
EROR: Efficient Repliable Onion Routing with Strong Provable
Privacy

Michael Klooß
michael.klooss@aalto.fi

Aalto University
Department of Computer Science

Espoo, Finland

Andy Rupp
andy.rupp@uni.lu

University of Luxembourg
Department of Computer Science
Esch-sur-Alzette, Luxembourg

Daniel Schadt
daniel.schadt@kit.edu

Karlsruhe Institute of Technology
Department of Informatics

Karlsruhe, Germany

Thorsten Strufe
thorsten.strufe@kit.edu

Karlsruhe Institute of Technology
Department of Informatics

Karlsruhe, Germany

Christiane Weis
christiane.weis@neclab.eu
NEC Laboratories Europe

Security Group
Heidelberg, Germany

ABSTRACT
To provide users with anonymous access to the Internet, onion
routing and mix networks were developed. Assuming a stronger
adversary than Tor, Sphinx is a popular packet format choice for
such networks due to its efficiency and strong protection. How-
ever, it was recently shown that Sphinx is susceptible to a tagging
attack on the payload in some settings. The only known packet
formats which prevent this attack rely on advanced cryptographic
primitives and are highly inefficient, both in terms of packet sizes
and computation overhead.

In this paper, we provide the first packet format that protects
against the tagging attack with an acceptable overhead. At the cost
of doubling the payload size, we are able to build a provably private
solution from basic cryptographic primitives. Our implementation
demonstrates that our solution is as computationally efficient as
Sphinx, beating previous schemes by a large margin. For our secu-
rity proof, we first strengthen the state-of-the-art proof strategy,
before applying it to our solution to demonstrate that not only the
tagging attack is prevented, but our scheme is provably private.

CCS CONCEPTS
• Security and privacy→ Network security; • Networks→ Net-
work privacy and anonymity;

KEYWORDS
anonymous communication; onion routing; mix nets; privacy

1 INTRODUCTION
When accessing the Internet, IP addresses can easily serve as per-
sonal identifiers. Users however might want to stay anonymous
for various reasons, like e.g. whistleblowing, browsing for infor-
mation related to a disease or simply to protect themselves from
surveillance. To prevent the leakage of the users’ IP address and
thereby to enable anonymous access to the Internet, onion routing
and mix networks employ a series of relays between the sender
and receiver of a message.

While onion routing [17] andmix networks [9] differ in their ad-
versary model, the idea for the underlying packet format, namely

layered encryption, is very similar. Layered encryption uses a se-
ries of encryption layers, of which each relay removes one.Thereby,
it is ensured that the sender and potentially adversarial receiver (as
well as the message) are unlinkable to each other – as long as at
least one honest relay was used.

Practically, Tor [14] has been a great success. In recent years,
however, new deployed systems, like the Nym network,¹ as well as
various academic proposals [11, 10, 23, 25, 13, 12] aim to offer alter-
natives for stronger adversary models. A large subset [11, 10, 23]
of these new onion routing and mix networks rely on the packet
format Sphinx [12].

Sphinx packets consist of a header and payload.The header con-
tains the routing information and temporary keys and is protected
with a message authentication code (MAC) for every hop on the
path. The payload contains the encrypted message for the receiver.
Sphinx enables replies from the message receiver back to the still
anonymous sender, by providing the receiver with a header for the
backward path. To reply, the receiver attaches her reply message
to the reply header. For those reply packets, indistinguishability to
request packets is required. This ensures that all participants, no
matter if they send only requests, replies or both, contribute to the
anonymity set of every other participant.

Challenge for onion routingwith replies. Several systems use Sphinx
to implement an integrated system² [11, 10], i.e. the receiver is
the last node on the path and discovers the included message af-
ter processing the onion packet. In this setting, Sphinx is however
susceptible to a tagging attack [19]. As Sphinx does not detect pay-
load modifications at intermediate relays, an adversary can modify
the payload and only the final receiver notices this modification. A
collaborating first relay and receiver can thus recover information
about the sender-receiver relationship, which the network wanted
to protect. Consider, e.g., Alice contacting a server dedicated to
provide information for cancer patients, clearly hiding the sender-
receiver connection is critical in this case.

Achieving both, request-reply indistinguishability and protec-
tion against the payload tagging attack at the same time, however,
presents a big challenge: To prevent the attack, we need to include

¹https://nymtech.net/, accessed at 2023-12-19
²Sphinx has not originally been designed for this setting.

1

https://orcid.org/0000-0003-3466-0675
https://orcid.org/0000-0003-0439-3633
https://orcid.org/0009-0009-6357-1314
https://orcid.org/0000-0002-8723-9692
https://orcid.org/0000-0002-9111-7348
https://nymtech.net/

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

strong integrity protection for the forward payload, where payload
integrity needs to be verifiable at every relay such that an honest
relay is able to drop a tampered packet. To achieve request-reply
indistinguishability, one might conclude that the same protection
mechanism is required for both forward and backward payload.
While a classical MAC can be calculated by our trusted sender for
forward onions (request), the same is not possible for backward
onions (replies) as the sender does not know the backward pay-
load beforehand. The one that knows the reply, the receiver, could
compute such MACs. He is, however, not trusted in the adver-
sary model and could, colluding with adversarial relays, use the
receiver-added MACs to recognize the onion even after it passed
honest relays [20].

Recent work [20] tackled this challenge by using heavyweight
cryptography to realize an implicit protection of the payload. Em-
ploying a version of updatable encryption with plaintext integrity
for the payload ensures that once sender/receiver chose a payload,
its encryption can be randomized but its content not be modified
or replaced without detection by an honest relay on the path. The
second and, to the best of our knowledge, only other solution [20]
realizes the implicit payload protection via SNARGs. There, at ev-
ery step on the onion path, the relay proves that its output is a cor-
rectly processed onion. Due to their poor efficiency, both protocols
introduced in [20] can only be seen as a theoretical contribution as
also admitted by the authors.

Our contribution. After a critical review of the payload tagging at-
tack, we realize that it is only dangerous in the forward direction
as there the potentially adversarial receiver recognizes the tagging.
In an attack on the backward direction, a modification results in
a decryption failure at the honest (request) sender. However, the
honest (request) sender will not share this observation with an ad-
versary. Hence, the payload tagging attack is just a denial of service
attack in the backwards direction, and the adversary could simply
drop the onion instead of modifying it. Thus, tagging in the back-
wards direction does not allow to learn privacy critical information
about honest (request) senders.

This shows that, regarding the tagging attack, the backward pay-
load does not need the same strong form of integrity protection as
the forward payload. In fact, the security model from [20] actually
does not enforce any integrity protection at all for the backward
payload. The alleged need to also have strong integrity protection
for the backward payload results from the request-reply indistin-
guishability requirement.

Our most important insight to avoid the inefficient solutions re-
quired for an implicit payload protection is that, we can keep the
indistinguishability of forward and backward onions without hav-
ing the same protection for forward and backward payloads. For
this, we allocate a specific part of the payload for the forward mes-
sage and another part for the reply.The forward part of the payload
(including the request) is protected at every step of the path with
a sender pre-calculated MAC, while we gladly forgo this payload
protection for replies. As only one part of the payload (forward or
backward) is actually used in any packet, we fill the other part with
dummy data. Request-reply indistinguishability is given as long as
we can hide which part of the payload includes only dummy data
from the intermediate relays.

This insight allows us to avoid inefficient building blocks like
SNARGs and updatable encryption. Indeed, the construction of our
efficient repliable onion routing scheme, dubbed EROR, is generic
and only relies on symmetric-key primitives and public-key en-
cryption. Additionally, we make use of “weaker”, but still sufficient
security requirements for building blocks to allow for even more
efficient primitives in particular. Concretely, in [2, 20], PRP-CCA
secure pseudorandom permutations were used for symmetric en-
cryption, whereas we relax this requirement, allowing for stream
ciphers.

We implement and benchmark the EROR packet format, and
compare it to Sphinx (even though Sphinx does not satisfy out
stronger security requirements). Our implementation ofEROR has
larger onions, but the size stays within a factor of 2 compared to
Sphinx. Packet processing for EROR is about twice as fast; our
larger header contains more key material, which reduces public-
key operations. Onion creation is slightly slower. Compared to the
packet formats in [20] which presumably satisfy our stronger se-
curity, EROR is at least two orders of magnitude faster.

As an additional contribution, we strengthen the state-of-the-
art security requirements and properties for onion routing packet
formats (in comparison to [20], see Remark 4.3) to also include
end-to-end integrity for the backward direction, simplify the un-
derlying scheme definition, and reduce the number of necessary
security properties.

2 PRELIMINARIES
This section introduces our notation and background. Cf. Appen-
dix A.1 for cryptographic notions.

2.1 Basic Notation
Weuse standard pseudo-code notation throughout. By 𝜆we denote
the security parameter, and a function 𝑓 : N → R is negligible if
𝑓 ∈ 𝜆𝜔 (1) . We write 𝑥 ←R 𝑋 for uniform random sampling of an
element from the set 𝑋 . To avoid cluttering our pseudocode with
bitlength specifications, we use the shorthand 𝑥 ←R $ for sampling
uniformly at random from an implicitly specified set, usually, a
ciphertext space of some (known) bitlength.

2.1.1 Pseudocode and Onion-specific Conventions. Our notation
regarding onions, e.g. in definitions, pseudo-code and proofs, has
the following conventions:

• Superscripts denote layer depth. E.g., 𝑃𝑖 is the 𝑖-th party
and𝐾𝑖 is the key of the 𝑖-th processing (unwrapping) node.

• Indices distinguish between similar objects, in particular,
forward (→) or backward direction (←), e.g. parties 𝑃𝑖→
𝑃𝑖←, or derived keys, e.g., 𝐾𝑖SKE and 𝐾𝑖MAC. If a direction is
required, but not specified, it will be clear from the context.

We use “object-oriented” notation, e.g., O.hdr to denote the header
hdr of an onion O.

2.2 Background on Onion Routing and Mix
Networks

Onion routing [14] and mix networks [9] aim to provide sender
anonymity by preventing the adversary from linking the sender’s
IP address to the receiver and sent message. To achieve this, they

2

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

rely on relays provided by volunteers. Onion routing classically as-
sumes local adversaries, while mix networks consider global adver-
saries. Both additionally assume that some receivers and a subset
of relays collude with the adversary.

To send a message anonymously, the sender picks a sequence of
relays, the packet’s path, and encrypts the packet layer by layer for
each hop on the path. The sender additionally provides informa-
tion about the next relay in the path to each relay via a header or
previously created tunnels. The relays then process the packet, i.e.
decrypt it and forward it to the next hop. The last relay retrieves
the included message. Note that as long as one of the chosen relays
is honest and the processing perfectly unlinks incoming from out-
going packets, the adversary can indeed not link the sender of the
packet to the included message or final receiver. Additionally, net-
works often support replies from the receiver back to the anony-
mous sender. To differentiate we use forward communication or
request for the initial contact from the sender to the receiver and
backward or reply for the communication in the reverse direction.

Onion routing and mix networks can be used in two different
system models. In the service model the receiver is unaware of the
onion routing or mix network and the last relay, the exit relay, re-
trieves both the message for the receiver and receiver address to
act as a proxy for the sender’s communication. In the integrated
system model the receiver is the last relay and retrieves the mes-
sage as processing result of the received packet.

It has proven useful to view the problem of providing unlinka-
bility as two orthogonal subproblems [5, 19, 12]. The first is con-
cerned with providing a secure packet format, i.e. preventing any
linking based on the actual bits of the sent and received packets
at honest relays. The second subproblem is to provide protection
against additional side channels, like timing or traffic patterns of
the packets.

2.3 Related Work on Onion Routing and Mix
Network Packet Formats

The first ideas for onion routing and mix networks included their
own packet formats. Chaum’s mixnet [9] adds random delays to
the idea of layered encryption described in Section 2.2. The first
work on onion routing was proposed by Goldschlag, Reed and
Syverson [17] and relies on a clever tunnel setup, while avoiding
the additional delays. This work served as foundation for the well-
known Tor network [14]. Over the years many works followed
those seminal papers, e.g. [11, 10, 23, 25, 13, 12], and a strategy
for provable privacy for their packet formats were developed [5].
The provable privacy strategy has been first used for the correc-
tion [25] of Minx [13] and in an attempt to prove the security of
Sphinx [12]. As Sphinx has been used for many recent academic
proposals [11, 10, 23], as well as for the deployed Nym network,³
we focus on Sphinx and recent follow-up works as related work.

Sphinx packets consist of a header, for routing information and
keying material, and a payload, for the message. Employing nearly
only symmetric cryptographic primitives, Sphinx is highly efficient.
Further, Sphinx supports replies by precalculating the header for
the backward path and sending it to the receiver, who can attach
the reply message as payload. To guarantee strong privacy, Sphinx

³https://nymtech.net/, accessed at 2023-12-19

requires indistinguishability between request and reply packets at
intermediate relays.

Sphinx was originally proposed in the service model, but has
been used by other works in the integrated system model. If it is
used in the integrated system model, however, a payload tagging
attack can be used to link the sender to the receiver, as has re-
cently been discovered [19]. To the best of our knowledge only two
solutions proposed in [20] exist that prevent the payload tagging
attack. They both rely on recent cryptographic primitives (namely
updatable encryption (UE) and succinct non-interactive arguments
(SNARGs)) and include a high overhead (cf. Section 7).

2.4 Background on Formalization
2.4.1 Universal Composability. In the Universal Composability (UC)
framework [6], the required privacy is defined by the ideal func-
tionality. The ideal functionality interacts with the adversary (as
combination of all adversarial parties) and the environment.

A protocol realizes the ideal functionality if any real world at-
tack can be translated into an attack on the ideal functionality by a
simulator. Crucially, all observations that the real world adversary
or the environment make in the simulated attack on the ideal func-
tionality are indistinguishable from the real world attack on the
protocol. The real world protocol thus indeed cannot reveal more
information than the ideal functionality.

2.4.2 Game-based Security Properties. Game-based security prop-
erties typically challenge an imagined game adversary to distin-
guish between two executions of a game. Based on the observed
outcome of one randomly chosen option, the adversary has tomake
a guess as to which option was chosen. If no adversarial algorithm
is able to distinguish the options, the property is achieved. As proofs
for game-based security properties are usually more convenient
than proving realization of an ideal functionality, it is useful to de-
rive a set of game-based properties that implies the realization of
an ideal functionality [5].

2.5 Related Work Formalization of Onion
Routing and Mix Network Packet Formats

While different works conduct efforts to formalize Onion Routing
andMix Networks [21, 3, 15, 8, 7, 18], the current state of the art for
their network packet formats proposes ideal functionalities in the
UC-framework [5, 2, 19, 20]. Additionally, game-based properties
are given, such that if all properties are satisfied by an OR scheme,
it also realizes the ideal functionality. The seminal paper of Ca-
menisch and Lysyanskaya [5] introduces this approach for Onion
Routing packet formats, but their proof strategy was later discov-
ered to be flawed [19]. The proposed game-based properties were
not sufficient to imply realization of the ideal functionality. Kuhn
et al. [19] corrected the necessary properties for this functional-
ity. Later on, this work was extended similtaneously by Kuhn et
al. [20] and Ando and Lysyanskaya [2] to additionally allow for
replies. The work of Ando and Lysyanskaya [2] however proposes
a weaker privacy requirement in the ideal functionality as com-
pared to Kuhn et al. [20], as the latter also require to protect against
payload tagging attacks for replies. We adapt this strong require-
ment and extend it by an end-to-end integrity requirement for the
reply path, which is also present in [2].

3

https://nymtech.net/

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

3 THREAT MODEL AND TAGGING ATTACK
3.1 Threat Model
In this work, we assume the mix network adversary model. That
is, we aim to protect an honest sender against a global adversary
colluding with the receiver and all but one relay on the (forward
and backward) path. Any non-honest party canmaliciously deviate
from the protocol, in particular, (try to) inject modified onions.

We limit our scope to solely focus on the subproblem of provid-
ing a secure packet format that supports replies in the integrated
system model. As this packet format can be used for both onion
routing and mix networks and to be in line with closely related
work [5, 2, 19, 20], we use the onion routing terminology.

3.2 Tagging Attack
In line with Sphinx and the mix network adversary model, the tag-
ging attack [19] assumes a corrupted first relay and receiver. The
adversary modifies the payload of the victim’s packet at the first
relay. As only the header’s integrity is protected by a MAC, the
honest relays before the receiver do not notice anything suspicious.
The final receiver, however, notices that the payload was modified
as the integrity check fails. Thereby the adversary learns which
adversarial receiver the victim sender was trying to contact.

3.3 Impact of the Tagging Attack
Theonly prerequisites for the attack are to actively corrupt the first
relay connected to the victim sender (to modify the payload) and
to passively corrupt the (suspected) receiver (to observe the failed
onion processing). Then the attack allows to confirm or disprove
the sender-receiver relationship. By corrupting multiple suspected
receivers the relationship can be tested for all of them.

There are critical application scenarios where those prerequi-
sites are easily satisfied: For instance, in an authoritarian country,
agencies might setup their own onion routing relays and honeypot
servers (e.g. for whistleblowing). These relays and servers might
also be rented by them in foreign countries. Search warrants might
be another means to “corrupt” servers.

In the integrated system model, this attack always applies. We
note that for the practically used mix network Nym, their usage of
Sphinx actually corresponds to the integrated system model: “The
last layer of Sphinx encoding is removed by the application itself,
not the exit mix (like in Tor).”⁴

In the service model it depends on whether the combination of
sender and used exit relay is considered private information. E.g.,
if each exit relay only serves a small subset of receivers in gen-
eral, the linking is clearly interesting information as the adversary
can use the linking to reduce the set of potential communication
partners of the sender (from the set of all receivers to the set of
receivers of the linked exit relay). If the exit relay is chosen uni-
formly random every time, the sender-exit-relay linking might be
considered acceptable leakage [24].

⁴https://blog.nymtech.net/sphinx- tl-dr- the-data-packet- that-can-anonymize-
bitcoin-and-the-internet-18d152c6e4dc, accessed at 2023-12-19

3.4 Protecting forward direction is sufficient
Notice that the tagging attack works as a change in the onion is
introduced early in the onion’s path and recognized at the end of
its processing. Now, given our adversary model, the response re-
ceiver is the request sender, and thus always honest. Therefore, in
the backwards direction the adversary cannot recognize a response
at the response receiver anymore.The adversary’s tagging early in
the path however still changes the payload fromwhat the response
sender actually wanted to send, resulting in a decryption error.
This effectively destroys the communication functionality, but in
itself does not reveal private information. Hence, in the backwards
direction, modification of the payload becomes a denial of service
attack. Note that if the adversary’s goal is a denial of service, it
could just drop the onion. No packet format can protect against
attacks based on denial of service attack and hence we consider
denial of service attacks as out of scope.

3.5 Difficulty of securing the payload
To prevent the tagging attack while still providing request-reply
indistinguishability is challenging. While payload in the forward
direction is to protect with a classical sender pre-calculated MAC,
this approach cannot be used for the payload in the backward di-
rection, as the sender does not know the response payload and
cannot pre-calculate the MAC, and as according to the adversary
model the receiver is not trusted. When one tries to have a single
forward/backward payload, the payload must be handled symmet-
rically in both directions to achieve indistinguishability of forward
and backward packets. Thus, the payload protection/integrity pro-
vided in the forward direction, must “by symmetry” also be pro-
vided in the backward direction. As the receiver could bemalicious,
implementing such a protection properly and forward/backward-
symmetrically is highly non-trivial. It seems to require heavy cryp-
tographic tools as seen in [20].

