
A Note on Non-Interactive Zero-Knowledge from CDH

Geoffroy Couteau∗
Université Paris Cité, CNRS, IRIF

Abhishek Jain†
Johns Hopkins University

Zhengzhong Jin ‡

MIT

Willy Quach§
Northeastern University

Abstract

We build non-interactive zero-knowledge (NIZK) and ZAP arguments for allNPwhere soundness holds for
infinitely-many security parameters, and against uniform adversaries, assuming the subexponential hardness of
the Computational Diffie-Hellman (CDH) assumption. We additionally prove the existence of NIZK arguments
with these same properties assuming the polynomial hardness of both CDH and the Learning Parity with Noise
(LPN) assumption. In both cases, the CDH assumption does not require a group equipped with a pairing.

Infinitely-often uniform security is a standard byproduct of commonly used non-black-box techniques
that build on disjunction arguments on the (in)security of some primitive. In the course of proving our results,
we develop a new variant of this non-black-box technique that yields improved guarantees: we obtain explicit
constructions (previous works generally only obtained existential results) where security holds for a relatively
dense set of security parameters (as opposed to an arbitrary infinite set of security parameters). We demonstrate
that our technique can have applications beyond our main results.

∗Email: couteau@irif.fr
†Email: abhishek@cs.jhu.edu
‡Email: zzjin@mit.edu
§Email: quach.w@northeastern.edu

1

mailto:couteau@irif.fr
mailto:abhishek@cs.jhu.edu
mailto:zzjin@mit.edu
mailto:quach.w@northeastern.edu


Contents
1 Introduction 1

1.1 Our Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 On Infinitely-Often Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview 4

3 Preliminaries 7
3.1 Diffie-Hellman Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Non-Interactive Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Verifiable Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 NIZKs and ZAP arguments from DDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 DDH Breakers and VPRGs 11
4.1 Amplification of DDH Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 VPRGs from Strong DDH Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 A Subexponentially-Often NIZK from Subexponential CDH 14
5.1 A Universal DDH Breaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 A Subexponentially-Often NIZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 An Infinitely-Often NIZK from CDH+LPN 20

7 Instantiation from Elliptic Curves 21

8 On Promise-True Distributional Search NP Hardness from Average-Case NP Hardness 23
8.1 A Universal One-Way Function Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 The Pass-Venkitasubramaniam Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 A New Reduction from Distributional NP Problems to Promise-True Distributional NP Problems 26

i



1 Introduction
Zero-knowledge (ZK) proofs [GMR85] allow a prover to convince a verifier about the validity of a statement
without revealing any other information. They are studied in two flavors – interactive proofs, where the prover
and the verifier exchange messages in a protocol, and non-interactive proofs, where the prover sends a single
message to the verifier. The latter notion, referred to as non-interactive zero knowledge (NIZK) [DMP88,BFM88],
has been central to the popularity of ZK proofs due to its wide-ranging applications, including advanced encryp-
tion schemes [NY90,DDN91], signature schemes [BMW03,BKM06] and anonymous blockchains [BCG+14].

NIZKs are a fascinating object in cryptography. Despite a long line of research starting more than three
decades ago [DMP88,BFM88, FLS90,BY93,CHK03,GOS06b,GOS06a,GR13, SW14,CL18,CCRR18,CCH+19, PS19,
CKU20, BKM20, JJ21], remarkably, the cryptographic complexity of NIZKs is not well understood. We do not
yet know whether NIZKs are in Minicrypt or Cryptomania.1 In fact, we do not even know how to construct
NIZKs from all standard assumptions known to imply public-key encryption. Significant progress, however, has
recently been made on this front: we now know NIZKs for NP from learning with errors [CCH+19, PS19] as
well as the (sub-exponential) Decisional Diffie Hellman (DDH) assumption [JJ21], which substantially adds to
the prior list of assumptions known to imply NIZKs.

DDH is the strongest assumption in the discrete-logarithm family of assumptions. A weaker assumption –
known to imply public-key encryption – is the Computational Diffie Hellman (CDH) assumption. With the aim
of further enhancing our understanding of the relationship between NIZKs and public-key encryption, we ask
the following question:

Do there exist NIZKs for NP based on CDH?

A positive resolution to this question would also help diminish the gap between NIZKs and their designated-
verifier2 counterpart [PsV06]. Indeed, the latter are already known from CDH [QRW19,CH19,KNYY19] as well
as all other assumptions known to imply NIZKs (see [LQR+19] and references therein).

ZAPs. ZAPs [DN00] are two-round public-coin proof systems in the plain model that guarantee witness in-
distinguishability (WI) [FS87], i.e., a proof for a statement with two or more witnesses does not reveal which of
the witnesses was used in the computation of the proof.

Dwork and Naor [DN00] proved that ZAPs are equivalent to NIZK proofs in the common random string
model. Thus, ZAPs are known from the same assumptions also known to imply NIZK proofs. Very recently,
computationally-sound ZAPs, aka ZAP arguments were constructed based on quasi-polynomial LWE [BFJ+20,
LVW19, GJJM20], and subexponential DDH (and variants) [JJ21, CKSU21]. As in the case of NIZKs, however,
constructing ZAP arguments based on CDH remains an open problem.

CDH vs DDH. Our work follows a well-established line of research on building cryptographic primitives from
CDH, when feasibility from DDH is already known. The motivation for this line of work stems from the relative
gap between CDH and DDH and the difficulty of building cryptography from CDH.

CDH is a weaker assumption than DDH, and believed to be strictly weaker for some choices of groups, e.g.
G = Z∗𝑞 or the source group G of a symmetric pairing 𝑒 : G×G→ G𝑇 (where, in both cases, DDH is broken). In
fact, the hardness of CDH is closely related to that of the discrete logarithm assumption: [Mau94] proved that the
non-uniform hardness of CDH in any group G of known order 𝑞 is equivalent to the non-uniform hardness of
computing discrete logarithms in G, and [BL96] proved that the uniform versions are equivalent in the (large)
subexponential regime, both results assuming a plausible and widely believed conjecture on the distribution
of smooth numbers. In that sense, despite being a public-key assumption, CDH is morally equivalent to the
hardness of computing discrete logarithms, while there are no such connections for DDH (unless computing
discrete logarithm is easy in all groups where DDH is known not to hold).

Furthermore, CDH seems to be significantly less expressive than DDH in terms of enabling advanced func-
tionalities. While there has been recent progress on buildingCDH counterparts to fundamental primitives known
from DDH, (e.g. trapdoor functions [GH18], maliciously-secure oblivious transfer [DGH+20], or private infor-
mation retrieval [BCM22]), there are still many fundamental primitives known from DDH that have no CDH
counterpart (e.g. lossy trapdoor functions [PW08], somewhere statistically-binding hash functions [OPWW15],
or 2-round private information retrieval [DGI+19], and more generally, most primitives that are built from the
dual mode paradigm).

1Throughout this work, we focus on NIZKs in the common reference string (CRS) model. In the Random Oracle model, NIZKs are known
to be in Minicrypt.

2In a designated-verifier NIZK, the verifier receives a private verification key that is sampled together with the CRS, which can be used
to verify many proofs.

1



1.1 Our Main Result
In this work, we make progress towards resolving the above question. We demonstrate that NIZKs and ZAP
arguments forNPwith infinitely-often security against uniform adversaries do exist based on the subexponential
CDH assumption, without requiring the existence of a pairing.

Theorem 1.1 (Informal). Under the subexponential CDH assumption, there exist:

• a subexponentially-often secure, uniform NIZK argument for all NP in the common random string model;

• a subexponentially-often secure, uniform ZAP argument for all NP.

More precisely, our assumption in Theorem 1.1 states that no subexponential-time adversary can compute
random Diffie-Hellman tuples, either over Z∗𝑞 (or any subgroup, or, even more generally, over any group (family)
with exponentiation computable in TC0) or any (family of) elliptic curves (without requiring a pairing), with
better than subexponential probability. Note that similar restrictions on cryptographic groups appear in the
construction of NIZKs and ZAP arguments from DDH ( [JJ21]).

Our NIZK satisfies (1) infinitely-often adaptive soundness against uniform efficient cheating provers, and (2)
(standard, computational) adaptive, multi-theorem zero-knowledge. Our ZAP argument satisfies (1) infinitely-
often non-adaptive soundness against uniform efficient cheating provers, and (2) (standard, computational) adap-
tive witness indistinguishability. Moreover, the set of security parameters where we argue soundness is at least
subexponentially dense, in a sense we specify below.

1.2 On Infinitely-Often Security
Infinitely-often security refers to a setting where a primitive is secure on infinitely-many security parameters
(as opposed to the traditional notion of almost everywhere security, where security holds for all large enough
parameters). It shows up naturally as a consequence of a common non-black-box technique where the insecu-
rity of a cryptographic primitive is used to argue the security of another primitive (where the attacker against
the insecure primitive is used either explicitly in the construction, or implicitly in the security analysis), since
(the standard notion of) insecurity of a primitive only guarantees the existence of an attacker successful on
infinitely-many security parameters. This behavior shows up in many recent works, where it is sometimes ex-
plicitly pointed out, and sometimes disregarded as a minor technical subtlety. Early examples include the work
of [RTV04] (which shows that if there is a reduction of key-agreement to OWFs, then there exists a mildly-
blackbox reduction of infinitely often key-agreement to OWFs) and the work of [MPS10] (infinitely often one-
way functions from constant-round weak coin-flipping protocol). There are also many recent examples, such
as [HNO+18] (infinitely-often key agreement from nontrivially-correlated 2-party protocols), [Den17] (either the
Feige-Shamir protocol is concurrent zero-knowledge, or injective one-way functions imply an infinitely often
key agreement), [Zha19] (a post-quantum collision-resistant hash function is either “collapsing”, or it implies
infinitely often quantum lightning schemes), or the works of [KY18,RV22] (which construct (distributional and
standard, respectively) collision-resistant hash functions frommulti-collision-resistant hash functions). A recent
work of [PV20] shows that hard-on-average NP languages imply infinitely-often hard-on-average promise-true
NP search problems. Closer in spirit to our work, [CKU20] gives a construction of infinitely-often NIZK from
an exponentially-strong KDM-style variant of the discrete logarithm assumption.

In all these works, the existential result is generally non-constructive (whenever the construction itself relies
on the existence of an adversary against some primitive) and holds only for infinitely many security parameters,
with no guarantee on the density of these parameters (i.e. the secure parameters could be separated by arbitrarily
fast-growing gaps).

Our Work. In contrast, a surprising and interesting feature of our work is that we manage to improve signifi-
cantly on both these caveats: while we employ a non-black-box technique similar in spirit to these works, our
constructions

• are fully explicit (i.e., our result is constructive)

• are proven secure on a set 𝐸 of security parameters which can be shown to be reasonably dense in N.

Concretely, in our main construction of NIZKs and ZAP arguments from the subexponential hardness of CDH,
the set 𝐸 of secure security parameters for our NIZKs and ZAPs is at least subexponentially dense: there exists
a constant 0 < 𝐾 < 1 such that, for all 𝜆 ∈ N,

[
𝜆, 2𝜆𝐾

]
∩ 𝐸 ≠ ∅. In that sense, we say that the constructions of

Theorem 1.1 are subexponentially-often secure.

2



A caveat of our technique is that soundness only holds against uniform cheating provers, while usual notions
of security allow adversaries to use a non-efficiently computable advice. This seems an unavoidable consequence
of aiming for uniform NIZK algorithms (so that honest parties do not require non-uniform advice to run our
NIZK). Consequently, our construction can only use the existence of a uniform attacker against some primitive,
which turns into building soundness on uniform computational assumptions. We refer to the technical overview
for more details.

Looking ahead, we prove Theorem 1.1 by carefully combining two central ingredients. The first is a NIZK
(resp. ZAP argument) which is secure assuming the subexponential hardness of DDH [JJ21]. The second is a
template to build NIZKs from cryptographic groups, introduced in [CH19,QRW19,KNYY19] (resp. ZAPs, when
combined with [DN00]). Our main technical tool is the construction of a universal breaker, which we believe
to be of independent interest. In our setting, our universal breaker allows to somewhat efficiently test, given a
security parameter 𝜆, whether DDH is “secure” with respect to 𝜆, for a specific definition of security. We refer
to the technical overview and Section 5.1 for more precise statements.

On the generality of our approach. While we mostly focus on NIZKs and ZAP arguments, our approach
is modular, and we believe that a similar technique could be used to refine the results of many of the previous
works that achieved infinitely often security, such as those listed above. In general, when our approach can be
applied, it should lead to explicit constructions with security on a dense set of security parameters, but with two
caveats: it would only prove security against uniform adversaries, and would rely on superpolynomial hardness
assumptions (because our techniques inherently require some mild use of complexity leveraging). Though the
results stated in Theorem 1.1 are our main results, we believe that our new techniques are a conceptual contri-
bution of independent interest. Below, we further illustrate the generality of our techniques and obtain some
additional results, both within and outside the setting of NIZKs.

1.3 Further Results
NIZKs from CDH+LPN. First, replacing the NIZK of [JJ21] with the one of [BKM20], we directly obtain the
following:

Theorem 1.2 (Informal). Under both the superpolynomial CDH and polynomial Learning Parity with Noise (LPN)
assumptions, there exists a NIZK argument for all NP satisfying (1) superpolynomially-often adaptive soundness
against uniform efficient cheating provers, and (2) (standard, computational) adaptive, multi-theorem zero-knowledge.

We also show, through a different argument, the following existential (non-constructive) result. We refer to
Section 6 for more details.

Theorem 1.3 (Informal). At least one of the following two statements holds:

• Under the polynomial LPN assumption, there exists a NIZK argument for all NP satisfying (1) infinitely-often
non-adaptive soundness against uniform efficient cheating provers and (2) statistical zero-knowledge;

• Under the polynomial CDH assumption, there exists a NIZK proof for all NP satisfying (1) statistical adaptive
soundness and (2) (standard, computational) adaptive, multi-theorem zero-knowledge.

Unlike Theorem 1.1, neither Theorem 1.2 nor Theorem 1.3 suffer from restrictions over cryptographic groups
supported.

Promise-true hard-on-average search problems from hard-on-average languages. Eventually, we re-
visit the recent work of [PV20], which showed that if there exists a hard-on-average NP language, then there
also exists an (infinitely-often) hard-on-average promise-true distributional NP search problem – or, using their
terminology, proving theorems that are guaranteed to be true is no easier than proving theorems in general.
Applying our new technique, we obtain an explicit variant of their main theorem that starts from a (mildly
superpolynomially) hard-on-average NP language, and builds a promise-true distributional NP search problem
which is sound on a superpolynomially dense set of security parameters:

Theorem 1.4 (Informal). Given any superpolynomially-secure uniformly hard-on-average NP language, there is
an explicit construction of a promise-true distributional NP search problem which is uniformly superpolynomially-
often hard-on-average.

3



1.4 Roadmap
We present an overview of our techniques in Section 2. We introduce notations and recall useful results from
prior work in Section 3. In Section 4, we present generic constructions related to DDH breakers and DDH-
based NIZKs. In Section 5, we present our main construction along with our main technical tools. In Section 6,
we present a purely existential result corresponding to Theorem 1.3. In Section 7, we show how to adapt our
construction to the setting of elliptic curves. In Section 8, we present a construction of promise-true NP search
problem from a hard-on-average NP language.

2 Technical Overview
Designated-Verifier NIZKs from CDH. Our starting point is the construction of designated-verifier NIZKs
for NP from CDH [CH19,QRW19,KNYY19]. In a nutshell, these works, assuming CDH, reduce building a NIZK
for all NP to the task of building a NIZK for the DDH language: an instance (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) belongs to the language
if 𝛾 = 𝛼 · 𝛽 mod 𝑝 , where 𝑝 is the order of the group. Unfortunately, we do not know how to build NIZKs for the
DDH language assuming only the hardness of CDH. Instead, [CH19,QRW19,KNYY19] observe that designated-
verifier NIZKs for the DDH language can be constructed [CS02], which in turn, yields a designated-verifier NIZK
for NP from CDH.

In fact, this approach can yield publicly-verifiable NIZKs for NP if the verifier can efficiently check whether
group elements form DDH tuples. This observation already yields a NIZK for NP when the group is equipped
with a (symmetric) bilinear map: the verifier can check whether an input from the source group is a DDH tuple
by comparing the appropriate pairings 𝑒 (𝑔,𝑔𝛾 ) and 𝑒 (𝑔𝛼 , 𝑔𝛽 ) [CHK03, QRW19]. Notably, the bilinear map and
the target group are only used in the verification algorithm, and security properties of the NIZK only rely on the
hardness of CDH in the source group.

Alternatively, if DDH were broken over the group (without pairings), then we could also obtain NIZKs for NP
based on CDH via this approach. In this case, the verifier could perform the required checks using the DDH
breaker. For convenience, we refer to NIZKs obtained in this manner as DDH-based NIZKs.

NIZKs from DDH, and a Disjunction Argument. Recently, [JJ21] provided a construction of NIZK for all
NP from (subexponential) DDH.34 For convenience, we will refer to this NIZK as a DDH-based NIZK.

This brings us to the following attempt for constructing NIZKs for NP from CDH. Fix a single (family of)
cryptographic groups for which CDH holds. Then,

• either “DDH is secure”, in which case the DDH-based NIZK of [JJ21] is secure,

• or “DDH is broken”, which allows to build a DDH-based NIZK, assuming CDH!

One could be tempted to conclude that this disjunction approach yields a NIZK for all of NP from CDH. Unfor-
tunately, this conclusion does not directly hold, because the statements “DDH is secure” and “DDH is broken”,
as (imprecisely) stated above, are not negations of each other. Nevertheless, this dichotomy serves as the key
starting point behind our result.

A Closer Look. There are several mismatches in the definitions of “secure” and “broken” above.

1. A first mismatch relates to the success probabilities of breakers. An adversary falsifying the security of DDH
is only ensured to work with some small, non-negligible (or even subexponentially small) probability. In
contrast, the breaker needed to instantiate the DDH-based NIZK from CDH needs to work with very high
probability on worst-case inputs (since the breaker is used by the verifier).

