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Abstract. This paper is an extended version of [8] published in PQCrypto
2024, in which we combine two approaches, blockwise errors and multi-
syndromes, in a unique approach which leads to very efficient generalized
RQC and LRPC schemes.

The notion of blockwise error in a context of rank based cryptography
has been recently introduced in [31]. This notion of error, very close to
the notion of sum-rank metric [27], permits, by decreasing the weight
of the decoded error, to greatly improve parameters for the LRPC and
RQC cryptographic schemes. A little before, the multi-syndromes ap-
proach introduced for LRPC and RQC schemes in [3, 18] also allowed
to considerably decrease parameters sizes for LRPC and RQC schemes,
through in particular the introduction of Augmented Gabidulin codes.

In order to combine these approaches, we introduced in [8] the Blockwise
Rank Support Learning problem. It consists of guessing the support of
the errors when several syndromes are given in input, with blockwise
structured errors. The new schemes we introduced have very interesting
features since for 128 bits security they permit to obtain generalized
schemes for which the sum of public key and ciphertext is only 1.4 kB
for the generalized RQC scheme and 1.7 kB for the generalized LRPC
scheme.

In this extended version we give the following new features. First, we
propose a new optimization on the main protocol which consists in con-
sidering 1 in the support of an error, allowing to deduce a subspace of
the error to decode and improve the decoding capacity of our LRPC
code, while maintaining an equal level of security. The approach of the
original paper permits to reach a 40% gain in terms of parameters size
when compared to previous results [18,31], and this optimization allows
to reduce the parameters by another 4% for higher security level. We
obtain better results in terms of size than the KYBER scheme whose
total sum is 1.5 kB. Second we give a more detailed analysis of the alge-
braic attacks on the ℓ-RD problem we proposed in [8], which allowed to
cryptanalyze all blockwise LRPC parameters proposed in [31] (with an
improvement of more than 40 bits in the case of structural attacks). And
at last, third, we propose a more detailed introduction to the historical



background about rank metric, especially on the RQC and LRPC cryp-
tosystems and their recent improvements and we add some parameters
for the case of classical RQC (the case of only one given syndrome, that
is a special case of our scheme, for which we could achieve 1.5 kB for the
sum of the public key and the ciphertext), which compares very well to
the previous version of classical RQC.

Keywords: code-based cryptography, Rank Syndrome Decoding problem, LRPC
code, multiple syndromes, blockwise errors

1 Introduction and previous works

Background on rank metric code-based cryptography. Classical code-
based cryptography relies on the Hamming distance but it is also possible to use
another metric: the rank metric. This metric, introduced in 1985 by Gabidulin
[19], is very different from the Hamming distance. In recent years, the rank
metric has garnered significant attention from the coding community due to its
relevance to network coding. Moreover, this metric can also be used for cryp-
tography. Indeed, it is possible to construct rank-analogues of Reed-Solomon
codes: the Gabidulin codes. These codes were used in early cryptosystems, like
the GPT cryptosystem [20] which consists of an instantiation of the McEliece
cryptosystem using Gabidulin codes. However, they were found to be inherently
vulnerable due to the strong structure of the underlying codes. More recently,
considering an approach similar to NTRU [24] (and also MDPC codes [26]),
it became possible to construct a very efficient cryptosystem based on weakly
structured rank codes: the LRPC cryptosystem [22]. Overall, the main interest
of rank-metric based cryptography is that the complexity of the most known
attack increases significantly with the size of the parameters: unlike Hamming
code-based or lattice-based cryptography, it is possible to obtain a cryptosystem
based on a general instance of the rank decoding problem with a size of only a
few thousand bytes, while such parameter sizes can only be obtained with an
additional structure (quasi-cyclic for example) in Hamming code-based or lattice-
based cryptography. In the 2017 NIST standardization process, several schemes
based on rank metric were proposed: LAKE, LOCKER, OUROBOROS-R and
RQC. The three schemes LAKE, LOCKER and OUROBOROS-R were merged
in the ROLLO 2nd round submission, while the RQC submission remained in-
dependent. Eventually, due to incertitude brought by algebraic attacks [14] that
attacked NIST proposed parameters for rank metric, these schemes did not reach
the 3rd round of the NIST standardization. However, the overall process permit-
ted to reach a new audience for the potentiality of rank-based cryptosystems.
The Loidreau cryptosystem [25] and its recent improvements [9] are further ex-
ample of rank-based cryptosystem. In this paper, we focus on the LRPC and
RQC cryptosystems.
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Historical evolution of the LRPC cryptosystem. The main point that
enables the LRPC cryptosystem to achieve small parameter sizes is its decoding
algorithm. In the original 2014 version of the cryptosystem [22], the Decoding
Failure Rate (DFR) is related to the block size n of the code, which is a major
drawback when aiming for a very low DFR, as required to achieve IND-CCA2
security. The approach adopted for LRPC was either to consider a cryptosystem
with a high DFR (around 2−30, as in the LAKE cryptosystem), or considering a
very low DFR, but at a cost of a high block size n, leading to very large parame-
ters (as in the LOCKER cryptosystem). Overall, although the LAKE parameters
were very appealing (public key ≃ 600 bytes), the high DFR remained a strong
limitation. Conversely, achieving a very low DFR required such large parameters
(4 kB) for LOCKER that the scheme became less competitive than its high-DFR
counterpart. Another possibility for reducing the DFR was proposed in [10] but
involves increasing m (the dimension of the extension field), which is generally
too expensive. If one excepts the introduction of Ideal LRPC during the second
round of NIST standardization process for ROLLO, which allowed to increase
the number of choices for the block size of LRPC, there were no major break-
throughs for LRPC until the introduction in 2022 [3] of the multiple syndromes
approach. This approach, based on the Rank Support Learning problem, per-
mits to consider several syndromes. It has a strong impact on parameters since
it permits to increase the number of considered syndromes and hence the overall
decoding capacity of the code. This approach did not really change the high
DFR approach, but had a major impact on the very low DFR approach which
reached a size (pk+ct) of 2.4 kB, a strong improvement compared to the pre-
vious 4 kB. In practice, the multiple syndrome approach permits to consider a
decoding capacity potentially close to the rank Gilbert-Varshamov bound which
has a double impact on parameters: first, the complexity of attacks increases;
second, approaching the RGV bound brings the scheme into a parameter space
where algebraic attacks are less effective, with a complexity comparable to that
of combinatorial attacks. The previously cited paper [3] also introduces unstruc-
tured LRPC variations of the scheme with very low parameters of 7 kB, beating
the best unstructured lattices schemes. Finally, the paper also introduced the
extended multiple syndromes (xMS) approach, which, at the cost of a slower
decoding algorithm, allows LRPC codes to be decoded with smaller m, a crucial
factor for achieving smaller parameters. Very recently, another approach was
proposed in [31]. This approach uses blockwise errors to increase the decoding
capacity of the LRPC codes: it allows to reach smaller parameters, but not as
small as the multiple syndrome approach, primarily because the classical LRPC
approach relies on large block size to reach very low DFR.

Historical evolution of the RQC cryptosystem. The RQC cryptosystem
was submitted to the 2017 NIST standardization process and in [1], pre-published
in 2016. It is also covered by the 2010 Gaborit-Aguilar patent [4]. The scheme is
an equivalent in rank metric of the HQC scheme, which was also submitted to
the NIST standardization process. The security of the protocol can be reduced to
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the security of random instances, but it comes at a cost of two-parts ciphertexts,
which naturally results in a larger parameter size. The main strong feature of
the RQC protocol is its zero DFR thanks to the Gabidulin decoder, avoiding po-
tential DFR existential drawbacks. In practice, the RQC parameters were rather
large, and reached 5.6 kB (for 128 bits security) for public key and ciphertext size
after algebraic attacks of 2019 [14]. There are two main reasons for this. First,
the weight of the decoded error increases quadratically, which requires a larger
block size n, and consequently a larger m (since m must be greater than n in
Gabidulin codes). Second, the security of the RQC scheme is reduced to attack-
ing a [3n, n] code rather than a [2n, n] code (as for LRPC), which significantly
impacts the complexity of attacks. Overall, while the zero DFR is an attrac-
tive feature, the parameter size is less so. After the NIST submission, several
improvements were proposed. First, in 2019, the concept of non-homogeneous
error was introduced for the second-round submission of RQC. By sampling a
common error support for the first 2n coordinates and a different support for
the last n-length block, this approach aimed to address the costly [3n, n] reduc-
tion. Finally, recently in [15], the notion of multiple syndromes was extended
to the RQC cryptosystem. As with LRPC, this approach is very interesting in
itself, but is even more efficient with the Augmented Gabidulin codes, also intro-
duced in [15]. Augmented Gabidulin codes correspond to Gabidulin codes with
additional zero positions, allowing in practice to mitigate the condition n ≤ m.
While this induces a non-zero DFR, the negative quadratic exponent makes the
approach very efficient, as it allows for a reduction in m while maintaining sim-
ilar decoding capacity and a very low DFR. This method, when combined with
the multiple syndromes approach and non-homogeneous errors, enables parame-
ter sizes to be reduced to 2.7 kB. It also permits to reach low parameters in the
unstructured case (see [15] for details).

Recent results and introduction of blockwise rank errors for rank
codes for LRPC and RQC schemes. Very recently in [31], the authors
introduced the notion of rank blockwise errors, which allows for a reduction in
the weight of decoded errors. The main idea of this approach is to consider words
composed of blocks of respective length n1, ..., nℓ with each block associated with
an error ei of rank ri with support Ei, such that the supports Ei intersect only
at 0.In the case of ℓ = 2, this allows for an error to be decoded in LRPC with
a smaller weight r1 · d1 + r2 · d2, rather than r · d as in the classical LRPC
case. In fact, to give a general idea, one exchanges the complexity of searching
for an error of weight 2r and length 2n for the complexity of searching for a
blockwise error of weight (r, r) associated with two blocks of length n. If one
considers r = d and r1 = r2 = d1 = d2 = r

2 , the classical LRPC approach with
homogeneous errors gives a syndrome of weight r.d = r2, whereas in the case of
blockwise error the syndrome would have weight r1.d1 + r2.d2 = r2

2 . Decoding
errors of smaller weight can have a significant impact on decoding performance.
In their paper [31], the authors generalize previously known attacks to the block-
wise rank error case (for both combinatorial and algebraic attacks), building on

4



recent results regarding non-homogeneous errors. They show that considering
the blockwise approach rather than the classical homogeneous approach may
be advantageous in some cases. This approach is especially interesting for the
RQC scheme, for which they propose parameters with size 2.5 kB (public key +
ciphertext), and somewhat less for the ILRPC case: with high DFR 2−30, their
parameters are 15% smaller than ROLLO-I (ex-LAKE, although we will later
explain that their proposed parameters can be broken).Overall, the approach
they propose is very interesting and fully develops the potential of rank metric.

