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ABSTRACT
AI-as-a-Service has emerged as an important trend for supporting
the growth of the digital economy. Digital service providers make
use of their vast amount of user data to train AI models (such as
image recognitions, financial modelling and pandemic modelling
etc) and offer them as a service on the cloud. While there are con-
vincing advantages for using such third-party models, the fact that
users need to upload their data to the cloud is bound to raise serious
privacy concerns, especially in the face of increasingly stringent
privacy regulations and legislations.

To promote the adoption of AI-as-a-Service while addressing
the privacy issues, we propose a practical approach for construct-
ing privacy-enhanced neural networks by designing an efficient
implementation of fully homomorphic encryption. With this ap-
proach, an existing neural network can be converted to process
FHE-encrypted data and produce encrypted output which are only
accessible by themodel users, andmore importantly, within an oper-
ationally acceptable time (e.g. within 1 second for facial recognition
in typical border control systems). Experimental results show that
in many practical tasks such as facial recognition, text classification
and so on, we obtained the state-of-the-art inference accuracy in
less than one second on a 16 cores CPU.
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1 INTRODUCTION
AI-as-a-Service (AIaaS) has been experiencing rapid development
because of strong demand in sharing of sophisticated and powerful
AI models, which require not only technological advancement but
also availability of vast amount of data resources. For digital service
providers, it allows them to put their trained AI models on the
cloud and offer the inference as a service, instead of disclosing their
models to users. For users, with such cloud service, they just upload
their inputs and get the inference results, instead of training the
computationally expensive AI models in-house.

However, during AIaaS, cloud servers can access users’ raw
data, which may introduce privacy risks. Either users’ input or
the prediction result may contain privacy information, such as
healthcare records and financial data. A cloud service that offers

privacy-enhanced inference of AI models is needed, so that users
can enjoy the service without disclosing their data to the cloud.

AI models, such as deep neural networks (DNNs), apply a se-
quence of evaluations on the input data and model parameters to ob-
tain a prediction output. Fully Homomorphic encryption (FHE) is an
useful tool in privacy-enhanced neural networks (PE-NN). HE pro-
vides a way to encrypt data while supporting computations through
the encryption envelope[3]. Recent works[2, 3, 6, 9, 16, 21, 27] imple-
ment privacy-enhanced neural network inferences over encrypted
data by applying FHE. The flow is shown in Figure 1.

Figure 1: basic FHE-based privacy-enhanced neural network
model (basic FHE-PE-NN)

In FHE-based PE-NN inferences, the user encrypts its sensitive
data before sending it to the server. The server homomorphically
evaluates the neural network over encrypted data and produces an
encrypted inference output, then it returns the ciphertext to the user.
The user who has the private key can decrypt the encrypted result.
The server does not have the private key so it cannot decrypt neither
the input nor the output. In this model, users can enjoy AI services
on the cloud without disclosing their data, and AI service providers
also do not disclose the trained AI models to users. However, high
inference latency and low accuracy restrict existing works to be
applied in real world AI services.

Inference latency. High inference latency is an obstacle to apply
FHE-based PE-NN in DNNs. Existing works usually take quite long
time per inference in simple and shallow networks. CryptoNets[16]
takes over 200 seconds per inference on encrypted image from
MNIST[20]. Faster CryptoNets improved the result. It takes around
40 seconds and 20000 seconds per inference on encrypted image
from dataset MNIST and encrypted image from dataset CIFAR-
10[19] respectively. Recently, SHE[21] further improved the latency
and achieves around 10 seconds and 2000 seconds per inference on
MNIST and CIFAR-10 respectively.



MNIST and CIFAR-10 are most commonly used datasets in exist-
ing works for benchmarks, which are simple and well studied. But
in real-world applications, we usually anticipate neural network
can solve more complex problems such as facial recognition and
text classification. For such tasks, only SHE[21] mentioned that it
use architectures of AlexNet, ResNet-18 and Shuffle Net for infer-
ences on ImageNet and the result is 5 hours per inference with an
accuracy of 69.4%.

To solve this problem, we analyze the architectures of various
FHE schemes and find that there is not a ’perfect’ FHE scheme
which performs good in all homomorphic evaluations in neural
networks. Evaluation of neural networks on encrypted data involves
both arithmetic operations such as weighted sum and convolutions,
evaluation of non-linear activations and bootstrapping after each
neuron to enable further computations.

In practice, there are two main kinds of FHE schemes which are
applied in FHE-based PE-NN. The word-wise CKKS/BGV schemes[4,
7] (adopted in many works such as CryptoNets[16]) are good at
arithmetic operations but the bootstrapping and non-linear activa-
tion evaluations are significantly slow. The bit-wise FHEW/TFHE
schemes[8, 13] provides a very efficient bootstrapping operation,
but the arithmetic operations have to be computed gate by gate.
Neither word-wise schemes nor bit-wise schemes is good at all
evaluations of neural networks.

An optimized FHE scheme which combines the advantages of
CKKS and TFHE schemes will help to reduce the inference latency.

Accuracy. The poor performance of homomorphic evaluations of
activations causes the low accuracy. DiNN[3] and CryptoNets[16]
only support sign function and square function as the activation
function separately, where both of them are not commonly used in
machine learning area. n-GraphHE[2], Lola[6] and Faster CryptoNets[9]
have to use the low-degree polynomial approximation activations
and thus fail to obtain the state-of-the-art inference accuracy. For
example, Faster CryptoNet achieves 76.72% inference accuracy on
CIFAR-10 dataset, while in an unencrypted network with ReLU
activations, it is 93.72%.

The bottleneck to improve the accuracy is homomorphical eval-
uation of non-linear activations. ReLU and Sigmoid are widely used
in modern neural networks. However, existing works in FHE-based
PE-NN usually use sign function, square function, or low degree
polynomials to approximate activations. Although it is possible to
improve the inference accuracy of FHE-based PE-NN by enlarging
the degree of polynomial approximation activations, the computing
overhead increases exponentially with the degree and thus the time
taken becomes unacceptable.

Efficient algorithms which can evaluate the activations in mod-
ern networks accurately over encrypted data are urgently needed.

In addition to the optimizations in FHE schemes, we review the
structure of DNNs. DNNs, whichmay consists of hundreds of layers,
are considered to be computationally expensive. To provide a DNN
service, AI model owners usually start with pre-trained feature
extractors and fine-tune them to solve users’ task. Model owners are
usually not willing to share the parameters they trained with users.
However, if the whole DNN is evaluated on encrypted data in the AI
model owner’s server, then it is obvious that it will be too slow to be
acceptable. The main reason is that homomorphically evaluation on

encrypted data is much slower than the evaluation in plaintext, i.e.,
the more homomorphic evaluations on encrypted data, the slower
it is. For FHE-based DNN evaluations, new structure and models,
which can reduce the number of homomorphic computations and
meanwhile protect the privacy of both users and AI model owners,
are needed to improve the performance.

1.1 Our Results
Towards practical FHE-based PE-NN constructions, we propose a
practical approach for constructing privacy-enhanced neural net-
works by designing an efficient implementation of fully homomor-
phic encryption.

We first propose a optimized fully homomorphic encryption
scheme together with an efficient design for non-linear activation
evaluation. We show that our FHE scheme achieves better results in
both inference accuracy and time in the benchmark MNIST dataset.

Then we propose a new model which splits a deep neural net-
work into a plaintext evaluation part and a ciphertext evaluation
part. We deploy some pre-trained feature extraction layers to user’s
side and evaluate it in clear. The fine-tuned layers are retained at
model owner’s server and the input to the server is encrypted. In
this way, we reduce the number of expensive homomorphic evalu-
ations without disclosing either users’ data and model providers’
trained parameters. We call this model Hybrid FHE-based privacy-
enhanced neural network (Hybrid FHE-based PE-NN).

As a result, we can perform facial recognition under one second,
where it requires more than a day for basic FHE-based PE-NN
model. We also show that our hybrid model can be used to solve
practical tasks such as voice recognition, text classification and
object classification. To the best of our knowledge, this is the first
work to solve real-world problems by applying FHE-based PE-NN.

Optimized FHE scheme. Our optimized FHE scheme enables us
the ability to perform weighted sums and convolutions on the ap-
proximate LWE-based additive homomorphic encryption schemes,
and to evaluate non-linear activations on FHEW ciphertexts. There-
fore, the evaluations of both linear and non-linear functions are
very fast. Then the noise will be reduced during the evaluation
of non-linear activations by applying homomorphic look-up table
algorithm (LUT)[26].

We also observed the fact that the neural network is good at
noise tolerating, i.e., the neural networks are usually not sensitive
to the noise in less significant bits of input. This observation help
us to reduce the size of encryption parameters and thus improves
the efficiency while keeping high inference accuracy. It is achieved
by: 1) On receiving of an input, we discard the less significant bits
before encrypting; 2) In the beginning of LUT algorithm, we also
discard the less significant bits of the LWE ciphertext.

In summary, our optimized FHE scheme has the following prop-
erties: 1) It can be applied to neural networks of arbitrary depth. 2)
It supports many kinds of widely used activations, such as ReLU
and Sigmoid. 3) When applied to inference of privacy-enhanced
neural networks, it is fast and accurate.

Efficient design for non-linear activation evaluation. We further
improve the evaluations of non-linear activations to speed up our
system. Typically, a general method used to evaluate non-linear



activations is homomorphic look-up-table algorithm (LUT)[3, 22,
26]. The core idea of LUT is to encode the “Table” containing the
value of the non-linear activation into a polynomial, so that we can
use ciphertext to locate the position of the desired output. In this
work, we focus on improving the LUT algorithm. As a result, our
improved system only takes 0.14s per inference on MNIST dataset,
while 0.42s is needed without improvements.

We summarize our improvements as follows:
1) RNS polynomial multiplication.We use number theoretic trans-

form (NTT) multiplication to speed up the multiplication. As a brief
introduction, one NTT multiplication includes: 1) (NTT) turn two
polynomials into two vectors (We call it residue numeral system
(RNS) form); 2) (Position-wise multiplication) Perform position-
wise multiplication between two vectors; 3) (Inverse-NTT (INTT) )
turn the resulted vector into a polynomial. Lastly, we reduce the
number of NTT and INTT to a third of before.

2) Modulo function. We design different modulo functions for
different operations. We also reduce the number of modulo function
by half compared to the previous method.

Hybrid FHE-based PE-NN model. The applications of basic FHE-
based PE-NN is restricted by the fact that evaluation an entire
DNN on encrypted data is too inefficient. In order to reduce the
inference latency, we develop the idea that divide the network into
two parts: an open network and a private network. We call it Hybrid
FHE-based privacy-enhanced neural network model.

In this model, we make use of edge computing in a different
purpose. The open network is distributed in the users’ side and the
private network is remained in the cloud server. The user first runs
the open network in plaintext locally, then the results are encrypted
and being sent to the server. The server evaluates the private net-
work on encrypted input and returns a prediction output which is
also encrypted. Only the user who has the secret key can decrypt
the output and see the result. By replacing some computationally
expensive ciphertext evaluations in the server side with low-cost
plaintext computations in the user side, our model significantly
reduce the inference latency.