2. A second mismatch is that hardness assumptions are usually stated as to handle non-uniform adversaries.
Consequently, an adversary falsifying the security of DDH would only yield a non-uniform DDH breaker,
and thus the resulting verifier for the DDH-based NIZK would be non-uniform.

3 [JJ21] actually provides two NIZKs. The first one provides statistical zero-knowledge, but only non-adaptive soundness. The second is
adaptively-sound and computationally zero-knowledge. Because our approach can only yield computational zero-knowledge, we will use
the second version.

4Technically, [JJ21] imposes mild restrictions on the supported cryptographic groups, that we also inherit. We will ignore this for the
sake of this overview, and refer to Section 3.1 for more details.

4



3. A third mismatch is that, in order to falsify DDH being secure in the usual sense, it suffices to exhibit an ad-
versary that breaks DDHwith sufficiently good advantage on infinitely many security parameters. In fact,
it is not even clear, given such an adversary, how to efficiently determine on which security parameters the
breaker works, without, say, a bound on its runtime. Such a bound could be provided as non-uniform ad-
vice to the verification algorithm, but would again result again in a DDH-based NIZK with a non-uniform
verifier. Furthermore, such an adversary would only help in constructing a DDH-based NIZK on only
infinitely many security parameters.

The first mismatch can be taken care of using the random self-reducibility of DDH,5 which allows us to
amplify the success probability of any “weak” breaker to a “strong” one. Given that the DDH-based NIZK of [JJ21]
relies on the subexponential hardness of DDH, the resulting amplified breaker runs in subexponential time. Then,
after relying on complexity leveraging for the resultingDDH-based NIZK in order to make this breaker efficient,
soundness follows from the (mildly stronger) subexponential hardness of CDH.

It is unfortunately less clear how to handle the two other issues. Still, the approach above already gives a
NIZK with non-uniform, non-explicit algorithms, which is infinitely-often secure based on the subexponential
hardness of CDH — an already interesting result.6

A Universal DDH Breaker. Towards tackling the drawbacks of the previous construction, our first step is to
characterize more precisely subsets of security parameters such that DDH is secure, and ones such that DDH
is broken. Doing so opens the hope of obtaining a new construction which, for every security parameter, uses
either the DDH-based NIZK if the security parameter is secure, and the DDH-based NIZK otherwise.

Our crucial observation is that, for a suitable notion of security, one can somewhat efficiently test whether
a security parameter is secure. We do so through the construction of a universal breaker UnivBreak, which
(with overwhelming probability) breaks DDH on every security parameter such that some good breaker exists,
and fails only when no good enough breaker exists. Our construction is inspired by classic constructions of
universal cryptographic objects. Namely, it iterates through all small Turing machines of size say ≤ ⌊log 𝜆⌋,
and tests whether they efficiently break DDH. If a good breaker exists, it uses one of them to break DDH, and
otherwise states that the security parameter is secure. Standard concentration bounds intuitively ensure that
if a good breaker exists, then UnivBreak finds a good breaker (with overwhelming probability), and if no good
breakers exist, then UnivBreak is not fooled into using a bad breaker (with overwhelming probability). Still, in
order to fully define our universal breaker, we need to define more precisely the set of “small Turing machines”
it will consider. Equivalently, we now seek to formally define a set SECURE of security parameters for which
DDH is secure.

We observe that if SECURE relates to the uniform security of DDH, then breakers on SECURE B N\SECURE
are also uniform. The intuition is then that, fixing any uniform breakerA on SECURE,UnivBreakwill eventually
runA when given as input a large enough security parameter 𝜆 ≥ 2 |A | , allowing us to use theDDH-based NIZK.
Furthermore, we can show that the DDH-based NIZK is sound on SECURE, albeit only against uniform cheating
provers. Ultimately, this is the reason our constructions are only sound against uniform cheating provers.

This is unfortunately not yet sufficient. The reason is that UnivBreak is called on a fixed security parameter
𝜆, and that security on any fixed security parameter is an inherently non-uniform notion of security. For instance,
there could exist a family of uniform breakers A𝑖 that respectively break DDH on all large enough parameters
in {𝜆 ∉ SECURE | 𝜆 ≥ 𝜆𝑖 } but such that 𝜆𝑖 grows with their size |A𝑖 | as Turing machines, eg 𝜆𝑖 = |A𝑖 |. In
particular, we cannot rule out that, for all 𝜆 ∉ SECURE, UnivBreak never runs any A𝑖 on input 𝜆 ≥ 𝜆𝑖 . This,
in turn, could imply that for all security parameters, UnivBreak has low advantage, or even wrongly concludes
that some input parameter is secure.

Our solution is to modify the definition of SECURE to bound the “non-uniformity” of breakers. Namely,
whether some fixed security parameter 𝜆 belongs to SECURE now only depends on whether there exists an
adversary with small description ≤ ⌊log 𝜆⌋ as a Turing machine that breaks DDH on 𝜆.

A separate issue is that iterating over polynomial-time adversaries with non-negligible advantage is not well
defined, because the notions of polynomial-time and negligible advantage are asymptotic. For instance, for any
fixed 𝜆, there will always exist a (uniform) polynomial-time machine breaking DDH on 𝜆 with non-negligible
advantage. Instead, we define SECURE using (𝑡 (𝜆), 𝜀 (𝜆))-security (namely, considering adversaries running
in time 𝑡 (𝜆) with advantage 𝜀 (𝜆)) with fixed functions 𝑡 = 𝑡 (𝜆) and 𝜀 = 𝜀 (𝜆), where 𝑡 is superpolynomial,
and 𝜀 is inverse superpolynomial, so that (𝑡, 𝜀)-security (asymptotically) implies standard polynomial security.

5Assuming the (family of) group is of prime order.
6Formalizing such a statement turns out to require quite a bit of care, because of subtleties specific to the precise soundness statement

of [JJ21]. We will not develop these difficulties further here, as we will directly prove a stronger statement below.

5



Importantly, we can argue that DDH is uniformly hard on the set SECURE, which will allow us to argue uniform
soundness of the DDH-based NIZK.

Summing up, our universal breaker UnivBreak, on input a security parameter 𝜆, tests all 𝑡 (𝜆)-time machines
of size ≤ ⌊log 𝜆⌋, and checks whether their advantage in breaking DDH is larger than 𝜀 (𝜆), using ≈ 1/𝜀2 (𝜆)
runs. If some machine has enough advantage, UnivBreak uses this machine to compute its output; and if no such
machine exists, UnivBreak indicates that 𝜆 is secure. Note that UnivBreak is somewhat efficient in that it runs
in superpolynomial time ≈ 𝑡 (𝜆)/𝜀2 (𝜆). Intuitively, UnivBreak indicates that 𝜆 is secure whenever 𝜆 ∈ SECURE,
and breaks DDH with advantage ≈ 𝜀 (𝜆) whenever 𝜆 ∉ SECURE. It turns out this intuition is slightly inaccurate,
but will suffice for the purpose of this overview. We refer to Section 5.1 for more details, and a formal treatment.

A Subexponentially-Often NIZK from Subexponential CDH. We now use our universal breaker to build
a (weak) NIZK from CDH. A proof in our scheme simply consists of both a DDH-based proof 𝜋DDH and a DDH-
based proof 𝜋DDH. The verifier, given the security parameter 𝜆, tests the universal breaker UnivBreak on 𝜆. If the
universal breaker fails to produce an output bit, the verifier verifies 𝜋DDH. Otherwise, it amplifies the advantage
ofUnivBreak in order to verify 𝜋DDH. Note that the construction is fully explicit, and features uniform algorithms.

Completeness and zero-knowledge follow from correctness of UnivBreak (which is ensured to produce out-
puts with good advantage whenever it produces an output) and the completeness and zero knowledge properties
of the DDH-based NIZK and the DDH-based NIZK.

One could hope that the NIZK above satisfies uniform soundness on all security parameters, Indeed, the
uniform hardness of DDH holds over the set of parameters SECURE by definition: given any PPT uniform
adversary A of size 𝑠 , thanks to 𝑡 (𝜆) (resp. 𝜀 (𝜆)) being superpolynomial (resp. inverse superpolynomial), we
have that for all large enough 𝜆 ≥ 2𝑠 such that 𝜆 ∈ SECURE, the advantage ofA on 𝜆 is at most 𝜀 (𝜆). Conversely,
if 𝜆 ∉ SECURE, then soundness holds thanks to guarantees on UnivBreak and soundness of the DDH-based
NIZK.

Unfortunately, the argument above does not hold, because the (amplified) DDH breaker given by UnivBreak
runs in super-polynomial time ≈ 𝑡 (𝜆)/𝜀2 (𝜆). In fact, the security of the DDH-NIZK of [JJ21] requires assum-
ing the subexponential security of DDH, which requires to set 𝜀 as inverse subexponential. Thus, the resulting
verification algorithm building on UnivBreak actually runs in subexponential time. As a result, we need to rely
on complexity leveraging whenever calling the DDH-based NIZK to make the verification algorithm efficient.
Namely, our NIZK for security parameter 𝜆 calls the DDH-based NIZK on security parameter 𝜆′ B ⌊log1/𝑐 (𝜆)⌋
for some constant 0 < 𝑐 < 1. First, this introduces the need to assume subexponential hardness of CDH (to argue
zero-knowledge of the DDH-based NIZK). Second, this resulting mismatch of the security parameters used by
the DDH-based NIZK and the DDH-based NIZK prevents us from arguing soundness on all security parameters:
it could be that 𝜆 ∉ SECURE and 𝜆′ ∈ SECURE, in which case we do not know how to argue soundness of any
of the two NIZKs, whenever running our NIZK on security parameter 𝜆.

Still, we obtain a NIZK which is secure on infinitely-many security parameters. In fact, we can argue that
the set of secure parameters for the NIZK is subexponentially dense in the following sense. For every security
parameter 𝜆, either 𝜆 ∈ SECURE or 𝜆 ∉ SECURE. Consequently, either our NIZK is sound on 𝜆 (corresponding
to 𝜆 ∈ SECURE), or it is sound on 𝜆 B 2𝜆𝑐 (corresponding to 𝜆 ∉ SECURE). This is because, in that latter case,
on input 𝜆, our NIZK calls the DDH-based NIZK and UnivBreak on parameter ⌊log1/𝑐

(
𝜆

)
⌋ = 𝜆 ∉ SECURE, and

therefore soundness of the DDH-based NIZK applies.7 Overall, this ensures that the relative gap between two
consecutive parameters for which our NIZK is secure is at most subexponential. We refer to Theorem 5.1 for a
formal statement.

Variant: NIZK from CDH and LPN. Our approach is quite modular in the DDH-based NIZK we start from.
In particular, starting with the construction of [BKM20] which is secure assuming both the polynomial hardness
of DDH and LPN, we obtain a “superpolynomially dense” NIZK where the gap between secure parameters is
only superpolynomial, and where security holds assuming both the superpolynomial hardness of CDH and the
polynomial hardness of LPN.8

Variant: ZAP Arguments from CDH. We observe that, given a DDH breaker, the DDH-based NIZKs from
[CH19,QRW19,KNYY19] use a uniform common random string, and are statistically sound. Thus, any efficient

7The actual statement we prove is slightly more technical, due to subtleties in the proof of soundness of [JJ21]. We refer to Theorem 5.1
for more details.

8We only know how to instantiate our universal breaker using a superpolynomial (resp. inverse superpolynomial) function 𝑡 (resp. 𝜀) so
that 𝜆 ∈ SECURE implies that DDH is polynomially hard on 𝜆 against uniform adversaries. We therefore still need to rely on complexity
leveraging, resulting in a superpolynomial gap.

6



DDH breaker implies a ZAP for all NP based on CDH via [DN00]. Moreover, [JJ21] builds ZAP arguments
for all NP assuming the subexponential hardness of DDH. Thus, we can apply the same blueprint as for the
construction of NIZK. The verifier message consists of verifier messages for both theDDH-based ZAP argument
and the (complexity-leveraged) DDH-based ZAP, and the prover replies with two proofs. The verifier then runs
UnivBreak, and verifies one of the proofs accordingly. A similar analysis gives that the resulting ZAP argument is
subexponentially often (non-adaptively) sound against uniform cheating provers,9 and witness indistinguishable
assuming the subexponential hardness of CDH.

3 Preliminaries
Notation. Throughout this paper, 𝜆 denotes the security parameter. A probabilistic polynomial time algorithm
(PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit) security parameter 𝜆. A function
𝑓 is negligible if for any positive polynomial 𝑝 there exists a bound 𝐵 > 0 such that, for any integer 𝑘 ≥ 𝐵,
|𝑓 (𝑘) | ≤ 1/|𝑝 (𝑘) |. Given a finite set 𝑆 , the notation 𝑥

$← 𝑆 means a uniformly random assignment of an element
of 𝑆 to the variable 𝑥 . For a positive integer 𝑛,𝑚 such that 𝑛 < 𝑚, we denote by [𝑛] the set {1, · · · , 𝑛}. We will
sometimes explicitly refer to the random coins 𝑟 used by a probabilistic algorithm𝑀 by writing𝑀 (·; 𝑟 ).

3.1 Diffie-Hellman Assumptions
Cryptographic Groups. Let DHGen be a deterministic algorithm which on input 1𝜆 returns a description
G = (G, 𝑝) where G is a cyclic group of prime order 𝑝 . Throughout the paper, we will fix DHGen, and therefore
a family of groups {G𝜆}𝜆∈N. Unless specified otherwise, we will assume throughout this work that the prime-
order group G has exponentiation in TC0. This notably includes (subgroups of) Z∗𝑞 for 𝑞 ∈ N, which includes its
subgroup of quadratic residues. Looking ahead, we consider in Section 7 a variant for elliptic curves.

As is usually (implicitly) assumed for cryptographic groups, we will suppose that, for all 𝜆 ∈ N, there exists
an efficient oblivious sampling algorithm Sample(1𝜆 ; 𝑟 ) ↦→ 𝑔 which we denote 𝑔

$← G𝜆 . Formally, this requires
that there exists an efficient algorithm Equivocate such that the two following distributions are within negligible
statistical distance: (𝑟, Sample(1𝜆 ; 𝑟 )) ≈𝑠 (Equivocate(𝑔), 𝑔 ← G), where 𝑟 is uniformly random. Note that this
follows whenever the description of a uniformly random group element is itself a uniformly random string. This
allows to securely view uniformly random group elements as uniformly random strings (up to considering the
internal random coins used by Sample).

The computational Diffie-Hellman assumption is defined as follows.

Definition 3.1 (CDH Assumption). We say that the computational Diffie-Hellman (CDH) assumption holds rela-
tive to DHGen if for all PPT adversaries A and all large enough security parameters 𝜆,

Pr
[
G = DHGen(1𝜆), 𝑔 $← G, 𝛼, 𝛽 $← Z𝑝 : 𝑔𝛼𝛽

$← A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 )
]
≤ negl(𝜆).

We also define similarly the decisional Diffie-Hellman assumption:

Definition 3.2 (DDH Assumption). We say that the decisional Diffie-Hellman (DDH) assumption holds relative
to DHGen if for all PPT adversaries A and all large enough security parameters 𝜆,

Pr

[
G = DHGen(1𝜆), 𝑔 $← G, 𝛼, 𝛽,𝛾 $← Z𝑝 , 𝑏

$← {0, 1},
𝛿 ← 𝑏𝛾 + (1 − 𝑏)𝛼𝛽,𝑏 ′ $← A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 )

: 𝑏 = 𝑏 ′

]
≤ 1

2
+ negl(𝜆).

Throughout the paper, whenever there are no ambiguities about DHGen, we will denote by AdvDDHA (1𝜆), for any
adversary A and security parameter 𝜆, the probability

AdvDDHA (1𝜆) B Pr

[
G = DHGen(1𝜆), 𝑔 $← G, 𝛼, 𝛽,𝛾 $← Z𝑝 , 𝑏

$← {0, 1},
𝛿 ← 𝑏𝛾 + (1 − 𝑏)𝛼𝛽,𝑏 ′ $← A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 )

: 𝑏 = 𝑏 ′

]
− 1

2
.

Subexponential security. In the definition of CDH (resp. DDH), if the inequality is strengthened to hold
against all probabilistic 2𝜆𝑐 -time adversaries A with advantage at most 2−𝜆𝑐 for some constant 0 < 𝑐 < 1, we
refer to the corresponding assumption as the (2𝜆𝑐 -)subexponential CDH (resp. DDH) assumption.

9This is because the ZAP argument of [JJ21] is only non-adaptively sound.

7



Infinitely-often security. In the definition of CDH (resp. DDH), if the inequality is instead required to hold
only for (all large enough elements of) an infinite set of security parameters 𝐸 ⊆ N, we refer to the corresponding
assumption as the infinitely-often CDH (resp. DDH) assumption with respect to 𝐸, and denote it io-CDH (resp.
io-DDH).

Uniform security. By default, when we quantify over PPT adversaries A, PPT refers to non-uniform adver-
saries: families {A𝜆}𝜆∈N of boolean circuits such that |A𝜆 | = poly(𝜆) for every 𝜆 ∈ N. In this work, we will in
fact mostly consider a weaker, uniform notion of security, where the adversariesA are modelled as probabilistic
Turing machines. When the CDH (resp. DDH) assumption is only required to hold against all uniform PPT
adversaries, we call uniform CDH (resp. uniform DDH ) the corresponding assumption.

3.2 Non-Interactive Zero-Knowledge
A (publicly-verifiable) non-interactive zero-knowledge (NIZK) argument system for an NP relation 𝑅, with as-
sociated language L (𝑅) = {𝑥 | ∃𝑤, (𝑥,𝑤) ∈ 𝑅} is a 3-tuple of efficient algorithms (Setup, Prove,Verify), where
Setup outputs a common reference string, Prove(crs, 𝑥,𝑤), given the crs, a statement 𝑥 , and a witness𝑤 , outputs
a proof 𝜋 , and Verify(crs, 𝑥, 𝜋), on input the crs, a word 𝑥 , and a proof 𝜋 , outputs a bit indicating whether the
proof is accepted or not. A NIZK argument system satisfies the following: completeness, adaptive soundness,
and adaptive multi-theorem zero-knowledge properties:10

• A non-interactive argument system (Setup, Prove,Verify) for an NP relation 𝑅 satisfies completeness if for
every (𝑥,𝑤) ∈ 𝑅,

Pr[crs $← Setup(1𝜆, 1 |𝑥 |), 𝜋 ← Prove(crs, 𝑥,𝑤) : Verify(crs, 𝑥, 𝜋) = 1] ≥ 1 − negl(𝜆).