Blockwise rank errors: why this new error structure is completely
suited for rank metric based cryptography. As a well known notion, the
rank metric benefits from strange properties. Indeed, suppose one aims to solve
the RSD problem: H.et = s (for e a codeword of Fn

qm of weight r and H a random
(n − k) × n matrix). In practice, the complexity of best attacks becomes linear
whenever n becomes large enough. This property is directly related to the notion
of support of the error: when the error length increases, the support of the error
does not change. This peculiar property leads to the fact that it is easily possible
to construct simple codes which can decode up to the rank Gilbert-Varshamov
bound [21]. It is important to note that this feature is absent in Hamming or
Euclidean distance. This property also explains why a straightforward adapta-
tion of the Learning Parity with Noise (LPN) or Learning With Errors (LWE)
problem does not work for rank metric: the system can be solved in polynomial
time after a quadratic number of given syndromes. A way to obtain an equivalent
approach for LPN or LWE in rank metric is proposed in [17]: instead of adding
errors with the same support, one adds fixed-length block errors with varying
error supports. This Learning with Rank Errors (LRE) approach permits to get
an equivalent notion to LPN and LWE. The previous LRE approach is very
close to the approach proposed in [31] and is also closely related to the sum-rank
approach. The non-homogeneous approach of [15] can also be seen as a particu-
lar case of blockwise rank errors. In practice, the rank blockwise error approach
permits to efficiently counter the attack in which, for a given m, one dramati-
cally increases the length n of the code. The best combinatorial attacks have a
complexity with roughly an exponent in krm/n. The blockwise structured error
support counters the m/n effect, so that the best attacks essentially remains
in kr for the exponent. This type of structured error is especially resistant for
[ℓn, n] codes with blocks of size n and m = n. This type of parameters is very
well suited for ideal LRPC and RQC schemes, where the primary attacks directly
correspond to this case. However, the case of unstructured schemes when m is
larger than n (which is small) does not permit to benefit from the advantage of
this blockwise structure, and no significant improvement seems to be achieved.
Moreover, as explained in [31], the blockwise structure permits to decrease the
weight of the error to decode in LRPC and RQC. This perspective suggests that
the blockwise rank error approach is the natural one to adopt for rank met-
ric: it naturally permits to get smaller error weights to decode and since, and
is naturally resilient to the very long length attack approach which necessary
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leads to polynomial attacks. This approach is especially efficient for RQC, as it
counters the [3n, n] attack that strongly impacts parameters. This explains why
RQC parameters of [31] are rather small. In practice, this block size approach
is especially interesting for the case where the main attack arises for m ≪ n,
which is precisely the case for ideal LRPC and RQC.

Contributions. In this paper, we combine the two previous approaches: mul-
tiple syndromes (along with Augmented Gabidulin codes) and blockwise errors
for LRPC and RQC schemes. This new combined approach is especially efficient
for the RQC scheme, allowing us to achieve parameters of 1.4 kB (public key +
ciphertext) for 128-bit security, as the blockwise approach counters the [3n, n]
security reduction. However the approach in the case of LRPC codes combined
with the xMS approach of [3] also remains interesting with a 1.7 kB size. These
results represent a significant improvement, with a 40% reduction in parameter
size compared to previous results, yielding parameters even smaller than KY-
BER (1.5 kB). It is the first time that one gets so small parameters in rank
metric (and codes in general), along with very low DFR.

In addition to these main results, the contributions are as follows:

- We define a new problem: the Blockwise Rank Syndrome Learning problem,
which enables the design of new generalized LRPC and RQC schemes using
multiple syndromes and blockwise rank error approaches. We also generalize the
xMS approach of [3] for the case of rank block errors.

- We propose new attacks for the ℓ-RD blockwise error problem, in specifically
breaking all parameter sets of [31] for their LRPC variations. Notice that it does
not alter the confidence we can have in the scheme, since parameters can be
increased to counter this attack.

- We provide generalized combinatorial and algebraic attacks for the new Block-
wise Rank Syndrome Learning problem.

- We revisit some combinatorial and algebraic attacks described in [31].

New contributions of this extended version:

- A new protocol optimization: we propose for our RQC-Block-MS-AG scheme
to sample an error with 1 in the support of the block R2. It permits to reduce the
Decoding Failure Rate of the Augmented Gabidulin code and thus reducing the
parameters size further by almost 10%, without altering the practical security
of the scheme.

- Algebraic attacks: we give further technical details on the analysis of the alge-
braic attacks on the ℓ-RD problem compared to the original version.

- Introduction: we give a more detailed introduction for the paper especially
regarding the historical aspects and evolution of schemes in rank metric which
permits to have a better general overview on this field.
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Organisation of the paper. Section 1 gives a general overview of the situa-
tion for LRPC and RQC schemes and also gives a perspective on the blockwise
rank error approach. Section 2 presents the general background on rank metric
and cryptographic schemes. Section 3 describes the new blockwise RSL prob-
lem together with the generalization of the xMS approach in the case of block-
wise rank errors. Section 4 gives a description of our new generalized RQC and
LRPC schemes. Sections 5 and 6 present the details of combinatorial and alge-
braic attacks for the problem we address, while also revisiting some complexity
aspects from [31]. Section 7 discusses the cryptanalysis of the LRPC parame-
ters from [31]. Section 8 introduces new parameters based on our approach and
compares them to other schemes.

2 Preliminaries

2.1 Background on the rank metric

Definition 1 (Rank metric over Fn
qm). For a vector x = (x1, . . . , xn) ∈ Fn

qm ,

we define the support Supp(x) def
= ⟨x1, . . . , xn⟩Fq . The rank weight of x is equal

to ∥x∥ def
= dim (Supp(x)).

In the following, the set of vectors in Fn
qm of rank weight r will be denoted by:

Sn
r (Fqm)

def
=
{
x ∈ Fn

qm | ∥x∥ = r
}
.

We will also use

Sn
r,1(Fqm)

def
= {x ∈ Fn

qm | ∥x∥ = r, 1 ∈ Supp(x)}.

Definition 2 (Fqm-linear code). An Fqm-linear code of parameters [n, k]qm is
an Fqm-subspace of Fn

qm of dimension k.

Such a code C can be represented by a full-rank generator matrix G ∈ Fk×n
qm or

by a full-rank parity-check matrix H ∈ F(n−k)×n
qm .

2.2 Rank Decoding and Rank Support Learning problems

The decoding problem relevant for all rank-based constructions is:

Definition 3 (RD Problem). Given (G,y) ∈ Fk×n
qm × Fn

qm , the Rank Decoding
problem RD(n, k, r) asks to compute e ∈ Fn

qm such that y = xG+e and ∥e∥ ≤ r.
We will write RSD for the equivalent version written with a parity-check matrix.

Even if RD is not known to be NP-complete, [29] gives a randomized reduction to
the decoding problem in the Hamming metric, this time NP-complete. The Rank
Support Learning problem [21] is a generalization of RD where we are given N
instances with the same generator matrix (or the same parity-check matrix for
RSD) and where the errors have the same support.
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Definition 4 (RSL Problem). Given (H,S) ∈ F(n−k)×n
qm ×FN×(n−k)

qm , the Rank
Support Learning Problem RSL(n, k, r,N) asks to compute a subspace E ⊂ Fqm

of dimension r for which there exists a matrix V ∈ Eℓ×n such that HVT = ST.

2.3 Ideal codes

Let P ∈ Fq[X] be an irreducible polynomial of degree n. We define the internal
product of two vectors x, y in Fn

qm as x·y def
= X(X)Y(X) mod P , where X(X) =∑k−1

i=0 xiX
i and Y(X) =

∑k−1
i=0 yiX

i.

Definition 5 (Ideal matrix). Let P ∈ Fq[X] be a polynomial of degree n and
let v ∈ Fn

qm . The ideal matrix generated by v and P , denoted by IMP (v) (or
IM(v) if there is no ambiguity on P ), is the element of Fn×n

qm defined by

IMP (v)
def
=


v(X) mod P
Xv(X) mod P

...
Xk−1v(X) mod P

 .

One can see that u·v = uIM(v) = vIM(u) = v·u, so that the internal product
is a matrix-vector product by the ideal matrix. An ideal code of parameters
[sn, tn]qm is an Fqm -linear code which admits a generator matrix made of s× t
ideal matrix blocks. A crucial point is that if P ∈ Fq[X] is irreducible and if n
and m are prime, then this code admits a systematic generator matrix made of
ideal blocks [1]. In the following, we will restrict ourselves to t = 1.

Definition 6 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n and
let gi ∈ Fn

qm for i ∈ {1, ..., s−1}. We call the [sn, n]qm ideal code C of generators
(g1, ..., gs−1) the code with generator matrix G =

(
In IM(g1) ... IM(gs−1)

)
∈

Fn×sn
qm . Equivalently, the code C admits a parity-check matrix of the form

H =

 IM(h1)

In(s−1)
...

IM(hs−1)

 .

Definition 7 (IRSD Problem). Given H ∈ F(s−1)n×sn
qm a parity-check matrix

of an [sn, n]qm-ideal code and s ∈ ×F(s−1)n
qm , the Ideal Rank Support Decoding

Problem IRSD(n, s, r) asks to compute e ∈ Fns
qm such that ∥e∥ ≤ r and HeT = sT.

Definition 8 (IRSL Problem). Given H ∈ F(s−1)n×sn
qm a parity-check matrix

of an [sn, n]qm-ideal code and S ∈ ×FN×(s−1)n
qm , the Ideal Rank Support Learning

Problem IRSL(n, s, r,N) asks to compute a subspace E of Fqm of dimension r

for which there exists a matrix V ∈ EN×n such that HVT = ST.
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2.4 LRPC codes and early LRPC-based schemes

LRPC codes were introduced in [22] as the rank metric anologue of LDPC codes.

Definition 9 (LRPC code). An [n, k]qm-linear code C is said to be LRPC of
dual weight d if it admits a parity-check matrix H ∈ F(n−k)×n

qm whose coefficients
span an Fq-vector space F of dimension d. Such a matrix H will be called a
homogeneous matrix of weight d and support F .

Introduced in [22], the Rank Support Recovery (RSR) algorithm allows to decode
efficiently if the support F of an homogeneous parity-check matrix is known. The
following definition combines Definition 6 and Definition 9, as we can clearly
construct codes which admit the two properties:

Definition 10 (Ideal-LRPC code). An Ideal-LRPC code is both an Ideal code
and an LRPC code.

Presented in Figure 1, the LOCKER Public Key Encryption scheme [7] uses such
an Ideal-LRPC code. Its security relies on the difficulty of the IRSD problem.

KeyGen(1λ):

- Sample uniformly at random x,y $←− Sn
d (Fqm )

- Compute h = x−1 · y mod P , where P ∈ Fq [X] is irreducible of degree n

- Output pk = h and sk = (x,y)

Encrypt(pk,m):

- Sample uniformly at random e1, e2
$←− S2n

r (Fqm )

- Compute E = Supp(e1, e2) and cipher = m⊕ H(E), where ⊕ is the bitwise XOR

- Compute c = e1 + e2 · h and output ct = (cipher, c)

Decrypt(sk, ct):

- Compute s = xc, set F = Supp(x,y) and retrieve E = RSR(F, s, r)

- Output m = cipher ⊕ H(E)

Fig. 1: Description of the LOCKER scheme

The following Key Encapsulation Mechanism (KEM) given in Figure 2 is due
to [3]. It exploits several syndromes whose errors have the same support in order
to improve the initial LRPC decoder. Its security relies on the IRSL problem.

2.5 Augmented Gabidulin codes and the RQC-MS-AG scheme

Augmented Gabidulin codes were introduced in [18]. The idea is to add a se-
quence of zeros at the end of a Gabidulin code.
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KeyGen(1λ):

- Sample uniformly at random a subspace F of Fqm of dimension d.

