, 1}n(λ)}λ∈N+ with the following additional algorithm.

• F.Puncture(K, pre) : Takes as input a key and a prefix pre of length at most m(λ), outputs a
punctured key.

We require the following.

Correctness. For all efficient distributions D(1λ) over the set
⋃
ℓ≤m(λ) {0, 1}ℓ ⊗ {0, 1}m(λ), we

require

Pr

pre is a prefix of x
∨
F (K{pre||·}, x) = F (K,x) :

(pre, x)← D(1λ)
K ← KeyGen(1λ)

K{pre||·} ← Puncture(K, pre)

 = 1.

25While the original results are for negligible security against polynomial time adversaries, it is easy to see that
they carry over to subexponential security. Further, by scaling the security parameter by a polynomial and simple
input/output conversions, subexponentially secure (for any exponent c′) one-way functions is sufficient to construct
for any c a puncturable PRF that is 2−λc

-secure.
26In a prefix constrained PRF key, one requires that given the constrained key, any input x that starts with the

prefix can be evaluated, and all other PRF output values remain pseudorandom. In our setting we will require the
opposite: for any input that starts with the prefix, the output will remain pseudorandom, while other inputs can be
evaluated using the punctured key.
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Puncturing Security We require that any stateful QPT adversary A wins the following game
with probability at most 1/2 + negl(λ).

1. A outputs a prefix pre of length at most m(λ) and a string x ∈ {0, 1}m(λ) such that pre is a
prefix of x.

2. The challenger samples K ← KeyGen(1λ) and K{pre||·} ← Puncture(K, pre).

3. The challenger samples b← {0, 1}. If b = 0, the challenger submits K{pre||·}, F (K,x) to the
adversary. Otherwise, it submits K{pre||·}, y to the adversary where y ← {0, 1}n(λ).

4. The adversary outputs a guess b′ and we say that the adversary has won if b′ = b.

Theorem 7. Let n(·),m(·), e(λ), k(λ) be efficiently computable functions. If (post-quantum) one-
way functions exist, then there exists a prefix puncturable extracting PRF with error 2−e(λ) for
min-entropy k(λ), with input space {0, 1}m(λ) and output space {0, 1}n(λ), if m(λ) ≥ k(λ) ≥ n(λ)+
2 · e(λ) + 2. The same result follows for the subexponential case as above.

The above theorem follows in two steps. First, we can obtain a prefix puncturable PRF using
the GGM construction [GGM86] (which is post-quantum secure [Zha12a]): we partially open the
evaluation tree on the key K according to pre = b1 . . . bℓ, and then output the keys for leaves
b1, b1b2, b1b2b3, . . . , b1 · · · bℓ−1bℓ. Then, by an application of [SW14, Theorem 3] we can make it
extracting.

3.3 Indistinguishability Obfuscation

In this section, we introduce indistinguishability obfuscation.

Definition 5. An indistinguishability obfuscation scheme iO for a class of circuits C = {Cλ}λ
satisfies the following.

Correctness. For all λ,C ∈ Cλ and inputs x, Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1.

Security. Let B be any QPT algorithm that outputs two circuits C0, C1 ∈ C of the same size, along
with auxiliary information, such that Pr

[
∀x C0(x) = C1(x) : (C0, C1,Raux)← B(1λ)

]
≥ 1−negl(λ).

Then, for any QPT adversary A,∣∣∣∣Pr[A(iO(1λ, C0),Raux) = 1 : (C0, C1,Raux)← B(1λ)
]
−

Pr
[
A(iO(1λ, C1),Raux) = 1 : (C0, C1,Raux)← B(1λ)

]∣∣∣∣ ≤ negl(λ).

3.4 Functional Encryption

In this section we introduce the basic definitions of functional encryption schemes.

Definition 6 (Functional encryption). A functional encryption scheme for a class of functions F
consists of the following algorithms that satisfy the correctness and security guarantees below.

• Setup(1λ): Outputs a master secret key msk and a public key pk.
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• KeyGen(msk, f): Takes in the master secret key and a function f ∈ F, outputs a functional
key for f .

• Enc(pk,m): Takes in the public key and a message m, outputs an encryption of m.

• Dec(sk, ct): Takes in a functional key sk and a ciphertext, outputs a message or ⊥.

Correctness For all functions f ∈ F and all messages m, we require the following.

Pr

Dec(sk, ct) = f(m) :
msk, pk ← Setup(1)
sk ← KeyGen(msk, f)
ct← Enc(pk,m)

 = 1.

Adaptive indistinguishability security Consider the following game between a challenger and
an adversary A.

FE− IND(λ,A)

1. Challenger samples the keys msk, pk ← Setup(1).

2. The adversary receives pk. It makes polynomially many queries by sending functions f ∈ F
and receiving the corresponding functional key skf ← KeyGen(msk, f).

3. The adversary outputs challenge messages m0,m1.

4. The challenger samples a challenge bit b← {0, 1} and prepares ct← Enc(pk,mb).

5. The adversary receives ct, and it makes polynomially many functional key queries.

6. The adversary outputs a guess b′.

7. The challenger checks if f(m0) = f(m1) for all f queried by the adversary. If not, it outputs
0 and terminates.

8. The challenger outputs 1 if b′ = b.

We require that for any QPT adversary A,

Pr[FE− IND(λ,A) = 1] ≤ 1

2
+ negl(λ).

If the adversary outputs the challenge messages before the keys are sampled, we call it selective
indistinguishability security.

3.5 Quantum Information Theory

In this section, we present various technical lemmas regarding quantum information theory.

Lemma 1 (Almost As Good As New Lemma [Aar16], verbatim). Let ρ be a mixed state acting
on Cd. Let U be a unitary and (Π0,Π1 = I − Π0) be projectors all acting on Cd ⊗ Cd′. We
interpret (U,Π0,Π1) as a measurement performed by appending an ancillary system of dimension
d′ in the state |0⟩⟨0|, applying U and then performing the projective measurement Π0,Π1 on the
larger system. Assuming that the outcome corresponding to Π0 has probability 1− ε, we have∥∥ρ− ρ′∥∥

Tr
≤
√
ε
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where ρ′ is the state after performing the measurement, undoing the unitary U and tracing out the
ancillary system.

We sometimes also use the following related result.

Lemma 2 (Gentle Measurement Lemma [Wil15]). Let E be a POVM element and ρ be a state
of appropriate dimension. Suppose the outcome E has a high probability of occuring, that is,
Tr{Eρ} ≥ 1 − ε. Then, if we apply a canonical implementation,

√
E, of this measurement, the

post-measurement state conditioned on this outcome is close to the original state:∥∥∥∥∥ρ−
√
Eρ
√
E

Tr{Eρ}

∥∥∥∥∥
Tr

≤
√
ε.

Theorem 8 (Implementation Independence of Measurements on Bipartite States). Let Λ = {Mi}i∈I ,Λ′ =
{Ei}i∈I be two general measurements whose POVMs are equivalent, that is, M †iMi = E†iEi for all
i ∈ I.

Let ρ be any bipartite state whose first register has the appropriate dimension for Λ,Λ′. Then,
the post-measurement state of the second register conditioned on any outcome i ∈ I is the same
when either Λ or Λ′ is applied to the first register of ρ. That is,

(Tr⊗I)
(Mi ⊗ I)ρ(M †i ⊗ I)

Tr
{
(Mi ⊗ I)ρ(M †i ⊗ I)

} = (Tr⊗I)
(Ei ⊗ I)ρ(E†i ⊗ I)

Tr
{
(Ei ⊗ I)ρ(E†i ⊗ I)

}
Proof. See Appendix A.1.

Lemma 3 (Trace Distance Conditioned on Measurement Outcome). LetM = {Mi}i∈I be a general
measurement and ρ, σ be two states of appropriate dimension such that ∥ρ− σ∥Tr ≤ ε. Let pi denote
probability of outcome i when M is applied to ρ, that is pi = Tr{Miρ}. Then,∥∥ρ′ − σ′∥∥

Tr
≤ 3ε

2pi

where ρ′, σ′ are post-measurement states conditioned on outcome i when the measurement M is

applied to ρ, σ, respectively. That is, ρ′ =
MiρM

†
i

Tr
{
MiρM

†
i

} and σ′ =
MiσM

†
i

Tr
{
MiσM

†
i

} .
Proof. See Appendix A.2.

Theorem 9. Let ρ be a bipartite state and Λ = {Π1, . . . },Λ′ = {Π′1, . . . } be two projective mea-
surements over each of these registers, respectively. Suppose

Tr
{
Π1 ⊗Π′1ρ

}
≥ 1− ε.

Let M = {Mi}i∈I be a general measurement over the first register and fix any i ∈ I. Let τ denote
the post-measurement state of the second register after applying the measurement M on the first
register of ρ and conditioned on obtaining outcome i. Let pi denote probability of outcome i, that

is pi = Tr
{
(Mi ⊗ I)ρ(M †i ⊗ I)

}
. Then,

Tr
{
Π′1τ

}
≥ 1− 3

√
ε

2pi
.
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Proof. See Appendix A.3.

Theorem 10 (Quantum Union Bound for Commuting Projectors). Let Π1, . . . ,Πn be a set of
commuting projectors. Then, for any state ρ of appropriate dimension,

Tr[(I −Π1 . . .Πn)ρ] ≤
∑
i∈[n]

Tr[(I −Πi)ρ].

Proof. While this is a folklore result, we give a proof in Appendix A.4 for completeness.

Definition 7 (Query Algorithm). Let O be a function. A query algorithm A with oracle access
to O is defined by an evolution unitary UA of A, and we also define the oracle unitary UO as
UO : |w, x, y⟩ → |w, x,O(x)⊕ y⟩, with the registers ordered as the working register of A, the query
input register and the query output register. A is executed by applying UA and then UO in sequence,
e.g., the final state of the algorithm is (UAUO)

T |ψ⟩ for an algorithm with initial state |ψ⟩ that makes
T queries. If the algorithm has classical output, the output is obtained by measuring (a part of) the
working register at the end.

Theorem 11 ([BBBV97]). Let A be a quantum algorithm making queries to an oracle O. Let
|ψt⟩ =

∑
w,x,y αw,x,y|w, x, y⟩ denote the joint state of the working register, the query input register

and the query output register of the algorithm right before the t-th query. For a subset S of the
domain of O, let qS(|ψt⟩) =

∑
x∈S |αw,x,y|2 and qS =

∑
t qs(|ψt⟩), and call qS the query weight of

S. Let O′ be another oracle whose output differs from O only on points x ∈ S. Then, if A makes
T queries to the oracle O and S is a subset such that qS ≤ ε2/T , we have ∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|∥Tr ≤ ε
where |ψ⟩, |ψ′⟩ denote the final state of the algorithm A when given access to the oracles O,O′
respectively.

3.6 Compute-and-Compare Obfuscation

In this section, we introduce compute-and-compare obfuscation.

Definition 8 (Compute-and-compare program). Let f : {0, 1}a(λ) → {0, 1}b(λ) be a function,
y ∈ {0, 1}b(λ) be a target value and z a hidden message. The following program P , described by
(f, y, z), is called a compute-and-compare program.

P (x) : Compute f(x) and compare it to y. If they are equal, output z. Otherwise, output ⊥.

We say that a distribution D of such programs (along with quantum auxiliary information Raux)
is sub-exponentially unpredictable if for any QPT adversary, given the auxiliary information Raux

and the description of f , the adversary can predict the target value y with at most subexponential
probability.

Definition 9. A compute-and-compare obfuscation scheme for a class of distributions consists of
efficient algorithms CCObf.Obf and CCObf.Sim that satisfy the following. Consider any distribution
D over compute-and-compare programs, along with quantum auxiliary input, in this class.

Correctness. For any function (f, y, z) in the support of D, Pr[∀x D′(x) = D(x) : D′ ← CCObf.Obf(f, y, z)] ≥
1− negl(λ).
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Security (CCObf.Obf(f, y, z),Raux) ≈ (CCObf.Sim(1λ, |f |, |y|, |z|),Raux) where (f, y, z),Raux ←
D(1λ).

Theorem 12 ([CLLZ21, WZ17]). Assuming the existence of post-quantum iO and LWE, there ex-
ists compute-and-compare obfuscation for any class of sub-exponentially unpredictable distributions.

Assuming the existence of subexponentially secure iO and LWE against subexponential time
quantum adversaries, there exists subexponentially secure compute-and-compare obfuscation against
subexponential time adversaries for any class of sub-exponentially unpredictable distributions.27

4 Projective and Threshold Implementations

In this section, we introduce the notion of projective and threshold implementations [Zha20,
ALL+21], along with their efficient versions; which are tools we use in our security proofs. Then,
we recall some properties from previous work and also show some new technical results that will
be needed in the security proofs of our schemes.

Definition 10 (Shift Distance [Zha20]). Let D0,D1 be two distributions over R≥0. The shift
distance with parameter ε ≥ 0 between D0,D1, denoted ∆ε

Shift(D0,D1), is defined to be

inf

{
δ ∈ R≥0 : ∀x ∈ R≥0 Pr

a←D0

[a ≤ x] ≤ Pr
a←D1

[a ≤ x+ ε] + δ.

}
We define the shift distance between two measurementsM0,M1 over the same space H to be

∆ε
Shift(M0,M1) = sup

|ψ⟩∈H
∆Shift(M0|ψ⟩,M1|ψ⟩).

Definition 11 ((ε, δ)-Almost Projective [Zha20]). Let Λ be a measurement with index set I ⊆ R. Λ
is called (ε, δ)-almost projective if the following is satisfied for all states ρ of appropriate dimension.
Apply Λ to ρ to obtain an outcome x and then apply Λ again to the post-measurement state to obtain
an outcome x′. Then, Pr[|x− x′| ≤ ε] ≥ 1− δ.

Theorem 13 (Projective Implementation [Zha20]). Let E = {E1, E0 = I −E1} be a binary POVM.
Then, there exists a projective measurement, called projective implementation of E and denoted
PI(E), indexed by a finite set consisting of elements in [0, 1] and it satisfies the following. For any
state ρ of appropriate dimension, the following experiment has the same distribution as the outcome
of applying E to ρ.

1. Apply PI(E) to ρ to obtain an outcome p.

2. Output 1 with probability p and 0 otherwise.

Since PI(E) is projective, if the outcome of applying it to a state is p, then applying it again to
the post-measurement state gives outcome p with probability 1.

Below, we will consider measurements that are defined as mixtures of projective measurements.
For a collection of binary projective measurements P = {Pi, I − Pi}i∈I and a distribution D over
I, we will write PD to denote the measurement where we sample i ← D and apply the projec-
tive measurement {Pi, I − Pi}. In general, projective implementation of a mixture of projective
measurements can be of exponential size, but it can be efficiently approximated.

27The original result is only for polynomial hardness against QPT adversaries, but it is easy to see that it also
holds in the subexponential setting.
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Theorem 14 (Approximate Projective Implementation [Zha20]). Let P = {Pi, I − Pi}i∈I be a
collection of binary projective measurements with index set I and D be a distribution over I.
Suppose we can efficiently implement the measurement

Λ =

{∑
i∈I
|i⟩⟨i| ⊗ Pi, I −

∑
i∈I
|i⟩⟨i| ⊗ Pi

}
.

Then, for 0 < ε, δ ≤ 1, there exists a measurement, called approximate projective implementation
of PD and denoted APIε,δP,D, that satisfies the following.

• APIε,δP,D is (ε, δ)-almost projective.

• ∆ε
Shift(API

ε,δ
P,D,PI(PD)) ≤ δ.

• Expected run time of APIε,δP,D is polynomial in 1/ε, log(1/δ) and the runtimes of {Pi, I − Pi},
D and the procedure mapping i to {Pi, I − Pi}.

Theorem 15 ([Zha20, Theorem 6.5]). Let Db for b ∈ {0, 1} be efficient distributions over the same
support with classical output and ρ be an efficiently constructible state. Let P be a collection of
projective measurements indexed by the support of Db, and consider the mixture of measurements
PDb

where we sample a measurement according to Db and apply it. Suppose D0 ≈ D1. Then, for
any inverse polynomial ε,

∆ε
Shift(PI(PD0) · ρ,PI(PD1) · ρ) ≤ negl(λ).

We give the following generalization which differs from the previous theorem in a couple of
aspects. First, we consider measurements over multiple registers. Second, we allow the measured
state and the measurement to be correlated, which will be needed in our copy-protection proofs.
Finally, we give more fine-grained results in terms of adversary’s advantage and runtime, which
will again be needed in our proofs.

Theorem 16. Let λ denote the security parameter and let k(λ) be a polynomial, ε(λ) an inverse
polynomial and δ(λ) be an inverse exponential.

Let Sb and {Bbℓ}ℓ∈[k(λ)] for each b ∈ {0, 1} be efficient distributions as follows. Sb outputs a

k-partite state and a classical string pp, while Bbℓ take in pp and are classical. For each ℓ ∈ [k(λ)],
consider the output distribution of the following experiment, denoted by (Sb,Bbℓ).

1. ρ, pp← Sb(1λ).

2. Sample s← Bbℓ(pp).

3. Output (ρ, s, pp).

Let Pℓ for each ℓ ∈ [k] be a collection of binary projective measurements indexed by output
space of Bbℓ. For each fixed value of pp, consider the mixture of measurements, denoted Pℓ,Bbℓ(pp),
where we sample a measurement s from Pℓ as s = Bbℓ(pp; r) where r ← R and apply it. Suppose
we can efficiently apply the above measurement for arbitrary given superpositions of r values. Let
APIε,δ(Pℓ,Bbℓ(pp)) denote the approximate projective implementation of this mixture and let p⃗b be a

tuple consisting of the outcomes of the following experiment.

1. ρ, pp← Sb(1λ).
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2. Apply ⊗ℓ∈[k(λ)]APIε,δ(Pℓ,Bbℓ(pp)) on ρ.

Then,

• Suppose (S0,B0ℓ ) ≈ (S1,B1ℓ ) for each ℓ ∈ [k]. Then,

|p⃗0 − p⃗1| ≤ negl(λ).

• Suppose (S0,B0ℓ ) ≈cν(λ) (S
1,B1ℓ ) for all ( k(λ)

µ2(λ)
· poly(λ))-time adversaries for each ℓ ∈ [k] for

some ν, µ satisfying ν(λ) < µ2(λ)poly(λ). Then,

|p⃗0 − p⃗1| ≤ µ(λ).

Proof. See Appendix A.5.

Now, we reproduce the results of [ALL+21] regarding threshold implementations.

Theorem 17 (Threshold Implementation [ALL+21]). Consider the following measurement, de-

noted ATIε,δP,D,η, associated with a collection of projective measurements P, a distribution D over
the index set of P and a threshold value η ∈ [0, 1], applied to a state ρ.

1. Apply APIε,δP,D to ρ, let p be the outcome.

2. Outcome 1 if and only if p ≥ η.

We denote by Tr
[
ATIε,δP,D,η · ρ

]
the probability that the outcome above is 1. If APIε,δP,D is replaced

with PI(PD), then we denote the resulting measurement as TIη(PD) and write Tr[TIη(PD) · ρ] to
denote the probability that the outcome is 1.

We then have the following.

• For any state ρ,

Tr
[
ATIε,δP,D,η−ε · ρ

]
≥ Tr[TIη(PD) · ρ]− δ.

• For any state ρ,

Tr[TIη−ε(PD) · ρ] ≥ Tr
[
ATIε,δP,D,η · ρ

]
− δ.

• ATIε,δP,D,η is efficient whenever APIε,δP,D is.

• TIP,D,η is a projection and the collapsed state conditioned on outcome 1 is a mixture of
eigenvectors of D with eigenvalue ≥ η.

We give some further generalizations below.

Theorem 18. For any k ∈ N, let Pℓ,Dℓ be a collection of projective measurements and a distri-
bution on the index set of this collection, respectively, and ηℓ ∈ [0, 1] be threshold values for all

ℓ ∈ [k]. Write Tr
[(⊗

ℓ∈[k] ATI
ε,δ
Pℓ,Dℓ,ηℓ

)
· ρ

]
to denote the probability that the outcome of the joint

measurement
⊗

ℓ∈[k] ATI
ε,δ
Pℓ,Dℓ,ηℓ

applied on ρ is all 1, and similarly for TI.
Then, we have the following.
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• [ALL+20, Corollary 3] For any k-partite state ρ,

Tr

⊗
ℓ∈[k]

ATIε,δPℓ,Dℓ,ηℓ−ε

ρ
 ≥ Tr

⊗
ℓ∈[k]

TIηℓ(PℓDℓ
)

ρ
− k · δ.

• [ALL+20, Corollary 3] For any k-partite state ρ, let ρ′ be the collapsed state obtained after

applying
⊗

ℓ∈[k] ATI
ε,δ
Pℓ,Dℓ,ηℓ

to ρ and obtaining the outcome 1. Then,

Tr

⊗
ℓ∈[k]

TIηℓ−2ε(PℓDℓ
)

ρ′
 ≥ 1− 2k · δ.

• For any k-partite state ρ, let ρ′ be the collapsed state obtained after applying
⊗

ℓ∈[k] ATI
ε,δ
Pℓ,Dℓ,η

to ρ and obtaining the outcome 1. Then,

Tr

⊗
ℓ∈[k]

ATIε,δPℓ,Dℓ,ηℓ−3ε

 · ρ′
 ≥ 1− 3k · δ.

• For any k-partite state ρ,

Tr

⊗
ℓ∈[k]

TIηℓ−ε(PℓDℓ
)

ρ
 ≥ Tr

⊗
ℓ∈[k]

ATIε,δPℓ,Dℓ,ηℓ

ρ
− k · δ.

Proof. See Appendix A.6.

Theorem 19. For any k ∈ N, let Pℓ,Dℓ be a collection of projective measurements and a distri-
bution on the index set of this collection, respectively. Let ρ be any k-partite state of appropriate
dimension. Consider the measurement outcome p⃗ and the post-measurement state ρ′ obtained by

applying
(⊗

ℓ∈[k] API
ε,δ
Pℓ,Dℓ

)
to a state ρ. Let p⃗′ be the measurement outcome obtained by applying

the measurement
(⊗

ℓ∈[k] PI(PℓDℓ
)
)
to ρ′. Then,

Pr
[
∀ℓ ∈ [k] (p⃗′)ℓ ≤ (p⃗)ℓ + 2ε

]
≥ 1− 2 · k · δ

Pr
[
∀ℓ ∈ [k] (p⃗′)ℓ ≥ (p⃗)ℓ − 2ε

]
≥ 1− 2 · k · δ.

Proof. See Appendix A.6.

Theorem 20. For any k ∈ N, let Pℓ,Dℓ be a collection of projective measurements and a distri-
bution on the index set of this collection, respectively. Let ρ be any k-partite state of appropriate

dimension. Consider the measurement outcome p⃗ obtained by applying
(⊗

ℓ∈[k] API
ε,δ
Pℓ,Dℓ

)
to a state

ρ. Let p⃗′ be the measurement outcome obtained by applying the measurement
(⊗

ℓ∈[k] PI(PℓDℓ
)
)
to

ρ. Then,

Pr
[
∀ℓ ∈ [k] (p⃗′)ℓ ≤ ηℓ + ε

]
≥ Pr[∀ℓ ∈ [k] (p⃗)ℓ ≤ ηℓ]− k · δ

Pr[∀ℓ ∈ [k] (p⃗)ℓ ≤ ηℓ + ε] ≥ Pr
[
∀ℓ ∈ [k] (p⃗′)ℓ ≤ ηℓ

]
− k · δ.

Proof. See Appendix A.6.
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5 Coset States

In this section, we start by giving the definition of coset states [CLLZ21], which are the states
we use in our constructions, and then state the monogamy-of-entanglement property they satisfy.
Then, we define two new security games for coset states that streamlines our proofs later on and
show secure constructions for these games.

Definition 12 (Coset States [CLLZ21]). Let A be a subspace of Fn2 and s, s′ be vectors in Fn2 . We
define the coset state associated with A, s, s′, denoted

∣∣As,s′〉, to be

∣∣As,s′〉 =
∑
a∈A

1√
|A|

(−1)⟨s′,a⟩|a+ s⟩.

We will write A+s to denote both the coset A+s and the program that takes as input a vector
v ∈ Fn2 and outputs 1 if and only if v ∈ A+ s, and 0 otherwise. The distinction will be clear from
context.

Theorem 21 ([CLLZ21]). Consider a subspace A ⊆ Fn2 and vectors s, s′ ∈ Fn2 .

1. There exists an efficient quantum algorithm that outputs
∣∣As,s′〉 given s, s′ and the description

of A.

2. H⊗n
∣∣As,s′〉 =

∣∣(A⊥)s′,s〉.
3. We define the canonical element of a coset A+ v to be the lexicographically smallest element

in the coset and denote it CanA(v). There exists an efficient classical algorithm that, on input
the description of A and a vector v, outputs CanA(v).

Coset states satisfy a natural monogamy-of-entanglement (MoE ) property where any adversary
can win the following game with only negligible probability: We present the adversary with a coset
state, and it is required to split the state into two (possibly entangled) registers that can be used
to simultaneously output vectors in the cosets A+ s and A⊥ + s′ respectively.

Theorem 22 (Monogamy-of-Entanglement Property for Coset States [CLLZ21, CV22]). Consider
the following game between the challenger and an adversary tuple A = (A0,A1,A2).

MoE(λ,A)

1. Sample uniformly at random a subspace A of Fλ2 of dimension λ
2 and two elements s, s′ ← Fλ2 .

2. Sample OP0 ← iO(A+ s) and OP1 ← iO(A⊥ + s′).

3. Submit
∣∣As,s′〉,OP0,OP1 to A0.

4. A outputs two (possibly entangled) registers R1,R2.

5. For j ∈ {1, 2}, run vj ← Aj(Rj , A).

6. Output 1 if and only if v1 ∈ A+ s and v2 ∈ A⊥ + s′.
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Assuming the existence of iO and one-way functions, then for any QPT adversary tuple A,

Pr[MoE(λ,A) = 1] ≤ negl(λ).

If we assume the existence of subexponentially-secure iO and one-way functions, then there
exists a constant CMoE > 0 such that for any QPT adversary tuple

Pr[MoE(λ,A) = 1] ≤ 2−λ
CMoE

for all sufficiently large λ.

In the previous constructions of unclonable primitives [CLLZ21, LLQZ22], and also in our
constructions, the security of the unclonable schemes rely on requiring the freeloader adversaries
to output a vector from either A + s or A⊥ + s′, depending on a random challenge bit presented
to them. However, the pirate (i.e. splitting) adversary can always guess this challenge bit and
measure the coset state accordingly before splitting into freeloaders, and it would be right for both
freeloaders with probability (1/2)2. Therefore, to achieve negligible or subexponential security,
we amplify the security by using multiple coset states. This variant of the game is implicitly
used in [CLLZ21, LLQZ22] and a similar amplification theorem for a related game is also formally
proven in [ÇGLZR24]; both for the case of uniformly random challenge strings. We generalize the
amplification result to any unpredictable distribution of challenge strings.

Definition 13 (Unpredictable Distribution). Let D = {Dλ}λ be a family of distributions over
{0, 1}a(λ) where a(·) is some polynomial and we write D(x) to mean Prx′←D[x

′ = x]. Then, D is
said to be (statistically) unpredictable if maxx∈{0,1}a(λ){D(x)} ≤ negl(λ).

Definition 14. Define CosetGen to be the following algorithm, where we have the default parameter
values a(λ) = 3 · λ3 and κ(λ) = λ⌈3/CMoE⌉.

CosetGen(1λ, a(λ) = 3 · λ3, κ(λ) = λ⌈3/CMoE⌉)

1. For i ∈ [a(λ)], sample uniformly at random a subspace Ai of F
κ(λ)
2 of dimension κ(λ)/2

and two elements si, s
′
i ← F

κ(λ)
2 .

2. Output (Ai, si, s
′
i)i∈[a(λ)].

We call the output of CosetGen a coset tuple.

Theorem 23 (Monogamy-of-Entanglement Property for Coset States - Multi-Challenge Version).
Let D be a distribution over {0, 1}a(λ) that is unpredictable. Consider the following game between
the challenger and an adversary tuple A = (A0,A1,A2).

MoE−MultChal(λ,A)

1. (Ai, si, s
′
i)i∈[a(λ)] ← CosetGen(1λ, a(λ), κ(λ)).

2. For i ∈ [a(λ)],

2.1. Sample OP0
i ← iO(Ai + si).

2.2. Sample OP1
i ← iO(A⊥i + s′i).
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3. Submit
{∣∣∣Ai,si,s′i〉}i∈[a(λ)], (OP0

i ,OP
1
i )i∈[a(λ)] to A0.

4. A outputs two (possibly entangled) registers R1,R2.

5. Challenger samples r1 ← D and r2 ← D.

6. For ℓ ∈ {1, 2}, run (vℓ,i)i∈[a(λ)] ← Aj(Rj , rj , (Ai)i∈[a(λ)]).

7. For ℓ ∈ {1, 2} and all i ∈ [a(λ)], check if vℓ,i ∈ Ai + si if (rℓ)i = 0 and if vℓ,i ∈ A⊥i + s′i if
(rℓ)i = 1. Output 1 if and only if all the checks pass. Otherwise, output 0.

Assuming the existence of iO and one-way functions, and setting κ(λ) = λ, then for any QPT
adversary tuple A,

Pr[MoE−MultChal(λ,A) = 1] ≤ negl(λ).

If we assume the existence of subexponentially-secure iO and one-way functions, and set D to
be a distribution that is subexponentially unpredictable, then there exists a constant CMoE.MultChal

such that for any QPT adversary tuple

Pr[MoE−MultChal(λ,A) = 1] ≤ 2−λ
CMoE.MultChal

for all sufficiently large λ. By setting D to be 2−3·λ
3
unpredictable and κ(λ) = λ⌈3/CMoE⌉, there exists

such CMoE.MultChal > 2.

Proof. Suppose there exists an QPT adversary tuple A = (A0,A1,A2) that wins MoE−MultChal
above with probability ε(λ), that is, Pr[MoE−MultChal(λ,A) = 1] ≥ ε(λ).

Consider the following adversary A′ = (A′0,A′1,A′2) for MoE.

A′
0

On input a state ρ and the obfuscated programs OP0∗,OP1∗, sample r1 ← D and r2 ← D. If
r1 = r2, then abort. Let j∗ be an index where r1 and r2 differ, that is, (r1)j∗ ̸= (r2)j∗ . For all

j ∈ [a(λ)]\{j∗}, sample a subspace Aj , elements sj , s
′
j ← F

κ(λ)
2 , then set ρj =

∣∣∣Aj,sj ,s′j〉 and sample

OP0
j ← iO(Aj + sj) and OP1

j ← iO(A⊥j + s′j , ). Then, run A((ρj ,OP0
j ,OP

1
j )j∈[a(λ)]) to obtain a

bipartite state σ. Finally, output

((σ[1], (Aj)j∈[a(λ)]\{j∗}, j
∗, r1), (σ[2], (Aj)j∈[a(λ)]\{j∗}, j

∗, r2)).

if (r1)j∗ = 0 and (r2)j∗ = 1, or

((σ[2], (Aj)j∈[a(λ)]\{j∗}, j
∗, r2), (σ[1], (Aj)j∈[a(λ)]\{j∗}, j

∗, r1)).

if (r1)j∗ = 1 and (r2)j∗ = 0.

A′ℓ for ℓ ∈ {1, 2}
A′ℓ runs Aℓ on its own input and the subspace description A it obtains from the challenger of

MoE−MultChal. Note that A′ℓ can correctly rearrange the input order when passing it to Aℓ since
it knows j∗. Finally, it outputs the j∗-th vector in the output of Aℓ.