The open network is made up of general feature extracting layers
such as convolutional layers. Usually, it is chosen from well-known
open-source networks such as FaceNet[31] (for facial recognition),
TextCNN[17] (for text classification) and InceptionV3[33] (for ob-
ject classification). The private model consists of some lower layers
which is highly related to the dataset and the task. The private
model is trained by the AI model owner. The training method and
trained parameters are often considered as critical intellectual prop-
erty by AI model owner, who are typically not willing to share them.
Notice that when we set the whole network as private network, our
model is exactly same as basic FHE-PE-NN model, so our model
can be viewed as a generalization of basic FHE-PE-NN model.

As a future work, we will further improve our proposed tech-
niques, and apply them in the area of privacy-enhancing machine
learning to train AI models using encrypted data efficiently.

1.2 Overview of the paper
In section 2, we introduce backgrounds of our work. In section
3, we propose our optimized FHE scheme and propose a protocol
for its application on PE-NN. Followed by section 4, where we

further optimize our FHE scheme, and focus on improving the eval-
uation of non-linear activations. Next up in section 5, we propose
a hybrid PE-NN model so that homomorphically evaluating deep
complex neural networks becomes practical. Finally in section 6
we report the performance of our system and show our evaluation
results of different PE-NN such as hand-writing digits recognition,
facial recognition, voice recognition, text classification and object
classification.

2 PRELIMINARIES
2.1 Notations
We denote all real numbers by R. We denote all integers by Z. For a
positive integer 𝑞, we use Z𝑞 := Z/𝑞Z to denote the multiplicative
group of integers modulo 𝑞.

We use upper-case letter for matrix and use lower-case bold
letters for vectors. Given a vector x, we write 𝒙 [𝑖 − 1] for its 𝑖-th
entry, i.e., 𝒙 [0] is its first entry. We denote ⟨𝒂, 𝒃⟩ the inner product
of vectors 𝒂 and 𝒃 . We use lower-case letters for polynomials.

For a positive integer𝑛, wewrite [𝑛] to denote the set {0, 1, 2, . . . , 𝑛−
1}. We write 𝑎

$← 𝑆 to denote that, 𝑎 is sampled uniformly random

from set 𝑆 . Let E be a distribution, we use 𝑒
$← E to denote that 𝑒

is randomly sampled according to E.
Finally, we use 1S to denote the indicator function:

1S :=

{
1, S is TRUE
0, S is FALSE

.

2.2 (Ring) Learning with errors
The learning with errors (LWE) problem[30] was proposed as a
generalization of learning parity with noise and it is widely used
in construction of many cryptosystems.

For positive integers 𝑛 and 𝑞 ≥ 2, a vector 𝒔 ∈ Z𝑛𝑞 , and a proba-
bility distribution E = E(𝑛) over Z𝑞 , let A𝒔,E be the distribution

obtained by choosing a vector 𝒂
$← Z𝑛𝑞 uniformly at random and

a noise term 𝑒
$← E, and outputting (𝒂, ⟨𝒂, 𝒔⟩ + 𝑒) ∈ Z𝑛𝑞 × Z𝑞 . The

LWE problem is defined as follows.

Definition 2.1. (LWE) For an integer 𝑞 = 𝑞(𝑛) and an error distri-
bution E = E(𝑛) over Z𝑞 , the LWE problem LWE𝑛,𝑚,𝑞,E is defined
as: Given𝑚 independent samples from A𝒔,E , output 𝒔 with non-
negligible probability.

The decisional version is to distinguish between𝑚 samples cho-
sen according toA𝒔,E for some uniformly random 𝒔 and𝑚 samples
from the uniform distribution over Z𝑛𝑞 × Z𝑞 .

The Ring learning with errors (RLWE) problem[23] is a variant
of LWE which is widely used to design homomorphic encryption
schemes[4, 7, 11, 13]. The secret 𝑠 is chosen from ring 𝑅. An RLWE

sample (𝑎, 𝑎𝑠 + 𝑒) ∈ 𝑅2
𝑞 is generated by choosing 𝑎

$← 𝑅𝑞 uniformly
at random and noise 𝑒 from the error distribution E over 𝑅. Here
𝑞 ≥ 2 is an integer modulus. The decisional version is to distinguish
between the RLWE sample for some secret 𝑠 and a sample from
uniform distribution over 𝑅2

𝑞 .



2.3 Homomorphic encryption (HE)
A cryptosystem that supports computation on ciphertext without
decryption is known as homomorphic encryption (HE)[8]. An en-
cryption scheme consists of following PPT algorithms.

• Key generation. The algorithm takes security parameter 𝜆
as input and outputs a public key 𝑝𝑘 , and a secret key 𝑠𝑘 .
• Encryption. The algorithm takes a message𝑚 and the public
key as input and outputs a ciphertext ct = Enc(𝑚).
• Decryption. The algorithm takes a ciphertext ct and the
secret key as input and output a message𝑚′ = Dec(𝑐).

If it is a secret key encryption scheme, then there is no public
key and both encryption and decryption use the secret key.

Briefly speaking, a encryption scheme is homomorphic in an
operation ◦, if there is another operation ⋄ such that Enc(𝑚1) ⋄
Enc(𝑚2) = Enc(𝑚1 ◦𝑚2).

There are many sub-classes of homomorphic encryption scheme,
depending on the types and number of operations it supports.

• Partially homomorphic encryption. It only supports the eval-
uation of circuits consisting of one type of gate. It is usually
simple and fast. For example, ElGamal cryptosystem[14] can
evaluate unbounded number of modular multiplications, and
Paillier cryptosystem[28] can evaluate unbounded number
of modular additions.
• Somewhat homomorphic encryption. It supports the evalu-
ation of arbitrary circuits with multiple types of gates of
pre-determined bounded depth. Typically, ciphertexts are
“noisy”, and the noise grows along with the increment of
homomorphic computations, where ultimately the noise will
make the resulting ciphertext indecipherable.
• Fully homomorphic encryption (FHE). It supports the eval-
uation of arbitrary circuits with multiple types of gates of
unbounded depth. FHE solves the noise problem by using
bootstrapping technique. In bootstrapping, the ciphertext is
“refreshed” to reduce its noise level[15].

2.4 Number-theoretic transform (NTT)
In our encryption scheme, almost all computations involve high-
degree polynomial multiplications. Naive polynomial multiplication
costs 𝑂 (𝑛2) time, where 𝑛 is the degree of polynomials. In field
R or C, using Faster Fourier Transforms (FFT)[10] for polynomial
multiplication is a common technique. It changes the time cost from
𝑂 (𝑛2) to 𝑂 (𝑛 log𝑛), and this will have significant improvement
when 𝑛 is large, especially in the area of cryptography. Note that
we only consider integers in cryptography, so a variant of FFT
algorithm is widely used on finite field, which is called number-
theoretic transform (NTT)[1].

The basic idea of NTT is that for some appropriately chosen
prime 𝑞, Z𝑞 [𝑥]/(𝑥𝑛 + 1) and Z𝑛𝑞 are isomorphic. Therefore we can
define a mapping 𝑁𝑇𝑇 (·) : Z𝑞 [𝑥]/(𝑥𝑛 + 1) → Z𝑛𝑞 , which turns
a polynomial into a integer vector. By definition of isomorphism,
an inverse mapping is 𝐼𝑁𝑇𝑇 (·) : Z𝑛𝑞 → Z𝑞 [𝑥]/(𝑥𝑛 + 1), which
turns a vector back to the polynomial. Based on the definition of
isomorphism, we have:

• 𝑁𝑇𝑇 (𝑎 + 𝑏) = 𝑁𝑇𝑇 (𝑎) + 𝑁𝑇𝑇 (𝑏).
• 𝑁𝑇𝑇 (𝑎 × 𝑏) = 𝑁𝑇𝑇 (𝑎) × 𝑁𝑇𝑇 (𝑏).

Here the multiplication of vectors is position-wise multiplication.
The vector 𝑁𝑇𝑇 (𝑎) is called RNS form of polynomial 𝑎, and we use
𝑎 to represent it in the following. Nowwe are ready to propose NTT
multiplication. The time cost is 2𝑂 (𝑛 log𝑛) +𝑂 (𝑛) +𝑂 (𝑛 log𝑛) =
𝑂 (𝑛 log𝑛), which is better than the naive 𝑂 (𝑛2).

Algorithm 1: NTT multiplication

1: Input: Polynomials 𝑎, 𝑏 ∈ Z𝑞 [𝑥]/(𝑥𝑛 + 1).
2: Find 𝑎 = 𝑁𝑇𝑇 (𝑎), 𝑏 = 𝑁𝑇𝑇 (𝑏). (One 𝑁𝑇𝑇 (·) costs 𝑂 (𝑛 log𝑛).)
3: Calculate 𝑐 = 𝑎 × 𝑏. (Position-wise multiplication (PMUL),
𝑂 (𝑛).)

4: Find 𝑐 = 𝐼𝑁𝑇𝑇 (𝑐) . (One 𝐼𝑁𝑇𝑇 (·) costs 𝑂 (𝑛 log𝑛).)
5: Output: Polynomial 𝑐 .

3 OPTIMIZED FHE SCHEME
In FHE-based privacy-enhanced neural network inferences, the
user encrypts the data before sends it to the server. The server ho-
momorphically evaluates the neural network over encrypted data,
and produces an encrypted inference output. It then returns the
result’s ciphertext to the user. Evaluation of neural networks on en-
crypted data involves both arithmetic operations such as weighted
sum and convolutions, evaluation of non-linear activations and
bootstrapping after each neuron to enable further computations.
However, existing FHE schemes are not designed for evaluation
neural networks on encrypted data. Most of them focus on high-
precision evaluations and are very slow in inferencing of neural
network. Some of them only support specific non-linear activa-
tions (e.g., [3],[16]). Our optimized FHE scheme which combines
the advantages of CKKS and TFHE schemes will help to reduce
the inference latency, and achieve the state-of-the-art inference
accuracy.

3.1 Background: Neural network
Neural network is a artificial model inspired by biological brains. A
neural network can be considered as population of artificial neurons
arranged in layers. The raw data is encoded properly and fed into
the input layer and the output layer will output the inference result.
Each internal layer (i.e., hidden layer) receives the data generated
by its previous layer and outputs the processed data for the next
layer.

Neural networks are usually composed of layer of following
types: Fully-connected layer (FC layer, every neuron of the layer
takes all incoming data as inputs), convolutional layer (convolution
evaluation is applied to its input), and so on.

At each neuron in layer 𝑙 , the processing happens in two steps:
• Linear function: It is a weighted sum of inputs, which can be
described as 𝛾𝑙 =𝑊𝑙𝒙𝑙−1 +𝜷𝑙 . where𝑊𝑙 is the weight matrix
of layer 𝑙 and 𝜷𝑙 is the bias of layer 𝑙 .
• Activation function: The calculated weighted sum is passed
to the activation function. An activation function is a math-
ematical function which adds non-linearity to the network.
There are some commonly used activation functions: Sig-
moid, ReLu and Softmax. It can be described as 𝒙𝑙 = 𝑓𝑙 (𝛾𝑙 ).