- Sample uniformly at random U = (A|B)
$←− F (n−k)×n.

- Output H = (In−k|A−1B) the systematic form of U.

Encap(H):

- Sample uniformly at random E of dimension r.

- Sample uniformly at random V $←− En×N

- Output C = HV

- Define K = H(E)

Decap(C,U):

- Compute S = AC

- Recover E ← RSR(F,S, r)

- Return K = H(E) or ⊥ if RSR failed.

Fig. 2: Algorithms of the Key Encapsulation Mechanism ILRPC-MS

Definition 11 (Augmented Gabidulin codes). Let (k, n, n′,m) ∈ N4 such
that k ≤ n′ < m < n. Let g = (g1, . . . , gn′) ∈ Fn′

qm such that ∥g∥ = n′ and let

g def
= (g |0n−n′) ∈ Fn

qm . The Augmented Gabidulin code G+
g (n, n′, k,m) is the

code of parameters [n, k]qm defined by:

G+
g (n, n′, k,m)

def
=
{
P (g), degq(P ) < k

}
,

where P (g) def
= (P (g1), . . . , P (gn′),0n−n′) and P is a q-polynomial.

The idea is to benefit from elements of the support of the error in the last po-
sitions when we decode. They correspond to support erasures in a rank metric
context. More precisely, support erasures are defined as a subspace of the vector
space spanned by the error coordinates, i.e., the support of the error. Over-
all, these codes allow to improve the decoding capacity

⌊
n′−k

2

⌋
of the original

Gabidulin code but this comes at the price of a non-zero decryption failure rate.

Proposition 1 (Decoding Algorithm for Augmented Gabidulin codes).
Let G+

g (n, n′, k,m) be an augmented Gabidulin code and let ε ∈ {1, 2, . . . ,min(n−
n′, n′−k)} be the dimension of the vector space generated by the support erasures.
There exists an efficient decoding algorithm correcting errors of rank weight up
to δ

def
=
⌊
n′−k+ε

2

⌋
with a decryption failure rate (DFR) of:

DFR(n, n′, δ, ε) = qδ(n
′−n)

ε−1∑
i=1

i−1∏
j=0

(qδ − qj)(qn−n
′ − qj)

qi − qj
.
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Using such codes together with the multi syndrome approach of [3] allowed to
devise an improvement of RQC called RQC-MS-AG [18]. This scheme is de-
clined in two versions. What is important for our purposes is that one uses
non-homogeneous errors. A non-homogeneous vector of weight (ω1, ω2) in F3n

qm

is an element of

S3n
(ω1,ω2)

(Fqm)
def
={x = (x1,x2,x3) ∈ F3n

qm | ∥(x1,x3)∥ = ω1,

∥x2∥ = ω1 + ω2,Supp(x1,x3) ⊂ Supp(x2)}.

The use of several syndromes requires to extend this notion to matrices (the
support still corresponding to the vector space spanned by its coefficients):

SN×3n
(ω1,ω2)

(Fqm)
def
= {M = (M1 | M2 | M3) ∈ FN×3n

qm , dim(Supp(M1 | M3)) = ω1,

dim(Supp(M2)) = ω1 + ω2, Supp(M1 | M3) ⊂ Supp(M2)}.

Figure 3 presents the RQC-MS-AG scheme using non-homogeneous errors. As
it also uses ideal codes, we consider n1 and n2 two integers and P ∈ Fq[X]
an irreducible polynomial of degree n2. For a vector v ∈ Fn2

qm and a matrix
M ∈ Fn2×n1

qm , we generalize the internal product between vectors by

v · M def
=
(
(v · m1)

T, . . . , (v · mn1
)T
)
,

where mi is the i-th column of M for i ∈ {1, ..., n1} and where the products
at the right hand side are standard internal products. The procedure Fold turns
the vector v = (v1, . . . ,vn1

) ∈ (Fn2
qm)n1 into Fold(v) def

=
(
vT
1 , . . . ,vT

n1

)
∈ Fn2×n1

qm .
The inverse map is denoted by Unfold.

KeyGen(1λ):

- Sample uniformly at random h $←− Fn2
qm

, g $←− Sn′
n′ (Fqm ) and (x,y) $←− S2n2

ω,1 (Fqm ).

- Compute s = x + h · y mod P

- Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m):

- Compute a generator matrix G ∈ Fk×n1n2
qm

for G+
g (n1n2, n

′, k,m), g def
= (g | 0n1n2−n′ )

- Sample uniformly at random (R1,E,R2)
$←− Sn2×3n1

(ω1,ω2)
(Fqm )

- Compute U = R1 + h ·R2 and V = Fold(mG) + s ·R2 + E

- Output C = (U,V)

Decrypt(sk,C):

- Output G+
g .Decode(Unfold(V− y ·U))

Fig. 3: Description of the RQC-MS-AG scheme

11



2.6 Blockwise errors and related problems

Blockwise errors have been recently introduced in [31]. Their particular structure
was used to increase increase the capacity of LRPC decoding.

Definition 12 (Blockwise ℓ-error). Let n = (n1, ..., nℓ) ∈ Nℓ, r = (r1, ..., rℓ) ∈
Nℓ and n

def
=
∑ℓ

i=1 ni. An error e ∈ Fn
qm is said to be an ℓ-error with parameters

n and r if it is the concatenation of ℓ errors ei ∈ Fni
qm such that

– for all i ∈ {1, ..., ℓ}, ∥ei∥ = ri,

– for all i ̸= j, Supp(ei) ∩ Supp(ej) = {0}.

We denote Sn
r (Fqm) as the set of blockwise errors with parameters n and r. For

an integer N and vectors n and r, we can similarly define SN×n
r (Fqm) the set of

matrices of size N × ni whose elements are block matrices M = (M1 | · · · | Mℓ)
such that dim(Supp(Mi)) = ri. We can naturally define restrictions of the RD
and IRSD problems to blockwise errors.

Definition 13 (ℓ-RD problem). Let n = (n1, ..., nℓ) ∈ Nℓ, r = (r1, ..., rℓ) ∈ Nℓ

and n
def
=
∑ℓ

i=1 ni. Given a full-rank matrix G ∈ Fk×n
qm and y def

= xG + e such
that x ∈ Fk

qm is uniformly sampled and e ∈ Sn
r , the Blockwise Rank Decoding

problem RD(n, k, r,m) asks to find x and e.

Definition 14 (ℓ-IRSD problem). Let n = (n1, ..., nℓ) ∈ Nℓ, r = (r1, ..., rℓ) ∈
Nℓ and n

def
=
∑ℓ

i=1 ni. Let H ∈ F(n−1)s×ns
qm be a parity-check matrix of an [sn, n]

ideal code. On input (H, s) where sT = HeT and e ∈ Sn
r , the Blockwise Ideal

Rank Syndrome Decoding problem IRSD(n, k, r,m) asks to find e.

An improved version of LOCKER based on 2-IRSD was given in [31].

3 ℓ-LRPC codes and decoding with several syndromes

In this paper, we combine the multi syndrome approach of [3] together with the
blockwise structure of [31]. Thus, Section 3.1 starts by describing new restrictions
of RSL to this error structure.

3.1 New problems related to blockwise errors

Definition 15 (ℓ-RSL problem). Given (H,HET), where H ∈ F(n−k)×n
qm is

full-rank and where E = (E1 | · · · | Eℓ) ∈ FN×n
qm is such that for i ∈ {1, ..., ℓ}, the

matrix Ei ∈ FN×ni
qm is homogeneous of support Vi, dimVi = ri, Vi∩Vj = {0} for

i ̸= j, the Blockwise Rank Support Learning problem ℓ-RSL(m,n, r, k,N) asks to
find the set of subspaces (Vi)i∈{1,...,ℓ}.

12



We can also define a variant of this problem for an ideal code of parameters
[sn, n]qm and where the s-errors have blocks of the same length n.

Definition 16 (s-IRSL problem). Let H be a parity check matrix of an [sn, n]qm

ideal code and let r = (r1, ..., rs) ∈ Ns. Given (H,S) ∈ F(s−1)n×sn
qm × FN×(s−1)n

qm ,
the Blockwise Ideal Rank Support Learning problem IRSL(s, n, r, N) asks to com-
pute a set of s subspaces V = (V1, . . . ,Vs) such that dimVi = ri, Vi ∩ Vj = {0}
for i ̸= j and such that there exists a matrix V = (V1 | · · · | Vs) ∈ FN×sn

qm

such that HVT = ST and whose i-th block is homogeneous of support Vi for all
i ∈ {1..s}.

In the rest of the section, we study decoding algorithms for ℓ-LRPC codes,
introduced in [31]. Their definition is recalled below.

Definition 17. Let H = (H1 | · · · | Hℓ) ∈ F(n−k)×n
qm full-rank such that Hi ∈

F(n−k)×ni

qm is homogeneous of weight di and support Fi for i ∈ {1..ℓ} and such
that for all i ̸= j, Fi ∩ Fj = {0}. The code C with parity-check matrix H is said
to be an ℓ-LRPC code (with dual weight (d1, . . . , dℓ)).

In Section 3.2, we extend the decoding algorithm of [31] to multiple syndromes.
In Section 3.3, we propose a way to improve its DFR by using a trick from [3].

3.2 Decoding algorithm with multiple syndromes

Our new algorithm is described in Algorithm 1. Its correctness easily follows
from the one of the algorithms of [10,31].

Algorithm 1 Decoding algorithm of ℓ-LRPC codes for ℓ-errors

Input: A collection of N syndromes (s1, . . . , sN ) ∈ F(n−k)×N
qm and the parity-check

matrix H ∈ F(n−k)×k
qm

Output: The ℓ-error e, or error
Compute the syndrome space S = ⟨s1,1, . . . sN,n−k⟩
Let {Fi1, . . . Fidi} be a basis of Fi for all i
Compute Sij = F−1

ij S for all i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , di}

Compute Ei =
di⋂
j=1

Sij

if dim(Ei) ̸= ri for any i then
return error

else

Recover E =
ℓ∑

i=1

Ei

Solve the linear system HeT = sT with e ∈ En as unknown
return e

13



This algorithm has a non-zero DFR. There are two cases that can make it fail:

1. the dimension of the syndrome space S is lower than the dimension of the

whole product space
ℓ∑

i=1

EiFi;

2. there exists i ∈ {1..ℓ} such that Ei ⊋
di⋂
j=1

Sij .

An upper bound of this DFR is given in Theorem 1.