It is easy to see that the adversary A′ wins whenever it does not abort and the vectors output
by A are correct. Let ps1,s2 denote the probability of A winning MoE−MultChal conditioned on
r1 = s1 and r2 = s2. Then, we have

ε(λ) =
∑

s1,s2∈{0,1}a(λ)
D(s1) · D(s2)ps1,s2
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and

Pr
[
MoE(λ,A′)

]
=

∑
s1 ̸=s2∈{0,1}a(λ)

D(s1) · D(s2) · ps1,s2

= ε(λ)−
∑

s∈{0,1}a(λ)
(D(s))2 · ps,s

≥ ε(λ)−
∑

s∈{0,1}a(λ)
(D(s))2

≥ ε(λ)−

 ∑
s∈{0,1}a(λ)

(D(s))

 · max
s∈{0,1}a(λ)

{D(s)}

≥ ε(λ)− max
s∈{0,1}a(λ)

{D(s)}.

For the case of negligible security, we will have ε(λ) > 1
poly(λ) and maxs∈{0,1}a(λ){D(s)} =

negl(λ) since D is unpredictable, hence we get Pr[MoE(λ,A′)] > 1
poly(λ) , which is a contradiction by

Theorem 22. The subexponential cases follow by similar calculations.

Finally, we introduce another variant of the game that is useful for our unbounded collusion
secure constructions. In this game, the adversary queries multiple coset state tuples (which are
associated with identity strings) that are generated pseudorandomly, and it is allowed to choose
the coset state tuple for which it wants to break the monogamy-of-entanglement property. The
adversary is also presented with an (obfuscated) program that allows it to make membership queries
for any coset tuple by specifying its identity.

Theorem 24 (Monogamy-of-Entanglement Property for Coset States - Collusion-Resistant Ver-
sion). Let L(λ) be a polynomial, denoting the length of the identity strings. Define cL(λ) =
3 · (L(λ) + λ)3. Let D be a distribution over {0, 1}cL(λ). Consider the following game between
the challenger and an adversary tuple A = (A0,A1,A2).

MoE− Coll(λ, L(λ),A)

1. The challenger initializes the list ID = [ ].

2. The challenger samples a PRF key K ← F.KeyGen(1λ).

3. The challenger samples OPMem← iO(PMemK), where PMemK is the following program.

PMemK(id, u1, . . . , ucL(λ), r)

Hardcoded: K

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F (K, id)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check if ui ∈ A⊥i + s′i if
(r)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

4. The challenger submits OPMem to the adversary.
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5. Query Phase 1: For polynomially many rounds, the adversary makes queries as follows.

The adversary submits an identity string id ∈ {0, 1}L(λ) to the challenger. Then, the chal-
lenger adds id to the list ID, samples (Ai, si, s

′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F (K, id)) and

submits the state
{∣∣∣Ai,si,s′i〉}i∈[cL(λ)] to the adversary.

6. Splitting Phase: The adversary A0 outputs outputs an identity string id∗ ∈ {0, 1}L(λ) and
a bipartite register R.

7. The challenger samples (A∗i , s
∗
i , s

′∗
i )i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F (K, id∗)).

8. Query Phase 2: For ℓ ∈ {1, 2}, each adversary Aℓ is given R[ℓ] and (A∗i )i∈[cL(λ)]. For poly-
nomially many rounds, each adversary makes queries to the challenger as follows. Aℓ submits
an identity string id to the challenger. If id ̸= id∗, the challenger samples (Ai, si, s

′
i)i∈[cL(λ)] ←

CosetGen(1L(λ)+λ;F (K, id)) and submits the state
{∣∣∣Ai,si,s′i〉}i∈[cL(λ)] to the adversary Aℓ.

9. Challenge Phase: The challenger samples r1 ← D and r2 ← D.

10. For ℓ ∈ {1, 2}, each adversary Aℓ is given rℓ and it outputs a tuple of vectors (vℓ,i)i∈[cL(λ)].

11. The challenger, for all ℓ ∈ {1, 2} and for all i ∈ [cL(λ)], checks if vℓ,i ∈ A∗i + s∗i if (rℓ)i = 0

and checks if vℓ,i ∈ (A∗)⊥i + s
′∗
i if (rℓ)i = 1.

If all the checks above pass and id∗ appears in ID at most once, the challenger outputs 1.
Otherwise, it outputs 0.

Similarly, we define MoE− Coll− Sel(λ, L(λ),A) to be the selective version of the above game
where the adversary outputs the chosen identity id∗ at the beginning of the game.

Assuming the existence of iO and one-way functions, then for any polynomial L(λ), for any
unpredictable distribution D and for any QPT adversary tuple A,

Pr[MoE− Coll− Sel(λ, L(λ),A) = 1] ≤ negl(λ).

If we assume the existence of subexponentially-secure iO and one-way functions, and set D to be
the uniform distribution, then for any polynomial L(λ) there exists constants CMoE.Coll.Sel, CMoE.Coll >
0 such that for any QPT adversary tuple

Pr[MoE− Coll− Sel(λ, L(λ),A) = 1] ≤ 2−λ
CMoE.Coll.Sel

Pr[MoE− Coll(λ, L(λ),A) = 1] ≤ 2−λ
CMoE.Coll

for all sufficiently large λ.

Proof. We will give the full security proof for the adaptive case. For the adaptive case, we will
rely on complexity leveraging, i.e. basically guessing the challenge identity id∗. The security of the
selective game MoE− Coll− Sel follows from the same arguments, with the difference being that
we do not use complexity leveraging, since the id∗ is selected by the adversary at the beginning
(hence no need to guess it), and therefore we can simply puncture the PRF key at that point when
preparing OPMem.

We now prove adaptive security. Let iO be a 2−λ
ciO -secure indistinguishability obfuscation

scheme and F be a 2−λ
cPRF -secure puncturable PRF family with input length L(λ) and output

length same as the size of the randomness used by CosetGen, where ciO, cPRF are some constants
satisfying λcPRF > (λ + L(λ))3 and λciO > (λ + L(λ))3. Note that such a PRF exists assuming
subexponentially secure one-way functions (Theorem 6).

We first define a stronger game as follows.
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Moe− Coll− PuncKey

1. The challenger initializes the list ID = [ ].

2. The challenger samples a PRF key K ← F.KeyGen(1λ).

3. The challenger samples OPMem← iO(PMemK), where PMemK is the following program.

PMemK(id, u1, . . . , ucL(λ), r)

Hardcoded: K

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F (K, id)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check if ui ∈ A⊥i + s′i if
(r)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

4. The challenger submits OPMem to the adversary.

5. For polynomially many rounds, the adversary makes queries as follows. The adversary submits
an identity string id to the challenger and a query type, either CLASSICAL or STATE. Then,
the challenger samples (Ai, si, s

′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F (K, id)).

If the type is CLASSICAL, the challenger adds id to the list ID twice and submits (Ai, si, s
′
i)i∈[cL(λ)]

to the adversary.

If the type is STATE, the challenger adds id to the list ID once and submits the state{∣∣∣Ai,si,s′i〉}i∈[cL(λ)] to the adversary.

6. The adversary A0 outputs outputs an identity string id∗ ∈ {0, 1}L(λ).

7. The challenger computes (A∗i , s
∗
i , s

′∗
i )i∈cL(λ) = CosetGen(1L(λ)+λ;F (K, id∗)).

8. The challenger computes K{id∗} ← F.Punc(K, id∗) and submits it to the adversary.

9. The adversary outputs a bipartite register R.

10. The challenger samples r1 ← D and r2 ← D.

11. For ℓ ∈ {1, 2}, each adversary Aℓ is given R[ℓ], (A∗i )i∈[cL(λ)], rℓ and K{id
∗}, and it outputs a

tuple of vectors (vℓ,i)i∈[cL(λ)].

12. The challenger, for all ℓ ∈ {1, 2} and for all i ∈ [cL(λ)], checks if vℓ,i ∈ A∗i + s∗i if (rℓ)i = 0

and checks if vℓ,i ∈ (A∗)⊥i + s
′∗
i if (rℓ)i = 1.

If all the checks above pass and id∗ appears in ID at most once, the challenger outputs 1.
Otherwise, it outputs 0.

It is easy to see that the security in the stronger game implies security in the original game,
since the adversaries A1,A2 can simulate their coset queries simply by evaluating the PRF using
K{id∗}. Note that in the original game, they are not allowed to query for id∗ after the split,
therefore K{id∗} rather than K is sufficient.

Now suppose for a contradiction that there exists an adversary (A0,A1,A2) that wins the
stronger security game with probability 2−λ. We define a tuple of efficient algorithms (A′0,A′1,A′2)
as follows.
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A′0
Sample id′ ← {0, 1}L(λ). Simulate both A0 and the challenger of the stronger game above,

up to (including) Item 8. If id∗ = id′, output the output of A0, along with two copies of
(K{id∗}, (A∗i )i∈[cL(λ)]), one for each A′ℓ. Otherwise, output (⊥,⊥).

A′ℓ for ℓ ∈ {1, 2}
If the input is ⊥, output ⊥ and terminate. Otherwise, simulate the rest of the challenger and
Aℓ.

Observe that the probability that both A′ℓ simultaneously output the correct vectors is at least
2−λ · 2−L(λ), since A outputs the correct vectors with probability 2−λ by assumption and we have
id′ = id∗ with probability 2−L(λ) independently. Now, we will modify the algorithms A′ through
a sequence of steps to finally obtain an adversary that wins MoE−MultChal with probability
2−2·(λ+L(λ)), which is a contradiction by Theorem 23. Throughout rest of the proof, we will assume
id∗ = id′, which is indeed required to win the game.

We define A′′0 by modifying A′0 so that it now samples OPMem as follows. It computes
z = F (K, id′) at the beginning of the game and (A∗i , s

∗
i , s

′∗
i )i∈cL(λ) = CosetGen(1L(λ)+λ;F (K, id∗)).

Then, we first compute for each i ∈ [cL(λ)], OP
∗0
i ← iO(A∗i +s∗i ) and OP∗1i ← iO(A∗⊥i +s

′∗
i ) (i.e., as

in Theorem 23) using (A∗i , s
∗
i , s

′∗
i )i∈cL(λ). Then, it samples OPMem← iO(PMem′K{id′},id′,(OP∗0

i ,OP∗1
i )i∈[cL(λ)]

).

PMem′K{id′},id′,(OP∗0
i ,OP∗1

i )i∈[cL(λ)]
(id, u1, . . . , ucL(λ), r)

Hardcoded: K{id′}, id′, (OP∗0i ,OP∗1i )i∈[cL(λ)]

1. If id = id′, execute the following.

1.1. For each i ∈ [cL(λ)], check if OP∗0i (ui) = 1 if (r)i = 0 and check if OP∗1i (ui) = 1 if
(r)i = 1.

1.2. If all the checks pass, output 1 and terminate. Otherwise, output 0 and terminate.

2. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K{id′}, id)).

3. For each i ∈ [cL(λ)], check if ui ∈ Ai+ si if (r)i = 0 and check if ui ∈ A⊥i + s′i if (r)i = 1.
If any of the checks fail, output 0 and terminate.

4. Output 1.

Further, A′′0 answers any query made by A for id′ using z. By correctness of the obfuscations
OP∗0i ,OP

∗1
i , and by security of the obfuscation of PMem′, we get that the modified adversary

outputs the correct vectors with probability at least 2−λ−L(λ) − 2−(λ+L(λ))
3
.

Observe that above, we never evaluate the PRF at id′ except at the first step, where we compute
z, and the adversary only gets the punctured key K{id′}28. We define A′′0 so that it now samples
z uniformly at random. Then, by above and by puncturable PRF security (Definition 1), the
adversary outputs the correct vectors with probability at least 2−λ−L(λ)−2 ·2−(λ+L(λ))3 . Note that
selective security is sufficient since the adversary picks the puncturing point id′ before the PRF key
is sampled.

28Remember that we have id′ = id∗.
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Finally, we construct an adversary A′′′0 for MoE−MultChal with security parameter L(λ)+λ as
follows. It simulates A′′0, but instead of answering the queries related to id′ itself, it uses the coset
state tuple it obtains from its challenger. Note that since we require that id′ is queried at most
once to win, the single copy obtained from the challenger is sufficient. A′′′ℓ is constructed similarly,
where they use the subspace descriptions and the challenge string rℓ submitted to them by the
challenger. This simulates the game above perfectly, since we place the coset tuple obtained from
the challenger in place of the coset tuple associated with id∗, which has the same distribution since
z is random. Also note that the adversary outputs the correct vectors for this coset tuple, since
its choice is id∗. Therefore A′′′ wins MoE−MultChal with probability 2−λ−L(λ) − 2 · 2−(λ+L(λ))3 >
2−2·(λ+L(λ)) > 2−(λ+L(λ))

2
, which is a contradiction (Theorem 23).

6 Identity-Based and Functional Encryption with Puncturable Mas-
ter Secret Key

In this section, we give definitions for public-key identity-based encryption, along with its variant
where we can puncture the master secret key [CZDC19]. We also define functional encryption whose
master secret key can be punctured simultaneously at all functions such that f(m0) ̸= f(m1). Then,
we show how to construct such schemes in the plain model.

6.1 Definitions

We first give the definition of usual public-key identity-based encryption.

Definition 15. An identity-based encryption scheme with message spaceM and identity space ID
consists of the following algorithms that satisfy the correctness guarantee below.

• Setup(1λ) : Takes a security parameter, λ; outputs a public key pk and a master secret key
msk.

• KeyGen(msk, id) : Takes the master secret key and an identity id ∈ ID, outputs a secret key
for the identity id.

• Enc(pk, id,m) : Takes the public key pk, an identity id and a message m ∈ M, outputs an
encryption of m under the identity id.

• Dec(sk, ct) : Takes a secret key and a ciphertext, outputs either a message or ⊥.

Correctness For all messages m ∈M and identities id,∈ ID, we require

Pr

IBE.Dec(sk, ct) = m :
pk,msk ← IBE.Setup(1λ)
sk ← IBE.KeyGen(msk, id)

ct← Enc(pk, id,m)

 = 1.

We define the following security notion for identity-based encryption.

Definition 16 (Adaptive Indistinguishability-Based Security for Identity-Based Encryption). Con-
sider the following game between the challenger and an adversary A.
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IBE− IND(λ,A)

1. The challenger runs (pk,msk) ← IBE.Setup(1λ) and then it submits pk to the adversary. It
also initializes the set ID.

2. Query Phase 1: For multiple rounds, the adversary adaptively submits an identity string
id ∈ ID. For each query, the challenger samples sk ← IBE.KeyGen(msk, id) and submits sk
to the adversary. It also adds id to ID.

3. The adversary outputs an identity id∗ and a pair of messages m0,m1.

4. The challenger samples b← {0, 1} and ct← IBE.Enc(pk, id∗,mb). It submits ct to the adver-
sary.

5. Query Phase 2: For multiple rounds, the adversary adaptively submits an identity string
id ∈ ID. For each query, the challenger samples sk ← IBE.KeyGen(msk, id) and submits sk
to the adversary. It also adds id to ID.

6. The adversary outputs a guess b′ ∈ {0, 1}.

7. The challenger outputs 1 if and only if b′ = b and id∗ ̸∈ ID.

We say that an identity-based encryption scheme IBE satisfies adaptive indistinguishability-based
security if for any QPT adversary A

Pr[IBE− IND(λ,A) = 1] ≤ 1/2 + negl(λ).

If the adversary outputs id∗ before IBE.Setup is run, we call it selective indistinguishability-
based security.

We can also define an even weaker variant where the adversary cannot query for specific iden-
tities, but is only given the keys for randomly sampled identities. While this weaker variant would
be sufficient for our unclonable PKE construction (Section 7.2), since we do not know of any sim-
pler constructions (compared to the selectively secure construction below), we do not pursue this
further.

We now move onto identity-based encryption with puncturable master secret keys, introduced
by Chen, Zhang, Deng, Chang [CZDC19]. This is defined to be an identity-based encryption
scheme where the master secret key can be punctured at an identity so that the resulting key can
be used to issue secret keys for any identity except for the punctured identity. [CZDC19] also give
a construction based on hierarchical identity-based encryption.

Our definition is simpler than that of [CZDC19], which allows the adversary to adaptively
query for different secret keys before selecting the identity at which the master secret key will be
punctured. Our construction below can also be made secure with respect to their definition by
employing an adaptively secure puncturable PRF, however, our simplified definition suffices for our
unclonable primitive constructions.

Definition 17. Identity-based encryption with puncturable master secret key is an identity-based
encryption scheme (Definition 15) with the following additional algorithms and correctness guar-
antees.

• Punc(msk, id): Takes as input the master secret key msk and an identity id, outputs a master
secret key that is punctured at id.
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Punctured Key Correctness For all messages m ∈ M and identities id, id′ ∈ ID such that
id ̸= id′,

Pr

IBE.Dec(sk, ct) = m :

pk,msk ← IBE.Setup(1λ)
msk′ ← IBE.Punc(msk, id′)
sk ← IBE.KeyGen(msk′, id)
ct← IBE.Enc(pk, id,m)

 = 1.

We also define a stronger version of punctured key correctness, where we require that there
be no difference between sampling a secret key for an identity using the actual master secret key
versus using a punctured master secret key.

Definition 18 (Strong Punctured Key Correctness). For all identities id, id′ ∈ ID such that
id ̸= id′, we require

(psk,msk, pk) ≡ (sk,msk, pk)

where

pk,msk ← IBE.Setup(1λ)

sk ← IBE.KeyGen(msk, id)

msk′ ← IBE.Punc(msk, id′)

psk ← IBE.KeyGen(msk′, id).

Definition 19 (Puncturable Master Secret Key Security for Identity-Based Encryption). Consider
the following game between the challenger and an adversary A.

PUN− IBE− IND(λ,A)

1. The adversary outputs an identity id∗.

2. The challenger runs (pk,msk)← IBE.Setup(1λ) and then msk∗ ← IBE.Punc(msk, id∗). Then,
it submits pk,msk∗ to the adversary.

3. The adversary outputs a pair of messages m0,m1.

4. The challenger samples a challenge bit b ← {0, 1} and computes ct ← IBE.Enc(pk, id∗,mb).
Then, it submits ct to the adversary.

5. The adversary outputs a guess b′ ∈ {0, 1}.

6. The challenger outputs 1 if and only if b′ = b.

We say that an identity-based encryption scheme IBE satisfies puncturable master secret key security
if any QPT adversary A,

Pr[PUN− IBE− IND(λ,A) = 1] ≤ 1

2
+ negl(λ).

It is easy to see that puncturable master secret key security with strong punctured key correct-
ness implies indistinguishability-based security. We formalize this below.

Theorem 25. Let IBE be an identity-based encryption scheme that satisfies [polynomial, subexpo-
nential] puncturable master secret key security (Definition 19). Then, it also satisfies [polynomial,
subexponential] selective indistinguishability-based security (Definition 15).
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Proof. Suppose for a contradiction that there exist a QPT adversary A that wins the selective
indistinguishability-based security game against IBE with probability ε(λ). We claim that the
adversary A′ described below wins the puncturable master secret key security game with ε(λ).
A′ runs A to obtain id∗ and outputs it. Then, it receives pk,msk∗ from the challenger. Then,

A′ simulates the first query phase as follows. It runs A, and whenever it queries for an identity
string id, A′ computes sk ← IBE.KeyGen(msk∗, id) and gives sk to A. When A yields m0,m1, then
A outputs these values. A′ simulates the second query phase similarly using msk∗ after receiving
the challenge ciphertext from the challenger. Finally, when A outputs it guess b′, the adversary A′
also outputs it.

Since id∗ ̸∈ ID, i.e., since the adversary A never queries for id∗, hence by strong punctured
key correctness of IBE, there is no difference between sampling the secret keys using the punc-
tured master secret key (as above) or the actual master secret key (as in the original selective
indistinguishability-based security game). Hence, A′ and the challenger above perfectly simulate
the selective indistinguishability-based security game played by A. Therefore, A′ wins the punc-
turable master secret key game with probability ε(λ).

Plugging in ε(λ) = 1/poly(λ) or ε(λ) > subexp(λ) completes the proof.

Finally, we define functional encryption where the master secret key can be punctured at all
functions f such that f(m0) = f(m1). Note that previous works [BV18, YAL+19, KNT22] define
their own versions of puncturable functional encryption which is different than ours, see Section 2.6.
However, throughout the paper, we will write puncturable functional encryption to mean our defi-
nition.

Definition 20 (Puncturable Functional Encryption). Puncturable functional encryption is a func-
tional encryption scheme (Definition 6) with the following additional algorithms and correctness
guarantees.

• Punc(msk,m0,m1): Takes as input the master secret key msk and outputs a master secret
key that is punctured.

Punctured Key Correctness For all messages m,m0,m1 ∈ M and functions f ∈ F such that
f(m0) ̸= f(m1),

Pr

FE.Dec(sk, ct) = f(m) :

pk,msk ← FE.Setup(1λ)
msk′ ← FE.Punc(msk,m0,m1)
sk ← FE.KeyGen(msk′, f)

ct← FE.Enc(pk,m)

 = 1.

Similar to IBE, we also define a stronger version of punctured key correctness.

Definition 21 (Strong Punctured Key Correctness). For all messages m0,m1 ∈M and functions
f ∈ F such that f(m0) ̸= f(m1), we require

(psk,msk, pk) ≡ (sk,msk, pk)

where

pk,msk ← FE.Setup(1λ)

sk ← FE.KeyGen(msk, f)

msk′ ← FE.Punc(msk,m0,m1)

psk ← FE.KeyGen(msk′, f).
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Definition 22 (Puncturable Functional Encryption Security). Consider the following game between
the challenger and an adversary A.

PUN− FE− IND(λ,A)

1. Challenger samples the keys msk, pk ← FE.Setup(1λ).

2. The adversary receives pk. It makes polynomially many queries by sending a function f ∈ F
and receiving the corresponding functional key skf ← FE.KeyGen(msk, f).

3. The adversary outputs challenge messages m0,m1.

4. The challenger checks if f(m0) = f(m1) for all f ∈ F that was queried by the adversary. If
this condition is not satisfied, it outputs 0 and terminates.

5. The challenger samples msk′ ← FE.Punc(msk,m0,m1).

6. The challenger samples a challenge bit b← {0, 1} and prepares ct← Enc(pk,mb).

7. The adversary receives msk′, ct and outputs a guess b′.

8. The challenger outputs 1 if b′ = b.

We say that an functional encryption scheme FE satisfies puncturable master secret key security
if any QPT adversary A,

Pr[PUN− FE− IND(λ,A) = 1] ≤ 1

2
+ negl(λ).

6.2 Puncturable Identity-Based Encryption Construction

In this section, we show how to construct an identity-based encryption with puncturable master
secret key from indistinguishability obfuscation and public-key encryption, which in turn can be
constructed from indistinguishability obfuscation and one-way functions [SW14, Zha12a].

We obtain our construction through a small addition to the PKE-to-IBE transformation of
[CZDC19]. In their construction of an IBE scheme, the master secret key is a (puncturable) PRF
key that is used to spin up a fresh instance of a PKE scheme for each identity value. In our
puncturable IBE scheme, the puncturing algorithm is simply the puncturing algorithm for the
PRF family. We present the full scheme below for completeness.

Assume the existence of following schemes.

• iO, an indistinguishability obfuscation scheme,

• PKE, a public-key encryption scheme with message spaceM,

• F , a puncturable PRF family with input space ID and output length same as the size of the
randomness used by PKE.KeyGen,

IBE.Setup(1λ)

1. Sample a PRF key K ← F.KeyGen(1λ).

2. Sample OPKeyGen← iO(PKeyGenK , 1λ), where PKeyGenK is the following program.
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PKeyGenK(id)

Hardcoded: K

1. Sample ipk, isk ← PKE.KeyGen(1λ;F (K, id)).

2. Output ipk.

3. Output (OPKeyGen,K).

IBE.KeyGen(msk, id)

1. Parse K = msk.

2. Compute (ipk, isk)← PKE.KeyGen(1λ;F (K, id)).

3. Output isk.

IBE.Punc(msk, id)

1. Parse K = msk.

2. Compute K ′ ← F.Punc(K, id).

3. Output K ′.

IBE.Enc(pk, id,m)

1. Parse OPKeyGen = pk.

2. Compute ipk ← OPKeyGen(id).

3. Output PKE.Enc(ipk,m).

IBE.Dec(sk, ct) Same as PKE.Dec.

Theorem 26. IBE satisfies both correctness (Definition 18) and strong punctured master secret
key correctness (Definition 19).

Proof. Correctness is easy to see, by correctness of PKE and IBE.
We move onto strong punctured master secret key correctness. Consider any id ̸= id′. By

punctured key correctness of F , we have that F (K{id′}, id) = F (K, id) with probability 1 over the
choice of the key and sampling of the punctured key. The result follows.

Theorem 27. IBE satisfies puncturable master secret key security (Definition 19).

Since public-key encryption can be based on iO and one-way functions [SW14, Zha12a], and
puncturable PRFs can be based on one-way functions also (Theorem 6), we get the following
corollary.

Corollary 3. Assuming the existence of indistinguishability obfuscation and one-way functions,
there exist an identity-based encryption scheme with puncturable master secret keys, for any message
length and identity length that is polynomial in the security parameter.
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We prove Theorem 27 in Section 6.3. It is easy to see that our proof also generalizes to the
subexponential security case. Hence, we get the following.

Corollary 4. Assuming the existence of subexponentially secure indistinguishability obfuscation
and one-way functions, there exist a subexponentially secure identity-based encryption scheme with
puncturable master secret keys.

6.3 Proof of Security for Puncturable IBE

In this section, we prove Theorem 27. Suppose for a contradiction that there exists a QPT adversary
A that wins the puncturable master secret key security game PUN− IBE− IND (Definition 19)
with non-negligible probability. We prove security through a series of hybrids, each of which is
constructed by modifying the previous hybrid.

Hyb0: The original game PUN− IBE− IND(λ,A).

Hyb1: The challenger computes z∗ = F (K, id∗) and K{id∗} ← F.Punc(K, id∗) after the adversary
has submitted id∗. Then, it computes ipk∗, isk∗ ← PKE.KeyGen(1λ; z∗). Finally, instead of sam-
pling the public key pk as before, it now computes it as OPKeyGen← iO(PKeyGen′K{id∗},ipk∗,id∗ , 1λ),
where PKeyGen′K{id∗},ipk∗,id∗ is the following program.

PKeyGen′K{id∗},ipk∗,id∗(id)

Hardcoded: K{id∗}, ipk∗, id∗

1. If id = id∗, output ipk∗ and terminate.

2. Sample ipk, isk ← PKE.KeyGen(1λ;F (K, id)).

3. Output ipk.

Hyb2: The challenger now samples z∗ uniformly at random from the output space of F instead of
computing it as z∗ = F (K, id∗).

Claim 1. Hyb0 ≈ Hyb1.

Proof. By correctness of the punctured PRF keys, we have that PKeyGen′K{id∗},ipk∗,id∗ and PKeyGenK
have the same functionality. The result follows by the security of iO.

Claim 2. Hyb1 ≈ Hyb2.

Proof. Observe that in Hyb1, the adversary has only access to (efficient functions of) PRF evalu-
ations at points other than id∗ and the punctured PRF key K{id∗}, rather than the full key K.
Therefore, the result follows from the puncturable PRF security (Definition 1).

By above, we get that A wins in Hyb2 with non-negligible probability. We claim that the
adversary A′ described below wins the public-key encryption security game against PKE with non-
negligible probability.
A′ runs A to obtain id∗. Then, it samples a PRF key K for F and computes K{id∗} ←

F.Punc(K, id∗). When it receives the public key pk from the challenger, A′ computes OPKeyGen←
iO(PKeyGenK{id∗},pk,id∗ , 1λ), where PKeyGenK{id∗},pk,id∗ is the following program.
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PKeyGen′K{id∗},pk,id∗(id)

Hardcoded: K{id∗}, pk, id∗

1. If id = id∗, output pk and terminate.

2. Sample ipk, isk ← PKE.KeyGen(1λ;F (K, id)).

3. Output ipk.

Then, A′ runs A on OPKeyGen and K{id∗} to obtain m0,m1, which it submits to the challenger.
Finally, when A′ obtains the challenge ciphertext from the challenger, it runs A on it to obtain the
guess b′, which it submits to the challenger.

It is easy to see that A′ wins the public-key encryption security game with the same probability
as A wins in Hyb2, which is non-negligible. This is a contradiction to the security of PKE.

6.4 Puncturable Functional Encryption Construction

As an application of our puncturable IBE scheme and as a warm-up to our copy-protected functional
encryption scheme, we show how to construct puncturable functional encryption. In our copy-
protected functional encryption scheme (Section 8), we use a punctured master secret key in a
non-black-box way to remove interaction from the post-challenge-ciphertext phase of the security
game.

Now we move onto our construction, which will be similar to the delegatable functional en-
cryption scheme of [CGJS15]. Assume the existence of following schemes and we will construct a
puncturable functional encryption for the class of functions F defined as all circuits that are of size
at most Q(λ), where Q(λ) is a fixed polynomial.

• iO, 2−λ−Q(λ)-secure indistinguishability obfuscation scheme,

• IBE, a 2−λ−Q(λ)-secure public-key identity-based encryption scheme for identity space {0, 1}Q(λ)

with puncturable master secret keys (Definition 19) and deterministic identity key generation
satisfying strong punctured key correctness (Definition 18)

• F , a a 2−λ−Q(λ)-secure puncturable PRF family with input space {0, 1}Q(λ) and output length
same as the size of the randomness used by IBE.Enc,

FE.Setup(1λ)

1. Sample pk, imsk ← IBE.Setup(1λ).

2. Output pk, (imsk,FULL− KEY).

FE.KeyGen(msk′, f)

1. Parse (msk′′,TYPE) = msk′.

2. If TYPE = PUNC− KEY, output msk′′(f) and terminate.

3. Sample sk ← IBE.KeyGen(msk′′, f).

4. Output (sk, f).
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FE.Punc(msk,m0,m1)

1. Parse (imsk,TYPE) = msk. Terminate if TYPE ̸= FULL− KEY.

2. Sample OPKey← iO(1λ,PKeyimsk,m0,m1
) where PKeyimsk,m0,m1

is the following program.

PKeyimsk,m0,m1
(f)

Hardcoded: imsk,m0,m1

1. If f(m0) ̸= f(m1), output ⊥ and terminate.

2. Compute sk = IBE.KeyGen(imsk, f).

3. Output (sk, f).

3. Output OPKey.

FE.Enc(pk,m)

1. Sample K ← F.Setup(1λ).

2. Sample OPCt← iO(PCtm,pk,K) where PCtm,pk,K is the following program.

PCtm,pk,K(f)

Hardcoded: m, pk,K

1. Compute a = f(m).

2. Compute ct = IBE.Enc(pk, f, a;F (K, f)).

3. Output ct.

3. Output OPCt.

FE.Dec(sk, ct)

1. Parse (sk′, f) = sk.

2. Parse OPCt = ct.

3. ct′ = OPCt(f).

4. Output IBE.Dec(sk′, ct′).

Theorem 28. FE satisfies both correctness (Definition 21) and strong punctured master secret key
correctness (Definition 22).

Proof. Follows in a straightforward manner from the correctness of the underlying primitives and
the fact that IBE.KeyGen is deterministic.

Theorem 29. FE satisfies puncturable master secret key security (Definition 22).

Since we construct in Section 6.2 a puncturable IBE with the properties required by FE based
on iO and one-way functions, we get the following corollary.

Corollary 5. Assuming the existence of subexponentially secure indistinguishability obfuscation
and one-way functions, there exist a puncturable functional encryption scheme.
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6.5 Proof of Security for Puncturable Functional Encryption

In this section, we prove Theorem 29. Our proof will be similar to security proof of the delegatable
functional encryption scheme in [CGJS15]. Throughout the proof, we will interpret the functions
f ∈ F, which are represented by circuits of size Q(λ), as numbers in {0, 1, . . . , 2Q − 1}.

Suppose for a contradiction there exists a QPT adversaryA that wins the puncturable functional
encryption game with non-negligible advantage, that is, Pr[PUN− FE− IND(λ,A) = 1] ≥ 1/2 +
1/p(λ) for some polynomial p(·) and for infinitely many values of λ > 0. We will prove security
through a series of hybrids, each of which is obtained by modifying the previous one, starting with
Hyb0.