The neural network with one hidden layer can approximate any
continuous function[12, 18]. Furthermore, a deep neural network
with several layers of non-linearities has better ability in more
complex tasks. In this work, our optimized FHE scheme is able to
evaluate neural networks of arbitrary depth with possibly many
hidden layers.

3.2 Overview
Our system is built on both a LWE-based secret key encryption
scheme and a RLWE-based secret key encryption scheme. The
entire part of our system run on integer, which provides us a possi-
bility to apply faster algorithms in implementation (such as faster
polynomial multiplication algorithm based on NTT).

The LWE-based secret key encryption scheme is used to encrypt
the input test. Assume the length of input vector is 𝑙𝑖𝑛 , we will
generate 𝑙𝑖𝑛 LWE ciphertexts. In each ciphertext, according to the
good noise-tolerance of neural network, we can follow CKKS[7]’s
method to add noise to the main message. As a result, we can choose
relatively small ciphertext modulus and dimension.

At each neuron, our scheme performs:
Homomorphic evaluation for linear functions on LWE ciphertext.

Since our LWE secret key encryption scheme is a type of addi-
tive homomorphic, we can simply evaluate the linear functions by
homomorphic scale multiplication and addition.

Homomorphic evaluation for non-linear activations.We use the
homomorphic look-up table algorithm (LUT) to evaluate non-linear
activations and perform the bootstrapping at the same time. The
core of LUT is to encode all possible output of the non-linear func-
tion 𝑔(·) into a polynomial 𝑓 (𝑋 ) (denote by LUT function), so that
we can “blindly” rotate the polynomial to locate the position of
the desired output by homomorphically evaluating the decryption
algorithm and re-encrypting the input ciphertext under the RLWE
secret key. At the same time, the noise is reduced since we always
“refresh” the ciphertext. Here, we use the RLWE-based secret key
encryption scheme to encrypt the LWE secret key (denoted by
evaluation key).

In order to achieve better efficiency, we hope the degree of poly-
nomials in the LUT algorithm is small. So we make use of the noise
tolerance of neural network again. Before entering LUT process,
we squeeze the output range of the inner-product first. We only
store a few number of most significant bits and discard some inac-
curate least significant bits. Notice that the coefficients of the LUT
function 𝑓 (𝑋 ) store all possible value of the algorithm’s output,
so the number of coefficients (i.e., the degree of 𝑓 (𝑋 )) is decided
by the input range of the LUT algorithm (i.e., the output range of
the inner-product). We will be able to achieve small degree of LUT
function by squeezing the inner-product into a small range.

Key switching and homomorphic rounding algorithms. The LUT
algorithm re-encrypts the input ciphertext, so that the underly-
ing secret key and ciphertext modulus are changed. To ensure the
network is extendable and can be applied to deep neural network,
the output ciphertext should be in same size as the input cipher-
text. Hence, we need key switching and homomorphic rounding
algorithms to resize the output ciphertext.

In this way, the output of each neuron is in the same form as the
input to the neuron, and the noise is reduced during bootstrapping.

It ensures that the output of one neuron can be used for further
computations in the next layer without an initially fixed limit on the
number of layers one network has. Hence, our scheme can evaluate
arbitrarily deep neural networks.

3.3 Encryption schemes
Additive homomorphic LWE encryption. We show our LWE-based
secret key encryption scheme and related computations we used
in our system. We write 𝑐𝑡 ∈ LWE𝑛,𝑞𝒔 (𝑚) to state that 𝑐𝑡 is a LWE
ciphertext of𝑚. Here 𝑞 is the modulus, 𝑛 is the dimension, and 𝒔
is the secret key. And we use the same way for other encryption
schemes. The detailed algorithms are Algorithm 2, 3, 4.

Algorithm 2: LWE Encryption Scheme

Input: plaintext𝑚, modulus 𝑞, dimension 𝑛, secret key
𝒔 ∈ {−1, 0, 1}𝑛 , error distribution ELWE on Z𝑞 .
Output: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞𝒔 (𝑚).
Sample an error value 𝑒

$← ELWE.

Sample vector 𝒂
$← Z𝑞𝑛 .

Define 𝑏 :=𝑚 + 𝑒 − ⟨𝒂, 𝒔⟩ mod 𝑞.
Return (𝒂, 𝑏).

Algorithm 3: Scale Multiplication

Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞𝒔 (𝑚), plaintext 𝑐 ∈ Z
𝑞
𝑛 .

Output: LWE ciphertext (𝒂′, 𝑏 ′) ∈ LWE𝑛,𝑞𝒔 (𝑐 ×𝑚).
Compute 𝒂′ := 𝑐 · 𝒂 mod 𝑞.
Compute 𝑏 ′ := 𝑐 · 𝑏 mod 𝑞.
Return (𝒂′, 𝑏 ′).

Algorithm 4: Addition

Input: LWE ciphertexts (𝒂1, 𝑏1) ∈ LWE𝑛,𝑞𝒔 (𝑚1) and
(𝒂2, 𝑏2) ∈ LWE𝑛,𝑞𝒔 (𝑚2)
Output: LWE ciphertext (𝒂′, 𝑏 ′) ∈ LWE𝑛,𝑞𝒔 (𝑚1 +𝑚2).
Compute 𝒂′ := 𝒂1 + 𝒂2 mod 𝑞.
Compute 𝑏 ′ := 𝑏1 + 𝑏2 mod 𝑞.
Return (𝒂′, 𝑏 ′).

RLWE encryption and related operations. We show the RLWE-
based secret key encryption scheme and related operations we used
in our system. Our scheme is defined on ring 𝑅𝑞 := Z𝑞 [𝑋 ]/(𝑋𝑛 +1).
The encryption scheme is Algorithm 5. And we can define scale
multiplication and addition for RLWE ciphertext, in the same way
as Algorithm 3, 4. Further, we include the definitions in [22] of the
extended RLWE encryption in Algorithm 6, 7, 8 and 9.

3.4 Our framework
Our framework contains the following functions: Extraction, ho-
momorphic rounding and key switching algorithms. We will briefly
introduce them in this section, and the detailed algorithms are in



Algorithm 5: RLWE Encryption Scheme

Input: plaintext𝑚, modulus 𝑞, dimension 𝑛, secret key 𝑠 whose
coefficients are in {−1, 0, 1}, error distribution ERLWE.
Output: RLWE ciphertext (𝑎, 𝑏) ∈ RLWE𝑛,𝑞𝑠 (𝑚).
Sample error element 𝒆

$← ERLWE.

Sample element 𝑎
$← 𝑅𝑞 .

Define 𝑏 :=𝑚 + 𝑒 − 𝑎 × 𝑠 ∈ 𝑅𝑞 .
Return (𝑎, 𝑏).

Algorithm 6: Extended RLWE Encryption

Input: plaintext𝑚, modulus 𝑞, dimension 𝑛, secret key
𝑠 ∈ {−1, 0, 1}𝑛 , error distribution ERLWE, decomposition base 𝐵.
Output: Extended RLWE ciphertext
{(𝑎𝑖 , 𝑏𝑖 )}𝑖∈[𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵) ] ∈ �RLWE

𝑛,𝑞

𝑠 (𝑚).
for 𝑖 = 0, 1, . . . , 𝑙𝑜𝑔(𝑞)/𝑙𝑜𝑔(𝐵) − 1 do

Find (𝑎𝑖 , 𝑏𝑖 ) ∈ RLWE𝑛,𝑞𝑠 (𝑚 × 𝐵𝑖 ).
end for
Return {(𝑎𝑖 , 𝑏𝑖 )}𝑖∈[𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵) ] .

Algorithm 7: Extended RLWE Ciphertext Multiplication
(⋄)

Input: plaintext operand 𝑟 , modulus 𝑞, dimension 𝑛,
decomposition base 𝐵, extended RLWE ciphertext
{(𝑎𝑖 , 𝑏𝑖 )}𝑖∈[𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵) ] ∈ �RLWE

𝑛,𝑞

𝑠 (𝑚).
Output: RLWE ciphertext (𝑎, 𝑏) ∈ RLWE𝑛,𝑞𝑠 (𝑟 ×𝑚).
Decompose 𝑟 s.t. 𝑟 =

∑𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵)−1
𝑖=0 𝑟𝑖 × 𝐵𝑖 .

Compute (𝑎, 𝑏) = ∑𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵)−1
𝑖=0 𝑟𝑖 × (𝑎𝑖 , 𝑏𝑖 ) =∑𝑙𝑜𝑔 (𝑞)/𝑙𝑜𝑔 (𝐵)−1

𝑖=0 (𝑟𝑖𝑎𝑖 , 𝑟𝑖𝑏𝑖 ).
Ensure (𝑎, 𝑏) in 𝑅2

𝑞 .
Return (𝑎, 𝑏).

Algorithm 8: RGSW Encryption based on Extended RLWE
Encryption

Input: plaintext𝑚, modulus 𝑞, dimension 𝑛, secret key
𝑠 ∈ {−1, 0, 1}𝑛 .
Output: RGSW ciphertext

(𝛽, 𝛼) ∈
(�RLWE

𝑛,𝑞

𝑠 (𝑚), �RLWE
𝑛,𝑞

𝑠 (𝑠 ×𝑚)
)
.

Appendix A.1.
Extract0. Extract0 is to extract the constant term of polynomial
𝑚 from its RLWE ciphertext RLWE𝑛,𝑞𝑠 (𝑚). It will output a LWE
ciphertext which encrypts the 0-th coefficient of𝑚. This extraction
algorithm allows us to be able to convert a RLWE ciphertext to
into LWE ciphertexts and will be frequently used in the following
algorithms.
Rounding. The homomorphic rounding algorithm will change a
LWE ciphertext with ciphertext modulus 𝑞′ to a LWE ciphertext
with ciphertext modulus 𝑞.

Algorithm 9: RLWE and RGSW Multiplication (⊙)

Input: (𝑎, 𝑏) ∈ RLWE𝑛,𝑞𝑠 (𝑚1), (𝛽, 𝛼) ∈ RGSW𝑛,𝑞
𝑠 (𝑚2).

Output: (𝑎′, 𝑏 ′) ∈ RLWE𝑛,𝑞𝑠 (𝑚1 ×𝑚2).
Return (𝑎′, 𝑏 ′) = 𝑎 ⋄ 𝛼 + 𝑏 ⋄ 𝛽 and ensure (𝑎′, 𝑏 ′) ∈ 𝑅2

𝑞 .

Key switching. The key switching algorithm will change a LWE
ciphertext with secret key 𝒔 ′ and dimension 𝑛′ to a LWE ciphertext
with new secret key 𝒔 and dimension 𝑛.

Homomorphic Look-up table algorithm. The look-up table algo-
rithm takes a LWE ciphertext 𝑐𝑡 ∈ LWE𝑛,𝑞𝒔 (𝑚) and an evaluation
function 𝐹 (·) as input and it outputs a LWE ciphertext which en-
crypts Δ𝐹 (𝑚), where Δ is a scale factor to limit noise.

Bit-by-bit Look-up table algorithm for general cases. We first show
a bit-by-bit look-up table algorithm (Algorithm 10), which can be
used in any cases, however not optimized.