Theorem 1. Let µ =
∑ℓ

i=1 ridi and let N be the number of syndromes. Under
the assumption that each element of the syndrome space as a random element of

P
def
=

ℓ∑
i=1

EiFi, the decoding failure probability of Algorithm 1 is bounded by:

q−(N(n−k)−µ) +
∑ℓ

i=1 q
−(di−1)(m−µ)+µ−ri . (1)

To prove it, we need the following result from [7]:

Proposition 2. Let r, d and µ be three integers. Let E be a fixed subspace of
dimension r and let Ri, 1 ⩽ i ⩽ d, be d independently chosen random subspaces

of dimension µ containing the subspace E. The probability that dim
d⋂

i=0

Ri > r

is bounded from above by:

qµ−r
(
qµ − qr

qm

)d−1

≈ q−(d−1)(m−µ)+µ−r

Proof (of Theorem 1). First, we study the probability that dim(S) < dim(
∑

EiFi).
Each sij is an element of the product space P =

∑
EiFi. Thus, we can write

the set of coefficients of all syndromes as an element in FN(n−k)×µ
q whose rows

are obtained by unfolding the sij ’s in a fixed basis of P . By assumption, this
matrix behaves as a random matrix. Under this assumption, the probability that
dim(S) < dim(P ) is thus equal to the probability that a random N(n− k)× µ
matrix is not full-rank. This probability can be upper-bounded by q−(N(n−k)−µ)

and this gives the first term in Equation (1). The second case which leads to a de-
coding failure is when there is i ∈ {1..ℓ} such that Ei ⊋

⋂
Sij . By Proposition 2,

the probability that Ei ⊋
⋂

Sij can be upper bounded by q−(di−1)(m−µ)+µ−r for
i ∈ {1..ℓ}. We need to recover Ei for all 1 ⩽ i ⩽ ℓ, hence the result. ⊓⊔

3.3 Improving its DFR

By using a technique introduced in the xMS protocol [3], we extend Algorithm 1
to reduce its DFR. The resulting algorithm corresponds to Algorithm 2.
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Algorithm 2 Decoding algorithm of ℓ-LRPC codes for ℓ-errors

Input: A collection of N syndromes (s1, . . . , sN ) ∈ F(n−k)×N
qm , the parity-check matrix

H ∈ F(n−k)×k
qm and an algorithm parameter c

Output: The ℓ-error e, or error
Compute the syndrome space S = ⟨s1,1, . . . sN,n−k⟩
Let {Fi1, . . . Fidi} be a basis of Fi for all i
Compute Sij = F−1

ij S for all i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , di}

Compute Ei =
di⋂
j=1

Sij

if dim(Ei) > ri + c for any i then
return error

else

E′ =
ℓ∑

i=1

Ei

Solve the linear system HeT = sT with e ∈ E′n as unknown
return e

Correctness. The parameter c must be chosen so that the linear system over Fq

derived from HeT = sT with the knowledge of E′ has more linearly independent
equations than the number of unknowns. If these equations are linearly inde-
pendent, this condition is met when (n− k)m ≥

∑
ni dim(Ei), hence a fortiori

when (n− k)m ≥
∑

ni(ri + c). When the system has a unique solution, the rest
of the algorithm works in the same way as in Algorithm 1.

Theorem 2. Let µ =
∑

ridi and let N be the number of given syndromes.
Under the same assumption as in Theorem 1, the decoding failure probability
(DFR) of the extended decoding algorithm for ℓ-LRPC codes is bounded by:

q−(N(n−k)−µ) +
1

ϕ(q−1)

ℓ∑
i=1

q(c+1)(µ−ri−(c+1)+(di−1)(µ−m)),

where ϕ is the Euler function ϕ(x)
def
=

+∞∏
k=1

(1− xk), |x| < 1.

Proof. The improvement is in the second term, the first term q−(N(n−k)−µ) being
similar to the one of Theorem 1. Another possibility for Algorithm 2 to fail is if
dim(Ei) > ri + c for at least one i ∈ {1..ℓ}. By [3, Proposition 3], we have

P

dim

 di⋂
j=1

Sij

 > ri + c

 ⩽
1

ϕ(q−1)
q(c+1)(µ−ri−(c+1)+(di−1)(µ−m)).

As in the proof of Theorem 1, the second term follows by summing the upper
bounds for i ∈ {1..ℓ}. ⊓⊔
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4 New cryptographic schemes based on ℓ-RSL and ℓ-IRSL

4.1 RQC-MS-AG scheme with blockwise errors

We propose an improvement of the RQC-MS-AG by using 2-errors and 3-errors.
A description of the resulting scheme can be found in Figure 4.

Comments. The Augmented Gabidulin code has parameters (n1n2,m, k,m)
and Decode is an efficient decoding algorithm that can correct up to δ =

⌊
m−k+ε

2

⌋
errors, where ε ≤ min(m−k, n1n2−m) is fixed as a parameter (in this case, the
DFR is estimated by Proposition 1). The main difference with the former RQC-
MS-AG scheme is that (x,y) is a 2-blockwise error rather than a random error
of length 2n2 whose support contains 1 and that the triple (R1,E,R2) sampled
at the encryption is a set of 3-blockwise errors of the same support instead of
being a set of non-homogeneous errors with the same support. The rest of the
scheme is rather similar and we keep the same notation as in Figure 3.

KeyGen(1λ):

- Sample uniformly at random: g $←− Sm
m (Fqm ), h $←− Fn2

qm
and (x,y) $←− S(n2,n2)

(rx,ry)
(Fqm )

- Compute s = x + h · y mod P

- Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m):

- Compute a generator matrix G ∈ Fk×n1n2
qm

for G+
g (n1n2,m, k,m), g def

= (g | 0n1n2−m)

- Sample (R1,R2,E)
$←− Sn2×(n1,n1,n1)

(r1,r2,re)
(Fqm )

- Compute U = R1 + h ·R2 and V = Fold(mG) + s ·R2 + E

- Output C = (U,V)

Decrypt(sk,C):

- Output Decode(Unfold(V− y ·U))

Fig. 4: Description of the RQC-MS-AG scheme with blockwise errors

The parameters need to be chosen according to the following proposition.

Proposition 3. Decryption is correct as long as

∥Unfold(x ·R2 − y ·R1 +E)∥ ≤ δ.

Proof. We have U = R1 + h · R2 and V = Fold(mG) + s · R2 + E, so that

V − y · U = Fold(mG) + (x + hy) · R2 + E − y · (R1 + hR2)

= Fold(mG) + x · R2 − y · R1 + E.
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This implies Unfold(V− y ·U) = mG+Unfold(x ·R2 − y ·R1 +E). Therefore,
the algorithm Decode will output m (there is still a DFR) as long as ∥Unfold(x ·
R2 − y · R1 + E)∥ ≤ δ. ⊓⊔

An optimization: choose the matrix R2 with 1 in its support. Recall
that the error to correct is equal to:

Err = x · R2 − y · R1 + E.

Note that if 1 ∈ SuppR2, then Supp(x) ⊂ Supp(Err). By adding this constraint
for the sampling of the vectors, we can deduce a subset of dimension rx of
the support of the error to correct. In order to find the remaining coordinates,
the support erasures (which span a space of dimension δ − rx after project the
coordinates of the error in the space Supp(x)⊥) have to span a space of dimension
ε − rx. We deduce that the decoding failure rate knowing the support of x is
given by:

DFR(n, n′, ε− rx, δ − rx)

where DFR is the formula given in proposition 1.

We can impose to the support of the block vectors (R1,R2,E) to contain 1 in
one of the blocks without changing the practical complexity of the attacks (these
block errors are the solution of the 3-IRSL problem on the [3n2, n2]qm ideal code

whose
(
1 0 h
0 1 s

)
is a parity check matrix).

Indeed, let us consider an instance (H, s) ∈ F(n−k)×n
qm × Fn−k

qm of the Rank-
Syndrome-Decoding problem, with H the parity check matrix of a code C. Let
e ∈ Fn

qm such that s = eHT and ∥e∥ ≤ r. By solving this linear system without
considering the constraint on the weight of e, one can find a vector y = c + e,
with c ∈ C. We define the code: C̃ = C⊕ < y >. We reduced the original problem
to find a vector of rank r in the code C̃. One must solve the instance of the Rank
Syndrome Decoding problem:

e′H̃
T
= 0

whose the set of solutions is {λe | λ ∈ F∗qm}.

The best known attacks on the Rank-Syndrome-Decoding problem use the reduc-
tion above ( [28], [11], [15]). Therefore, we consider in practice the best attacks
on the Rank-Syndrome-Decoding problem to evaluate the security of an instance
whose we know that 1 belongs to the support of the error.

A similar reasoning can be made in the case of blockwise errors and multiple
syndromes, and we can choose an error with 1 in the desired block. In our case,
we can take advantage of the protocol if we choose to sample a set of n1 errors:
(R1,R2,E) ∈ Sn2×(n1,n1,n1)

(r1,r2,re)
(Fqm) with 1 in the support of R2.
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4.2 ILRPC-MS with blockwise errors

We also improve the ILRPC-MS scheme of [3] described in Figure 2 by using
2-errors. Our new scheme is presented in Figure 5.

Let V = (Vi)i∈{1,...,ℓ} a finite sequence of subspaces of Fqm such that dimVi = ri
and for all i ̸= j: Vi ∩ Vj = {0}. We denote Sn

r (V) the set of vectors of the form
x = (x1, ...,xℓ), such that for all i ∈ {1, ..., ℓ}, the coefficients of each vector
xi ∈ Fni

qm belongs to Vi.

KeyGen(1λ):
- Choose uniformly at random two subspaces F1 and F2 in Fqm of respective dimensions d1 and

d2.

- Sample a couple of polynomials whose coefficients belong to F : (x,y) $←− F
n2
1 × F

n2
2 .

- Compute h = x−1y mod P

- Output pk = h and sk = (x,y)

Encap(pk):

- Choose uniformly at random V = (V1,V2) such that dimVi = ri and V1 ∩ V2 = {0}

- Sample uniformly n1 polynomials whose coefficients belong to S(n2,n2)
r (V):

(e1, ..., en1
)

$←− (S(n2,n2)
r (V))n1

- Write each vector ei as concatenation of ei,1 and ei,2, i.e. ei = (ei,1|ei,2)

- Compute ci = ei,1 + ei,2h for all integer i from 1 to n1.

- Define K = H(V) and output c = (c1, ..., cn1
)

Decap(sk, c):

- Compute S = (xc1, ...,xcn1 )

- Recover V ← Decode(F,S, r)

- Return K = H(V) or ⊥ if the Decode algorithm failed.

Fig. 5: Algorithms KeyGen, Encap and Decap of the Key Encapsulation Mechanism
ILRPC-Block-MS

Comments. As ideal codes are used, we recall that the vectors x, y in this figure
must be seen as elements in Fqm [X] taken modulo an irreducible polynomial
P ∈ Fq[X] of degree n. The Decode algorithm is a decoding algorithm for LRPC
codes in the case of blockwise errors. It can be either Algorithm 1 or Algorithm
2. More precisely, we call our scheme ILRPC-Block-MS when Algorithm 1 is
used and ILRPC-Block-XMS(r + c) otherwise, where c is the extra parameter
in Algorithm 2. These two algorithms output the error vector rather than its
support but they are somehow equivalent to RSR because it is straightforward
to recover the full error vector once its support is known.
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5 Combinatorial attacks

In this section, we present combinatorial attacks against three difficult problems
adapted to blockwise errors:

1. For the ℓ − RD problem, we present an adaptation of the AGHT attack,
different from [31], as well as a new attack called Shortening and Truncating.
We compare these attacks on a specific parameter case;

2. For the ℓ− RSL problem

3. A structural attack against ℓ-LRPC codes.

5.1 Combinatorial attacks against ℓ-RD

To study the complexity of solving the ℓ-RD problem with combinatorial attacks,
we will adapt and derive the new complexity of the attacks from [11, 23, 28] to
the case of ℓ-errors. in this section, we present results in a simplified situation
where n1 = · · · = nℓ = n, k = n and r1 ≤ r2 ≤ · · · ≤ rℓ.