We define Hyb0 to be the same as the original security game PUN− FE− IND(λ,A).

Hybt for t ∈ {0, 1, . . . , 2Q}: We now compute the challenge ciphertext (encryption ofmb) as OPCt←
iO(PCt(t)).

PCt(t)(f)
Hardcoded: m0,m1, b, pk,K

1. If f < t, set a = f(m1−b). Otherwise, set a = f(mb).

2. Compute ct = IBE.Enc(pk, f, a;F (K, f)).

3. Output ct.

Define the event Et to be the event that the pair of challenge messages m0,m1 output by the
adversary A are such that t(m0) = t(m1).

Lemma 4. |(Hybt)|Et
− (Hybt)|Et

| < 2−λ−Q(λ).

Proof. Observe the programs PCt(t) and PCt(t+1) differ only on input f = t, in which case the
first program compute a = t(mb) whereas the second program computes a = t(m1−b). However,
conditioned on Et, we have t(mb) = t(m1−b). Hence, the programs have the same functionality and
the result follows from the security of iO.

We will also prove |(Hybt)|Et
− (Hybt)|Et

| < 2−λ/2−Q(λ). This combined with the above lemma

gives |Hybt−Hybt+1| < 2−λ/2−Q(λ) through triangle inequality. Crucially, note that the probability
of the event Et is the same in both hybrids since we only change the way we compute the challenge
ciphertext (which the adversary sees after choosing m0,m1).

To prove |(Hybt)|Et
− (Hybt)|Et

| < 2−λ/2−Q(λ), we define a sequence of intermediary hybrids.

Hybt,1 for t ∈ {0, 1, . . . , 2Q}: We first compute ct∗ ← IBE.Enc(pk, t, f(mb);F (K, t)) and K{t} ←
F.Punc(K, t). Then, we now compute the challenge ciphertext as OPCt← iO(PCt(t,1)).

PCt(t,1)(f)
Hardcoded: ct∗,K{t},m0,m1, b, pk

1. If f = t, output ct∗ and terminate.

2. If f < t, set a = f(m1−b). Otherwise, set a = f(mb).
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3. Compute ct = IBE.Enc(pk, f, a;F (K{t}, f)).

4. Output ct.

Hybt,2 for t ∈ {0, 1, . . . , 2Q}: We now sample ct∗ ← IBE.Enc(pk, t, f(mb); z) where z is sampled

uniformly at random from the output space of F .

Hybt,3 for t ∈ {0, 1, . . . , 2Q} : We now change the way we sample punctured master secret key as

follows. At the beginning of the game, we compute imsk′ ← IBE.Punc(imsk, t). We now output
OPKey← PKey(t).

PKey(t)(f)
Hardcoded: imsk′,m0,m1

1. If f(m0) ̸= f(m1), output ⊥ and terminate.

2. Compute sk = IBE.KeyGen(imsk′, f).

3. Output (sk, f).

Hybt,4 for t ∈ {0, 1, . . . , 2Q} : Same as Hybt,3 but we now compute ct∗ as ct∗ ← IBE.Enc(pk, t, f(m1−b); z).

Hybt,5 for t ∈ {0, 1, . . . , 2Q} : Same as Hybt,2 but we compute ct∗ as ct∗ ← IBE.Enc(pk, t, f(m1−b);F (K, t)).

Hybt,6 for t ∈ {0, 1, . . . , 2Q} : Same as Hybt,1 but we compute ct∗ as ct∗ ← IBE.Enc(pk, t, f(m1−b);F (K, t)).

Lemma 5. |(Hybt)|Et
− (Hybt,1)|Et

| < 2−λ−Q(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. By the punctured key correctness of F , the programs PCt(t) and PCt(t,1) have the same
functionality. The results follows by the security of iO.

Lemma 6. |(Hybt,1)|Et
− (Hybt,2)|Et

| < 2−λ−Q(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Observe that the adversary only has the punctured key K{t}. The resut follows by the
security of the puncturable PRF F .

Lemma 7. |(Hybt,2)|Et
− (Hybt,3)|Et

| < 2−λ−Q(λ) · poly(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Since we are conditioned on the event Et, we have t(m0) ̸= t(m1). Hence, by strong punc-
tured key correctness of IBE, all the programs PKeyP in these hybrids have the same functionality.
Result follows from the security of iO.

Lemma 8. |(Hybt,3)|Et
− (Hybt,4)|Et

| < 2−λ−Q(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Since we are conditioned on the event Et, we have t(m0) ̸= t(m1). Further, to win, for
any function f ∈ F, if f is queried by the adversary, then f(m0) = f(m1). Combining these,
we get that t was never queried by the adversary. Therefore, the adversary never gets a secret
key for the identity t. In particular, all the identity secret keys obtained by the adversary (as a
result of functional key queries) can instead be obtained using imsk′, the IBE master secret key
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punctured at t, due to the strong punctured key correctness of IBE. Further, the punctured IBE
master secret key obtained by the adversary (which is inside the punctured FE master secret key) is
also punctured at t. Finally, observe that ct∗ is an IBE encryption (sampled using true randomness
z) under the identity t. Hence, the result follows by puncturable IBE security (Definition 19).

Lemma 9. |(Hybt,4)|Et
− (Hybt,5)|Et

| < 2−λ−Q(λ) · poly(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Same argument as Lemma 7.

Lemma 10. |(Hybt,5)|Et
− (Hybt,6)|Et

| < 2−λ−Q(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Same argument as Lemma 6.

Lemma 11. |(Hybt,6)|Et
− (Hybt+1)|Et

| < 2−λ−Q(λ) for all t ∈ {0, 1, . . . , 2Q}.

Proof. Same argument as Lemma 5.

Combining the above lemmata, we get |(Hybt)|Et
− (Hybt)|Et

| < 2−λ/2−Q(λ). Then, as argued

before, this gives |Hybt − Hybt+1| < 22
−λ/2−Q(λ)

, finally yielding |Hyb0 − Hyb2Q | < 2−λ/2. Hence,
Pr[Hyb0 = 1] ≥ 1/2 + 1/p(λ) by assumption and therefore Pr[Hyb2Q = 1] ≥ 1/2 + 1/(2 · p(λ)).
However, this is clearly a contradiction, since the challenge messages in these hybrids are mb and
m1−b respectively (while we still compare the adversary’s guess to b).

7 Public-Key Encryption with Copy-Protected Secret Keys

In this section, we define public-key encryption with copy-protected secret keys. Then, we give our
construction based on coset states and prove it secure.

7.1 Definitions

Definition 23 (Public-key Encryption with Copy-Protected Secret Keys). A public-key encryption
scheme with copy-protected secret keys consists of the following efficient algorithms.

• KeyGen(1λ): Takes in the security parameter, output a classical secret key sk and a public
key pk.

• QKeyGen(sk): Takes as input the classical secret key and outputs a quantum secret key.

• Enc(pk,m): Takes in the public key and a message m ∈M, outputs and encryption of m.

• Dec(Rdec, ct): Takes in a quantum secret key and a ciphertext, outputs a message or ⊥.

We require correctness29 and CPA security.

Correctness For all messages m ∈M,

Pr

Dec(Rdec, ct) = m :
pk, sk ← Setup(1λ)
Rdec ← QKeyGen(sk)
ct← Enc(pk,m)

 = 1.

29While our schemes satisfy perfect correctness, i.e., correctness with probability 1, some work relax the definition
to 1− negl(λ).
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CPA Security For any stateful QPT adversary A,

Pr

A(ct) = b :

pk, sk ← Setup(1λ)
m0,m1 ← A(pk, 1λ)

b← {0, 1}
ct← Enc(pk,mb)

 ≤ 1

2
+ negl(λ).

As observed by [CLLZ21], correctness of the scheme along with Almost As Good As New Lemma
(Lemma 1) means that we can implement decryption in a way such that the quantum secret key is
not disturbed. Thus, we can reuse the key to decrypt any number of times.

Following prior work, we will use two different security notions, regular anti-piracy and strong
anti-piracy. The former will be the natural security notion while the latter definition is easier
to work with when proving security. Both of our definitions follow [CLLZ21, LLQZ22], with the
strengthening that we allow unbounded30 number of key queries and we also allow the adversary
to choose different challenge messages for each freeloader.

Now, we move onto the first definition. In this definition, the pirate (or splitting) adversary
queries for copy-protected keys for any number of rounds. Then, if it has queried for k keys,
it outputs k + 1 freeloaders, which are unitaries along with hardwired quantum states. More
precisely, it outputs a (k + 1)-partite (possibly entangled) register Radv and unitaries Uℓ. Then,
the challenger presents these freeloaders with challenge ciphertexts, and the adversary wins if all
freeloaders correctly predict the challenges. Below, we write Uquantum to denote the quantum
universal circuit Uquantum((U, ρ), x) that takes in a unitary U and a state ρ, and simulates the
induced quantum circuit on input x (i.e. computes U(ρ, x)), and finally measures the first output
qubit in the computational basis. We note that the freeloaders being unitaries is not restrictive and
actually captures general quantum circuits since the hardwired quantum state (Radv)ℓ can include31

workspace qubits initialized to zeroes.

Definition 24 (CPA-Style Regular γ-Anti-Piracy Security). Let PKE be a public key encryption
scheme with copy-protected secret keys. Consider the following game between the challenger and an
adversary A.

PKEAntiPiracy(λ,A)

1. The challenger runs sk, pk ← PKE.Setup(1λ) and submits pk to the adversary.

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← PKE.QKeyGen(sk) and submits R to the adversary.

3. A outputs a (k+1)-partite register Radv, unitaries {Uℓ}ℓ∈[k+1] and challenge messages {m0
ℓ ,m

1
ℓ}ℓ∈[k+1],

where k is the number of queries it made.

4. The challenger executes the following for each ℓ ∈ [k + 1].

4.1. bℓ ← {0, 1}.
4.2. ctℓ ← PKE.Enc(pk,mbℓ

ℓ ).

4.3. b′ℓ ← Uquantum(Uℓ,Radv[ℓ], ctℓ).

30Still polynomial since the adversary is QPT.
31It will also include some quantum information that the pirate adversary has produced from the copy-protected

keys.
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4.4. Check if b′ℓ = bℓ.

5. The challenger outputs 1 if and only if all the checks pass.

We say that PKE satisfies γ-anti-piracy security if for any QPT adversary A,

Pr[PKEAntiPiracy(λ,A) = 1] ≤ 1

2
+ γ(λ) + negl(λ).

We ignore writing γ when γ = 0.

Note that we can also define a version where the freeloader adversaries try to guess the whole
message mℓ where mℓ ← M; and we require negligible probability of success. It is not known if
this version is not implied by CPA security, see [CLLZ21]. However, our construction will satisfy
both notions. Before moving onto the stronger definition, we need the following notation.

Definition 25 (Decryptor Testing). In the anti-piracy game between the challenger and an adver-
sary, fix ℓ ∈ [k + 1], some values m0

ℓ ,m
1
ℓ of the challenge messages, a freeloader unitary Uℓ, and

some value st of a classical state maintained by the challenger (which will be defined later). Let
D be an efficient ciphertext distribution that can depend on st. That is, Dst(m; r) is an efficient
classical algorithm where m ∈M, r ∈ R and R is a random coin set.

Consider the following mixture P of binary projective measurements, induced by D andm0
ℓ ,m

1
ℓ , Uℓ, st,

applied on a state ρ.

1. Sample b← {0, 1}.

2. Sample r ← R.

3. Run ct← Dst(mb
ℓ; r).

4. Execute Uℓ on (ρ, ct), and measure the first qubit of the output registers, let b′ be the output.

5. Output 1 if b′ = b. Otherwise, output 0.

Observe that we can efficiently execute the above measurement32 for arbitrary given superposi-
tions of r and b values. Therefore, by Section 4, there exists both exact and approximated projective
and threshold implementations for P. We write PIℓ,D and APIε,δℓ,D to denote the projective im-
plementation and approximate projective implementation of P, respectively. Similarly, let TIℓ,D,η
and ATIε,δℓ,D,η denote the threshold and efficient approximate threshold implementations of P for a
threshold value η.

While the fixed values m0
ℓ ,m

1
ℓ , Uℓ, st are omitted from the notation, they will be clear from the

context. Unless otherwise specified, we will write D to denote the honest ciphertext distribution,
that is, we encrypt m as

ct← PKE.Enc(pk,m)

where pk is part of st.

Definition 26 (CPA-Style Strong γ-Anti-Piracy). Let PKE be a public key encryption scheme with
copy-protected secret keys. Consider the following game between the challenger and an adversary
A.

32More formally, we are actually talking about the measurement where r, b are fixed
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PKEStrongAntiPiracy(λ, γ(λ),A)

1. The challenger runs sk, pk ← PKE.Setup(1λ) and submits pk to the adversary.

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← PKE.QKeyGen(sk) and submits R to the adversary.

3. A outputs a (k+1)-partite register Radv, unitaries {Uℓ}ℓ∈[k+1] and challenge messages {m0
ℓ ,m

1
ℓ}ℓ∈[k+1],

where k is the number of queries it made.

4. The challenger applies the test ⊗
ℓ∈[k+1]

TIℓ,D,1/2+γ

to Radv and outputs 1 if and only if the measurement result is all 1.

We say that PKE satisfies strong γ-anti-piracy security if for any QPT adversary A,

Pr[PKEStrongAntiPiracy(λ, γ(λ),A)] ≤ negl(λ).

We also have the following relationship between the various security definitions for public-key
encryption.

Theorem 30 ([CLLZ21]). Suppose a public key encryption scheme with copy-protected keys satisfies
CPA-style strong γ-anti-piracy (Definition 26). Then, it also satisfies CPA-style regular γ-anti-
piracy (Definition 24).

While [CLLZ21] proves the above for only 1 → 2 anti-piracy security, it can be generalized to
unbounded collusion setting - see proof of Theorem 34.

Theorem 31 ([CLLZ21]). Suppose a public key encryption scheme with copy-protected keys satisfies
CPA-style regular γ-anti-piracy (Definition 24) for any inverse polynomial γ. Then, it also satisfies
regular CPA security and regular γ-anti-piracy for γ = 0.

This is simply due to the definition of negl(λ) and γ-anti-piracy.

7.2 Construction

In this section, we present our construction. Assume the existence of following primitives where we
set ν(λ) = 2−6λ · 2−8λ0.3CMoE.Coll .

• iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time
adversaries,

• IBE, identity-based encryption scheme for the identity space ID = {0, 1}λ (Definition 15)

that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,

• F1, puncturable PRF family with input length λ and output length same as the size of the
randomness used by CosetGen (Definition 14) that is ν(λ)-secure against 25λ ·28λ0.3CMoE.Coll -time
adversaries,

• F2, puncturable PRF family with input length λ and output length same as the size of the
randomness used by IBE.Enc that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,
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• CCObf, compute-and-compare obfuscation for 2−λ
0.2·CMoE.Coll -unpredictable distributions that

is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -time adversaries,

A remark is in order regarding our assumptions. We note that all of our assumptions above can
be based on any subexponential iO and LWE assumption. For example, if we have an iO scheme
that is 2−λ

c1 -secure against 2λ
c2 -time adversaries; in our construction we implicitly initiate it with

security parameter λc
′
where c′ = max{0.3CMoE.Coll/c1, 0.3CMoE.Coll/c2}. While this might require

larger padding for obfuscated circuits, this is still within polynomial factors. The same applies
for the other primitives. Thus, our assumptions can be based solely on subexponential hardness
for any exponent, since we can always scale the security parameter by a polynomial factor when
instantiating the underlying primitives.

Set L(λ) = λ and therefore cL(λ) = 24·λ3 (see Theorem 24). We also assume that all obfuscated
programs in the construction and in the proof are appropriately padded.

We now give our construction for public-key encryption with copy-protected secret keys.

PKE.Setup(1λ)

1. Sample a PRF key K1 ← F1.KeyGen(1
λ).

2. Sample cpk, csmk ← IBE.Setup(1λ).

3. Sample OPMem← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id, u1, . . . , ucL(λ), r)

Hardcoded: K1

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check if ui ∈ A⊥i + s′i if
(r)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

4. Set pk = (cpk,OPMem) and sk = (cmsk,K1).

5. Output (pk, sk).

PKE.QKeyGen(sk)

1. Parse (cmsk,K1) = sk.

2. Sample id← {0, 1}λ.

3. (Ai, si, s
′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id)).

4. ck ← IBE.KeyGen(cmsk, id).

5. Output
(∣∣∣Ai,si,s′i〉)i∈[cL(λ)], ck, id.
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PKE.Enc(pk,m)

1. Parse (cpk,OPMem) = pk.

2. Sample r ← {0, 1}cL(λ).

3. Sample a PRF key K2 for F2 as K2 ← F2.KeyGen(1
λ).

4. Sample OPCt ← iO(PCtOPMem,cpk,K2,r,m), where PCtOPMem,cpk,K2,r,m is the following pro-
gram.

PCtOPMem,cpk,K2,r,m(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m

1. Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

2. Output IBE.Enc(cpk, id,m;F2(K2, id)).

5. Output (OPCt, r).

PKE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[cL(λ)], ck, id) = Rkey and (OPCt, r) = ct.

2. For indices i ∈ [cL(λ)] such that (r)i = 1, apply H⊗κ(L(λ)+λ) to Ri.

3. Run the program OPCt coherently on id and (Ri)i∈[cL(λ)].

4. Measure the output register and denote the outcome by cct.

5. Output IBE.Dec(ck, cct).

Correctness with probability 1 follows in a straightforward manner from the correctness of the
underlying schemes. We claim that the construction is also secure.

Theorem 32. PKE satisfies strong γ-anti-piracy for any inverse polynomial γ.

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 6. Assuming subexponentially secure iO and subexponentially secure LWE, there exists
a public-key encryption scheme that satisfies anti-piracy security against unbounded collusion.

Proof. IBE can be constructed based on iO and one-way functions (Corollary 4). F1 and F2 can be
constructed based on one-way functions (Theorem 6). which in turn can be obtained from LWE.
CCObf can be constructed based on iO and LWE (Theorem 12).
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7.3 Proof of Strong Anti-Piracy Security

In this section, we will prove Theorem 32. We note that our construction also satisfies random
challenge anti-piracy security; we only give the full proof for Theorem 32 and the random challenge
anti-piracy security follows by mostly the same proof.

Throughout the proof, we will interpret identity strings for IBE, which are λ-bit strings, as
integers in the set {0, 1, . . . , 2λ − 1}. Without loss of generality, we assume that IBE can also
encrypt the symbol ⊤, which is outside the message spaceM for PKE.

Fix any inverse polynomial γ(λ) and suppose for a contradiction that there exists an efficient
adversary A that wins the strong γ-anti-piracy game with non-negligible probability. Let k denote
the number of keys obtained by the adversary. Define Hyb0 to be the original security game
PKEStrongAntiPiracy(λ, γ(λ),A).

Making Key Identities Unique

Define Hyb1 by modifying Hyb0 as follows. We change the way we sample the identity strings in
PKE.QKeyGen during each quantum key query. Let the challenger record each sampled identity
when answering each query, and when answering a new query, it samples uniformly at random an
identity value from the set {1, . . . , 2λ−1} that has not appeared before33. That is, we sample unique
identity strings for each quantum key. Also, we define the following notation. Let idα(i) be the ith

identity value sampled where α(·) is the permutation [k]→ [k] such that 0 < id1 < · · · < idk < 2λ.
That is, idα(i) is the identity string that is sampling during the ith query of the adversary. For

simplicity of notation, we also set id0 = 0 and idk+1 = 2λ.

Claim 3. |Hyb0 − Hyb1| < exp(−λ).

Proof. An easy calculation shows that uniformly and independently sampling from {0, 1, . . . , 2λ−1}
k times gives k unique values from the set {1, . . . , 2λ − 1} with probability at least

1− k2(λ)

2λ
.

The result follows since k(·) is a polynomial.

Making the Challenger Efficient

Define Hyb2 by modifying Hyb1 as follows. At the end of the game, instead of applying thresh-
old implementations TIℓ,D,1/2+γ , the challenger applies approximate threshold implementations

ATIε,δ
ℓ,D,1/2+ 31γ

32

with ε = γ
32k and δ = 2−10λ · 2−10λCMoE.Coll . It outputs 1 if and only if all ATI output

1.

Claim 4. Pr[Hyb2 = 1] > Pr[Hyb1 = 1]− exp(−λ).

Proof. Let σ be the (k + 1)-partite state output by the adversary. By Theorem 18, we get

Tr

 ⊗
ℓ∈[k+1]

ATIε,δ
ℓ,D,1/2+ 31γ

32

σ
 ≥ Tr

 ⊗
ℓ∈[k+1]

TIℓ,D,1/2+γ

σ
− (k(λ) + 1) · exp(−λ).

Observe that the trace expressions on the left-hand side and the right-hand side are the winning
probabilities in Hyb2 and Hyb1 respectively. The result follows since k(λ) is a polynomial.

33Note that this can be done on-the-go in polynomial time, with overwhelming probability, e.g. through rejection
sampling
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Therefore, A wins in Hyb2 with probability 1
p(·) for some polynomial p(·) and infinitely many

values of λ > 0. Note that in Hyb2, now the challenger is also efficient by Theorem 17 and our
choice of ε, δ.

The rest of the proof will be devoted to showing that using A, we can construct an adversary
that breaks the selective monogamy-of-entanglement game MoE− Coll− Sel (Theorem 24). We
will use projective and threshold implementations for various mixtures of measurements to test the
freeloaders. The public key pk, the identity strings id1, . . . , idk and the permutation α will be part
of the classical state st of the challenger, in the sense of Definition 25. The particular distribution
on the collection of projective measurements (induced by a challenge ciphertext distribution) will
vary, and it will be denoted explicitly.

Definition 27. For all j ∈ [k], let (Aji , s
j
i , s

′j
i )i∈[cL(λ)] denote the tuple of subspaces and vectors

sampled during the sampling of the (α−1(j))-th key. That is, it is the coset tuple associated with
idj.

A Monogamy-of-Entanglement Type Game

First, we define the following monogamy-of-entanglement-type game G for a tuple of adversaries
(A′0,A′1,A′2). Observe that it will be straightforward to reduce the game G to MoE− Coll− Sel with
no loss of security, since the former is the same as the latter except that it includes an independent
IBE instance that can sampled by the reduction.

G(λ, (A′0,A′1,A′2))

1. The adversary outputs an index j∗ ∈ [k].

2. The challenger executes pk, sk ← PKE.Setup(1λ) and submits pk to A′0.

3. For k rounds, A′ makes quantum key queries. For each query, the challenger samples a
quantum key as in PKE.QKeyGen, but by sampling the identity id in a collision-free way (as
in Hyb1), and submits it to A′0.

4. The adversary outputs a bipartite register Rbip.

5. For ℓ ∈ {1, 2}, the challenger does the following.

5.1. Sample rℓ ← {0, 1}cL(λ).
5.2. Run A′ℓ on Rbip[ℓ], (A

j∗

i )i∈[cL(λ)] and rℓ to obtain a tuple of vectors (vℓ,i)i∈[cL(λ)].

5.3. For all i ∈ [cL(λ)], check if vℓ,i ∈ Aj
∗

i + sj
∗

i if (rℓ)i = 0 and check if vℓ,i ∈ (Aj
∗
)
⊥
i + s

′j∗

i if
(rℓ)i = 1.

If all the checks pass, the challenger outputs 1. Otherwise, it outputs 0.

Now, we construct a tuple of adversaries (A′0,A′1,A′2) for G, starting with A′0. Let Dj for
j ∈ {0, . . . , k + 1} be efficient ciphertext distributions, which we will define later.

A′0(pk)

1. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.
Output j∗.

2. Simulate A on pk by making a quantum secret key query to the challenger whenever A
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makes a query, and forwarding the obtained key to it. Let Radv be the (k + 1)-partite
register (with state σ), let (m0

ℓ ,m
1
ℓ )ℓ∈[k+1] be the challenge messages and let (Uℓ)ℓ∈[k+1]

be the unitaries output by A at the end of the query phase.

3. Apply APIε,δℓ,D0
to all registers Radv[ℓ] for ℓ ∈ [k+1], let bℓ,0 be the measurement outcomes.

4. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[x], let bx,i be the measurement

outcomes.

5. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[y], let by,i be the measurement out-

comes.

6. Output

((Radv[x], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗], (Uℓ)ℓ∈[k+1]),

(Radv[y], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗], (Uℓ)ℓ∈[k+1]),

j∗).

For j ∈ {1, . . . , k}, define Dj to be the challenge ciphertext distribution where an encryption of
a message m is computed as follows.

1. Sample r ← {0, 1}cL(λ).

2. Sample a PRF key K2 for F2.KeyGen(1
λ).

3. Sample OPCt← iO(PCt(j)OPMem,cpk,K2,r,m,idj
)

PCt
(j)
OPMem,cpk,K2,r,m,idj

(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m, idj

1. Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

2. If id < idj , set a = ⊤. Otherwise, set a = m.

3. Output IBE.Enc(cpk, id, a;F2(K2, id)).

4. Output (OPCt, r).

We define D0 to be the honest ciphertext distribution D and we define Dk+1 as follows.

1. Sample r ← {0, 1}cL(λ).

2. Sample a PRF key K2 for F2.KeyGen(1
λ).

3. Sample OPCt← iO(PCt(k+1)
OPMem,cpk,K2,r

)

PCt
(k+1)
OPMem,cpk,K2,r

(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r

1. Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.
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2. Output IBE.Enc(cpk, id,⊤;F2(K2, id)).

4. Output (OPCt, r).

Note that the distribution Dk+1 does not actually use the message m.
Observe that A′0 can indeed execute APIε,δℓ,Di

. The identity strings idj are part of the quantum
secret keys. Further, the adversary can record the order in which the identity strings are received
and also their sorted version, so it can indeed index them as idj .

Finally, we claim that there exists efficient A′1,A′2 such that (A′0,A′1,A′2) wins G with probability

1

20.4·λ
CMoE.Coll

.

We will construct these adversaries in the rest of the proof, and at the end we will show that the
security of G can be reduced to MoE− Coll− Sel, arriving at a contradiction.

Finding a Simultaneous Jump

In the rest of the proof, we will formalize the following fact. Observe that the adversary only
obtains k different identity keys for IBE. Therefore, informally, by the security of IBE and by the
pigeonhole principle, two of the k + 1 freeloaders must be using IBE encryptions of their challenge
message under the same identity idj to decode their challenge ciphertext. This will in turn mean
that they must be using the same coset state tuple, and therefore we will extract coset vectors for
the same identity/tuple, which will be a contradiction by the monogamy-of-entanglement property.

As a first step, we will show that the decryption success probabilities of the two freeloaders x, y,
when tested with respect to the distributions Dj , jump at the same index j∗, meaning that the two
freeloaders use the same identity string block [idj∗ , idj∗+1 − 1] to decrypt.

Claim 5. Let τ be the state of the bipartite register Radv[x, y] output by A′0 in G, and also consider
the classical values j∗, x, y, {bℓ,i}ℓ,i contained in the output of A′0.

Suppose we apply the measurement APIε,δx,Dj∗+1
⊗ APIε,δy,Dj∗+1

to τ and let bx,j∗+1, by,j∗+1 denote

the measurement outcomes we obtain. Then,

Pr

[
bx,j∗ − bx,j∗+1 >

29γ

32k
∧ by,j∗ − by,j∗+1 >

29γ

32k

]
>

1

4p(λ) · k3(λ)
where the probability is taken over the randomness of the challenger, the adversary A′0 and the

measurement outcomes.

First we define the following notation.

Definition 28. Let ExpC,ℓ denote the outcome of the following experiment where C is a ciphertext
distribution that can depend on pp.

1. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.

2. Execute pk, sk ← PKE.Setup(1λ).

3. Simulate the first step of A′0 and the challenger of G:

3.1. Simulate A on pk by sampling a quantum secret key (as in Hyb1) whenever A makes a
query, and submitting the key to it. Let Radv, (m

0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1] be the output

of A.
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4. Set pp = (x, y, j∗, (idj)j∈[k+1], (m
0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1], pk).

5. Sample b← {0, 1}.

6. Sample ct← C(pp,mb
ℓ).

7. Output Radv, (b, ct), pp.

We will write ExpC,ℓ ≈cν ExpC′,ℓ to denote that the advantage of any computational adversary in
distinguishing the outcomes of these experiments is ν.

Proof of Claim 5. Consider instead the following modified version of A′0. We run APIε,δℓ,Di
in suc-

cession from i = 0 to i = k + 1 on all registers ℓ ∈ [k + 1] of Radv, to obtain values b′ℓ,i. While
the ordering of execution between the registers does not matter, since local operations on disjoint
registers commute, for convenience, assume that we run APIε,δℓ,Di

on all registers before moving onto

APIε,δℓ,Di+1
. Let ρi denote the post-measurement state after having run APIε,δℓ,Di

on all sub-registers.
First, we claim that

Pr

[
∀ℓ ∈ [k + 1] b′ℓ,k+1 < 1/2 +

2γ

32

∣∣∣∣∀ℓ ∈ [k + 1]∀i ∈ {0, . . . , k} b′ℓ,i = b′′ℓ,i

]
≥ 1−(k(λ)+1)·exp(−λ).

(1)
for any fixed tuple of values (b′′ℓ,i)ℓ∈[k+1],i∈{0,...,k} in the joint support of (b′ℓ,i)ℓ∈[k+1],i∈{0,...,k}. To
prove this, we will instead prove the more general statement that for any quantum state ξ of
appropriate dimension, we have

Pr

[
∀ℓ ∈ [k + 1] xℓ <

1

2
+

2γ

32

]
≥ 1− (k(λ) + 1) · exp(−λ).

where (xℓ)ℓ∈[k+1] ←
(⊗

ℓ∈[k+1] API
ε,δ
ℓ,Dk+1

)
· ξ.

Let ι be any quantum state of appropriate dimension. By Theorem 17, we have for all ℓ ∈ [k+1]

Pr

[(
APIε,δℓ,Dk+1

)
· ι ≥ 1

2
+

2γ

32

]
≤Pr

[(
PIℓ,Dk+1

)
· ι ≥ 1

2
+

γ

32

]
+ exp(−λ).

Then, by Theorem 13, we have that if the outcome of PIℓ,Dk+1
is p′, then the post-measurement

state has success probability p′ for the distributionDk+1. However, the challenge ciphertext sampled
according to Dk+1 is independent of the challenge bit b, hence we always have p′ ≤ 1/2. Hence,

Pr

[(
PIℓ,Dk+1

)
· ι ≥ 1

2
+

γ

32

]
= 0.

Therefore, Pr
[(

APIε,δℓ,Dk+1

)
· ι ≥ 1

2 + 2γ
32

]
≤ exp(−λ). Now, if we apply APIε,δℓ,Dk+1

to each part ξ[i],

even conditioned on some outcome obtained for the other parts, we get that the result will be
≥ 1/2 + 2γ/32 with probability at most exp(−λ), since we showed the result above for any state
ι. Hence, probability of obtaining an outcome ≥ 1/2 + 2γ/32 for at least one part is at most
(k(λ) + 1) · exp(−λ). This gives the desired result (Equation (1)).

Now, we claim that we have b′ℓ,1 ≥
1
2 + 31γ

32 for all ℓ ∈ [k + 1] with probability 1/(2p(λ)). First,
by assumption we have

Pr

 ⊗
ℓ∈[k+1]

ATIε,δ
ℓ,D,1/2+ 31γ

32

σ
 ≥ 1/p(λ).

57



since this is exactly the winning condition in Hyb2. While we later apply other measurements,
they do not change the marginal distribution of the initial measurement since we cannot signal
backwards in time.