We instead decide to avoid such heavy cryptography while pre-
serving forward/backward-symmetry of the payload— at the “mere”
price of having a separate (hop-by-hop integrity protected) for-
ward and an (only end-to-end integrity protected) backward pay-
load for each packet.

4 OR SECURITY DEFINITION AND
PROPERTIES

In this section, we strengthen the formalization of Kuhn et al. [20]
to include end-to-end integrity for the backward path, as well as
recognition of the request if a reply is received. Additionally, we
simplify the model without losing expressibility. In line with this
change, we reduce the number of properties that need to be proven
for realization of the ideal functionality.

4.1 Scope of the Model
Similar to previous work [19, 20], we build our model with the
following common constrictions of OR packet formats.

There exists a fixed maximum path length that the packet for-
mat supports. Honestly chosen paths are acyclic (adversarial users
however might deviate from that). The OR format runs the pro-
cessing algorithm, which outputs the received message, at the re-
ceiver before the receiver can reply to the onion. Onions consist of

4

https://blog.nymtech.net/sphinx-tl-dr-the-data-packet-that-can-anonymize-bitcoin-and-the-internet-18d152c6e4dc
https://blog.nymtech.net/sphinx-tl-dr-the-data-packet-that-can-anonymize-bitcoin-and-the-internet-18d152c6e4dc

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

a header and a payload part. Duplicate detection is realized on the
header hdr, i.e. every onion with the same header as an already
processed one results in a processing fail except with negligible
probability. Further, there exists a public key infrastructure (or any
other means that ensures the sender’s knowledge of authentic pub-
lic keys for the relays).

4.2 Onion Routing Scheme
The following definition slightly simplifies the model of a repliable
onion routing scheme from Kuhn et al. [20] by limiting to only
form onions at the first layer (as needed for sending). Except for
this and changes in the notation, we verbatimly reuse [20]’s defi-
nition.

Definition 4.1 (Repliable Onion Routing (OR) Scheme). ARepliable
OR Scheme is a tuple of PPT algorithms (𝐺, FormOnion,ProcOnion,
ReplyOnion) defined as:
Key generation. 𝐺 (1𝜆, 𝑝, 𝑃𝑖) outputs a key pair (pk𝑖 , sk𝑖) on in-

put of the security parameter 1𝜆 , some public parameters
𝑝 and a router identity 𝑃𝑖 .

Forming an onion. FormOnion(onionParams) returns an onion
layer 𝑂1 on input of the onion parameters onionParams =
(𝑚,P→,P←, (pk)P→ , (pk)P← ;R) with message 𝑚, a for-
ward path P→ = (𝑃1, . . . , 𝑃𝑛), a backward path P← =
(𝑃1←, . . . , 𝑃

𝑛←
←), public keys (pk)P→ = (pk1, . . . , pk𝑛) for

forward relays, public keys (pk)P← = (pk1←, . . . , pk
𝑛←
←) for

backward relays and randomness R. The backward path
can be empty if the onion is not intended to be repliable.

Forwarding an onion. ProcOnion(sk,𝑂, 𝑃) returns the next layer
of the onion and identity of the next router (𝑂 ′, 𝑃 ′) on in-
put of 𝑃 ’s secret key sk, an onion layer 𝑂 and the router
identity 𝑃 . (𝑂 ′, 𝑃 ′) equals (⊥,⊥) in case of an error or
(𝑚,⊥) if 𝑃 is the recipient.

Replying to an onion. ReplyOnion(sk,𝑚←,𝑂, 𝑃) returns a reply
onion 𝑂← along with the next router P← on input of 𝑃 ’s
secret key sk, a reply message 𝑚←, a received (forward)
onion𝑂 and the receiver identity 𝑃 .𝑂← andP← attains ⊥
in case of an error.

Remark 4.2 (Forming later layers). Kuhn et al. [20] require that
an OR scheme directly specifies how to form later layers 𝑂𝑖 with
𝑖 > 1 of the onions, which they used in the technical proofs. We
avoid this unnatural forming of partially peeled onions and instead
use new complete onions at the corresponding proof steps. This
reduces the number of properties that need to be shown for se-
cure OR schemes at the cost of each single property being slightly
stronger.

An OR scheme is correct if the repeated processing of an onion
results in the chosen (backward) path being used and finally the
chosen message delivered to the chosen (backward) receiver. See
Appendix A.2 for details.

4.3 Ideal Functionality
On a high-level, the ideal functionality replaces all onions with
only temporary identifiers tempID. At each honest relay the tempID
is replaced by a newly drawn random one, ensuring that the onions
of honest senders before and after the honest relay are perfectly

unlinkable to each other. Corrupt senders can however recognize
their own onion layers, thus for these temporary identifiers all in-
formation of the onion parameters are output. The correlation be-
tween reply (also called “backward”) onions and original requests
(or “forward” onions) is stored in the functionality as well. In the
version of [20] this linking was not output to the environment Z
or adversary for honest senders. Futher in the previous work [20],
honest nodes only inform the environment Z about any further
processable or repliable tempID they received. Z does not learn
whether a non-repliable forward (or backward) message was deliv-
ered or which (repliable or non-repliable) message was received.

We strengthen the ideal functionality to enforce end-to-end in-
tegrity for replies, as well as correct matching to request for onions
of honest (request) senders. Thus, in our version, honest nodes ad-
ditionally inform Z when they successfully received a message
(forward or backward) by outputting the message and the informa-
tion whether it was forward or backward. If the received message
was a reply (backward message), they further inform Z to which
request (own forward message) this reply belongs.

We detail the ideal functionality in Algorithm 1 and 2 and high-
light the changes (except for notation) as compared to previous
work [20] in blue. Notice that while the received message𝑚 was
sent to the receiving party 𝑃𝑟 before, this message was not for-
warded to the environment in [20].

We detail the ideal functionality in Algorithm 1 and 2 and high-
light the changes (except for notation) as compared to previous
work [20] in blue. Notice that while the received message𝑚 was
sent to the receiving party 𝑃𝑟 before, this message was not for-
warded to the environment in [20].

4.4 Auxiliary Functions
To express the security properties, we inherit one auxiliary func-
tion (RecognizeOnion) from [20] and introduce a new function
(ExtractPayload) that is necessary because of the additional mes-
sage output to the environment. Recall from Section 4.2 that we use
onionParams as shorthand for all parameters used in FormOnion.

RecognizeOnion((𝑖, 𝑑),𝑂, onionParams) outputs true on input
of the current onion layer 𝑖 in direction 𝑑 ∈ {→,←}, an onion
layer 𝑂 and parameters used for the original onion generation, if
the onion 𝑂 matches the 𝑖-th layer of an onion in direction 𝑑 gen-
erated according to the parameters onionParams. The correctness
of RecognizeOnion will follow implicitly from our other property
definitions.

ExtractPayload((𝑖, 𝑑),𝑂, onionParams) returns the message 𝑚
currently contained in the payload or a fail symbol ⊥ on input of
the onion 𝑂 for layer 𝑖 in direction 𝑑 ∈ {→,←} and the original
onion parameters onionParams.The correctness ofExtractPayload
will follow implicitly from our other property definitions.

4.5 OR Properties
Directly proving that a packet format UC-realizes the ideal func-
tionality (Section 4.3) is tedious, as the proof’s complexity is signif-
icantly increased due to the required bookkeeping for the UC sim-
ulator. Thus, we provide equivalent game-based security notions,
for which we prove that they imply UC security. This approach

5

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

Algorithm 1: Ideal Functionality F (Part 1)
Data structure:
Bad: Set of corrupted nodes
𝐿: List of onions processed by adversarial nodes
𝐵𝑖 : List of onions held by node 𝑃𝑖
𝐵𝑎𝑐𝑘 : Mapping from temps to path and forward id
𝐼𝐷𝑓 𝑤𝑑 : Mapping from backward id to forward id
// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment

// P = (𝑃𝑂1
, . . . , 𝑃𝑂

𝑛−1): Onion path, (P→ forward, P← backward)

// 𝑂 = (𝑖𝑑, 𝑃0, 𝑃𝑟 ,𝑚,P,P′, 𝑖, 𝑑): Onion = (identifier, sender, receiver,
message, path in current direction, path in other direction, traveled
distance, direction)

// 𝑁 : Maximal onion path length

On message Process_New_Onion(𝑃𝑟 ,𝑚,P→,P←) from 𝑃0

// 𝑃0 creates and sends a new onion (either instructed by Z if

honest or S if corrupted)

if |P→ | > 𝑁 or |P← | > 𝑁 ; // selected path too long

then
Reject;

else
𝑖𝑑 ←R ID ; // pick random ID

𝑂 ← (𝑖𝑑, 𝑃0, 𝑃𝑟 ,𝑚,P→,P←, 0, 𝑓) ; // create new onion

Output_Corrupt_Sender(𝑃0, 𝑖𝑑, 𝑃𝑟 ,𝑚,P→,P←, start, 𝑓);
if 𝑃0 ∉ Bad then

Send ”Request got id 𝑖𝑑”toZ
Process_Next_Step(𝑂);

On message Process_New_Backward_Onion(𝑚, 𝑡𝑒𝑚𝑝) from 𝑃
// 𝑃 creates and sends a backward onion (either instructed by Z if

honest or S if corrupted)

if 𝐵𝑎𝑐𝑘 (𝑡𝑒𝑚𝑝) =⊥ ; // no forward onion was sent

then
Reject;

else
𝐵𝑎𝑐𝑘 (𝑡𝑒𝑚𝑝) = (𝑃0,P→,P←, 𝑃𝑟 , 𝑖𝑑′) ; // lookup the corresponding

path

𝑖𝑑 ←R ID ; // pick random session ID

Store 𝑖𝑑′ under 𝐼𝐷𝑓 𝑤𝑑 (𝑖𝑑) ; // add ID linking to mapping

𝑂 ← (𝑖𝑑, 𝑃𝑟 , 𝑃0,𝑚,P←,P→, 0, 𝑏) ; // create new onion

Output_Corrupt_Sender(𝑃𝑟 , 𝑖𝑑, 𝑃0,𝑚,P→,P←, start, 𝑏);
Process_Next_Step(𝑂);

Procedure Output_Corrupt_Sender(𝑃0, 𝑖𝑑, 𝑃𝑟 ,𝑚,P→,P←, 𝑡𝑒𝑚𝑝,𝑑)
// Give all information about onion to adversary if sender is

corrupt

if 𝑃0 ∈ Bad then
Send “𝑡𝑒𝑚𝑝 belongs to onion from 𝑃0 with 𝑖𝑑, 𝑃𝑟 ,𝑚,P→,P←, 𝑏” to S;
if 𝑑 = 𝑏 then

add “as answer to 𝐼𝐷𝑓 𝑤𝑑 (𝑖𝑑)” to the output for S

was introduced in [5] and has since been used. As we build on the
ideal functionality of [20], we also build on their properties.

On a high level, we need properties which allow us to replace
“real” onions with “simulated” onions, which only contain adver-
sarially observable or random information. Our first property, called
Strong Forward Layer-Unlinkability, asserts that an adversary can-
not distinguish between (1) a game where the onion𝑂1 is honestly
generated and processed on its path (𝑃1, . . . , 𝑃𝑛), (2) a game where
the onion 𝑂1 is split into two fresh onions 𝑂1 and 𝑂𝑐 , where 𝑂1

contains a random message and path (𝑃1, . . . , 𝑃 𝑗) and onion O𝑐

contains the original message and remainder path (𝑃 𝑗+1, . . . , 𝑃𝑛),
where 𝑃 𝑗 is an uncorrupted relay which outputs𝑂𝑐 when it should
process (an unwrapped version of)𝑂1. All relays except 𝑃 𝑗 are con-
sidered corrupted by the adversary.

We achieve two things with this: First, since case (1) and (2)
are indistinguishable, we can “split” (the path of) an onion unde-
tectably, replacing it by two fresh onions. In particular, the onion
𝑂1 does not reveal anything about the path taken after 𝑃 𝑗 , as in

Algorithm 2: Ideal Functionality F (Part 2)
Procedure Process_Next_Step(𝑂 = (𝑖𝑑, 𝑃0, 𝑃𝑟 ,𝑚,P,P′𝑖, 𝑑))

// Router 𝑃𝑂
𝑖

just processed 𝑂 that is now passed to router 𝑃𝑂
𝑖+1

if 𝑃𝑂
𝑗 ∈ Bad for all 𝑗 > 𝑖 ; // All remaining nodes including receiver

are corrupt

then
Send “Onion 𝑡𝑒𝑚𝑝 in direction 𝑑 from 𝑃𝑂

𝑖
with message𝑚 for 𝑃𝑟 routed

through (𝑃𝑂𝑖+1 , . . . , 𝑃𝑂𝑛)” to S;
if 𝑑 = 𝑓 then

Store (𝑃0,P,P′, 𝑃𝑟 , 𝑖𝑑) under 𝐵𝑎𝑐𝑘 (𝑡𝑒𝑚𝑝) ;
Add “𝑡𝑒𝑚𝑝’s first part of the backward path isP′𝐻 ” withP′𝐻 being
P′ until (and including) the first honest node to the message for S;

Output_Corrupt_Sender(𝑃0, 𝑖𝑑, 𝑃𝑟 ,𝑚,P,P′, 𝑡𝑒𝑚𝑝, 𝑓);
else

Output_Corrupt_Sender(𝑃𝑟 , 𝑖𝑑, 𝑃0,𝑚,P′,P, 𝑡𝑒𝑚𝑝,𝑏);

else
// there exists an honest successor 𝑃𝑂

𝑗

𝑃𝑂
𝑗 ← 𝑃𝑂

𝑘
with smallest 𝑘 such that 𝑃𝑂

𝑘
∉ Bad;

𝑡𝑒𝑚𝑝 ←R temporary ID;

Send “Onion 𝑡𝑒𝑚𝑝 from 𝑃𝑂
𝑖
routed through (𝑃𝑂𝑖+1 , . . . , 𝑃𝑂𝑗−1) to

𝑃𝑂
𝑗
” to S;

Add (𝑡𝑒𝑚𝑝,𝑂, 𝑗) to 𝐿; // see Deliver_Message(𝑡𝑒𝑚𝑝) to continue

this routing

if 𝑑 = 𝑓 then
Output_Corrupt_Sender(𝑃0, 𝑖𝑑, 𝑃𝑟 ,𝑚,P,P′, 𝑡𝑒𝑚𝑝, 𝑓);

else
Output_Corrupt_Sender(𝑃𝑟 , 𝑖𝑑, 𝑃0,𝑚,P′,P, 𝑡𝑒𝑚𝑝,𝑏);
if 𝑃0 ∈ 𝐵𝑎𝑑 and 𝑖 = 0 then

Send “temp belongs to id” to S

On message Deliver_Message(𝑡𝑒𝑚𝑝) from S
// Adversary S (controlling all links) delivers onion belonging to

𝑡𝑒𝑚𝑝 to next node

if (𝑡𝑒𝑚𝑝, _, _) ∈ 𝐿 then
Retrieve (𝑡𝑒𝑚𝑝,𝑂 = (𝑖𝑑, 𝑃0, 𝑃𝑟 ,𝑚,P,P′, 𝑖), 𝑗) from 𝐿;
𝑂 ← (𝑖𝑑, 𝑃0, 𝑃𝑟 ,𝑚,P,P′, 𝑗) ; // 𝑗th router reached

if 𝑗 < |P | + 1 then
𝑡𝑒𝑚𝑝′ ←R temporary ID;

Send “𝑡𝑒𝑚𝑝′ received” to 𝑃𝑂
𝑗
;

Store (𝑡𝑒𝑚𝑝′,𝑂) in 𝐵𝑂𝑗 ; // See Forward_Onion(𝑡𝑒𝑚𝑝′) to

continue

else
if𝑚 ≠⊥ then

Send “Message𝑚 under 𝑡𝑒𝑚𝑝 in direction 𝑑 received” on behalf
of 𝑃𝑟 toZ;

if 𝑑 = 𝑏 then
add ”that belongs to request with id 𝑖𝑑”to the message forZ

if P′ ≠ () and 𝑑 = 𝑓 then
add “that is repliable” to the message for 𝑃𝑟 ;
Store (𝑃0,P,P′, 𝑃𝑟 , 𝑖𝑑) under 𝐵𝑎𝑐𝑘 (𝑡𝑒𝑚𝑝)

On message Forward_Onion(𝑡𝑒𝑚𝑝′) from 𝑃𝑖

// 𝑃𝑖 is done processing onion with 𝑡𝑒𝑚𝑝′ (either decided by Z if

honest or S if corrupted)

if (𝑡𝑒𝑚𝑝′, _) ∈ 𝐵𝑖 then
Retrieve (𝑡𝑒𝑚𝑝′,𝑂) from 𝐵𝑖 ;
Remove (𝑡𝑒𝑚𝑝′,𝑂) from 𝐵𝑖 ;
Process_Next_Step(O);

case (2) the path of 𝑂1 stops at 𝑃 𝑗 . Second, since the message in
𝑂1 is random (in case (2)), the observation of𝑂1 and its processing
until 𝑃 𝑗 cannot reveal any information about the original message.
All in all, we see that the onion hides its path and its message.

We need a similar property, Strong Backward Layer-Unlinkability,
which basically asserts that we can “split” an onion on the back-
ward path, and replace the reply message with randomness. Taken
together, these properties will be used to prove that a packet for-
mat UC-realizes the ideal functionality, by replacing real onions

6

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

with simulated ones on any path between two honest relays (treat-
ing specially the case of a corrupted receiver).

Remark 4.3 (Comparison to [20]). Our formalization differs in two
ways from [20]. First, we also want to assert message integrity and
thus modified the ideal functionality. In the ideal functionality, this
is modelled by giving the decrypted message to the environment
Z for honest receivers (resp. senders for replies). We incorporate
this in our properties, by making the games do the same in case
(1), while in case (2) they always output the original message.

Second, three security properties are used in [20]: Forward Layer-
Unlinkability, Backward Layer-Unlinkability, and Tail Indistinguisha-
bility. Instead of replacing onionswith fresh onions, aswe do, in [20]
some are replacedwith “late” onion layers (see also Remark 4.2). By
avoiding “late” onion layers, our definitions are arguably simpler
and more natural and, more importantly, Tail Indistinguishability
is not required anymore. To prevent confusion, our modified prop-
erties are called strong Forward/Backward Layer-Unlinkability. In
our definitions, we highlight the changes from the OR properties
from [20] in blue, otherwise we reuse their definitions verbatim
(except for changes in the notation).

4.5.1 Strong Forward Layer-Unlinkability. Strong Forward Layer-
Unlinkability is used to replace onion layers between the sender
and the next honest relay on the forward path. More precisely, the
adversary gets oracle access to process any onions at the honest re-
lay and picks onion parameters for the challenge. The adversary is
challenged to decide which case the challenger randomly picked.
In case 1, the adversary gets the onion for the first relay accord-
ing to her parameter choice and later (via an oracle request) the
actual processing of the challenge onion after the honest relay. In
case 2, the adversary instead gets an onion for the first relay that
uses the same path between sender and the honest relay, but ends
at the honest relay and includes a random message. The later or-
acle request of the challenge onion at the honest relay returns a
newly created forward onion that uses the remainder of the adver-
sially chosen path and the adversarially chosen message. This is
illustrated in Fig. 1.

Notice that this property implies correctness ofRecognizeOnion
as otherwise the output of the oracle in step 7 would allow to dis-
tinguish the cases (real processing for 𝑏 = 0 vs. replacement upon
recognition for 𝑏 = 1).