• A non-interactive argument system (Setup, Prove,Verify) for an NP relation 𝑅 satisfies adaptive soundness
if for any PPT A and any large enough security parameter 𝜆,

Pr

[
crs

$← Setup(1𝜆, 1 |𝑥 |), (𝑥, 𝜋) $← A(crs) :
Verify(crs, 𝑥, 𝜋) = 1 ∧ 𝑥 ∉ L

]
≤ negl(𝜆).

• A non-interactive argument system (Setup, Prove,Verify) for an NP relation 𝑅 satisfies (computational,
statistical) adaptive multi-theorem zero-knowledge if for all (computational, statistical) A, there exists a
PPT simulator Sim = (Sim1, Sim2) such that if we run crs

$← Setup(1𝜆, 1 |𝑥 |) and crs
$← Sim1 (1𝜆, 1 |𝑥 |),

then we have | Pr[AO0 (crs,·,·) (crs) = 1] − Pr[AO1 (crs,·,·) (crs) = 1] | = negl(𝜆), where O0 (crs, 𝑥,𝑤) outputs
Prove(crs, 𝑥,𝑤) if (𝑥,𝑤) ∈ 𝑅 and ⊥ otherwise, and O1 (crs, 𝑥,𝑤) outputs Sim2 (crs, 𝑥) if (𝑥,𝑤) ∈ 𝑅 and ⊥
otherwise.

Whenever Setup(1𝜆) outputs a uniformly random string crs, we say that the NIZK is in the common random
string model.

Infinitely-often, uniform, subexponential NIZKs. If we relax the definition of correctness (resp. adaptive
soundness) to hold only for (all large enough elements of) an infinite set of security parameters 𝐸 ⊆ N, we say
that the NIZK satisfies infinitely-often correctness (resp. infinitely-often adaptive soundness) with respect to 𝐸, and
refer to the NIZK as an infinitely-often NIZK. One could analogously define infinitely-often zero-knowledge, but
we will not need it in this work.

If soundness holds only against uniform PPT adversaries, we say that the NIZK is a uniform NIZK (similarly,
we will not need to consider uniform zero-knowledge in this work).

Finally, if soundness and zero-knowledge hold against subexponential-time adversaries (resp. subexponential-
time adversarieswith subexponential advantage), we say that theNIZK is subexponentially secure (resp. strongly
subexponentially secure).

NIZKs in the hidden-bitsmodel. Weuse the following result regarding the existence ofNIZKs in the hidden-
bits model (HBM). Since the full definition of NIZK in the HBM will not be required in our work, we refer the
readers to [FLS90] for more details.
Theorem 3.3 (NIZK for all of NP in the HBM [FLS90]). Let 𝜆 denote the security parameter and let 𝑘 = 𝑘 (𝜆) be
any positive integer-valued function. Then, unconditionally, there exists NIZK proof systems for any NP language
L in the HBM that uses hb = 𝑘 ·poly(𝜆, |𝑥 |) hidden bits with soundness error 𝜀 ≤ 2−𝑘 ·𝜆 , where 𝜆 denotes the security
parameter and poly is a function related to the NP language L , and that are perfectly zero-knowledge.

10Intuitively, multi-theorem zero-knowledge ensures that a simulator can providemany simulated proofs under a common simulated CRS.

8



3.3 Verifiable Pseudorandom Generators
Verifiable pseudorandom generators have been introduced in [DN00]. Their definition has been refined in [CH19,
QRW19,KNYY19], and slightly relaxed in [CKU20]. Below, we recall the definition from [CKU20].

Definition 3.4 (Verifiable PseudorandomGenerator). Let𝛿 (𝜆) and 𝑠 (𝜆) be positive valued polynomials. A (𝛿 (𝜆), 𝑠 (𝜆))-
verifiable pseudorandom generator ( VPRG) is a four-tuple of efficient algorithms (Setup, Stretch, Prove,
Verify) such that

• Setup(1𝜆,𝑚), on input the security parameter (in unary) and a polynomial bound𝑚(𝜆) ≥ 𝑠 (𝜆)1+𝛿 (𝜆) , outputs
a set of public parameters pp (which contains 1𝜆);

• Stretch(pp), on input the public parameters pp, outputs a triple (pvk, 𝑥, aux), where pvk is a public verification
key of length 𝑠 (𝜆), 𝑥 is an𝑚-bit pseudorandom string, and aux is an auxiliary information;

• Prove(pp, aux, 𝑖), on input the public parameters pp, auxiliary informations aux, an index 𝑖 ∈ [𝑚], outputs a
proof 𝜋 ;

• Verify(pp, pvk, 𝑖, 𝑏, 𝜋), on input the public parameters pp, a public verification key pvk, an index 𝑖 ∈ [𝑚], a
bit 𝑏, and a proof 𝜋 , outputs a bit 𝛽 ;

which is in addition complete, hiding, and binding, as defined below.

Definition 3.5 (Completeness of aVPRG). For any 𝑖 ∈ [𝑚], a completeVPRG scheme (Setup, Stretch, Prove,Verify)
satisfies, for all large enough 𝜆:

Pr


pp

$← Setup(1𝜆,𝑚),
(pvk, 𝑥, aux) $← Stretch(pp), : Verify(pp, pvk, 𝑖, 𝑥𝑖 , 𝜋) = 1
𝜋

$← Prove(pp, aux, 𝑖),

 ≥ 1 − negl(𝜆).

Definition 3.6 (Statistical Binding Property of a VPRG). Let (Setup, Stretch, Prove,Verify) be a VPRG. A VPRG
is statistically binding if there exists a (possibly inefficient) extractor Ext such that for any (potentially unbounded)
A and for all large enough 𝜆, it holds that

Pr


pp

$← Setup(1𝜆,𝑚),
(pvk, 𝑖, 𝜋) $← A(pp), : Verify(pp, pvk, 𝑖, 1 − 𝑥𝑖 , 𝜋) = 1
𝑥𝑖 ← Ext(pp, pvk)

 ≤ negl(𝜆).

Definition 3.7 (Hiding Property of a VPRG). A VPRG scheme (Setup, Stretch, Prove,Verify) is hiding if for any
𝑖 ∈ [𝑚] and any PPT adversary A that outputs bits, and for all large enough 𝜆, it holds that:

Pr


pp

$← Setup(1𝜆,𝑚),
(pvk, 𝑥, aux) $← Stretch(pp), : A(pp, pvk, 𝑖, (𝑥 𝑗 , 𝜋 𝑗 ) 𝑗≠𝑖 ) = 𝑥𝑖
(𝜋 𝑗

$← Prove(pp, aux, 𝑗)) 𝑗

 ≤ 1/2 + negl(𝜆).

Infinitely-often, subexponential VPRGs. If we relax the definition of completeness (resp. binding) to hold
only for (all large enough elements of) an infinite set of security parameters 𝐸 ⊆ N, we say that the VPRG
satisfies infinitely-often completeness (resp. infinitely-often binding) with respect to 𝐸, and refer to the VPRG as an
infinitely-often VPRG. We note that one can analogously define infinitely-often hiding, but we will not need it in
this work. We furthermore say that a VPRG is a subexponential VPRG, if (1) completeness error (resp. binding
error, distinguishing advantage against hiding) are all inverse subexponential, and (2) if hiding holds against
subexponential-time adversaries A.

Statistical VS Computational Binding. In definition Definition 3.6, we define the binding notion of VPRGs
to hold against any (potentially unbounded) adversaries A. In [CH19,CKU20], VPRGs are defined with a more
general computational binding requirement, which only holds against polynomial-time adversaries A. And
indeed, looking slightly ahead, Theorem 3.8 does extend to compile computationally binding VPRGs to compu-
tationally sound NIZK arguments for NP. In this work, we define VPRGs with statistical binding because (1) our
constructions of VPRGs from DDH breakers in Section 4.2 will be statistically binding; and (2) we crucially use
that our resulting NIZK from NP is statistically sound to obtain ZAPs for NP (Theorem 5.12).

9



From VPRGs to NIZKs for NP. The following shows that VPRG are sufficient to construct NIZKs for all of
NP.

Theorem 3.8 ((𝛿, 𝑠)-VPRGs⇒ NIZKs for all of NP). Fix an NIZK proof system for any NP language L in the
HBM that uses hb = hb(𝜆, |𝑥 |) hidden bits with soundness error 𝜀 ≤ 2−𝜆 where hb ≥ 𝜆 w.l.o.g. Suppose that
a (𝛿 (𝜆), 𝑠 (𝜆))-verifiable pseudorandom generator where 𝑠 (𝜆) ≥ max{𝜆, (hb2/𝜆)1/𝛿 (𝜆) } exists. Then, there exist
statistically adaptively sound with soundness error 2−𝜆 and adaptively multi-theorem zero-knowledge NIZK proofs
for the NP relation L .

If instead the (𝛿 (𝜆), 𝑠 (𝜆))-VPRG satisfies infinitely-often completeness and infinitely-often binding with respect
to some infinite subset 𝐸 ⊆ N, then there exists an infinitely-often NIZK which is statistically, adaptively sound with
soundness error 2−𝜆 with respect to 𝐸, and adaptively multi-theorem zero-knowledge.

Furthermore, if the public parameters of the verifiable pseudorandom generator are uniformly random, then the
resulting NIZK is in the common random string model.

Proof. The proof follows readily from [FLS90] and [DN00,CH19]. It can be checked from Theorem 16 of [CH19]
that we can combine the NIZK in the HBM for the NP relation L with any VPRG that satisfies 𝑠1+𝛿 > (1 +
𝑠/𝜆)hb+hb2/𝜆 in order to construct a statistically sound, adaptive single-theorem non-interactive witness indis-
tinguishable (NIWI) proof for theNP relation L . Working out the equation and taking into account that 𝑠 needs
to be at least 𝜆-bits, the condition on 𝑠 in our statement is sufficient. Then, by using [FLS90], we can convert
an adaptive single-theorem NIWI proof into an adaptive multi-theorem NIZK proof assuming the existence of
pseudorandom generators (which are by definition implied by VPRGs). To obtain a NIZK with soundness error
2−𝜆 , we use a 𝜆-wise parallel repetition, using that the construction above is statistically sound.

The proof extends directly to VPRGs that are correct and binding on any infinite subset 𝐸 ⊆ N, giving an
infinitely-often NIZK with respect to 𝐸.

Since the existence of an NIZK in the HBM for any NP language L is implied by Theorem 3.3, the above
shows that VPRGs with some mild condition on 𝛿 (𝜆) and 𝑠 (𝜆) implies existence of NIZKs for any NP language
L .

Remark 3.9 (NIZKs for Large Statements). Theorem 3.8 can be readily extended to the setting of NIZKs with
statements of size subexponential in the security parameter, namely |𝑥 | = 2𝜆𝑐 for some constant 𝑐 satisfying
0 < 𝑐 < 1, assuming an appropriately strong VPRG. More precisely, assume the existence of a subexponential
VPRG with quantitatively stronger completeness, binding, and hiding 2−𝜆𝑐

′
, where 𝑐 < 𝑐 ′ < 1 is a constant.

Then there exists a NIZK with honest algorithms running in time poly(𝜆, |𝑥 |), with completeness error (resp.
zero-knowledge distinguishing advantage) 2−𝑂 (𝜆𝑐

′ ) = negl(𝜆, |𝑥 |), and statistical soundness error 2−𝜆 . Moreover,
if hiding of the VPRG hiding holds against 2−𝜆𝑐

′
-time adversaries, then the resulting NIZK is zero-knowledge

against adversaries running in time 2𝑂 (𝜆𝑐
′ ) .

The statement above is directly obtained by adapting the proof of Theorem 3.8, starting instead with a VPRG
with subexponential-length output 𝑠1+𝛿 ≥ (1 + 𝑠/𝜆)hb(𝜆, |𝑥 |) + hb2 (𝜆, |𝑥 |)/𝜆, where we recall that hb is a poly-
nomial in 𝜆, |𝑥 |.

3.4 NIZKs and ZAP arguments from DDH
We recall here the result of [JJ21], whichwe adapt to our setting. Recall that we assume our cryptographic groups
to have exponentiation in TC0 (see Section 3.1). We refer to Section 7 for elliptic curve counterparts (without
requiring a pairing).

Theorem 3.10 (NIZK from DDH [JJ21]). There exists a constant 𝐿 > 0 such that the following holds. For any
constant 0 < 𝑐 < 1, and for all 𝜆 ∈ N, define the set TOWER𝜆 = TOWER𝜆 (𝑐, 𝐿) B {𝜆} ∪ {𝜆 (𝑐/2)

𝑖/2 }𝑖∈[𝐿] . For any
infinite set 𝐸 ⊆ N, define :

𝐸TOWER =
⋃
𝜆∈𝐸

TOWER𝜆 .

Suppose that, for any (uniform) PPT adversary A, there exists 𝜆∗ such that for all 𝜆TOWER ∈ 𝐸TOWER satisfying
𝜆TOWER ≥ 𝜆∗:

AdvDDHA (1𝜆TOWER ) ≤ 2−(𝜆TOWER)𝑐 .

Then:

• there exists a NIZK for all NP satisfying perfect completeness, infinitely-often adaptive soundness w.r.t. 𝐸
(against uniform cheating provers),11 and computational zero-knowledge against non-uniform verifiers;

11See the paragraph on infinitely-often security in Section 3.2 for a definition of soudness w.r.t. an infinite set 𝐸.

10



• there exists a ZAP argument for allNP satisfying perfect completeness, infinitely-often non-adaptive soundness
w.r.t. 𝐸, and statistical adaptive witness indistinguishability.

In other words, [JJ21] builds, given a (uniform) cheating prover on security parameter 𝜆, a (uniform) DDH
breaker for at least one security parameter in TOWER𝜆 . Then, the theorem above captures the resulting security
statement associated to infinitely-often soundness.

4 DDH Breakers and VPRGs
In this section, we introduce building blocks that we use in our constructions. Throughout this section, we only
assume that our cryptographic groups are of prime order, and we do not assume that exponentiation can be
computed in TC0. We mainly prove the following result, which intuitively states that algorithms breaking DDH
can be turned into an approriate NIZK:

Lemma 4.1. Let 𝑡 = 𝑡 (𝜆) be any positive integer-valued function, and 0 < 𝜀 = 𝜀 (𝜆) < 1/2 be any function such
that, for all 𝜆, 𝑡 (𝜆)/𝜀2 (𝜆) ≤ 2𝜆𝑐 for some constant 0 < 𝑐 < 1.

Assume A is a Turing machine running in time 𝑡 (𝜆), such that there exists an infinite set 𝐸 ⊆ N such that for
all 𝜆 ∈ 𝐸:

AdvDDHA (1𝜆) ≥ 𝜀 (𝜆).

Let 𝐸 ′ = {2𝜆𝑐 }𝜆∈𝐸 , and let 𝑐 ′ be any constant such that 𝑐 < 𝑐 ′ < 1.
Then, assuming the 2𝜆𝑐

′
-subexponential hardness of CDH (Section 3.1), there exists a NIZK in the common ran-

dom stringmodel, which is infinitely-often correct and statistically adaptively soundwith respect to 𝐸 ′, and satisfying
computational, adaptively, multi-theorem zero-knowledge.

Furthermore, if for all 𝜆, 𝑡 (𝜆)/𝜀2 (𝜆) = poly(𝜆), then assuming the polynomial hardness of CDH, there exists a
NIZK in the common random string model, which is infinitely-often correct and statistically adaptively sound with
respect to 𝐸, and computationally adaptively, multi-theorem zero-knowledge.

Remark 4.2 (Non-Uniform Security). We note here that Lemma 4.1 results in a (subexponentially-often) NIZK
with security holding against non-uniform adversaries: adaptive soundness holds against computationally un-
bounded provers, and adaptive, multi-theorem zero-knowledge hold against efficient non-uniform verifiers.

Remark 4.3 (Large Statement Sizes). Similar to Remark 3.9, the resulting NIZK, when ran over input state-
ments of size up to |𝑥 | = 2𝜆𝑐 , remains correct, statistically sound, and subexponentially zero-knowledge, and
where the running time of the honest algorithms is poly(𝜆, |𝑥 |). Looking ahead, this is done by combining the
subexponential VPRG of Lemma 4.6 with the proof of Theorem 3.8.

In Section 4.1, we show how to amplify the success probability of weak DDH breakers. In Section 4.2, we
show to build a VPRG from strong DDH breakers.

4.1 Amplification of DDH Breakers
First, we prove a generic result on amplifying the success probability of (weak) DDH breakers.

Given a group description G = (G, 𝑝) = DHGen(1𝜆) and a security parameter 𝜆, let SDH (𝜆) be the set of
DDH four-tuples: SDH (𝜆) = {(𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) : 𝛾 = 𝛼𝛽}. Let 𝑇 (𝜆) = poly(𝜆) be such that |G| < 2𝑇 (𝜆) .

Lemma 4.4 (Amplification of DDH Breakers.). Let 𝑡 = 𝑡 (𝜆) be any positive integer-valued function, and 𝜀 = 𝜀 (𝜆)
be any function such that 0 < 𝜀 (𝜆) < 1/2 for all 𝜆.

Assume A is a Turing machine running in time 𝑡 (𝜆), such that there exists an infinite set 𝐸 ⊆ N such that for
all 𝜆 ∈ 𝐸:

AdvDDHA (1𝜆) ≥ 𝜀 (𝜆).

Then there exists a Turing machineA = A(𝑡, 𝜀) running in time 𝑡 (𝜆)/𝜀2 (𝜆) ·poly(𝜆) such that, for all large enough
security parameters 𝜆 ∈ 𝐸 and all DDH tuples (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) ∈ SDH (𝜆):

Pr
𝑟

[
𝑏

$← A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ; 𝑟 ) : 𝑏 = 1
]
≥ 1 − negl(𝜆) · 2−4𝑇 (𝜆) .