Assume for now that ExpD,ℓ ≈c ExpD1,ℓ for all ℓ ∈ [k + 1] and we will prove it later (Claim 13).
Then, by Theorem 16 and by above we get

Pr

 ⊗
ℓ∈[k+1]

ATIε,δ
ℓ,D1,1/2+

31γ
32

σ
 (2)

≥Pr

 ⊗
ℓ∈[k+1]

ATIε,δ
ℓ,D,1/2+ 31γ

32

σ
− negl(λ) > 1/(2 · p(λ)). (3)

In Theorem 16, it is easy to see ExpD,ℓ corresponds to (S,D) and ExpD1,ℓ corresponds to (S,D1);

while the measurement results p⃗0, p⃗1 correspond to
⊗

ℓ∈[k+1] API
ε,δ
ℓ,Dσ and

⊗
ℓ∈[k+1] API

ε,δ
ℓ,D1

σ when
we define our collection of measurements as in Definition 25. That is, our measurement is executing
the given state as a decryptor using Uquantum and comparing the outcome to b.

Finally, by combining Equation (1) and Equation (2), we get that with probability at least
1/(4 · p(λ)), we have that 1

2 + 31γ
32 ≤ b

′
ℓ,1 and b′ℓ,k+1 <

1
2 + 2γ

32 for all ℓ ∈ [k + 1]. Hence, we see that

with probability at least 1
4p(λ) ; for all ℓ ∈ [k+1] there is iℓ ∈ {1, . . . , k} such that b′ℓ,iℓ−b

′
ℓ,iℓ+1 >

29γ
32k .

Then, by pigeonhole principle, there is ℓ ̸= ℓ′ such that iℓ = iℓ′ .
We claim that for any fixed x < y ∈ [k + 1] and j∗ ∈ [k], the marginal distribution (i.e., the

reduced density matrix) of ρj∗ [x, y], (b
′
ℓ,0)ℓ∈[k+1], (b

′
x,i)i∈[j∗+1], (b

′
y,i)i∈[j∗+1] in the above experiment

is the same as the distribution of τ, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗+1], (by,i)i∈[j∗+1] conditioned on the fixed
values of x, y, j∗. This follows from two arguments. First, no-signalling between disjoint registers
gives that whether or not we apply measurements on the other registers does not change the
marginal distributions of measurement outcomes and post-measurement states on registers x, y.
Similarly, by the time we are applying measurements for Di for i ≥ j∗ + 1, the measurement
outcomes for Dj∗ are already determined. Since it is not possible to signal backwards in time, the
marginal distributions for measurement outcomes bℓ,j∗ is not affected by whether or not we apply
the measurements for Di for i ≥ j∗ + 1.

We have already shown that with probability 1/(4p(λ)), there is guaranteed to be a jump in
measurement results. Since x, y, j∗ are sampled independently by A′0, they hit the correct indices
ℓ, ℓ′ satisfying iℓ = iℓ′ with probability 1/k

(
k+1
2

)
and j∗ hits iℓ = iℓ′ with probability 1/k. Therefore,

we finally have

Pr

[
bx,j∗ − bx,j∗+1 >

29γ

32k
∧ by,j∗ − by,j∗+1 >

29γ

32k

]
>

1

4 · p(λ) · k3(λ)
.

We have shown that the freeloaders x, y use the same identity string block [idj∗ , idj∗+1 − 1]
to decrypt. Now we will further show that they use the exact same identity string idj∗ . To that
end, we first define some intermediary challenge ciphertext distributions. Define the following for
all j ∈ {0, 1, . . . , k} and ∆ ∈ {0, 1, . . . , idj+1 − idj − 1}. For notational convenience, also define

Didj+1−idj ,0
j to be D(0,0)

j+1 for all j ∈ {0, 1, . . . , k}. Also note that D(0,0)
j is exactly the same as Dj for

j ∈ [k].

• D(∆,0)
j (m):
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1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample OPCt← iO(PCt(j,∆,0)OPMem,cpk,K2,r,m,idj+∆).

PCt
(j,∆,0)
OPMem,cpk,K2,r,m,idj+∆(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m, idj +∆

(a) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(b) If id < idj +∆, set a = ⊤. Otherwise, set a = m.

(c) Output IBE.Enc(cpk, id, a;F2(K2, id)).

4. Output (OPCt, r).

• D(∆,1)
j (m):

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. ct∗ = IBE.Enc(cpk, idj +∆,m;F2(K2, idj +∆)).

4. K2{idj +∆} ← F2.Punc(K2, idj +∆).

5. Sample OPCt← iO(PCt(j,∆,1)OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗).

PCt
(j,∆,1)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj +∆}, r,m, idj +∆, ct∗

(a) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(b) If id = idj +∆, output ct∗ and terminate.

(c) If id < idj +∆+ 1, set a = ⊤. Otherwise, set a = m.

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

6. Output (OPCt, r).

• D(∆,2)
j (m):

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample z∗ uniformly at random from the output space of F2.

4. ct∗ = IBE.Enc(cpk, idj +∆,m; z∗).

5. K2{idj +∆} ← F2.Punc(K2, idj +∆).

6. Sample OPCt← iO(PCt(j,∆,2)OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗).

PCt
(j,∆,2)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj +∆}, r,m, idj +∆, ct∗

(a) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.
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(b) If id = idj +∆, output ct∗ and terminate.

(c) If id < idj +∆+ 1, set a = ⊤. Otherwise, set a = m.

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

7. Output (OPCt, r).

• D(∆,3)
j (m):

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample z∗ uniformly at random from the output space of F2.

4. ct∗ = IBE.Enc(cpk, idj +∆,m; z∗).

5. K2{idj +∆} ← F2.Punc(K2, idj +∆).

6. Compute (A∗i , s
∗
i , s

′∗
i ) = F1(K1, idj +∆).

7. For i ∈ [cL(λ)], set gi = CanA∗
i
if (r)i = 0 and set gi = Can(A∗

i )
⊥ if (r)i = 1.

8. For i ∈ [cL(λ)], compute yi = gi(s
∗
i ) if (r)i = 0 and yi = gi(s

′∗
i ) if (r)i = 1.

9. Set g to be the function g(v1, . . . , vcL(λ)) = (g1(v1)|| . . . ||gcL(λ)(vcL(λ))).
10. Set y = y1|| . . . ||ycL(λ).
11. OCC← CCObf.Obf(g, y, ct∗).

12. Sample OPCt← iO(PCt(j,∆,3)OPMem,cpk,K2{idj},r,m,idj+∆,OCC).

PCt
(j,∆,3)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,OCC(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj +∆}, r,m, idj +∆,OCC

(a) If id = idj +∆, output the output of OCC(u1, . . . , ucL(λ)) and terminate.

(b) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(c) If id < idj +∆+ 1, set a = ⊤. Otherwise, set a = m.

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

13. Output (OPCt, r).

• D(∆,4)
j (m): Same as D(∆,3)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj +∆,m; z∗)

with
ct∗ = IBE.Enc(cpk, idj +∆,⊤; z∗).

• D(∆,5)
j (m): Same as D(∆,2)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj +∆,m; z∗)

with
ct∗ = IBE.Enc(cpk, idj +∆,⊤; z∗).
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• D(∆,6)
j (m) : Same as D(∆,1)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj +∆,m;F2(K2, idj +∆))

with
ct∗ = IBE.Enc(cpk, idj +∆,⊤;F2(K2, idj +∆)).

Now, we show that these distributions collapse around ∆ = 0 for each j. Below, all our
indistinguishability claims are for 25λ · 28λ0.3CMoE.Coll -time adversaries and we set ν(λ) = 2−6λ ·
2−8λ

0.3CMoE.Coll .

Claim 6. ExpD(∆,0)
j ,ℓ

≈cν(λ) ExpD(∆,1)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Observe that by punctured key correctness of F2 (Definition 1), the different obfuscated

programs PCt
(j,∆,0)
OPMem,cpk,K2,r,m,idj+∆ and PCt

(j,∆,1)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗ in these hybrids have

the same functionality. The result follows by security of iO and by our choice of parameters.

Claim 7. ExpD(∆,1)
j ,ℓ

≈cν(λ) ExpD(∆,2)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. The result follows by selective puncturing security of F2 (Definition 1) and our choice of
parameters.

Claim 8. ExpD(∆,2)
j ,ℓ

≈cν(λ) ExpD(∆,3)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Observe that the obfuscated ciphertext programs PCt in these hybrids have the same func-
tionality by correctness of CCObf, since a vector w is in A∗i +s

∗
i if and only if CanA∗

i
(w) = CanA∗

i
(s∗i )

and similarly for (A∗)⊥i + s
′∗
i . Then, the claim follows by the security of iO.

Claim 9. ExpD(∆,3)
j ,ℓ

≈cν(λ) ExpD(∆,4)
j ,ℓ

if

• j ∈ {1, . . . , k} and ∆ ∈ {1, . . . , idj+1 − idj − 1}, or

• j = 0 and ∆ ∈ {0, 1, . . . , idj+1 − idj − 1}

and for all ℓ ∈ [k + 1].

Proof. Observe that in these hybrids, the randomness used to invoke IBE.Enc to compute ct∗

is uniformly and independently sampled. Further, the adversary only has the IBE keys for the
identities id1, id2, . . . , idk, all of which are different from the identity idj + ∆ under which ct∗ is
encrypted. Hence, by IBE security (Definition 15), the result follows.

Claim 10. ExpD(∆,4)
j ,ℓ

≈cν(λ) ExpD(∆,5)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Essentially the same argument as in Claim 8 yields the result.

Claim 11. ExpD(∆,5)
j ,ℓ

≈cν(λ) ExpD(∆,6)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].
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Proof. Essentially the same argument as in Claim 7 yields the result.

Claim 12. ExpD(∆,6)
j ,ℓ

≈cν(λ) ExpD(∆+1,0)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1}
and ℓ ∈ [k + 1].

Proof. Essentially the same argument as in Claim 6 yields the result.

Claim 13. For all ℓ ∈ [k + 1], we have

• ExpD0,ℓ ≈
c
ν(λ) ExpD1,ℓ

• ExpD(0,4)
j ,ℓ

≈cν(λ) ExpDj+1,ℓ for all j ∈ {0, 1, . . . , k}

• ExpDj ,ℓ ≈
c
ν(λ) ExpD(0,3)

j ,ℓ
for all j ∈ {0, 1, . . . , k}

where ν(λ) = 2−5λ · 2−8λ0.3CMoE.Coll .

Proof. It is easy to see that D0 ≈cν(λ) D
(0,0)
0 and Dk+1 ≈cν(λ) D

(0,0)
k+1 by the security of iO.

Rest follows by a simple calculation using the above results.

Definition 29. We will write D′ to denote D(0,3)
j∗ and D′′ to denote D(0,4)

j∗ where j∗ is as output by
A′0.

Finally, we show that the success probabilities for both freeloaders jump exactly at j∗.

Claim 14. Let τ be the bipartite state output by A′0 in G. Let p′x, p
′
y be the outcome of applying

PIx,D′ ⊗ PIy,D′ to τ . Similarly, let p′′x, p
′′
y be the outcome of applying PIx,D′′ ⊗ PIy,D′′ to τ . Then,

• Pr
[
p′x > bx,j∗ − 3γ

32k ∧ p
′
y > by,j∗ − 3γ

32k

]
≥ 1− 2−2λ · 2−4λ0.3CMoE.Coll .

• Pr
[
bx,j∗ − p′′x >

28γ
32k ∧ by,j∗ − p

′′
y >

28γ
32k

]
> 1

q(λ) for some polynomial q(·).

Proof. Let (a′x, a
′
y) be the outcome of applying APIε,δx,Dj∗

⊗ APIε,δy,Dj∗
to τ . Then, by Theorem 19,

Theorem 18 and by definition of bx,j∗ , by,j∗ , we have

Pr

[
a′x > bx,j∗ −

3γ

32k
∧ a′y > by,j∗ −

3γ

32k

]
≥ 1− poly(λ) · δ(λ).

Then, since ExpDj∗ ,ℓ
≈cν ExpD′,ℓ against 2

5λ · 28λ0.3CMoE.Coll -time adversaries where ν(λ) = 2−5λ ·
2−8λ

0.3CMoE.Coll , we get

Pr

[
p′x > bx,j∗ −

3γ

32k
∧ p′y > by,j∗ −

3γ

32k

]
≥ 1− 2−2λ · 2−4λ

0.3CMoE.Coll .

by Theorem 16.
See the proof of Claim 5 for a remark on how to invoke Theorem 16. Note that here, we are

applying the measurements to τ rather than to the state σ. However, since the procedure that
gives τ from σ is an efficient procedure that only uses pp, the indistinguishability between Dj∗ and
D′ given σ still applies when we are instead given τ , hence Theorem 16 indeed applies.
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We now move onto the second claim. By Claim 5, we have that

Pr

[
bx,j∗ − bx,j∗+1 >

29γ

32k
∧ by,j∗ − by,j∗+1 >

29γ

32k

]
is non-negligible. Further, we have ExpDj∗+1,ℓ

≈ ExpD′′,ℓ. By Theorem 16 and Theorem 20, we get
that

Pr

[
bx,j∗ − p′′x >

28γ

32k
∧ by,j∗ − p′′y >

28γ

32k

]
is non-negligible. Similar to above, the indistinguishability of Dj∗+1 and D′′ given σ still applies
when we are given the state τ instead. Therefore, Theorem 16 indeed applies.

Extracting MoE Vectors

We have shown that the two freeloaders use the same identity j∗ to decrypt. Now we will show
that we can exract MoE vectors from these two freeloaders simultaneously. That is, we extract
MoE vectors from one of the freeloaders even conditioned on successful extraction from the other
one.34

Claim 15. There exist efficient A′1,A′2 such that (A′0,A′1,A′2) wins G with probability 1

20.4·λ
CMoE.Coll

.

Proof. For a challenge ciphertext distribution C, let Exp′C,x denote the outcome of the following
experiment.

1. Execute pk, sk ← PKE.Setup(1λ).

2. Simulate A′0 and the challenger of G:

2.1. Simulate A on pk by sampling a quantum secret key (as in Hyb1) whenever A makes a
query, and submitting the key to it. Let Radv, (m

0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1] be the output

of A.
2.2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.
2.3. Apply APIε,δℓ,D0

to all registers Radv[ℓ] for ℓ ∈ [k+1], let bℓ,0 be the measurement outcomes.

2.4. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[x], let bx,i be the measurement

outcomes.

2.5. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[y], let by,i be the measurement

outcomes.

3. Set pp = (x, y, j∗, (idj)j∈[k+1], (m
0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1], pk).

4. Sample b← {0, 1}.

5. Sample ct← C(pp,mb
ℓ).

6. Output Radv[x], (b, ct), pp.

It is easy to see that ExpC0,ℓ ≈
c
ν ExpC1,ℓ implies Exp′C0,x ≈

c
ν Exp′C1,x since they only differ in their

auxiliary states and we can efficiently obtain the auxiliary state of the latter using the auxiliary
state of the former.

By Claim 14, we have

34Note that this is not a direct consequence of extraction from a single freeloader due to entanglement.
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1. Pr
[
PIx,D′ · τ [1] ≤ bx,j∗ − 3γ

32k

]
≤ 2−2λ · 2−4λ0.3CMoE.Coll , and

2. Pr
[
PIx,D′′ · τ [1] < bx,j∗ − 28γ

32k

]
is non-negligible.

Suppose for a contradiction that Exp′D′,x ≈c Exp′D′′,x. Then, by Theorem 17 and Theorem 16,
Item 2 implies that

Pr

[
PIx,D′ · τ [1] < bx,j∗ −

26γ

32k

]
is non-negligible. This is a contradiction to Item 1, therefore, Exp′D′,x ̸≈c Exp′D′′,x. We define the
distribution Dsim by modifying D′ as follows: We replace the line

OCC← CCObf.Obf(g, y, ct∗)

with
OCC← CCObf.Sim(1λ, |g|, |y|, |ct∗|).

Since Exp′D′,x ̸≈c Exp′D′′,x, we have either Exp′D′,x ̸≈c Exp′Dsim,x
or Exp′D′′,x ̸≈c Exp′Dsim,x

. We will
only discuss the first case but the second case follows from the same argument.

Now, we will give a distribution B over compute-and-compare programs (with quantum auxiliary
information) and an adversary ACC that breaks the security of CCObf for this distribution. This in
turn will mean by Definition 9 that there is an adversary that can predict the target value of these
programs, given the description of the compute part of the program and the auxiliary information.

We first define the distribution B.

B(1λ)

1. Execute pk, sk ← PKE.Setup(1λ).

2. Simulate A′0 and the challenger of G:

2.1. Simulate A on pk by sampling a quantum secret key (as in Hyb1) whenever A makes a
query, and submitting the key to it. Let Radv, (m

0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1] be the output

of A.
2.2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.
2.3. Apply APIε,δℓ,D0

to all registers Radv[ℓ] for ℓ ∈ [k+1], let bℓ,0 be the measurement outcomes.

2.4. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[x], let bx,i be the measurement

outcomes.

2.5. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[y], let by,i be the measurement

outcomes.

3. Set pp = (x, y, j∗, (idj)j∈[k+1], (m
0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1], pk).

4. Sample b← {0, 1}.

5. Simulate the first steps of D′ on mb
x:

5.1. Sample r ← {0, 1}cL(λ).
5.2. Sample z∗ uniformly at random the output space of F2.

5.3. ct∗ = IBE.Enc(cpk, idj ,m
b
x; z
∗).
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5.4. Compute (A∗i , s
∗
i , s

′∗
i ) = F1(K1, idj∗).

5.5. For i ∈ [cL(λ)], set gi = CanA∗
i
if (r)i = 0 and set gi = Can(A∗

i )
⊥ if (r)i = 1.

5.6. For i ∈ [cL(λ)], compute yi = gi(s
∗
i ) if (r)i = 0 and yi = gi(s

′∗
i ) if (r)i = 1.

5.7. Set g to be the function g(v1, . . . , vcL(λ)) = (g1(v1)|| . . . ||gcL(λ)(vcL(λ))).
5.8. Set y = y1|| . . . ||ycL(λ).

6. Output (g, y, ct∗) as the compute-and-compare program and

(Radv[x], pp, r,m
b
x, idj∗ , b)

as the auxiliary information.

We define the adversary ACC as follows. Let Adist be an adversary that distinguishes ExpD′,x ̸≈c
ExpDsim,x.

ACC(P,Raux)

1. Parse (R, pp, r,mb
x, idj∗ , b) = Raux.

2. Parse (x, y, j∗, (idj)j∈[k+1], (m
0
ℓ ,m

1
ℓ )ℓ∈[k+1], (Uℓ)ℓ∈[k+1], pk) = pp.

3. Sample a PRF key K2 for F2.KeyGen(1
λ).

4. Sample K2{idj∗} ← F2.Punc(K2, idj∗).

5. Sample OPCt← iO(PCt).

PCt(id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj∗}, r,mb
x, idj∗ , P

(a) If id = idj∗ , output the output of P (u1, . . . , ucL(λ)) and terminate.

(b) Run OPMem(id, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(c) If id < idj∗ + 1, set a = ⊤. Otherwise, set a = mb
x.

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

6. Set ct = (OPCt, r).

7. Output Adist(R, (ct, b), pp).

It is easy to see that ACC(CCObf.Obf(g, y, ct∗),Raux) corresponds to Adist(ExpD′,x) while ACC(
CCObf.Sim(1λ, |g|, |y|, |ct∗|),Raux)) corresponds toAdist(ExpDsim,x) where (g, y, ct

∗)← B(1λ). Hence,
since Adist distinguishes ExpD′,x ̸≈c ExpDsim,x, by Theorem 12 there exists an adversary M1 that
can extract vectors ui such that g((ui)i∈cL(λ)) = y, using the quantum auxiliary information defined
above and the description of g. Note that g can be computed efficiently given r and (A∗i )i∈[cL(λ)],
which are indeed provided to A′1 in G. Similarly, A′1 can compute Raux from its input provided by
A′0. Therefore, we set A′1 to be the adversary that computes the input as above and simulatesM1.

It is easy to see that A′1 outputs correct vectors in the game G with probability at least 2−λ
0.2·CMoE.Coll ,
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since CCObf is a compute-and-compare obfuscation scheme for 2−λ
0.2·CMoE.Coll -unpredictable distri-

butions.
Now, we will argue that we can simultaneously extract MoE vectors from the second register,

that is, we can extract even conditioned on a successful extraction from the first register. Let ξ
denote the post-measurement state of the input state of A′2, conditioned on A′1 succeeding. First,
define Exp′′C,y as follows.

1. Simulate B(1λ).

2. Run A′1 on (Radv[x], pp, r,m
b
x, idj∗ , b) and g to obtain vectors (ui)i∈cL(λ).

3. Check if OPMem(idj∗ , u1, . . . , ucL(λ), r). If the output is 0, output ⊥ and terminate.

4. Sample b← {0, 1}.

5. Sample ct← C(pp,mb
ℓ).

6. Output Radv[y], (b, ct), pp.

Observe that the state of the register Radv[y] output above is ξ (when the experiment outcome is
not ⊥). We claim that ξ satisfies

1. Pr
[
PIy,D′ · ξ ≤ by,j∗ − 3γ

32k

]
≤ 3

2 ·
√

2−2λ · 2−4λ0.3CMoE.Coll · 2λ0.2·CMoE.Coll .

2. Pr
[
PIy,D′′ · ξ < by,j∗ − 28γ

32k

]
≥ 2−λ

0.3·CMoE.Coll .

This first claim follows from Claim 14, Theorem 9, and the fact that extraction on the first
register succeeds with probability ≥ 2−λ

0.2·CMoE.Coll . We argue the second claim as follows. Let
E denote the event of successful extraction on the first register, and let G denote the event that
applying PIy,D′′ on the second register yields a value< by,j∗−28γ

32k . The probability above corresponds

to Pr[G|E], which equals Pr[E|G]·Pr[G]
Pr[E] ≥ Pr[E|G] · Pr[G] ≥ Pr[E|G] · 1

poly(λ) . However, observe that
we can first apply the measurement PIy,D′′ on the second register, and then try to extract on the first
register. Observe that a gap still exists on the first register after this measurement on the second
register and conditioning on the outcome G, by Claim 14 and Theorem 9, since Pr[G] > 1/poly(λ).

Hence, similar to the extraction argument above, we get that Pr[E|G] > 2−λ
0.2·CMoE.Coll , which proves

our claim.
Now, suppose for a contradiction that Exp′′D′,y ≈cν Exp′′D′′,y against 23λ · 22λ0.3CMoE.Coll -time adver-

saries where ν = 2−2λ−1 · 2−2λ0.3CMoE.Coll . Then, by Theorem 16, we get that Item 1 implies

Pr

[
PIy,D′′ · ξ ≤ by,j∗ −

3γ

32k

]
≤ 2 · 2−λ · 2−λ

0.3·CMoE.Coll .

which is a contradiction to Item 2. Hence, Exp′′D′,y ̸≈cν Exp′′D′′,y. Then, using the same extraction
argument we used for the first register, by the security of CCObf, we get that there exists an
adversary A′2 such that it outputs the correct coset vectors with probability at least 2−λ

0.2·CMoE.Coll

conditioned on A′1 outputting correct coset vectors. This shows that (A′0,A′1,A′2) wins G with

probability 2−0.4·λ
CMoE.Coll .

We have shown that there is an adversary (A′0,A′1,A′2) that wins the game G with probability

1/20.4·λ
CMoE.Coll .

Finally, we show that we can construct an adversary (A′′0,A′′1,A′′2) that can win MoE− Coll− Sel.
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Claim 16. There exists efficient A′′ = (A′′0,A′′1,A′′2) such that

Pr
[
MoE− Coll− Sel(λ, L(λ),A′′) = 1

]
≥ 2−0.4·λ

CMoE.Coll .

Proof. A′′0 simulates both the challenger of G and the adversary A′0 as follows. It first samples the
random collision-free identity strings id1 < · · · < idk, and the random index j∗ (which it outputs
to its challenger); and also cpk, csmk ← IBE.Setup(1λ). Then, it sets pk = (cpk,OPMem) where it
obtains OPMem from its challenger. Then, whenever A′0 makes a key query for i ∈ [k], it queries
its own challenger for the coset state associated with idα(i). It also samples ck as in PKE.QKeyGen
using cmsk, and submits the coset state, idα(i) and ck to A′0. Finally, when A′0 yields a bipartite
register, A′′0 outputs it.

We define A′′1 so that it simulates A′1 and make no queries during the second query phase. A′′2
is defined similarly for A′2. It is easy to see that A′′ playing MoE− Coll− Sel perfectly simulates G
as played by A′, hence A′′ wins with probability 2−0.4·λ

CMoE.Coll .

This completes the security proof, since the above is a contradiction to Theorem 24.

8 Public-Key Functional Encryption with Copy-Protected Func-
tional Keys

In this section, we formally define functional encryption with copy-protected functional keys. Then,
we give a construction based on coset states and prove it secure.

We note that Kitagawa and Nishimaki [KN22] define a simpler model of functional encryption
with copy-protected functional keys and give a secure construction with respect to their model. In
their model, the adversary can query for any number of functional keys, but only one can be in
copy-protected mode. In turn, the adversary only outputs two freeloaders (i.e., only 1 → 2 copy-
protection is considered). Further, the freeloader adversaries are not allowed to query for more
keys after getting their challenge ciphertexts; that is, the adversaries are not fully adaptive.

8.1 Definitions

An informal overview of our security model is as follows. The piracy adversary will be allowed to
adaptively query for classical (i.e., not copy-protected) and copy-protected (i.e. quantum) func-
tional keys. At the end of this first query phase, the adversary will produce a pair of challenge
messages m0,m1 and k + 1 registers (freeloaders) where k is the number of copy-protected keys
obtained by it. After this split, the challenger presents the freeloaders each with a challenge cipher-
text. Finally, after receiving the challenge ciphertexts, freeloaders can query for more functional
keys, and they output their guess at the end.

We will also require the following for the challenge message pair m0,m1 and the functions
queried. First, we require that f(m0) = f(m1) for all functions f queried by the pirate in the
classical mode. This is required since, otherwise, the pirate can give all the freeloaders the classical
key skf , and they can decrypt their challenge ciphertexts with this key to distinguish Enc(m0) vs
Enc(m1). Second, for the same reason as above, we require that a freeloader can query a key for
f only if f(m0) = f(m1). Note that these requirements are the same as the classical FE game
(Definition 6). Importantly, we will not require anything for functional keys that were obtained in
the copy-protected mode by the pirate adversary before the split. Thus, our security guarantee will
allow k out of the k+1 freeloaders to possibly use these copy-protected functional keys to decrypt
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their challenge ciphertexts. However, it should not be possible for all k + 1 registers to use these
copy-protected keys simultaneously.

We also define our model so that copy-protected functional keys are generated given only a
classical functional key, without any extra information. Therefore, we do not need to separately
require that a copy-protected key for f allows no more than obtaining f(m) given Enc(m), which
is already implied by the regular functional encryption security.

Definition 30 (Public-key Functional Encryption with Copy-Protected Secret Keys). A public-key
functional encryption scheme with copy-protected secret keys is a public-key functional encryption
scheme (Definition 6) with the following additional algorithm and guarantee.

• QKeyGen(fk): Takes as input a classical functional key, outputs a quantum secret key.

We require correctness35 for the quantum functional keys.

Correctness For all messages m ∈M,

Pr

Dec(Rdec, ct) = f(m) :

pk,msk ← Setup(1λ)
skf ← KeyGen(msk, f)
Rf ← QKeyGen(skf )
ct← Enc(pk,m)

 = 1.

As discussed in Section 7, correctness of the scheme along with Lemma 1 means that we can
implement decryption in a way such that the quantum functional key is not disturbed. Thus, we
can reuse the key to decrypt any number of times.

Similar to public-key encryption, we give a CPA-style anti-piracy security definition.
Let F = {Fλ}λ be a family of functions. We define anti-piracy security for F as follows.

Definition 31 (CPA-Style Regular Anti-Piracy Security for Functional Encryption). Consider the
following game between the challenger and an adversary A.

FEAntiPiracy(λ,A)

1. The challenger runs msk, pk ← FE.Setup(1λ) and submits pk to the adversary. It also ini-
tializes the set Fclas = ∅.

2. Query Phase 1: For multiple rounds, the adversary adaptively submits a function f ∈ F
and a query type, either CLASSICAL or PROTECTED. For each f , the challenger does the
following. It first computes skf ← FE.KeyGen(msk, f).

Then, if the query type is CLASSICAL, it adds f to Fclas and submits skf to the adversary.

Otherwise, it computes Rf ← FE.QKeyGen(skf ) and submits Rf to the adversary.

3. Split Phase: The adversary outputs a pair of challenge messages m0,m1 and a (k + 1)-
partite register Radv (where k is the number of queries of the type PROTECTED), each part
of the register being an interactive freeloader adversary that will be executed using a universal
circuit. The challenger checks if f(m0) = f(m1) for all f ∈ Fclas. If not, it outputs 0 and
terminates.

35While our schemes satisfy perfect correctness, i.e., correctness with probability 1, some work relax the definition
to 1− negl(λ).
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4. Challenge Phase: For each ℓ ∈ [k + 1], the challenger samples bℓ ← {0, 1}, then computes
ctℓ ← FE.Enc(pk,mbℓ) and sends ctℓ to the ℓ-th freeloader.

5. Query Phase 2: The challenger interacts with each of the k + 1 freeloaders, using a uni-
versal circuit, for multiple rounds as follows. The freeloader ℓ ∈ [k + 1] adaptively submits
a function f ∈ F and a query type, either CLASSICAL or PROTECTED. For each query
f , the challenger answers with ⊥ if f(m0) ̸= f(m1). Otherwise, it does the following. It
first computes skf ← FE.KeyGen(msk, f). If the query type is CLASSICAL, the challenger
submits skf to the adversary ℓ. If the query type is PROTECTED, the challenger computes
Rf ← FE.QKeyGen(skf ) and submits Rf to the adversary.

6. For ℓ ∈ [k+1], the challenger submits ctℓ to the ℓ-th freeloader to obtain a guess b′ℓ. Then, it
checks if b′ℓ = bℓ for all ℓ ∈ [k + 1]. It outputs 1 if and only if all the check pass.

We say that a public key functional encryption scheme FE with copy-protected secret keys satisfies
γ-anti-piracy security if for any QPT adversary A,

Pr[FEAntiPiracy(λ,A) = 1] ≤ 1

2
+ γ(λ) + negl(λ).

We omit indicating γ explicitly when γ = 0.

We make some remarks about this definition. First, notice that if a construction satisfies γ-
anti-piracy for any inverse polynomial γ, then it also satisfies it for γ = 0, simply because of the
added negl(λ) term above. Second, note that (γ = 0−)anti-piracy security trivially implies regular
functional encryption security: an adversary for the latter corresponds to an adversary for the
former that only makes queries of the type CLASSICAL.

8.2 Construction

In section, we give our construction of a functional encryption scheme with copy-protected keys for
the class of functions F defined as all circuits that are of size at most Q(λ), where Q(λ) is any fixed
polynomial. The construction is highly similar to our public-key encryption construction. The
main difference is that a functional key for a function f will consist of an IBE key for id||f where
id is a random string.

Assume the existence of following primitives where we set ν(λ) = 2−5λ−Q(λ) · 2−8λ0.3CMoE.Coll .

• iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time
adversaries,

• IBE, identity-based encryption scheme with puncturable master secret keys (Definition 19)
and deterministic KeyGen that satisfies strong punctured key correctness (Definition 18),

for the identity space ID = {0, 1}Q(λ)+λ that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time
adversaries,

• F1, puncturable PRF family with input length Q(λ)+λ and output length same as the size of

the randomness used by CosetGen (Definition 14) that is ν(λ)-secure against 25λ ·28λ0.3CMoE.Coll -
time adversaries,

• F2, puncturable PRF family with input length Q(λ)+λ and output length same as the size of

the randomness used by IBE.Enc that is ν(λ)-secure against 25λ ·28λ0.3CMoE.Coll -time adversaries,
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• CCObf, compute-and-compare obfuscation for 2−λ
0.2·CMoE.Coll -unpredictable distributions that

is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -time adversaries,

Similar to our public-key encryption scheme, while we assume exponential security of the above
primitives for specific exponents, these assumptions can be based only on subexponential hardness
for some exponent, since we can always scale the security parameter by a polynomial factor.