2-bit Look-up table algorithm for single hidden layer. In the case
where the neural network only has one hidden layer, we can skip
the key switch and rounding operations after the look-up table
evaluation, and proceed to the output layer directly. Applying this
method, we are able to use the LWE secret key 𝒔 ∈ {0, 1}𝑛 instead
of 𝒔 ∈ {−1, 0, 1}𝑛 during the encryption of the input test, while the
security can still be proved[5, 25]. Then we can use the following
Look-up table algorithm to reduce the number of external opera-
tions from 𝑛 to 𝑛/2, compared with Algorithm 10. The details are
in Algorithm 11.

2-bit Look-up table algorithm for multiple hidden layers. For
multiple hidden layers, the key switching algorithm is required
between each hidden layer, which consists of computations on
RLWE ciphertexts. However, the binary secret for the Ring variant
of LWE is still an open problem[8]. So, we cannot convert the LWE
secret key from 𝒔 ∈ {−1, 0, 1}𝑛 to 𝒔 ∈ {0, 1}𝑛 here, but we can still
construct a 2-bit look-up table algorithm.We will include the details
in Algorithm 18 in Appendix A.2.

Nowwe are ready to show the full protocol for privacy-enhanced
neural network using our optimized FHE scheme in Algorithm 12.

Theoretical analysis and experimental results of noise growing
are shown in Section A.3.

4 EFFICIENT DESIGN FOR NON-LINEAR
ACTIVATION EVALUATION

4.1 Overview
In this section, we further optimize our FHE scheme and focus on
improving the evaluation of non-linear activations. Many previous
work on FHE-based PE-NN use polynomial approximation acti-
vations to evaluate non-linear activations. However, it does not
perform well. n-GraphHE[2], Lola[6] and Faster CryptoNet[9] have
to use the low-degree polynomial approximation activations and
thus fail to obtain the state-of-the-art inference accuracy. High-
degree polynomial approximation activations can improve the ac-
curacy, but the computing overhead increases exponentially with
the degree, so the inference becomes inefficient.

In our scheme, we adopt homomorphic look-up-table (LUT) algo-
rithm to evaluate non-linear activations. Although LUT algorithm



Algorithm 10: Bit-by-bit Look-up Table Evaluation.

1: Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞𝒔 (𝑚) s.t. |𝑚 | < 𝑞/4, scale factor Δ, evaluation function 𝐹 (·) : Z𝑞 → Z𝑞 , RLWE parameter set
(𝑛′, 𝑞′), RLWE secret key 𝑠 ′, a set of evaluation keys w.r.t. the LWE secret key 𝒔 ∈ {−1, 0, 1}𝑛 :

EK𝑗,+ = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [ 𝑗 ]>0), EK𝑗,− = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [ 𝑗 ]<0), 𝑗 = 0, 1, . . . , 𝑛−1 .

2: Output: LWE ciphertext 𝑐𝑡 ′ ∈ LWE𝑛
′,𝑞′

𝒔′ (Δ𝐹 (𝑚)) where 𝒔
′ is the trivial vector form of polynomial 𝑠 ′ (from high degree to low degree).

3: Let 𝜂𝑘 = 𝑘𝑞/(2𝑛′) for 1 ≤ 𝑘 ≤ 𝑛′/2. Define a polynomial 𝑓 ∈ 𝑅𝑛′,𝑞′ whose coefficients are:

𝑓𝑗 =


⌈Δ𝐹 (0)⌋ if 𝑗 = 0
⌈Δ𝐹 (−𝜂 𝑗 )⌋ if 1 ≤ 𝑗 ≤ 𝑛′/2
⌈−Δ𝐹 (𝜂𝑛′−𝑗 )⌋ if 𝑛′/2 < 𝑗 < 𝑛′

.

4: Let 𝑏 ′ = ⌈2𝑛′𝑏/𝑞⌋, let 𝒂′ = ⌈2𝑛′𝒂/𝑞⌋.
5: Initialize AC = (0, 𝑓 × 𝑋𝑏′) ∈ 𝑅2

𝑛′,𝑞′ .
6: for j=0,1,. . . ,n-1 do

7: AC+=
(
(𝑋𝒂′ [ 𝑗 ] − 1)EK𝑗,+ + (𝑋−𝒂

′ [ 𝑗 ] − 1)EK𝑗,−

)
⊙ AC, note that all calculations are in 𝑅2

𝑛′,𝑞′ .

8: end for
9: Return Extract0(AC).

Algorithm 11: 2-bit Look-up Table Evaluation for Single Hidden Layer Neural Network.

1: Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞𝒔 (𝑚) s.t. |𝑚 | < 𝑞/4, scale factor Δ, evaluation function 𝐹 (·) : Z𝑞 → Z𝑞 , RLWE parameter set
(𝑛′, 𝑞′), RLWE secret key 𝑠 ′, a set of evaluation keys w.r.t. the LWE secret key 𝒔 ∈ {0, 1}𝑛 , and for 𝑗 = 0, 1, . . . , 𝑛/2 − 1:

EK𝑗,0 = RGSW𝑛′,𝑞′

𝑠′ (𝒔 [2 𝑗]𝒔 [2 𝑗+1]), EK𝑗,1 = RGSW𝑛′,𝑞′

𝑠′ (𝒔 [2 𝑗] (1−𝒔 [2 𝑗+1])), EK𝑗,2 = RGSW𝑛′,𝑞′

𝑠′ (𝒔 [2 𝑗+1] (1−𝒔 [2 𝑗])) .

2: Output: LWE ciphertext 𝑐𝑡 ′ ∈ LWE𝑛
′,𝑞′

𝒔′ (Δ𝐹 (𝑚)) where 𝒔
′ is the vector form of polynomial 𝑠 ′ (from high degree coefficient to low

degree coefficient).
3: Let 𝜂𝑘 = 𝑘𝑞/(2𝑛′) for 1 ≤ 𝑘 ≤ 𝑛′/2. Define a polynomial 𝑓 ∈ 𝑅𝑛′,𝑞′ whose coefficients are:

𝑓𝑗 =


⌈Δ𝐹 (0)⌋ if 𝑗 = 0
⌈Δ𝐹 (−𝜂 𝑗 )⌋ if 1 ≤ 𝑗 ≤ 𝑛′/2
⌈−Δ𝐹 (𝜂𝑛′−𝑗 )⌋ if 𝑛′/2 < 𝑗 < 𝑛′

.

4: Let 𝑏 ′ = ⌈2𝑛′𝑏/𝑞⌋, let 𝒂′ = ⌈2𝑛′𝒂/𝑞⌋.
5: Initialize AC = (0, 𝑓 × 𝑋𝑏′) ∈ 𝑅2

𝑛′,𝑞′ .
6: for j=0,1,. . . ,n/2-1 do

7: AC+=
(
(𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1] − 1)EK𝑗,0 + (𝑋𝒂′ [2𝑗 ] − 1)EK𝑗,1 + (𝑋𝒂′ [2𝑗+1] − 1)EK𝑗,2

)
⊙ AC, all calculations are in 𝑅2

𝑛′,𝑞′ .

8: end for
9: Return Extract0(AC).

performs better than polynomial approximation, it is the slowest
part among all homomorphic evaluations in FHE-based PE-NN.
To achieve better performance, we propose an efficient design for
LUT-based non-linear activation evaluation.

We find that the NTT/INTT and the modulo calculations take
around 70% time in one LUT. Therefore, we reduce the number of
NTT and INTT in one LUT evaluation and optimize modulo calcu-
lations. As a result, our system becomes 3 times faster than before.
Our improved system only takes 0.14s per input on MNIST dataset,
while 0.42s is needed without improvements. We list our optimiza-
tions in below sections and an efficiency analysis to compare the

difference in terms of the amount of time where we managed to
bring down significantly.

4.2 Reduce the number of NTT and INTT
In this section, we show our optimizations on polynomial multipli-
cations, which takes around 45% time in one LUT. We introduce 2
methods to reduce the number of NTT/INTTs in LUT algorithm.
Section 4.2.1 is a general method and can be applied in any cases.
Section 4.2.2 is designed for the neural network where very large
modulus is necessary, such as hundreds of bits. In practical sce-
nario, we should choose suitable method according to the concrete
problems and neural networks.



Algorithm 12: Full Protocol for Privacy-enhanced Neural Network.

1: Input Layer parameters: LWE parameter set (𝑛, 𝑞, 𝒔).
2: Hidden Layer/Output Layer parameters: RLWE and RGSW related parameter set (𝑛′, 𝑞′, 𝑠 ′) where 𝑛 |𝑛′, scale factor Δ.
3: Public parameters: Decomposition base 𝐵, Key-Switching decomposition base 𝐵KS.
4: Given input vector 𝒙 of length 𝑁 , define a set of 𝑁 LWE ciphertexts {(𝒂𝑖 , 𝑏𝑖 )} each of which is from LWE𝑛,𝑞𝒔 (𝑥 [𝑖]).
5: Generate a set of evaluation keys w.r.t. the LWE secret key 𝒔 ∈ {−1, 0, 1}𝑛 :
6: EK𝑗,+ = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [ 𝑗 ]>0), EK𝑗,− = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [ 𝑗 ]<0), 𝑗 = 0, 1, . . . , 𝑛 − 1 .
7: Generate a set of LWE switching keys w.r.t. decomposition base 𝐵:

8: SK𝑗 ∈ �RLWE
𝑛,𝑞

𝒔

( ∑𝑛−1
𝑙=0 𝒔 [ 𝑗𝑛 + 𝑙]𝑋 𝑙

)
, 𝑗 = 0, 1, . . . , 𝑛′/𝑛 − 1 .

9: Let input layer be Layer 0 and let output layer be Layer 𝐿.
10: for 𝑙 = 1, 2, . . . , 𝐿 do
11: Let 𝐻𝑙 be the number of neurons in layer 𝑙 .
12: Let𝑊𝑙 , 𝜷𝑙 be the weight matrix and the bias vector from layer 𝑙 − 1 to layer 𝑙 , respectively.
13: for ℎ = 0, 1, 2, . . . , 𝐻𝑙 − 1 do
14: Let LWE𝑙−1 := {(𝒂𝑙−1,𝑖 , 𝑏𝑙−1,𝑖 )}𝑖∈[𝐻𝑙−1 ] , each of which is a LWE ciphertext LWE𝑛,𝑞𝒔 (·) from Layer 𝑙 − 1. For the sake of simplicity

we omit the subscript of layer 𝑙 − 1 and write (𝒂𝑖 , 𝑏𝑖 ).
15: Homomorphically evaluate the linear function in the ℎ-th neuron in Layer 𝑙 : 𝑖𝑝ℎ =

∑
𝑖∈[𝐻𝑙−1 ]𝑊𝑙 [ℎ, 𝑖] × (𝒂𝑖 , 𝑏𝑖 ) + 𝜷𝑙 [ℎ],i.e.,

𝑖𝑝ℎ ∈ LWE𝑛,𝑞𝒔 (𝜸𝑙 [ℎ]).
16: Evaluate the look-up-table in the ℎ-th neuron: 𝑐𝑡 ′

ℎ
= LUT(𝑖𝑝ℎ) ∈ LWE𝑛

′,𝑞′

𝒔′ (Δ × ·).
17: Switch from 𝑛′ to smaller 𝑛: 𝑐𝑡ℎ = LWE_𝐾𝑆 (𝑐𝑡 ′

ℎ
, 𝐵KS) ∈ LWE𝑛,𝑞

′
𝒔 (Δ × ·).