Definition 4.4 (Strong Forward Layer-Unlinkability 𝐿𝑈 +→). Strong
Forward Layer-Unlinkability is defined as:
(1) The adversary receives the router names 𝑃𝐻 , 𝑃0 as well as the

challenge public keys pk0, pk𝐻 , chosen by the challenger by
letting (pk𝐻 , sk𝐻) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻); (pk0, sk0) ← 𝐺 (1𝜆, 𝑝, 𝑃0).

(2) Oracle access:The adversary may submit any number of Proc
and Reply requests for 𝑃𝐻 or 𝑃0 to the challenger. For any
Proc(𝑃𝐻 ,𝑂), the challenger checkswhether hdr is on the hdr𝐻 -
list. If not, it sends ProcOnion(sk𝐻 ,𝑂, 𝑃𝐻), stores hdr on the
hdr𝐻 -list and 𝑂 on the 𝑂𝐻 -list. For any Reply(𝑃𝐻 ,𝑂,𝑚) the
challenger checks if 𝑂 is on the 𝑂𝐻 -list. If so, the challenger
sends ReplyOnion(sk𝐻 ,𝑚,𝑂, 𝑃𝐻) to the adversary. (Similar
for requests on 𝑃0 with the hdr0-list).

(3) The adversary submits a message𝑚, a position 𝑗 with 1 ≤ 𝑗 ≤
𝑛, a path P→ = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛) with 𝑃 𝑗 = 𝑃𝐻 , a path

Figure 1: Illustration of Strong Forward Layer-Unlinkability
(adapted from [20]): Boxes are relays (black – honest, red
–adversarial). Ellipses are observations of the game adver-
sary (orange – 𝑏 = 0, blue – 𝑏 = 1 case). The game adversary
has to decide whether the adversarially chosen parameters
were used to construct one onion 𝑂 for all outputs (𝑏 = 0)
or whether the outputs belong to two onions: one (𝑂) with
a random message 𝑚̄ until the honest relay 𝑃 𝑗 and one (𝑂𝐶)
using adversaries choices for the remaining path (𝑏 = 1).

P← = (𝑃1←, . . . , 𝑃
𝑛←
← = 𝑃0) and public keys for all nodes pk𝑖

(1 ≤ 𝑖 ≤ 𝑛 for the nodes on the path and 𝑛 < 𝑖 for the other
relays).

(4) The challenger checks that the chosen paths are acyclic, the
router names are valid and that the same key is chosen if the
router names are equal, and if so, sets pk 𝑗 = pk𝐻 and pk𝑛←← =
pk0 and picks 𝑏 ∈ {0, 1} at random.

(5) The challenger creates the onion with the adversary’s input
choice and honestly chosen randomnessR:𝑂1 ← FormOnion(
𝑚,P→,P←, (pk)P→ , (pk)P← ;R) and a replacement onionwith
the first part of the forward path P̄→ = (𝑃1, . . . , 𝑃 𝑗), a random
message𝑚̄ ∈M, another honestly chosen randomness R̄, and
an empty backward path P̄← = ():𝑂1 ← FormOnion(𝑚̄, P̄→,
P̄←, (pk)P̄→ , (pk)P̄← ; R̄)

(6) If 𝑏 = 0, the challenger gives 𝑂1 to the adversary.
Otherwise, the challenger gives 𝑂1 to the adversary.

(7) Oracle access: If 𝑏 = 0, the challenger processes all oracle re-
quests as in step 2). Otherwise, the challenger processes all
requests as in step 2) except:
• If 𝑗 < 𝑛:

Proc(𝑃𝐻 ,𝑂)withRecognizeOnion((𝑗,→),𝑂,𝑚,P→,P←,
(pk)P→ , (pk)P← , R̄) = 𝑇𝑟𝑢𝑒 , hdr is not on the hdr𝐻 -list
and ProcOnion(sk𝐻 ,𝑂, 𝑃𝐻) ≠⊥:
The challenger outputs (𝑃 𝑗+1,𝑂𝑐)with𝑂𝑐 ← FormOnion(
𝑚, P̃→,P←, (pk)P̃→ , (pk)P← ; R̃)with P̃→ = (𝑃 𝑗+1, . . . , 𝑃𝑛)
and adds hdr to the hdr𝐻 -list and 𝑂 to the 𝑂𝐻 -list.
• If 𝑗 = 𝑛:

– Proc(𝑃𝐻 ,𝑂) with RecognizeOnion((𝑗,→),𝑂,𝑚,P→,
P←, (pk)P→ , (pk)P← , R̄) = 𝑇𝑟𝑢𝑒 , hdr is not on the hdr𝐻 -
list and ProcOnion(sk𝐻 ,𝑂, 𝑃𝐻) ≠⊥:
The challenger outputs (𝑚,⊥) and adds hdr to the hdr𝐻 -
list and 𝑂 to the 𝑂𝐻 -list.

– Reply(𝑃𝐻 ,𝑂,𝑚←) withRecognizeOnion((𝑗,→),𝑂,𝑚,
P→,P←, (pk)P→ , (pk)P← , R̄) = 𝑇𝑟𝑢𝑒 , 𝑂 is on the 𝑂𝐻 -
list and has not been replied before andReplyOnion(sk𝐻 ,
𝑚←,𝑂, 𝑃𝐻) ≠⊥:
The challenger outputs a tuple (𝑃1←,𝑂𝑐) with 𝑂𝑐 ←
FormOnion(𝑚←, P←, (), (pk)P← , (); R̃)

(8) The adversary produces guess 𝑏′.
7

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

𝐿𝑈 +→ is achieved if no probabilistic polynomial time (PPT) adver-
sary A, can guess 𝑏′ = 𝑏 with a probability non-negligibly better
than 1

2 .

4.5.2 Strong Backward Layer-Unlinkability. Strong Backward Layer-
Unlinkability is used to replace onion layers between honest nodes
on the reply path.The gameworks similar to Strong Forward Layer-
Unlinkability, except that we now use the last part of the reply path
(instead of the first part of the forward path). Here, however, our
new output to the environment requires more elaborate changes
than before. We need to output the included reply message as re-
sponse of the oracle on the challenge onion. If the request receiver
is adversarial, the challenger does however not directly learn the
reply message. In this case the challenger uses ExtractPayload on
the layer it gets from the adversary. The resulting message will be
output by the oracle of the honest (request) sender if the challenge
onion is recognized and processing does not fail. See Fig. 2.

Notice that this property implies correctness of ExtractPayload,
as otherwise the output of the oracle in step 6 would allow to dis-
tinguish the cases (real processing for 𝑏 = 0 vs. extracted message
for 𝑏 = 1). Notice further that this oracle output forces integrity.
If the adversary gets a mofied message accepted at 𝑃0 (i.e. no fail
output at 𝑃0), 𝑏 = 0 outputs the modified message to the adversary,
while 𝑏 = 1 outputs the message extracted before the modification.

As in earlier work, the replacement of a reply onion with a new
forward onion further implies that forward and backward onions
are indistinguishable.

Figure 2: Illustration of Strong Backward Layer-
Unlinkability (adapted from [20]): Boxes are relays (black
– honest, red –adversarial). Ellipses are observations of the
game adversary (orange – 𝑏 = 0, blue – 𝑏 = 1 case). The
game adversary has to decide whether the adversarially
chosen parameters were used to construct one onion 𝑂 for
all outputs (𝑏 = 0) or whether the outputs belong to two
onions: one (𝑂𝐶) using the adversaries choices until the
honest relay 𝑃

𝑗←
← and one forward onion (𝑂) transporting

the extracted message𝑚∗ for the remaining path (𝑏 = 1).

Definition 4.5 (Strong Backward Layer-Unlinkability 𝐿𝑈 +←). Strong
Backward Layer-Unlinkability is defined as:
(1) The adversary receives the router names 𝑃𝐻 , 𝑃0 as well as the

challenge public keys pk0, pk𝐻 , chosen by the challenger by
letting (pk𝐻 , sk𝐻) ← 𝐺 (1𝜆, 𝑝, 𝑃𝐻); (pk0, sk0) ← 𝐺 (1𝜆, 𝑝, 𝑃0).

(2) Oracle access:The adversary may submit any number of Proc
and Reply requests for 𝑃𝐻 or 𝑃0 to the challenger. For any
Proc(𝑃𝐻 ,𝑂), the challenger checkswhether hdr is on the hdr𝐻 -
list. If not, it sends ProcOnion(sk𝐻 ,𝑂, 𝑃𝐻), stores hdr on the
hdr𝐻 -list and 𝑂 on the 𝑂𝐻 -list. For any Reply(𝑃𝐻 ,𝑂,𝑚) the
challenger checks if 𝑂 is on the 𝑂𝐻 -list. If so, the challenger

sends ReplyOnion(sk𝐻 ,𝑚,𝑂, 𝑃𝐻) to the adversary. (Similar
for requests on 𝑃0 with the hdr0-list).

(3) The adversary submits message 𝑚, a position 𝑗← with 0 ≤
𝑗← ≤ 𝑛←, a path P→ = (𝑃1, . . . , 𝑃 𝑗 , . . . , 𝑃𝑛), where 𝑃𝑛 = 𝑃𝐻 ,
if 𝑗← = 0, a pathP← = (𝑃1←, . . . , 𝑃

𝑗←
← , . . . , 𝑃𝑛←← = 𝑃0) with the

honest node 𝑃𝐻 at backward position 𝑗←, if 1 ≤ 𝑗← ≤ 𝑛←,
and the second honest node 𝑃0 at position𝑛← and public keys
for all nodes pk𝑖 (1 ≤ 𝑖 ≤ 𝑛 for the nodes on the path and𝑛 < 𝑖
for the other relays).

(4) The challenger checks that the chosen paths are acyclic, the
router names are valid and that the same key is chosen if the
router names are equal, and if so, sets pk 𝑗←← = pk𝐻 (resp. pk𝑛
if 𝑗← = 0), pk𝑛←← = pk0 and sets bit 𝑏 at random.

(5) The challenger creates the onion using the adversary’s input
and honestly chosen randomness R:
𝑂1 ← FormOnion(𝑚, P→, P←, (pk)P→ , (pk)P← ; R) and
a shortened onion with honestly chosen randomness R̃ and
P̃← = (𝑃1←, . . . , 𝑃

𝑗←
←):

𝑂𝑐 ←FormOnion(𝑚,P→, P̃←, (pk)P→ , (pk)P̃← ; R̃)
If 𝑏 = 0 the challenger sends 𝑂1 to the adversary.
If 𝑏 = 1 let R = R̃ and P← = P̃←. The challenger sends
𝑂1 = 𝑂𝑐 to the adversary.

(6) The adversary gets oracle access as in step 2) unless:
Exception 1) The request is …
– for 𝑗← > 0:

Proc(𝑃𝐻 ,𝑂) with RecognizeOnion((𝑗←,←),𝑂,𝑚,
P→,P←, (pk)P→ , (pk)P← ,R) = 𝑇𝑟𝑢𝑒 , hdr is not on
the hdr𝐻 -list and ProcOnion(sk𝐻 ,𝑂, 𝑃𝐻) ≠⊥:
stores hdr on the hdr𝐻 -list, 𝑂 on the 𝑂𝐻 -list, 𝑚∗ =
ExtractPayload((𝑗←,←), 𝑂, 𝑚, P→, P←, (pk)P→ ,
(pk)P← ,R) and . . .

– for 𝑗← = 0:
Reply(𝑃𝐻 ,𝑂,𝑚←)withRecognizeOnion((𝑛,→),𝑂,𝑚,
P→,P←, (pk)P→ , (pk)P← ,R) = 𝑇𝑟𝑢𝑒 , 𝑂 is on the 𝑂𝐻 -
list and no onion with this hdr has been replied to be-
fore and ReplyOnion(sk𝐻 ,𝑚←,𝑂, 𝑃𝐻) ≠⊥:
stores𝑚∗ =𝑚←

.. then: The challenger picks the rest of the return path
P̄→ = (𝑃 𝑗←+1← , . . . , 𝑃𝑛←←), an empty backward path P̄← =
(), a randommessage 𝑚̄, another honestly chosen random-
ness R̄, and sets: 𝑂1 ← FormOnion(𝑚̄, P̄→, P̄←, (pk)P̄→ ,
(pk)P̄← ; R̄)
– If 𝑏 = 0, the challenger calculates for 𝑗← > 0:
(𝑂 𝑗←+1, 𝑃 𝑗←+1←) = ProcOnion(sk𝐻 ,𝑂, 𝑃 𝑗←←)
resp. for 𝑗← = 0:
(𝑂 𝑗←+1, 𝑃 𝑗←+1←) = ReplyOnion(sk𝐻 ,𝑚←,𝑂, 𝑃 𝑗←←)
and gives 𝑂 𝑗←+1 for 𝑃 𝑗←+1← to the adversary.

– Otherwise, the challenger gives 𝑂1 for 𝑃 𝑗←+1← to the
adversary.

Exception 2) in the 𝑏 = 1 case Proc(𝑃0,𝑂) with 𝑂 being
the challenge onion processed for the first time (hdr not on
hdr𝐻 -list) without a fail (ProcOnion(sk0,𝑂, 𝑃0) ≠⊥) for
the final backward receiver, i.e.: RecognizeOnion((𝑛← −
𝑗←, →), 𝑂, 𝑚̄, P̄→, P̄←, (pk)P̄→ , (pk)P̄← , R̄) = 𝑇𝑟𝑢𝑒 :
Then the challenger checks thatProcOnion(sk0,𝑂, 𝑃0) does

8

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

not fail and if so outputs (𝑚∗,⊥) and adds hdr to the hdr0-
list and 𝑂 to the 𝑂0-list.

(7) The adversary produces guess 𝑏′ .
𝐿𝑈 +← is achieved if no PPT adversary A, can guess 𝑏′ = 𝑏 with a
probability non-negligibly better than 1

2 .

4.6 UC Realization
Following [20] verbatimly, we define a secure OR scheme to fulfill
our properties except that we require one property less. Further
following [20], we prove that any protocol build from a secure OR
scheme realizes our adapted ideal functionality.

Definition 4.6. AnOR scheme is a secure, if it achieves Correctness,
Strong Forward Layer-Unlinkability, and Strong Backward Layer-
Unlinkability.

TheoRem 4.7. Any secure OR scheme realizes the ideal function-
ality from Algorithms 1 and 2.

For the proof of this theorem see Appendix B. In the proof, we
construct a simulator that translates events from the ideal to the
real world and vice versa. On a high-level, the simulator translates
ideal world communications into random real world onions that
take the same subpath (or deliver the same message if they reach
the final receiver). The simulator gets the according information
of the subpath (resp. message) from the ideal functionality. Real
world onions to honest parties are translated into new onion re-
quests in the ideal world. To be able to do this translation the sim-
ulator keeps lists of the onions from the real world and their ideal
world representation and the other way around. Further, informa-
tion to reply to received onions is stored.The stored information is
used to decide on the correct action when an onion is recognized,
e.g. to continue an ideal world communication if the processing
of the real world replacement of this communication is received.
We prove that this translation is indistinguishable for the adver-
sary by reducing the stepwise onion replacement to our onion
security properties. Thereby Strong Forward Layer-Unlinkability
is used for all replacements on the request and Strong Backward
Layer-Unlinkability for all replacements on the reply.

5 CONSTRUCTION OF EROR
In this section, we describe our new onion routing scheme EROR,
which satisfies the stronger security properties from Section 4.

The construction of the header follows the usual onion wrap-
ping paradigm. That is, the onion consists of a header and a pay-
load, cf. Fig. 3. The header itself consists of several blocks, with the
first block containing a public-key ciphertext 𝑐 and a MAC. Con-
trary to the usual design, our payload is split into a forward payload
fwd and a backward payload bwd. An onion is processed by:

(1) Decrypt 𝑐 to obtain the ephemeral key 𝐾 and next relay 𝑃 .
(2) Use 𝐾 to verify the MAC-tag over the header and the for-

ward payload.
(3) Use𝐾 to decrypt (“unwrap”) all header blocks, the forward

and the backward payload (with a permutation cipher).
(4) If this node is not the receiver, shift all header blocks to the

left (dropping the first block) and fill in a decryption of 0
as a (garbage) last block.

Note that the MAC usually asserts integrity of only the header it-
self, not the forward payload on every step of the processing (cf.
[12, 25, 13, 2]). This is our first important change. Also note that
the MAC does not protect the backward payload. See Figs. 3 to 5
for sketches of the onion/header structure, and the unwrapping
procedure, which we describe in detail in Section 5.2.

Our main idea is to prevent the tagging attack by protecting
the forward payload with the MAC in the header for every relay,
while not protecting the backward payload in this way. To enable
replies, we assume that the forward payload contains the reply
onion header O← .hdr and a PRG seed for generating the garbage
forward payload that needs to be used together with the actual
reply that is the backward payload.

While we are not detecting a tampering of the backward pay-
load on every step of the path, the final reply receiver (i.e. request
sender) shall be able to detect any modification of the received re-
ply.We thus use an Encrypt-then-MAC construction, with a PRF as
MAC, that is only checked by the (request) sender for the backward
payload. Every relay masks the MAC by computing the XOR with
PRF𝐾 (bwd .ctxt), where bwd .ctxt is the current backward cipher-
text. This ensures that modifying the backward payload results in
a decryption failure at the (request) sender, even if the receiver
(which knows the keys used to compute the MAC) is corrupted.
For decryption, the original sender reverses the random masking,
and, intuitively, if there was any change to the ciphertext of bwd,
the MAC is completely randomized.

To obtain a stateless construction, all ephemeral keys for inter-
mediate relays are derived from a onion master secret key using a
PRF as key derivation function KDF. The sender then public-key-
encrypts the onion master key for the backward onion to himself,
so that he can derive all intermediate keys, unwrap the wrapped
bwd ciphertext, and check the MAC.

5.1 Notation and Conventions for Pseudocode
We use the notation from Section 2.1. For our construction, we
assume the following:

• PRG is a pseudorandom generator (PRG).
• MAC is a message authentication code (MAC) which pro-

tects header and forward payload.
• KDF and PRF are pseudorandom functions (PRF). KDF is

used as key derivation function, PRF is used to construct
AE (see below).
• SKE is a (nonce-based) permutation cipher. It is used to in

encryptions of all payloads (header, forward, backward).
• AE is an (authenticated) encryption scheme built fromPRF

andSKE (via encrypt thenMAC) with additionalAE.Wrap
and AE.Unwrap procedures, see Fig. 6. This can be simpli-
fied if SKE is PRP-CCA secure, cf. Section 5.4.3.

• PKE is a PKE scheme, used to encrypt information for the
relays, in particular their ephemeral key 𝐾 .

• 𝑃 denotes an address which has an associated public key
denoted PKI[𝑃] .pk. Therefore, in FormOnion the public
keys are omitted from the inputs.

Besides omitting public keys from FormOnion (using PKI instead),
we also omit input 𝑃 to ProcOnion and ReplyOnion, as this is the

9

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

calling party’s identity — this was convenient for abstract proofs,
but the information is unused in EROR and implicitly given by sk.

We used the following conventions for consistent indexing in
the pseudocode:

• ProcOnion takes secret key sk𝑖 and onion layer O𝑖 and
outputs O𝑖+1;

• the MAC with 𝐾𝑖 is over O𝑖 ;
• index 𝑖 indicates the 𝑖-th relay (in some direction); the sender

is the 0-th relay (resp. 𝑛←-th relay); the receiver is the 𝑛→-
th relay;

• the “final” onion is O𝑛 and when O𝑛 is processed with 𝐾𝑛 ,
this yields the output.

5.2 EROR: Efficient Repliable Onion Routing
We discuss the structure and handling of onions on a high level,
explaining the pseudocode in Fig. 6.