Also, set L(λ) = Q(λ) + λ and hence cL(λ) = 3 · (Q(λ) + 2λ)3.
We now give our construction. Below, assume that all programs that are obfuscated are appro-

priately padded.

FE.Setup(1λ)

1. Sample a PRF key K1 ← F1.KeyGen(1
λ).

2. Sample cpk, csmk ← IBE.Setup(1λ).

3. Sample OPMem← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id||f, u1, . . . , ucL(λ), r)

Hardcoded: K1

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id||f)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (r)i = 0 and check if ui ∈ A⊥i + s′i if
(r)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

4. Set pk = (cpk,OPMem), msk = (cmsk,K1).

5. Output (pk,msk).

FE.KeyGen(msk, f)

1. Parse (cmsk,K1) = msk.

2. Sample id← {0, 1}λ.

3. Sample ck ← IBE.KeyGen(cmsk, id||f).

4. (Ai, si, s
′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id||f)).

5. Output (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]).

FE.QKeyGen(fk)

1. Parse (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]) = fk.

2. Output
(∣∣∣Ai,si,s′i〉)i∈[cL(λ)], ck, id, f .
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FE.Enc(pk,m)

1. Parse (cpk,OPMem) = pk.

2. Sample r ← {0, 1}cL(λ).

3. Sample a PRF key K2 for F2 as K2 ← F2.KeyGen(1
λ).

4. Sample OPCt ← iO(PCtOPMem,cpk,K2,r,m), where PCtOPMem,cpk,K2,r,m is the following pro-
gram.

PCtOPMem,cpk,K2,r,m(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m

1. Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

2. Output IBE.Enc(cpk, id||f, f(m);F2(K2, id||f)).

5. Output (OPCt, r).

FE.Dec(Rkey, ct)

1. Parse ((Ri)i∈[cL(λ)], ck, id, f) = Rkey and (OPCt, r) = ct.

2. For indices i ∈ [cL(λ)] such that (r)i = 1, apply H⊗κ(L(λ)+λ) to Ri.

3. Run the program OPCt coherently on id, f and (Ri)i∈[cL(λ)].

4. Measure the output register and denote the outcome by cct.

5. Output IBE.Dec(ck, cct).

Correctness with probability 1 follows in a straightforward manner from the correctness of the
underlying schemes. We claim that the construction is also secure.

Theorem 33. FE satisfies γ-anti-piracy (Definition 31) for any inverse polynomial γ.

When we instantiate the assumed primitives with known constructions, we get the following
corollary.

Corollary 7. Assuming subexponentially secure iO and subexponentially secure LWE, there ex-
ists a public-key functional encryption scheme that satisfies anti-piracy security against unbounded
collusion.

8.3 Proof of Anti-Piracy

Proof will closely follow the strong anti-piracy security proof for our public-key encryption construc-
tion in Section 7.3, which crucially relies on projective implementations to simultaneously extract
vectors from all registers to obtain a reduction to the monogamy-of-entanglement game. However,
since the freeloaders in the functional encryption security game are interactive as opposed to the
ones in regular public-key encryption, we cannot use projective implementations directly. There-
fore, we first make the post-challenge-ciphertext steps non-interactive by providing the freeloaders
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with a punctured master secret key pmsk that lets them issue their own functional keys, as long
as f(m0) = f(m1).

We give the following two definitions, specific to our construction FE. Recall that we also assume
that IBE.KeyGen is deterministic, which is true for the construction we give in Section 6.2.

We start with the post-challenge-non-interactive regular anti-piracy definition. It is defined
similar to Definition 24.

Definition 32 (CPA-Style Post-Challenge-Ciphertext-Non-interactive Anti-Piracy Security for
FE). Consider the following game between the challenger and an adversary A.

FEAntiPiracyNI(λ,A)

1. The challenger runs msk, pk ← FE.Setup(1λ) and submits pk to the adversary. It also ini-
tializes the set Fclas. It parses (cmsk,K1) = msk.

2. Query Phase 1: For multiple rounds, the adversary adaptively submits a function f ∈ F
and a query type, either CLASSICAL or PROTECTED. For each f , the challenger does the
following. It first computes skf ← FE.KeyGen(msk, f).

Then, if the query type is CLASSICAL, it adds f to Fclas and submits skf to the adversary.

Otherwise, it computes Rf ← FE.QKeyGen(skf ) and submits Rf to the adversary.

3. The adversary outputs a pair of challenge messages m0,m1, a (k + 1)-partite register Radv

(where k is the number of queries of the type PROTECTED) and freeloader unitaries {Uℓ}ℓ∈[k+1].

4. The challenger checks if f(m0) = f(m1) for all f ∈ Fclas. If not, it outputs 0 and terminates.

Otherwise, the challenger computes pmsk ← iO(PKeycmsk,K1
).

PKeycmsk,K1
(id||f)

Hardcoded: cmsk,K1,m
0,m1

1. Check if f(m0) = f(m1). If not, output ⊥ and terminate.

2. Compute ck = IBE.KeyGen(cmsk, id||f).
3. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id||f)).

4. Output (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]).

5. For ℓ ∈ [k + 1], the challenger executes b′ℓ ← Uquantum(Uℓ,Radv[ℓ], ctℓ, pmsk). Then, it checks
if b′ℓ = bℓ and if f(m0) = f(m1) for all f ∈ Fℓ. It outputs 1 if and only if all the check pass.

We say FE satisfies post-challenge-ciphertext non-interactive γ-anti-piracy security if for any
QPT adversary,

Pr[FEAntiPiracyNI(λ, γ(λ),A) = 1] ≤ 1

2
+ γ(λ) + negl(λ).

We now define decryptor testing and strong anti-piracy.

Definition 33 (Functional Encryption Decryptor Testing). In the anti-piracy game between the
challenger and an adversary, fix ℓ ∈ [k + 1], some values m0,m1 of the challenge messages, a
freeloader unitary Uℓ and some value st of a classical state of the challenger (which will be defined
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later). Let D be an efficient ciphertext and punctured master secret key distribution that can depend
on st. That is, Dst(m; r) is an efficient classical algorithm where m ∈M, r ∈ R and R is a random
coin set.

Consider the following mixture of binary projective measurements P, induced by D andm0,m1, bUℓst,
applied on a state ρ.

1. Sample b← {0, 1}.

2. Sample r ← R.

3. Run ct, pmsk ← Dst(mb; r).

4. Execute Uℓ on (ρ, pmsk, ct), and measure the first qubit of the output register, let b′ be the
output.

5. Output 1 if b′ = b. Otherwise, output 0.

Observe that we can efficiently execute the above measurement for arbitrary given superposi-
tions of r and b values. Therefore, by Section 4, there exists exact and efficient approximated
projective and threshold implementations for P. We write PIℓ,D and APIε,δℓ,D to denote the projective
implementation and approximate projective implementation of P, respectively. Similarly, let TIℓ,D,η
and ATIε,δℓ,D,η denote the threshold and efficient approximate threshold implementations of P for a
threshold value η.

The fixed values m0,m1, Uℓ, st, omitted in the notation, will be clear from the context. Unless
otherwise specified, we will write D to denote the honest distribution where the ciphertext is sampled
as

ct← FE.Enc(pk,m)

and pmsk is sampled as in Definition 32, where pk is part of st.

Definition 34 (CPA-Style Strong Anti-Piracy Security for FE). Consider the following game be-
tween the challenger and an adversary A.

FEStrongAntiPiracy(λ, γ,A)

1. The challenger runs msk, pk ← FE.Setup(1λ) and submits pk to the adversary. It also ini-
tializes the set Fclas. It parses (cmsk,K1) = msk.

2. Query Phase 1: For multiple rounds, the adversary adaptively submits a function f ∈ F
and a query type, either CLASSICAL or PROTECTED. For each f , the challenger does the
following. It first computes skf ← FE.KeyGen(msk, f).

Then, if the query type is CLASSICAL, it adds f to Fclas and submits skf to the adversary.

Otherwise, it computes Rf ← FE.QKeyGen(skf ) and submits Rf to the adversary.

3. The adversary outputs a pair of challenge messages m0,m1, a (k + 1)-partite register Radv

(where k is the number of queries of the type PROTECTED) and freeloader unitaries {Uℓ}ℓ∈[k+1].

4. The challenger checks if f(m0) = f(m1) for all f ∈ Fclas. If not, it outputs 0 and terminates.
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5. The challenger applies the test ⊗
ℓ∈[k+1]

TIℓ,D,1/2+γ

to R and outputs 1 if and only if all the measurement results are 1.

We say FE satisfies strong γ-anti-piracy security if for any QPT adversary,

Pr[FEStrongAntiPiracy(λ, γ(λ),A) = 1] ≤ negl(λ).

We first prove that the stronger definition implies the regular anti-piracy security (Definition 31).

Theorem 34. Suppose FE satisfies strong γ-anti-piracy security. Then, it also satisfies regular
γ-anti-piracy security.

Proof. We first show that strong γ-anti-piracy security implies post-challenge-ciphertext non-interactive
γ-anti-piracy security, by generalizing an argument made by [CLLZ21] for public-key encryption.

By the properties of projective implementations (Theorem 13); in the game FEAntiPiracyNI,
instead of applying the freeloader unitary and comparing the output to b′ℓ, if we apply the corre-
sponding projective implementation (defined in Definition 33) to obtain a value pℓ and output a bit
aℓ = 1 with probability pℓ, we get the correct output distribution for all registers simultaneously36.
Hence, we can equivalently execute the security game FEAntiPiracyNI by applying these projective
implementations, obtaining some aℓ, and outputting 1 if and only if aℓ = 1 for all ℓ ∈ [k + 1].

Now, note that by construction of TI and by the assumption that FE satisfies strong γ-anti-
piracy security, we have

Pr

[
∀ℓ ∈ [k + 1] pℓ ≥

1

2
+ γ(λ)

]
≤ negl(λ).

Then, by above,

Pr[FEAntiPiracyNI(λ,A) = 1] = E[p1 · · · pℓ]

=Pr

[
∀ℓ ∈ [k + 1] pℓ ≥

1

2
+ γ(λ)

]
· E[p1 · · · pℓ|∀ℓ ∈ [k + 1] pℓ ≥

1

2
+ γ(λ)]+

Pr

[
∃ℓ ∈ [k + 1] pℓ <

1

2
+ γ(λ)

]
· E[p1 · · · pℓ|∃ℓ ∈ [k + 1] pℓ <

1

2
+ γ(λ)]

≤negl(λ) · 1 + 1 · (1
2
+ γ(λ)).

This completes the proof that strong γ-anti-piracy security implies post-challenge-ciphertext
non-interactive γ-anti-piracy security.

Now, we show that the latter implies regular γ-anti-piracy security. A freeloader adversary B′
for FEAntiPiracyNI can simulate a freeloader adversary B for the regular γ-anti-piracy as follows.
Whenever B makes a query for a function f in Query Phase 2, B′ samples a random identity id and
evaluates pmsk on id, f . Since f satisfies f(m0) = f(m1), by correctness of iO, it will be able to
obtain the correct key. If query is of type CLASSICAL, then B′ submits the obtained classical key
fk to B. Otherwise, it runs FE.QKeyGen on fk and then submits the resulting quantum key. This
perfectly simulates the regular anti-piracy game, hence post-challenge-ciphertext non-interactive
γ-anti-piracy security implies regular anti-piracy security.

36When used directly, Theorem 13 would give us this for only single register at a time. However, note that the
joint distribution is also correct since the projective implementations are correct for any input state, and hence we
can consider the post-measurement state of any register conditioned on measurement outcomes of the other registers,
and the projective implementation will still have the correct output distribution.
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Reducing to Monogamy-of-Entanglement

Theorem 35. FE satisfies strong γ-anti-piracy security for any inverse polynomial γ.

Combining this theorem with the results from the previous section yields that our FE construc-
tion is secure. Proof of this theorem is almost identical to the proof of security of our public-key
encryption scheme (Section 7.3). Therefore, we will omit the proofs of some sub-claims.

Throughout the proof, we will interpret identity strings for IBE, which are Q(λ)+λ-bit strings,
as integers in the set {0, 1, . . . , 2Q(λ)+λ − 1}.

Fix any inverse polynomial γ(λ) and suppose for a contradiction that there exists an efficient
adversary A that wins the strong γ-anti-piracy game with non-negligible probability. Let k denote
the number of copy-protected keys obtained by the adversary. Define Hyb0 to be the original
security game FEStrongAntiPiracy(λ, γ(λ),A).

Define Hyb1 by modifying Hyb0 as follows. When generating functional keys, we sample the
random identity strings id in a collision-free way. Further, at the end of the game, the challenger
instead applies the test

⊗
ℓ∈[k+1] ATI

ε,δ

ℓ,D,1/2+ 31γ
32

instead of TI where we set ε = γ
32k and δ = 2−10λ ·

2−10λ
CMoE.Coll .

Claim 17. Pr[Hyb2 = 1] > 1/p(λ) for some polynomial p(·) and infinitely many values of λ > 0

Proof. Follows from the same argument as in Section 7.3.

Definition 35. For all j ∈ [k], let idj ||fj denote the identity string and let (Aji , s
j
i , s

′j
i )i∈[cL(λ)]

denote the tuple of cosets sampled during the sampling of the functional key for the (α−1(j))-th
query of type PROTECTED. That is, it is the coset tuple associated with idj ||fj.

We now define a monogamy-of-entanglement type game G, similar to the game defined in the
PKE proof.

G(λ, (A′0,A′1,A′2))

1. The challenger runs msk, pk ← FE.Setup(1λ) and submits pk to the adversary. It also initial-
izes the set Fclas. It parses (cmsk,K1) = msk.

2. Query Phase 1: For multiple rounds, the adversary adaptively submits a function f ∈ F
and a query type, either CLASSICAL or PROTECTED. For each f , the challenger does the
following. It first computes skf ← FE.KeyGen(msk, f).

Then, if the query type is CLASSICAL, it adds f to Fclas and submits skf to the adversary.

Otherwise, it computes Rf ← FE.QKeyGen(skf ) and submits Rf to the adversary.

3. The adversary outputs a pair of challenge messages m0,m1 and an index j∗ ∈ [k] where k is
the number of queries it made of type PROTECTED.

4. The challenger checks if f(m0) = f(m1) for all f ∈ Fclas. If not, it outputs 0 and terminates.

Otherwise, the challenger computes K1{idj∗ ||fj∗} ← F1.Punc(K1, idj∗ ||fj∗) and submits it to
the adversary.

5. The challenger outputs a bipartite register Rbip.

6. For ℓ ∈ {1, 2}, the challenger does the following.
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6.1. Sample rℓ ← {0, 1}cL(λ).
6.2. Run A′ℓ on Rbip[ℓ], (A

j∗

i )i∈[cL(λ)] and rℓ to obtain a tuple of vectors (vℓ,i)i∈[cL(λ)].

6.3. For all i ∈ [cL(λ)], check if vℓ,i ∈ Aj
∗

i + sj
∗

i if (rℓ)i = 0 and check if vℓ,i ∈ (Aj
∗
)
⊥
i + s

′j∗

i if
(rℓ)i = 1.

If all the checks pass, the challenger outputs 1. Otherwise, it outputs 0.

It is straightforward to reduce this game to the collusion-resistant MoE game. We construct
our adversary for G as follows, where we will define challenge ciphertext-punctured master secret
key distributions Dj later. Without loss of generality37, we will assume that all the queries made
by the adversary A of type PROTECTED satisfy f(m0) ̸= f(m1).

A′0(pk)

1. Simulate A on pk by making a functional key query to the challenger whenever A makes
a query, and forwarding the obtained key to it. Let Radv be the (k + 1)-partite register
(with state σ) and (m0,m1) be the challenge messages output by A at the end of the
query phase.

2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.

3. Output j∗ to the challenger and obtain K1{idj∗ ||fj∗}.

4. Apply APIε,δℓ,D0
to all registers Radv[ℓ] for ℓ ∈ [k+1], let bℓ,0 be the measurement outcomes.

5. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[x], let bx,i be the measurement

outcomes.

6. Apply APIε,δℓ,Di
in succession for i = 1 to j∗ to Radv[y], let by,i be the measurement out-

comes.

7. Output

((Radv[x], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗]),

(Radv[y], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗], ),

j∗).

For j ∈ {1, . . . , k}, define Dj to be the following challenge ciphertext-punctured master secret key
distribution.

1. Sample r ← {0, 1}cL(λ).

2. Sample a PRF key K2 for F2 as K2 ← F2.KeyGen(1
λ).

3. Sample OPCt← iO(PCt(j)OPMem,cpk,K2,r,m,idj ||fj )

37In the general case, the adversary would simply sample j∗ from [k′] where k′ is the number of queries made by
the adversary A of type PROTECTED that do satisfy f(m0) ̸= f(m1).
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PCt
(j)

OPMem,cpk,K2,r,mb,m1−b,idj ||fj
(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m
b,m1−b, idj ||fj

1. Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

2. If id||f < idj ||fj , set a = f(m1−b). Otherwise, set a = f(mb).

3. Output IBE.Enc(cpk, id, a;F2(K2, id)).

4. Sample pmsk ← iO(PKeycmsk,K1{idj∗ ||fj∗}).

PKeycmsk,K1{idj∗ ||fj∗}(id||f)

Hardcoded: cmsk,K1{idj∗ ||fj∗},m0,m1

1. Check if f(m0) = f(m1). If not, output ⊥ and terminate.

2. Compute ck = IBE.KeyGen(cmsk, id||f).
3. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1{idj∗ ||fj∗}, id||f)).

4. Output (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]).

5. Output (OPCt, r), pmsk.

We define D0 to be the distribution where ciphertext is computed honestly and pmsk is computed
as in Definition 32. We define Dk+1 as follows.

1. Sample r ← {0, 1}cL(λ).

2. Sample a PRF key K2 for F2.KeyGen(1
λ).

3. Sample OPCt← iO(PCt(k+1)
OPMem,cpk,K2,r

)

PCt
(k+1)
OPMem,cpk,K2,r,m0,m1,b

(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m
1−b

1. Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

2. Output IBE.Enc(cpk, id, f(m1−b);F2(K2, id)).

4. Sample pmsk as in Dj .

5. Output (OPCt, r), pmsk.

Definition 36. Let ExpC,ℓ denote the outcome of the following experiment where C is a challenge
ciphertext-punctured master secret key distribution that can depend on pp.

1. Execute pk, sk ← PKE.Setup(1λ).

2. Simulate the first steps of A′0 and the challenger of G:
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2.1. Simulate A on pk by making a functional key query to the challenger whenever A makes
a query, and forwarding the obtained key to it. Let Radv be the (k + 1)-partite register
(with state σ) and (m0,m1) be the challenge messages output by A at the end of the
query phase.

2.2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.
2.3. Compute K1{idj∗ ||fj∗} ← F1.Punc(K1, idj∗ ||fj∗).

3. Set pp = (x, y, j∗, (idj ||fj)j∈[k+1],m0,m1, pk).

4. Sample b← {0, 1}.

5. Sample ct, pmsk ← C(pp,mb).

6. Output Radv, (b, ct, pmsk), pp.

We will write ExpC,ℓ ≈cν ExpC′,ℓ to denote that the advantage of any computational adversary in
distinguishing the outcomes of these experiments is ν.

Claim 18. Let τ be the state of the bipartite register Radv[x, y] output by A′0 in G, and also consider
the classical values j∗, x, y, {bℓ,i}ℓ,i contained in the output of A′0.

Suppose we apply the measurement APIε,δx,Dj∗+1
⊗ APIε,δy,Dj∗+1

to τ and let bx,j∗+1, by,j∗+1 denote

the measurement outcomes we obtain. Then,

Pr

[
bx,j∗ − bx,j∗+1 >

29γ

32k
∧ by,j∗ − by,j∗+1 >

29γ

32k

]
>

1

4p(λ) · k3(λ)

where the probability is taken over the randomness of the challenger, the adversary A′0 and the
measurement outcomes.

Proof. Follows from the same argument as Claim 5. Only caveat is that we need to prove that the
success probability of the freeloaders with respect to the challenge ciphertext distribution Dk+1 is
≤ 1/2. However, this is indeed true, since Dk+1 is encoding m1−b while the challenge bit is b.

Definition 37. When we refer to ((id||f)+∆) as a function, we mean the following. We associate
the strings in {0, 1}λ+Q(λ) with numbers {0, 1, . . . , 2λ+Q(λ)} in the canonical way, and we compute
the sum of the numbers associated with ∆ and (id||f). Then, we switch back to the bit representation
of this number, and take the last Q bits, and we define (id||f) + ∆ to be the circuit defined by this
Q-bit string.

Now, we define some intermediary distributions. Define the following for all j ∈ {0, 1, . . . , k} and
∆ ∈ {0, 1, . . . , idj+1||fj+1− idj ||fj − 1}. For notational convenience, also define Didj+1||fj+1−idj ||fj ,0

j

to be D(0,0)
j+1 for all j ∈ {0, 1, . . . , k}. Also note that D(0,0)

j is exactly the same as Dj for j ∈ [k].

• D(∆,0)
j :

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample OPCt← iO(PCt(j,∆,0)OPMem,cpk,K2,r,m,idj+∆).
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PCt
(j,∆,0)

OPMem,cpk,K2,r,mb,m1−b,idj ||fj+∆
(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2, r,m
b,m1−b, idj ||fj +∆

(a) Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(b) If id||f < idj ||fj +∆, set a = f(m1−b). Otherwise, set a = f(mb).

(c) Output IBE.Enc(cpk, id, a;F2(K2, id)).

4. Sample pmsk as in Dj .
5. Output (OPCt, r), pmsk.

• D(∆,1)
j :

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb);F2(K2, idj ||fj +∆)).

4. K2{idj ||fj +∆} ← F2.Punc(K2, idj ||fj +∆).

5. Sample OPCt← iO(PCt(j,∆,1)OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗).

PCt
(j,∆,1)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj ||fj +∆}, r,mb,m1−b, idj ||fj +∆, ct∗

(a) Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(b) If id||f = idj ||fj +∆, output ct∗ and terminate.

(c) If id < idj ||fj +∆+ 1, set a = f(m1−b). Otherwise, set a = f(m).

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

6. Sample pmsk as in Dj .
7. Output (OPCt, r), pmsk.

• D(∆,2)
j :

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample z∗ uniformly at random from the output space of F2.

4. ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb); z∗).

5. K2{idj ||fj +∆} ← F2.Punc(K2, idj ||fj +∆).

6. Sample OPCt← iO(PCt(j,∆,2)OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗).

PCt
(j,∆,2)

OPMem,cpk,K2{idj ||fj+∆},r,mb,m1−b,idj ||fj+∆,ct∗
(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj +∆}, r,mb,m1−b, idj ||fj +∆, ct∗

(a) Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(b) If id||f = idj ||fj +∆, output ct∗ and terminate.

(c) If id < idj ||fj +∆+ 1, set a = f(m1−b). Otherwise, set a = f(m).
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(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

7. Sample pmsk as in Dj .
8. Output (OPCt, r), pmsk.

• D(∆,3)
j :

1. Sample r ← {0, 1}cL(λ).
2. Sample a PRF key K2 for F2.KeyGen(1

λ).

3. Sample z∗ uniformly at random from the output space of F2.

4. ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb); z∗).

5. K2{idj ||fj +∆} ← F2.Punc(K2, idj ||fj +∆).

6. Compute (A∗i , s
∗
i , s

′∗
i ) = F1(K1, idj ||fj +∆).

7. For i ∈ [cL(λ)], set gi = CanA∗
i
if (r)i = 0 and set gi = Can(A∗

i )
⊥ if (r)i = 1.

8. For i ∈ [cL(λ)], compute yi = gi(s
∗
i ) if (r)i = 0 and yi = gi(s

′∗
i ) if (r)i = 1.

9. Set g to be the function g(v1, . . . , vcL(λ)) = (g1(v1)|| . . . ||gcL(λ)(vcL(λ))).
10. Set y = y1|| . . . ||ycL(λ).
11. OCC← CCObf.Obf(g, y, ct∗).

12. Sample OPCt← iO(PCt(j,∆,3)OPMem,cpk,K2{idj},r,m,idj+∆,OCC).

PCt
(j,∆,3)
OPMem,cpk,K2{idj+∆},r,m,idj ||fj+∆,OCC(id||f, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K2{idj +∆}, r,mb,m1−b, idj ||fj +∆,OCC

(a) If id||f = idj ||fj +∆, output the output of OCC(u1, . . . , ucL(λ)) and terminate.

(b) Run OPMem(id||f, u1, . . . , ucL(λ), r). If it outputs 0, output ⊥ and terminate.

(c) If id < idj ||fj +∆+ 1, set a = f(m1−b). Otherwise, set a = f(m).

(d) Output IBE.Enc(cpk, id, a;F2(K2, id)).

13. Sample pmsk as in Dj .
14. Output (OPCt, r), pmsk.

• D(∆,4)
j : Same as D(∆,3)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb); z∗)

with
ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(m1−b); z∗).

• D(∆,5)
j : Same as D(∆,2)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb); z∗)

with
ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(m1−b); z∗).
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• D(∆,6)
j : Same as D(∆,1)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb);F2(K2, idj ||fj +∆))

with
ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(m1−b);F2(K2, idj ||fj +∆)).

Now, we show that these distributions collapse around ∆ = 0 for each j. Below, all our
indistinguishability claims are for 25λ · 28λ0.3CMoE.Coll -time adversaries and we set ν(λ) = 2−5λ−Q(λ) ·
2−8λ

0.3CMoE.Coll .

Claim 19. ExpD(∆,0)
j ,ℓ

≈cν(λ) ExpD(∆,1)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Observe that by punctured key correctness of F2 (Definition 1), the different obfuscated

programs PCt
(j,∆,0)
OPMem,cpk,K2,r,m,idj+∆ and PCt

(j,∆,1)
OPMem,cpk,K2{idj+∆},r,m,idj+∆,ct∗ in these hybrids have

the same functionality. The result follows by security of iO and by our choice of parameters.

Claim 20. ExpD(∆,1)
j ,ℓ

≈cν(λ) ExpD(∆,2)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. The result follows by selective puncturing security of F2 (Definition 1) and our choice of
parameters.

Claim 21. ExpD(∆,2)
j ,ℓ

≈cν(λ) ExpD(∆,3)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Observe that the obfuscated ciphertext programs PCt in these hybrids have the same func-
tionality by correctness of CCObf, since a vector w is in A∗i +s

∗
i if and only if CanA∗

i
(w) = CanA∗

i
(s∗i )

and similarly for (A∗)⊥i + s
′∗
i . Then, the claim follows by the security of iO.

Claim 22. ExpD(∆,3)
j ,ℓ

≈cν(λ) ExpD(∆,4)
j ,ℓ

if

• j ∈ {1, . . . , k} and ∆ ∈ {1, . . . , idj+1 − idj − 1}, or

• j = 0 and ∆ ∈ {0, 1, . . . , idj+1 − idj − 1}

and for all ℓ ∈ [k + 1].

Proof. We have two cases. First, assume that (idj ||fj + ∆)(m0) = (idj ||fj + ∆)(m1). Then, the
result easily follows.

Otherwise, define the intermediary distributions D(∆,3′)
j ,D(∆,4′)

j as follows.

D(∆,3′)
j

1. Sample (OPCt, r) as in D(∆,3)
j .

2. Sample cmsk′ ← IBE.Punc(cmsk, idj ||fj +∆).

3. Sample pmsk ← iO(PKeycmsk′,K1{idj∗ ||fj∗}).
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PKeycmsk′,K1{idj∗ ||fj∗}(id||f)

Hardcoded: cmsk′,K1{idj∗ ||fj∗},m0,m1

1. Check if f(m0) = f(m1). If not, output ⊥ and terminate.

2. Compute ck = IBE.KeyGen(cmsk′, id||f).
3. (Ai, si, s

′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1{idj∗ ||fj∗}, id||f)).

4. Output (ck, id, f, (Ai, si, s
′
i)i∈[cL(λ)]).

D(∆,4′)
j Same as D(∆,3′)

j except for the following. Replace the line

ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(mb); z∗)

with
ct∗ = IBE.Enc(cpk, idj ||fj +∆, (idj ||fj +∆)(m1−b); z∗).

First, we claim ExpD(∆,3)
j ,ℓ

≈cν(λ) Exp
D(∆,3′)

j ,ℓ
and ExpD(∆,4)

j ,ℓ
≈cν(λ) Exp

D(∆,4′)
j ,ℓ

. We will only

argue the first one and the second one follows similarly. Observe that by strong punctured key
correctness of deterministic IBE.KeyGen, the obfuscated programs PKey in these hybrids can behave
differently only on input (idj ||fj +∆)(m0).. However, since we are considering the case (idj ||fj +
∆)(m0) ̸= (idj ||fj + ∆)(m1), the programs will not go past the first line and will have the exact
same functionality. Then, the claim follows by security of iO.

Now, we claim Exp
D(∆,3′)

j ,ℓ
≈cν(λ) ExpD(∆,4′)

j ,ℓ
. Observe that in these hybrids, the randomness used

to invoke IBE.Enc to compute ct∗ is uniformly and independently sampled. Further, the adversary
only has the IBE keys for the identities id1||f1, id2||f2, . . . , idk||fk, all of which are different from
the identity idj ||fj+∆ under which ct∗ is encrypted. Finally, the master secret key cmsk′ obtained
by the adversary is punctured at idj ||fj +∆. Hence, the result follows from the punctured master
secret key security of IBE.

Claim 23. ExpD(∆,4)
j ,ℓ

≈cν(λ) ExpD(∆,5)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Essentially the same argument as in Claim 21 yields the result.

Claim 24. ExpD(∆,5)
j ,ℓ

≈cν(λ) ExpD(∆,6)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1} and
ℓ ∈ [k + 1].

Proof. Essentially the same argument as in Claim 20 yields the result.

Claim 25. ExpD(∆,6)
j ,ℓ

≈cν(λ) ExpD(∆+1,0)
j ,ℓ

for all j ∈ {0, 1, . . . , k}, ∆ ∈ {0, 1, . . . , idj+1 − idj − 1}
and ℓ ∈ [k + 1].

Proof. Essentially the same argument as in Claim 19 yields the result.

Claim 26. For all ℓ ∈ [k + 1], we have

• ExpD0,ℓ ≈
c
ν(λ) ExpD1,ℓ

• ExpD(0,4)
j ,ℓ

≈cν(λ) ExpDj+1,ℓ for all j ∈ {0, 1, . . . , k}
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• ExpDj ,ℓ ≈
c
ν(λ) ExpD(0,3)

j ,ℓ
for all j ∈ {0, 1, . . . , k}

where ν(λ) = 2−5λ · 2−8λ0.3CMoE.Coll .

Proof. It is easy to see that D0 ≈cν(λ) D
(0,0)
0 and Dk+1 ≈cν(λ) D

(0,0)
k+1 by the security of iO. For the

former, in particular, observe that the obfuscated punctured master secret key programs have the
same functionality since while K1 in D0 is punctured at idj∗ ||fj∗ , we have that fj∗(m0) ̸= fj∗(m1).

Rest follows by a simple calculation using the above results.

Definition 38. We will write D′ to denote D(0,3)
j∗ and D′′ to denote D(0,4)

j∗ where j∗ is as output by
A′0.

Claim 27. Let τ be the bipartite state output by A′0 in G. Let p′x, p
′
y be the outcome of applying

PIx,D′ ⊗ PIy,D′ to τ . Similarly, let p′′x, p
′′
y be the outcome of applying PIx,D′′ ⊗ PIy,D′′ to τ . Then,

• Pr
[
p′x > bx,j∗ − 3γ

32k ∧ p
′
y > by,j∗ − 3γ

32k

]
≥ 1− 2−2λ · 2−4λ0.3CMoE.Coll .