18: Round from 𝑞′ to smaller 𝑞 and rescale: 𝑐𝑡ℎ = LWE_𝑅𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝑐𝑡ℎ) ∈ LWE𝑛,𝑞𝒔 (·).
19: Include 𝑐𝑡ℎ in LWE𝑙 .
20: end for
21: end for
22: Return LWE𝐿 to User. User can decrypt all ciphertexts in it with secret key 𝒔, and then find the prediction result.

4.2.1 General method to reduce number of NTT/INTTs in LUT. .
Taking our 2-bit look-up table evaluation for single hidden layer
algorithm (Algorithm 11) as an example, we will show how to
reduce the number of times where NTT/INTTs are called.

First, we count the number of NTT/INTTs in one LUT. We use 𝑑
to denote that in the beginning of each external product ⊙, each
polynomial in AC is decomposed to 𝑑 polynomials. Regarding the
computations of (𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1] −1)EK𝑗,0, (𝑋𝒂′ [2𝑗 ] −1)EK𝑗,1 and
(𝑋𝒂′ [2𝑗+1] − 1)EK𝑗,2, we discover that instead of calling NTT mul-
tiplication 3𝑑 times, we can simply implement it by rotating the
polynomial in EK𝑗,· , which only involves polynomial addition and
subtraction and is faster than NTT multiplication. We call it ‘quick
multiplication’ and it was used in the implementation of the non-
optimized LUT algorithm. Therefore, the NTT multiplications only
appear in ⊙. One ⊙ includes 4𝑑 NTT polynomial multiplications.
So one LUT calculation includes 4𝑑 · (𝑛/2) = 2𝑑𝑛 NTT polynomial
multiplications. Each NTT polynomial multiplication includes 3
NTT/INTT transformations, so one LUT has 6𝑑𝑛 NTT/INTT trans-
formations.

A general method is to store EK𝑗,0, EK𝑗,1 and EK𝑗,2 in RNS form
when generating them. Such evaluation keys are generated in the
initialization phase and can be used repeatedly. When generating
the evaluation keys, we can do NTT transformations after RGSW
encryption to convert them into RNS form and store them.

In LUT calculation, when calculating (𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1]−1)EK𝑗,0+
(𝑋𝒂′ [2𝑗 ] − 1)EK𝑗,1 + (𝑋𝒂′ [2𝑗+1] − 1)EK𝑗,2, we first perform NTT
transformation on𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1]−1,𝑋𝒂′ [2𝑗 ]−1 and𝑋𝒂′ [2𝑗+1]−1.

Then we proceed to compute position-wise multiplications and ad-
ditions. The output of this part is 4𝑑 RNS form polynomials.

Next, we move to the calculation of ⊙. The left side of ⊙ is
already in RNS form. So we first decompose the right side from
2 polynomials to 2𝑑 polynomials and do NTT transformations 2𝑑
times. The other calculations in ⊙ can be done by position-wise
multiplications and additions. Now the output of ⊙ is 2 RNS form
polynomials. We apply 2 INTT transformations on them and get 2
regular polynomials.

Therefore, in each loop, we only need 3+2𝑑 NTT transformations
and 2 INTT transformations. So one improved LUT only has (3 +
2𝑑 + 2) · (𝑛/2) = 𝑑𝑛 + 2.5𝑛 NTT/INTT transformations.

For example, if we take 𝑛 = 512 and 𝑑 = 2 (same as our experi-
ments), then the number of NTT/INTT transformations reduced
from 6144 to 2304.

4.2.2 Further improvements on neural network with large modulus.
When it is necessary to use hundreds bits modulus𝑄 , a well known
technique is to set 𝑄 as a product of 𝐿 distinct and machine-word-
sized primes: 𝑄 = Π𝐿−1

𝑖=0 𝑞𝑖 . Each 𝑞𝑖 is also appropriate chosen so
that NTT multiplication can be applied. The propose of this de-
composition is, when modulus is very large, the multiplications
and mod algorithm on computer/server become very slow. Using
machine-word-sized is many times faster.

By Chinese remainder theorem (CRT), 𝑅𝑛,𝑄 and Π𝐿−1
𝑖=0 𝑅𝑛,𝑞𝑖 are

isomorphic, which means that for each polynomial 𝑓 in 𝑅𝑛,𝑄 , it is



equivalently 𝐿 polynomials in 𝑅𝑛,𝑞𝑖 , 𝑖 = 0, . . . , 𝐿−1, so its RNS form
𝑓 is 𝐿 vectors in Z𝑛𝑞𝑖 , 𝑖 = 0, . . . , 𝐿 − 1.

For simplicity we write 𝐸𝐾𝑖 := (𝑋𝒂′ [2𝑖 ]+𝒂′ [2𝑖+1] − 1) · 𝐸𝐾𝑖,0 +
(𝑋𝒂′ [2𝑖 ] − 1)𝐸𝐾𝑖,1 + (𝑋𝒂′ [2𝑖+1] − 1)𝐸𝐾𝑖,2.
Recall in Algorithm 11, in each loop we calculate 𝐴𝐶𝑖+1+ = 𝐸𝐾𝑖 ⊙
𝐴𝐶𝑖 . We use overline to represent RNS form:

𝑓 (𝑥) ∈ 𝑅𝑛′,𝑄 → 𝑓 ∈ Π𝐿−1
𝑖=0 Z

𝑛′
𝑞𝑖
,

which includes 𝐿 vectors. The detailed algorithm is in Algorithm
13.

Algorithm 13: CRT based LUT for large modulus.

1: First turn 𝐴𝐶0, all RGSW ciphertexts into RNS form.
2: for 𝑖 = 0, 1, . . . , 𝑛/2 − 1 do
3: Calculate 𝐸𝐾𝑖

4: 𝐴𝐶𝑖+1 = 𝐸𝐾𝑖 ⊙ 𝐴𝐶𝑖 +𝐴𝐶𝑖
5: end for
6: Output: Extract0(𝐼𝑁𝑇𝑇 (𝐴𝐶𝑛/2)), i.e., the LWE ciphertext of

the constant term in the plaintext of 𝐼𝑁𝑇𝑇 (𝐴𝐶𝑛/2).

If we write 𝐸𝐾𝑖 = (𝛼𝑖 , 𝛽𝑖 ), and 𝐴𝐶𝑖 = (𝑎𝑖 , 𝑏𝑖 ), then we have

𝐴𝐶𝑖+1 = 𝐸𝐾𝑖 ⊙ 𝐴𝐶𝑖 = 𝛼𝑖 ⋄ 𝑎𝑖 + 𝛽𝑖 ⋄𝑏𝑖 .
Define (⋄) operator in RNS form Algorithm 14.

Algorithm 14: (⋄) operator in RNS form, 𝛼 ⋄ 𝑓
1: Input: Extended RLWE ciphertext 𝛼 which includes 𝐿 RLWE

ciphertexts, i.e. 2𝐿 polynomials (in RNS form). According to
CRT, find gadget vector ®𝑔 = (𝑔0, 𝑔1, . . . , 𝑔𝐿−1) ∈ Z𝐿 based on
{𝑞𝑖 }. Let 𝛼 = {(𝑎𝑖 , 𝑏𝑖 )}𝐿−1

𝑖=0 , where each
(𝑎𝑖 , 𝑏𝑖 ) ∈ RLWE𝑛

′,𝑄
𝑠′ (𝑔𝑖 × ·).

A RNS form polynomial 𝑓 ∈ Π𝐿−1
𝑖=0 Z

𝑛′
𝑞𝑖
.

2: Decompose 𝑓 into {𝑓𝑖 = 𝑓 mod 𝑞𝑖 , 𝑖 = 0, 1, . . . , 𝐿 − 1}.
3: Calculate and output

∑𝐿−1
𝑖=0 (𝑓𝑖𝑎𝑖 , 𝑓𝑖𝑏𝑖 ). (Position-wise

multiplication)

4.3 Optimize modulo calculations
In this section, we present our optimizations onmodulo calculations,
which takes around 25% time in one LUT.

Different modulo calculations for different operations. Notice that
the modulo calculation after addition is much easier than the mod-
ulo calculation after multiplication. The reason is that the size of
coefficients grows slowly in addition. For example, we have two 59-
bit coefficients 𝑐1 and 𝑐2, then 𝑐1 + 𝑐2 is at most 60-bit, while 𝑐1 × 𝑐2
could be 118-bit. So we write two modulo calculation functions:
one is for addition, the other is for multiplication.

Reduce the number ofmodulo calculation. We separate themodulo
calculation from the polynomial addition. In most works, modulo
calculation is followed by every polynomial addition, which means
that at any time, when we do a polynomial addition, then we will
do a modulo calculation. In fact, many modulus calculations are not
necessary. For example, in our previous face recognition experiment,

the modulus is a 59-bit prime. However in our implementation, we
use 64-bit integer data type to store the coefficients.

From AC+=
(
(𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1] − 1)EK𝑗,0 + (𝑋𝒂′ [2𝑗 ] − 1)EK𝑗,1 +

(𝑋𝒂′ [2𝑗+1] − 1)EK𝑗,2

)
⊙AC, we can see that we only need compute

one modulo calculation after two additions in the left side of ⊙.
Similarly, by the definition of ⊙ (Algorithm 9) and ⋄ (Algorithm
7), we only need one modulo calculation after 2-3 additions. As a
result, the number of modulo calculations is half of before.

4.4 Efficiency analysis
In this section, we test and record the time taken of each part in
one LUT, and to determine how much time our algorithm could
save.

The parameters are same as those we used in our experiments.
Length of LWE secret key is 512. Degree of LUT function/RLWE
ciphertext is 2048. The modulus in our experiment is a 59-bit prime,
which is not very large, so the method in Section 4.2.2 does not fit
for our case. Therefore, we apply the general method (Section 4.2.1)
to speed up our system.

We summarize our results in the Table 1. To observe the com-
parison clearly, we only ran it in single thread. From the table we
can see that compared to our non-optimized LUT algorithm, our
improved LUT saves 60% time.

5 HYBRID FHE-BASED PE-NN MODEL
5.1 Overview
The applications of basic FHE-based PE-NN is restricted by com-
putationally expensive evaluations of DNNs on encrypted data.
However, DNNs are widely used to solve many practical applica-
tions, such as facial recognition. Aiming for real-world scenarios,
we develop Hybrid FHE-based PE-NN model, which could solve
many practical problems within 1 second, such as facial recognition,
text classification and object classification.

There are two privacy problems in this model: 1. For AI solution
providers, private networks are often trained by private datasets,
and owners do not want to share the parameters with others. 2.
On users’ side as well, the users of AI models are not willing to
disclose both the input data and the prediction results to the server.
To solve problem 1, model owners only publish open networks,
and keep private networks in providers’ cloud servers which allow
users to make queries. To solve problem 2, users encrypt their data
by homomorphic encryption, then the cloud servers evaluate the
private networks on encrypted data and return encrypted prediction
results.