An onion. An onion O consists of a 3-tuple (hdr, fwd, bwd) (see
Fig. 3), where

• hdr is the onion’s headerwhich contains (wrapped, i.e. mul-
tiply encrypted) routing information;

• fwd is the forward payload, i.e., a wrapping of (hdr←,𝑚),
where hdr← is the backward onion header and𝑚 the for-
ward message.
• bwd is a (wrapped)AE ciphertext containing the backward

payload.
In a forward (resp. backward) onion, the backward (resp. forward)
payload is chosen (pseudo-)randomly, as it has no meaning in that
direction.

Remark 5.1. We stress that within an onion, all fields have fixed
size so that are not distinguishable by size. We also note that non-
repliable onions could reuse the space in hdr← (and 𝑃1←) to send
more information, but we have not pursued this here.

An onion header. A header is a tuple (𝐵1, . . . , 𝐵𝑁), where 𝑁 is
the maximal number of hops a packet takes. The term 𝐵1 is a pair
(𝜏, 𝑐) where 𝑐 is a public-key encryption of triple (role, 𝐾, 𝑃), where

• role describes the role of the processing party.
• 𝐾 is always an (ephemeral) symmetric key.
• 𝑃 depends on the role. If role ∈ {HOP, RCVR}, then 𝑃 is

the address of the next relay. If role = SNDR, then 𝑃 =
(𝑛→, 𝑛←) contains the path lengths instead of a next re-
lay.

The other terms 𝐵2, . . . , 𝐵𝑁 are encrypted under the key 𝐾 . Thus,
we have the typical “onion structure” with layers of encryption.
The onion structure and onion header are illustrated in Fig. 3 and
Fig. 4, respectively.

Unwrapping and Processing of Onions. First, process the header
(𝐵1, . . . , 𝐵𝑛) by decrypting 𝑐 in 𝐵1 = (𝜏, 𝑐) to obtain the ephemeral
key 𝐾 . Check that 𝜏 (which is the MAC over hdr and fwd) is valid,
and abort otherwise. If so, decrypt 𝐵2, . . . , 𝐵𝑁 , fwd, and bwd. Now,
shift the blocks left for the next onion. This shift is why we de-
crypt the 𝑗-th block with nonce 𝑗 + 1 — during encryption, that
was the block’s position and nonce. Observe that this shift results
in a missing 𝑁 -th block. This block is filled in by a garbage term, a
decryption of 0. The procedure is illustrated in Fig. 5. Finally, also

decrypt the forward and backward payload. This yields our pro-
cessed onion. The pseudocode for the above is in Unwrap (Fig. 6).

The ProcOnion routine uses Unwrap, and then handles the spe-
cific cases for forward (and backward) receiver. Namely, decrypt-
ing and outputting the (backward) message; see the pseudocode
from Fig. 6 for details.

Replying to an onion. After unwrapping the onion, the receiver
finds a backward header O← .hdr , as part of its forward payload.
The reply onion usesO← .hdr as the onion header, and setsO← .fwd
to a pseudorandom value PRG(𝐾𝑛→→,PRG). The backward payload
O← .bwd is then computed viaAE.Enc, completing the onion. (There
is no MAC over the backward payload, so it can be set arbitrarily
However, the backward payload itself is end-to-end protected with
AE, detecting any tampering of intermediate relays.)

Remark 5.2. The (handling of) backward payload in forward and
backward onions differs: In forward onions, it is just randomness,
and integrity cannot be checked upon decryption. Indeed, this is
crucial to avoid the tagging attack of [19].

Processing Replies. To process a reply, the sender must re-wrap
the backward payload using AE.Wrap and then decrypt it using
AE.Dec. To allow this, all ephemeral keys, in particular (𝐾𝑖←)

𝑛←−1
𝑖=1 ,

are derived from an onionmaster secret key omsk, which the sender
sends to itself as 𝐾𝑛←← in 𝑐𝑛← .

Wrap, Onionize, and FormOnion. We first explain how onion
layers are wrapped. A header is generated from an initial choice of
blocks (𝐵𝑛2 , . . . , 𝐵

𝑛
𝑁) (as explained later) by repeatedly wrapping it

as follows: Let 𝑖 denote the layer of wrapping, going from 𝑛 down
to 1. To wrap for relay 𝑃𝑖 , use PKE to encrypt meta-information
meta𝑖 = (role𝑖 , 𝐾𝑖 , 𝑃𝑖+1) in ciphertext 𝑐𝑖 . Moreover, wrap the pre-
vious header blocks 𝐵𝑖+1𝑗 to obtain 𝐵𝑖𝑗+1 = Enc𝐾𝑖SKE

(𝑗 + 1, 𝐵𝑖+1𝑗)
for 𝑗 = 1, . . . , 𝑁 − 1. Note the choice of indices, which effectively
shifts the blocks to the right (and drops 𝐵𝑖+1𝑁) and encrypts with
the shifted position as the nonce. Similarly, the forward payload
fwd𝑖+1 is wrapped to obtain fwd𝑖 . Finally, compute the MAC 𝜏𝑖

over (𝑐, 𝐵𝑖2, . . . , 𝐵
𝑖
𝑁−1, fwd

𝑖) to complete 𝐵𝑖1 = (𝜏
𝑖 , 𝑐𝑖). A single step

of this wrapping is defined in Wrap (Fig. 6).
Observe that a dropped block 𝐵𝑖𝑁 cannot be recovered and is re-

placed by garbage in Unwrap, namely, by a decryption of 0. Thus,
to make sure all MACs 𝜏𝑖 are valid, we must predict the garbage
terms (via repeated decryptions of 0) and choose (𝐵𝑛2 , . . . , 𝐵

𝑛
𝑁) ap-

propriately. In Onionize (lines 37 to 43), the initial choice of blocks
(𝐵𝑛2 , . . . , 𝐵

𝑛
𝑁) is thus set randomly, except for precomputed garbage

terms. By repeated use of Wrap, the fully wrapped onion is com-
puted. Lastly,Onionize sets a randombackward payload (in line 59).
(Wrap does not use bwd, as it is meaningless there.)

Finally, to form a repliable onion, FormOnion generates two
headers hdr→, hdr← usingOnionize, one for the forward and back-
ward direction, respectively. To generate hdr←, the pseudorandom
forward payload PRG(𝐾𝑛→→,PRG) is used. (Recall that MACs cover
the forward payload, so we need to fix it during onion generation.)
Lastly, note that the ephemeral keys𝐾𝑖 are derived from an “onion
master secret key” omsk, which the senders sends backs to itself (as
𝐾𝑛←←). The senders uses this to decrypt a reply.

10

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

O𝑖 = 𝜏𝑖 𝑐𝑖 𝐵𝑖2 𝐵𝑖3
… … 𝐵𝑖𝑁 E𝑖 (. . .E𝑛 ((hdr← , m))) D𝑖−1 (. . .D1 ($))

onion header O𝑖 .hdr (wrapped) forward payload O𝑖 .fwd (wrapped) backward payload O𝑖 .bwd

Figure 3: Repliable onion structure in forward direction illustrated. All blocks are fixed size. D𝑖 (resp. E𝑖) is short-hand for
Dec𝐾𝑖SKE

(𝑗 + 1, _) (resp. Enc𝐾𝑖SKE
(𝑗, _)) with proper choices of nonces 𝑗 ∈ {1, . . . , 𝑁 } (resp. nonces FWD and BWD) in repeated en-

/decryptions (for forward/backward payload). (The blocks, hence used nonces, shift after each (un)wrapping.) While bwd has
special treatment (uses AE.Unwrap, not SKE.Dec), we use D instead of AE.Unwrap in the illustration for simplicity.

O𝑖 .hdr = 𝜏𝑖 𝑐𝑖 E𝑖 (𝐵𝑖+11) … E𝑖 (. . .E𝑛 (𝐵𝑖+11)) D𝑖−1 (. . .D1 ($)) … D𝑖−1 (. . .D1 ($)) D𝑖−1 (. . .D1 (0)) … D𝑖 (D𝑖−1 (0)) D𝑖 (0)

𝐵𝑖1 𝐵𝑖2 𝐵𝑖𝑛−𝑖+1𝐵𝑖𝑛−𝑖+1 𝐵𝑖𝑛−𝑖+2 𝐵𝑖𝑁−𝑖+1 𝐵𝑖𝑁−𝑖+2 𝐵𝑖𝑁

(wrapped) encryptions (wrapped) randomness (wrapped) pseudorandomness

Figure 4: Intermediate onion header at layer 𝑖 illustrated. If 𝑖 = 𝑛, there are no wrapped encryptions. If 𝑖 = 1, there is no
wrapped pseudorandomness. If 𝑛 = 𝑁 , there is no wrapped randomness. D𝑖 (resp. E𝑖) is used as in Fig. 3.

𝐵𝑖1 𝐵𝑖2
… 𝐵𝑖𝑛−𝑖 𝐵𝑖𝑛−𝑖+1 𝐵𝑖𝑛−𝑖+2 … 𝐵𝑖𝑁−𝑖−1 𝐵𝑖𝑁−𝑖 𝐵𝑖𝑁−𝑖+1 … 𝐵𝑖𝑁−1 𝐵𝑖𝑁 0

𝐵𝑖+11 𝐵𝑖+12
… 𝐵𝑖+1𝑛−𝑖 𝐵𝑖+1𝑛−𝑖+1 𝐵𝑖+1𝑛−𝑖+2 … 𝐵𝑖+1𝑁−𝑖−1 𝐵𝑖+1𝑁−𝑖 𝐵𝑖+1𝑁−𝑖+1

… 𝐵𝑖+1𝑁−1 𝐵𝑖+1𝑁 0

path information

path information

wrapped random garbage

wrapped random garbage

wrapped zeroes garbage

wrapped zeroes garbage

Dec𝐾𝑖 Enc𝐾𝑖 Dec𝐾𝑖 Enc𝐾𝑖 Dec𝐾𝑖 Enc𝐾𝑖 Dec𝐾𝑖

U
nw

rap W
ra

p

Figure 5: Illustration of the header evolution during (un)wrapping. The “imaginary” zero block extending the header to the
right is due to the Unwrap procedure, which fills the missing block 𝐵𝑖+1𝑁 with a decryption of 0 by definition.

5.3 Pseudocode and remarks
The pseudocode in Fig. 6 assumes that both 𝑛→ ≥ 1 and 𝑛← ≥ 1,
in particular, there is a reply path and reply onion. If 𝑛← = 0, i.e.,
there is no reply path, then in FormOnion the nonsensical term
𝑃1← is replaced by ⊥, and O← .hdr is garbage, also denoted ⊥.⁵ In
this case, we could reuse the unused space to encrypt a larger for-
ward payload, however, we do not consider this possibility in our
security model or proofs.

Remark 5.3. For simplicity of presentation, our pseudocode for
ProcOnion and ReplyOnion includes some evidently unnecessary
computations. In particular, some variables 𝐵𝑖𝑗 are assigned multi-
ple times in Onionize (Fig. 6), however, their re-assignment coin-
cides with their previous definition.

5.4 Further Discussion on Security, Efficiency,
and Trade-offs

5.4.1 Identifying Replies. In its current form, Definition 4.1 does
not provide a way to identify if a received message is a reply to a
previously sent onion. To allow this, FormOnion and ProcOnion
can be modified appropriately to additionally output an identifier
for an onion (and the caller must keep track of it). For EROR, one

⁵For simplicity, we assume the ⊥ symbols are of the same size as original terms.

natural choice it to use the ciphertext O← .𝑐𝑛← , i.e., the ciphertext
which encrypts the onion master secret key. This choice is natural,
but many sensible alternatives are possible, e.g., adding an explicit
identifier to the schemes header, or using omsk as the identifier.

We discussed how to model the identification of replies above,
however, if one adds this, then it is natural to also require that
“replies cannot be faked”, i.e., it should be impossible for an adver-
sary to create an onion which is treated as a reply. Clearly, EROR
does not satisfy this, as anyone can generate a reply onion. To ob-
tain this property, secret-key material of the purported original
(honest) sendermust be used inFormOnion, not just inProcOnion.
One can use simple approaches, e.g., keeping a separate secret key
skMAC (alongside skPKE) for the MAC in O𝑛←← (instead of deriving
a key from𝐾𝑛←←). IfMAC is EUF-CMA secure,⁶ then it is impossible
to generate a fake reply-onion (in the stateless setting).

5.4.2 Using KEMs. Our scheme EROR from Section 5.3 makes
some choices to simplify the presentation or adhere to prior work.
Namely, the use of an “onion master secret key” (to derive the in-
termediate keys𝐾𝑖→,𝐾 𝑗←) and public-key encryption (PKE) instead
of key-encapsulationmechanisms (KEM). Definition 4.1, which fol-
lows [5, 2, 20], requires FormOnion and ProcOnion to be stateless,

⁶Currently, Theorem 6.1 only needs MAC to be selectively secure (SUF-CMA), which
is weaker than EUF-CMA. But, if a PRF is used as MAC, it is EUF-CMA secure
anyway.

11

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

Wrap(𝐾,𝑐, (𝐵2, . . . , 𝐵𝑁), fwd)
1 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾MAC = KDF(𝐾, MAC) ;
2 : for 𝑖 = 2, . . . , 𝑁

3 : 𝐵𝑖 ← SKE.Enc𝐾SKE (𝑖, 𝐵𝑖)
4 : fwd = SKE.Enc𝐾SKE (FWD, fwd)
5 : 𝜏 ←MAC.Sign𝐾MAC (𝑐, 𝐵2, . . . , 𝐵𝑁 , fwd)
6 : 𝐵1 = (𝜏, 𝑐)
7 : return ((𝐵1, . . . , 𝐵𝑁), fwd)

Unwrap(sk, (𝐵1, . . . , 𝐵𝑁), fwd, bwd)
11 : (𝜏, 𝑐) ← 𝐵1

12 : (𝐾,meta) ← PKE.Decsk (𝑐)
13 : if 𝐾 = ⊥ then return ⊥
14 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾MAC = KDF(𝐾, MAC) ;
15 : if MAC.Verify𝐾MAC (𝜏, (𝑐, 𝐵2, . . . , 𝐵𝑁 , fwd)) ≠ 1

16 : return ⊥
17 : for 𝑖 = 1, . . . , 𝑁 − 1

18 : 𝐵𝑖 = SKE.Dec𝐾SKE (𝑖 + 1, 𝐵𝑖+1)
19 : 𝐵𝑁 = SKE.Dec𝐾SKE (𝑁 + 1, 0)
20 : fwd = SKE.Dec𝐾SKE (FWD, fwd)
21 : bwd = AE.Unwrap(𝐾, bwd)
22 : return (𝐾,meta, ((𝐵1, . . . , 𝐵𝑁), fwd, bwd))

FormOnion(𝑚, (𝑃𝑖→)𝑛→𝑖=1 , (𝑃𝑖←)
𝑛←
𝑖=1 ;R)

61 : if 𝑛→ > 𝑁 or 𝑛← > 𝑁 then abort

62 : 𝐾𝑛←← = omsk ← K // Onion master secret key

63 : for 𝑖 = 1, . . . , 𝑛→

64 : 𝐾𝑖→ = KDF(omsk, (→, 𝑖))
65 : for 𝑖 = 1, . . . , 𝑛← − 1

66 : 𝐾𝑖← = KDF(omsk, (←, 𝑖))
67 : 𝐾PRG = KDF(𝐾𝑛→, PRG)
68 : // If 𝑛← = 0, then 𝑃1← := ⊥ and O← := ⊥.

69 : O← = Onionize((𝐾𝑖←)𝑖 , (𝑃𝑖←)𝑖 , (SNDR, (𝑛→, 𝑛←)),
70 : dir =←, fwd = PRG(𝐾PRG))
71 : O→ = Onionize((𝐾𝑖→)𝑖 , (𝑃𝑖→)𝑖 , (RCVR, 𝑃1

←),
72 : dir =→, fwd = (O← .ℎ𝑒𝑎𝑑𝑒𝑟,𝑚))
73 : return O→

ReplyOnion(sk,𝑚,O)
101 : // Repeat ProcOnion steps and sanity checks.

102 : 𝑜𝑢𝑡 ← Unwrap(sk,O)
103 : if 𝑜𝑢𝑡 = ⊥ then return ⊥
104 : parse 𝑜𝑢𝑡 = (𝐾,meta,O)
105 : if meta.role ≠ RCVR
106 : return ⊥ // Not the receiver!
107 : // Construct reply
108 : parse (ℎ𝑒𝑎𝑑𝑒𝑟, _) = O.fwd

109 : O← .ℎ𝑒𝑎𝑑𝑒𝑟 = ℎ𝑒𝑎𝑑𝑒𝑟

110 : 𝐾PRG = KDF(𝐾, PRG)
111 : O← .fwd = PRG(𝐾PRG)
112 : O← .bwd = AE.Enc𝐾 (𝑚)
113 : return (O←,meta.next)

Onionize((𝐾𝑖)𝑛𝑖=1, (𝑃𝑖𝑖=1)𝑛, (role, next), dir, fwd)
31 : for 𝑖 = 1, . . . , 𝑛

32 : 𝐾𝑖SKE = KDF(𝐾𝑖 , SKE) ;𝐾𝑖MAC = KDF(𝐾𝑖 , MAC) ;
33 : // Precompute all PKE ciphertexts ofmeta𝑖 .