• Pr
[
bx,j∗ − p′′x >

28γ
32k ∧ by,j∗ − p

′′
y >

28γ
32k

]
> 1

q(λ) for some polynomial q(·).

Proof. Follows from the same argument as in Claim 14.

Claim 28. There exist efficient A′1,A′2 such that (A′0,A′1,A′2) wins G with probability 1

20.4·λ
CMoE.Coll

.

Proof. Follows from the same argument as in Claim 15.

Claim 29. There exists efficient A′′ = (A′′0,A′′1,A′′2) such that

Pr
[
Moe− Coll− PuncKey(λ, L(λ),A′′) = 1

]
≥ 2−0.4·λ

CMoE.Coll .

Proof. It is straightforward to reduce G to Moe− Coll− PuncKey, which is proven secure in the
proof of Theorem 24. See also Claim 16.

The above constitutes a contradiction by Theorem 24, therefore this completes the security
proof.

9 Signature Scheme with Copy-Protected Keys

In this section, we define signature schemes with copy-protected signing keys. Then, we give our
construction based on coset states and prove it secure.

9.1 Definitions

Definition 39 (Signature Scheme with Copy-Protected Secret Keys). A signature scheme with
copy-protected secret keys consists of the following efficient algorithms.

• KeyGen(1λ): Takes in the security parameter, output a classical signing key sk and a classical
verification key vk.

• QKeyGen(sk): Takes as input the classical signing key and outputs a quantum signing key.
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• Sign(Rsk,m): Takes in a quantum signing key and a message m, outputs a classical signature
on m.

• Ver(vk,m, sig): Takes in the verification key, a message m ∈M and a claimed signature sig
on m, outputs 1 (accept) or 0 (reject).

We require correctness.

Correctness For all messages m ∈M,

Pr

Ver(vk, sig) = 1 :
sk, vk ← Setup(1λ)
Rsk ← QKeyGen(sk)
sig ← Sign(Rsk,m)

 ≥ 1− negl(λ).

Definition 40 (Pseudodeterministic Signatures). A signature scheme is said to be pseudodeter-
ministic if for any value of sk, vk in the support induced by KeyGen, for any message m ∈M, there
exists a fixed signature sigsk,vk,m such that

Pr

sig = sigsk,vk,m :
sk, vk ← Setup(1λ)
Rsk ← QKeyGen(sk)
sig ← Sign(Rsk,m)

 ≥ 1− negl(λ).

As observed by [LLQZ22], a pseudodeterministic signature scheme, along with Lemma 1, means
that we can implement the signing in a way such that the quantum secret key is only negligibly
disturbed. Thus, we can reuse the key to sign any polynomial number of times. Our scheme
(Section 9.2) will be pseudodeterministic.

We now define anti-piracy security for signature schemes, similar to our PKE definition (Defi-
nition 24).

Definition 41 (Anti-Piracy Security for Signature Schemes). Let DS be a signature scheme with
copy-protected secret keys. Consider the following game between the challenger and an adversary
A.

SignatureAntiPiracy(λ,A)

1. The challenger runs sk, vk ← DS.Setup(1λ) and submits vk to the adversary.

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← DS.QKeyGen(sk) and submits R to the adversary.

3. A outputs a (k + 1)-partite register Radv and freeloader unitaries {Uℓ}ℓ∈[k+1] where k is the
number of queries it made.

4. The challenger executes the following for each ℓ ∈ [k + 1].

4.1. mℓ ←M.

4.2. sigℓ ← Uquantum(Uℓ,Radv[ℓ],mℓ).

4.3. Check if DS.Ver(vk,mℓ, sigℓ) = 1.

5. The challenger outputs 1 if and only if all the checks pass.

We say that DS satisfies anti-piracy security if for any QPT adversary A,

Pr[SignatureAntiPiracy(λ,A) = 1] ≤ negl(λ).
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9.2 Construction

In this section, we present our construction. Assume the existence of following primitives where we
set ν(λ) = 2−6λ · 2−8λ0.3CMoE.Coll .

• F , prefix puncturable extracting PRF (Definition 4) with error 2−λ−1 for min-entropy s2(λ)+
s3(λ), with input length m(λ) and output length n(λ),

• iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time
adversaries,

• IBE, identity-based encryption scheme for the identity space ID = {0, 1}λ (Definition 15)

that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,

• F1, puncturable PRF family with input length λ and output length same as the size of the
randomness used by CosetGen (Definition 14), that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -
time adversaries,

• F2, puncturable PRF family with input length λ and output length same as the size of the
randomness used by IBE.Enc that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,38

• CCObf, compute-and-compare obfuscation for 2−λ
0.2·CMoE.Coll -unpredictable distributions that

is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -time adversaries,

• F3, puncturable statistically injective PRF with error probability 2−λ with input length s3(λ)
and output length s2(λ),

• F4, puncturable PRF with input length s2(λ) and output length s3(λ),

• G1, a pseudorandom generator with input length n(λ) and output length n(λ) plus the key
size of the PRF F2,

• G2, a pseudorandom generator with input length s1(λ)/2 and output length s1(λ),

• G3, a pseudorandom generator with input length λ and output length 2 · λ,

• f , a subexponentially secure injective one-way function with input space {0, 1}n(λ).

We also set the parameters from above as follows:

• n(λ) = λ,

• s1(λ) = cL(λ),

• s3(λ)− s1(λ)− 2λ to be larger than the size of the obfuscations (of the program Q) defined
in Definition 42,

• s2(λ) ≥ 2 · s3(λ) + λ,

• s2(λ) + s3(λ) ≥ n(λ) + 2λ+ 4,

• m(λ) = s1(λ) + s2(λ) + s3(λ).

38We also assume that F2 has uniformly random keys (when not punctured), that is, the key generation algo-
rithm F2.KeyGen simply samples and outputs a uniformly random string. This is satisfied by the puncturable PRF
constructions based on one-way functions we are using.
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As in our other schemes, while some of our security assumptions above are exponential with
specific exponents, all of these assumptions can be based solely on subexponential hardness for
any exponent, since we can always scale the security parameter by a polynomial factor when
instantiating the underlying primitives.

Set L(λ) = λ and therefore cL(λ) = 24·λ3 (see Theorem 24). We also assume that all obfuscated
programs in the construction and in the proof are appropriately padded.

We now give our signature scheme with copy-protected signing keys, for the message space
M = {0, 1}m(λ).

DS.Setup(1λ)

1. Sample PRF keys K ← F.KeyGen(1λ) and Ki ← Fi.KeyGen(1
λ) for i ∈ {1, 3, 4}.

2. Sample cpk, csmk ← IBE.Setup(1λ).

3. Sample OPVer← iO(PVer) where PVer is the following program.

PVer(m, sig)

Hardcoded: K,K3,K4

Hidden Trigger Check

1. Parse m1||m2||m3 = m with |mi| = si.

2. Compute m′1||OQ′||r′ = F4(K4,m2)⊕m3.

3. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical

circuit, output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

4. Parse y||K ′2 = G1(F (K,m)) with |y| = n(λ).

5. Output 1 if f(sig) = f(y). Otherwise, output 0.

4. Sample OPMem← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id, u1, . . . , ucL(λ), x)

Hardcoded: K1

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (x)i = 0 and check if ui ∈ A⊥i + s′i if
(x)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

5. Sample OPEval← iO(PEval), where PEval is the following program.39

PEval(m, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K,K3,K4

Hidden Trigger Check

39Note that it is also possible to put the coset generation PRF key K1 directly inside OPEval due to the iO security.
However, we elect to use OPMem to preserve the similarities to our PKE construction.
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1. Parse m1||m2||m3 = m with |mi| = si.

2. Compute m′1||OQ′||r′ = F4(K4,m2)⊕m3.

3. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical

circuit, output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

4. Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and terminate.

5. Parse y||K ′2 = G1(F (K,m)) with |y| = n(λ).

6. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

6. Set vk = OPVer and sk = (cmsk, cpk,K1,OPEval).

7. Output (vk, sk).

DS.QKeyGen(sk)

1. Parse (cmsk, cpk,K1,OPEval) = sk.

2. Sample id← {0, 1}λ.

3. (Ai, si, s
′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id)).

4. ck ← IBE.KeyGen(cmsk, id).

5. Output
(∣∣∣Ai,si,s′i〉)i∈[cL(λ)], ck, id,OPEval.

DS.Sign(Rkey,m)

1. Parse ((Ri)i∈[cL(λ)], ck, id,OPEval) = Rkey.

2. Parse m1||m2||m3 = m with |mi| = si.

3. For indices i ∈ [cL(λ)] such that (m0)i = 1, apply H⊗κ(L(λ)+λ) to Ri.

4. Run the program OPEval coherently on m, id and (Ri)i∈[cL(λ)].

5. Measure the output register and denote the outcome by cct.

6. Output IBE.Dec(ck, cct).

DS.Ver(vk,m, sig)

1. Parse OPVer = vk.

2. Output OPVer(m, sig).

We claim that the construction is correct and secure.

Theorem 36. DS satisfies correctness (Definition 39) and psuedodeterminism (Definition 40), and
hence reusability.
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Theorem 37. DS satisfies selective40 message existential unforgeability security.

Theorem 38. DS satisfies anti-piracy security (Definition 41).

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 8. Assuming subexponentially secure iO and subexponentially secure LWE, there exists
a signature scheme that satisfies anti-piracy security against unbounded collusion.

9.3 Proof of Correctness and Reusability

It is easy to see that the scheme has psuedodeterministic signatures. If a message does not satisfy
the hidden trigger condition, the signing procedure will output the first n(λ) bits of G1(F (K,m))
by the correctness of the iO and IBE schemes. In particular, we are assuming perfect correctness
for the IBE scheme, which is indeed true for our instantiation (Corollary 4). As a result, the IBE
ciphertext IBE.Enc(cpk, id, y;F2(K

′
2, id)) output by OPEval will decrypt to y, the first n(λ) bits of

G1(F (K,m)), for anym. If the messagem does satisfy the hidden trigger condition, then the output
of OPEval is deterministically determined bym (once sk, vk are fixed). Then, we run IBE.Dec which
we can assume to be deterministic since it has perfect correctness. Therefore, psuedodeterministic
signatures property indeed holds for all m ∈M.

Now, we move onto correctness. The following discussion follows closely to the proof of cor-
rectness given by [LLQZ22] for their scheme. First, it is easy to see that the correctness holds for
any m that does not satisfy the hidden trigger condition. We will show that, for any fixed message
m ∈ M, with overwhelming probability over the randomness of the scheme (including setup), the
message m will not satisfy the hidden trigger condition, thus proving correctness (Definition 39).

Now, fix a message m ∈M. Let F̂4 denote the truncated version of F4 where we only keep the
first s1 bits, which is also a PRF. Similarly, let m̂3 denote the first s1 bits of m3. Observe that if
m ∈ M does not satisfy correctness, then by above it satisfies the hidden trigger condition, and
therefore satisfies F̂4(K4,m2) = m1 ⊕ m̂3 with probability 1/poly(λ). Therefore, any sequence of
messages that does not satisfy correctness gives us a (non-uniform) adversary for the PRF F̂4 where
we can simply distinguish an output F̂4(K4,m2) of the PRF from a random value by checking if
it is equal to m1 ⊕ m̂3, which would be satisfied by a random value only with exponentially small
probability. This breaks the PRF F̂4 with probability 1/poly(λ), which is a contradiction.

9.4 Proof of Existential Unforgeability

We prove the security through a series of hybrids, which are binary random variables denoting the
outcome of the forgery game and each one is constructed by modifying the previous one.

Hyb0: The original selective message existential unforgeability security game.

Hyb1: We define the Hyb1 so that, after the adversary outputs the challenge message m∗, the
challenger checks if m∗ satisfies the hidden trigger condition, and it terminates if so. As argued in
Section 9.3, this can only happen with negligible probability. Hence, Hyb0 ≈ Hyb1.

40It can also be made by adaptively secure by complexity leveraging and slightly changing the parameters of the
underlying primitives, since we are already assuming subexponentially secure primitives.
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Hyb2: We first compute g∗ = G1(F (K,m
∗)), and parse y∗||K∗2 = g∗ with |y∗| = n(λ) and we set

z∗ = f(y∗). Finally, we now sample OPVer as OPVer← iO(PVer′)

PVer′(m, sig)
Hardcoded: K{m∗},K3,K4,m

∗, z∗

Hidden Trigger Check

1. Parse m1||m2||m3 = m with |mi| = si.

2. Compute m′1||OQ′||r′ = F4(K4,m2)⊕m3.

3. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

4. If m = m∗: Output 1 if f(sig) = z∗ and output 0 if f(sig) ̸= z∗, and terminate.

5. Parse y||K ′2 = G1(F (K{m∗},m∗)) with |y| = n(λ).

6. Output 1 if f(sig) = f(y). Otherwise, output 0.

By the punctured key correctness of F , the functionality of PVer did not change. Thus, Hyb1 ≈ Hyb2
by the security of iO.

Hyb3: We now sample g∗ uniformly at random. Observe that PVer only has the punctured key
K{m∗}, and the signing oracle only answers queries for messages m ̸= m∗, which can also be
simulated using K{m∗} rather than K. Thus, we have Hyb2 ≈ Hyb3 by the punctured key security
of F and the security of the PRG G1.

We claim that Pr[Hyb3 = 1] ≤ negl(λ). Observe that, since m∗ is not a hidden trigger input,
Hyb3 = 1 occurs if and only if the forged signature sig∗ output by the adversary satisfies f(sig∗) =
z∗, where z∗ = f(y∗) and y∗ is uniformly at random. Therefore, Pr[Hyb3 = 1] ≤ negl(λ) follows by
the security of the one-way function f .

9.5 Proof of Anti-Piracy Security

In this section, we prove Theorem 38.
First, we show that hidden trigger inputs are indistinguishable from uniformly random challenge

strings, even when the adversary gets a (obfuscated) program that allows it to generate its own
hidden trigger inputs.

Definition 42 (Hidden Trigger Inputs). Let GenTriggerK,K3,K4,OPMem,cpk be the following program,
where the hardcoded values are as in the signature scheme construction (Section 9.2). The input
format to the program will be clear from context.

GenTriggerK,K3,K4,OPMem,cpk(r1, r2, r3)

Hardcoded: K,K3,K4,OPMem, cpk

1. Parse x1||x2||x3 = G2(r1) with |xi| = si.

2. Parse y||K ′2 = G1(F (K,x)) with |y| = n(λ).
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3. OQ← iO(Qcpk,OPMem,x1,K′
2,y

; r3).

4. x′2 = F3(K3, x1||OQ||G3(r2)).

5. x′3 = F4(K4, x
′
2)⊕ (x1||OQ||G3(r2)).

6. Output x1||x′2||x′3.

The circuit Qcpk,OPMem,x1,K′
2,y

used above is the following. Note that it contains hardcoded values
that are computed during the execution of GenTrigger.

Qcpk,OPMem,x1,K′
2,y

(mode, w)

Hardcoded: cpk,OPMem, x1,K
′
2, y

1. If mode = eval:

1. Parse id, u1, . . . , ucL(λ) = w.

2. Run OPMem(id, u1, . . . , ucL(λ), x1). If it outputs 0, output ⊥ and terminate.

3. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

2. If mode = check, parse sig||0cL(λ)·λ = w and check if f(sig) = f(y). If so, output 1, and
otherwise output 0.

Lemma 12. Let DS be the signature scheme from Section 9.2 and let a(λ) denote the length of
the randomness used by iO to obfuscate Q in Definition 42. Consider the following experiment,
parameterized by ℓ(λ).

HiddenTriggerExp(λ,A, ℓ(λ), b)

1. The challenger runs sk, vk ← DS.Setup(1λ) and submits vk to the adversary.

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← DS.QKeyGen(sk) and submits R to the adversary.

3. The adversary outputs a register Radv.

4. Sample OGenTrigger← iO(GenTrigger).

5. For i = 1 to ℓ:

1. Sample ri1 ← {0, 1}s1(λ)/2.
2. Sample ri2 ← {0, 1}λ.
3. Sample ri3 ← {0, 1}a(λ).
4. Set z0,i = OGenTrigger(ri1, r

i
2, r

i
3).

5. Sample z1,i ← {0, 1}m(λ).

6. Output ((zb,i)i∈[ℓ],OGenTrigger,Radv).

Then, for any polynomial ℓ(λ),

HiddenTriggerExp(λ,A, ℓ(λ), 0) ≈c HiddenTriggerExp(λ,A, ℓ(λ), 1).

For now, assume Lemma 12 and we prove it at the end of the section. We will prove anti-piracy
security through a series of hybrids. Define Hyb0 to be the original game SignatureAntiPiracy(λ,A).
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Hyb1 : We now samplemℓ for all ℓ ∈ [k+1] as hidden triggers (Definition 42): mℓ ← OGenTrigger(rℓ1, r
ℓ
2, r

ℓ
3)

where rℓ1, r
ℓ
2, r

ℓ
3 are sampled uniformly at random. We get Hyb0 ≈ Hyb1 by Lemma 12. Crucially

note that at the end of the game in Hyb1, the forged signatures output by the adversary are verified
using OPVer, which is in adversary’s view. Hence, the adversary can indeed simulate Hyb0,Hyb1 in
the reduction to Lemma 12.

Hyb2 : We now sample mℓ for ℓ ∈ [k + 1] as follows.

1. Sample rℓ1 ← {0, 1}s1(λ)/2.

2. Sample rℓ2 ← {0, 1}λ.

3. Sample rℓ3 ← {0, 1}a(λ).

4. Let xℓ = G2(r
ℓ
1).

5. Parse xℓ1||xℓ2||xℓ3 = xℓ with |xℓi | = si.

6. Parse yℓ||Kℓ
2 = G1(F (K,x

ℓ)) with |yℓ| = n(λ).

7. OQℓ ← iO(Qcpk,OPMem,xℓ1,K
ℓ
2,y

ℓ ; rℓ3).

8. x
′ℓ
2 = F3(K3, x

ℓ
1||OQℓ||G3(r

ℓ
2)).

9. x
′ℓ
3 = F4(K4, x

′ℓ
2 )⊕ (xℓ1||OQℓ||G3(r

ℓ
2)).

10. Set mℓ = xℓ1||x
′ℓ
2 ||x

′ℓ
3 .

Note that this is only a syntactic change, we only unwrapped the sampling of the inputs mℓ.
Hence, Hyb1 ≡ Hyb2.

Hyb3 : We now sample xℓ for all ℓ ∈ [k + 1] uniformly at random. We get Hyb2 ≈ Hyb3 by the
security of the PRG G2.

Hyb4 : We now sample all yℓ and Kℓ
2 uniformly at random. First, observe that with overwhelming

probability, the values xℓ for all ℓ ∈ [k + 1] will be unique. Then, observe that the inputs xℓ to
F have each min-entropy s2 + s3 given the view of the adversary, since only the first part xℓ1 is
used during the hidden trigger generation and the rest is discarded. Therefore, by our choice of
parameters for the extracting PRF F and by the security of PRG G1, we have Hyb3 ≈ Hyb4.

Hyb5 : At the end of the game, instead of running OPVer on the forged signatures sigℓ output by

the adversary, we compare them to yℓ. Observe that since mℓ are hidden trigger inputs, running
OPVer on mℓ makes it enter the hidden trigger mode, and it executes OQℓ with mode = verify,
which checks if f(sigℓ) = f(yℓ). Since f is injective, this can happen if and only if yℓ = sigℓ.
Hence, Hyb4 ≡ Hyb5.

Finally, observe that the hidden trigger inputs generated above in Hyb4 are special encodings of
(OQℓ, xℓ1), which are (almost) the same as ciphertexts of our PKE scheme (Section 7.2) encrypting
the random messages yℓ; and we are comparing the adversary’s outputs to yℓ. Therefore, the
security follows by the random message anti-piracy security (see Section 7.3) of our scheme and we
have Pr[Hyb4 = 1] ≤ negl(λ).
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The only difference between the programs OQℓ here and the ciphertext programs of our PKE is
that OQℓ also has a mode that acts as a point on function on the encrypted message: the adversary
can query it on some message m′ and can check if it equals the encrypted message. See Appendix B
for a more detailed discussion on how the security follows from our PKE security proof even the
ciphertext programs are modified as such.

9.5.1 Proof of Lemma 12

In this section, we prove Lemma 12. We will only prove the case ℓ = 1 - the general case for any
polynomial ℓ(λ) follows easily by the hybrid lemma since OGenTrigger is given to the adversary.

We follow an indirect approach to prove the security by first showing the security of another
game, HiddenTriggerExp′. That is, we will first show Pr[(λ,A) = 1] ≤ 1/2 + negl(λ).

HiddenTriggerExp′(λ,A)

1. The challenger runs sk, vk ← DS.Setup(1λ) and submits vk to the adversary.

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← DS.QKeyGen(sk) and submits R to the adversary.

3. The adversary outputs a register Radv.

4. Sample OGenTrigger← iO(GenTrigger).

5. Sample r∗1 ← {0, 1}s1(λ)/2.

6. Sample r∗2 ← {0, 1}λ.

7. Sample r∗3 ← {0, 1}a(λ).

8. Let x∗ = G2(r
∗
1).

9. Parse x∗1||x∗2||x∗3 = x∗ with |x∗i | = si.

10. Parse y∗||K∗2 = G1(F (K,x
∗)) with |y∗| = n(λ).

11. OQ∗ ← iO(Qcpk,OPMem,x∗1,K
∗
2 ,y

∗ ; r∗3).

12. r̃ = G3(r
∗
2).

13. x
′∗
2 = F3(K3, x

∗
1||OQ∗||r̃).

14. x
′∗
3 = F4(K4, x

′∗
2 )⊕ (x∗1||OQ∗||r̃).

15. Set z0 = x∗1||x
′∗
2 ||x

′∗
3 .

16. Set z1 = x∗1||x∗2||x∗3.

17. Sample b← {0, 1}.

18. Submit zb,OGenTrigger to the adversary A and the adversary outputs a bit b′.

19. Output 1 if and only if b′ = b.
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First, note that the security of HiddenTriggerExp′ implies indistinguishability between z0 and
z1 (given the adversary’s state and OGenTrigger) by the usual elementary argument. Since r∗1 is
random and G2 is a secure PRG, we also obtain indistinguishability between z1 and a random x.
Combining these two gives us Lemma 12 (for ℓ = 1) as desired.

We now prove security of HiddenTriggerExp′ through a series of hybrids, each of which is con-
structed by modifying the previous one. In the hybrids below, whenever we have a check in an
obfuscated program where a variable is compared to multiple different values, or a PRF key is
punctured at various values, we assume that these are (implicitly) coded in lexicographical order
of these values41 to have symmetry which will be needed in the last hybrid.

Hyb0: HiddenTriggerExp′(λ,A).

Hyb1: We now sample x∗ uniformly at random from {0, 1}m(λ) instead of setting x∗ = G2(r
∗
1). By

the security of G2, we get Hyb0 ≈ Hyb1.

Hyb2: We now sample OGenTrigger as OGenTrigger← iO(GenTrigger′) whereK{x∗1||·} is the prefix
punctured key sampled as K{x∗1||·} ← F.Puncture(K,x∗1).

GenTrigger′K{x∗1||·},K3,K4,OPMem,cpk(r1, r2, r3)

Hardcoded: K{x∗1||·},K3,K4,OPMem, cpk

1. Parse x1||x2||x3 = G2(r1) with |xi| = si.

2. Parse y||K ′2 = F (K{x∗1||·}, x) with |y| = n(λ).

3. OQ← iO(Qcpk,OPMem,x1,K′
2,y

; r3).

4. x′2 = F3(K3, x1||OQ||G3(r2)).

5. x′3 = F4(K4, x
′
2)⊕ (x1||OQ||G3(r2)).

6. Output x1||x′2||x′3.

We claim Hyb0 ≈ Hyb1. Observe that, by the prefix punctured key correctness of F , the
functionality of GenTrigger can only possible change if the input x is such that the first s1(λ) bits
of G2(r1) equals x

∗
1. However, the image set of G2 has size at most 2s1(λ)/2, and hence the same is

true for the truncated version where we only keep the first s1(λ) bits of the outputs. However, x1∗
is sampled uniformly at random from {0, 1}s1(λ). Hence, the probability that the condition above
occurs is at most 2−s1(λ)/2 where s1(λ) is polynomial in λ. Hence, with overwhelming probability,
the functionality of GenTrigger does not change, and Hyb1 ≈ Hyb2 follows by the security of iO.

Hyb3: We now sample OPVer as OPVer← iO(PVer′) and OPEval as OPEval← iO(PEval′).

PVer′(m, sig)

Hardcoded: K{z0, z1},K3,K4,K5

Hidden Trigger Check

41To re-emphasize, we order them according to the hardcoded value, not the variable name that denotes the
hardcoded value.
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1. If m = z0 or m = z1, output OQ∗(mode = verify, sig||0cL(λ)·λ) and terminate.

2. Parse m1||m2||m3 = m with |mi| = si.

3. Compute m′1||OQ′||r′ = F4(K4,m2)⊕m3.

4. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

5. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

6. Output 1 if f(sig) = f(y). Otherwise, output 0.

PEval′(m, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K{z0, z1},K3,K4,K5

Hidden Trigger Check

1. If m = z0 or m = z1, output OQ∗(mode = eval, id, u1, . . . , ucL(λ)) and terminate.

2. Parse m1||m2||m3 = m with |mi| = si.

3. Compute m′1||OQ′||r′ = F4(K4,m2)⊕m3.

4. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

5. Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and terminate.

6. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

7. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

By the punctured key correctness of F , the functionality of PVer can only possibly change
if m = z0 or m = z1. If m = z0, then the original program would execute the hidden trigger
mode and hence would execute OQ∗ due to the way we prepared z0, hence the functionality would
be the same. If m = z1, then the original program would execute the normal mode, since with
overwhelming probability a random input would not satisfy the hidden trigger condition42. In that
case, the original program’s output would again be the same as the output of OQ∗ due to the way
OQ∗ is prepared. Hence, Hyb2 ≈ Hyb3 follows by the security of iO.

Hyb4: We now sample y∗ and K∗2 uniformly at random instead of computing them as y∗||K∗2 =

G1(F (K,x
∗)). Since the adversary only has the punctured keys K{z0, z1} and K{x∗1||·} where

z1 = x∗ and x∗1 is a prefix of x∗, we have that F (K,x∗) is pseudorandom given the adversary’s
view, by the punctured key security of F . Then, we invoke the security of G1 and conclude
Hyb3 ≈ Hyb4.

42As discussed in Section 9.3, any sequence of inputs that satisfy the hidden trigger condition with non-negligible
probability gives us a way of breaking the security of PRF F4. Since an adversary can easily sample random inputs, we
could break the security of F4 if random inputs satisfied the hidden trigger condition with non-negligible probaiblity.
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Hyb5: We now sample OPVer as OPVer← iO(PVer′′) and OPEval as OPEval← iO(PEval′′).

PVer′′(m, sig)

Hardcoded: K{z0, z1},K3,K4{x∗2, x
′∗
2 },K5

Hidden Trigger Check If m = z0 or m = z1, output OQ∗(mode = verify, sig||0cL(λ)·λ)
and terminate.

1. Parse m1||m2||m3 = m with |mi| = si.

2. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

3. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

4. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

5. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

6. Output 1 if f(sig) = f(y). Otherwise, output 0.

PEval′′(m, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K{z0, z1},K3,K4{x∗2, x
′∗
2 },K5

Hidden Trigger Check

1. If m = z0 or m = z1, output OQ∗(mode = eval, id, u1, . . . , ucL(λ)) and terminate.

2. Parse m1||m2||m3 = m with |mi| = si.

3. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

4. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

5. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

6. Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and terminate.

7. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

8. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

We will first consider the modified versions of PEval′′ and PVer′′ where the PRF key K4 is not
punctured at x∗2, x

′∗
2 and argue that these versions have the same functionality as PEval′ and PVer′.

Then, it is easy to see that puncturing K4 at x∗2, x
′∗
2 does not change their functionalities by the

punctured key correctness of F4.
We argue that the newly added skip conditions m2 = x

′∗
2 or m2 = x∗2 does not change the

functionalities of PVer,PEval except with negligible probability. First, let us consider the check
m2 = x∗2. This new check can only possibly change the functionalities of the programs if we also
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have m2 = F3(K3,m
′
1||OQ′||r′) along with m2 = x∗2, since then the new program jumps to the

normal mode while the old program would possibly execute the hidden trigger mode. However,
note that x∗2 is sampled independently uniformly at random from {0, 1}s2(λ), whereas for any fixing
of K3, the image set of F3(K3, ·) has size 2s3(λ) ≤ 2(s2(λ)−λ)/2. Hence, even the probability that x∗2
is in the image of F3(K3, ·) is at most 2−(s2(λ)−λ)/2.

Now, let us consider the check m2 = x
′∗
2 . As above, this new check can only possibly change

the functionalities of the programs if we also have m2 = F3(K3,m
′
1||OQ′||r′) along with m2 =

x
′∗
2 and m1 = m′1 where m′1||OQ′||r′ = F4(K4,m2) ⊕ m3. This implies F3(K3, x

∗
1||OQ∗||r̃) =

F3(K3, F4(K4,m2) ⊕ m3). Assume F3(K3, ·) is an injective function, which is indeed true with
probability 1− 2−λ since F3 is a statistically injective PRF. Then, we get

m3 = (x∗1||OQ∗||r̃)⊕ F4(K4,m2) = (x∗1||OQ∗||r̃)⊕ F4(K4, x
′∗
2 ) = x

′∗
3 .

Further, m′1||OQ′||r′ = F4(K4,m2)⊕m3 along with m3 = x
′∗
3 and x

′∗
2 = m2 implies m′1 = m1 = x∗1.

In summary, we get m1 = x∗1,m2 = x
′∗
2 ,m3 = x

′∗, meaning that m = z0. However, at the beginning
of the program we check if m = z0 and jump to normal mode if so. Hence, if m = z0, the program
would not even come to this newly added check m2 = x

′∗
2 .

By above, we get that except with negligible probability, the functionalities of the obfuscated
programs did not change. Thus, Hyb4 ≈ Hyb5 by the security of iO.

Hyb6: We now sample r̃ uniformly at random from {0, 1}2λ. By the security of G3, we get
Hyb5 ≈ Hyb6.

Hyb7: We now sample OGenTrigger as OGenTrigger← iO(GenTrigger′′).

GenTrigger′′
K{x∗1||·},K3,K4{x

′∗
2 },OPMem,cpk

(r1, r2, r3)

Hardcoded: K{x∗1||·},K3,K4{x∗2, x
′∗
2 },OPMem, cpk

1. Parse x1||x2||x3 = G2(r1) with |xi| = si.

2. Parse y||K ′2 = F (K{x∗1||·}, x) with |y| = n(λ).

3. OQ← iO(Qcpk,OPMem,x1,K′
2,y

; r3).

4. x′2 = F3(K3, x1||OQ||G3(r2)).

5. x′3 = F4(K4{x∗2, x
′∗
2 }, x′2)⊕ (x1||OQ||G3(r2)).

6. Output x1||x′2||x′3.

By the punctured key correctness of F4, the functionality can only possibly change if x′2 = x
′∗
2 or if

x′2 = x∗2. Assume that F3(K3, ·) is an injective function, which is indeed true except with probability
2−λ since F3 is a statistically injective PRF. Then, x′2 = x

′∗
2 implies (x∗1||OQ∗||r̃) = x1||OQ||G3(r2),

and in particular, r̃ = G3(r2). However, observe that the image set of G3 has size at most 2λ,
whereas r̃ is sampled uniformly at random from {0, 1}2λ. Thus, with overwhelming probability, r̃
will be outside the image set of G3, and hence we will not have x′2 = x

′∗
2 for any input to GenTrigger.