These attacks are similar to what was presented in [30], although it does not
require the support to be disjoint. Another difference is that we take advantage
of simplified situations as explained in the previous paragraph.

5.1.1 The Ourivski-Johansonn attack As presented in [31], the complexity
of the OJ attack is

O((m(r − 1) + (n− r1))
ωq(r1−1)(n−r1)+rℓ).

5.1.2 The AGHT attack

In order to adapt the algorithm from [11] to the case of ℓ-errors, we will sample
ℓ different vector spaces Fi of dimension ti, and the algorithm will succeed if ∃α
such that ∀i, αEi ⊂ Fi. Using the same techniques as in [11] this probability can
be approximated by:

qm − 1

q − 1

ℓ∏
i=1

q−ri(m−ti)

Which gives a total complexity of:

O((n− k)3m3q
−m+

ℓ∑
i=1

ri(m−ti)
) (2)
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Recall that we restrict ourselves to the case where ∀i, ni =
n
ℓ .

The total complexity depends on the choice of tis. First we must choose these

values such that
ℓ∑

i=1

tini ⩽ m− ⌈m(k+1)
n ⌉ for the system to have more equations

than unknowns, and ti > ri for having a non-zero probability that Ei ⊂ Fi.
Then there are two cases:

1. All of the ris are equal. In this case the choice of the tis does not change
the complexity, and the complexity is the same for ℓ-errors and an error of
weight r.

2. The ris are not equal. In this case the optimal strategy is to try to make
perfect guesses for the smaller ris (i.e choosing ti = ri) in order to have the
highest possible value for the ti corresponding to the highest ri.

The more the ris are different, the bigger the advantage of specifically targeting
ℓ-errors instead of errors of weight r.
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Fig. 6: Complexities of the AGHT algorithm targeting an error of rank r (plain)
and adapted to ℓ-errors for parameters m = 61, n = 134, k = 67 and different
values of r.

Comparison with [31].

In [31, Section 3.3], the authors propose an adaptation of the AGHT attack to
the case of ℓ-errors. We claim their adaptation misestimates the complexity of
ℓ-AGHT attack. We give below two arguments to support our assertion.

20



First, in the demonstration of their Lemma 3.5 (cf. [31, Appendix C.1]), they
seem to imply that the number of subspaces of Fqm of dimension t2 disjoint from
a fixed E1 is exactly equal to the number of subspaces of Fqm/E1 of dimension t1,
which is not the case. In particular, in their ℓ = 2 example, they guess a subspace
F2 in Fqm/E1, but in order to perform the rest of the attack, this F2 needs to
be lifted in Fqm into a F̂2. Even though F2 contains E2/E1, it is not guaranteed
that F̂2 will contain E2, as it depends on the choice of the representatives for
the lifting.

Second, as we understood their attack, sampling Fℓ requires a correct guess
for each E1, . . . , Eℓ−1. Therefore F1, . . . , Fℓ−1 play no role in the attack, which
sounds somewhat strange.

5.1.3 Hybrid shortening and truncating attack

This new attack is an hybrid between Ourivski-Johansonn and other attacks
against the plain RD problem. The attack consists of reducing the problem
to solving the same problem in a code with smaller dimension (shortening),
and then considering only the part of the code associated to error coordinates
belonging to vectorial space of dimension r1 (truncating). Then, we obtain a
Rank Decoding problem instance with a homogeneous error of smaller dimension.
It is related to the hybrid attack presented in [15, Section 5.5], with the difference
that the truncating part was previously unpublished.

To simplify the analysis, let us present an attack of the 2-RD problem in a code
C of size [2n, n]: let G ∈ Fn×2n

qm the generator matrix of C, an error e ∈ S
(n,n)
(r1,r2)

with (r1, r2) ∈ N2. We reduce the problem to the resolution of a homogeneous
RD problem, in a code with smaller parameters. Let y = xG+ e with x ∈ Fn

qm .

We can perform Fq-linear combinations on coordinates of e1, in order to obtain
0 in the first t1 coordinates. In other words, it is possible to apply a matrix P
with r1t1 unknowns in Fq such that eP is (0...0 e′1 e2).

The attacker can then apply the same operations on the syndrome, and gets

y′ = yP = xG′ + e′

with G′ = GP. Without loss of generality, the matrix G can be in a semi-
systematic form

G′ =
(
It ∗
0 ∗

)
Operations on the columns can then be performed to cancel to top-right block
of G′, i.e. there exists an invertible matrix Q such that

G′Q =

(
It 0
0 A

)
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Because the error e′ has its first t coordinates set to 0, e′Q = e′ hence by writing:

y′′, the n rightmost coordinates of y′Q
x′′, the n− t rightmost coordinates of x
G′′, the n rightmost columns of A

we get

y′′ = x′′G′′ + e2

which is an instance of the RD problem in a code of parameters [n, n − t1, r2].
The cost of transforming the initial instance in this reduced instance is qr1t1 (for
finding the correct matrix P) times n2 (for calculating the matrix Q).

By symmetry, another variant of the attack consists in canceling t2 coordinates
in the rightmost part of the error of weight r2, and then solving an RD instance
in a code with parameters [n, n− t2, r1].

In the above explanation, the attacker truncates until obtaining a plain RD
instance. Another possibility is to truncate only t1 ≤ u1 < n columns of G′′,
yielding a 2-RD instance (n− u1, n) with weights (r1, r2).

We can then deduce the following proposition:

Proposition 4. The complexity of solving the 2-RD problem in a code of size
(n, n) by the Shortening and Truncating attack is estimated as:

n2 · min
1≤t1≤n
1≤t2≤n
t1≤u1≤n
t2≤u2≤n

(
qr1t1 × T2−RD ((n− u1, n), n− t1, (r1, r2),m) , qr2t2 × T2−RD ((n, n− u2), n− t2, (r1, r2),m)

)

(3)

where T2−RD(n, k, r,m) is the complexity of the best algorithm for solving an
instance of 2− RD(n, k, r,m) problem.

5.2 Combinatorial attacks on ℓ-RSL

The first combinatorial attack on plain RSL was given in [21] when this problem
was introduced. A more efficient attack was proposed in [18]. In particular, it
showed that RSL can be solved in polynomial time for a number N of syndromes
which is in general much smaller than the former bound N ≥ nr from [21].
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Complexity of the [18] attack on plain RSL, where a =
⌊
N
r

⌋
{

polynomial when a−N/m ≥ k, hence a fortiori when N ≥ (k + 1) m
m−r

O
(
qr(m−⌊

m(n−k)−N
n−a ⌋)

)
otherwise.

This attack exploits the fact that there exists an Fq-linear combination of the
errors ei, i ∈ {1..N} with a =

⌊
N
r

⌋
zeroes in the leftmost positions. For instance,

the goal is to find scalars (λ1, . . . , λℓ) ∈ Fℓ
q and ẽ ∈ En−a such that

(0 | ẽ) =
ℓ∑

i=1

λiei.

Then, the linear equation

(0 | ẽ)HT =

ℓ∑
i=1

λisi

is rewritten as a linear system over Fq in m(n− k) equations and (n− a)m+N
unknowns. When it is overdefined, solving this system takes polynomial time.
Otherwise, [18] applies the same techniques as in combinatorial attacks on RD
by sampling a random subspace F of dimension t. However, contrary to AGHT,
the guess is successful when E ⊂ F but not when αE ⊂ F for an arbitrary
α ∈ F∗qm (as we only consider Fq-linear combinations of the ei’s).

Adaptation to ℓ-RSL . We modify this algorithm in the same way as what we
did for ℓ-RD. In the following, we restrict ourselves to the case when n1 = · · · =
nℓ = n, k = n, r = r1 = · · · = rℓ and N ≤ nr1. The condition on N implies that
we cannot hope to “kill” completely one of the ℓ blocks of the error by putting
zeroes. The complexity of this adaption is given below.

Complexity of our adapation on ℓ-RSL, where a =
⌊
N
r1

⌋
(when n1 = · · · = nℓ = n, k = n, r = r1 = · · · = rℓ and N ≤ nr1)

O
(
qr(m−⌊

m(nℓ−ℓ)−N−(ℓ−1)nr
n−a ⌋)+(ℓ−1)r(m−r)

)
.

Proof. The condition on N makes that we cannot attack a support which is
smaller than the common support E. Thus, we only care about fixing the maxi-
mum number of zeroes. Without loss of generality, we fix a =

⌊
N
r1

⌋
zeroes all in

the first block. By doing so, the error (0 | ẽ) we end up with is still blockwise and
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of the same support. We use the blockwise structure as in the AGHT adaptation.
The probability of a correct guess Ei ⊂ Fi for i ∈ {1..ℓ} is now

ℓ∏
i=1

q−ri(m−ti),

and we want

(n− a)t1 +

ℓ∑
i=2

nti ≤ m(nℓ− ℓ)−N. (4)

As the goal is to maximize the sum
ℓ∑

i=1

riti to maximize the probability that Ei ⊂

Fi for i ∈ {1..ℓ}, we take ti = r for i > 1, and thus t1 =
⌊
m(nℓ−ℓ)−N−(ℓ−1)nr

n−a

⌋
,

the highest value satisfying Equation 4. ⊓⊔

5.3 A structural attack against 2-LRPC codes

It is also possible to consider structural attacks, by exploiting a possible partic-
ular structure of the code to recover the secret key H. For example: in the case
of an 2-LRPC code.

Proposition 5. The complexity of recovering the structure of a 2-LRPC code
C of size (n, n) by the Shortening and Truncating attack is estimated as:

n2 · min
1≤t1≤n
1≤t2≤n

t1+⌊n/d1⌋≤u1≤n
t2+⌊n/d2⌋≤u2≤n

(
qr1t1 × T2−RD((n− u1, n), n− t1 − ⌊ n

d1
⌋, (r1, r2),m),

qr2t2 × T2−RD((n, n− u2), n− t2 − ⌊ n
d2

⌋, (r1, r2),m)
)
(5)

Proof. We explain using the attack described in [23] why we can reduce it to a
subcode of C with smaller parameters.

Let H ∈ Fn×2n
qm the parity check matrix of C. We can define the matrix as

H = (H1H2), where H1,H2 ∈ Fn×n
qm and H1 (resp. H2) has its coefficients

belong to the same subspace F1 (resp. F2, disjoint to F1) of dimension d1 (resp.
d2).

Let D the dual code of C, whose H = (H1H2) is a generator matrix. We denote
by (Hi)i∈{1,...,n} the rows of H, and we consider a word x ∈ D obtained from
linear combination in Fq: x =

∑n
i=1 aiHi, with ai ∈ Fq. Consider the block H2,

whose coefficients belong to F2. Since F2 has dimension d2, choose d2 variables
ai correctly allows to put to 0 a coordinate of x. Since there are n variables ai,
one can put to 0 with a good probability ⌊n/d2⌋ coefficients of x. Therefore,
the dual code C⊥ contains with a good probability a word x = (x1x2), whose
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the coefficients of x1 belongs to F1 and the ⌊n/d2⌋ first coordinates of x2 are
equal to zero (without loss of generality). Then, the attacker can perform the
Shortening and Truncating attack on D, knowing that the dimension of the code
has already been reduced. ⊓⊔

6 Algebraic attacks

The algebraic attacks of [31] on ℓ-RD are an adaptation of the known techniques
for RD [14–16] by taking advantage of the block structure. They do not exploit
the fact that the supports are pairwise disjoint. Since we introduce the ℓ-RSL
problem, we also adapt the algebraic attack of [13] in a similar way. In this
section, we will heavily rely on the fact that for a vector x ∈ Fn

qm and a basis
β ∈ Fqm for the extension field, there exists a unique matrix M(x) ∈ Fm×n

q such
that x = βM(x).