Furthermore, for all large enough security parameters 𝜆 ∈ 𝐸, and all non-DDH tuples (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) ∈ G4 \ SDH (𝜆),

Pr
𝑟

[
𝑏

$← A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ; 𝑟 ) : 𝑏 = 0
]
≥ 1 − negl(𝜆) · 2−4𝑇 (𝜆) ,

We call any machine satisfying these properties a strong DDH breaker with respect to 𝐸.

11



Brief overview. The proof is slightly more involved than the standard DDH amplification approach. We
start from the default strategy: we run the weak DDH breaker A on many rerandomized versions of the input
toA (using an appropriate rerandomization such that a DDH tuple becomes a fresh DDH tuple, and a non-DDH
tuple becomes a fresh random tuple). However, the inputs to A are now either all random, or all DDH tuples.
So we further randomize the inputs, by randomly switching them to a freshly uniform tuple, with probability
1/2, and check whether A correctly guesses whether the input was switched. We then check whether these
guesses deviate significantly from the distribution of uniform bits using concentration bounds: they should not
deviate when starting with a random DDH tuple, as the output to A is then independent of the switch, and
should deviate significantly otherwise by assumption on A. The proof follows.

Proof. Set 𝐵(𝜆) = 100 · 𝑇 (𝜆)+𝜔 (log𝜆))
𝜀2

. On input (1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ), the machine A proceeds as follows:

• For 𝑖 = 1 to 𝐵(𝜆), it samples (𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 , 𝑧𝑖 , 𝑡𝑖 )
$← Z5𝑝 and a fresh random bit 𝑠𝑖

$← {0, 1}.

• It computes
𝜎𝑖 ← A(1𝜆,G, 𝑔𝑧𝑖 , 𝑔𝑧𝑖 (𝛼𝑤𝑖+𝑢𝑖 ) , 𝑔𝑧𝑖 (𝛽+𝑣𝑖 ) , 𝑔𝑧𝑖 (𝛿𝑤𝑖+𝛼𝑣𝑖𝑤𝑖+𝛽𝑢𝑖+𝑢𝑖 𝑣𝑖+𝑠𝑖𝑡𝑖 ) ).

• It outputs 1 if and only if
𝐵 (𝜆)∑︁
𝑖=1

𝑠𝑖 ⊕ 𝜎𝑖 < 𝐵(𝜆) · 1
2
(1 − 𝜀) .

A requires 𝐵(𝜆) = poly(𝜆)/𝜀2 (𝜆) executions of the time-𝑡 (𝜆) algorithmA, and therefore runs in time 𝑡 (𝜆)/𝜀2 (𝜆) ·
poly(𝜆). For the rest of the proof, suppose that 𝜆 ∈ 𝐸.

For any 𝑖 , let us write ℎ𝑖 ← 𝑔𝑧𝑖 , 𝑎𝑖 ← 𝛼𝑤𝑖 + 𝑢𝑖 , and 𝑏𝑖 ← 𝛽 + 𝑣𝑖 . We have

(𝑔𝑧𝑖 , 𝑔𝑧𝑖 (𝛼𝑤𝑖+𝑢𝑖 ) , 𝑔𝑧𝑖 (𝛽+𝑣𝑖 ) , 𝑔𝑧𝑖 (𝛿𝑤𝑖+𝛼𝑣𝑖𝑤𝑖+𝛽𝑢𝑖+𝑢𝑖 𝑣𝑖+𝑠𝑖𝑡𝑖 ) ) = (ℎ𝑖 , ℎ𝑎𝑖𝑖 , ℎ
𝑏𝑖
𝑖
, ℎ

𝑎𝑖𝑏𝑖−(𝛼𝛽−𝛿)𝑤𝑖+𝑠𝑖𝑡𝑖
𝑖

),

where ℎ𝑖 and (𝑎𝑖 , 𝑏𝑖 ) are distributed as fresh random elements of G and Z2𝑝 respectively, independently of𝑤𝑖 .
Therefore,

1. if 𝛼𝛽 − 𝛿 = 0, i.e. (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ) ∈ SDH, then (ℎ𝑖 , ℎ𝑎𝑖𝑖 , ℎ
𝑏𝑖
𝑖
, ℎ

𝑎𝑖𝑏𝑖−(𝛼𝛽−𝛿)𝑤𝑖+𝑠𝑖𝑡𝑖
𝑖

) is distributed as a fresh random
DDH tuple whenever 𝑠𝑖 = 0, and as a fresh random four-tuple whenever 𝑠𝑖 = 1.

2. otherwise, when (𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ) ∈ G4 \ SDH, (ℎ𝑖 , ℎ𝑎𝑖𝑖 , ℎ
𝑏𝑖
𝑖
, ℎ

𝑎𝑖𝑏𝑖−(𝛼𝛽−𝛿)𝑤𝑖+𝑠𝑖𝑡𝑖
𝑖

) is always distributed as a fresh
random four-tuple, independently of the value of 𝑠𝑖 .

Note that the statement of case 2 crucially relies on the fact that the output G of DHGen is a group of prime
order 𝑝: otherwise,𝑤𝑖 (𝛼𝛽 −𝛿) would not be distributed uniformly over Z𝑝 in general. In case 2, the distribution
of the 𝑖-th input to A is perfectly independent of 𝑠𝑖 (as the 𝑠𝑖𝑡𝑖 is additively masked by the uniformly random
term 𝑤𝑖 (𝛼𝛽 − 𝛿)), hence for every 𝑖 , Pr[𝑠𝑖 = 𝜎𝑖 ] = Pr[𝑠𝑖 ⊕ 𝜎𝑖 = 0] = 1/2. Therefore, the bits (𝜎𝑖 ⊕ 𝑠𝑖 )𝑖 are
independent uniformly random bits. Hence, E[∑𝑖 𝑠𝑖 ⊕ 𝜎𝑖 ] = 𝐵(𝜆)/2, and by a standard Chernoff bound,

Pr

[∑︁
𝑖

(𝜎𝑖 ⊕ 𝑠𝑖 ) <
𝐵(𝜆)
2
· (1 − 𝜀)

]
< exp

(
−𝜀

2 · 𝐵(𝜆)
4

)
< 2−4𝑇 (𝜆) · negl(𝜆),

by assumption on A and where 𝐵(𝜆) = 100 · 𝑇 (𝜆)+𝜔 (log𝜆))
𝜀2 (𝜆) . Therefore, in case 2 ((𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ) ∈ G4 \ SDH), A

outputs 0 with probability at least 1 − 2−4𝑇 (𝜆) · negl(𝜆).
In case 1, on the other hand, the tuples (𝑠𝑖 , ℎ𝑖 , ℎ𝑎𝑖𝑖 , ℎ

𝑏𝑖
𝑖
, ℎ

𝑎𝑖𝑏𝑖−(𝛼𝛽−𝛿)𝑤𝑖+𝑠𝑖𝑡𝑖
𝑖

)𝑖 are distributed exactly as indepen-
dent random samples from {(𝑏,𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ) : 𝑔 $← G, 𝛼, 𝛽,𝛾 $← Z𝑝 , 𝑏

$← {0, 1}, 𝛿 $← 𝛾 + (1 − 𝑏)𝛼𝛽}. Hence, by
assumption on A, for every 𝑖 ≤ 𝐵(𝜆),

Pr
[
𝜎𝑖

$← A(1𝜆,G, ℎ𝑖 , ℎ𝑎𝑖𝑖 , ℎ
𝑏𝑖
𝑖
, ℎ

𝑎𝑖𝑏𝑖−(𝛼𝛽−𝛿)𝑤𝑖+𝑠𝑖𝑡𝑖
𝑖

) : 𝜎𝑖 = 𝑠𝑖
]
>

1
2
+ 𝜀,

Therefore, E [∑𝑖 (𝜎𝑖 ⊕ 𝑠𝑖 )] < (1/2 − 𝜀) · 𝐵(𝜆). This implies that

𝐵(𝜆) · 1
2
(1 − 𝜀) > E

[∑︁
𝑖

(𝜎𝑖 ⊕ 𝑠𝑖 )
]
· 1 − 𝜀
1 − 2 · 𝜀 > E

[∑︁
𝑖

(𝜎𝑖 ⊕ 𝑠𝑖 )
]
· (1 + 𝜀/2),

12



for a large enough 𝜆. Then, by a standard Chernoff inequality,

Pr

[∑︁
𝑖

(𝜎𝑖 ⊕ 𝑠𝑖 ) ≥ 𝐵(𝜆) ·
1
2
(1 − 𝜀)

]
< exp

(
−𝜀

2 · 𝐵(𝜆)
24

)
< 2−4𝑇 (𝜆) · negl(𝜆),

again by definition of 𝜀, hence A outputs 1 with probability at least 1 − 2−4𝑇 (𝜆) · negl(𝜆). This concludes the
proof.

Next, we make a simple observation:

Claim 4.5. For all sufficiently large security parameter 𝜆, denoting G = (G, 𝑝) ← DHGen(1𝜆), and under the same
assumption on A as in Lemma 4.4:

Pr
𝑟

[
∃(𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) ∈ SDH : A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ; 𝑟 )

]
= 0] ≤ negl(𝜆), and

Pr
𝑟

[
∃(𝑔,𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ) ∈ G4 \ SDH : A(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛾 ; 𝑟 )

]
= 1] ≤ negl(𝜆).

Proof. This follows immediately from a straightforward union bound over all elements of SDH and of G4 \ SDH,
using the fact that |SDH | < |G4 \ SDH | < 24𝑇 (𝜆) since |𝐺 | < 2𝑇 (𝜆) .

4.2 VPRGs from Strong DDH Breakers

Next, we show that the existence of the strong DDH breaker A, with the specifications of Lemma 4.4, suffices
to construct a verifiable pseudorandom generator under the CDH assumption.

Lemma 4.6 (a VPRG from subexponential CDH). Let 0 < 𝑐 < 1 be a constant. Assume A is a Turing machine
running in time 2𝜆𝑐 · poly(𝜆), and an 𝐸 ⊆ N is an infinite set such that A is a strong DDH breaker with respect to
𝐸 (Lemma 4.4), and let 𝐸 ′ = {2𝜆𝑐 }𝜆∈𝐸 .

Then, assuming the subexponential 2𝜆𝑐
′
-hardness of CDH for any constant 𝑐 < 𝑐 ′ < 1, there exists a subexpo-

nential, infinitely-often statistically binding VPRG with respect to 𝐸 ′.
Furthermore, if A runs in polynomial time, then assuming the polynomial hardness of CDH, there exists an

infinitely-often statistically binding VPRG with respect to 𝐸.

Let𝐵 : G3 ↦→ {0, 1} be a predicate satisfying the following property: given (𝑔𝑎, 𝑔𝑏, 𝑔𝑐 ), computing𝐵(𝑔𝑎, 𝑔𝑎𝑏, 𝑔𝑎𝑐 )
should be as hard (up to polynomial factors) as computing (𝑔𝑎, 𝑔𝑎𝑏, 𝑔𝑎𝑐 ). Note that this implies that distinguish-
ing 𝐵(𝑔𝑎, 𝑔𝑎𝑏, 𝑔𝑎𝑐 ) from a random bit given a random triple (𝑔𝑎, 𝑔𝑏, 𝑔𝑐 ) is as hard as solving CDH. There are
standard method to build this predicate using e.g. the Goldreich-Levin construction [GL89], see e.g. [CKS08] for
an illustration in the specific case of CDH. Our construction proceeds as follows.

Let 𝜆′ = 𝜆 if A runs in polynomial time, and 𝜆′ = ⌊log1/𝑐 (𝜆)⌋ if A runs in time 2𝜆𝑐 for some constant
0 < 𝑐 < 1. 12

• Setup(1𝜆,𝑚) : Sample G = G𝜆′ = DHGen(1𝜆′) and 𝑔 $← G. For 𝑖 = 1 to𝑚, pick 𝑎𝑖
$← Z𝑝 and set ℎ𝑖 ← 𝑔𝑎𝑖 .

Pick a random tape 𝑅 for A. Set pp = (1𝜆,G, 𝑔, (ℎ𝑖 )𝑖≤𝑚, 𝑅).

• Stretch(pp) : pick 𝑟 $← Z𝑝 , set pvk← 𝑔𝑟 , and for 𝑖 ≤ 𝑚, set 𝑥𝑖
$← 𝐵(pvk, ℎ𝑟𝑖 ). Output (pvk, 𝑥, aux = 𝑟 ).

• Prove(pp, aux, 𝑖) : output 𝜋 ← ℎ𝑟𝑖 .

• Verify(pp, pvk,T , 𝑖, 𝜎, 𝜋) : output 1 iff (𝐵(pvk, 𝜋) = 𝜎) ∧ (A(1𝜆′,G, 𝑔, pvk, ℎ′;𝑅) = 1).

Theorem 4.7. If the subexponential CDH assumption holds relative to DHGen, then the above construction is a
computationally, subexponentially hiding and statistically binding VPRG.

Proof. Observe that 𝜆 ∈ 𝐸 ′ implies 𝜆′ ∈ 𝐸. Completeness on 𝐸 ′ and efficiency poly(𝜆,𝑚) follows easily by
inspection, noting that A, on input 𝜆′, runs in time poly(𝜆) by assumption. Furthermore, the VPRG can have
arbitrary polynomial stretch𝑚(𝜆), independently of the length of pvk (the latter is a single element of G).

We now show that the construction is infinitely-often statistically binding with respect to 𝐸 ′. Let 𝜆 ∈ 𝐸 ′.
Let B be an adversary against the binding property: on input pp, B outputs a triple (pvk, 𝑖, 𝜋). We must exhibit
an extractor Ext that finds bit 𝑥𝑖 such that Verify(pp, pvk, 𝑖, 1 − 𝑥𝑖 , 𝜋) = 0 with overwhelming probability. Ext

12Recall that in any case, A is a strong DDH breaker.

13



extracts 𝑥𝑖 as follows: it parses pp as (1𝜆,G, 𝑔, (ℎ𝑖 )𝑖≤𝑚), computes 𝑟 ← dlog𝑔 (pvk) and sets 𝑥𝑖 ← 𝐵(pvk, 𝜋). To
make Verify accept, B must find a triple (pvk, ℎ𝑖 , 𝜋) such thatA(1𝜆,G, 𝑔, pvk, ℎ𝑖 , 𝜋 ;𝑅) = 1, yet 𝐵(pvk, 𝜋) = 1−𝑥𝑖 .
The latter implies in particular that (𝑔, pvk, ℎ𝑖 , 𝜋) ∉ SDH. But with overwhelming probability over the choice of
𝑅, there cannot exist an element of G4 \ SDH where A outputs 1, which concludes the proof.

We now discuss the hiding property. We show that a 2𝜆𝑐 -time adversary B against the hiding property with
advantage greater than 2−𝜆𝑐 of the above scheme contradicts the subexponential CDH assumption. Let 𝜆 ∈ 𝐸 ′.
Given a position 𝑖 , the reduction receives a CDH challenge on security parameter 𝜆′, of the form (1𝜆′,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 )
and attempts to guess the predicate 𝑥 = 𝐵(𝑔𝛼 , 𝑔𝛼𝛽 ). It defines ℎ𝑖 ← 𝑔𝛽 and samples the rest of pp honestly,
picking 𝑎 𝑗

$← Z𝑝 and setting ℎ 𝑗 ← 𝑔𝑎 𝑗 for 𝑗 ≠ 𝑖 . Then, it sets pvk ← 𝑔𝛼 , and computes 𝜋 𝑗 as (𝑔𝛼 )𝑎𝑗 and 𝑥 𝑗
as 𝐵(pvk, 𝜋 𝑗 ) for every 𝑗 ≠ 𝑖 . Observe that the input (pp, pvk, (𝑥 𝑗 , 𝜋 𝑗 ) 𝑗≠𝑖 ) to B is distributed exactly as in the
hiding game. The reduction outputs whatever B outputs. Observe that 𝑥𝑖 = 𝐵(𝑔𝛼 , 𝑔𝛼𝛽 ) by construction, hence
the advantage of the reduction in this game is exactly the advantage of B against the hiding property of the
VPRG. Since the reduction runs in time poly(𝜆) = poly(2𝜆′𝑐 ) < 2𝜆𝑐

′
for any 𝑐 < 𝑐 ′ < 1 for all large enough 𝜆

and recovers the hardcore predicate of the CDH challenge with subexponential advantage 2−𝜆𝑐 , this contradicts
the 2𝜆𝑐

′
-subexponential CDH assumption. The argument extends directly to the setting where 𝜆′ = 𝜆 assuming

only the polynomial hardness of CDH.

Combining Lemma 4.4 and Lemma 4.6 with Theorem 3.8 concludes the proof of Lemma 4.1, where the re-
sulting CRS is a uniformly random string thanks to the oblivious samplability of the group. We note that the
construction above is not new: the works of [CHK03,QRW19] constructed a NIZK by compiling a NIZK in the
HBM under the CDH assumption over pairing-friendly groups. Our construction can be viewed as abstracting
out their compiler as a VPRG, and replacing the pairing (which is used solely to check a DDH relation in their
construction) by the efficient DDH breaker A.

5 A Subexponentially-Often NIZK from Subexponential CDH
In this section we prove our main theorem:

Theorem 5.1. Assume the subexponential hardness of CDH. Then for any NP language L , there exists a non-
interactive zero-knowledge proof for L which is infinitely-often secure in the following sense:

• Subexponentially-often uniform soundness: There exists a constant 0 < 𝐾 < 1, and an infinite set 𝐸 ⊆ N,
such that the following properties hold:

– (Relative density of 𝐸): For all 𝜆 ∈ N,
[
𝜆, 2𝜆𝐾

]
∩ 𝐸 ≠ ∅.

– (Infinitely-often uniform soundness w.r.t. 𝐸): For all uniform PPT adversary A and all 𝜆𝑖 ∈ 𝐸:

Pr

[
crs

$← Setup(1𝜆𝑖 ), (𝑥, 𝜋) $← A(crs) :
Verify(crs, 𝑥, 𝜋) = 1 ∧ 𝑥 ∉ L

]
≤ negl(𝜆𝑖 ).