For the case of x′2 = x∗2, observe that x∗2 is independently sampled uniformly at random and is not
used anywhere else. Hence, x′2 = x∗2 can only occur with exponentially small probability. Thus,
Hyb6 ≈ Hyb7 by the security of iO.
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Hyb8: We now sample OGenTrigger as OGenTrigger← iO(GenTrigger′′′).

GenTrigger′′′
K{x∗1||·},K3{x∗1||OQ∗||r̃},K4{x

′∗
2 },OPMem,cpk

(r1, r2, r3)

Hardcoded: K{x∗1||·},K3{x∗1||OQ∗||r̃},K4{x∗2, x
′∗
2 },OPMem, cpk

1. Parse x1||x2||x3 = G2(r1) with |xi| = si.

2. Parse y||K ′2 = F (K{x∗1||·}, x) with |y| = n(λ).

3. OQ← iO(Qcpk,OPMem,x1,K′
2,y

; r3).

4. x′2 = F3(K3{x∗1||OQ∗||r̃}, x1||OQ||G3(r2)).

5. x′3 = F4(K4{x∗2, x
′∗
2 }, x′2)⊕ (x1||OQ||G3(r2)).

6. Output x1||x′2||x′3.

As above, with overwhelming probability, r̃ will be outside the image set ofG3, and x1||OQ||G3(r2) =
x∗1||OQ∗||r̃ will be not be satisfied by any input to GenTrigger. Hence, the functionality of GenTrigger
does not change with overwhelming probability by the punctured key correctness of F3, and thus
Hyb7 ≈ Hyb8 follows by the security of iO.

Hyb9: We now sample OPVer as OPVer← iO(PVer′′′) and OPEval as OPEval← iO(PEval′′′).

PVer′′′(m, sig)

Hardcoded: K{z0, z1},K3,K4{x
′∗
2 , x

∗
2},K5

Hidden Trigger Check If m = z0 or m = z1, output OQ∗(mode = verify, sig||0cL(λ)·λ)
and terminate.

1. Parse m1||m2||m3 = m with |mi| = si.

2. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

3. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

4. Check if m′1||OQ′||r′ = x∗1||OQ∗||r̃. If so, jump to Normal Mode.

5. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

6. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

7. Output 1 if f(sig) = f(y). Otherwise, output 0.

PEval′′′(m, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K{z0, z1},K3,K4{x
′∗
2 , x

∗
2},K5

Hidden Trigger Check
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1. If m = z0 or m = z1, output OQ∗(mode = eval, id, u1, . . . , ucL(λ)) and terminate.

2. Parse m1||m2||m3 = m with |mi| = si.

3. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

4. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

5. Check if m′1||OQ′||r′ = x∗1||OQ∗||r̃. If so, jump to Normal Mode.

6. Check if m′1 = m1 and m2 = F3(K3,m
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

7. Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and terminate.

8. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

9. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

We claim that the newly added skip condition does not change the functionality of the programs.
First, note that the functionality of these programs can only possibly change if m′1||OQ′||r′ =
x∗1||OQ∗||r̃,m′1 = m1 andm2 = F3(K3,m

′
1||OQ′||r′), since then the old programs execute the hidden

trigger mode whereas the new program jumps to the normal mode. However, if these conditions
are satisfied, then so is m2 = x

′∗
2 due to the way we prepare x

′∗
2 . Observe that if m2 = x

′∗
2 , then

the programs will not come to the newly added check since at the beginning we check if m2 = x
′∗
2

and jump to normal mode if so. Hence, the functionality of the programs did not change and we
have Hyb8 ≈ Hyb9 by the security of iO.

Hyb10: We now sample OPVer as OPVer← iO(PVer′′′′) and OPEval as OPEval← iO(PEval′′′′).

PVer′′′′(m, sig)

Hardcoded: K{z0, z1},K3{x∗1||OQ∗||r̃},K4{x
′∗
2 , x

∗
2},K5

Hidden Trigger Check If m = z0 or m = z1, output OQ∗(mode = verify, sig||0cL(λ)·λ)
and terminate.

1. Parse m1||m2||m3 = m with |mi| = si.

2. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

3. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

4. Check if m′1||OQ′||r′ = x∗1||OQ∗||r̃. If so, jump to Normal Mode.

5. Check if m′1 = m1 and m2 = F3(K3{x∗1||OQ∗||r̃},m′1||OQ′||r′). If so, treat OQ′ as a
classical circuit, output OQ′(mode = verify, sig||0cL(λ)·λ) and terminate.
Normal Mode

6. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

7. Output 1 if f(sig) = f(y). Otherwise, output 0.
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PEval′′′′(m, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K{z0, z1},K3{x∗1||OQ∗||r̃},K4{x
′∗
2 , x

∗
2},K5

Hidden Trigger Check

1. If m = z0 or m = z1, output OQ∗(mode = eval, id, u1, . . . , ucL(λ)) and terminate.

2. Parse m1||m2||m3 = m with |mi| = si.

3. If m2 = x
′∗
2 or m2 = x∗2, jump to Normal Mode.

4. Compute m′1||OQ′||r′ = F4(K4{x∗2, x
′∗
2 },m2)⊕m3.

5. Check if m′1||OQ′||r′ = x∗1||OQ∗||r̃. If so, jump to Normal Mode.

6. Check if m′1 = m1 and m2 = F3(K3{x∗1||OQ∗||r̃},m′1||OQ′||r′). If so, treat OQ′ as a
classical circuit, output OQ′(mode = eval, id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

7. Run OPMem(id, u1, . . . , ucL(λ),m1). If it outputs 0, output ⊥ and terminate.

8. Parse y||K ′2 = G1(F (K{z0, z1},m)) with |y| = n(λ).

9. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

The functionality of these programs stay the same by the punctured key correctness of K3. Thus,
Hyb9 ≈ Hyb10 follows by the security of iO.

Hyb11: We now sample x
′∗
2 uniformly at random. Hyb10 ≈ Hyb11 follows by the punctured key

security of F3.

Hyb12: We now sample x
′∗
3 uniformly at random. Hyb11 ≈ Hyb12 follows by the punctured key

security of F4.
Finally, we claim that z0 and z1 are symmetric in Hyb12. First note that they are both sampled

uniformly at random. Further, any check we have in the obfuscated programs compare variables
to both z0 and z1, which are coded in lexicographical order to keep the symmetry. Finally, any
PRF key that is punctured is either punctured at both z0, z1, or both x

′∗
2 , x

∗
2, or (prefix) punctured

at x∗1, or punctured at x∗1||OQ∗||r̃ where OQ∗ depends only on y∗,K∗2 and x∗1. Crucially note that
y∗,K∗2 , r̃ are sampled independently uniformly at random, and x∗1 is the first s1 bits of both z0

and z1. Hence, z0 and z1 are indeed symmetric in Hyb12, and thus we have Pr[Hyb12 = 1] ≤ 1/2,
concluding the proof.

10 Pseudorandom Function Family with Copy-Protected Keys

In this section, we define PRF schemes with copy-protected keys. Then, we give our construction
based on coset states and prove it secure.

10.1 Definitions

Definition 43 (PRF Scheme with Copy-Protected Secret Keys). A PRF scheme with copy-
protected secret keys consists of the following efficient algorithms.
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• KeyGen(1λ): Takes in the security parameter, output a classical key K.

• QKeyGen(K): Takes as input the classical key and outputs a quantum key.

• Eval(RK ,m): Takes in a quantum key and an input x, outputs a classical value.

We require correctness.

Correctness For all inputs x,

Pr

val = F (K,x) :
K ← Setup(1λ)

RK ← QKeyGen(K)
val← Eval(RK , x)

 ≥ 1− negl(λ).

As observed by [CLLZ21], correctness, along with Lemma 1, means that we can implement the
evaluation in a way such that the quantum key is only negligibly disturbed. Thus, we can reuse
the key to evaluate the PRF any polynomial number of times.

Definition 44 (Anti-Piracy Security for PRF Schemes). Consider the following game between the
challenger and an adversary A.

PRFAntiPiracy(λ,A)

1. The challenger runs K ← KeyGen(1λ).

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← QKeyGen(K) and submits R to the adversary.

3. A outputs a (k + 1)-partite register Radv and freeloader unitaries {Uℓ}ℓ∈[k+1] where k is the
number of queries it made.

4. The challenger executes the following for each ℓ ∈ [k + 1].

4.1. Sample bℓ ← {0, 1}.
4.2. xℓ ← {0, 1}m(λ).

4.3. Set ch0,ℓ = F (K,xℓ) and sample ch1,ℓ ← {0, 1}n(λ).
4.4. b′ℓ ← Uquantum(Uℓ,Radv[ℓ], x

ℓ, chbℓ,ℓ).

4.5. Check if b′ℓ = bℓ.

5. The challenger outputs 1 if and only if all the checks pass.

We say that the PRF scheme satisfies anti-piracy security if for any QPT adversary A,

Pr[PRFAntiPiracy(λ,A) = 1] ≤ 1

2
+ negl(λ).
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10.2 Construction

In this section, we present our construction copy-protecting a particular PRF family F . Our con-
struction is the same as our copy-protected signature construction (Section 9), with the verification
key removed. We give it in full for completeness.

Assume the existence of following primitives where we set ν(λ) = 2−6λ · 2−8λ0.3CMoE.Coll .

• F , prefix puncturable extracting PRF (Definition 4) with error 2−λ−1 for min-entropy s2(λ)+
s3(λ), with input length m(λ) and output length n(λ),

• iO, indistinguishability obfuscation scheme that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time
adversaries,

• IBE, identity-based encryption scheme for the identity space ID = {0, 1}λ (Definition 15)

that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,

• F1, puncturable PRF family with input length λ and output length same as the size of the
randomness used by CosetGen (Definition 14), that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -
time adversaries,

• F2, puncturable PRF family with input length λ and output length same as the size of the
randomness used by IBE.Enc that is ν(λ)-secure against 25λ · 28λ0.3CMoE.Coll -time adversaries,43

• CCObf, compute-and-compare obfuscation for 2−λ
0.2·CMoE.Coll -unpredictable distributions that

is 2−2λ−1 · 2−2λ0.3CMoE.Coll -secure against 23λ · 22λ0.3CMoE.Coll -time adversaries,

• F3, puncturable statistically injective PRF with error probability 2−λ with input length s3(λ)
and output length s2(λ),

• F4, puncturable PRF with input length s2(λ) and output length s3(λ),

• G1, a pseudorandom generator with input length n(λ) and output length n(λ) plus the key
size of the PRF F2,

• G2, a pseudorandom generator with input length s1(λ)/2 and output length s1(λ),

• G3, a pseudorandom generator with input length λ and output length 2 · λ,

• f , a subexponentially secure injective one-way function with input space {0, 1}n(λ).

We also set the parameters from above as follows:

• n(λ) = λ,

• s1(λ) = cL(λ),

• s3(λ) − s1(λ) − 2λ to be large enough to contain obfuscations of the program Q defined in
Definition 52,

• s2(λ) ≥ 2 · s3(λ) + λ,

43We also assume that F2 has uniformly random keys (when not punctured), that is, the key generation algo-
rithm F2.KeyGen simply samples and outputs a uniformly random string. This is satisfied by the puncturable PRF
constructions based on one-way functions we are using.
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• s2(λ) + s3(λ) ≥ n(λ) + 2λ+ 4,

• m(λ) = s1(λ) + s2(λ) + s3(λ).

While some of our security assumptions above are exponential with specific exponents, these
assumptions can be based solely on subexponential hardness for any exponent, since we can always
scale the security parameter by a polynomial factor when instantiating the underlying primitives.

Set L(λ) = λ and therefore cL(λ) = 24·λ3 (see Theorem 24). We also assume that all obfuscated
programs in the construction and in the proof are appropriately padded.

We now give our PRF scheme with copy-protected keys, for the input space {0, 1}m(λ).

KeyGen(1λ)

1. Sample PRF keys K0 ← F.KeyGen(1λ) and Ki ← Fi.KeyGen(1
λ) for i ∈ {1, 3, 4}.

2. Sample cpk, csmk ← IBE.Setup(1λ).

3. Sample OPMem← iO(PMemK1), where PMemK1 is the following program.

PMemK1(id, u1, . . . , ucL(λ), x)

Hardcoded: K1

1. (Ai, si, s
′
i)i∈[cL(λ)] ← CosetGen(1L(λ)+λ;F1(K1, id)).

2. For each i ∈ [cL(λ)], check if ui ∈ Ai + si if (x)i = 0 and check if ui ∈ A⊥i + s′i if
(x)i = 1. If any of the checks fail, output 0 and terminate.

3. Output 1.

4. Sample OPEval← iO(PEval), where PEval is the following program.44

PEval(x, id, u1, . . . , ucL(λ))

Hardcoded: OPMem, cpk,K0,K3,K4

Hidden Trigger Check

1. Parse x1||x2||x3 = x with |xi| = si.

2. Compute x′1||OQ′||r′ = F4(K4, x2)⊕m3.

3. Check if x′1 = x1 and x2 = F3(K3, x
′
1||OQ′||r′). If so, treat OQ′ as a classical circuit,

output OQ′(id, u1, . . . , ucL(λ)) and terminate.
Normal Mode

4. Run OPMem(id, u1, . . . , ucL(λ), x1). If it outputs 0, output ⊥ and terminate.

5. Parse y||K ′2 = G1(F (K0, x)) with |y| = n(λ).

6. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

5. Set K = (cmsk, cpk,K1,OPEval).

6. Output K.
44Note that it is also possible to put the coset generation PRF key K1 directly inside OPEval due to the iO security.

However, we elect to use OPMem to preserve the similarities to our PKE construction.
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QKeyGen(K)

1. Parse (cmsk, cpk,K1,OPEval) = K.

2. Sample id← {0, 1}λ.

3. (Ai, si, s
′
i)i∈[cL(λ)] = CosetGen(1L(λ)+λ;F1(K1, id)).

4. ck ← IBE.KeyGen(cmsk, id).

5. Output
(∣∣∣Ai,si,s′i〉)i∈[cL(λ)], ck, id,OPEval.

Eval(Rkey, x)

1. Parse ((Ri)i∈[cL(λ)], ck, id,OPEval) = Rkey.

2. Parse x1||x2||x3 = x with |xi| = si.

3. For indices i ∈ [cL(λ)] such that (x0)i = 1, apply H⊗κ(L(λ)+λ) to Ri.

4. Run the program OPEval coherently on x, id and (Ri)i∈[cL(λ)].

5. Measure the output register and denote the outcome by cct.

6. Output IBE.Dec(ck, cct).

We claim that the construction is correct and secure.

Theorem 39. The PRF scheme satisfies correctness and hence reusability.

Proof. Since our construction is the same as our signature scheme, follows from Section 9.3.

Theorem 40. The PRF scheme satisfies PRF security.

Proof. Our PRF family is a truncation of G1(F (K0, ·)) where G1 is a PRG and F is a PRF.
Therefore, it is easy to see that the resulting function family also satisfies the PRF security game.

Theorem 41. The PRF scheme satisfies anti-piracy security.

Proof. The proof closely follows the anti-piracy security proof our signature scheme, the major
difference being that in the PRF case we have a CPA-style game where the adversary is trying to
guess a challenge bit and we require that it wins with probability at most 1/2 + negl(λ), whereas
in the signature game we required negligible winning probability. See Appendix D for the full
proof.

When we instantiate the assumed building blocks with known constructions, we get the following
corollary.

Corollary 9. Assuming subexponentially secure iO and subexponentially secure LWE, there exists
a PRF scheme that satisfies anti-piracy security against unbounded collusion.
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11 Copy-Protection for All Unlearnable Functionalities

In this section, we first reproduce the generalized copy-protection definitions from [ALL+21], and
then we show how to copy-protect any unlearnable functionality with respect to a classical oracle.

11.1 Definitions

We now reproduce the relevant definitions from [ALL+21].

Definition 45 (Testing an Oracle-Aided Quantum Program). Let F be a family of functions
with input length m(λ) and output length n(λ). Fix some program f from this family, an oracle-
aided unitary U and some value st of a classical state maintained by the challenger (which will be
defined later). Let D be an efficient challenge input distribution (over {0, 1}m(λ)), and let O be a
quantumly accessible classical oracle that can depend on st. Consider the following mixture P of
binary projective measurements, induced by D and f, U, st, applied on a state ρ.

1. Sample r ← R.

2. Run x← Dst(1λ; r).

3. Execute U on (ρ, ct), let y′ be the output.

4. Output 1 if y′ = f(x). Otherwise, output 0.

Observe that we can efficiently execute the above measurement45 for arbitrary given superposi-
tions of r and b values. Therefore, by Section 4, there exists both exact and approximated projective
and threshold implementations for P. We write PIOD and APIO,ε,δD to denote the projective im-
plementation and approximate projective implementation of P, respectively. Similarly, let TIOD,η
and ATIO,ε,δD,η denote the threshold and efficient approximate threshold implementations of P for a
threshold value η.

While the fixed values f, U, st are omitted from the notation, they will be clear from the context.

Definition 46 (γ-Quantum Unlearnability [ALL+21]). Let F be a family of functions with input
lengthm(λ), and let D be an input distribution over {0, 1}m(λ). Consider the following game between
the challenger and an adversary A.

LearningGame(λ, γ(λ),A)

1. The challenger samples a function f from F .

2. A gets oracle access to f .

3. A outputs a quantum register Radv and a unitary U .

4. The challenger applies TID,γ to Radv, outputs the measurement result.

We say that (F ,D) is γ-unlearnable if for any QPT polynomial A,

Pr[LearningGame(λ, γ(λ),A) = 1] ≤ negl(λ).

45More formally, we are actually talking about the measurement where r, b are fixed
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Definition 47 (Quantum Copy-Protection Scheme [ALL+21]). Let F be a family of functions with
input length m(λ) and output length n(λ). A copy-protection scheme for F consists of the following
efficient algorithms.

• Setup(1λ): Takes as input a security parameter and outputs a classical secret key sk,

• QGen(sk, f): Takes in the secret key and a function f ∈ F , outputs a copy-protected program
as a quantum state.

• Eval(Rkey, x): Takes in a copy-protected program and an input, outputs a value from {0, 1}n(λ).

We require correctness.

Correctness For all functions f ∈ F and inputs x ∈ {0, 1}m(λ),

Pr

[
Eval(Rkey, x) = f(x) :

sk ← Setup(1λ)
Rf ← QGen(sk, f)

]
= 1.

Definition 48 (γ-Anti-Piracy Security [ALL+21]). Let F be a family of functions with input
length m(λ), and let D be an input distribution over {0, 1}m(λ). Consider a copy-protection scheme
(Definition 47) for F and the following game between the challenger and an adversary A.

AntiPiracyGame(λ, γ(λ),A)

1. The challenger samples a copy-protection key sk ← Setup(1λ).

2. The challenger samples a function f from F .

3. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← QGen(sk, f) and submits R to the adversary.

4. A outputs a (k + 1)-partite quantum register Radv and freeloader unitaries {Uℓ}ℓ∈[k+1] where
k is the number of key queries it made.

5. The challenger applies the test ⊗
ℓ∈[k+1]

TID,γ

to Radv and outputs 1 if and only if the measurement result is all 1.

We say that the copy-protection scheme satisfies γ-anti-piracy if for any QPT polynomial A,

Pr[AntiPiracyGame(λ, γ(λ),A) = 1] ≤ negl(λ).

11.2 Construction

In this section, we present our copy-protection construction for a family of functions F with input
length m(λ) and output length n(λ). Assume the existence of following primitive.

• F1, PRF family with input length λ and output length same as the size of the randomness
used by CosetGen (Definition 14) that is 2−2λ-secure against QPT adversaries.

While we assume exponential security of the above primitive for specific exponents, this assumption
can be based solely on subexponential hardness for any exponent, since we can always scale the
security parameter by a polynomial factor when instantiating the underlying primitives.

We now give our construction.
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Setup(1λ)

1. Sample PRF key K1 ← F1.KeyGen(1
λ).

2. Output K1.

QGen(sk, f)

1. Parse K1 = sk.

2. Generate the oracle Of .

Of (id, x, (vi)i∈[m(λ)])

Hardcoded: K1, f

1. (Ai, si, s
′
i)i∈[m(λ)] ← CosetGen(1λ,m(λ), λ;F1(K1, id)).

2. For each i ∈ [m(λ)], check if vi ∈ Ai + si if (x)i = 0 and check if vi ∈ A⊥i + s′i if
(x)i = 1. If any of the checks fail, output ⊥ and terminate.

3. Output f(x).

3. Sample id← {0, 1}λ.

4. (Ai, si, s
′
i)i∈[m(λ)] ← CosetGen(1λ,m(λ), λ;F1(K1, id)).

5. Output
(∣∣∣Ai,si,s′i〉)i∈[m(λ)]

, id,O.

Eval(Rkey, x)

1. Parse ((Ri)i∈[m(λ)], id,O) = Rkey.

2. For indices i ∈ [m(λ)] such that (x)i = 1, apply Hλ to Ri.

3. Run the oracle O coherently on id, x and (Ri)i∈[m(λ)].

4. Measure the output register and output the measurement outcome.

Correctness with probability 1 follows in a straightforward manner. We claim that the con-
struction is also secure.

Theorem 42. For any inverse polynomial γ and any function family and challenge input distri-
bution (F ,D) that is γ-unlearnable , the scheme above satisfies strong γ-anti-piracy.

Proof. The proof follows in a similar manner to the anti-piracy security proof of our PKE scheme
(Section 7.3). See Appendix C for the full proof.
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12 Impossibility of Hyperefficient Shadow Tomography

In this section, as a corollary of results, we rule out existence of hyperefficient shadow tomography.

Definition 49 (Hyperefficient Shadow Tomography [Aar18]). Let E denote a uniform quantum
circuit family with classical binary output that takes as input i ∈ [M ] and an n-qubit quantum state
ρ.46 Then, a shadow tomography procedure takes as input E and ρ⊗k where k denotes the number
of copies, and outputs a quantum circuit47 C such that Pr[∀i ∈ [M ] |C(i)− Pr[E(i, ρ) = 1]| < ε] >
1− δ. The procedure is said to be hyperefficient if the number of copies k and the runtime are both
poly(n, logM, 1ε ).

[Aar18] shows that shadow tomography can be performed using polynomially many copies of
ρ, however, the procedure takes exponential time. They leave it as an open question to give a
hyperefficient shadow tomography procedure or rule out its existence. [AK07, Aar09, Kre21] rule
it out in oracle models, where the procedure has only black-box query access to the measurement
circuit E(i, ρ).

[Aar18] also shows that shadow tomography gives a generic attack on copy-protection schemes,
and combined with their own sample-efficient shadow tomography procedure, they show that
collusion-resistant copy-protection cannot exist without computational assumptions. Later, [SW22]
adapts this attack to the case of unclonable decryptors, i.e., copy-protected secret keys for PKE,
to conclude its impossibility without computational assumptions.

By Corollary 6, we obtain the following result.

Corollary 10. Assuming post-quantum subexponentially secure indistinguishability obfuscation and
LWE, there cannot exist a hyperefficient shadow tomography algorithm.

Proof. We prove the result by showing that shadow tomograpghy breaks PKE with copy-protected
keys, which we construct in Corollary 6. Our attack is exactly the same as the one given by [SW22],
we merely observe that the attack is efficient when the shadow tomography procedure is efficient.
We describe it below for completeness.

Let PKE be the PKE scheme with collusion-resistant copy-protected secret keys given in Sec-
tion 7.2, for 1-bit messages. Define the measurement circuit E to be PKE.Dec(ct, ρ), where the
measurement Ect outputs 1 if the decryption procedure outputs 1 when ρ is given as the input
to the key register. Note that E is uniform. Suppose there exists a hyperefficient shadow to-
mography algorithm. Then, consider the following adversary for the anti-piracy game for PKE.
We obtain k keys where k is the number of copies needed by the shadow tomography procedure,
which is poly(λ) by assumption. We perform the procedure with ε = 1/8 and δ = 1

2(k+1) to ob-
tain the estimation circuit C. We pick 0, 1 as our challenge messages, and output C to all k + 1
freeloaders. When presented with a challenge ciphertext ct, a freeloader runs C(ct) and outputs 1
if outputs a value > 3/4, and outputs 0 otherwise. Note that if ct is an encryption of 1, we will
have Pr[PKE.Dec(ct, ρ) = 1] ≤ 1 − negl(λ), hence C(ct) > 3/4 with probability 1 − δ, and we will
correctly decrypt. By the same argument, all the freeloaders will simultaneously correctly decrypt
with probability > 1/2. Note that the whole attack is efficient by assumption. This breaks the
security of PKE, which is a contradiction.

Remark 1. We note that to rule out hyperefficient shadow tomography, unbounded collusion-
resistant schemes are needed - bounded collusion-resistance ([LLQZ22]) is not sufficient, for the

46That is, E on input i, ρ measures ρ with respect to a binary measurement, which we can denote Ei
47More precisely, classical description of a quantum circuit, since otherwise we can just hardwire the state ρ into

the circuit.
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following reason. Since the number of copies required by hyperefficient shadow tomography procedure
can depend on logM = log 2|ct| = |ct|, if the ciphertext size grows with the collusion bound k, so
does the number of copies needed. Hence, the hyperefficient shadow tomography procedure might
need k + 1 or more copies to work, in which case we cannot arrive at a contradiction as we did
above.

We also obtain the following result.

Corollary 11. There exists a quantumly accessible classical oracle relative to which there does not
exist a hyperefficient shadow tomography algorithm.

Proof. In this setting, the set of measurements {Ei}i is given by a quantumly accessible classical
oracle O such that on input i, the oracle outputs the description of the measurement Ei.

By the same argument as above, our collusion-resistant copy-protection scheme for all unlearn-
able functionalities given in Section 11 implies the stated result.
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A Proofs from Section 3

A.1 Proof of Theorem 8

We can write ρ as ρ =
∑

j,k αj,k|j⟩⟨j| ⊗ |k⟩⟨k|. Then, (Mi ⊗ I)ρ(M †i ⊗ I) =
∑

j,k αj,k(Mi|j⟩⟨j|M †i )⊗
|k⟩⟨k| and therefore (Tr⊗I)(Mi ⊗ I)ρ(M †i ⊗ I) =

∑
j,k αj,k⟨j|M

†
iMi|j⟩ ⊗ |k⟩⟨k|. Note that this
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summation only depends on the POVM element M †iMi. The same argument applies to Λ′. Hence,
the result follows by POVM equivalence of Λ,Λ′.

A.2 Proof of Lemma 3

Let ∥·∥1 be the trace norm, and we have ∥ρ− σ∥Tr =
1
2∥ρ− σ∥1. Define qi = Tr

{
MiσM

†
i

}
and we

also have pi = Tr
{
MiσM

†
i

}
. Then,∥∥piρ′ − qiσ′∥∥1 = ∥∥pi(ρ′ − σ′)− (qi − pi)σ′

∥∥
1

≥
∣∣pi∥∥(ρ′ − σ′)∥∥1 − |qi − pi|∥∥σ′∥∥1∣∣

≥ pi
∥∥(ρ′ − σ′)∥∥

1
− ε

Last part follows from |qi − pi| ≤ ∥ρ− σ∥Tr ≤ ε ad ∥σ′∥1 = 1. We also have by Schatten norm
duality ∥∥piρ′ − qiσ′∥∥1 = ∥∥∥Mi(ρ− σ)M †i

∥∥∥
1

= sup
−I≤E≤I

Tr
{
EMi(ρ− σ)M †i

}
= sup
−I≤E≤I

Tr
{
M †i EMi(ρ− σ)

}
≤ sup
−I≤E≤I

Tr{E(ρ− σ)}

= ∥ρ− σ∥1 ≤ 2ε.

Above we also used the fact that when −I ≤ E ≤ I, we also have −I ≤ M †i EMi ≤ I. This

is because M †i EMi is positive semidefinite and ⟨v|(I − M †i EMi)|v⟩ = ⟨v|v⟩ − ⟨v|M †i EMi|v⟩ ≥
⟨v|v⟩ − ⟨v|M †iMi|v⟩ ≥ 0 since ⟨v|M †i EMi|v⟩ ≤ ⟨v|M †iMi|v⟩ and

∑
iM

†
iMi = I.

Combining the above yields the result.

A.3 Proof of Theorem 9

First, we will prove the case where ε = 0. We will prove it only for pure states, but the general
case follows from purification. Let |ψ⟩ be any state of appropriate dimension. We can write
|ψ⟩ =

∑
j∈J ,k∈K αj,k|vj⟩ ⊗ |wk⟩ where {|vj⟩}j∈J , {|wk⟩}k∈K are orthonormal eigenbases of Π1 and

Π′1 respectively. We have Π1 =
∑

j∈J ′ |vj⟩⟨vj | and Π′1 =
∑

k∈K′ |wk⟩⟨wk| for some subsets J ′ ⊆
J ,K′ ⊆ K. Since Tr{Π1 ⊗Π′1ρ} = 1, we get αj,k = 0 if (j, k) ̸∈ J ′ ×K′.

We can write the post-measurement state conditioned on outcome i as |ϕ⟩/∥|ϕ⟩∥ where we define
the subnormalized state |ϕ⟩ =

∑
j∈J ′,k∈K′ αj,k(Mi|vj⟩) ⊗ |wk⟩. When we apply I ⊗ Π′1 to |ϕ⟩, we

get |ϕ⟩ again. Hence, Tr
{
Π′1
|ϕ⟩⟨ϕ|
∥|ϕ⟩∥2

}
= 1, completing the first part of the proof.

Now, we move onto any ε ∈ (0, 1]. Let ρ′ denote the post-measurement state obtained after
applying Λ ⊗ Λ′ to ρ and obtaining the outcome (1, 1). Note that ρ′ satisfies the claim with
ε = 0 since the measurement Λ ⊗ Λ′ is projective. Then, by Lemma 2, ∥ρ− ρ′∥Tr ≤

√
ε since

canonical square root implementation of a projective measurement is the original measurement
itself. Hence, applying the measurement M on the first register and conditioning the outcome i,
the post-measurement states of the second registers will have trace distance at most 3

√
ε/2pi by

Lemma 3. Hence, invoking the sub-claim for ρ′ with ε = 0 and using the trace distance bound, we
get the result.
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A.4 Proof of Theorem 10

We will prove the result only for pure states ρ = |ϕ⟩⟨ϕ| and the general case follows from convexity.
We will first prove the case n = 2. Since Π1,Π2 are commuting projectors, there exists an

orthonormal basis {|vi⟩}i∈I and I1, I2 ⊆ I such that Π1 =
∑

i∈I1 |vi⟩⟨vi| and Π2 =
∑

i∈I2 |vi⟩⟨vi|.
We also have |ϕ⟩ =

∑
i∈I ci|vi⟩ for some {ci}i∈I with

∑
i∈I |ci|2 = 1. Then,

Tr[Π1ρ] + Tr[Π2ρ]− Tr[(I −Π1Π2)ρ] =
∑
i∈I1

|ci|2 +
∑
i∈I2

|ci|2 −
∑

i∈I1∩I2

|ci|2

=
∑

i∈I1∪I2

|ci|2

≤
∑
i∈I
|ci|2 = 1.

Hence, Tr[(I −Π1Π2)ρ] ≤ Tr[(I −Π1)ρ] + Tr[(I −Π2)ρ]. The general case follows by repeatedly
applying this case and observing that Πi commutes with Πi+1 · · ·Πn.

A.5 Proof of Theorem 16

First, we note that the result does not directly follow from the efficiency of APIε,δ. The reason is
that while it is indeed efficient, it obtains superpositions of (exponentially many) outputs from the
underlying distributions.

The proof will closely follow the proof of [Zha20, Theorem 6.5]. We first state some of technical
results that will be needed in the proof.

A.5.1 Technical Lemmata

Lemma 13. Let D0,D1 be two efficient distributions with the same support and P be a collection
of projective measurements indexed by this support. Suppose D0 ≡ D1. Then, API

ε,δ
P,D0

ρ ≡ APIε,δP,D1
ρ

for any state ρ of appropriate dimension.