34 : for 𝑖 = 1, . . . , 𝑛 − 1

35 : 𝑐𝑖 ← PKE.EncPKI[𝑃𝑖] .pk ((HOP, 𝐾𝑖 , 𝑃𝑖+1))
36 : 𝑐𝑛 ← PKE.EncPKI[𝑃𝑛] .pk ((role, 𝐾𝑛, next))
37 : // Precompute all (garbage) values

38 : for 𝑖 = 1, . . . , 𝑛 − 1 // Iterated decryptions of 0

39 : for 𝑗 = 𝑁 − 𝑖 + 1, . . . , 𝑁 − 1

40 : 𝐵𝑖+1𝑗 = SKE.Dec𝐾𝑖SKE
(𝑗 + 1, 𝐵𝑖𝑗+1)

41 : 𝐵𝑖+1𝑁 = SKE.Dec𝐾𝑖SKE
(𝑁 + 1, 0)

42 : for 𝑗 = 2, . . . , 𝑁 − 𝑛 + 1 // Random dummy terms

43 : 𝐵𝑛𝑗 ← $

44 : // Compute𝑂𝑛 , i.e., O𝑛 without bwd

45 : if dir =→
46 : fwd𝑛 = SKE.Enc𝐾𝑛SKE

(FWD, fwd)
47 : else if dir =←
48 : fwd1 = fwd

49 : for 𝑖 = 1, . . . , 𝑛 − 1

50 : fwd𝑖+1 = SKE.Dec𝐾𝑖SKE
(FWD, fwd𝑖)

51 : 𝜏 ←MAC.Sign𝐾𝑛MAC
(𝑐𝑛, 𝐵𝑛2 , . . . , 𝐵𝑛𝑁 , fwd

𝑛)

52 : 𝐵1 = (𝜏, 𝑐𝑛)
53 : U𝑛 = ((𝐵1, 𝐵𝑛2 , . . . , 𝐵𝑛𝑁), fwd)
54 : // Wrap up the onion

55 : for 𝑖 = 𝑛 − 1, . . . , 1

56 : U 𝑖 = (𝐵𝑖1, . . . , 𝐵𝑖𝑁 , fwd
𝑖) ←

57 : Wrap(𝐾𝑖 , 𝑐𝑖 , (𝐵𝑖+11 , . . . , 𝐵𝑖+1𝑁 −1), fwd
𝑖+1)

58 : // Finish by adding garbage bwd

59 : bwd1 = (bwd1 .mac, bwd1 .ctxt) ← $

60 : return O1 = (𝐵1
1, . . . , 𝐵

1
𝑁 , fwd

1, bwd1)

ProcOnion(sk,O)
81 : 𝑜𝑢𝑡 ← Unwrap(sk,O)
82 : if 𝑜𝑢𝑡 = ⊥ then return (⊥,⊥)
83 : parse 𝑜𝑢𝑡 = (𝐾,meta,O)
84 : if meta.role = HOP // Intermediary node

85 : return (O,meta.next)
86 : if meta.role = RCVR // Receiver node
87 : parse (_, _,𝑚) = O.fwd

88 : return (𝑚,⊥)
89 : if meta.role = SNDR // Sender node
90 : (𝑛→, 𝑛←) = meta.next

91 : bwd𝑛← = O.bwd

92 : for 𝑖 = 𝑛← − 1, . . . , 1

93 : 𝐾𝑖← = KDF(𝐾, (←, 𝑖))
94 : bwd𝑖 = AE.Wrap(𝐾𝑖←, bwd𝑖+1)
95 : 𝐾𝑛→→ = KDF(𝐾, (→, 𝑛→))
96 : 𝑚 = AE.Dec𝐾𝑛→→ (bwd1)
97 : return (𝑚,⊥)

AE.Wrap(𝐾, bwd)
121 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾PRF = KDF(𝐾, PRF) ;
122 : bwd .ctxt = SKE.Enc𝐾SKE (BWD, bwd .ctxt)
123 : bwd .mac = bwd.mac ⊕ PRF𝐾PRF (bwd.ctxt)
124 : return bwd

AE.Unwrap(𝐾, bwd)
131 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾PRF = KDF(𝐾, PRF) ;
132 : bwd .ctxt = SKE.Dec𝐾SKE (BWD, bwd.ctxt)
133 : bwd .mac = bwd.mac ⊕ PRF𝐾PRF (bwd.ctxt)
134 : return bwd

AE.Enc𝐾 (𝑚)
141 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾PRF = KDF(𝐾, PRF) ;
142 : bwd .ctxt = SKE.Enc𝐾SKE (AE,𝑚)
143 : bwd .mac = PRF𝐾PRF (bwd .ctxt)
144 : return bwd = (bwd.ctxt, bwd .mac)

AE.Dec𝐾 (bwd)
151 : 𝐾SKE = KDF(𝐾, SKE) ;𝐾PRF = KDF(𝐾, PRF) ;
152 : 𝜏 = PRF𝐾PRF (bwd.ctxt)
153 : if 𝜏 ≠ bwd .mac then return ⊥
154 : 𝑚 = SKE.Dec𝐾SKE (AE, bwd .ctxt)
155 : return𝑚

Figure 6: Pseudocode of EROR routines.

12

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

which makes using KEMs to generate the intermediate keys 𝐾𝑖→,
𝐾
𝑗
← inconvenient, although it is, in principle, possible as we outline

in Remark 5.4 below. However, if we allow FormOnion to output
some state decinfo for the sender, and we give ProcOnion a list of
decinfos as optional input, then using KEMs gets easy.

For example, we can modify EROR as follows:

• Replace PKE with a KEM which generates 𝐾𝑖→ and 𝐾 𝑗←.
• Use SKE to encrypt the meta-information (HOP, 𝑃𝑖+1) and
(role, next) in lines 35 and 36. (The security proof is unaf-
fected as the MAC over the header and payload still en-
sures integrity.)

• Output decinfo = (𝑐𝑛←, (𝐾𝑖→)
𝑛→
𝑖=1 , (𝐾

𝑗
←)𝑛←𝑗=1).

• If ProcOnion enters the role SNDR branch (line 89), it looks
for a matching decinfo and uses the respective keys to (un-
)wrap the onion.

For security, we need to adapt the games 𝐿𝑈 +→, 𝐿𝑈 +← and equiva-
lence proofs from Section 4 to the stateful setting. If the sketched
changes are implemented correctly, one obtains a secure stateful
variant of EROR, which relies on a IND-CCA-secure KEM in a
simple manner.

Remark 5.4 (KEM instead of PKE). It is possible to use KEMs in-
stead of PKEs also in the stateless case: One generic approach is to
use omsk to (re)derive the key encapsulation randomness, so that
the sender can recover all encapsulated keys by recomputing the
encapsulation. Another, less generic approach uses that in the se-
curity proof (after the above modifications) it should suffice ifPKE
is IND-CCA-secure for randommessages (i.e., the challenges oracle
picks a random message𝑚∗ and either gives𝑚∗ or fresh random-
ness to the adversary).This is a natural property, whichmany KEM
schemes derived from Fujisaki–Okamoto-like transformations sat-
isfy.

5.4.3 Using PRP-CCA-secure SKE. One goal of EROR was secu-
rity even if SKE is only DLR$-CPA-secure, which allows typical
stream ciphers. If, as in prior works, e.g. [12, 2, 20], we use PRP-
CCA-secure pseudorandom permutations (PRP) instead, then the
special handling of the backwards payload can be simplified, as
standard “padding schemes” suffice to obtain integrity protection
from PRP-CCA-secure PRPs. Hence, the AE scheme and its special
Wrap and Unwrap handling becomes superfluous. Additionally,
some (at least heuristic) robustness against processing an onion
more than once is obtained. The case where onions are processed
more than once is not covered by our security proof, and indeed,
this results in a form of nonce-reuse, which violates our security
assumptions on SKE, potentially breaking its security entirely.

6 SECURITY OF EROR
In this section, we discuss the security of EROR.

TheoRem 6.1. Let EROR be as in Fig. 6. Suppose that

• KDF and PRF are secure pseudorandom functions.
• SKE is a DLR$-CPA-secure (Definition A.3)nonce-based en-

cryption scheme and permutation ciphers (Definition A.2).
• MAC is a SUF-CMA-secure MAC.
• PKE is a IND-CCA-secure PKE scheme.

ThenEROR satisfies 𝐿𝑈 +→ and 𝐿𝑈 +←, in particular, it is a secure onion
routing scheme according to Definition 4.6. If all building blocks are
perfectly correct, so is EROR.

Correctness follows directly from inspection of EROR. We give
a high-level proof sketch for security. For this, we use the same no-
tation for intermediate results in FormOnion as in the pseudocode.
RecognizeOnion and ExtractPayload are defined as follows.

• RecognizeOnion((𝑖, dir),O,𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , (𝑃

𝑗
←)𝑛←𝑗=1,R)where

dir =→ compares 𝑐 with 𝑐𝑖→, where (𝜏, 𝑐) = 𝐵1 = O.hdr [1]
and 𝑐𝑖→ is the intermediate PKE ciphertext in O→ in the
pseudocode (which can be recomputed withR). If they are
equal and 𝜏 is valid, output 1 else 0. For dir = ←, use 𝑐𝑖←
from O← instead.

• ExtractPayload((𝑖,←),O,𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1 ,R): Recom-

pute all ephemeral keys 𝐾 𝑗← (using R) and Unwrap the
payload until the backward receiver (i.e., original sender)
is reached, i.e. until 𝑗 = 𝑛←, then run the final ProcOnion
processing (of the sender) to obtain the backward message.

With everything in place, we give a proof sketch.

SKetch. For simplicity, consider a stateful variant of EROR,
where instead of deriving the keys 𝐾𝑖→, 𝐾 𝑗← from a master key, all
keys are truly random. Moreover, let us pretend the derived sub-
keys𝐾SKE,𝐾MAC,𝐾PRF, are truly random. In the full proof, this is
easily achieved by suitably replacing derived keys with truly ran-
dom ones, or undoing that, by reduction to PRF-security of KDF.

Game 𝐿𝑈 +→ for 𝑗 < 𝑛→. We first consider the 𝐿𝑈 +→ game for
𝑗 < 𝑛→, with 𝑏 = 0, i.e., the “real word”. We focus solely on
the challenge onion O1 and processing the challenge query O 𝑗 .
Processing non-challenge queries is trivial. Since 𝑏 = 0, we have
O = FormOnion(𝑚, (𝑃𝑖→)

𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1). Now, we make following

hybrid steps. (We omit the arrows for the onions, as they are all in
forward direction.)

• If RecognizeOnion recognizes a query O as challenge, ad-
ditionally compare header and forward payload to the chal-
lenge onion U 𝑗 . If they differ, output FAIL, otherwise, con-
tinue processing the query. [SUF-CMA of MAC.]

• Instead of processing the challenge query O 𝑗 , simply out-
put O 𝑗+1 = (hdr, fwd, bwd), where O 𝑗+1 is a new variable,
which is set to hdr = U 𝑗+1 .hdr , fwd = U 𝑗+1 .fwd and bwd
is the honest processing of O 𝑗 .bwd. [This change is only
conceptual.]

• Replace O 𝑗+1 .bwd with true randomness. [PRF-security of
PRF and DLR$-CPA of SKE]

• InO 𝑗+1, replace the header blocks 𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 by ran-

domness 𝑅 𝑗+1𝑁− 𝑗+1, . . . , 𝑅
𝑗+1
𝑁 . [DLR$-CPA of SKE]

• In O 𝑗 , replace the header blocks 𝐵 𝑗2, . . . , 𝐵
𝑗
𝑁− 𝑗+1 by ran-

domness 𝑅 𝑗2, . . . , 𝑅
𝑗
𝑁− 𝑗+1. [DLR$-CPA of SKE]

• In O
𝑗+1, encrypt (SNDR, omsk, (𝑛→− 𝑗, 𝑛←)) within 𝑐𝑛←← in

Onionize. [IND-CCA of PKE]
• At this point, one can see theO 𝑗+1 is distributed identically

to FormOnion(𝑚, (𝑃𝑖→)
𝑛→
𝑖=𝑗+1, (𝑃

𝑖
←)

𝑛←
𝑖=1 ;R). Formally, some

more changes which use that SKE is a permutation cipher
13

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

are made, so that the header blocks which have been re-
placed by randomness are now random blocks wrapped in
encryption layers. Since a permutation of a random block
is again a random block, this does not affect the distribu-
tion of O 𝑗+1 and the change is conceptual.

• InO 𝑗 , encrypt (RCVR, 𝐾 𝑗→,⊥) in 𝑐
𝑗
→ inOnionize. [IND-CCA

of PKE]
• In O 𝑗 , encrypt (⊥,𝑚′) instead of (O1

←,𝑚) in O 𝑗 .fwd for
random𝑚′. [DLR$-CPA of SKE]

• At this point, O 𝑗 is modified so that O1 is distributed as
FormOnion(𝑚′, (𝑃𝑖→)

𝑗
𝑖=1, ()), by arguing similar to O

𝑗+1.
• We reached 𝐿𝑈 +→ with 𝑏 = 1.

Cryptographically, all steps are simple and have straightforward
reductions. The main difficulty of the proof is to realize that

• replacing header blocks𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 and header blocks

𝐵
𝑗
2, . . . , 𝐵

𝑗
𝑁− 𝑗+1 by randomness truly decouples the headers

of O1 and O2, we provide a sketch of this situation in Fig. 5.
• the way that O1 and O

𝑗+1 are eventually computed in the
end is syntactically exactly as FormOnion.

This argument for syntactic equality with FormOnion is simple
overall, but does some require care. Since the proof for case 𝑗 = 𝑛
for 𝐿𝑈 +→ is similar, we omit it in this sketch.

Game 𝐿𝑈 +← for 𝑗 < 𝑛←. In large parts, the argument is anal-
ogous to 𝐿𝑈 +← (except with directions switched to backward). In
particular, the same approach of “disconnecting”O 𝑗← andO 𝑗+1← and
obtaining syntactically newFormOnions applies in large parts.The
major difference is how to correctly handleExtractPayload and en-
sure integrity of the backward payload. We sketch the new steps
now.

• In exception (1) (resp. (2)) of 𝐿𝑈 +←, if RecognizeOnion rec-
ognizes a query, additionally compare header and forward
payload to the challenge onion (U 𝑗

← resp. U𝑛←←). If they dif-
fer, output FAIL, otherwise, continue processing normally.
[SUF-CMA of MAC]

• In exception (2) of 𝐿𝑈 +←, if the challenge is recognized and
does not cause FAIL, and ifProcOnion outputs (𝑚,⊥)with
𝑚 ≠ ⊥, then output the extracted 𝑚∗ to the adversary.
[PRF-security of PRF]

• In some steps, slightly change what is encrypted, e.g.,O 𝑗+1←
encrypts (RCVR, 𝐾,⊥) instead of using SNDR, etc.

The most important change is that in exception (2), we always out-
put 𝑚∗ (or ⊥), where 𝑚∗ was obtained through ExtractPayload.
Here, it is crucial to ensure that if ExtractPayload outputs𝑚∗, the
adversary cannot maul the onion O

𝑗+1
← to some ciphertext which

decrypts to any other 𝑚 ≠ 𝑚∗, even though A knows the end-
to-end encryption keys. Recall that in AE the PRF PRF is used as
follows:

• It is used as a deterministic and unique MAC in AE.Enc
and AE.Dec.

• It is used to (un)mask theMACwith aPRF value inAE.Wrap
and AE.Unwrap.

Now, consider ExtractPayload. It works as ProcOnion in the case
meta.role = SNDR, that is, unwrapping the backward payload until

O1
← is reached, and then decrypting it. Observe thatAE.Wrap(𝐾, _)

and AE.Unwrap(𝐾, _) are permutations and AE.Wrap is the in-
verse ofAE.Unwrap. In particular, if the adversary’s queryO𝑛→← .bwd

differs from an honest unwrapping of O 𝑗+1← .bwd, then rewrapping
O𝑛→← .bwd duringExtractPayload orProcOnion necessarily arrives
at an intermediate bwd 𝑗+1 which differs from O

𝑗+1
← .bwd. Now, it is

not hard to see that AE.Unwrap will force the MAC to become
invalid with overwhelming probability. There are two cases:

• O
𝑗+1
← .bwd .ctxt ≠ bwd 𝑗+1 .ctxt: As unwrapping is a permu-

tation, we observe that the AE.Dec not reject if only if
PRF𝐾PRF (O

𝑗+1
← .bwd .ctxt) = PRF𝐾PRF (bwd 𝑗+1 .ctxt) holds.

• O
𝑗+1
← .bwd .ctxt = bwd 𝑗+1 .ctxt holds, but O 𝑗+1← .bwd .mac ≠

bwd 𝑗+1 .mac: Since unwrapping is a permutation the fully
unwrapped MAC must differ, but unwrapping gives the
same fully unwrapped ciphertexts. Thus, AE.Dec will re-
ject (since MACs are unique).

Since the proof for case 𝑗 = 0 for 𝐿𝑈 +← is very similar, and omitted
we omit it in this sketch. □

7 PERFORMANCE
To evaluate the performance of EROR, we have assessed two as-
pects of our format: We evaluate the computational effort required
to generate and process onion packets, and we evaluate the packet
size in dependence of the payload size and the path length.

In both cases, we compare with Sphinx [12] as a format used
in practice, and the repliable onion formats based on updatable
encryption and SNARGs by Kuhn, Hofheinz, Rupp, and Strufe [20].

7.1 Implementation
For our experiments, we have implemented EROR in Rust. Rust
was chosen because it provides a memory-safe, fast language, and
implementations of existing mix formats are available to re-use.
We have chosen the following building blocks for our implementa-
tion:

• For the asymmetric encryption scheme, a CCA-secure ver-
sion of ElGamal [1] over the Curve25519 elliptic curve [4].

• For the symmetric encryption scheme, AES with 128 bit
keys.

• For themessage authentication code, HMAC together with
SHA3 truncated to 128 bit.

Our choice of building blocks matches what is often used in
practice and provides around 128 bits of security.

To provide reference values for Sphinx, we use the implementa-
tion of the Nym project⁷ in comparable settings. In particular, we
choose to represent addresses of mix nodes and recipients using 32
bytes of data, matching Nym’s addressing scheme. While this adds
more overhead than strictly needed, it makes the comparison fair
and shows how EROR fares in practical situations. Additionally,
we note that our implementation contains some overhead related
to the used serialization libraries.

⁷https://github.com/nymtech/sphinx, accessed at 2023-12-19
14

https://github.com/nymtech/sphinx

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

128 256 384 512 640 768 896 1024
Payload size [bytes]

0.0

50.0

100.0

Ti
m

e
[

s]

EROR
Sphinx

Figure 7: Benchmark of the onion processing time.

128 256 384 512 640 768 896 1024
Payload size [bytes]

0.0

0.5

Ti
m

e
[m

s]

EROR
Sphinx

1 2 3 4 5
Path length

0.0

0.5

Ti
m

e
[m

s] EROR
Sphinx

Figure 8: Benchmark of the onion creation time.

BothEROR and Sphinxwere benchmarked using the criterion⁸
tool on a LenovoThinkpad E14 AMDG4 with a Ryzen 5 5625U and
16 GiB of RAM.

7.2 Processing Benchmarks
We have measured the onion generation and processing times to
assess the performance of EROR in practice. When processing
onions, we expect EROR to be twice as fast as Sphinx:The process-
ing time is dominated by expensive public-key operations, namely
elliptic curve exponentiations, of which EROR needs one (to de-
crypt the header block), whereas Sphinx needs two (to derive the
shared secret and to blind it for the next relay).

Our benchmarks confirm our expectation: EROR takes around
54µs to process a 512 byte payload, whereas Sphinx takes 103µs.
For bigger payloads, the time increase is negligible. This is also
shown in Figure 7.

For the onion creation, we can see that EROR is slightly slower
than Sphinx: For a fixed path length of 5, onion creation takes
around 0.73ms for EROR and 0.57ms for Sphinx, regardless of the
tested payload size. When fixing the payload size and varying the
path length, we can see a linear relationship between the number
of hops and the time needed to form an onion for both EROR and
Sphinx. This result is shown in Figure 8.

As there is no implementation available for the UE- and SNARG-
based schemes, we use the approximations of Kuhn et al. [20, p. 8]

⁸https://crates.io/crates/criterion, accessed at 2023-12-19

0 256 512 768 1024
Payload size [bytes]

0

1024

2048

3072

On
io

n
siz

e
[b

yt
es

]

EROR
Sphinx

1 2 3 4 5
Path length

0
512

1024
1536
2048

On
io

n
siz

e
[b

yt
es

]

EROR
Sphinx

Figure 9: Onion sizes depending on the payload size with a
fixed path length of 5 (upper image), and depending on the
path length with a fixed payload size of 512 bytes (bottom
image).

to assess their performance. For UE, they claim that the perfor-
mance is dominated by around 200 exponentiations on the elliptic
curve, leading to a runtime increase by a factor of approximately
200 compared to EROR. For SNARGs, they expect an even higher
processing cost.

Overall, we can say that EROR onion processing time is small,
and mixes can process thousands of onions per second. In this re-
gard, EROR is more efficient than Sphinx, but it comes at a slight
decrease in efficiency for onion creation. Additionally, EROR is
more efficient than theUE and SNARGbased schemes by a largemar-
gin.

7.3 Onion Size
We have also evaluated the size of the resulting onions to assess
EROR’s space overhead. We expect that EROR onions are larger
than corresponding Sphinx packets, as each onion contains two
payloads:The forward payload and the backward payload, ofwhich
only one at a time contains valuable information. Further, Sphinx
is optimized for a low overhead, whereas EROR embeds fresh key
material for every relay.