6.1 MaxMinors attack

As in the most recent combinatorial attacks, RD is reduced to the problem of
finding a weight r codeword in the code Cy

def
= C ⊕ ⟨y⟩Fqm

. The error vector
satisfies the equation

eHT
y = 0,

where Hy ∈ F(n−k−1)×n
qm is a systematic parity-check matrix for Cy. We then

express M(e) ∈ Fm×n
q as a product SC, where S ∈ Fm×r

q and C ∈ Fr×n
q are

the support and coefficient matrices respectively. Finally, the matrix SCHT
y ∈

Fr×(n−k−1)
qm is not full-rank because βSCHT

y = 0.

Modeling 1 (MaxMinors) Let Hy ∈ F(n−k−1)×n
qm be a systematic parity-check

matrix for Cy = C ⊕ ⟨y⟩Fqm
and let C ∈ Fr×n

q be the secret coefficient ma-
trix associated to e ∈ Fn

qm . The MaxMinors modeling is the system defined by
{PJ}J⊂{1..n−k−1}, #J=r, where

PJ
def
=
∣∣∣C(HT

y )∗,J

∣∣∣ .
By using the Cauchy-Binet formula, this system is known to be linear (over Fqm)

in the maximal minors cT
def
= |C|∗,T of C for T ⊂ {1..n}, #T = r. As these

minors are over Fq, the attack proceeds by solving a system projected over Fq

containing m
(
n−k−1

r

)
equations.

In order to solve ℓ-RD, [31] propose to fix certain variables in the MaxMinors
system. A previous attempt of the same type can be found in the RQC submis-
sion on non-homogeneous errors [1]. To attack an ℓ-RD instance of block size
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n
def
=
∑ℓ

i=1 ni and dimension k with r
def
=
∑ℓ

i=1 ri, the idea is to write the
coefficient matrix as

C =


C1

C2

. . .
Cℓ

 ∈ Fr×n
q , Ci ∈ Fri×ni

q . (6)

If we set n≤j
def
=
∑j

i=1 ni, we notice that the minor variables that are possibly

non-zero are such that Tj
def
= (T−n≤j−1)∩{1..nj} is of size rj for j ∈ {1..ℓ}. This

allows to consider
∏ℓ

i=1

(
ni

ri

)
unknowns instead of

(
n
r

)
. Moreover, such minors can

be seen as product of smaller ones, i.e.,

cT =
∏ℓ

i=1 ci,Ti , ci,Ti

def
= |Ci|∗,Ti . (7)

The question left open in [31] is the study of linear dependencies between the
MaxMinor equations by zeroing the rest of the variables. We attempted to study
such relations in the system over Fqm and a sketch of analysis is presented below.

As explained above, we restrict ourselves to the cT variables as in Equation (7)
such that the set Ti is of size ri for i ∈ {1..ℓ}. Such variables will be referred to
as admissible. For the sake of simplicity and to stick to our choice of parameters,
we will mostly consider the cases ℓ = 2 and ℓ = 3 with blocks of the same size,
i.e., ni = n for any i ∈ {1..ℓ}. We start by recalling the following result of [16]
on the shape of the PJ equations that is valid for a code of parameters [ℓn, n]Fqm

and an error of weight r, regardless of the error pattern.

Lemma 1 (Proposition 2 in [16]). For J ⊂ {1..(ℓ − 1)n − 1}, #J = r, we
have

PJ = cJ+n+1 +
∑

T−⊂{1..n+1},T+⊂(J+n+1)

T=T−∪T+, #T=r, T− ̸=∅

cT |Hy|J,T . (8)

We may adopt the same variable order as in [16]. It is defined by cT ≺ cT ′ for
ordered subsets T = {t1 < · · · < tr} and T ′ = {t′1 < · · · < t′r} if ti = t′i up to
some index i0 where t′i0 > ti0 . In this case, the variable cJ+n+1 corresponds to
the leading monomial of PJ . We will call a-admissible the admissible variables
cT such that n + 1 /∈ T and b-admissible those such that n + 1 ∈ T . For an
a-admissible variable cT to appear in PJ , Lemma 1 shows that we must have
Ti ⊂ J + n + 1 for i ≥ 2 but there is no constraint on T1. Similarly, for a b-
admissible variable cT to appear in the same equation we must have T2\{n+1} ⊂
J + n+ 1 and Ti ⊂ J + n+ 1 for i ∈ {3..ℓ}. If we set J2

def
= J ∩ {1..n− 1} and

Ji
def
= J ∩{(i−2)n..(i−1)n−1} for i ∈ {3..ℓ}, we can rewrite these conditions as

T2 − (n+1) ⊂ J2 and Ti − (n+1) ⊂ Ji for i ≥ 3 for an a-admissible variable cT
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and T2 \ {n+1}− (n+1) ⊂ J2 and Ti − (n+1) ⊂ Ji for i ≥ 3 for a b-admissible
variable cT . This implies that the monomial content of PJ after zeroing highly
depends on the size of the Ji’s. More precisely, the above discussion leads to

Lemma 2. For any subset J ⊂ {1..(ℓ− 1)n− 1} of size r =
∑ℓ

i=1 ri, let J2
def
=

J ∩ {1..n− 1} and let Ji
def
= J ∩ {(i− 2)n..(i− 1)n− 1} for i ∈ {3..ℓ}.

– If #J2 ≤ r2−2 or if #Ji ≤ ri−1 for some index i ∈ {3..ℓ}, the PJ equation
becomes zero after setting the non-admissible variables to zero.

– If #J2 = r2 − 1 and if #Ji ≥ ri for all i ∈ {3..ℓ}, the PJ equation only
contains b-admissible variables after this operation.

– If #J2 ≥ r2 and if #Ji ≥ ri for all i ∈ {3..ℓ}, the same equation contains
both a-admissible and b-admissible variables.

When ℓ = 2, the first case in Lemma 2 never occurs so there is no trivial loss
in the number of equations available after zeroing. However, the former leading
variable cJ+n+1 in PJ is always zeroed and several equations now have the
same leading monomial. For instance, as long as the associated minor of Hy
is non-zero, the variable c1,{n1−r1+1..n1}c2,T2

will be the greatest one in any PJ

equation such that the greatest r2 elements of the set J+n+1 correspond to T2.
In spite of this, we observed in our tests that all the equations remained linearly
independent, see Table 1 (we tested both systems over Fqm and over Fq). As
there are m times more equations, the experiments over Fq were more difficult
to conduct due to the memory limit.

m n r1 r2 MaxMinors Fqm MaxMinors Fq

10 10 2 2 LI LI
11 11 2 2 LI LI
12 12 2 2 LI segfault
11 11 3 2 LI segfault
14 14 3 2 LI segfault
16 16 3 2 LI segfault

Table 1: Experiments on MaxMinors systems over Fqm and over Fq for a code
of parameters [2n, n]Fqm

and blocks of size n. We write “LI” when the equations
appeared to be linearly independent.

When ℓ = 3, the number of linearly independent equations over Fqm is decreased
because there are subsets J of size r1 + r2 + r3 such that #J2 ≤ r2 − 2 or
#J3 ≤ r3 − 1. Lemma 2 in fact shows that it is bounded from above by

V3(n, r1, r2, r3)
def
=

r1+r2∑
j=r2−1

(
n− 1

j

)(
n

r1 + r2 + r3 − j

)
.
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From our experiments, it also seems bounded from below by

L3(n, r1, r2, r3)
def
=

r1+r2∑
j=r2

(
n− 1

j

)(
n

r1 + r2 + r3 − j

)
.

We can be a bit more precise. Among the
(
n−1
r2−1

)(
n

r1+r3+1

)
equations that only

contain b-admissible monomials, it seems that
(
n−1
r2−1

)(
n−1
r1+r3

)
of them are linearly

independent. Furthermore, on their own, the rest of the PJ equations such that
#J2 ≥ r2 seem to be linearly independent. We have

∑r1+r2
j=r2

(
n−1
j

)(
n

r1+r2+r3−j
)

of them, which gives an upper bound

U3(n, r1, r2, r3)
def
=

r1+r2∑
j=r2

(
n− 1

j

)(
n

r1 + r2 + r3 − j

)
+

(
n− 1

r2 − 1

)(
n− 1

r1 + r3

)
(9)

which is tighter than V3(n, r1, r2, r3). However, it is still not tight because there
are extra linear relations when we combine both groups of equations.

n r1 r2 r3 L3 expe U3

6 2 2 2 425 444 450
7 2 2 2 1540 1587 1622
8 2 2 2 4410 4480 4600
9 2 2 2 10752 10780 11760*

Table 2: Experimental number of linearly independent equations in the MaxMi-
nors system over Fqm for a code of parameters [3n, n]Fqm

and blocks of size n. We
do not give the value of m since it does not have any influence on this number.

We now move on to our estimates in the plain and in the hybrid setting. We have
not analyzed the hybrid setting in details. Thus, we assume that the specializa-
tion of [16, §4.3] does not induce extra linear relations (this is in accordance
with [15, §5] in the random case and with [18, Corollary 1] in the RQC case).

Message attack. Estimate 1 is based upon the assumption that the equations
remain linearly independent when ℓ = 2, which is what we observed in our tests.
We set N2(n, r1, r2)

def
=
(

n−1
r1+r2

)
.

Estimate 1 (2 blocks) We expect to solve a 2-RD instance of parameters (m, n1 =
n, n2 = n, k = n, (r1, r2)) by Gaussian elimination on the MaxMinors system
whenever

mN2(n, r1, r2) ≥
(
n
r1

)(
n
r2

)
− 1, (10)
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with cost O
(
mN2(n, r1, r2)

(
n
r1

)ω−1(n
r2

)ω−1)
, 2 ≤ ω ≤ 3. When Equation (10)

does not hold, we estimate the cost of the hybrid approach of by

O

min (a1,a2)

mN2(n,r1,r2)≥(n−a1
r1

)(n−a2
r2

)−1

(
qa1r1+a2r2mN2(n, r1, r2)

(
n−a1

r1

)ω−1(n−a2

r2

)ω−1) .

When ℓ = 3, we take mN3(n, r1, r2, r3)
def
= mU3(n, r1, r2, r3), where the value

U3(n, r1, r2, r3) defined in Equation (9) is a non-tight upper bound on the number
of linearly independent equations over Fqm and where the m factor assumes that
the equations projected over Fq remain linearly independent. On our parameters,
this value is still quite close to the maximum number of equations m

(
2n−1
r1+r2

)
.