While the claim might seem obvious, it needs to be proven formally since APIε,δP,D does not
work by obtaining random samples from D but instead runs the algorithm D on various choices on
random coins.

Proof. When we inspect the actual implementation of APIε,δ and proof of [Zha20, Theorem 6.2],

we see that the output distribution of APIε,δP,Dρ is equivalent to the following:

1. Sample p← PIPDρ.

2. Flip 2T independent biased coins, where each coin has expected value p.

3. Output some deterministic function of all coin flips.

Since D0 ≡ D1 implies PI(PD0) = PI(PD1), the result follows.

Lemma 14. Let D0,D1 be two distributions with sampling time p(λ) such that D0 ≈cν(λ) D1 for all

adversaries that run in time t(λ). Define Ds(λ)b to be the distribution where we sample s independent
samples from Db. Then, Ds0 ≈cs(λ)·ν(λ) D

s
1 for all adversaries that run in time t(λ)/(p(λ) · s(λ)).
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Proof. The result follows from a standard hybrid argument. We give in full detail for completeness.
For all i ∈ {0, 1, . . . , s(λ)}, we define the hybrid distribution Hybi as the distribution where the

first i components are sampled from D1 and the rest are sampled from D0. Observe that Hyb0 is
Ds0 and Hybs is Ds1.

Now, we claim Hybi−1 ≈cν(λ) Hybi for adversaries that run in t(λ)/s(λ), for all i ∈ [s]. Suppose
otherwise, for a contradiction. Let A be the that distinguishes them. Then, we can create an
adversary A′ for distinguishing D0 versus D1 as follows.

A′(a)

1. For j ∈ [s], sample aj ← D1 if j ≤ i− 1 and aj ← D0 if j > i.

2. Set ai = a.

3. Output A((aj)j∈[s]).

It is easy to see that A′ runs in time O(t(λ)/(p(λ) · s(λ)) · p(λ) · s(λ)) and has advantage ≥ ν(λ),
which is a contradiction.

Finally, triangle inequality yields the claim.

Lemma 15 ([Zha20]). Let A be a set. Sample Π to be a random permutation on A. Sample random
functions G : [s] → A and F : A → [s]. Then, for any quantum algorithm B making Q quantum
queries to its oracle, we have∣∣Pr[BΠ() = 1

]
− Pr

[
BG◦F () = 1

]∣∣ ≤ O(Q3/s+Q3/|A|).

Lemma 16 ([Zha12b]). Sample a random function F : A → B and a 2Q-wise independent function
E : A → B. Then, for any quantum algorithm B making Q quantum queries to its oracle, we have

Pr
[
BF () = 1

]
= Pr

[
BE() = 1

]
.

A.5.2 Proof of the Theorem

Now we move onto the proof of the theorem. We will construct a sequence of hybrid distributions,
starting with p⃗0 and ending with p⃗1, that are obtained by modifying the previous one. Without
loss of generality, assume that all Bbℓ have the same random coin set R. Let s be a parameter that
we will set later. We assume that |R| is at least s, which is without loss of generality since we can
pad the random coins (and later ignore the padding when using the coins).

Hyb0: Same as p⃗0.

Hyb1: We now sample ρ, pp as S1(1λ).

Hyb2: For all ℓ ∈ [k], sample a random permutation Πℓ : R → R. Then, instead of applying⊗
ℓ∈[k] API

ε,δ
Pℓ,B0ℓ (pp)

to ρ, now apply
⊗

ℓ∈[k] API
ε,δ

Pℓ,B
′0
ℓ (pp))

where we define B′0
ℓ (pp; r) = B0ℓ (pp; Πℓ(r)).

Hyb3,i for i ∈ [k]: Sample random functions Gℓ : [s] → R and Fℓ : R → [s] for all ℓ ∈ [i].

We now apply

(⊗
ℓ∈[i] API

ε,δ

Pℓ,B
′′0
ℓ (pp))

)
⊗
(⊗

ℓ∈{i+1,...,k} API
ε,δ

Pℓ,B
′0
ℓ (pp))

)
where we define B′′0

ℓ (pp; r) =

B0ℓ (pp;G(F (r))).
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Hyb4,i for i ∈ [k]: Sample 2Q-wise independent function Eℓ : R → [s] for all ℓ ∈ [i]. We

now apply

(⊗
ℓ∈[i] API

ε,δ

Pℓ,B
′′′0
ℓ (pp))

)
⊗

(⊗
ℓ∈{i+1,...,k} API

ε,δ

Pℓ,B
′′0
ℓ (pp))

)
where we define B′′′0

ℓ (pp; r) =

B0ℓ (pp;G(E(r))).

Hyb5,i for i ∈ {0, 1, . . . , k−1}: We now apply

(⊗
ℓ∈[i] API

ε,δ

Pℓ,B
′′′1
ℓ (pp))

)
⊗
(⊗

ℓ∈{i+1,...,k} API
ε,δ

Pℓ,B
′′′0
ℓ (pp))

)
.

Hyb6,k−i+1 for i ∈ [k]: We now apply

(⊗
ℓ∈[i] API

ε,δ

Pℓ,B
′′′1
ℓ (pp))

)
⊗

(⊗
ℓ∈{i+1,...,k} API

ε,δ

Pℓ,B
′′1
ℓ (pp))

)
where we define B′′′1

ℓ (pp; r) = B1ℓ (pp;G(E(r))) and B′′1
ℓ (pp; r) = B1ℓ (pp;G(F (r))).

Hyb7,k−i+1 for i ∈ [k]: We now apply

(⊗
ℓ∈[i] API

ε,δ

Pℓ,B
′′1
ℓ (pp))

)
⊗

(⊗
ℓ∈{i+1,...,k} API

ε,δ

Pℓ,B
′1
ℓ (pp))

)
where we define B′1

ℓ (pp; r) = B1ℓ (pp; Πℓ(r)).

Hyb8: We now apply
⊗

ℓ∈[k] API
ε,δ

Pℓ,B
′1
ℓ (pp))

to ρ.

Hyb9: Same as p⃗1.

Lemma 17. |Hyb0 − Hyb1| ≤ ν(λ)

Lemma 18. Hyb1 ≡ Hyb2 and Hyb8 ≡ Hyb9.

Proof. Observe that B′b
ℓ (pp) and Bbℓ(pp) are exactly the same distribution. The result follows from

Lemma 13.

Lemma 19. • |Hyb2 − Hyb3,1| ≤ O(Q3/s).

• |Hyb3,i − Hyb3,i+1| ≤ O(Q3/s) for all i ∈ [k − 1].

• |Hyb7,i − Hyb7,i+1| ≤ O(Q3/s) for all i ∈ [k − 1].

• |Hyb7,k − Hyb8| ≤ O(Q3/s).

Proof. Follows from Lemma 15.

Lemma 20. • Hyb3,k ≡ Hyb4,1.

• Hyb4,i ≡ Hyb4,i+1 for all i ∈ [k − 1].

• Hyb6,k ≡ Hyb7,1.

• Hyb6,i ≡ Hyb6,i+1 for all i ∈ [k − 1].

Proof. Follows from Lemma 16.

Lemma 21. • |Hyb5,k−1 − Hyb6,0| ≤ ν(λ) · s(λ).

• |Hyb5,i−1 − Hyb5,i| ≤ ν(λ) · s(λ) for i ∈ [k]
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Proof. Observe that Bbℓ(pp;G(E(·))) can be interpreted as s samples from Bb with the input selecting
which sample to use. Also, both experiments can be computed in time poly(λ) · k · s. The result
then follows from Lemma 14.

Combining the above, we get |p⃗0 − p⃗1| < O(k · (Q3/s+ ν(λ) · s(λ))). We set s = 1/µ(λ), which
yields the result since Q = poly(λ).

A.6 Proofs of Theorem 18, Theorem 19,Theorem 20

Proof of Theorem 18 See [ALL+20, Corollary 3] for the proofs of the first two points. Note
that while they consider the same threshold value ηℓ for all indices ℓ, an inspection of their proof
easily shows that the results still hold for any ηℓ.

Combining the first two bullet points yields the third bullet point in a straightforward manner.
Fourth point follows similarly to arguments below for Theorem 19.

Proof of Theorem 19 We will only prove the first claim, and the second prove follows by the
same argument.

Fix any ℓ ∈ [k]. Consider the projective measurementMℓ where we apply PI(PℓDℓ
) to the ℓ-th

register and apply I to the other registers. Then, we have Pr[(Mℓρ) ≤ (p⃗)ℓ + 2ε] ≥ 1 − 2δ since
APIε,δ is (ε, δ)-almost projective and since it δ-approximates PI in ε-shift distance. Note while ρ′ is

obtained after a measurement on all registers, we can assume that APIε,δPℓ,Dℓ
was applied last since

measurements on disjoint registers commute.

Now, observe thatM1M2 · · ·Mk =
(⊗

ℓ∈[k] PI(PℓDℓ
)
)
and thatMℓ commute. We defineM′ℓ to

be the binary projective measurement where we applyMℓ and output 1 if the outcome is ≤ p⃗ℓ+2ε.

Then, by above we have Pr[M′ℓρ′ = 1] ≥ 1−2δ. We get Pr
[
∀ℓ ∈ [k] (p⃗′)ℓ ≤ (p⃗)ℓ + 2ε

]
≥ 1−2 ·k · δ

by Theorem 10.

A.7 Proof of Theorem 20

Follows similarly to arguments above for Theorem 19.

B Connections of the Signature Scheme to the Public-key Encryp-
tion Scheme

The only difference between the scheme in Hyb5 in the proof of Section 9.5 and our PKE scheme is
the hidden trigger mechanism and the associated extra programs and keys,K,K3,K4,OPEval,OPVer,
which is independent of the actual encryption mechanism and can be generated by the adversary
itself during the reduction to the security of PKE scheme; and the fact that the ciphertext pro-
grams OQ now include two branches along with a mode parameter. The mode mode = eval is the
same as the original ciphertext program of our PKE scheme, and mode = verify is a point function
that checks if the input has the same image as the encrypted message under a one-way function f .
However, we can see that the scheme is still secure with this addition.

First argument is as follows. We can first invoke the security argument (Section 7.3) without
mode = verify, and show that any adversary can win the game (i.e. correctly predict the encrypted
messages) with subexponential probability. Then, adding back the verify mode, we can consider
the copy-protected keys obtained by the adversary as quantum auxiliary information, and we can
replace the verify mode with a compute-and-compare obfuscation. Since by the security of the
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scheme without verify mode we have that the adversary cannot predict the messages correctly
given its auxiliary information, we can finally invoke the security of the compute-and-compare
obfuscation to conclude that the adversary still cannot predict the messages correctly given verify
mode.

An alternative way of concluding the security of the scheme is by repeating the security proof
in Section 7.3. It is easy to see that the only part that will be affected by verify mode is the
final extraction argument using compute-and-compare obfuscation. However, it is easy to see that
by the security of the injective one-way function f that the compute-and-compare obfuscation
arguments still works. In this case, we will modify our compute-and-compare programs so that
the compute program also accepts a mode parameter, and either performs coset vector verification
or compares the image of the input to f(m). However, any adversary that can succesfully find an
input that passes the compare condition must have correct coset vectors, since it cannot have a
correct preimage for f(m) by the security of the one-way function f . Thus, the security proof in
Section 7.3 still works.

C Proof of Anti-Piracy Security of the General Copy-Protection
Scheme

In this section, we prove Theorem 42.
Define Hyb0 to the original anti-piracy game. Define Hyb1 by modifying Hyb0 by changing

the way we sample the identity strings during each quantum copy-protected function generation
as follows. Let the challenger record each sampled identity when answering each query, and when
answering a new query, it samples uniformly at random an identity value from the set {1, . . . , 2λ−1}
that has not appeared before. That is, we sample unique identity strings for each query to QGen.
Also, we define the following notation. Let idα(i) be the ith value sampled where α(·) is the

permutation [k]→ [k] such that 0 < id1 < · · · < idk < 2λ. That is, idα(i) is the identity string that

is sampling during the ith query of the adversary. For simplicity of notation, we also set id0 = 0
and idk+1 = 2λ.

Define Hyb2 by modifying Hyb1 as follows. At the end of the game, instead of using threshold
implementations TIOD,γ , the challenger uses approximate threshold implementations ATIε,δ,O

D, 31γ
32

with

ε = γ
32k and δ = 2−4λ. It outputs 1 if and only if all ATI output 1.

Claim 30. Pr[Hyb2 = 1] > Pr[Hyb0 = 1]− exp(−λ).

Proof. Follows from the same argument as in Section 7.3.

Therefore, A wins in Hyb2 with probability 1
p(·) for some polynomial p(·) and infinitely many

values of λ > 0. Note that in Hyb2, now the challenger is also efficient by Theorem 17 and our
choice of ε, δ.

We define the following notation and the monogamy-of-entanglement type game.

Definition 50. For all j ∈ [k], let (Aji , s
j
i , s

′j
i )i∈[cL(λ)] denote the tuple of subspaces and vectors

sampled during the sampling of the (α−1(j))-th key. That is, it is the coset tuple associated with
idj.

G(λ, (A′0,A′1,A′2))

1. The challenger instantiates the copy-protection scheme as sk ← Setup(1λ).
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2. The challenger samples a function f from F .

3. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← QGen(sk, f) and submits R to the adversary.

4. The adversary outputs a bipartite register Rbip and an index j∗ ∈ [k], where k is the number
of queries it made.

5. For ℓ ∈ {1, 2}, the challenger does the following.

5.1. Sample rℓ ← D.
5.2. Run A′ℓ on Rbip[ℓ], (A

j∗

i )i∈[m(λ)] and rℓ to obtain a tuple of vectors (vℓ,i)i∈[m(λ)].

5.3. For all i ∈ [m(λ)], check if vℓ,i ∈ Aj
∗

i + sj
∗

i if (rℓ)i = 0 and check if vℓ,i ∈ (Aj
∗
)
⊥
i + s

′j∗

i if
(rℓ)i = 1.

If all the checks pass, the challenger outputs 1. Otherwise, it outputs 0.

It is easy to see that an adversary A′ that wins G gives us a contradiction for Theorem 24,
since using A′ we can give an adversary for the monogamy-of-entanglement game, which simply
simulates A′ playing G by sampling the PRF key K1, the extra oracles and so on efficiently itself.
In particular note that the oracle Of in G can be implemented using PMem from Theorem 2448.

Now, we construct a tuple of adversaries (A′0,A′1,A′2) for G, starting with A′0. We note that
from now on, whenever we are considering the freeloaders, we assume that they no longer have
access to the oracle Of that A had during the query phase, and each will have access to some
modified oracle that will be clear from context.

Let Oj for j ∈ {0, . . . , k + 1} be efficient oracles, which we will define later. Define A′0 as
follows.

A′0(1λ)

1. Simulate A by interacting with Samp and the challenger, making a query to QGen when-
ever A makes a query, and forwarding the obtained program to it. Let f be the function
determined at the end of the setup phase and let Radv be the (k+1)-partite register (with
state σ) output by A at the output phase.

2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.

3. Apply APIε,δ,O0

D to all registers Radv[ℓ] for ℓ ∈ [k+1], let bℓ,0 be the measurement outcomes.

4. Apply APIε,δ,Oi

D in succession for i = 1 to j∗ to Radv[x], let bx,i be the measurement
outcomes.

5. Apply APIε,δ,Oi

D in succession for i = 1 to j∗ to Radv[y], let by,i be the measurement
outcomes.

48While the original theorem statement therein uses indistinguishability obfuscation, it is trivial to see that the
result still holds when we instead use ideal oracles.
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6. Output

((Radv[x], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗]),

(Radv[y], j
∗, x, y, (bℓ,0)ℓ∈[k+1], (bx,i)i∈[j∗], (by,i)i∈[j∗], ),

j∗).

For j ∈ {1, . . . , k}, define Oj to be the following oracles.

Oj(id, x, (vi)i∈[m(λ)])

Hardcoded: K1, f, idj

1. (Ai, si, s
′
i)i∈[m(λ)] ← CosetGen(1λ,m(λ), λ;F1(K1, id)).

2. If id < idj , output ⊥ and terminate.

3. For each i ∈ [m(λ)], check if vi ∈ Ai + si if (x)i = 0 and check if vi ∈ A⊥i + s′i if (x)i = 1.
If any of the checks fail, output ⊥ and terminate.

4. Output f(x).

We define O0 to be the original oracle Of and we define Ok+1 to be the empty oracle that always
outputs ⊥. We also define some intermediary oracles. Define the following for all j ∈ {0, 1, . . . , k}
and ∆ ∈ {0, 1, . . . , idj+1− idj−1}. For notational convenience, also define Oj,idj+1−idj to be Oj+1,0

for all j ∈ {0, 1, . . . , k}. Also note that O0,0 is exactly the same as O0 for j ∈ [k].

Oj,∆(id, x, (vi)i∈[m(λ)])

Hardcoded: K1, f, idj +∆

1. (Ai, si, s
′
i)i∈[m(λ)] ← CosetGen(1λ,m(λ), λ;F1(K1, id)).

2. If id < idj +∆, output ⊥ and terminate.

3. For each i ∈ [m(λ)], check if vi ∈ Ai + si if (x)i = 0 and check if vi ∈ A⊥i + s′i if (x)i = 1.
If any of the checks fail, output ⊥ and terminate.

4. Output f(x).

We now define some notation.

Definition 51. Consider the following experiment.

1. Simulate the first two steps of A′0 and the challenger:

1.1. Simulate A and the challenger. Let f be the function determined at the end of the setup
phase and let Radv be the (k+1)-partite register (with state σ) output by A at the output
phase.

1.2. Uniformly at random sample x, y, j∗ such that 1 ≤ x < y ≤ k + 1 and j∗ ∈ {1, . . . , k}.

2. Set pp = (x, y, j∗, (idj)j∈[k+1], f).

3. Output Radv, pp.
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We will write ExpO ≈cν ExpO′ to denote that the advantage of any QPT adversary in distinguishing
the oracles O,O′ (which can depend on pp) given the outcome of the above experiment, is ν. We
omit ν when ν is negl(λ).

Claim 31. We have

• ExpOj,∆
≈c

2−2λ ExpOj,∆+1
for all j ∈ {0, 1, . . . , k} and ∆ ∈ {1, . . . , idj+1 − idj − 1},

• ExpOj,1
≈c ExpOj+1

for all j ∈ {0, 1, . . . , k},

• ExpO0
≈c ExpO1

.

Proof. We prove the first point and the rest follow by the hybrid lemma through a simple calcula-
tion.

First, note that the oracles Oj,∆ and Oj,∆+1 only differ at points such that id = idj + ∆ and
vi are in the correct cosets (primal or dual) for the coset tuple generated using the randomness
F1(K1, idj + ∆). Let S denote the set of all such inputs and we claim qS ≤ negl(λ), that is, the
adversary has negligible query weight on S. Suppose otherwise for a contradiction. Then, we can
measure a random query of the adversary to obtain vectors as above with non-negligible probability.
However, note the following:

• The adversary has only oracle access to the PRF key K, hence, F1(K1, idj + ∆) is random
given the adversary’s view,

• The adversary never obtains an actual coset state for this tuple,

• The oracles Of ,Oj,∆ and Oj,∆+1 can be simulated using a membership oracle for this tuple.

Since coset membership is unlearnable, by above we obtain a contradiction. Thus, qS ≤ negl(λ)
and ExpOj,∆

≈c
2−2λ ExpOj,∆+1

by Theorem 11.

Claim 32. Let τ be the state of the bipartite register Radv[x, y] output by A′0 in G, and also consider
the classical values j∗, x, y, {bℓ,i}ℓ,i contained in the output of A′0.

Suppose we apply the measurement API
ε,δ,Oj∗+1

D ⊗API
ε,δ,Oj∗+1

D to τ and let bx,j∗+1, by,j∗+1 denote
the measurement outcomes we obtain. Then,

Pr

[
bx,j∗ − bx,j∗+1 >

29γ

32k
∧ by,j∗ − by,j∗+1 >

29γ

32k

]
>

1

poly(λ)

where the probability is taken over the randomness of the challenger, the adversary A′0 and the
measurement outcomes.

Proof. First, note that

Pr
[(

PI
Ok+1

D

)
· ι ≥ γ

32

]
= 0.

for any state ι that can be efficiently obtained during game G, since Ok+1 is the empty oracle and
(F ,D) is unlearnable. The rest follows from the same argument as in the proof Claim 5 and by the
fact that ExpO0

≈c ExpO1
(Claim 31).

Claim 33. Let τ be the bipartite state output by A′0 in G. Let p′x, p
′
y be the outcome of applying

PI
Oj∗
D ⊗ PI

Oj∗
D to τ . Similarly, let p′′x, p

′′
y be the outcome of applying PI

Oj∗,1
D ⊗ PI

Oj∗,1
D to τ . Then,

• Pr
[
p′x > bx,j∗ − 3γ

32k ∧ p
′
y > by,j∗ − 3γ

32k

]
≥ 1− 2−3λ.
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• Pr
[
bx,j∗ − p′′x >

28γ
32k ∧ by,j∗ − p

′′
y >

28γ
32k

]
> 1

q(λ) for some polynomial q(·).

Proof. Follows from the same arguments as in the proof of Claim 14, and by Claim 32.

Now, we claim that we can extract correct vectors from the output state τ of the adversary. First,
observe that we have ExpOj∗

̸≈c ExpOj∗1,1
, since ExpOj∗

≈c ExpOj∗1,1
would give us a contradiction

to Claim 33 by Theorem 14. Then, by the contrapositive of Theorem 11, we get that the freeloader
encoded in τ [1] has a non-negligible query weight on the set of points of where the oracles Oj∗ and

Oj∗,1 differ. Observe that these oracles only differ on points that satisfy id = idj∗ and vi ∈ Aj
∗

i +si
j∗

if (r1)i = 0 and vi ∈ (Aj
∗

i )⊥+s
′j∗

i if (r1)i = 1. Hence, by measuring a random query of the freeloader
adversary encoded in τ [1] (which we simulate using a universal quantum circuit), we obtain correct
coset vectors wtih non-negligible probability. We set this algorithm as our adversary A′1 for the
game G.

Finally, we claim that even conditioned a successful coset vector extraction from the first
freeloader, we can still extract from the second freeloader. Let ξ denote the post-measurement
state of the second register, obtained by extracting from the first register of τ as above using A′1
and conditioning on a successful extraction. We claim that ξ satisfies

1. Pr
[
PI
Oj∗
D · ξ ≤ by,j∗ − 3γ

32k

]
≤ 2−λ.

2. Pr
[
PI
Oj∗,1
D · ξ < by,j∗ − 28γ

32k

]
≥ 1

poly(λ) .

This first claim follows from Claim 33, Theorem 9, and the fact that extraction on the first
register succeeds with non-negligible probability. To see the second point, observe that we can

imagine PI
Oj∗,1
D being applied to the second register, before an extraction on the first register, and

condition on obtaining a value < by,j∗− 28γ
32k (denote this as event G2). Then, by Claim 33, it is easy

to see that the first register still has a gap between Oj∗ and Oj∗,1, satisfying the properties we used
to construct A′1 for an extraction from the first register. Let E1 denote the event that A′1 succesfully
extracts from the first register. Hence, by the foregoing discussion, we have Pr[E|G] > 1

poly . We

also have Pr[G] > 1
poly and Pr[E] > 1

poly from before. Thus, we get Pr[G|E] > 1
poly , proving the

second point (Item 2).
Given Item 1 and Item 2, by the same extraction argument we used for the first register, we

conclude that there exists an adversary A′2 that extracts correct coset vectors from the second
register of the output of A′0 with non-negligible probability conditioned on A′1 extracting correct
vectors from the first register. Hence, we have that the adversary tuple A′ = (A′0,A′1,A′2) wins
the game G with non-negligible probability. It is easy to see that this gives us a contradiction by
Theorem 24 (see Claim 16 for a similar reduction).

D Proof of Anti-Piracy Security of the PRF Scheme

In this section, we prove Theorem 41.
First, we show that hidden trigger inputs are indistinguishable from uniformly random challenge

strings, even when the adversary gets a (obfuscated) program that allows it to generate its own
hidden trigger inputs.

Definition 52 (Hidden Trigger Inputs). Let GenTriggerK0,K3,K4,OPMem,cpk be the following program,
where the hardcoded values are as in the PRF scheme construction (Section 10.2). The input format
to the program will be clear from context.
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GenTriggerK0,K3,K4,OPMem,cpk(r1, r2, r3)

Hardcoded: K0,K3,K4,OPMem, cpk

1. Parse x1||x2||x3 = G2(r1) with |xi| = si.

2. Parse y||K ′2 = G1(F (K0, x)) with |y| = n(λ).

3. OQ← iO(Qcpk,OPMem,x1,K′
2,y

; r3).

4. x′2 = F3(K3, x1||OQ||G3(r2)).

5. x′3 = F4(K4, x
′
2)⊕ (x1||OQ||G3(r2)).

6. Output x1||x′2||x′3.

The circuit Qcpk,OPMem,x1,K′
2,y

used above is the following. Note that it contains hardcoded values
that are computed during the execution of GenTrigger.

Qcpk,OPMem,x1,K′
2,y

(w)

Hardcoded: cpk,OPMem, x1,K
′
2, y

1. Parse id, u1, . . . , ucL(λ) = w.

2. Run OPMem(id, u1, . . . , ucL(λ), x1). If it outputs 0, output ⊥ and terminate.

3. Output IBE.Enc(cpk, id, y;F2(K
′
2, id)).

Lemma 22. Consider the following game for the PRF scheme from Section 10.2, where we let
a(λ) denote the length of the randomness used by iO to obfuscate Q in Definition 52. Consider the
following experiment, parameterized by ℓ(λ).

HiddenTriggerExp(λ,A, ℓ(λ), b)

1. The challenger runs K ← KeyGen(1λ).

2. For multiple rounds, A makes quantum key queries. For each query, the challenger generates
a key as R← QKeyGen(K) and submits R to the adversary.

3. The adversary outputs a register Radv.

4. Sample OGenTrigger← iO(GenTrigger).

5. For i = 1 to ℓ:

1. Sample ri1 ← {0, 1}s1(λ)/2.
2. Sample ri2 ← {0, 1}λ.
3. Sample ri3 ← {0, 1}a(λ).
4. Set z0,i = OGenTrigger(ri1, r

i
2, r

i
3).

5. Sample z1,i ← {0, 1}m(λ).

6. Output ((zb,i)i∈[ℓ],OGenTrigger,Radv).
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Then, for any polynomial ℓ(λ),

HiddenTriggerExp(λ,A, ℓ(λ), 0) ≈c HiddenTriggerExp(λ,A, ℓ(λ), 1).

Proof. Follows from Lemma 12. Note that the only difference is that the adversary no longer gets
a verification program, which only makes the adversary weaker.

We will prove anti-piracy security through a series of hybrids. Define Hyb0 to be the original
game PRFAntiPiracy(λ,A) from Definition 44.

Hyb1 : The challenger now computes the PRF challenge outputs ch0,ℓ by sampling a new key using
QKeyGen for each ℓ and using OPEval. By the correctness of the copy-protected PRF scheme, we
will have ch0,ℓ = F (K0, x

ℓ) for all ℓ ∈ [k + 1] with overwhelming probability. Hence, Hyb0 ≈ Hyb1.

Hyb2 : Instead of sampling ch1,ℓ ← {0, 1}m(λ), we will now compute ch1,ℓ by sampling a new

key using QKeyGen for each ℓ and running OPEval on input qℓ, where we sample qℓ ← {0, 1}m(λ).
With overwhelming probability, we will have ch1,ℓ = F (K0, q

ℓ), and this is indistinguishable from
a random string since qℓ is not given to the adversary and F is an extracting PRF. Hence, Hyb1 ≈
Hyb2.

Hyb3 : We now sample xℓ, qℓ for all ℓ ∈ [k + 1] as hidden triggers (Definition 52). We get
Hyb2 ≈ Hyb3 by Lemma 22. Crucially note that at the challenger no longer directly uses the
PRF key K and instead computes the challenges using QKeyGen queries and OPEval, which is
in adversary’s view in Lemma 22. Hence, the adversary can indeed simulate Hyb2,Hyb3 in the
reduction to Lemma 12. Hence, Hyb2 ≈ Hyb3.

Hyb4 : We now sample xℓ, qℓ for ℓ ∈ [k + 1] as follows.

1. Sample rℓ1 ← {0, 1}s1(λ)/2.

2. Sample rℓ2 ← {0, 1}λ.

3. Sample rℓ3 ← {0, 1}a(λ).

4. Let wℓ = G2(r
ℓ
1).

5. Parse wℓ1||wℓ2||wℓ3 = wℓ with |wℓi | = si.

6. Parse yℓ||Kℓ
2 = G1(F (K0, w

ℓ)) with |yℓ| = n(λ).

7. OQℓ ← iO(Qcpk,OPMem,wℓ
1,K

ℓ
2,y

ℓ ; rℓ3).

8. w
′ℓ
2 = F3(K3, w

ℓ
1||OQℓ||G3(r

ℓ
2)).

9. w
′ℓ
3 = F4(K4, w

′ℓ
2 )⊕ (wℓ1||OQℓ||G3(r

ℓ
2)).

10. Set xℓ = wℓ1||w
′ℓ
2 ||w

′ℓ
3 .

11. Sample qrℓ1 ← {0, 1}s1(λ)/2.

12. Sample qrℓ2 ← {0, 1}λ.
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13. Sample qrℓ3 ← {0, 1}a(λ).

14. Let qwℓ = G2(qr
ℓ
1).

15. Parse qwℓ1||qwℓ2||qwℓ3 = qwℓ with |qwℓi | = si.

16. Parse qyℓ||qKℓ
2 = G1(F (K0, qw

ℓ)) with |qyℓ| = n(λ).

17. qOQℓ ← iO(Qcpk,OPMem,qwℓ
1,qK

ℓ
2,qy

ℓ ; rℓ3).

18. qw
′ℓ
2 = F3(K3, qw

ℓ
1||qOQℓ||G3(qr

ℓ
2)).

19. qw
′ℓ
3 = F4(K4, qw

′ℓ
2 )⊕ (qwℓ1||qOQℓ||G3(qr

ℓ
2)).

20. Set qℓ = qwℓ1||qw
′ℓ
2 ||qw

′ℓ
3 .

Note that this is only a syntactic change, we only unwrapped the sampling of the inputs xℓ, qℓ.
Hence, Hyb3 ≡ Hyb4.

Hyb5 : We now sample wℓ, qwℓ for all ℓ ∈ [k + 1] uniformly at random. We get Hyb4 ≈ Hyb5 by
the security of the PRG G2.

Hyb5 : We now sample all yℓ, qyℓ and Kℓ
2, qK

ℓ
2 uniformly at random. First, observe that with

overwhelming probability, the values wℓ, qwℓ for all ℓ ∈ [k + 1] will be unique. Then, observe that
the inputs wℓ, qwℓ to F have each min-entropy s2+s3 given the view of the adversary, since only the
first part wℓ1, qw

ℓ
1 is used during the hidden trigger generation and the rest is discarded. Therefore,

by our choice of parameters for the extracting PRF F and by the security of PRG G1, we have
Hyb5 ≈ Hyb6.

Finally, observe that the adversary gets either (xℓ, ch0,ℓ = (OQℓ, wℓ1)) (for bℓ = 0) or (xℓ, ch1,ℓ =
(qOQℓ, qwℓ1)) (for bℓ = 1) since xℓ, qℓ are hidden trigger inputs and we obtain ch0,ℓ, ch1,ℓ using
OPEval. Observe that these are the same as ciphertexts of our PKE scheme (Section 7.2) encrypting
the random messages yℓ and qyℓ respectively. Hence, the security follows by the CPA-style anti-
piracy security (see Section 7.3) of our scheme and we have Pr[Hyb5 = 1] ≤ 1/2 + negl(λ).
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