In summary, we use edge computing to drive the model in two
steps (see Figure 2): 1. User first runs the open network in plaintext
locally; 2. The user encrypts the output from open network and
sends the ciphertext to the server; 3. The server evaluates the private
network on encrypted data and returns an encrypted prediction
output. 4. Only the user who has the secret key can decrypt and
see the result.



Operations LUT in our previous work Improved LUT Time savedNumber of
calculation

Time per
calculation

Time in
total

Number of
calculation

Time per
calculation

Time in
total

NTT 4096 15.29us 62628us 1792 15.29us 27399 us 35229us
INTT 2048 16.05us 32870us 512 16.05us 8192us 24678us
PMUL 2048 2.84us 5816us 8193 2.84us 23268us -17452us
Modulo Calculation
(After additions) 10625 5.9us 62687us 4994 4.5us 22473us 40214us

Polynomial addition 8192 1.48us 12124us 6144 1.48us 9093us 3031us
Bit-decomposition 512 9.5us 4864us 512 9.5us 4864us 0
Quick multiplication 6145 8us 49160us 0 - 0 49160us
Total time 230149us=230ms 95289us=95ms 135ms (60%)

Table 1: Analysis on LUT algorithm

Figure 2: Hybrid FHE-based PE-NN model

In practical applications, such as facial recognition (FaceNet[31])
and object classification (InceptionV3[33]), there are many open-
source pre-trained neural network projects. Since both the param-
eters and models of these projects are public, so we can set them
as the open network (usually discard the fully connected layers).
Meanwhile, the open project is usually not sufficient enough to
solve their problems perfectly. There are two scenarios that might
happen, either users’ tasks differ too much from the open projects’
tasks, or the open projects are not specific enough to solve the users’
problem while running the inference on users’ dataset. In the other
words, the performance of open projects might tie to their own
dataset. Inspired by transfer learning, AI solution provider can train
a shallow network follows open network to solve user’s task. Since
the AI solution provider who trains the private network is usually
not willing to share the parameters with users, so we set it as the
private network and remain unseen in provider’s cloud server. By
transferring some computationally expensive ciphertext evalua-
tions in the server side to lower-cost plaintext computations in the
user side, our model significantly reduce the inference latency.

5.2 Training method and network structure
Transfer learning[29] is a good technique to train the network in
our hybrid model. Transfer learning focuses on storing knowledge
gained while solving problem and applying it to a different but re-
lated problem. From practical standpoints, transferring information
from previously learned tasks for the learning of new tasks could
significantly improve the sample efficiency.

We now talk about how to use transfer learning to train the
network in our hybrid model. Assuming that we want to build a
network to solve task B, and we have a dataset D2, we first search
for a open-source pre-trained network on a related task A (trained

by dataset D1). If we can find such a network, then we can apply
transfer learning to obtain our network. There are two training
methods to obtain the base of our network on task B from the
pre-trained network on task A.

Freeze all parameters in pre-trained network. The idea of this
method is that we use the pre-trained network as a feature extrac-
tor. Then we add a simple and shallow fully connected network
(usually consists of 1 or 2 fully connected layer) and train the shal-
low network on these features. In this case, since the pre-trained
network is open-source and we do not modify its parameters, so it
can be set as the open network in our hybrid model. The shallow
fully connected network is trained by ourselves and use our own
dataset, so we can set it as the private network. The training method
and network structure can be found in Figure 3.

Figure 3: Freezing all parameters in pre-trained network
Fine-Tune some layers in pre-trained network. The method will

be used when the difference gap of A and task B are huge, or our
own dataset D2 is large, then we can consider this method. The
idea of this method is that we only freeze the parameters of the
top layers in the pre-trained network, and we add a simple and
shallow fully connected network (usually consists of 1 or 2 fully
connected layer). Then we train the lower layers in pre-trained
network together with the shallow fully connected network on our
own dataset. In this case, the frozen part of the open-source pre-
trained network can be set as the open network in our hybrid model,
since we do not modify it. But the parameters in the lower layers
are re-trained by our own dataset, so both the lower layers and
the shallow fully connected network should be set as the private
network. The training method and network structure can be found
in Figure 4.

Summary. When making a choice on training method, there are
two criteria that we need to consider: (1) Task and data similarity;
(2) Size of our dataset D2, and follow the instruction in Figure 5.



Figure 4: Fine-tuning some layers in pre-trained network

The training method depends on the problem and sometimes should
be decided by experiments in plaintext.

Figure 5: Training method instruction

The worst case is that we cannot find a suitable open-source
pre-trained network. Then we need to train the whole network by
ourselves and determine which part can be open to public.

6 EVALUATION RESULTS
In this section, we report the performance of our system. We eval-
uated all schemes on an AMD Milan 7313P 3.0GHz CPU which
owns 16 cores. The security level is at least 80 bits. Our experiments
include one of the most popular benchmark dataset, MNIST and
practical applications such as facial recognition, voice recognition,
text classification and object classification. For MNIST dataset, we
train a BP network with one hidden layer and 30 hidden nodes,
which is a commonly used network structure in the area of infer-
ence on encrypted data[3]. The average time for one inference is
0.14s and the accuracy loss compared to inference in plaintext is
only less than 1%.

Beside that, we also show that our system can be used to solve
practical problems, such as facial recognition and so on. Tasks like
facial recognition are more difficult and requires a deep neural
network, so we apply our hybrid FHE-based PE-NN for inference.
The average time for one facial recognition is 0.18s, while basic
FHE-based PE-NN model takes around 28 hours in the same server
environment.

We also achieve excellent results in voice recognition, text clas-
sification and object classification, which show that our system can
be used in real-world tasks. To the best of our knowledge, this is
the first work to solve real-world problems by applying FHE-based
privacy-enhanced neural networks.

6.1 Experiments on optimized FHE scheme
MNIST dataset. There are 60000 training samples and 10000 test
samples in MNIST dataset for handwritten digit recognition. Each
input is a 28× 28 gray-level image, which is represented by a vector

with length 784. For each point of the image, we set the value is 1
if the original value is > 0 and set it to be 0 otherwise.

We first train a BP network with one hidden layer and 30 hidden
nodes, whose input is 784-dim vector and output has 10 classes.
The training phase is in clear and the accuracy is 94.80%.

We present our results in table 2. The first line is the result
that we evaluate our FHE scheme which equips with our LUT
optimization. The second line is the result that we evaluate our FHE
scheme without the LUT optimization. The results show that LUT
optimization in Section 4 improves the efficiency for almost 3 times.
Our inference accuracy on encrypted data is only 0.8% less than the
inference accuracy on plain data. The third line shows the results
in FHE-DiNN[3], which also evaluate their system in BP network
with one hidden layer and 30 hidden nodes on MNIST dataset. Our
system achieves better results in both inference accuracy and time
on encrypted data.

FHE scheme Activation
function

Plaintext
inference Ciphertext inference

Accuracy Accuracy Time
Our Scheme
with LUT

optimization

ReLU
(support others) 94.80% 94.04% 0.14s

Our Scheme
without LUT
optimization

ReLU
(support others) 94.80% 94.04% 0.42s

FHE-DiNN[3] Sign function 94.76% 93.71% 0.49s
Table 2: Inference on encrypted data in MNIST dataset

6.2 Experiments on hybrid PE-NN model
We also show that our hybrid FHE-based PE-NN system can be used
to solve practical problems with help of transfer learning. In this
section, we report performance of our system on facial recognition,
voice recognition, text classification and object classification.

6.2.1 Facial recognition. In this experiment, we build a hybrid
network to do facial recognition in a group of people. The network
will identify the identity of the input photo. We first establish our
own training and test dataset, which contains photos of 30 people.
Note that our test dataset is different from the training dataset.

We use a pre-trained FaceNet (trained by VGGFace2) as the open
network and train a private fully connected network on our own
dataset by freezing all parameters in pre-trained network. Then we
implement this system by our optimized FHE scheme and test it.
The structure of the recognition network is shown in Figure 6.

Figure 6: Structure of face recognition network

We present our evaluation results in Table 3. In this table, we
compare 3 neural network models for face recognition: 1. Our
hybrid neural network, where the open network runs in plaintext

https://github.com/timesler/facenet-pytorch


and the private network runs in ciphertext; 2. Traditional neural
network, which is not privacy-enhanced and the whole network
runs in plaintext; 3. Basic privacy-enhanced neural network, where
the whole network is privacy-enhanced and runs in ciphertext.

We can observe that traditional neural network is very fast, but
it does not consider the privacy problem. Basic privacy-enhanced
neural network is does it well at privacy protection, but it is too slow
to be applied to real-world. Our hybrid neural network only needs
less than one second per recognition, while basic privacy-enhanced
neural network needs 28 hours in the same server environment.
Therefore, our hybrid neural network achieved good balance be-
tween privacy protection and efficiency, and can be used in real
applications.

Network model
Private
network
structure

Number of
activations
in private
network

Time Accuracy

Hybrid PE-NN 2 FC layers 30 Open: 0.04s
Private: 0.21s 100%

Traditinoal NN none 0 0.04s 100%

Basic PE-NN FaceNet+2 FC layers ≈ 6𝑀 ≈ 28 hours
(estimated) -

Table 3: Inference on encrypted data in facial recognition

6.2.2 Voice recognition. Our scheme can be applied to process
voice files as well. This can be applied when we do not want the
neural network acquire the details of speech record while at the
same time would require the running of neural network through
the data to identify the identity of speaker. Our hybrid privacy-
enhanced system can determine the owner of a speech record with-
out knowing the speech content.

The dataset we used is online VoxForge speech database, whose
test set consists of 5 speech utterances (5 seconds for each one)
for each speaker and 34 speakers in total. We use Mel Frequency
Cepstrum Coefficients (MFCC)[24] to do the feature extraction.

We present our results in Table 4. Even for a 20-30s speech
utterances, we can identify the owner in few seconds with more
than 90% accuracy. While in basic PE-NN, MFCC is too complicated
to be homomorphically evaluated over encrypted data.

Network model
Private
network
structure

Number of
activations
in private
network

Time Accuracy

Hybrid PE-NN 2 FC layers 30 MFCC: 0.35s
Private: 10.2s

91.2%
(31/34)

Traditinoal NN none 0 0.35s 97.0%
(33/34)

Basic PE-NN MFCC+2 FC layers MFCC is too complicated to be
implemented on encrypted data.

Table 4: Inference on encrypted data in voice recognition

6.2.3 Text classification. Text files can also be processed by our
hybrid PE-NN scheme. Nowadays, we receive lots of emails and
SMS. Many of them are advertisement or spam mail. It takes us lots
of time to check such messages everyday. Text classification is a
process of providing labels to the set of texts or words and those
labels will tell us about the sentiment of the set of words. We can
build a hybrid privacy-enhanced text classification system, which
can add labels to text files without knowing the plaintext.

For this application, we tested our scheme on Movie Review
dataset, which consists of positive and negative sentences/snippets.
We use TextCNN[17] as the open network.

We present our results in Table 5. Our scheme takes 0.016s per
classification and does not lose the original accuracy compared
to test in traditional neural network. Basic PE-NN takes around
6 minutes per inference, which is much slower. Notice that 84%
accuracy is acceptable since the classifications are subjective and
even human cannot achieve very high accuracy, e.g., [32].