Estimate 2 (3 blocks) We expect to solve a 3-RD instance of parameters (m, n1 =
n, n2 = n, n3 = n, k = n, (r1, r2, r3)) by Gaussian elimination on the MaxMi-
nors system whenever

mN3(n, r1, r2, r3) ≥
(
n
r1

)(
n
r2

)(
n
r3

)
− 1, (11)

with cost O
(
mN3(n, r1, r2, r3)

(
n
r1

)ω−1(n
r2

)ω−1(n
r3

)ω−1)
, 2 ≤ ω ≤ 3. When Equa-

tion (11) does not hold, we estimate the cost of the hybrid approach of by

O

min (a1,a2,a3)

mN3(n,r1,r2,r3)≥(n−a1
r1

)(n−a2
r2

)(n−a3
r3

)−1

(
qa1r1+a2r2+a3r3mN3(n, r1, r2, r3)

(
n−a1

r1

)ω−1(n−a2

r2

)ω−1(n−a3

r3

)ω−1) .

Structural attack. In this case, we have more freedom to fix coordinates to
zero in the error vector. We reduce to a problem with a unique solution with
probability 1 and we then proceed as before. On an instance with parameters
(m, n1 = n, n2 = n, k = n, (d1, d2)), we can freely

– fix b1 on the left and then the rest b2 =
⌊
n1+n2−k−r1b1

r2

⌋
on the right;

– fix b2 zeroes on the right first and then b1 =
⌊
n1+n2−k−r2b2

r1

⌋
on the left.

By doing so, we expect to attack a new instance with block size n1 = n −
b1, n2 = n − b2 and with dimension n − b1 − b2. The codimension remains
(2n− b1 − b2)− (n− b1 − b2) = n.

Estimate 3 The complexity of this attack is O(m×min(A,B)), where

A = min0≤b1≤⌊n/d1⌋
b2=

⌊
n−r1b1

d2

⌋
min (a1,a2)

mN2(n,d1,d2)≥(n−b1−a1
d1

)(n−b2−a2
d2

)−1
qa1d1+a2d2N2(n, d1, d2)

(
n−b1−a1

d1

)ω−1(n−b2−a2

d2

)ω−1 ,

B = min0≤b2≤⌊n/d2⌋
b1=

⌊
n−d2b2

d1

⌋
min (a1,a2)

mN2(n,d1,d2)≥(n−b1−a1
d1

)(n−b2−a2
d2

)−1
qa1d1+a2d2N2(n, d1, d2)

(
n−b1−a1

d1

)ω−1(n−b2−a2

d2

)ω−1 .
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6.2 Attack based on Support-Minors

The Support-Minors system was introduced in [16] as a new modeling for the
MinRank problem but its analysis in the context of RD was inaccurate. This
was corrected in [15] where they propose the SM-F+

qm attack. When MaxMinors
projected over Fq cannot be solved by direct linearization, it consists in adding
the following equations:

Modeling 2 (Support-Minors for RD) Let G ∈ Fk×n
qm be a systematic gen-

erator matrix of C and let C ∈ Fr×n
q be the secret coefficient matrix associated to

e ∈ Fn
qm . The Support-Minors modeling is the system containing the equations

{QI}I⊂{1..n}, #I=r+1, where

QI
def
=

∣∣∣∣∣
(
xG+ y

C

)
∗,I

∣∣∣∣∣ .
This is a bilinear system in cT ∈ Fq and xj ∈ Fqm for j ∈ {1..k}.

On some RD instances, it can lead to better complexities than the hybrid MaxMi-
nors attack. In the random case, it is shown in [15] that some Support-Minors
equations are redundant with the MaxMinors modeling and that we can restrict
ourselves to the subsets I such that I ∩ {1..k + 1} is of size ≥ 2. The QI equa-
tions corresponding to these subsets are linearly independent and [15, Propo-
sition 2] states that the leading monomial of QI with respect to ≺ is equal to
xmin(I)cI\{min(I)} (the quantity xmin(I) is well defined since min(I) ≤ k for such
subsets).

However, we observe that Support-Minors is much sparser than MaxMinors.
In particular, a lot more relations are to be expected when we apply it to ℓ-
RD. By Laplace expansion along the first row, the cT variables present in QI are
included in the set

{
cI\{i}, i ∈ I

}
. Now, a cI\{i} that remains after specialization

is necessarily as in Equation (7). In other words, this means that (I\{i}−n≤j−1)∩
{1..nj} is of size rj for all j. It imposes that (I − n≤j−1) ∩ {1..nj} is of size rj
except for one j where it is of size rj + 1. Conversely, for such an I and j0 for
which (I − n≤j0−1) ∩ {1..nj0} is of size rj0 + 1 and the rest of the intersections
are of size rj , the cT present are of the form cI\{i}, i ∈ I ∩ {n≤j0−1 + 1..n≤j0}.

For ℓ = 2 and ℓ = 3 with blocks of the same size n, the number of lin-
early independent equations is bounded from above by

(
n

r1+1

)(
n
r2

)
+
(
n
r1

)(
n

r2+1

)
and

(
n

r1+1

)(
n
r2

)(
n
r3

)
+
(
n
r1

)(
n

r2+1

)(
n
r3

)
+
(
n
r1

)(
n
r2

)(
n

r3+1

)
instead of

(
2n

r1+r2+1

)
and(

3n
r1+r2+r3+1

)
respectively. Furthermore, for a code of parameters [ℓn, n]Fqm

, the
QI equations that keep the same leading term after restriction to the admissi-
ble cT variables correspond to the subsets I such that #(I ∩ {1..n}) = r1 + 1.
Otherwise, the largest admissible cT variable present in QI is cI\{j}, where j is
the minimum of the unique set I ∩ {(i− 1)n+ 1..in}, i ∈ {1..ℓ} which is of size
ri + 1 (this is indeed cI\{min(I)} if #(I ∩ {1..n}) = r1 + 1). However, deriving
the precise number of linearly independent equations seems more difficult and a
fortiori the rank of the full SM-F+

qm modeling.
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For this reason and as the progress over MaxMinors in the random case was
often only by a few bits, we adopt Estimate 4:

Estimate 4 We do not take into account SM-F+
qm to derive our parameters.

6.3 Algebraic attack on ℓ-RSL

We start by describing the approach of [13] on a plain RSL instance. As in the
above combinatorial attack, it targets a specific vector e ∈ Fn

qm which is a linear
combination over Fq between the N errors e(i), i ∈ {1..N}. By keeping the same
notation as in the RD case, we may write

eHT =

(
N∑
i=1

λie(i)
)

HT =

(
N∑
i=1

λiβSC(i)

)
HT = βSCHT, (12)

where S ∈ Fm×r
q is the support matrix common to all the errors, where C(i) ∈

Fr×n
q is the coefficient matrix of ei and where C def

=
∑N

i=1 λiC(i). In order to
solve a problem with a unique solution, [13] targets a vector e such that the
matrix C is of rank < r and/or contains zero columns (corresponding to zeroes
in e). To be consistent with what was presented in the combinatorial attack,
we will restrict ourselves to looking for a full-rank matrix C which contains as
many zero columns as possible to belong to the space generated by the Ci’s, i.e.,
a = ⌊N

r ⌋. In other words, we will consider C def
=
(
0a×r C̃

)
, where C̃Fr×(n−a)

q is

of full-rank. Note that CHT = C̃H̃
T
, where H̃ def

= H∗,[a+1,n]. For i ∈ {1..N}, let
s(i) ∈ Fn−k

qm be the syndrome associated to e(i). By Equation (12), the syndrome
eHT =

∑N
i=1 λis(i) is a linear combination over Fqm between the rows of CHT.

Thus, the matrix

∆
def
=

(∑N
i=1 λis(i)

C̃H̃
T

)
∈ F(r+1)×(n−k)

qm

is of rank at most r.

Modeling 3 (RSL-Minors) Let a = ⌊N
r ⌋, let C̃ ∈ Fr×(n−a)

q be the coefficient

matrix associated to the secret ẽ in the target vector e = (0 | ẽ) and let H̃ def
=

H∗,[a+1,n]. The RSL-Minors modeling is the defined by {∆J}J⊂{1..n−k}, #J=r+1,
where

∆J
def
= |∆∗,J | =

∣∣∣∣∣∣
(∑N

i=1 λis(i)

C̃H̃
T

)
∗,J

∣∣∣∣∣∣ .
Using the Cauchy-Binet formula, this system can be seen as bilinear in the λi

variables and the maximal minors of C̃ (that we still denote by cT ).
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Once again, as the equations have coefficients in Fqm and as the variables are
searched in Fq, [13] solves a system projected over Fq containing m

(
n−k
r+1

)
equa-

tions.

In the ℓ-RSL case, all the coefficient matrices C(i) are block diagonal as in Equa-
tion (6). This property is preserved by linear combination, which means that we
can use the same specialization as in the ℓ-RD case. The adaptation of the above
would then be to target a matrix C such that the j-th diagonal block Cj contains
aj zero columns, for j ∈ {1..ℓ}, under the constraint

∑ℓ
j=1 ajrj ≤ N . Assuming

that the number of linearly independent equations remains the same in all cases,
we would like to minimize the number of non-zero cT variables

∏ℓ
i=1

(
ni−ai

ri

)
.

Note that there is no formula for this minimum in the general case and that
some particular ways of fixing zero columns might create algebraic relations.

For the parameter we consider (see the Section 8), the number of given syndromes
is very low, and far from being big enough, so that the attacks based on the ℓ-
RSL problem impacts the security. In practice, for the parameters we consider,
the best attacks are the attacks against ℓ-RSD problem.

7 Application to cryptanalysis

In this section, we apply the above attacks on the parameters given by [31] for
their improvement of Lake (ROLLO-I), based on 2-LRPC codes. There are two
types of attacks to consider for the security of their parameters, the structural
attacks targeting weights (d1, d2) and the message attacks targeting weights
(r1, r2). In our case we propose two new structural attacks to recover the secret
key of the system.

A first attack (attack1) corresponds to the attack against 2-LRPC codes ex-
plained in Section 5.3. The idea of the attack is to shorten as much as possible
the block corresponding to the higher di, then shorten on these n

di
positions and

then truncate the block corresponding to di, then one gets an homogeneous er-
ror that we can attack with algebraic attacks for homogeneous errors. It is also
possible to increase the number of terms shortened by guessing zero positions
on the di part at a cost of 2di per new zero coordinate. In practice the best
results are obtained when guessing sufficiently many more zeros coordinates the
part corresponding to the case where the MaxMinor attack is the most efficient,
in that case we estimated the polynomial part at the cost of n2 as it is usually
the case for attacks and parameters and also we consider w = 2.8 the Strassen
exponent.

A second attack consists in having the same Shortening and Truncating ap-
proach but rather than truncating, we just attack directly the code with alge-
braic attacks for blockwise errors described in [31], notice that at the difference
of Attack1, it is more efficient to shorten on the smallest ri, which permits to
better decrease the dimension of the code.
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The table in Figure 7 gathers the complexities of our cryptanalyzes of parameters
on Lake, given by [31], and their claimed security.

n m (d1, d2) (r1, r2) Security Claimed M.A.S. Claimed S.A.S. Attack 1 Attack 2

67 61 (5,4) (4,4) 128 145 160 132 116

79 71 (5,5) (5,5) 192 225 255 181 166

89 79 (6,5) (5,5) 256 281 266 246 224

Fig. 7: Security of parameters on Lake given by [31]. We refers as M.A.S. (resp.
S.A.S.) for Message (resp. Structural) Attack Security.