Wemeasure the onion sizes using the available implementations
of Sphinx and EROR, and we see that the smallest EROR onion
that contains 1 byte of payload and encodes a single hop has 305
bytes, whereas the smallest (repliable) Sphinx onion has 234 bytes.
As expected, Sphinx headers are more compact, though 24 bytes of
the overhead comes from implementation inefficiencies.

By increasing the path length, we see that EROR adds more
overhead per encoded hop than Sphinx does: For every extra hop,
EROR needs 248 bytes more header space, whereas Sphinx only
needs 120 bytes. Further, the Sphinx onions grow linearly by a fac-
tor of 1 to the payload size, whereas the EROR onions grow by
a factor of 2. Sphinx packets therefore stay more compact than
EROR onions. These relationships are shown in Figure 9.

15

https://crates.io/crates/criterion

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

Payload size (bytes) 1 256 1024
EROR (this work) 1297 1808 3344
Sphinx [12] 714 969 1737
UE [20] 4928 42304 154432
SNARG [20] 7328 7584 8352

Table 1: Onion sizes (in bytes) for all formats and varying
payload size. The path length is 5 in all cases.

To compare EROR with the UE- and SNARG-based formats, we
use the performance estimate in [20, Appendix G] again. We sim-
plify by rounding the sizes to whole bytes, and for their UE scheme
we assume that the payload size grows linearly with the amount
of group elements needed to represent the message.

From our calculations (shown in Table 1), we can see that the UE-
based onions are larger than EROR onions, as the use of updatable
encryption blows up the size of the payload. Further, the SNARG
onions scale better with payload size than EROR, but they add
more overhead per hop, as every hop needs a different SNARG.
While for a fixed path length, SNARG onions are initially larger
than EROR onions, SNARG will eventually become more efficient
for large payloads. For example, a path length of 5 leads to SNARG
and EROR onions of the same size for 6033 bytes of payload.

Overall,EROR stayswithin a factor of≈ 2 compared to the com-
pact Sphinx format, which we still consider practical. The compar-
ison with the (computationally inefficient) UE and SNARG onions
shows that EROR onions are smaller than UE onions, but SNARG
onions can reach a similar or smaller size to EROR, depending on
the path length and the payload size.

7.4 Concise comparison to related work
Theprior (similarly secure) solutions from [20] are at least 100×more
computationally expensive and 2.5× to 45× larger (for 1024 bytes
payload) than EROR. Even the authors propose it as a “conceptual
first step towards an efficient and secure solution” [20]. EROR pro-
vides a major improvement regarding performance and is the first
practical solution.

Compared to Sphinx, EROR’s size is “only” 2× larger. For com-
putation, EROR onion generation is slightly slower (≈1.4×), but
processing is 2× faster than Sphinx. But note here that Sphinx is
insecure against the tagging attack. Here, the EROR solution pro-
vides a major improvement in security.

8 CONCLUSION
In this paper, we proposeEROR, the first efficient and secure onion
routing and mix network packet format in the integrated system
model that simultaneously prevents against payload tagging at-
tacks and provides request-reply indistinguishability. Our key in-
sight is that it suffices to prevent the payload tagging attack only
on forward communications (requests). Thus, by splitting (and du-
plicating) the payload into forward (request) and backward (reply)
payload, we can still achieve request-reply indistinguishability.

Our implementation of EROR shows that onion processing is
twice as fast as Sphinx (which is insecure in the integrated system
model), at the cost of a larger header and a slightly longer onion

creation time. In total, EROR produces onions that are roughly
twice the size of Sphinx onions, but both the space overhead and
the computational effort are within limits for a practical format.
Importantly, EROR outperforms prior secure solutions in the inte-
grated system model by a large margin.

Finally, to proveEROR secure, we strengthen the securitymodel
by including end-to-end integrity and simultaneously simplify the
proof strategy for such packet formats by mildly strengthening the
required properties (𝐿𝑈 +→ and 𝐿𝑈 +←).

REFERENCES
[1] Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. 2009. Compact CCA-secure

encryption for messages of arbitrary length. In PKC 2009 (LNCS). Vol. 5443.
Springer, Heidelberg.

[2] Megumi Ando and Anna Lysyanskaya. 2021. Cryptographic shallots: A for-
mal treatment of repliable onion encryption. In TCC 2021, Part III (LNCS).
Vol. 13044. Springer, Heidelberg.

[3] Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar Mohammadi. 2012.
Provably secure and practical onion routing. In CSF 2012. IEEE Computer So-
ciety Press.

[4] Daniel J. Bernstein. 2006. Curve25519: new Diffie-Hellman speed records. In
PKC 2006 (LNCS). Vol. 3958. Springer, Heidelberg.

[5] Jan Camenisch and Anna Lysyanskaya. 2005. A formal treatment of onion
routing. In CRYPTO 2005 (LNCS). Vol. 3621. Springer, Heidelberg.

[6] Ran Canetti. 2001. Universally composable security: a new paradigm for cryp-
tographic protocols. In 42nd FOCS. IEEE Computer Society Press.

[7] Dario Catalano,Mario Di Raimondo, Dario Fiore, Rosario Gennaro, andOrazio
Puglisi. 2013. Fully non-interactive onion routing with forward secrecy. INT J
INF SECUR.

[8] Dario Catalano, Dario Fiore, and Rosario Gennaro. 2009. Certificateless onion
routing. In ACM CCS 2009. ACM Press.

[9] David L Chaum. 1981. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM.

[10] Chen Chen, Daniele E. Asoni, Adrian Perrig, David Barrera, George Danezis,
andCarmela Troncoso. 2018. TARANET: Traffic-Analysis Resistant Anonymity
at the NETwork layer. IEEE EuroS&P.

[11] Chen Chen, Daniele Enrico Asoni, David Barrera, George Danezis, and Adrian
Perrig. 2015. HORNET: high-speed onion routing at the network layer. InACM
CCS 2015. ACM Press.

[12] George Danezis and Ian Goldberg. 2009. Sphinx: a compact and provably se-
cure mix format. In 2009 IEEE S&P. IEEE Computer Society Press.

[13] George Danezis and Ben Laurie. 2004. Minx: a simple and efficient anonymous
packet format. In WPES 2004.

[14] Roger Dingledine, NickMathewson, and Paul Syverson. 2004. Tor:The second-
generation onion router. Tech. rep. Naval Research Lab Washington DC.

[15] Joan Feigenbaum, Aaron Johnson, and Paul Syverson. 2012. Probabilistic anal-
ysis of onion routing in a black-box model. ACM TISSEC, 15, 3.

[16] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2: Basic Ap-
plications. 2004. Cambridge University Press. isbn: 0-521-83084-2.

[17] David M Goldschlag, Michael G Reed, and Paul F Syverson. 1996. Hiding rout-
ing information. In International workshop on information hiding.

[18] Aniket Kate, Greg M. Zaverucha, and Ian Goldberg. 2010. Pairing-based onion
routing with improved forward secrecy. ACM TISSEC, 13.

[19] Christiane Kuhn, Martin Beck, and Thorsten Strufe. 2020. Breaking and (par-
tially) fixing provably secure onion routing. In 2020 IEEE S&P. IEEE Computer
Society Press.

[20] Christiane Kuhn, Dennis Hofheinz, Andy Rupp, and Thorsten Strufe. 2021.
Onion routing with replies. In ASIACRYPT 2021, Part II (LNCS). Vol. 13091.
Springer, Heidelberg.

[21] Sjouke Mauw, Jan Verschuren, and Erik P. de Vink. 2004. A formalization of
anonymity and onion routing. In ESORICS 2004 (LNCS). Vol. 3193. Springer,
Heidelberg.

[22] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. 2014. Re-
considering generic composition. In EUROCRYPT 2014 (LNCS). Vol. 8441. Springer,
Heidelberg.

[23] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. 2017.The loopix anonymity system. InUSENIX Security 2017. USENIX
Association.

[24] Philip Scherer, Christiane Weis, and Thorsten Strufe. 2023. Provable security
for the onion routing and mix network packet format sphinx. (2023). arXiv:
2312.08028 [cs.CR].

[25] Erik Shimshock, Matt Staats, and Nicholas Hopper. 2008. Breaking and prov-
ably fixing minx. In PETS 2008 (LNCS). Vol. 5134. Springer, Heidelberg.

16

https://arxiv.org/abs/2312.08028

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

A PRELIMINARIES AND FURTHER
DISCUSSIONS

A.1 Cryptographic primitives
We recall the (standard) notions of cryptographic primitives which
we use, and define specific notions tailored to our application.

A.1.1 Symmetric-key Primitives. In the following, all our symmet-
ric encryption schemes are nonce-based and deterministic.

Definition A.1 (Nonce-based SKE). Let K be the key space, N the
nonce space, M be the message space, and C be the ciphertext
space, all subsets of bitstring. For simplicity, we assume K = N =
{0, 1}𝜆 and M = C = {0, 1}∗ unless noted otherwise. A (nonce-
based) SKE is a tuple (Enc,Dec) of deterministic polynomial-time
algorithms, where

• SKE.Enc𝐾 (N,𝑚) → 𝑐 , given a secret key 𝐾 ∈ K, nonce
N ∈ N, and message𝑚 ∈ {0, 1}∗, outputs a ciphertext 𝑐 .

• SKE.Dec𝐾 (N, 𝑐) → 𝑚, given a secret key 𝐾 ∈ K, nonce
N ∈ N, and ciphertext 𝑐 , outputs a message𝑚 or ⊥.

Instead of general SKEs, we will restrict to a notion of (nonce-
based) permutation cipher, defined as follows.

Definition A.2 (Permutation cipher). Let SKE be a (nonce-based)
SKE. Then SKE is a (nonce-based) permutation cipher if for all 𝐾 ∈
{0, 1}𝜆 , N ∈ {0, 1}𝜆 , the map SKE.Enc𝐾 (N, _) is a permutation on
𝑛-bit strings (for any 𝑛) and SKE.Dec𝐾 (N, _) is its inverse.

We note that permutation ciphers as defined automatically have
nice properties, e.g. they are perfectly correct, tidy [22] and per-
fectly length-regular. Note that permutation ciphers according to
Definition A.2 need not be pseudo-random permutations. Indeed,
most typical ciphers (which do not provide integrity) are permuta-
tion ciphers according to our definition, e.g. pseudo-random per-
mutations, counter-mode stream ciphers, and many other modes
of operation.

Our schemesmust satisfy a strengthening of IND$-CPA security
(i.e., indistinguishability from randomness under chosen plaintext
attacks). Namely, in our security proofs, an adversary may either
learn an encryption or a decryption of a message/ciphertext. One
strict notion is the PRP-CCA property [2, 20], where the adversary
has access to an Enc and Dec oracle. In our setting, a much weaker
nonce-based notion suffices. Namely, for every nonce, the adver-
sary may either request a single encryption or decryption (never
both); nonce-reuse is forbidden. We define this below.

Definition A.3 (DLR$-CPA). Let SKE = (Enc,Dec) be a nonce-
based correct and tidy permutation cipher. The doubly LR$-CPA-
secure (short: DLR$-CPA) experiment, is defined as follows:

(1) The challenger picks a secret key𝐾 ←R K and a challenger
bit 𝑏∗.

(2) The adversary gets access to oracles Enc, Dec where:
• if 𝑏∗ = 0: Enc(N,𝑚) = Enc𝐾 (N,𝑚) and Dec(N, 𝑐) =

Dec𝐾 (N, 𝑐);
• if𝑏∗ = 1: Enc(N,𝑚) andDec(N, 𝑐) always output fresh

randomness.
(3) The adversary eventually outputs a guess 𝑏 and the exper-

iment outputs 1 if 𝑏 = 𝑏∗, else 0.

The advantage of an adversary in the DLR$-CPA experiment for
SKE is defined as

Advdbl$-cpaSKE,A = Pr[𝑏 = 1|𝑏∗ = 0] − Pr[𝑏 = 1|𝑏∗ = 1] .

A scheme SKE is DLR$-CPA secure if any PPT adversary has neg-
ligible advantage.

We note that any (stream) cipher with Enc = Dec is obviously
DLR$-CPA secure if it is IND$-CPA secure. Thus, typical stream ci-
phers are DLR$-CPA-secure. Any PRP-CCA-secure (nonce-based)
PRP also yields a DLR$-CPA secure SKE.

Definition A.4 (PRF). Let K be the key space, M be the message
space, and Y be the output space, all subsets of bitstring. For sim-
plicity, we assume K = Y = {0, 1}𝜆 and M = {0, 1}∗ unless noted
otherwise. A pseudo-random function (PRF) PRF takes as input a
key and a message and outputs a value 𝑦 ∈ Y.

LetA be a distinguisher. We write

AdvprfPRF,A (𝜆) = Pr
𝐾←RK

(APRF𝐾 (_) = 1) − Pr
RF←RYM

(ARF(_) = 1)

where RF is a truly random function. A PRF is secure, if for any
PPT adversary the respective advantage is negligible.

A pseudorandom generator is effectively PRF with trivial mes-
sage space M = {∗} and Y = {0, 1}ℓ where ℓ > 𝜆, i.e., a PRG only
stretches a given key 𝐾 to a longer pseudorandom string.

Definition A.5 (MAC). Let K be the key space, M be the message
space, and T be the tag space, all subsets of bitstring. For simplic-
ity, we assume K = T = {0, 1}𝜆 and M = {0, 1}∗ unless noted
otherwise. In general, we assume that T has fixed bitlength.⁹ A
message authentication code (MAC) MAC is a tuple (Sign,Verify)
of deterministic polynomial-time algorithms, where

• MAC.Sign𝐾 (𝑚) → 𝜏 , given a secret key 𝐾 ∈ K and mes-
sage𝑚 ∈ {0, 1}∗, outputs a tag 𝜏 .

• MAC.Verify𝐾 (𝑚,𝜏) → 𝑏, given a secret key 𝐾 ∈ K, mes-
sage𝑚 and purported tag 𝜏 , outputs a bit 𝑏.

A tag 𝜏 is valid on𝑚 (under key𝐾) if MAC.Verify𝐾 (𝑚,𝜏) = 1. A
MAC scheme is perfectly correct if any honestly generated MAC
tag is valid. The SUF-CMA security game for MAC is as follows:

• The adversary selects a message𝑚∗ ∈M.
• The challenger samples 𝐾 ←R K and gives the adversary

A access to a Sign and a Verify oracle.
• The adversary wins if it ever queries a forgery (𝑚∗, 𝜏∗) to

Verify, i.e. if Verify𝐾 (𝑚∗, 𝜏∗) = 1 but𝑚∗ was never signed
by the challenger before.

The advantage Advsuf-cma
MAC,A is the probability that A wins. We call

MAC selectively unforgeable under chosen messages attacks (SUF-
CMA) secure if any PPT adversary has negligible advantage. Mo-
roever, we define the EUF-CMA experiment and security under ex-
istentially unforgeable under chosen messages attacks (EUF-CMA),
where the adversary does not need to select𝑚∗ at the beginning.

A MAC tag 𝜏 is called valid on𝑚 (regarding the implicit key 𝐾),
if MAC.Verify𝐾 (𝑚,𝜏) = 1.

⁹Variable tag length is incompatible with our construction, which needs ciphertexts
of fixed length.

17

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

Remark A.6 (PRF as MAC). A PRF gives a deterministic MAC by
setting MAC.Sign𝐾 (𝑚) = PRF𝐾 (𝑚) and MAC.Verify𝐾 (𝑚,𝜏) = 1
if PRF𝐾 (𝑚) = 𝜏 , else 0. It has a unique valid tag for each message
and the tags leak no information about the messages.

A.1.2 Public-key Encryption (PKE). Apublic-key encryption (PKE)
scheme is a tuple PKE = (Gen,Enc,Dec) of efficient algorithms,
where

• Gen(1𝜆) → (pk, sk), given a security parameter, outputs a
pair (pk, sk) of public and secret keys.

• PKE.Encpk (𝑚) → 𝑐 , given a public key pk and message
𝑚 ∈ {0, 1}∗, outputs a ciphertext 𝑐 .
• PKE.Decsk (𝑐) → 𝑚, given a secret key sk and ciphertext
𝑐 ∈ {0, 1}∗, outputs a message𝑚 or ⊥.

We require that schemes are perfectly correct, i.e. any honest en-
cryption under any honest public key decrypts correctly for the re-
spective secret key, and length-regular, i.e., the ciphertext bitlength
depends deterministically on the message bitlength (and security
parameter).We use the usual definition of CCA-security, see e.g. [16].

A.2 Correctness
An onion routing scheme is correct if the onions follow the paths
and deliver the messages used as onion parameters during the con-
struction of the onion resp. reply.We verbatimly follow [20]’s defin-
tion for correctness except for changes in the notation.

DefinitionA.7 (Correctness). Suppose (𝐺, FormOnion,ProcOnion,
ReplyOnion) is a repliable OR scheme with maximal path length
𝑁 . Then for all 𝑛, 𝑛← ≤ 𝑁 , 𝜆 ∈ N, all choices of the public parame-
ter 𝑝 , all choices of the randomness R, all choices of forward and
backward pathsP→ = (𝑃1, . . . , 𝑃𝑛) andP← = (𝑃1←, . . . , 𝑃𝑛←←), all
(pk𝑖(←) , sk

𝑖
(←)) generated by 𝐺 (1𝜆, 𝑝, 𝑃𝑖←), all messages 𝑚,𝑚←,

all possible choices of internal randomness used byProcOnion and
ReplyOnion, the following needs to hold:
Correctness of forward path.

𝑄𝑖 = 𝑃𝑖 , for 1 ≤ 𝑖 ≤ 𝑛 and 𝑄1 := 𝑃1, where
𝑂1 ← FormOnion(𝑚, (𝑃1, . . . , 𝑃𝑛), (𝑃1←, . . . , 𝑃𝑛←←),
(pk1, . . . , pk𝑛), (pk1←, . . . , pk

𝑛←
←);R),

(𝑂𝑖+1, 𝑄𝑖+1) ← ProcOnion(sk𝑖 ,𝑂𝑖 , 𝑄𝑖).
Correctness of request reception.

(𝑚,⊥) = ProcOnion(sk𝑛,𝑂𝑛, 𝑃𝑛)
Correctness of backward path.

𝑄𝑖← = 𝑃𝑖←, for 1 ≤ 𝑖 ≤ 𝑛 − 1 where
(𝑂1
←, 𝑄

1
←) ← ReplyOnion(sk𝑛,𝑚←,𝑂𝑛, 𝑃𝑛),

(𝑂𝑖+1← , 𝑄𝑖+1←) ← ProcOnion(sk𝑖←,𝑂𝑖←, 𝑄𝑖←).
Correctness of reply reception.

(𝑚←,⊥) = ProcOnion(sk𝑛←← ,𝑂𝑛←← , 𝑃𝑛←←)

B FULL PROOF OF THEOREM 4.7
We verbatimly reuse the proof from [20], but adapt it to our new re-
quirements and notation. The proof first describes the simulator S
and then shows indistinguishability of the environment’s view in
the real and ideal world. Interestingly, the strategy used in the sim-
ulator is already sufficient even for our adaption. We hence only
fix some minor inconsistencies for the simulator and the actual
technical changes occur in the indistinguishability argument. New

parts related to the adapted security requirements are highlighted
in blue.

Constructing Simulator S
S interacts with the ideal functionality F as the ideal world ad-
versary, and simulates the real-world honest parties for the real
world adversaryA. All outputsA does are forwarded to the envi-
ronment by S.

First, S carries out the trusted set-up stage: it generates public
and private key pairs for all the real-world honest parties. S then
sends the respective public keys to A and receives the real world
corrupted parties’ public keys fromA.