Network model
Private
network
structure

Number of
activations
in private
network

Time Accuracy

Hybrid PE-NN 1 FC layer 0 Open: 0.013s
Private: 0.003s 84%

Traditional NN none 0 0.013s 84%

Basic PE-NN TextCNN
+1 FC layer ≈ 20000 ≈ 6 minutes

(estimated) -

Table 5: Inference on encrypted data in text classification

6.2.4 Object classification. Finally we show our system works well
in object classification. For this application, we tested our scheme
on Cat and Dog dataset(A famous competition on Kaggle.com). We
use InceptionV3[33] as the open network to extract the features.

We present our results in Table 6. Our scheme takes 0.019𝑠 per
classification and achieved 99% accuracy. Training the 1-layer fully-
connected network by transfer learning improve the inference accu-
racy significantly. When we use InceptionV3 directly, the inference
accuracy is only 85%. After training by transfer learning, the infer-
ence accuracy becomes 99%.

Network model Network structure

Number of
activations
in private
network

Time Accuracy

Hybrid PE-NN Open: InceptionV3
Private: 1 FC layer 0 Open: 0.012s

Private: 0.007s 99%

Traditional NN
Open: InceptionV3

+1 FC layer
No private network

0 0.012s 99%

Traditional NN
without TL

Open: InceptionV3
No private network 0 0.012s 85%

Basic PE-NN
No open network
Private: InceptionV3

+1 FC layer
≈ 5M ≈ 1 day

(estimated) -

Table 6: Inference on encrypted data in object classification

7 CONCLUSION
This paper presented a practical approach for constructing privacy-
enhanced neural networks by designing an efficient implementation
of fully homomorphic encryption. As part of the efforts towards
building a trusted digital economy, we aim to promote the adoption
of AIaaS, which has emerged as an important trend for supporting
the growth of the digital economy, by allowing AI models to process
encrypted data.

In the global trend of digitalization, digital service providers
make use of their vast amount of user data to train AI models
(such as image recognitions, financial modelling and pandemic
modelling etc) and offer them as a service on the cloud. While there
are convincing advantages for using such third-party models, the
fact that users need to upload their data to the cloud is bound to



raise serious privacy concerns, especially in the face of increasingly
stringent privacy regulations and legislations.

With this approach, an existing neural network can be con-
verted to process FHE-encrypted data and produce encrypted out-
put which are only accessible by the model users, and more im-
portantly, within an operationally acceptable time (e.g. within 1
second for facial recognition in typical border control systems).
Note that, in our work, we apply our FHE technique to existing
proven neural networks instead of building proprietary neural net-
works. Hence, allowing privacy issues to be addressed separately
from the accuracy of the AI models.

Experimental results show that in many practical tasks such as
facial recognition, text classification and so on, we obtained the
state-of-the-art inference accuracy in less than one second on a 16
cores CPU. In conclusion, our experiments show that in various
practical tasks, our scheme achieved the state-of-the-art inference
accuracy efficiently. It shows the feasibility of applying FHE-based
PE-NN in real-world AI services to protect users’ data.

Beside privacy-enhanced neural network inferences, the pro-
posed technique can be used to achieve privacy-enhanced model
training; though further performance improvement is needed, which
is another technical challenge of our future work.
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A SUPPLEMENTARY MATERIALS FOR
SECTION 3

A.1 Some building blocks of our framework
Our framework contains the following functions: Extraction, ho-
momorphic rounding and key switching algorithms. We include
the detailed algorithms are in Algorithm 15, Algorithm 16 and
Algorithm 17.

Algorithm 15: Extract0, to Extract the Constant Term of
an Encrypted Polynomial.

Input: (𝑎, 𝑏) ∈ RLWE𝑛,𝑞𝑠 (𝑚), where𝑚 is a polynomial.
Output: (𝒂′, 𝑏 ′) ∈ LWE𝑛,𝑞𝒔 (𝑚(0)) where 𝒔 is the vector form of
polynomial 𝑠 (from high degree coefficient to low degree
coefficient).𝑚(0) is the constant term of m.
Let 𝑠 = 𝑠𝑛−1𝑋𝑛−1 + . . . + 𝑠1𝑋 + 𝑠0, 𝑎 = 𝑎𝑛−1𝑋𝑛−1 + . . . + 𝑎1𝑋 + 𝑎0
and 𝑏 = 𝑏𝑛−1𝑋𝑛−1 + . . . + 𝑏1𝑋 + 𝑏0.
Set vector 𝒔 = (𝑠𝑛−1, . . . , 𝑠1, 𝑠0).
Set vector 𝒂′ = (−𝑎1, . . . ,−𝑎𝑛−1, 𝑎0) and 𝑏 ′ = 𝑏0.
Return (𝒂′, 𝑏 ′).

Algorithm 16: LWE Rounding and Rescale

Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞
′

𝒔 (𝑚), another modulus
𝑞.
Output: LWE ciphertext 𝑐𝑡 ∈ LWE𝑛,𝑞𝒔 (⌈𝑞𝑚/𝑞′⌋).
Return (⌈𝑞𝒂/𝑞′⌋, ⌈𝑞𝑏/𝑞′⌋).

A.2 2-bit Look-up table algorithm for multiple
hidden layers.

In this case, the key switching algorithm is required between each
hidden layer, which consists of computations on RLWE ciphertexts.
We elaborate the details in Algorithm 18.

A.3 Noise analysis of optimized FHE scheme
In this section, we analyze the growing of noise throughout our
system.

Algorithm 17: LWE Key Switch

Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛
′,𝑞

𝒔′ (𝑚), another dimension
𝑛, decomposition base 𝐵, a set of LWE switching keys w.r.t. 𝐵
and another LWE secret key 𝒔:

SK𝑗 ∈ �RLWE
𝑛,𝑞

𝒔

( 𝑛−1∑︁
𝑙=0

𝒔 [ 𝑗𝑛 + 𝑙]𝑋 𝑙

)
, 𝑗 = 0, 1, . . . , 𝑛′/𝑛 − 1 .

Output: LWE ciphertext 𝑐𝑡 ′ ∈ LWE𝑛,𝑞𝒔 (𝑚).
Define a set of polynomials {𝑎 𝑗 } where

𝑎 𝑗 := 𝒂 [ 𝑗𝑛] −
𝑛−1∑︁
𝑙=1

𝒂 [ 𝑗𝑛 + 𝑙]𝑋𝑛−𝑙 , 𝑗 = 0, 1, . . . , 𝑛′/𝑛 − 1 .

Compute a RLWE ciphertext 𝑐𝑡 :=
∑𝑛′/𝑛−1

𝑗=0 𝑎 𝑗 ⋄ SK𝑗 .
Return (0, 𝑏) + Extract0(𝑐𝑡).

Notations. Let 𝜎2
LWE be the variance of noise used in the LWE

encryption. Define 𝜎2
RGSW, 𝜎

2
KS in the same way.

By the widely used assumptions, we assume that in each poly-
nomial all the coefficients behave like independent zero-mean
random variables of the same variance [11] (weaker than i.i.d.),
and central limit heuristic [13]. The procedures are similar as in
[22]. Further, note that it suffices to find the change of error vari-
ance within one neuron of each layer. Fix Layer 𝑙 , assume that
LWE𝑙−1 := {(𝒂𝑖 , 𝑏𝑖 )}𝑖∈[𝐻𝑙−1 ] has an error whose variance is 𝜎2 in
each LWE ciphertext (𝒂𝑖 , 𝑏𝑖 ).

Linear function. 𝑖𝑝ℎ =
∑
𝑖∈[𝐻𝑙−1 ]𝑊𝑙 [ℎ, 𝑖] × (𝒂𝑖 , 𝑏𝑖 ) + 𝜷𝑙 [ℎ] ∈

LWE𝑛,𝑞𝒔 (·) and thus the noise becomes 𝑒𝑖𝑝 with variance 𝜎2
𝑖𝑝

:=∑
𝑖∈[𝐻𝑙−1 ]𝑊

2
𝑙
[ℎ, 𝑖]𝜎2 ≤ ||𝑊𝑙 | |2𝜎2. Here we define

| |𝑊𝑙 | |2 := max
ℎ∈[𝐻𝑙 ]

{ ∑︁
𝑖∈[𝐻𝑙−1 ]

𝑊 2
𝑙
[ℎ, 𝑖]

}
.

LUT. . As in [22], the LUT evaluations outputs a LWE ciphertext
that decrypts toΔ𝐹 (𝑚+𝑒1)+𝑒2 for input𝑚. And the LUT input is the
above ciphertext 𝑖𝑝ℎ of linear function. We first find 𝑒1, which is the
error of look-up index. Our analysis is based on the Algorithm 10,
and for other proposed algorithms the analysis is almost identical.

• By our LUT algorithm (Algorithm 10), (𝒂′, 𝑏 ′) has decryption
result 𝑏 ′ + ⟨𝒂′, 𝒔⟩ = ⌈2𝑛′𝑚/𝑞⌋ + 𝑒 . By the central limit heuris-
tic, 𝑒 has variance 4𝑛′2𝜎2

𝑖𝑝
/𝑞2 + (| |𝒔 | |22 + 1)/12, where the

second term is from the rounding ⌈·⌋. Note that ciphertext is
generated from uniformly random distribution, thus the loss
of ⌈·⌋ is from 𝑈 [−1/2, 1/2], i.e., the uniform distribution on
[−1/2, 1/2].
• Next, note the definition of polynomial 𝑓 ’s coefficients, the
above error 𝑒 is scaled up by a factor of𝑞/(2𝑛′), which results
in an errorwith variance𝜎2

𝑖𝑝
+𝑞2 ( | |𝒔 | |22+1)/(48𝑛′2). Also note

that the error of ⌈2𝑛′𝑚/𝑞⌋ is scaled up by a factor of 𝑞/(2𝑛′),
this error has variance (1/12) × 𝑞2/(4𝑛′2) if assuming the
loss of ⌈·⌋ is from 𝑈 [−1/2, 1/2]. Summing up both parts we



Algorithm 18: 2-bit Look-up Table Evaluation for Multiple Hidden Layers Neural Network.

1: Input: LWE ciphertext (𝒂, 𝑏) ∈ LWE𝑛,𝑞𝒔 (𝑚) s.t. |𝑚 | < 𝑞/4, scale factor Δ, evaluation function 𝐹 (·) : Z𝑞 → Z𝑞 , RLWE parameter set
(𝑛′, 𝑞′), RLWE secret key 𝑠 ′, a set of evaluation keys w.r.t. the LWE secret key 𝒔 ∈ {−1, 0, 1}𝑛 :

EK𝑗,0 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=1,𝒔 [2𝑗+1]=0), EK𝑗,1 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=1,𝒔 [2𝑗+1]=1), EK𝑗,2 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=1,𝒔 [2𝑗+1]=−1),

EK𝑗,3 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=0,𝒔 [2𝑗+1]=1), EK𝑗,4 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=0,𝒔 [2𝑗+1]=−1), EK𝑗,5 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=−1,𝒔 [2𝑗+1]=1),

EK𝑗,6 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=−1,𝒔 [2𝑗+1]=0), EK𝑗,7 = RGSW𝑛′,𝑞′

𝑠′ (1𝒔 [2𝑗 ]=−1,𝒔 [2𝑗+1]=−1), 𝑗 = 0, 1, . . . , 𝑛/2−1 .