• Standard adaptive, computational, multi-theorem zero-knowledge against non-uniform efficient verifiers.

In particular, defining 𝐸 = {𝜆𝑖 }𝑖∈N as an increasing sequence (namely 𝜆𝑖 < 𝜆 𝑗 whenever 𝑖 < 𝑗 ), we have that
for all 𝑖 ∈ N: 𝜆𝑖+1 ≤ 2(𝜆𝑖+1)𝐾 . We note that the construction from Theorem 5.1 is fully explicit, and satisfies a
standard (namely non-uniform) notion of (adaptive, computational, multi-theorem) zero-knowledge.

Remark 5.2 (Restriction on cryptographic groups). We recall that we consider here cryptographic groups with
exponentiation in TC0, typically including Z∗𝑞 or its subgroup of quadratic residues (see also Section 3.1). This is
a similar restriction to the one made in [JJ21]. We sketch in Section 7 how to extend Theorem 5.1 to families of
elliptic curves (without requiring a pairing).

Remark 5.3 (Subexponential security). The proof of Theorem 5.1 can be directly modified to achieve various
forms of subexponential soundness and zero-knowledge. Soundness with subexponential advantage follows from
[JJ21], by relying on an appropriately stronger subexponential hardness of DDH (which in turns requires a
stronger CDH assumption). Zero-knowledge against subexponential time verifiers follows from relying on an
appropriately stronger subexponential hardness of CDH. The constant 𝐾 (representing the density of “secure”
parameters in Theorem 5.1) will increase with the strength of the subexponential soundness claim, and the
exact subexponential hardness of CDH needed will both grow with 𝐾 and the strength of the subexponential
zero-knowledge claim.

14



In Section 5.1, we build a universal DDH breaker. We then present our NIZK construction in Section 5.2. We
discuss additional results in Section 5.3.

5.1 A Universal DDH Breaker
In order to prove Theorem 5.1, ourmain building block is a universal DDH breaker. Very imprecisely, the universal
breaker (1) efficiently breaks DDH on all security parameters such that some efficient breaker exists, and such
that (2) DDH holds otherwise. For technical reasons (briefly discussed in Remark 5.7), we split the construction
of a universal breaker into two procedures: a tester which tests whether some input security parameter is secure
or broken (Lemma 5.5), and a universal DDH breaker which breaks DDH with large probability whenever any
weak breaker exists (Lemma 5.6).

Notation. Throughout the section, 𝑡 = 𝑡 (𝜆), 𝜀 = 𝜀 (𝜆) will denote functions such that 𝑡 (𝜆) is positive-integer-
valued, and 0 < 𝜀 (𝜆) < 1/2. Define the two following machines:

• 𝑀(𝑡 ) : on input (1𝜆, 𝑥), run 𝑀 (1𝜆, 𝑥) for up to 𝑡 (𝜆) steps. If 𝑀 terminates and outputs a bit, define that bit
as the output of 𝑀(𝑡 ) (1𝜆, 𝑥); otherwise output a random bit 𝑏 ← {0, 1}. Note that by definition, 𝑀(𝑡 ) runs
in time at most 𝑡 (𝜆).

• 𝑀(𝑡 ) = 𝑀(𝑡 ) (𝑡, 𝜀/6) is the machine defined in Lemma 4.4 starting with 𝑀(𝑡 ) , with functions 𝑡 and 𝜀/6. In
particular, if AdvDDH𝑀(𝑡 )

≥ 𝜀/6, then AdvDDH
𝑀(𝑡 )
≥ 1 − negl(𝜆) · 2−4𝑇 (𝜆) .

Next, we define our sets of secure and broken security parameters.

Definition 5.4 (Secure and Broken DDH parameters). Let 𝑡 = 𝑡 (𝜆), 𝜀 = 𝜀 (𝜆) be functions such that 𝑡 (𝜆) is
positive-integer-valued, and 0 < 𝜀 (𝜆) < 1/2.

We define SECURE = SECURE(𝑡, 𝜀) ⊆ N as the set of security parameters 𝜆 such that, for all uniform Turing
machines A of size at most ⌊log 𝜆⌋ running in time at most 𝑡 (𝜆):

AdvDDHA (1𝜆) < 𝜀 (𝜆),

where AdvDDHA (1𝜆) is defined in Definition 3.2.
We define BROKEN = BROKEN(𝑡, 𝜀) ⊆ N as the set of security parameters 𝜆, such that there exists a uniform

machine A∗ of size at most ⌊log 𝜆⌋ such that:

AdvDDHA∗(𝑡 )
(1𝜆) ≥ 𝜀 (𝜆)

2
,

where A∗(𝑡 ) is defined above.

Let us make a few comments on this definition. First, SECURE ∪ BROKEN = N. This is because if 𝜆 ∉

SECURE, then any machine A∗ contradicting 𝜆 ∈ SECURE is a “witness” for 𝜆 ∈ BROKEN. However, SECURE
and BROKEN are not necessarily complementary sets. This is because (1) the advantage requirements are po-
tentially compatible, and (2) BROKEN quantifies over a slightly larger set of Turing machines, asA∗(𝑡 ) can have
description size (slightly) larger than ⌊log 𝜆⌋.

The following gives an algorithm which, on input a security parameter, efficiently determines whether DDH
is secure or not, in the sense of Definition 5.4.

Lemma 5.5 (Security Parameter Tester). Let 𝑡 = 𝑡 (𝜆), 𝜀 = 𝜀 (𝜆) be functions such that 𝑡 (𝜆) is positive-integer-
valued, and 0 < 𝜀 (𝜆) < 1/2.

Then there exists an algorithm Test = Test(𝑡, 𝜀) which takes as input 1𝜆 where 𝜆 ∈ N, runs in time 𝑡 (𝜆)/𝜀2 (𝜆) ·
poly(𝜆), and satisfying the following properties:

• For any 𝜆 ∈ N:
Pr

[
𝜆 ∉ SECURE ∧ Test(1𝜆) = 1

]
≤ 2−𝜆,

over the randomness of Test;

• For any 𝜆 ∈ N:
Pr

[
𝜆 ∉ BROKEN ∧ Test(1𝜆) = 0

]
≤ 𝜆 · 2−𝜆,

over the randomness of Test.

15



Intuitively, the algorithm Test can ensure, with overwhelming probability, that some input security parameter
is secure (corresponding to output 1) or broken (corresponding to output 0) with respect to Definition 5.4. Note
that Test can potentially produce both outcomes with large probability whenever 𝜆 ∈ SECURE ∩ BROKEN.

Proof. We define Test as follows. On input (1𝜆):

• For𝑀 ∈ {0, 1} ⌊log𝜆⌋ , parse𝑀 as the description of a Turing Machine. Let 𝐶 (𝜆) =
⌈
100 · 𝜆

𝜀2 (𝜆)

⌉
– For 𝑖 = 1 to 𝐶 (𝜆), sample 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ← Z𝑝 , and 𝑏𝑖 ← {0, 1}. Set 𝛿𝑖 = 𝑏𝛾𝑖 + (1 − 𝑏)𝛼𝑖𝛽𝑖 . Compute
𝑏 ′𝑖 ← 𝑀(𝑡 ) ((1𝜆,G, 𝑔, 𝑔𝛼𝑖 , 𝑔𝛽𝑖 , 𝑔𝛿𝑖 ). Let

𝑐𝑀 =

𝐶 (𝜆)∑︁
𝑖=1

1 ⊕ 𝑏𝑖 ⊕ 𝑏 ′𝑖

be the number of indices 𝑖 such that 𝑏𝑖 = 𝑏 ′𝑖 .

If 𝑐𝑀 ≥
(
1
2 +

3𝜀 (𝜆)
4

)
·𝐶 (𝜆), then output 0.

Otherwise continue to the next𝑀 ∈ {0, 1} ⌊log𝜆⌋ .

• If no output has been produced so far, output 1.

Note that Test runs in time 𝑡 (𝜆)/𝜀2 (𝜆) · poly(𝜆).
We first prove that, for any 𝜆 ∈ N:

Pr
[
𝜆 ∉ SECURE ∧ Test(1𝜆) = 1

]
≤ 2−𝜆,

over the randomness of Test.
Suppose 𝜆 ∉ SECURE. Then there exists a uniform adversary A∗ with size at most ⌊log 𝜆⌋ running in time

𝑡 (𝜆) such that:
AdvDDHA (1𝜆) ≥ 𝜀 (𝜆).

Because A∗ runs in time 𝑡 (𝜆), note that A∗(𝑡 ) ≡ A
∗. In order to output ⊥, Test has to loop through 𝑀 = A∗.

When𝑀 = A∗, all the 𝑏𝑖 and 𝑏 ′𝑖 for all 1 ≤ 𝑖 ≤ 𝐶 (𝜆) are independent from each other, and Pr[𝑏𝑖 = 𝑏 ′𝑖 ] ≥ 1
2 + 𝜀 (𝜆)

by assumption on A∗, so that E[𝑐𝑀 ] ≥
( 1
2 + 𝜀 (𝜆)

)
·𝐶 (𝜆). A standard Chernoff bound gives:

Pr
[
𝑐𝑀 ≤

(
1
2
+ 3𝜀 (𝜆)

4

)
·
⌈

𝜆

𝜀2 (𝜆)

⌉]
≤ exp

(
−100𝜆

64

)
≤ 2−𝜆,

so with probability at least 1 − exp(−𝜆/64), Test outputs 0 when looping on A∗ (or some other machine, if it
produces an output bit before reaching A∗).

Next, we prove that for all 𝜆 ∈ N:

Pr
[
𝜆 ∉ BROKEN ∧ Test(1𝜆) = 0

]
≤ 𝜆 · 2−𝜆

over the randomness of Test.
Suppose 𝜆 ∉ BROKEN, that is, for all Turing machines𝑀 of size at most ⌊log 𝜆⌋:

AdvDDH𝑀(𝑡 )
(1𝜆) < 𝜀 (𝜆)

2
.

Then E[𝑐𝑀 ] ≤
(
1
2 +

𝜀 (𝜆)
2

)
·
⌈

𝜆
𝜀2 (𝜆)

⌉
. A standard Chernoff bound gives:

Pr
[
𝑐𝑀 ≥

(
1
2
+ 3𝜀 (𝜆)

4

)
·
⌈

𝜆

𝜀2 (𝜆)

⌉]
≤ exp

(
−100𝜆

20

)
≤ 2−𝜆 .

Using a union bound, the probability that Test outputs 1 on any machine 𝑀 of size at most ⌊log 𝜆⌋ is at most
𝜆 · 2−𝜆 .

Next, we build a universal breaker that breaks DDH on any 𝜆 ∈ BROKEN:

16



Lemma 5.6 (Universal DDH Breaker). Let 𝑡 = 𝑡 (𝜆) and 𝜀 = 𝜀 (𝜆) be positive functions defined in the beginning of
the section.

Then there exists an algorithm UnivBreak = UnivBreak(𝑡, 𝜀) which runs in time 𝑡 (𝜆)/𝜀2 (𝜆) · poly(𝜆), such that
for all 𝜆 ∈ BROKEN:

Pr


G = DHGen(1𝜆), 𝑔 $← G, 𝛼, 𝛽,𝛾 $← Z𝑝 ,
𝑏

$← {0, 1}, 𝛿 ← 𝑏𝛾 + (1 − 𝑏)𝛼𝛽,
𝑏 ′

$← UnivBreak(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 )
: 𝑏 = 𝑏 ′

 ≥ 1 − negl(𝜆) · 2−4𝑇 (𝜆) .

Proof. We define UnivBreak as follows. On input (1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 )):

• For𝑀 ∈ {0, 1} ⌊log𝜆⌋ , parse𝑀 as the description of a Turing Machine. Let 𝐶 ′(𝜆) =
⌈
400 · 𝑇 (𝜆)+𝜆

𝜀2 (𝜆)

⌉
– For 𝑖 = 1 to 𝐶 (𝜆), sample 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ← Z𝑝 , and 𝑏𝑖 ← {0, 1}. Set 𝛿𝑖 = 𝑏𝛾𝑖 + (1 − 𝑏)𝛼𝑖𝛽𝑖 . Compute
𝑏 ′𝑖 ← 𝑀(𝑡 ) ((1𝜆,G, 𝑔, 𝑔𝛼𝑖 , 𝑔𝛽𝑖 , 𝑔𝛿𝑖 ). Let

𝑐𝑀 =

𝐶 (𝜆)∑︁
𝑖=1

1 ⊕ 𝑏𝑖 ⊕ 𝑏 ′𝑖

be the number of indices 𝑖 such that 𝑏𝑖 = 𝑏 ′𝑖 .

If 𝑐𝑀 ≥
(
1
2 +

𝜀 (𝜆)
3

)
·𝐶 (𝜆), then output𝑀(𝑡 ) (1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 ).

Otherwise continue to the next𝑀 ∈ {0, 1} ⌊log𝜆⌋ .

• If no output has been produced so far, output a random bit 𝑏 ← {0, 1}.

Note that UnivBreak runs in time 𝑡 (𝜆)/𝜀2 (𝜆) · poly(𝜆).
Let 𝜆 ∈ BROKEN, and let𝑀∗ be a machine of size at most ⌊log 𝜆⌋ such that:

AdvDDH𝑀(𝑡 )
(1𝜆) ≥ 𝜀 (𝜆)

2
.

We first argue that the probability that UnivBreak outputs a random bit (because of skipping all Turing
machines of size at most ⌊log 𝜆⌋) is at most 2−𝜆 · 2−4𝑇 (𝜆) . This only occurs whenever UnivBreak ignores 𝑀∗,
which happens with probability at most 2−𝜆 · 2−4𝑇 (𝜆) by a standard Chernoff bound similar to Lemma 5.5.

Next, we claim that the probability thatUnivBreak produces an output using amachine𝑀 such thatAdvDDH𝑀(𝑡 )
<

𝜀/6 is at most 𝜆 · 2−𝜆 · 2−4𝑇 (𝜆) , again using a standard Chernoff bound similar to Lemma 5.5. Finally, by definition
of𝑀(𝑡 ) = 𝑀(𝑡 ) (𝑡, 𝜀/6) (defined at the beginning of Section 5.1 and Lemma 4.4), we obtain:

Pr


G = DHGen(1𝜆), 𝑔 $← G, 𝛼, 𝛽,𝛾 $← Z𝑝 ,
𝑏

$← {0, 1}, 𝛿 ← 𝑏𝛾 + (1 − 𝑏)𝛼𝛽,
𝑏 ′

$← UnivBreak(1𝜆,G, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑔𝛿 )
: 𝑏 = 𝑏 ′

 ≥ 1 − (2−𝜆 + 𝜆 · 2−𝜆 + negl(𝜆)) · 2−4𝑇 (𝜆) .

≥ 1 − negl(𝜆) · 2−4𝑇 (𝜆) .

Remark 5.7 (Splitting tester and universal breaker). We introduced separate constructions of testers and break-
ers, even though the algorithms are very similar: this is done so that they can use different thresholds. Then, the
behavior ofUnivBreak becomes fully characterized bywhether its input security parameter belongs to BROKEN.
Using the same threshold for the tester and the breaker would instead result in a universal breaker which, on in-
put some security parameters in SECURE∩BROKEN, could potentially “fail” with high (say constant) probability
and use some good enough breaker with also high constant probability.

Remark 5.8 (Generality of Universal Breakers). The definitions of secure and broken sets (Definition 5.4) and
the blueprints of Lemma 5.5 and Lemma 5.6 are quite general, and should readily extend to any falsifiable compu-
tational security definition, not just DDH. The only difference is that the resulting breaker analog to Lemma 5.6
would only be guaranteed to have advantage 𝜀 (𝜆)/6− (𝜆+1) ·2−𝜆 . In Lemma 5.6, we amplify directly the breaker
internally using Lemma 4.4 instead.

17



5.2 A Subexponentially-Often NIZK
We now prove Theorem 5.1. We first provide an outline of our construction. We use both a DDH-based NIZK,
and a VPRG-based NIZK based on the universal breaker of Section 5.1. Given a fixed security parameter 𝜆, a
proof consists of both proofs (which does not hurt zero-knowledge, as both constructions are zero-knowledge
almost-everywhere), wherewe use complexity leveraging on theVPRG-based one (namely, we run it on a smaller
security parameter 𝜆′). In order to verify a proof, we use our “universal tester” from Section 5.1 to check whether
(the complexity leveraged version of) DDH is broken; if it is, then the VPRG-based NIZK, using the universal
breaker of Section 5.1, ensures completeness and (statistical) soundness. Note that the testing step, and the
verification algorithm of the VPRG-based NIZK, are made efficient thanks to complexity leveraging. Otherwise,
we do not know how to directly argue that the DDH-based NIZK provides soundness; instead, we argue that
there exists a “relatively close” security parameter 𝜆 for which the DDH-based NIZK allows to argue soundness.
The formal construction and proof follow.

Let 𝜀 = 𝜀 (𝜆) = 2−𝜆𝑐 be an inverse subexponential function, where 0 < 𝑐 < 1 is a constant and 𝑡 = 𝑡 (𝜆) be any
superpolynomial, positive-integer-valued function such that 𝑡 (𝜆) ≤ 2𝜆𝑐 .13

We use the following building blocks:

• A DDH-based NIZK (DDH.Setup,DDH.Prove,DDH.Verify) given by Theorem 3.10 using the constant 𝑐 .

• AVPRG-basedNIZK (VPRG.Setup,VPRG.Prove,VPRG.Verify) from Lemma 4.1, instantiatedwith the uni-
versal breaker UnivBreak from Lemma 5.6.14

• A DDH tester Test given by Lemma 5.5.

Construction. Define the following NIZK (Setup, Prove,Verify):

• Setup(1𝜆, 1 |𝑥 |) :Define 𝜆′ =
⌊
log1/𝑐 (𝜆)

⌋
. Compute crsDDH ← DDH.Setup(1𝜆, 1 |𝑥 |), crsVPRG ← VPRG.Setup(1𝜆′, 1 |𝑥 |),15

and output crs = (crsDDH, crsVPRG).