Our new attack is very efficient againt LAKE parameters given in [31], outper-
forming by 44 bits the security for structural attacks for the 128 bits NIST type
parameters.

8 Parameters

We discuss here on the security and parameters of our two new schemes. For
all our protocols, the parameters we propose are compliant with NIST security
levels 1 and 3 of 143 and 207 classical bit security. Two sets of parameters are
proposed for each of the schemes: the first designed to resist attacks with ω = 2.8
as the Strassen constant (value with which common attacks are considered), the
second (still compliant with the NIST security definition of Level 1 and Level 3)
corresponds to a higher security constraint with ω = 2, for which no practical
attack is known for the moment.

To have available both several syndromes and blockwise errors allows to achieve
excellent sizes: the first idea allows to obtain more coordinates to guess the
support error, and the second gives syndromes relying to smaller spaces, which
makes decoding easier.

8.1 Parameters of ILRPC-Block-MS

The security of the scheme relies on the hardness to solve the instance of a 2-
IRSL problem on a code [2n2, n2]qm with parity check matrix:

(
1 h
)
, where n1

syndromes with the same block support of size (n2, n2) and dimension (r1, r2)
are given in input. However, the attacks against 2-IRSL are not the best because
the number of syndromes given is too small within the parameters we propose.
One refers to this attack as Attack 1. One must also consider the structural
attack against LRPC (Attack 2).

Parameters and resulting sizes are presented in Figure 8 for ω = 2.8, and in
Figure 9 for ω = 2. Since the ideal parity check matrix is completely determined

33



by the polynomial h, its size is reduced to
⌊
n2m
8

⌋
bytes. The c is made of n1

polynomials of degree n2 whose coefficients belong to Fqm , so its size is
⌊
n1n2m

8

⌋
bytes. The parameters we obtain compare very well with previous results: 3.8
kB for 128 bits security in [31] and 2.4 kB for the multiple syndromes approach
[3]. Indeed as explained in the introductory section, the blockwise approach is
essentially interesting for RQC and less for LRPC, since blockwise small weight
errors are more vulnerable to the Shortening and Truncating approach of Section
5, indeed the smallest the di the greater the zeros set for shortening. Overall
the approach becomes more interesting when one considers the XMS approach
(originally described in [3]) that uses an extended decoding algorithm for LRPC,
decoding algorithm that we generalize in Section 3 to the case of blockwise rank
errors.

Scheme m n2 (d1, d2) (r1, r2) n1 DFR Att. 1 Att. 2 pk+ ct (kB)
ILRPC-Block-xMS-128 (r + 3) 59 84 (5,5) (4,4) 2 -128 154 176 1.86
ILRPC-Block-xMS-128 (r + 5) 53 84 (5,5) (4,4) 2 -128 162 185 1.67
ILRPC-Block-xMS-192 (r + 2) 83 83 (6,5) (5,5) 3 -192 242 204 3.45
ILRPC-Block-xMS-192 (r + 3) 83 79 (6,5) (5,5) 3 -194 235 202 3.28

Fig. 8: Comparaison of parameters of ILRPC schemes, security for ω = 2.8

Scheme m n2 (d1, d2) (r1, r2) n1 DFR Att. 1 Att. 2 pk+ ct (kB)
ILRPC-Block-xMS-128 (r + 4) 61 95 (5,5) (5,4) 2 -145 179 147 2.17
ILRPC-Block-xMS-128 (r + 6) 59 89 (5,5) (5,4) 2 -133 177 145 1.97
ILRPC-Block-xMS-192 (r + 2) 89 84 (6,6) (5,5) 3 -192 204 213 3.74
ILRPC-Block-xMS-192 (r + 3) 83 85 (6,6) (5,5) 3 -195 209 213 3.53

Fig. 9: Parameters for ILRPC schemes with ω = 2

8.2 Parameters of RQC-Block-MS-AG scheme

The attacks 1 and 2 relies on the algebraic attack which consists on solving the
2-IRSD (on the [2n2, n2]qm ideal code with parity check matrix

(
1 h
)
) and 3-IRSL

problem (on the [3n2, n2]qm ideal code whose
(
1 0 h
0 1 s

)
is a parity check matrix).

The attack 3 is the Shortening and Truncating attack on the 2-IRSD instance.
Note that there is currently no attack that takes advantage of the ideal structure
of the parity check matrix, this is why these instances are considered as difficult
to solve as 2-RSD and 3-RSL instances.

The decoding algorithm takes as input n2 vectors having the same errors support,
that is to say it has n1n2 available coordinates to compute the support. We use a
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public Augmented Gabidulin code of length n1n2 and dimension k, constructed
from a vector g of size m. Let ε the number of erasure coordinates one uses
to recover the support error. The values above must be chosen such that the
decoding capacity of the code thus obtained: δ =

⌊
m−k+ε

2

⌋
, must be greater

than or equal to the weight of the error which is rxr1 + ryr2 + re. On the other
hand, the resulting decryption failure rate (see Proposition 1) must be remain
low.

The resulting parameters for 128 and 192 bits of security are presented in Figure
10, and in Figure 11 for the optimized version in which 1 belongs to the support
of R2. The sizes are computing according to the following formulas: |pk| =⌈
n2m
8

⌉
+ 2λ

8 and |ct| =
⌈
2n1n2m

8

⌉
. Since g and h are uniformly sampled from their

respective spaces, they can be represented as seeds of size λ bits. The ciphertext
ct contains two matrices lying in Fn2×n1

qm . The decrease in size of public key and
ciphertext over time is a direct consequence of the decrease in the size of the
parameters.

Scheme m n2 q k ε r1 r2 rx ry re n1 Att. 1 Att. 2 Att. 3 DFR pk+ ct (kB)
RQC-Block-MS-AG-128 43 52 2 3 32 4 4 4 4 4 2 145 153 154 -145 1.43
RQC-Block-MS-AG-192 67 70 2 3 45 5 5 5 5 6 2 232 207 234 -196 2.98

Fig. 10: Parameters for RQC-Block-MS-AG, ω = 2.8

Scheme m n2 q k ε r1 r2 rx ry re n1 Att. 1 Att. 2 Att. 3 DFR pk+ ct (kB)
RQC-Block-MS-AG-128 43 52 2 3 32 4 4 4 4 4 2 145 153 154 -168 1.43
RQC-Block-MS-AG-192 71 64 2 3 46 5 5 5 5 7 2 219 214 228 -202 2.89

Fig. 11: Parameters for RQC-Block-MS-AG, ω = 2.8, 1 ∈ Supp R2

Note that a limitation for 128 bits of security comes from the attack on the
2-IRSD instance, this is why the optimization gives no advantage. Conversely, it
benefits to the parameters for 192 bits of security.

For fair comparison with the standard RQC protocol, we also provide parameters
with an only syndrome allowing a better understanding of the benefit of taking
block errors (see Figure 12 and Figure 13).

We also present the parameters of previous versions of RQC in Figure 14. We
observe that the different developments have made it possible to consider in-
creasingly smaller parameters, particularly due to the weight of the error in the
message to decode which decreases for the same security.
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Scheme m n2 q k ε r1 r2 rx ry re Att. 1 Att. 2 DFR pk+ ct (kB)
RQC-Block-AG-128 47 89 2 3 28 4 4 4 4 4 172 178 -133 1.60
RQC-Block-AG-192 61 124 2 3 42 4 5 5 5 5 246 233 -196 2.88

Fig. 12: Parameters for RQC-Block-AG, ω = 2.8

Scheme m n2 q k ε r1 r2 rx ry re Att. 1 Att. 2 DFR pk+ ct (kB)
RQC-Block-AG-128 47 85 2 3 28 4 4 4 4 4 170 176 -133 1.53
RQC-Block-AG-192 61 119 2 3 42 4 5 5 5 5 241 230 -196 2.77

Fig. 13: Parameters for RQC-Block-AG, ω = 2.8, 1 ∈ Supp R2

Likewise for the ILRPC scheme, one also proposes parameters which achieve
128 and 192 bits of security against attacks with ω = 2. The new resulting
parameters can be found in Figure 15.

8.3 Comparison with other schemes

For comparison, we compare our sizes with those of other encryption schemes,
see Figure 16. We can see that our scheme has very competitive performances
for 128 bits of security,by getting slightly smaller sizes than the lattice-based
scheme KYBER.

Scheme 128 bits 192 bits
RQC-Block-MS-AG (this paper, Figure 14) 1.43 2.89

RQC-Block-AG (this paper, Figure 14) 1.53 2.77
ILRPC-Block-MS (this paper, Figure 8) 1.67 3.28

KYBER [12] 1.56 2.26
BIKE [6] 3.11 6.20
RQC [1] 5.48 8.54

LowMS [9] 5.76 14.97
HQC [2] 6.73 13.56

Classic McEliece [5] 261.2 624.3

Fig. 16: Comparaison of different schemes, the sizes represent the sum of the key
and the ciphertext, expressed in kB

9 Conclusion

We showed in this paper that combine the blockwise errors and multiple syn-
dromes approach allowed to reach small parameters than the previous versions of
the RQC and LRPC schemes. We also propose to decrease the decoding failure
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Scheme m n2 q k ε rx ry r1 r2 re n1 DFR pk+ ct (kB)
RQC-Block-MS-AG-128 (this paper) 43 52 2 3 32 4 4 4 4 4 2 -145 1.43

RQC-Block-AG-128 (this paper) 47 85 2 3 28 4 4 4 4 4 1 -133 1.43
RQC-Block-128 [31] 83 79 2 7 - 4 4 4 4 4 1 - 2.56

RQC-NH-MS-AG-128 [18] 61 50 2 3 51 7 7 7 5 12 3 -158 2.7
RQC-128 [1] 127 113 2 3 - 7 7 7 7 13 1 - 5.48

RQC-Block-MS-AG-192 (this paper) 67 68 2 3 45 5 5 5 5 6 2 -196 2.89
RQC-Block-AG-192 (this paper) 61 119 2 3 42 4 5 5 5 5 1 -196 2.77

RQC-Block-192 127 113 2 3 - 5 5 5 5 5 1 - 5.48
RQC-NH-MS-AG-192 79 95 2 5 65 8 8 8 5 13 2 -238 4.7

RQC-192 151 149 2 5 - 8 8 8 8 16 1 - 8.54

Fig. 14: Comparaison of parameters of different RQC schemes, ω = 2.8

Scheme m n2 q k ε rx ry r1 r2 re n1 Att. 1 Att. 2 Att. 3 DFR pk+ ct (kB)
RQC-Block-MS-AG-128 59 61 2 3 42 5 4 5 4 9 2 147 151 170 -138 2.28
RQC-Block-MS-AG-192 67 81 2 3 56 5 5 5 5 10 2 213 208 250 -195 3.42

Fig. 15: Parameters for RQC-Block-MS-AG schemes, ω = 2

rate of the Augmented Gabidulin code G that we use in our RQC-Block-MS-AG
scheme (see Figure 4): the error to decode being x · R2 − y · R1 + E, one can
impose 1 to be in the support of R2 without diminishing the practical security
of the scheme. By doing this, we make sure that the support of x is included in
the support of the error to decode. Consequently, we can deduce a subspace of
the support of the error of dimension rx, hence to reduce the parameters of the
scheme: we reach 1.31kB for the sum of the public key and ciphertext.
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