2: Output: LWE ciphertext 𝑐𝑡 ′ ∈ LWE𝑛
′,𝑞′

𝒔′ (Δ𝐹 (𝑚)) where 𝒔
′ is the trivial vector form of polynomial 𝑠 ′ (from high degree to low degree).

3: Let 𝜂𝑘 = 𝑘𝑞/(2𝑛′) for 1 ≤ 𝑘 ≤ 𝑛′/2. Define a polynomial 𝑓 ∈ 𝑅𝑛′,𝑞′ whose coefficients are:

𝑓𝑗 =


⌈Δ𝐹 (0)⌋ if 𝑗 = 0
⌈Δ𝐹 (−𝜂 𝑗 )⌋ if 1 ≤ 𝑗 ≤ 𝑛′/2
⌈−Δ𝐹 (𝜂𝑛′−𝑗 )⌋ if 𝑛′/2 < 𝑗 < 𝑛′

.

4: Let 𝑏 ′ = ⌈2𝑛′𝑏/𝑞⌋, let 𝒂′ = ⌈2𝑛′𝒂/𝑞⌋.
5: Initialize AC = (0, 𝑓 × 𝑋𝑏′) ∈ 𝑅2

𝑛′,𝑞′ .
6: for j=0,1,. . . ,n/2-1 do
7:

AC+=
(
(𝑋𝒂′ [2𝑗 ] − 1)EK𝑗,0 + (𝑋𝒂′ [2𝑗 ]+𝒂′ [2𝑗+1] − 1)EK𝑗,1 + (𝑋𝒂′ [2𝑗 ]−𝒂′ [2𝑗+1] − 1)EK𝑗,2 + (𝑋𝒂′ [2𝑗+1] − 1)EK𝑗,3

+ (𝑋−𝒂
′ [2𝑗+1] − 1)EK𝑗,4 + (𝑋−𝒂

′ [2𝑗 ]+𝒂′ [2𝑗+1] − 1)EK𝑗,5 + (𝑋−𝒂
′ [2𝑗 ] − 1)EK𝑗,6 + (𝑋−𝒂

′ [2𝑗 ]−𝒂′ [2𝑗+1] − 1)EK𝑗,7

)
⊙ AC ,

all calculations are in 𝑅2
𝑛′,𝑞′ .

8: end for
9: Return Extract0(AC).

have

𝑣𝑎𝑟 (𝑒1) = 𝜎2
𝑖𝑝+𝑞

2 ( | |𝒔 | |22+2)/(48𝑛′2) = | |𝑊𝑙 | |2𝜎2+𝑞2 ( | |𝒔 | |22+2)/(48𝑛′2) .

Next, we proceed to find 𝑒2. In each step 𝑗 we calculate the external
product

AC+=
(
(𝑋𝒂′ [ 𝑗 ] − 1)EK𝑗,+ + (𝑋−𝒂

′ [ 𝑗 ] − 1)EK𝑗,−

)
⊙ AC .

As in [11] and [13], under their assumptions we have: Given poly-
nomials 𝑎, 𝑏, whose variances of the coefficients are 𝜎2

𝑎 and 𝜎2
𝑏

respectively, then:
• the variance of coefficients of polynomial 𝑎 + 𝑏 is 𝜎2

𝑎 + 𝜎2
𝑏
;

• the variance of coefficients of polynomial 𝑎𝑏 is 𝑛′𝜎2
𝑎𝜎

2
𝑏
.

Based on the above we are able to find the variance of polynomial
calculations. For the sake of simplicity, when we say the variance
of a polynomial we mean the variance of the coefficients of this
polynomial.
• Let RGSW𝑗 := (𝑋𝒂′ [ 𝑗 ] − 1)EK𝑗,+ + (𝑋−𝒂

′ [ 𝑗 ] − 1)EK𝑗,−. First
we find the variances of the coefficients of the polynomial
in each slot of RGSW𝑗 . By our definition of algorithm, EK𝑗,+
and EK𝑗,− have the same error variance: 𝜎2

RGSW in each slot.
Then note that (𝑋𝒂′ [ 𝑗 ]−1)EK𝑗,+ is a sum of𝑋𝒂′ [ 𝑗 ]EK𝑗,+ and
−EK𝑗,+. They both have variances 𝜎2

RGSW. The other part
(𝑋−𝒂′ [ 𝑗 ] − 1)EK𝑗,− is the same, so the variance in each slot
of (𝑋𝒂′ [ 𝑗 ] − 1)EK𝑗,+ + (𝑋−𝒂

′ [ 𝑗 ] − 1)EK𝑗,− is 4𝜎2
RGSW.

• Suppose in step 𝑗 , AC = (𝑎 𝑗 , 𝑏 𝑗 ) where both 𝑎 𝑗 and 𝑏 𝑗 are
polynomials from the same ring. Given decomposition base
𝐵, they have decomposition

𝑎 𝑗 → (𝑎0, 𝑎1, . . . , 𝑎𝑑−1), 𝑏 𝑗 → (𝑏0, 𝑏1, . . . , 𝑏𝑑−1)

where 𝑎 𝑗 =
∑𝑑−1
𝑖=0 𝐵

𝑖𝑎𝑖 , 𝑏 𝑗 =
∑𝑑−1
𝑖=0 𝐵

𝑖𝑏𝑖 . We also write

RGSW𝑗 = (𝛽, 𝛼)

=

(
(𝛽 [0], 𝛽 [1] . . . , 𝛽 [𝑑 − 1]), (𝛼 [0], 𝛼 [1] . . . , 𝛼 [𝑑 − 1])

)
.

By definition of our RGSW each 𝛽 [ 𝑗] or 𝛼 [ 𝑗] is a pair of
polynomials. Then

RGSW𝑗 ⊙ AC = 𝑎 𝑗 ⋄ 𝛼 + 𝑏 𝑗 ⋄ 𝛽 =

𝑑−1∑︁
𝑖=0

(
𝑎𝑖𝛼 [𝑖] + 𝑏𝑖𝛽 [𝑖]

)
.

Since all 𝑎 𝑗 and 𝑏 𝑗 have 𝐵-bounded coefficients, the variance
of each slot in RGSW ⊙ AC is bounded by

𝑑 × 2 × 𝑛′𝐵2 × (4𝜎2
RGSW) = 8𝑛′𝑑𝐵2𝜎2

RGSW .

• Finally, RGSW𝑗 = (𝑋𝒂′ [ 𝑗 ] − 1)EK𝑗,+ + (𝑋−𝒂
′ [ 𝑗 ] − 1)EK𝑗,− in

each step 𝑗 has the same distribution, and thus has the same
error variance. The total variance in 𝑛 steps is 𝑣𝑎𝑟 (𝑒2) =
8𝑛𝑛′𝑑𝐵2𝜎2

RGSW.



Figure 7: Test result on noise growing in LUT+KS+Rounding

Key Switch. By our definitions of Key-Switching key {SK𝑗 } and�RLWE, each SK𝑗 has 𝑑 RLWE ciphertexts, each of which has error
of variance 𝜎2

KS. The error 𝑒KS is from
∑𝑛′/𝑛−1

𝑗=0 𝑎 𝑗 ⋄SK𝑗 . Similarly as
the ⋄ operation in the LUT part, note that 𝑑𝑒𝑔(𝑎 𝑗 ) = 𝑛, the variance
of 𝑒KS is bounded by

𝑛′/𝑛 × 𝑛𝐵2
KS𝜎

2
KS = 𝑛′𝐵2

KS𝜎
2
KS .

Rounding. Suppose the rounding factor is 𝑧, simply round down
the variance by a factor of 𝑧2. To round the ciphertext to integer,
⌈·⌋ results in an additional variance of 𝑣𝑎𝑟 (𝑒RD) = ( | |𝒔 | |22 + 1)/12.

Like in [22] and many other works, we assume 𝐹 (·) is 𝐿-lipschitz
and then we will have |𝐹 (𝑚 + 𝑒1) − 𝐹 (𝑚) | ≤ 𝐿 |𝑒1 |. Next, |𝑒1 |, |𝑒2 |
and |𝑒KS | can be bounded w.h.p. by 𝑂 (

√︁
𝑣𝑎𝑟 (𝑒𝑖 )), 𝑖 = 1, 2,KS under

central limit heuristic[13]. To sum up, after scaling down Δ, the
error between 𝐹 (𝑚) and 𝐹 (𝑚 +𝑒1) +𝑒2/Δ+𝑒KS/Δ+𝑒RD is bounded

by:

𝑂

(
𝐿
√︁
𝑣𝑎𝑟 (𝑒1) +

√︁
𝑣𝑎𝑟 (𝑒2) +

√︁
𝑣𝑎𝑟 (𝑒KS)

Δ
+
√︁
𝑣𝑎𝑟 (𝑒RD)

)
= 𝑂

(
𝐿

√︃
| |𝑊𝑙 | |2𝜎2 + 𝑞2 ( | |𝒔 | |22 + 2)/(48𝑛′2)

+

√︃
8𝑛𝑛′𝑑𝐵2𝜎2

RGSW +
√︃
𝑛′𝐵2

KS𝜎
2
KS

Δ
+
√︃
( | |𝒔 | |22 + 1)/12

)
.

Also, we give the error variance of the LWE ciphertext that output
to the next layer:

𝜎2
𝑙+1 ≤

(
𝐿2𝑣𝑎𝑟 (𝑒1) +

𝑣𝑎𝑟 (𝑒2) + 𝑣𝑎𝑟 (𝑒KS)
Δ2 + 𝑣𝑎𝑟 (𝑒RD)

)
≤

(
𝐿2

(
| |𝑊𝑙 | |2𝜎2

𝑙
+ 𝑞2 ( | |𝒔 | |22 + 2)/(48𝑛′2)

)
+

8𝑛𝑛′𝑑𝐵2𝜎2
RGSW + 𝑛

′𝐵2
KS𝜎

2
KS

Δ2 + (| |𝒔 | |22 + 1)/12
)
.

A.3.1 Experiments on noise growing in multiple layers. After show-
ing that our system performed well in single hidden layer neural
network, we move our focus to multiple layers. The key to achieve
good results in multiple layers is to ensure that the noise is always
in a suitable range. In section A.3, we showed a theoretical anal-
ysis on the growing of noise. Now, we show some experimental
results about it. The noise is growing in two steps. The first is in
the inner-product computation. In this part, the growing of noise
is linear and easy to control by choosing suitable parameters. So
we focus on the second step: Look-up table (LUT), key switching
(KS) and rounding. We ask the program to run one inner-product
computation and then to perform LUT+KS+Rounding 5 times con-
tinuously and get the following Figure 7 (the evaluation function in
LUT is ReLu). The picture shows the difference between the result
of “𝑖-th LUT+KS+Rounding” and the real value. 0 means that the
result in “𝑖-th LUT+KS+Rounding” is the same as the real value,
which means no error exists. From the picture we can see that, most
of points fall in (−5, 20), which is relatively small compared to the
inner-product range (−1000, 1000).
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