The simulator S maintains four internal data structures:
• The 𝑟 -list consisting of tuples of the form (𝑖𝑛𝑓 𝑜, 𝑛𝑒𝑥𝑡𝑅𝑒𝑙𝑎𝑦,

𝑡𝑒𝑚𝑝). Each entry in this list corresponds to a stage in pro-
cessing an onion that belongs to a communication of an hon-
est sender. By “stage,” we mean that the next action to this
onion is adversarial (i.e. it is sent over a link or processed by
an adversarial router).

• The𝑂-list containing onions sent by corrupted senders along
with communication information, i.e., (𝑜𝑛𝑖𝑜𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑎𝑦,
𝑛𝑒𝑥𝑡𝑅𝑒𝑙𝑎𝑦, 𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛).

• The 𝑅𝑒𝑝𝑙𝑦-list containing reply information along with the
forward id for communicationwith a corrupted sender (𝑖𝑑𝑓 𝑤𝑑 ,
reply information).

• The𝐶-list containing reply information togetherwith the temp
for communication with an honest sender (𝑃𝑖 , 𝑟𝑒𝑝𝑙𝑦, 𝑡𝑒𝑚𝑝).

S’s behavior on a message from F. In case the received output
belongs to an adversarial sender’s communication¹⁰:

Case I: “start belongs to the onion from 𝑃0 with 𝑖𝑑, 𝑃𝑟 ,𝑚, 𝑛,P←,
P→, 𝑑 as answer to id”; an honest node is replying to an onion of
a corrupted sender. S knows that the next output “Onion 𝑡𝑒𝑚𝑝 in
direction 𝑑 from …” includes the first part of this backward path,
that he chose to consist of one adversarial node and just needed
to give 𝑃𝑟 (the backward sender) a chance to reply (as S did not
know where the real reply path goes and does not need to know).
S thus ignores this output and does not react with another Case
on this. To construct the right real world reply onion, S looks
up the reply information (𝑖𝑑, reply info) for this 𝑖𝑑 in the 𝑅𝑒𝑝𝑙𝑦-
list and uses the information to construct an onion: (𝑂1, 𝑃1) ←
ReplyOnion(sk𝑟 ,𝑚, reply info, 𝑃𝑟) and sends 𝑂1 to 𝑃1, if 𝑃1 is ad-
versarial or toA’s party representing the link between the 𝑃𝑟 and
𝑃1, if 𝑃1 is honest. (Note that 𝑃𝑟 cannot be adversarial for this out-
put as then both sender and receiver would be corrupt, which only
activates cases VIII b and II (as it works without including any re-
ply onion from the view of the ideal world).)

Case II: any output together with “𝑡𝑒𝑚𝑝 belongs to onion from
𝑃0 with 𝑖𝑑, 𝑃𝑟 ,𝑚, 𝑛,P” for 𝑡𝑒𝑚𝑝 ∉ {start, end}. This is just the re-
sult of S’s reaction to an onion fromA that was not the protocol-
conform processing of an honest sender’s communication (Case
VIII). S does nothing.

Case III: “end belongs to onion from 𝑃0 with 𝑖𝑑, 𝑃𝑟 ,𝑚, 𝑛,P”.
This means an honest relay is done processing an onion received

¹⁰S knows whether they belong to an adversarial sender from the output it gets.
18

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

from A that was not the protocol-conform processing of an hon-
est sender’s communication (processing that follows Case VIII). S
finds (𝑜𝑛𝑖𝑜𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑎𝑦, 𝑛𝑒𝑥𝑡𝑅𝑒𝑙𝑎𝑦, 𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) with these in-
puts as 𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 in the 𝑂-list (notice that there has to be such
an entry) and as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑎𝑦 sends the onion 𝑜𝑛𝑖𝑜𝑛 to 𝑛𝑒𝑥𝑡𝑅𝑒𝑙𝑎𝑦
if it is an adversarial one, or it sends 𝑜𝑛𝑖𝑜𝑛, as if it is transmitted, to
A’s party representing the link between the currently processing
honest relay and the honest 𝑛𝑒𝑥𝑡𝑅𝑒𝑙𝑎𝑦.

In case the received output belongs to an honest sender’s commu-
nication:

Case IV: “Onion 𝑡𝑒𝑚𝑝 from 𝑃𝑂
𝑖 routed through () to 𝑃𝑂𝑖+1”. In

this case S needs to make it look as though an onion was passed
from the honest party 𝑃𝑂𝑖 to the honest party 𝑃𝑂𝑖+1 : S picks the
path P = (𝑃𝑂𝑖 , 𝑃𝑂𝑖+1), and random message 𝑚𝑟𝑑𝑚 . S honestly
picks a randomness R, calculates 𝑂1 ← FormOnion(𝑚𝑟𝑑𝑚,P, (),
(pk)P𝑟𝑑𝑚 , ();R), and sends the onion 𝑂1 to A’s party represent-
ing the link between the honest relays as if it was sent from 𝑃𝑂

𝑖 to
𝑃𝑂

𝑖+1 .S stores (𝑖𝑛𝑓 𝑜 = (2,𝑚𝑟𝑑𝑚,P, (), (pk)P𝑟𝑑𝑚 , (),R),𝑃𝑂
𝑖+1 ,𝑡𝑒𝑚𝑝)

on the 𝑟 -list.
CaseV: “Onion 𝑡𝑒𝑚𝑝 from 𝑃𝑂

𝑖 routed through (𝑃𝑂𝑖+1 , . . . , 𝑃𝑂 𝑗−1)
to 𝑃𝑂 𝑗 ”. S picks the pathP = (𝑃𝑂𝑖+1 , . . . , 𝑃𝑂 𝑗−1), a randomnessR
and amessage𝑚𝑟𝑑𝑚 and calculates𝑂1 ← FormOnion(𝑚𝑟𝑑𝑚,P, (),
(pk)P𝑟𝑑𝑚 , ();R) and sends the onion𝑂1 to 𝑃𝑂𝑖+1 , as if it came from
𝑃𝑂

𝑖 . Then S stores (𝑖𝑛𝑓 𝑜 = (𝑗 − 𝑖,𝑚𝑟𝑑𝑚,P, (), (pk)P𝑟𝑑𝑚 , (),R),
𝑃𝑂

𝑗
, 𝑡𝑒𝑚𝑝,) on the 𝑟 -list.
Case VI: “Onion 𝑡𝑒𝑚𝑝 from 𝑃𝑂

𝑖 with message𝑚 for 𝑃𝑟 routed
through (𝑃𝑂𝑖+1 , . . . , 𝑃𝑂𝑛)”. Note that this output always occurs to-
gether with “temp’s first part of the backward path is P←” (𝑃𝑟
received a forward onion) [as otherwise 𝑃𝑟 would receive a back-
ward onion, the sender (=backward receiver) would be corrupt and
hence thewhole communicationwould be simulated by using cases
VIII (b) and III (and VIII (a1) and I).]: S picks the path P = (𝑃𝑂𝑖 ,
. . . , 𝑃𝑂

𝑛
, 𝑃𝑟), randomness R and calculates 𝑂1 ← FormOnion(𝑚,

P𝑟𝑑𝑚,P←, (pk)P𝑟𝑑𝑚 , (pk)P← ;R) and sends the onion𝑂1 to 𝑃𝑂𝑖+1 ,
as if it came from 𝑃𝑂

𝑖 . Further,S stores (P← .𝑙𝑎𝑠𝑡, 𝑖𝑛𝑓 𝑜, 𝑡𝑒𝑚𝑝) with
𝑖𝑛𝑓 𝑜 = (𝑛 +P← .𝑙𝑎𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝑚,P𝑟𝑑𝑚,P←, (pk)P𝑟𝑑𝑚 , (pk)P← ,R)
on the𝐶-list. (Note that as this is an honest communicationP← .𝑙𝑎𝑠𝑡
is honest.)

S’s behavior on a message fromA. S, as real world honest party
𝑃𝑖 , received an onion 𝑂 fromA as adversarial player 𝑃𝑎 .

CaseVII:Theonion is recognized (usingRecognizeOnion) with
the information of an 𝑟 -list entry (𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑃𝑖 , 𝑡𝑒𝑚𝑝). In this
case𝑂 is the protocol-conform processing of an onion from a com-
munication of an honest sender. S calculates ProcOnion(𝑆𝐾 (𝑃𝑖),
𝑂, 𝑃𝑖). If it returns a fail (𝑂 is a replay or modification that is de-
tected and dropped), 𝑆 does nothing. Otherwise, S sends the mes-
sage (Deliver Message, 𝑡𝑒𝑚𝑝) to F.

Case VIII.The onion is not recognized (usingRecognizeOnion)
with the information of any 𝑟 -list entry (𝑖𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛, 𝑃𝑖 , 𝑡𝑒𝑚𝑝).
S calculates ProcOnion(sk𝑖 ,𝑂, 𝑃𝑖) = (𝑂 ′, 𝑃 ′) (and aborts if this
fails).

(a) 𝑃 ′ =⊥: 𝑃𝑖 is the recipient and 𝑂 ′ contains a message and re-
ply information; only a message (if send as reply or not repliable)
or a fail symbol.

(a1) Contains a message and reply information. 𝑆 sends the mes-
sage “(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑒𝑤𝑂𝑛𝑖𝑜𝑛, 𝑃𝑖 ,𝑂 ′, (),P←) with P← = (𝑃𝑎)” (note
that this is only one adversarial node) toF on 𝑃𝑎 ’s behalf and asA
already delivered this message to the honest party sends (Deliver
Message, 𝑡𝑒𝑚𝑝) for the belonging 𝑡𝑒𝑚𝑝 . Further, S stores (𝑖𝑑,𝑂 ′)
in the 𝑅𝑒𝑝𝑙𝑦-list (to later reply to this onion).
(a2) contains only a message𝑚 (S knows this as it can try to create
a reply to it with 𝑃𝑖). This means the adversary possibly replied to
an honest sender’s forward onion.S checks for all (𝑃𝑖 , 𝑟𝑒𝑝𝑙𝑦, 𝑡𝑒𝑚𝑝)
in 𝐶-List if the onion is recognized (using RecognizeOnion) with
any 𝑟𝑒𝑝𝑙𝑦-info on this list. If so (it was a reply to 𝑡𝑒𝑚𝑝), S sends
the message (𝑅𝑒𝑝𝑙𝑦𝑂𝑛𝑖𝑜𝑛,𝑚, 𝑡𝑒𝑚𝑝) toF on 𝑃𝑎 ’s behalf and, asA
already delivered this message to the honest party, sends (Deliver
Message, 𝑡𝑒𝑚𝑝′) for the belonging 𝑡𝑒𝑚𝑝′. Otherwise S creates this
onion in the F as it sends (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑁𝑒𝑤𝑂𝑛𝑖𝑜𝑛, 𝑃𝑖 ,𝑂 ′, (),⊥) and
(Deliver Message, 𝑡𝑒𝑚𝑝) for the corresponding 𝑡𝑒𝑚𝑝 . (Notice that
S knows which 𝑡𝑒𝑚𝑝 and 𝑖𝑑 belongs to this communication as it
is started at an adversarial party 𝑃𝑎).

(b) 𝑃 ′ ≠⊥:S picks a message𝑚 ∈M.S sends on 𝑃𝑎 ’s behalf the
message, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠_𝑁𝑒𝑤_𝑂𝑛𝑖𝑜𝑛(𝑃𝑎 ′,𝑚, (𝑃𝑖), ()) (notice that this is
not repliable) and 𝐷𝑒𝑙𝑖𝑣𝑒𝑟_𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (𝑡𝑒𝑚𝑝) for the belonging 𝑡𝑒𝑚𝑝
toF (notice thatS knows the 𝑡𝑒𝑚𝑝 as in case (a)).S adds the entry
(𝑂 ′, 𝑃𝑖 , 𝑃 ′, (𝑃𝑎, 𝑖𝑑, 𝑃𝑎 ′,𝑚, (𝑃𝑖), ())) to the 𝑂-list.

Indistinguishability
Notation. H𝑖 describes the first hybrid that replaces a certain

part of any communication for the first communication. In H<𝑥
𝑖

this part of the communication is replaced for the first 𝑥−1 commu-
nications. Finally inH∗𝑖 this part of the communication is replaced
in all communications.

HybridH0.This machine sets up the keys for the honest parties
(so it has their secret keys). Then it interacts with the environment
andA on behalf of the honest parties. It invokes the real protocol
for the honest parties in interacting withA.

Replacing between honest - Forward OnionWe replace the
onion layers in the way they appear in the communication. So the
first onion layers (close to the sender) are replaced first.

Hybrid H1. In this hybrid, for the first one forward communi-
cation the onion layers from its honest sender to the next honest
node on the forward path (relay or receiver) are replaced with ran-
dom onion layers embedding the same path and the onion after it
is relaced with one with a shortened onion path. More precisely,
this machine acts like H0 except that the consecutive onion layer
𝑂1,𝑂2, . . . ,𝑂 𝑗 from an honest sender 𝑃0 to the next honest node
𝑃 𝑗 are replaced with 𝑂1 and its following processings by calcu-
lating (with honestly chosen randomness R) 𝑂1 ← FormOnion(
𝑚𝑟𝑑𝑚,P, (), (pk)P, ();R) where𝑚𝑟𝑑𝑚 is a random message, P =
(𝑃1, . . . , 𝑃 𝑗). H1 keeps an 𝑂-list and stores (𝑖𝑛𝑓 𝑜 = (𝑚,P,P←,
(pk), (pk)←), 𝑃 𝑗 , (𝑂1

𝑅, 𝑃
𝑗+1),R)where 𝑖𝑛𝑓 𝑜 are the parameters and

randomness used for the original sender’s onion creation and 𝑂1
𝑅

is calculated¹¹ as𝑂1
𝑅 ← FormOnion(𝑚, P̃→,P←, (pk)P̃→ , (pk)P← ;

¹¹As some parts of the onion are non-deterministic, we cannot assume that the sender
and thus our machines know the onion layer after the honest node (only the deter-
ministic part is known) and thus we have to replace it with an onion created as a close
match due to the reproducability requirement.

19

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

R̃), where the paths with P̃→ = (𝑃 𝑗+1, . . . , 𝑃𝑛) and message are
chosen as in the original sender’s call in H0.¹² If an onion 𝑂̃ is
sent to 𝑃 𝑗 , the machine tests if processing results in a fail (replay
or modification detected and dropped). If this is not the case, H1
uses RecognizeOnion((𝑗,→), 𝑂̃,𝑚,P,P←, (pk), (pk)←,R) for all
recognize information stored in the𝑂-list where the second entry
is 𝑃 𝑗 . If it finds a match, the belonging 𝑂1

𝑅 is send to 𝑃 𝑗+1 as pro-
cessing result of 𝑃 𝑗 . Otherwise,ProcOnion(sk𝑃 𝑗 , 𝑂̃, 𝑃 𝑗) is used. As
before, the environment is informed by honest parties about 𝑡𝑒𝑚𝑝
when they get an onion and about the included message if they are
the final receiver – no matter whether this happened as a reaction
to something on th 𝑂-list, or not.

H0 ≈𝐼 H1. The environment gets notified about 𝑡𝑒𝑚𝑝 when an
honest party receives any onion layer. If the honest party is the
onion’s recipient, the environment further learns the message and
whether it belongs to a request of the sender and if so, the request’s
ID. If there is at least one honest relay on the honest sender’s path
before the receiver, our replacement is introducing no change in
the observations for the environment: The environment will still
only see a freshly generated random 𝑡𝑒𝑚𝑝 at the honest relay. If
there is no honest relay on the path, the second honest node is the
receiver. In this case, as our replacement is reintroduing the origi-
nal onion’s processing at the second honest node, this node will be-
have as having received the originally includedmessage, hence the
environment again gets the same observation as before - namely
the included message and the information that it is not a reply.

A observes the onion layers after 𝑃0 and if it sends an onion
to 𝑃 𝑗 , the result of the processing after the honest node. Depend-
ing on the behavior of A three cases occur: A drops the onion
belonging to this communication before 𝑃 𝑗 , A behaves protocol-
conform and sends the expected onion to 𝑃 𝑗 or A modifies the
expected onion before sending it to 𝑃 𝑗 . Notice that dropping the
onion leaves the adversary with no further output. Thus, we can
focus on the other cases:

We assume there exists a distinguisher D between H0 and H1
and construct a successful attack on 𝐿𝑈 +→:

The attack receives key and name of the honest relay and uses
the input of the replaced communication as choice for the chal-
lenge, where it replaces the name of the first honest relay with
the one that it got from the challenger.¹³ For the other relays the
attack decides on the keys as A (for corrupted) and the protocol
(for honest) does. It receives 𝑂̃ from the challenger.The attack uses
D. For D it simulates all communications except the one chosen
for the challenge, with the oracles and knowledge of the protocol
and keys.¹⁴ For simulating the challenge communication the attack
hands 𝑂̃ toA as soon asD instructs to do so. To simulate further
for D it uses 𝑂̃ to calculate the later layers and does any actions
A does on the onion.

A either sends the honest processing of 𝑂̃ to the challenge router
orA modifies it. The attack uses the oracle to simulate the further
processing of 𝑂̃ or its modification.

¹²H1 knows this as it simulates all honest senders and thus knows the parameters this
honest sender picked.
¹³As both honest nodes are randomly drawn this does not change the success
¹⁴This includes that duplicates are dropped and onions are processed before they are
replied (as assumed in Section 4.1).

Thus, either the challenger chose 𝑏 = 0 and the attack behaves
like H0 under D; or the challenger chose 𝑏 = 1 and the attack
behaves like H1 under D. The attack outputs the same bit as D
does for its simulation to win with the same advantage as D can
distinguish the hybrids.

HybridH<𝑥
1 . In this hybrid, for the first 𝑥 − 1 forward commu-

nications, onion layers from an honest sender to the next honest
node on the forward path are replaced with a random onion shar-
ing this path. [Note thatH1 = H<2

1 and letH∗1 be the hybrid where
the replacement happened for all communications.]

H<𝑥−1
1 ≈𝐼 H<𝑥

1 . Analogous to above. Apply argumentation of
indistinguishability (H0 ≈𝐼 H1) for every replaced subpath.¹⁵

HybridH2. In this hybrid, for the first forward communication,
for which in the adversarial processing no recognition falsifying
modification occurred and other modification does not result in
a fail,¹⁶ onion layers between two consecutive honest relays on
the forward path are replaced with random onion layers embed-
ding the same path. Additionally, for all forward communication
replacements between the sender and the first relay happen as in
H∗1 . More precisely, this machine acts likeH∗1 except that the pro-
cessing of 𝑂 𝑗 ; i.e. the consecutive onion layers 𝑂 𝑗+1, . . . ,𝑂 𝑗 ′ from
a communication of an honest sender, starting at the next hon-
est node 𝑃 𝑗 to the next following honest node 𝑃 𝑗 ′ , are replaced
with 𝑂1, . . . ,𝑂 𝑗

′− 𝑗 by sending 𝑂1. Thereby, for an honestly cho-
sen randomness R: 𝑂1 ← FormOnion(𝑚𝑟𝑑𝑚,P, (), (pk)P, ();R)
where𝑚𝑟𝑑𝑚 is a randommessage,P = (𝑃 𝑗 , . . . , 𝑃 𝑗 ′) is the path be-
tween the honest nodes. H2 stores (𝑖𝑛𝑓 𝑜 = (𝑚,P→,P←, (pk)P→ ,
(pk)P← ,R), 𝑃 𝑗

′
, (𝑂1

𝑅, 𝑃
𝑗 ′+1)),¹⁷ where 𝑂1

𝑅 ← FormOnion(𝑚, P̃→,
P←, (pk)P̃→ , (pk)P← ; R̃), where messages and paths with P̃→ =

(𝑃 𝑗+1, . . . , 𝑃𝑛) are chosen as the original sender would pick them
in the original construction (of the complete onion),¹⁸ on the𝑂-list.
Like in H∗1 if an onion 𝑂̃ is sent to 𝑃 𝑗 ′ , processing is first checked
for a fail. If it does not fail,H2 checks RecognizeOnion((𝑗 ′ − 𝑗,→
), 𝑂̃, 𝑖𝑛𝑓 𝑜) for any 𝑖𝑛𝑓 𝑜 on the𝑂-list where the second entry is 𝑃 𝑗 ′ .
If it finds a match, the belonging𝑂1

𝑅 is used as processing result of
𝑃 𝑗
′ . Otherwise,ProcOnion(sk𝑃 𝑗

′
, 𝑂̃, 𝑃 𝑗

′) is used.The environment
is informed by the honest parties as before.