• Prove(crs, 𝑥,𝑤) : Compute 𝜋DDH ← DDH.Prove(crsDDH, 𝑥,𝑤) and 𝜋VPRG ← VPRG.Prove(crsVPRG, 𝑥,𝑤).
Output 𝜋 = (𝜋𝐷𝐷𝐻 , 𝜋VPRG).

• Verify(crs, 𝑥, 𝜋): Compute𝑏 ← Test(1𝜆′). If𝑏 = 0, outputVPRG.Verify(crsVPRG, 𝑥, 𝜋VPRG) usingUnivBreak.
If 𝑏 = 1, output DDH.Verify(crsDDH, 𝑥, 𝜋DDH).

We first tie the definitions of Definition 5.4 with security properties of the NIZKs above. Recall that for any
𝜆 ∈ N, we defined in Theorem 3.10 the set TOWER𝜆 = TOWER𝜆 (𝑐, 𝐿) B {𝜆} ∪ {𝜆 (𝑐/2)

𝑖/2 }𝑖∈[𝐿] , where 𝐿 > 0 is a
constant given by Theorem 3.10.

Lemma 5.9 (Security of the DDH-based NIZK). Define the set

𝐸DDH B
⋃
𝜆∈N
{𝜆 | TOWER𝜆 ⊆ SECURE},

where SECURE = SECURE(𝑡, 𝜀) is defined in Definition 5.4. Then (DDH.Setup,DDH.Prove,DDH.Verify) satisfies
perfect completeness, infinitely-often soundness w.r.t. 𝐸DDH (against uniform cheating provers), and statistical zero-
knowledge against non-uniform verifiers.

Proof. First, observe that the construction of 𝐸DDH implies:⋃
𝜆∈𝐸DDH

TOWER𝜆 ⊆ SECURE.

In particular, for any 𝜆 ∈ 𝐸DDH and any 𝜆𝑖 ∈ TOWER𝜆 , 𝜆𝑖 ∈ SECURE.
13Taking any other subexponential upper-bound for 𝑡 would suffice for us, but would result in additional unnecessary notation.
14The universal breaker from Lemma 5.6 is already a strong breaker, so the proof of Lemma 4.1 can directly argued combining Lemma 4.6

with Theorem 3.8, without explicitly using Lemma 4.4. This is because we internally amplified the success probability of UnivBreak in
Lemma 5.6 (using Lemma 4.4).

15We use the VPRG-based NIZK to prove statements of size |𝑥 | = poly(𝜆) which are subexponential in its internal security parameter
𝜆′. The VPRG-based NIZK of Lemma 4.1 remains subexponentially secure against adversaries (namely, verifiers, as soundness is statistical)
running in time poly( |𝑥 |) in that setting. See Remarks 3.9 and 4.3.

18



Therefore, by Theorem 3.10, it suffices to check that, for any uniform PPT adversaryA, there exists 𝜆∗ such
that for all 𝜆 ∈ SECURE such that 𝜆 ≥ 𝜆∗:

AdvDDHA (1𝜆) ≤ 2−𝜆
𝑐

. (1)

Let A be a uniform adversary, and let 𝑞(𝜆) = poly(𝜆) denote its runtime, and 𝑠 its size as a Turing machine.
By construction of SECURE (Definition 5.4), Equation (1) holds for all 𝜆 ∈ SECURE such that 𝑡 (𝜆) ≥ 𝑞(𝜆) and
𝜆 ≥ 2𝑠 , which in turn hold for all large enough 𝜆 ∈ SECURE as 𝑡 is a super-polynomial function.

Lemma 5.10 (Security of the VPRG-based NIZK). Define, for all 𝜆 ∈ N, VPRG.Setup(1𝜆) B VPRG.Setup(1𝜆′),
where 𝜆′ =

⌊
log1/𝑐 (𝜆)

⌋
. Define the set

𝐸VPRG =

{
𝜆

��� ⌊
log1/𝑐 (𝜆)

⌋
∈ BROKEN

}
.

Let 𝑐 ′ be any constant such that 𝑐 < 𝑐 ′ < 1. Assuming the 2𝜆𝑐
′
-subexponential hardness of CDH (Section 3.1),

(VPRG.Setup,VPRG.Prove,VPRG.Verify) is infinitely often correct and statistically adaptively sound with respect
to 𝐸VPRG16, and computationally adaptively, multi-theorem zero-knowledge.

Proof. By definition of 𝜆′, and by assumption on the functions 𝑡, 𝜀, UnivBreak on input (1𝜆′, 𝑥) for any 𝑥 runs in
time 𝑡 (𝜆′)/𝜀2 (𝜆′) · poly(𝜆′) = poly(𝜆), and therefore the algorithms (VPRG.Setup,VPRG.Prove,VPRG.Verify)
run in polynomial time.

The rest follows by instantiating Lemma 4.1 starting with A = UnivBreak, which runs on security param-
eter 𝜆′ ∈ BROKEN by definition of 𝐸VPRG, and using that AdvDDHUnivBreak (1𝜆

′) ≥ 1 − negl(𝜆′) · 2−4𝑇 (𝜆′) thanks to
Lemma 5.6.

Next, we tie Lemma 5.9 and Lemma 5.10 together thanks to the properties of our tester Test. Let 𝜆 ∈ N. We
distinguish several cases:

Case 1: If 𝜆 ∉ 𝐸DDH, there exists some 𝜆𝑖 ∈ TOWER𝜆 such that 𝜆𝑖 ∉ SECURE, so that 𝜆𝑖 ∈ BROKEN and
𝜆 B 2𝜆𝑐𝑖 ∈ 𝐸VPRG by definition. Furthermore, because 𝜆𝑖 ∉ SECURE, Test(1𝜆𝑖 ) outputs 0 except with
probability 2−𝜆𝑖 by Lemma 5.5, and therefore (Setup, Prove,Verify) on security parameter 𝜆 = 2𝜆𝑐𝑖 will call
VPRG.Verify with overwhelming probability. Soundness on 𝜆 then follows by soundness of the VPRG-
based NIZK (VPRG.Setup,VPRG.Prove,VPRG.Verify) on 𝐸VPRG (Lemma 5.10).

Case 2: If 𝜆 ∈ 𝐸DDH, namely if TOWER𝜆 ⊆ SECURE, we distinguish two subcases:

Case 2.1: 𝜆′ ∉ BROKEN then Test(1𝜆′) outputs 1 except with probability at most 𝜆 · 2−𝜆 by Lemma 5.5,
and therefore (Setup, Prove,Verify) on security parameter 𝜆 will callDDH.Verifywith overwhelming
probability. Soundness on 𝜆 then follows by soundness of theDDH-basedNIZK (DDH.Setup,DDH.Prove,
DDH.Verify) on 𝐸DDH (Lemma 5.9).

Case 2.2: Last, if 𝜆′ ∈ BROKEN, then 𝜆 ∈ 𝐸DDH ∩ 𝐸VPRG, and therefore (Setup, Prove,Verify) is sound re-
gardless of the outcome of Test(1𝜆′) by soundness of bothNIZKs (VPRG.Setup,VPRG.Prove,VPRG.Verify)
and (DDH.Setup,DDH.Prove,DDH.Verify).

Summing up, define a set 𝐸 ⊆ N as follows. For all 𝜆 ∈ N, define 𝜆 ∈ 𝐸 if either Case 2.1 or Case 2.2 occurs, and
define 𝜆 = 2𝜆𝑐𝑖 ∈ 𝐸 if Case 1 or Case 2.2 occurs, for all 𝜆𝑖 ∈ TOWER𝜆 such that 𝜆𝑖 ∈ BROKEN. We obtain that
(Setup, Prove,Verify) is infinitely-often adaptively sound with respect to 𝐸, and satisfies adaptive, multi-theorem
zero-knowledge against non-uniform verifiers. Finally, by construction of 𝐸, for all 𝜆 ∈ N, 𝐸∩

(
{𝜆} ∪ 2TOWER𝜆𝑐

)
≠

∅, and therefore, by construction of TOWER𝜆 , 𝐸 ∩ [𝜆, 2𝜆
𝑐 ] ≠ ∅. Setting 𝐾 = 𝑐 , we obtain the relative density of

𝐸 as stated in Theorem 5.1. This concludes the proof.

5.3 Additional Results
Modifying specific building blocks directly yields the following theorems.

Theorem 5.11 (NIZKs from CDH and LPN). Assume the superpolynomial hardness of CDH and the polynomial
hardness of LPN.17 Then for any NP language L , there exists a superpolynomially-often uniform non-interactive
zero-knowledge proof for L .

16See the paragraph on infinitely-often security in Section 3.2 for a definition of soudness w.r.t. an infinite set 𝐸.
17The noise rate of the LPN assumption is 1/𝑛𝑐 for some constant 1/2 < 𝑐 < 1. We refer to [BKM20] for a definition of LPN.

19



Note that the construction above can be instantiated in any (candidate) prime-order groups (that is, without
restrictions similar to [JJ21]).

Sketch of proof. This follows from the same construction as in Section 5.2, but instantiating theDDH-based NIZK
with the construction of [BKM20] which is secure under the polynomial hardness of both DDH and LPN.We then
set 𝑡 (resp. 𝜀) as any superpolynomial (resp. inverse superpolynomial) function. The only notable differences in
the proof are (1) the complexity leveraging is consequently milder, and we therefore only need to rely on the
superpolynomial hardness of CDH, and (2) 𝐸DDH = SECURE.

Theorem 5.12 (ZAP Arguments from Subexponential CDH). Assume the subexponential hardness of CDH. Then
for any NP language L , there exists a ZAP argument for L satisfying (1) subexponentially-often, non-adaptive
soundness against uniform efficient cheating provers and (2) (standard) adaptive witness indistinguishability.

Sketch of proof. We start with the existence of DDH-based ZAPs which is secure assuming DDH (Theorem 3.10;
note that it only satisfies non-adaptive soundness), and VPRG-ZAPs built on any DDH breaker, which are secure
assuming CDH (this follows noting that Lemma 4.1 gives a statistically sound NIZK with a common random
string, which yields a ZAP by [DN00]). The construction simply defines the first (resp. second) message of the
ZAP as the concatenation of the first (resp. second) messages two ZAPs. Verification proceeds as in Section 5.2.
The analysis is identical to the one in Section 5.2.

6 An Infinitely-Often NIZK from CDH+LPN
In this section, we prove the following theorem:

Theorem 6.1 (io-NIZK from CDH+LPN). Assume that CDH and (uniform) LPN both hold.18 Then for any NP
language L , there exists an infinitely-often uniform non-interactive zero-knowledge proof for L .

Compared to Theorem 5.11, Theorem 6.1 only requires the polynomial hardness of CDH and LPN. This is,
however, at the cost of having a non-constructive result, and losing superpolynomial-oftenness. In fact, we prove
the following statement:

Theorem 6.2. At least one of the following statements is necessarily true:

• the (uniform) LPN assumption implies the existence of an infinitely-often non-interactive zero-knowledge
argument system for NP with uniform adaptive soundness and standard zero-knowledge, or

• the CDH assumption implies the existence of a non-interactive zero-knowledge proof for NP with statistical
adaptive soundness, and adaptive multi-theorem zero-knowledge.

In order to prove Theorems 6.1 and 6.2, consider the following hypothesis 𝐻 :

For all uniform PPT adversary A, all polynomials 𝑞, and for infinitely many security parameters 𝜆 ∈ N,

AdvDDHA (1𝜆) ≤ 1/𝑞(𝜆) .

A note on the choice of𝐻 . Hypothesis𝐻 is carefully defined so that the resulting NIZK is uniform. Defining
𝐻 over infinitely-many parameters (as opposed to almost all parameters) is crucial: if we started with a stan-
dard DDH assumption, its negation would only give us an infinitely-often DDH breaker. Because one cannot
(uniformly) test whether this breaker is successful on a given security parameter (attempting to run it until it
works leads to halting problems), completeness would be lost. Similarly, if we made the case disjunction over
the standard non-uniform hardness of DDH (i.e. replacing “uniform” by “non-uniform” in𝐻 ), the resulting NIZK
would again have a non-uniform verifier, as building on a non-uniform DDH breaker.

Theorems 6.1 and 6.2 follow directly from the combination of Lemma 6.3 and Lemma 6.4 below, which show
the existence of NIZKs when 𝐻 holds and when ¬𝐻 holds, respectively.

Lemma6.3. If𝐻 holds, then assuming the (uniform) hardness of LPN, there exists an infinitely-often non-interactive
zero-knowledge argument system with uniform non-adaptive soundness and statistical zero-knowledge.

18Again, the noise rate of the LPN assumption is 1/𝑛𝑐 for some constant 1/2 < 𝑐 < 1, and we refer to [BKM20] for a definition of LPN.
We use uniform LPN to denote the setting where adversaries are restricted to be uniform algorithms.

20



Proof. This is directly implied by the NIZK of [BKM20] which is statistically zero-knowledge, and (uniformly,
non-adaptively) sound assuming the polynomial (uniform) hardness of LPN and DDH; their claim extends di-
rectly to the infinitely-often, uniform setting.

Lemma 6.4. If 𝐻 does not hold, then assuming the hardness of CDH, there exists a non-interactive zero-knowledge
proof with statistical adaptive soundness, and adaptive multi-theorem zero-knowledge.

Proof. Assuming ¬𝐻 , there exists a uniform PPT A, along with a polynomial 𝑞, such that for all 𝜆 ∈ N,
AdvDDHA (1𝜆) > 1/𝑞(𝜆). The lemma then follows directly from Lemma 4.1.

7 Instantiation from Elliptic Curves
We sketch here how to adapt our construction to be compatible with using elliptic curves as base cryptographic
groups, without requiring the existence of a pairing. Namely, we show that Theorems 5.1 and 5.12 hold for
(families of) elliptic curves, thus obtaining NIZKs and ZAP arguments (with the same caveats as Theorems 5.1
and 5.12) assuming the subexponential hardness of CDH over elliptic curves (without requiring the existence of
a pairing).

Theorem 7.1. Under the subexponential CDH assumption over any (family of) elliptic curves, there exists:

• a subexponentially-often secure, uniform NIZK argument for all NP in the common random string model.
The construction satisfies (1) subexponentially-often adaptive, computational soundness against uniform effi-
cient provers, and (2) standard adaptive, computational multi-theorem zero-knowledge against non-uniform
verifiers;

• a subexponentially-often secure, uniformZAP argument for allNP. The construction satisfies (1) subexponentially-
often adaptive, computational soundness against uniform efficient provers and (2) standard adaptive, compu-
tational witness-indistinguishability against non-uniform verifiers.

However, even if Theorem 5.1 and Theorem 5.12 hold over elliptic curves, the resulting constructions ensure
slightly weaker guarantees. Indeed, while Theorem 5.1 and Theorem 5.12 can easily be extended to ensure subex-
ponential security for almost free (Remark 5.3), their elliptic curve counterparts only ensure super-polynomial
soundness, regardless of the strength of the subexponential CDH assumption we start from (Remark 7.4).

The technical difficulty of extending our result to other groups with exponentiation not known to be in TC0

is inherited from existing NIZKs from DDH [JJ21].19 Still, [JJ21] shows how to extend their result to elliptic
curves using complexity leveraging: while elliptic curves are not known to have exponentiation in TC0, curves
associated to a sufficiently small security parameter have exponentiation in a low enough complexity class to
enable the construction of [JJ21]. In our case, we have to delicately argue that this additional use of complexity
leveraging can be made compatible with our (already complexity-leveraging-heavy) approach.

We start with the analogue of Theorem 3.10, ported to the setting of elliptic curves (rephrased from [JJ21,
Appendix B]).

Theorem 7.2 (NIZK and ZAP Arguments from DDH over Elliptic Curves [JJ21]). There exists a constant 𝐿 > 0
such that the following holds. For any constant 0 < 𝑐 < 1 and 𝑀 > 1, and for all 𝜆 ∈ N, define the set TOWER𝜆 =

TOWER𝜆 (𝑐, 𝐿) B {𝜆 (𝑐/2)
𝑖/2 }𝑖∈[𝐿] . For any infinite set 𝐸 ⊆ N, define the sets:

𝐸TOWER =
⋃
𝜆∈𝐸

TOWER𝜆,

𝐸com =
⋃
𝜆∈𝐸
{⌊log𝑀/𝑐 𝜆⌋}

Suppose that, for any (uniform) PPT adversary A, there exists 𝜆∗ such that for all 𝜆TOWER ∈ 𝐸TOWER satisfying
𝜆TOWER ≥ 𝜆∗:

AdvDDHA (1𝜆TOWER ) ≤ 2−(𝜆TOWER)
𝑐

.

Furthermore, for all 𝜆com ∈ 𝐸com, define 𝜆 = 2𝜆com
𝑐/𝑀

. Suppose that, for all (uniform) adversary A running in time
poly(𝜆), and for all 𝜆com ∈ 𝐸com satisfying 𝜆com ≥ 𝜆∗:

AdvDDHA (1𝜆com ) ≤ negl(𝜆).

Then:
19For readers familiar with [JJ21], this is so that trapdoor decryption for the sigma-protocol commitment can be evaluated by the interactive

trapdoor hashing protocol.

21



• there exists a NIZK for all NP satisfying perfect completeness, infinitely-often adaptive soundness w.r.t. 𝐸
(against uniform cheating provers), and computational zero-knowledge against non-uniform verifiers;

• there exists a ZAP argument for allNP satisfying perfect completeness, infinitely-often non-adaptive soundness
w.r.t. 𝐸, and statistical adaptive witness indistinguishability.

In other words, the construction of NIZKs from DDH on elliptic curves from [JJ21] uses, on input security
parameter 𝜆, all groups corresponding to security parameters in TOWER𝜆 , which are all assumed to be subex-
ponentially secure, and a group with security parameter 𝜆com, which is assumed to be mildly subexponentially
secure.20

For readers familiar with the construction of [JJ21], TOWER𝜆 corresponds to the set of security parameters
used, in the NIZK construction from DDH for security parameter 𝜆, to instantiate the interactive trapdoor hash-
ing / correlation-intractable hash function. In the construction from Z∗𝑞 (or more generally, in any cryptographic
groupwith exponentiation in TC0), the commitment for the trapdoor sigma-protocol is instantiated with security
parameter 𝜆. In the construction from elliptic curves, further complexity leveraging is required, and this latter
commitment is instead instantiated using some poly-logarithmic security parameter log𝑀/𝑐 𝜆 for some constant
𝑀 > 1.

We now argue that our construction and proof in Section 5.2 can be adapted to use Theorem 7.2 instead
of Theorem 3.10. Similar changes directly extend to the setting of ZAP arguments, extending Theorem 5.12 to
elliptic curves.

The construction is almost identical to the one in Section 5.2, except with the following differences:

• We use as our DDH-based NIZK (DDH.Setup,DDH.Prove,DDH.Verify) the one given by Theorem 7.2 for
some arbitrary constant𝑀 > 1, as opposed to Theorem 3.10.

• We require 𝑡 = 𝑡 (𝜆) to be a subexponential function. For convenience of notation, we will set 𝑡 (𝜆) =
1/𝜀 (𝜆) = 2𝜆𝑐 , where we recall that 0 < 𝑐 < 1 is a constant.

Therefore, in terms of correctness and security, the only difference with Section 5.2 appears in Lemma 5.9,
which is replaced by the following.

Lemma 7.3 (Security of the DDH-based NIZK — Elliptic Curve Version). Define the set

𝐸DDH B
⋃
𝜆∈N

{
𝜆

��� TOWER𝜆 ∪ {⌊log𝑀/𝑐 𝜆⌋} ⊆ SECURE
}
,

where SECURE = SECURE(𝑡, 𝜀) is defined in Definition 5.4, and TOWER𝜆 is defined in Theorem 7.2. Then
(DDH.Setup,DDH.Prove,DDH.Verify) satisfies perfect completeness, infinitely-often soundness w.r.t. 𝐸DDH (against
uniform cheating provers), and statistical zero-knowledge against non-uniform verifiers.

Proof. First, observe that the construction of 𝐸DDH implies:⋃
𝜆∈𝐸DDH

TOWER𝜆 ∪ {⌊log𝑀/𝑐 𝜆⌋} ⊆ SECURE.

In particular, for any 𝜆 ∈ 𝐸DDH and any 𝜆𝑖 ∈ TOWER𝜆 ∪ {⌊log𝑀/𝑐 𝜆⌋}, 𝜆𝑖 ∈ SECURE.
Therefore, by Theorem 7.2, it suffices to check that that the two following statements hold. First, that, for

any uniform PPT adversary A, there exists 𝜆∗ such that for all 𝜆 ∈ SECURE such that 𝜆 ≥ 𝜆∗:

AdvDDHA (1𝜆) ≤ 2−𝜆
𝑐

. (2)

Second, define the function 𝜏 (𝜆′) B 2𝜆′
(𝑐/𝑀 )

. We also check that for all uniform adversaries A running in time
poly(𝜏):

AdvDDHA (1𝜆′) ≤ negl(𝜏 (𝜆′)) . (3)

Note that, renaming 𝜆′ = ⌊log𝑀/𝑐 𝜆⌋, Equation (3) requires the advantage of poly(𝜆) adversaries against DDH
with security parameter 𝜆′ to be negl(𝜆).

Let A be a uniform adversary, and let 𝑞(𝜆) denote its runtime, and 𝑠 its size as a Turing machine. By
construction of SECURE (Definition 5.4), if 𝑞 is a polynomial poly(𝜆), then Equation (2) holds for all 𝜆 such that

20Technically, the groups in TOWER𝜆 are only required to be subexponentially-secure with respect to polynomial-time adversaries,
while the group for 𝜆com is required to be secure with respect to mildly-subexponential time 𝜆 = 2𝜆com𝑐/𝑀 adversaries. We will ignore this
distinction, as it will not affect our final result.

22



𝑡 (𝜆) ≥ 𝑞(𝜆) and 𝜆 ≥ 2𝑠 , which in turn hold for all large enough 𝜆 (as 𝑡 is a super-polynomial function and 𝑞 is
assumed to be polynomial).

Similarly, if𝑞(𝜆) is polynomial in𝜏 (𝜆) = 2𝜆 (𝑐/𝑀 ) , then for large enough 𝜆, we have 𝑡 (𝜆) = 2𝜆𝑐 ≥ poly(2𝜆 (𝑐/𝑀 ) ) =
𝑞(𝜆) and 𝜀 (𝜆) = 2𝜆−𝑐 = negl(𝑞(𝜆)), as𝑀 > 1.

Similarly to Section 5, we define a set 𝐸 as follows. Let 𝜆 ∈ N. Then either 𝜆 ∈ 𝐸DDH, in which case we
define 𝜆 ∈ 𝐸, or 𝜆 ∉ 𝐸DDH, in which case we define 2𝜆𝑐𝑖 ∈ 𝐸 for all 𝜆𝑖 ∈ TOWER𝜆 such that 𝜆𝑖 ∈ BROKEN. A
similar analysis as in Section 5 shows that our construction is secure for all large enough 𝜆 ∈ 𝐸. Furthermore,
by construction, 𝐸 always contains an element in {𝜆} ∪ {2TOWER𝜆

𝑐

} ⊂ [𝜆, 2(𝜆𝑐/2)𝑐 ] ∈ 𝐸, and setting 𝐾 = 𝑐2/2
concludes the proof.

Remark 7.4 (Superpolynomial Security). Similar to Remark 5.3, the proof above can be directly adapted to
achieve stronger than polynomial security. Soundness with superpolynomial advantage follows from [JJ21], by
relying on an appropriately stronger subexponential hardness of DDH (which in turns requires a stronger CDH
assumption). Note that because of the additional layer of complexity leveraging in the elliptic curve setting, we
can only ensure super-polynomial hardness for Equation (3) even if we assume strong subexponential security
of DDH, and we are therefore stuck to super-polynomial security. This is one main difference with the setting
of groups with exponentiation in TC0.

Zero-knowledge against subexponential-time verifiers again follows from relying on an appropriately stronger
subexponential hardness of CDH. The constant 𝐾 (representing the density of “secure” parameters) will in-
crease with the strength of the superpolynomial soundness claim, and the exact subexponential hardness of
CDH needed will both grow with 𝐾 and the strength of the subexponential zero-knowledge claim.

8 OnPromise-TrueDistributional SearchNPHardness fromAverage-
Case NP Hardness

We show here that our new technique for handling disjunction arguments seem flexible, and seem to apply
to other similar disjunction arguments that previously appeared in the litterature. We leave a more precise
characterization of compatible prior work, along with an associated abstraction of our technique, for future
work.

We focus here on the work of [PV20], which shows that, using their terminology, proving theorems that are
guaranteed to be true is no easier than proving theorems in general. More formally, [PV20] prove the following
result (we refer to Section 8.2 for definitions):

Theorem 8.1. Suppose that there exists a distributional NP problem that is (almost-everywhere) hard on average.
Then, there exists an infinitely-often hard-on-average promise-true distributional NP search problem.

In contrast, we use our techniques to obtain the following theorem:

Theorem 8.2. Assume the existence of a superpolynomially-secure uniformly hard-on-average distributional NP
problem (L ,D). Then there is an explicit construction of a promise-true distributional NP search problem which is
uniformly superpolynomially-often hard-on-the-average.

Compared with Theorem 8.1, Theorem 8.2 strengthens the security requirement on the language, which is
now required to be superpolynomially hard on average (where the superpolynomial bound can be arbitrarily
close to polynomial). In exchange for this stronger requirement, it obtains a much stronger conclusion: that
there exists a promise-true distributional NP search problem that is secure on a set of superpolynomial density
(as opposed to just secure on infinitely-many security parameters). Our construction is also in the uniform
setting (hence we start from the weaker notion of uniformly secure HOA languages, and obtain the weaker
notion of uniformly secure promise-true distributional NP search problem).

8.1 A Universal One-Way Function Tester
Definition 8.3. Let 𝑓 : {0, 1}∗ ↦→ {0, 1}∗ be a polynomial-time computable function. 𝑓 is said to be a (𝑡, 𝜀)-one-way
function (OWF) if for every 𝑡 (𝜆)-time algorithm A, for all large enough 𝜆 ∈ N, it holds that

𝑃𝑟 [𝑥 $← {0, 1}𝜆, 𝑦 = 𝑓 (𝑥) : A(1𝜆, 𝑦) ∈ 𝑓 −1 (𝑓 (𝑥))] = Adv𝑓A (1
𝜆) ≤ 𝜀 (𝜆).

If the above holds only for infinitely many 𝜆 ∈ N, we say that 𝑓 is an infinitely-often (𝑡, 𝜀)-OWF ((𝑡, 𝜀)-ioOWF).

23



Now, fix a superpolynomial function 𝑡 (𝜆) = 𝜆𝜔 (1) . As in Definition 5.4, for any candidate one-way function
family 𝑓 = {𝑓𝜆 : {0, 1}𝜆 ↦→ {0, 1}𝜆}, we can define SECURE𝑓 = SECURE𝑓 (𝑡, 1/𝑡) ⊆ N as the set of security
parameters 𝜆 such that, for all uniform Turing machinesA of size at most ⌊log 𝜆⌋ running in time at most 𝑡 (𝜆):

Adv𝑓A (1
𝜆) < 1/𝑡 (𝜆).

Similarly, we define BROKEN𝑓 = BROKEN𝑓 (𝑡, 1/𝑡) ⊆ N as the set of security parameters 𝜆, such that there
exists a uniform machine A of size at most ⌊log 𝜆⌋ such that:

Adv𝑓A (𝑡 ) (1
𝜆) ≥ 1/2𝑡

(recall that A (𝑡 ) is the machine that runs A for exactly 𝑡 steps, outputs whatever outputs if A terminates in 𝑡
steps, and outputs a random bit otherwise). The same considerations as in the case of DDH holds for these sets:
N = SECURE𝑓 ∪ BROKEN𝑓 , but these do not form a partition of the integers (they can overlap).

Testing for all one-way functions with bounded runtime. We will go one step further, as we want our
tester to identify, for any input parameter 𝜆, whether there exists any polynomial-time computable function 𝑓
that is (𝑡, 1/𝑡)-oneway. To do so, we nowfix two parameters, 𝑡 ′(𝜆) = 𝜆𝜔 (1) and 𝑡 (𝜆) = (𝑡 ′(𝜆))𝜔 (1) . Note that now,
𝑡 ′ is superpolynomial in 𝜆, while 𝑡 is superpolynomial in 𝑡 ′. Then, for any adversaryA, we denote by Adv𝑡

′

A (1𝜆)
the largest advantage of A against any candidate (𝑡, 1/𝑡)-OWF 𝑓 which can be computed by a uniform Turing
machine of size at most ⌊log 𝜆⌋ running in time at most 𝑡 ′(𝜆) (note that this includes in particular all candidate
OWF with description size at most ⌊log 𝜆⌋ running in time poly(𝜆) for large enough 𝜆). That is,

Adv𝑡
′

A (1
𝜆) = max

𝑓
Adv𝑓A (1

𝜆),

where the maximum is taken over all uniform Turing machines 𝑓 of size at most ⌊log 𝜆⌋ running in time at most
𝑡 ′(𝜆). Then, we define

SECURE = SECURE(𝑡, 𝑡 ′) =
⋃
𝑓

SECURE𝑓 (𝑡, 1/𝑡) ⊆ N

as the set of security parameters 𝜆 such that there exists a function 𝑓 with description size at most ⌊log 𝜆⌋ running
in time at most 𝑡 ′(𝜆) such that, for all uniform Turing machines A of size at most ⌊log 𝜆⌋ running in time at
most 𝑡 (𝜆):

Adv𝑓A (1
𝜆) < 1/𝑡 (𝜆).

Similarly, we define BROKEN = BROKEN(𝑡, 𝑡 ′) = ⋂
𝑓 BROKEN𝑓 (𝑡, 1/𝑡) ⊆ N as the set of security parameters

𝜆, such that for all functions 𝑓 with description size at most ⌊log 𝜆⌋ running in time at most 𝑡 ′(𝜆), there exists a
uniform machine A of size at most ⌊log 𝜆⌋ such that:

Adv𝑓A (𝑡 ) (1
𝜆) ≥ 1/2𝑡 .

The same considerations as in the case of DDH holds for these sets: N = SECURE ∪ BROKEN, but these do not
form a partition of the integers (they can overlap). Then, similar to our construction of tester for DDH, we can
prove the existence of a security parameter tester for general one-way functions (we will not need this tester in
our actual construction, though, only in the proof of security).

Lemma 8.4 (Universal Security Parameter Tester). Let 𝑡 = 𝑡 (𝜆), 𝑡 ′ = 𝑡 ′(𝜆) be positive-integer-valued functions.
Then there exists an algorithm TestOWF = TestOWF (𝑡, 𝑡 ′) which takes as input 1𝜆 where 𝜆 ∈ N, runs in time
𝑡 ′ · 𝑡3 (𝜆) · poly(𝜆), and satisfying the following properties:

• For any 𝜆 ∈ N, Pr
[
𝜆 ∉ SECURE ∧ TestOWF (1𝜆) = 1

]
≤ 2−𝜆 .

• For any 𝜆 ∈ N, Pr
[
𝜆 ∉ BROKEN ∧ TestOWF (1𝜆) = 0

]
≤ 𝜆 · 2−𝜆 .

Proof. We define TestOWF as follows. On input (1𝜆), let 𝐶 (𝜆) =
⌈
100 · 𝜆 · 𝑡2

⌉
.

• for all 𝑓 ∈ {0, 1} ⌊log𝜆⌋ , parse 𝑓 as the description of a Turing Machine. Denote by 𝑓(𝑡 ′) the Turing machine
that, on input 𝑥 ∈ {0, 1}𝜆 , runs 𝑓 for 𝑡 ′ steps and if 𝑓 terminates with output 𝑦 ∈ {0, 1}𝜆 , it outputs 𝑦;
otherwise, it outputs 0𝜆 .

• For all𝑀 ∈ {0, 1} ⌊log𝜆⌋ , parse𝑀 as the description of a Turing Machine.

24



– For 𝑖 = 1 to 𝐶 (𝜆), sample 𝑥𝑖
$← {0, 1}𝜆 and compute 𝑦𝑖 = 𝑓(𝑡 ′) (𝑥𝑖 ). Compute 𝑥 ′𝑖 ← 𝑀(𝑡 ) ((1𝜆, 𝑦𝑖 ). Let

𝑐𝑀,𝑓 denote the number of indices 𝑖 such that 𝑓(𝑡 ′) (𝑥 ′𝑖 ) = 𝑦𝑖 .

• If for each 𝑓 there exists𝑀 such that 𝑐𝑀,𝑓 ≥ 3
4𝑡 (𝜆) ·𝐶 (𝜆), output 0; else, output 1.

From there, the security analysis of the tester is essentially identical to the analysis of Lemma 5.5.

8.2 The Pass-Venkitasubramaniam Construction
Below, we recall some definitions, adapted to our setting. A distributional NP problem is a pair (L ,D) where
L is an NP language, and D is a polytime-samplable distribution.

Definition 8.5 (hardness on average). A distributional problem (L ,D) is (uniformly) (𝑡, 𝜀)-hard-on-the-average
((𝑡, 𝜀)-HOA) if there exists no 𝑡-time (uniform) adversary A such that for infinitely many 𝜆 ∈ N,

Pr[𝑥 $← D(1𝜆) : A(1𝜆, 𝑥) = L (𝑥)] > 1 − 𝜀,

where we define L (𝑥) = 1 if 𝑥 ∈ L and L (𝑥) = 0 otherwise.

When 𝑡 = 𝜆𝜔 (1) and 𝜀 = 1/2 − 𝜆−𝜔 (1) , we say that the problem is superpolynomially (uniformly) HOA. The
definition above can be extended to (uniformly) (𝑡, 𝜀)-HOA search problems. A distributional search NP problem
is a pair (R,D) where R is a search NP problem andD a polytime-samplable distribution. We recall the notion
of infinitely-often hard-on-average search problem from [PV20]:

Definition 8.6 (search ioHOA). A distributional NP search problem (R,D) is (uniformly) infinitely-often (𝑡, 𝜀)-
hard-on-the-average ((𝑡, 𝜀)-ioHOA) if there exists no 𝑡-time (uniform) adversary A such that for all large enough
𝜆 ∈ N,

Pr[𝑥 $← D(1𝜆),A(1𝜆, 𝑥) = 𝑤 : LR (𝑥) = 1 =⇒ (𝑥,𝑤) ∈ R] > 1 − 𝜀.

A promise-true distributional NP search problem is such that every 𝑥 in the support of D(1𝜆) satisfies
LR (𝑥) = 1. Eventually, we define HOA search problems which are secure on an superpolynomially dense
set of security parameters:

Definition 8.7 (search isoHOA). A distributional NP search problem (R,D) is (uniformly) superpolynomially-
often (𝑡, 𝜀)-hard-on-the-average ((𝑡, 𝜀)-isoHOA) if for every 𝑡-time (uniform) adversaryA, the set 𝑆 ⊂ N of security
parameters 𝜆 such that

Pr[𝑥 $← D(1𝜆),A(1𝜆, 𝑥) = 𝑤 : LR (𝑥) = 1 =⇒ (𝑥,𝑤) ∈ R] > 1 − 𝜀

satisfies [𝜆, 𝜆𝜔 (1) ] ⊄ 𝑆 for every 𝜆 ∈ N.

Brief overview of the construction of [PV20]. We briefly recall the main steps used in [PV20] to prove
Theorem 8.1.

The proof of [PV20] uses the intermediate notion of interactive puzzle, which we recall below.

Definition 8.8 (Informal). An interactive puzzle is a 2-player interactive protocol between a challenger C and an
attacker A such that, when running on joint input 1𝜆 ,

• (𝑆-computational soundness) there exists no PPT attacker A∗ such that A∗ (1𝜆) succeeds in making C(1𝜆)
output 1 for every 𝜆 ∈ 𝑆 , and

• (completeness) there exists a negligible function 𝜇 and an inefficient attackerA which, on input 1𝜆 , succeeds
in making C(1𝜆) output 1 with probability 1 − 𝜇 (𝜆) for all 𝜆 ∈ N.

The proof of Theorem 8.1 uses the following sequence of steps:

• A hard-on-average distributional NP problem implies a two-round public-coin puzzle Π.

• A two-round public-coin puzzle implies a 3-round public-coin puzzle with perfect completeness via [PV20,
Theorem 6.1].

• If infinitely-often OWFs do not exist, then a 3-round public-coin puzzle with perfect completeness can
be converted into a 2-round public-coin puzzle with perfect completeness Π′ using the round-collapse
lemma [PV20, Lemma 4.4]. Such a puzzle is in particular (syntactically equivalent to) a promise-true
(almost-everywhere) distributional NP search problem.

25



• Else, if infinitely-often OWFs do exist, they imply the existence of a 2-round private-coin puzzle with
perfect completeness, which is syntactically equivalent to an infinitely-often promise-true distributional
NP search problem.

The heart of the argument is a proof that the Babai-Moran round-reduction theorem [BM88] works also in
the setting of computationally sound interactive puzzles. The proof proceeds by showing that given an adversary
A against the round-collapsed protocol, one can construct a new machine 𝑀 (that incorporates the code of A)
and an adversaryB against the original 𝑘-round protocol, which internally runs an algorithm Invwhich samples
from a distribution which is 1/𝜆 close to the distribution of preimages of𝑀 , and succeeds in the 𝑘-round puzzle
with constant probability ≥ 1/64. At this stage, the authors conclude that if infinitely-often OWFs do not exist,
then via the standard black-box reduction between (infinitely-often) distributional OWFs and OWFs, there exists
an efficient implementation of Inv which succeeds on every large enough security parameter 𝜆.

8.3 A New Reduction from Distributional NP Problems to Promise-True Distribu-
tional NP Problems

Using our techniques and building upon the sketch above, we prove Theorem 8.2. In particular we can actu-
ally describe an explicit construction of a hard-on-average promise-true distributional NP search problem with
stronger hardness guarantees.

Proof. Let 𝑓 be Levin’s universal one-way function. Letℎ𝑓 denote the universal one-way hash function built from
𝑓 using Rompel’s construction [NY89, Rom90] (note that the adjective universal has a different meaning for 𝑓
and ℎ𝑓 here). Let Π be a superpolynomially-secure two-round public-coin puzzle with imperfect completeness,
whose existence is implied by that of a superpolynomially-secure (uniformly) hard-on-average distributionalNP
problem (see [PV20, Lemma 3.3]). Our (straightforward) construction proceeds as follows:

• On input the security parameter 1𝜆 , both parties run the 2-round private-coin puzzle Π′ with perfect
completeness obtained by applying the Babai-Moran round-reduction technique to the 3-round public-
coin puzzle with perfect completeness constructed from Π via [PV20, Theorem 6.1] (note that this is a
fully explicit construction: only its soundness analysis relies on whether a OWF exist).

• In parallel, both parties run the 2-round public-coin perfectly complete puzzle constructed from ℎ𝑓 via
[PV20, Proposition 3.2], on joint input 1𝜆 .

• The challenger accepts if and only if both executions accept.

This protocol simply runs both candidate constructions of 2-round public-coin perfectly complete puzzles
from [PV20], making the OWF-based construction explicit by means of a universal one-way function. However,
the analysis of [PV20] only guarantees that this combined puzzle is sound on infinitely many security parame-
ters. We provide below a sketch of an alternative analysis which shows, starting from slightly stronger premises
(the existence of superpolynomially hard-on-average distributional NP problems, where the superpolynomial
gap can be an arbitrary 𝜆𝜔 (1) ), that the puzzle is sound on a set of security parameters of superpolynomial den-
sity.

Completeness and soundness. Perfect completeness follows immediately from the perfect completeness of
each puzzle. We now turn our attention to soundness. arbitrary parameters 𝑡 ′(𝜆) = 𝜆𝜔 (1) and 𝑡 (𝜆) = (𝑡 ′(𝜆))𝜔 (1) .

Let 𝜆 ∈ N. Assume for now that 𝜆 ∈ BROKEN(𝑡, 𝑡 ′). By definition, this means that for every function
𝑓 : {0, 1}𝜆 ↦→ {0, 1}𝜆 with description at most ⌈log 𝜆⌉ running in time at most 𝑡 ′(𝜆), there exists a machine 𝑀
running in time at most 𝑡 (𝜆) that, on input 𝑦 = 𝑓 (𝑥) for a random 𝑥 , outputs 𝑥 ′ ∈ 𝑓 −1 (𝑓 (𝑥)) with probability at
least 1/𝑡 (𝜆). Now, letA∗ be a PPT adversary against Π′. We follow directly the soundness analysis of Lemma 4.1
from [PV20]. FromA∗, the authors showhow to build a specific polytime-computable function 𝐹 such that, given
an algorithm Inv that sample from a distribution 1/𝜆-close to random preimages for 𝐹 , one can construct from
Inv an adversary B against the original protocol Π (in fact again the 3-round protocol , but this directly implies
an attack on Π via the reduction of Theorem 6.1 in [PV20]). Because 𝜆 ∈ BROKEN(𝑡, 𝑡 ′), we can apply a similar
sequence of steps when A∗ is uniform: we assume without loss of generality that the function 𝐹 constructed
from A∗ has description size at most ⌈log 𝜆⌉ (this holds for large enough 𝜆). Let 𝑀 be the 𝑡-time machine that
inverts 𝐹 with probability 1/𝑡 . Using the standard reduction from one-way functions to distributional one-way
function, we can build a poly(𝑡)-timemachine𝑀 ′ that samples from a distribution 1/𝑡-close from the distribution
of random preimages of 𝐹 . Plugging𝑀 ′ in the construction of the adversaryB from [PV20], we get an algorithm

26



that runs in time poly(𝑡) = 𝜆𝜔 (1) and breaksΠwith probability 𝜆−𝜔 (1) , which is a contradiction to our assumption
that Π is superpolynomially secure.

Now, let 𝜆′ ∈ N be a security parameter such that 𝑡 ′(𝜆′) = 𝜆. Assume that 𝜆′ ∈ SECURE(𝑡, 𝑡 ′): this means
that there exists a 𝜆 = 𝑡 ′(𝜆′)-time function 𝑔 that cannot be inverted in time 𝑡 (𝜆′) = 𝜆𝜔 (1) with probability better
than 𝜆𝜔 (1) – in particular, 𝑔 is a one-way function against all adversaries running in time poly(𝜆). Because
𝑓 is a universal one-way function, it follows that no poly(𝜆) uniform adversary inverts 𝑓 with non-negligible
advantage, hence that the puzzle constructed from ℎ𝑓 is sound (against uniform adversaries).

We conclude by showing that the set of security parameters such that either 𝜆 ∈ BROKEN(𝑡, 𝑡 ′) or 𝜆′ ∈
SECURE(𝑡, 𝑡 ′) is superpolynomially dense. This follows immediately from the fact that 𝜆′ = 𝜆1/𝜔 (1) : for each 𝜆,
either 𝜆 ∈ BROKEN(𝑡, 𝑡 ′), hence the protocol is sound on input 1𝜆 , or 𝜆 ∈ SECURE(𝑡, 𝑡 ′), and the protocol is
sound on input 1𝑡 ′ (𝜆) = 1𝜆𝜔 (1) . This shows that the gap between two parameters where the protocol is sound is
an arbitrarily small superpolynomial gap.

Acknowledgements
G. Couteau is supported by the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-
0001 (project SCENE), and the France 2030 ANR Project ANR22-PECY-003 SecureCompute. The second author
was supported in part by NSF CNS-1814919, NSF CAREER 1942789, Johns Hopkins University Catalyst award,
JP Morgan Faculty Award, and research gifts from Ethereum, Stellar and Cisco. Zhengzhong Jin was supported
in part by DARPA under Agreement No. HR00112020023 and by an NSF grant CNS-2154149. Willy Quach was
supported by NSF grant CNS-1750795, CNS-2055510.

References
[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash: De-

centralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474. IEEE Computer Society, 2014.

[BCM22] E. Boyle, G. Couteau, and P. Meyer. Sublinear secure computation from new assumptions. In
TCC 2022, Part II, LNCS, pages 121–150. Springer, Heidelberg, November 2022.

[BFJ+20] S. Badrinarayanan, R. Fernando, A. Jain, D. Khurana, and A. Sahai. Statistical ZAP arguments. In
EUROCRYPT 2020, Part III, LNCS 12107, pages 642–667. Springer, Heidelberg, May 2020.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

[BKM06] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and constructions without
random oracles. In TCC 2006, LNCS 3876, pages 60–79. Springer, Heidelberg, March 2006.

[BKM20] Z. Brakerski, V. Koppula, and T.Mour. NIZK from LPN and trapdoor hash via correlation intractabil-
ity for approximable relations. In CRYPTO 2020, Part III, LNCS 12172, pages 738–767. Springer,
Heidelberg, August 2020.

[BL96] D. Boneh and R. J. Lipton. Algorithms for black-box fields and their application to cryptography
(extended abstract). In CRYPTO’96, LNCS 1109, pages 283–297. Springer, Heidelberg, August 1996.

[BM88] L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and a hierarchy of
complexity classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.

[BMW03] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. In EUROCRYPT 2003,
LNCS 2656, pages 614–629. Springer, Heidelberg, May 2003.

[BY93] M. Bellare and M. Yung. Certifying cryptographic tools: The case of trapdoor permutations. In
CRYPTO’92, LNCS 740, pages 442–460. Springer, Heidelberg, August 1993.

[CCH+19] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, and D. Wichs.
Fiat-Shamir: from practice to theory. In 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

27



[CCRR18] R. Canetti, Y. Chen, L. Reyzin, and R. D. Rothblum. Fiat-Shamir and correlation intractability from
strong KDM-secure encryption. In EUROCRYPT 2018, Part I, LNCS 10820, pages 91–122. Springer,
Heidelberg, April / May 2018.

[CH19] G. Couteau and D. Hofheinz. Designated-verifier pseudorandom generators, and their applications.
In EUROCRYPT 2019, Part II, LNCS 11477, pages 562–592. Springer, Heidelberg, May 2019.

[CHK03] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EURO-
CRYPT 2003, LNCS 2656, pages 255–271. Springer, Heidelberg, May 2003.

[CKS08] D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In EURO-
CRYPT 2008, LNCS 4965, pages 127–145. Springer, Heidelberg, April 2008.

[CKSU21] G. Couteau, S. Katsumata, E. Sadeghi, and B. Ursu. Statistical ZAPs from group-based assumptions.
In TCC 2021, Part I, LNCS 13042, pages 466–498. Springer, Heidelberg, November 2021.

[CKU20] G. Couteau, S. Katsumata, and B. Ursu. Non-interactive zero-knowledge in pairing-free groups
from weaker assumptions. In EUROCRYPT 2020, Part III, LNCS 12107, pages 442–471. Springer,
Heidelberg, May 2020.

[CL18] R. Canetti and A. Lichtenberg. Certifying trapdoor permutations, revisited. In TCC 2018, Part I,
LNCS 11239, pages 476–506. Springer, Heidelberg, November 2018.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–64. Springer, Heidelberg,
April / May 2002.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In 23rd ACM
STOC, pages 542–552. ACM Press, May 1991.

[Den17] Y. Deng. Magic adversaries versus individual reduction: Science wins either way. In EURO-
CRYPT 2017, Part II, LNCS 10211, pages 351–377. Springer, Heidelberg, April / May 2017.

[DGH+20] N. Döttling, S. Garg, M. Hajiabadi, D. Masny, and D. Wichs. Two-round oblivious transfer from
CDH or LPN. In EUROCRYPT 2020, Part II, LNCS 12106, pages 768–797. Springer, Heidelberg, May
2020.

[DGI+19] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor hash functions and
their applications. In CRYPTO 2019, Part III, LNCS 11694, pages 3–32. Springer, Heidelberg, August
2019.

[DMP88] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge proof systems. In
CRYPTO’87, LNCS 293, pages 52–72. Springer, Heidelberg, August 1988.

[DN00] C. Dwork and M. Naor. Zaps and their applications. In 41st FOCS, pages 283–293. IEEE Computer
Society Press, November 2000.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs based on a
single random string (extended abstract). In 31st FOCS, pages 308–317. IEEE Computer Society
Press, October 1990.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, LNCS 263, pages 186–194. Springer, Heidelberg, August 1987.

[GH18] S. Garg and M. Hajiabadi. Trapdoor functions from the computational Diffie-Hellman assumption.
In CRYPTO 2018, Part II, LNCS 10992, pages 362–391. Springer, Heidelberg, August 2018.

[GJJM20] V. Goyal, A. Jain, Z. Jin, and G. Malavolta. Statistical zaps and new oblivious transfer protocols. In
EUROCRYPT 2020, Part III, LNCS 12107, pages 668–699. Springer, Heidelberg, May 2020.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC,
pages 25–32. ACM Press, May 1989.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems
(extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

28



[GOS06a] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for NIZK. In
CRYPTO 2006, LNCS 4117, pages 97–111. Springer, Heidelberg, August 2006.

[GOS06b] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In EURO-
CRYPT 2006, LNCS 4004, pages 339–358. Springer, Heidelberg, May / June 2006.

[GR13] O. Goldreich and R. D. Rothblum. Enhancements of trapdoor permutations. Journal of Cryptology,
26(3):484–512, July 2013.

[HNO+18] I. Haitner, K. Nissim, E. Omri, R. Shaltiel, and J. Silbak. Computational two-party correlation: A
dichotomy for key-agreement protocols. In 59th FOCS, pages 136–147. IEEE Computer Society
Press, October 2018.

[JJ21] A. Jain and Z. Jin. Non-interactive zero knowledge from sub-exponential DDH. In EUROCRYPT 2021,
Part I, LNCS 12696, pages 3–32. Springer, Heidelberg, October 2021.

[KNYY19] S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Designated verifier/prover and prepro-
cessing NIZKs from Diffie-Hellman assumptions. In EUROCRYPT 2019, Part II, LNCS 11477, pages
622–651. Springer, Heidelberg, May 2019.

[KY18] I. Komargodski and E. Yogev. On distributional collision resistant hashing. In CRYPTO 2018, Part II,
LNCS 10992, pages 303–327. Springer, Heidelberg, August 2018.

[LQR+19] A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New constructions of reusable
designated-verifier NIZKs. In CRYPTO 2019, Part III, LNCS 11694, pages 670–700. Springer, Heidel-
berg, August 2019.

[LVW19] A. Lombardi, V. Vaikuntanathan, and D. Wichs. 2-message publicly verifiable WI from (subexpo-
nential) LWE. Cryptology ePrint Archive, Report 2019/808, 2019. https://eprint.iacr.
org/2019/808.

[Mau94] U. M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and computing
discrete algorithms. In CRYPTO’94, LNCS 839, pages 271–281. Springer, Heidelberg, August 1994.

[MPS10] H. K. Maji, M. Prabhakaran, and A. Sahai. On the computational complexity of coin flipping. In
51st FOCS, pages 613–622. IEEE Computer Society Press, October 2010.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In
21st ACM STOC, pages 33–43. ACM Press, May 1989.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[OPWW15] T. Okamoto, K. Pietrzak, B. Waters, and D. Wichs. New realizations of somewhere statistically
binding hashing and positional accumulators. In ASIACRYPT 2015, Part I, LNCS 9452, pages 121–
145. Springer, Heidelberg, November / December 2015.

[PS19] C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In CRYPTO 2019, Part I, LNCS 11692, pages 89–114. Springer, Heidelberg, August 2019.

[PsV06] R. Pass, a. shelat, and V. Vaikuntanathan. Construction of a non-malleable encryption scheme from
any semantically secure one. In CRYPTO 2006, LNCS 4117, pages 271–289. Springer, Heidelberg,
August 2006.

[PV20] R. Pass and M. Venkitasubramaniam. Is it easier to prove theorems that are guaranteed to be true?
In 61st FOCS, pages 1255–1267. IEEE Computer Society Press, November 2020.

[PW08] C. Peikert and B.Waters. Lossy trapdoor functions and their applications. In 40th ACM STOC, pages
187–196. ACM Press, May 2008.

[QRW19] W. Quach, R. D. Rothblum, and D. Wichs. Reusable designated-verifier NIZKs for all NP from CDH.
In EUROCRYPT 2019, Part II, LNCS 11477, pages 593–621. Springer, Heidelberg, May 2019.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
STOC, pages 387–394. ACM Press, May 1990.

29

https://eprint.iacr.org/2019/808
https://eprint.iacr.org/2019/808


[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic primi-
tives. In TCC 2004, LNCS 2951, pages 1–20. Springer, Heidelberg, February 2004.

[RV22] R. D. Rothblum and P. N. Vasudevan. Collision-resistance from multi-collision-resistance. In
CRYPTO 2022, Part III, LNCS, pages 503–529. Springer, Heidelberg, August 2022.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

[Zha19] M. Zhandry. Quantum lightning never strikes the same state twice. In EUROCRYPT 2019, Part III,
LNCS 11478, pages 408–438. Springer, Heidelberg, May 2019.

30


	Introduction
	Our Main Result
	On Infinitely-Often Security
	Further Results
	Roadmap

	Technical Overview
	Preliminaries
	Diffie-Hellman Assumptions
	Non-Interactive Zero-Knowledge
	Verifiable Pseudorandom Generators
	NIZKs and ZAP arguments from DDH

	DDH Breakers and VPRGs
	Amplification of DDH Breakers
	VPRGs from Strong DDH Breakers

	A Subexponentially-Often NIZK from Subexponential CDH
	A Universal DDH Breaker
	A Subexponentially-Often NIZK
	Additional Results

	An Infinitely-Often NIZK from CDH+LPN
	Instantiation from Elliptic Curves
	On Promise-True Distributional Search NP Hardness from Average-Case NP Hardness
	A Universal One-Way Function Tester
	The Pass-Venkitasubramaniam Construction
	A New Reduction from Distributional NP Problems to Promise-True Distributional NP Problems