H∗1 ≈𝐼 H2. H2 replaces for one communication (and all its re-
plays), the first subpath between two consecutive honest nodes af-
ter an honest sender. The output toA includes the earlier (byH∗1)
replaced onion layers 𝑂𝑒𝑎𝑟𝑙𝑖𝑒𝑟 before the first honest relay (these
layers are identical in H∗1 and H2) that take the original subpath
but are otherwise chosen randomly; the original onion layers after
the first honest relay for all communications not considered byH2
(outputted by H∗1) or in case of the communication considered by
H2, the newly drawn random replacement (generated byH2); and
the processing after 𝑃 𝑗 ′ .

¹⁵Technically, we need the onion layers as used in H1 (with replaced onion layers
between a honest sender and first honest node) in this case. Hence, slightly differ-
ent than before, the attack needs to simulate the other communications not only by
the oracle use and processing, but also by replacing some onion layers (between the
honest sender and first honest node) with randomly drawn ones asH1 does.
¹⁶We treat modifying adversaries on other parts later in a generic way.
¹⁷𝑃 𝑗 ′+1 might be ⊥ and𝑂1

𝑅 the message𝑚 if 𝑃 𝑗 ′ is the honest receiver.
¹⁸H2 can do this as it knows all parameters of the original onion and can link the
current layer back to the original sending request of the honest sender.

20

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

The onions𝑂𝑒𝑎𝑟𝑙𝑖𝑒𝑟 are chosen independently at random byH∗1
andH2 such that they embed the original path between an honest
sender and the first honest relay, but contain a randommessage. As
they are replaced by other original onion layers after 𝑃 𝑗 (there was
no recognition falsifyingmodification for this communication) and
include a random message, onions𝑂𝑒𝑎𝑟𝑙𝑖𝑒𝑟 have no connection to
onions output by 𝑃 𝑗 and hence can simply be generated for any
distinguisher based on the knowledge and oracles an attacker on
𝐿𝑈 +→ has access to.

Thus, all that is left are the original/replaced onion layer after
the first honest node and the processing afterwards. This is the
same output as inH0 ≈𝐼 H1. Hence, if there exists a distinguisher
between H2𝑎 andH2𝑏 there exists an attack on 𝐿𝑈 +→.

Counting explanation forH<𝑥
2 . Communication paths consist of

possible multiple honest subpaths (paths from an honest relay to
the next honest relay). We count (and replace) all these subpaths
from the subpath closest to the sender until the one closest to the
receiver. We first replace all such subpaths for the first communica-
tion, then for the second and so on. Belowwe use < 𝑥 to signal how
many such subpaths will be replaced in the current hybrid. [Note
that H2 = H<2

2 and let H∗2 be the hybrid where the replacement
happened for all such subpaths.]

HybridH<𝑥
2 . In this hybrid, the first 𝑥−1 honest subpaths (hon-

est relay to next honest relay) of honest senders’ forward commu-
nications is replaced with a random onion sharing the path. Ad-
ditionally, for all forward communications replacements between
the sender and the first relay happen as inH∗1 . IfA previously (i.e.
in onion layers up to the honest node starting the selected subpath)
did a recognition falsifying modification or a modification that re-
sults in a processing fail, the communication is skipped. As part of
this replacement, if a communication involves an honest receiver,
the reply onion will be replaced with a new forward onion, which
we then treat as an additional forward communication in terms of
the onion replacement inH<𝑥

2 .The outputs to the environment are
still done by the Hybrid as for the original reply communication.
Notice that the Hybrid knows all information necessary to link the
reply back to the original request.

H<𝑥−1
2 ≈𝐼 H<𝑥

2 . Analogous to above.

Replacing between Honest - Backward Onion
On the backward path, we replace the last onion layers first,

then the second last and so on. Each machine only starts replacing
at a certain point and if a message does not come that far (it is
modified or dropped), they simply do not use any replacement.

For all following hybrids the replacements on the forward path
are done as in H∗2

HybridH←1 . Similar toH1, but this time one backward commu-
nication between the last honest relay until the honest (forward)
sender is replaced and the onion before is replaced by one with a
shorter path.

More precisely, this machine acts likeH∗2 except for two replace-
ments. First, the corresponding onion of the forward path is re-
placed by𝑂𝑐 with shortened backward path:𝑂𝑐 ←FormOnion(𝑚,
P→, P̃←, (pk)P→ , (pk)P̃← ; R̃) with P→ = (𝑃 𝑗→, . . . , 𝑃𝑛) and P̃←

= (𝑃1←, . . . , 𝑃
𝑗
←) starting at the last honest node 𝑃 𝑗→ on the for-

ward paths.

Second, the consecutive onion layers 𝑂 𝑗+1← , . . . ,𝑂𝑛←← from a re-
ply to an honest (forward) sender from the last honest relay 𝑃 𝑗← to
the (forward) sender 𝑃𝑛←← = 𝑃0 are replaced with 𝑂1, . . . ,𝑂𝑛←− 𝑗

with (for an honestly chosen R): 𝑂1 ← FormOnion(𝑚𝑟𝑑𝑚, P, (),
(pk)P, ();R)where𝑚𝑟𝑑𝑚 is a randommessage,P = (𝑃 𝑗←, . . . , 𝑃𝑛←←)
is the path from 𝑃

𝑗
← to 𝑃𝑛←← .H←1 stores (𝑖𝑛𝑓 𝑜, 𝑃𝑛←← = 𝑃0,𝑚), with

𝑖𝑛𝑓 𝑜 being chosen according to the replacement onion (including
𝑚𝑟𝑑𝑚) and 𝑚 being the message of the processing result of the
original onion at the honest receiver, on the 𝑂-list. When looking
up entries (withRecognizeOnion) on the𝑂-list,H←1 checks the be-
longing last entry to be an onion before sending it to the next node
and reporting 𝑡𝑒𝑚𝑝 to the environment. If it discovers amessage in-
stead of an onion, this means the node is the receiver. It treats this
instance as if it received the reply onion to its request, i.e. reports
to the environment. Notice that it has all necessary information as
the message is included in 𝑖𝑛𝑓 𝑜 as the processing result and 𝑖𝑛𝑓 𝑜
also contains the original onions randomness and path to allow to
match this reply to the corresponding request.

H∗2 ≈𝐼 H
←
1 . The environment gets notified about 𝑡𝑒𝑚𝑝 when

an honest party receives any onion layer. If the honest party is the
onion’s recipient, the environment further learns the message and
if it belongs to a request of the sender, the request’s ID. If there is
at least one honest relay on the reply path before the receiver, our
replacement is introducing no change in the observations for the
environment: The environment still only sees a freshly generated
random 𝑡𝑒𝑚𝑝 at the honest relay. If there is no honest relay on the
path, the second honest node is the reply-receiver. In this case, as
our replacement is reintroduing the original onion’s processing at
the second honest node, this node behaves as having received the
originally included message, hence the environment again gets the
same observation as before - namely the included message and the
information that it is a reply to the corresponding request.

A observes the onion layers before 𝑃 𝑗← and if it sends an onion
to 𝑃 𝑗← the result of the processing after the honest node. Depend-
ing on the behavior of A three cases occur: A drops the onion
belonging to this communication before 𝑃 𝑗←,A behaves protocol-
conform and sends the expected onion to 𝑃 𝑗← or A modifies the
expected onion before sending it to 𝑃 𝑗←. Notice that dropping the
onion leaves the adversary with no further output. Thus, we can
focus on the other cases.

We assume there exists a distinguisherD betweenH∗2 andH
←
1

and construct a successful attack on 𝐿𝑈 +←:
The attack receives key and name of the honest relay and uses

the input of the replaced communication as choice for the chal-
lenge, where it replaces the name of the honest relay with the one
that it got from the challenger.¹⁹ For the other relays the attack de-
cides on the keys asA (for corrupted) and the protocol (for honest)
does. It receives 𝑂1 from the challenger and forwards it to A for
the corrupted first relay (on the forward path). The attack simu-
lates all other communications with oracles (or their replacements
as in the games before) and at some point as A replies to 𝑂1 (af-
ter receiving its processing 𝑂𝑛), so does our attack. The reply is
processed (with the knowledge of the keys) until the honest node
where the replaced onion layers start and this (processed) reply

¹⁹As both honest nodes are randomly drawn this does not change the success
21

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

is forwarded to the oracle of the challenger (Exception1) as 𝑂 to
process it.²⁰ The challenger returns²¹ 𝑂̃ . The attack sends 𝑂̃ , as the
processing of the answer, toA as soon asD instructs to do so. To
simulate further for D it uses 𝑂̃ to calculate the later layers and
does any actionsA does on the onion. As soon asA instructs the
challenge onion to arrive at the honest reply-receiver, the attack
uses the oracle (Exception2) to retrieve the output of the honest
receiver forD. In case that the oracle gives no output (because the
payload was modified and this resulted in an error while process-
ing at the receiver), the attack gives this information toD. Further,
the attack simulates all other communications with the oracles and
knowledge of the protocol and keys (or the random replacement
onions, if replaced before).²²

Thus, either the challenger chose 𝑏 = 0 and the attack behaves
like H∗2 under D; or the challenger chose 𝑏 = 1 and the attack
behaves like H←1 under D. The attack outputs the same bit as D
does for its simulation to win with the same advantage as D can
distinguish the hybrids.

HybridH<𝑥←
1 . In this hybrid, for the first 𝑥 − 1 backward com-

munications, onion layers from the last honest relay to the hon-
est sender (=backward receiver) are replaced with a random onion
sharing this path. The replacement is again stored on the 𝑂-list as
before.

H<𝑥−1←
1 ≈𝐼 H<𝑥←

1 . Analogous to above. Apply argumentation
of indistinguishability (H∗2 ≈𝐼 H

←
1) for every replaced subpath.

Hybrid H←2 . In this hybrid, for the first backward communi-
cation for which in the adversarial processing no recognition fal-
sifying modification occurred and other modification did not lead
to failed processing²³ onion layers between the two last consecu-
tive honest relays (the first might be the forward receiver (=back-
ward sender)) are replaced with random onion layers embedding
the same path. More precisely, this machine acts like H∗1

← ex-
cept for two replacements. First, the corresponding onion of the
forward path is replaced by 𝑂𝑐 with a shortened backward path:
𝑂𝑐 ←FormOnion(𝑚,P→, P̃←, (pk)P→ , (pk)P̃← ; R̃) with forward
pathP→ = (𝑃 𝑗→, . . . , 𝑃𝑛) and backward path P̃← = (𝑃1←, . . . , 𝑃

𝑗
←)

starting at the last honest node 𝑃 𝑗→ on the forward path.
Second, the processing of 𝑂 𝑗←; i.e. the consecutive onion lay-

ers 𝑂 𝑗+1← , . . . ,𝑂
𝑗 ′
← from a backward communication of an honest

(forward) sender, starting at the second last honest node 𝑃 𝑗← to
the next following honest relay 𝑃 𝑗

′
← (on the backward path), are

replaced with 𝑂1, . . . ,𝑂 𝑗
′− 𝑗 . Thereby for an honestly chosen R;

𝑂1 ← FormOnion(𝑚𝑟𝑑𝑚,P, (), (pk)P𝑟𝑑𝑚 , ();R) where𝑚𝑟𝑑𝑚 is a
random message, P = (𝑃 𝑗←, . . . , 𝑃

𝑗 ′
←) the path from 𝑃

𝑗
← to 𝑃 𝑗

′
←.

We now need to ensure that the last part of the onion path
(which was already replaced inH∗←1) gets used as the result of re-
ceiving this onion at 𝑃 𝑗

′
←.Therefore this Hybrid usesExtractPayload

²⁰In case of the (honest) forward receiver being 𝑃 𝑗← , there is no such processing, but
her answer 𝑂̃ is queried from the challenger by the attacker to simulate the honest
communications that are happening.
²¹Unless the onion was no reply to the onion in question or processing failed, in which
case we need to do nothing forD
²²This includes that duplicates are dropped and onions are processed before they are
replied (as assumed in Section 4.1).
²³We treat modifying adversaries on other parts of the onion later in a generic way.

to retrieve the message contained in the received onion and other-
wise constructs a replacement (including stored replacement infor-
mation) for the 𝑂-list just as in H∗←1 . Let the next relay and the
resulting replacement onion for the next path part be (𝑃 𝑗

′+1
← , 𝑂̃𝑘).

The hybrid stores (𝑖𝑛𝑓 𝑜, 𝑃 𝑗
′
←, (𝑂̃𝑘 , 𝑃

𝑗 ′+1
←)), with 𝑖𝑛𝑓 𝑜 according to

the currently added replacement part, to the𝑂-list. Notice that the
path parts are known to the hybrid as this is an honest request
sender’s communication. The honest parties inform the environ-
ment as before.

H∗1
← ≈𝐼 H←2 . H←2 replaces for one backward communication,

the last subpath between two consecutive honest nodes before an
honest (forward) sender. The output to A includes the later (as in
H∗←1) replaced onion layers 𝑂𝑙𝑎𝑡𝑒𝑟 after the second honest relay
(these layers are identically generated inH∗1

← andH←2) that take
the original subpath but are otherwise chosen randomly; the orig-
inal onion layers after the first of the honest relays for all commu-
nications not considered by H←2 (outputted by H∗1

←) or in case
of the communication considered by H←2 , the newly drawn ran-
dom replacement (generated by H←2); and the processing before
the first honest relay 𝑃 𝑗←.

The onions𝑂𝑙𝑎𝑡𝑒𝑟 are chosen independently at random byH∗1
←

such that they embed the original path between the second consid-
ered honest relay and the honest (forward) sender, but contain a
random message. As they are used as processing of the original
onion layers before 𝑃 𝑗

′
← (there was no recognition falsifying mod-

ification for this communication) and include a random message,
onions 𝑂𝑙𝑎𝑡𝑒𝑟 are not connected to onions before 𝑃 𝑗

′
← and hence

can simply be generated for any distinguisher based on the knowl-
edge and oracles an attacker on 𝐿𝑈 +← has access to.

Thus, all that is left are the original/replaced onion layer after
the honest node and the original layers before. This is the same
output as in H∗2 ≈𝐼 H

←
1 . Hence, the distinguisher between H∗←1

and H←2 is similarly used to build an attack on 𝐿𝑈 +← except that
the distinguisher does not get the output at the second honest re-
lay, but the attack instead uses the information on the 𝑂-list to
continue the communication as is done in both,H∗←1 andH←2 .

Hybrid H<𝑥←
2 . In this hybrid, for the first²⁴ 𝑥 − 1 honest sub-

paths on backward communications are replaced with a random
onion sharing the path and the other replacements calculated as
before and all are stored on the𝑂-list. IfA previously (i.e. in onion
layers up to the honest node starting the selected subpath) did a
recognition falsifying modification or a modification that results
in a processing fail, the communication is skipped.

H<𝑥−1←
2 ≈𝐼 H<𝑥←

2 . Analogous to above.

HybridH3.This machine acts the way that S acts in combina-
tion withF. Note thatH∗←2 only behaves differently from S in (a)
routing onions through the honest parties and (b) where it gets its
information needed for choosing the replacement onion layers: (a)
H∗←2 actually routes them through the real honest parties that do
all the computation. H3, instead runs the way that F and S oper-
ate: there are no real honest parties, and the ideal honest parties
do not do any crypto work. (b)H∗←2 gets inputs directly from the

²⁴counted similarly to the forward path, but now starting from the backward receiver
until the backward sender; again for the first backward communication until the last.

22

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

environment and gives output to it. InH3 the environment instead
gives inputs to F and S gets the needed information (i.e. parts of
path and the included message, if the receiver is corrupted) from
outputs of F as the ideal world adversary. F gives the outputs to
the environment as needed.

H∗←2 ≈𝐼 H3. For the interaction with the environment from the
protocol/ideal functionality, it is easy to see that the simulator di-
rectly gets the information it needs from the outputs of the ideal
functionality to the adversary: whenever an honest node is done
processing, it needs the path from it to the next honest node or path
from it to the corrupted receiver and in this case also the message
and beginning of the backward path. This information is given to
S by F.

Further, in H∗←2 , the environment is notified by the hybrid on
behalf of honest nodes when they receive an onion 𝑡𝑒𝑚𝑝 as relays
or when they receive a message and if the message is a reply to an
earlier request also to which request the reply belongs.The same is
done in the ideal functionality. Notice that the simulator ensures
that every communication is simulated in F such that those no-
tifications arrive at the environment without any difference. The
simulator ensures that communications of honest senders are con-
tinued at the appropriate times in the ideal functionality, as well as
that the replies are given belonging to the corresponding requests
in the ideal functionality.

For the interactionwith the real world adversary, we distinguish
the outputs in communications from honest and corrupted senders.
0) Corrupted (forward) senders: In the case of a corrupted sender
both H∗←2 and H3 (i.e. S+F) do not replace any onion layers ex-
cept that with negligible probability a collision on the 𝑂-list resp.
𝑂-list occurs. (Notice that even for honest receivers (and thus back-
ward senders) layers following the protocol can be and are created.)

1) Honest senders: 1.1) No recognition falsifying modification
of the onion by the adversary happens (and if modification hap-
pens at all, the processing does not fail [note that a failing pro-
cessing is the same as dropping; see 1.2)]): All parts of the path are
replaced with randomly drawn onion layers𝑂𝑖 . The way those lay-
ers are chosen is identical for H∗←2 and H3 (i.e. S+ F). 1.2) Some
recognition falsifying modification of the onion or a drop or insert
happens: As soon as a recognition falsifying modification happens,
both H∗←2 and H3 continue to use the bit-identical onion for the
further processing except that with negligible probability a colli-
sion on the 𝑂-list resp. 𝑂-list occurs. In case of a dropped onion it
is simply not processed further in any of the two machines.

Note that the view of the environment in the real protocol is the
same as its view in interacting with H0. Similarly, its view in the
ideal protocol with the simulator is the same as its view in interact-
ing withH3. As we have shown indistinguishability in every step,
we have indistinguishability in their views.

C FULL SECURITY PROOF OF EROR
This section contains the security proof forEROR. In Appendix C.1,
we first fix some notational conventions. InAppendix C.2, we prove
𝐿𝑈 +→ for honest relay at point 𝑗 < 𝑛→, and in Appendix C.2 we
show the case 𝑗 = 𝑛→. Then, In Appendix C.4, we prove 𝐿𝑈 +← for
honest relay at point 0 < 𝑗 , and in Appendix C.5 we show the case
𝑗 = 0.

C.1 Notation and definitions of auxiliary
algorithms

During FormOnion, ephemeral keys𝐾𝑖→,𝐾 𝑗← are generated. More-
over, in Onionize, intermediate results U 𝑖 = (𝐵𝑖1, . . . , 𝐵

𝑖
𝑁 , fwd

𝑖) are
produced; we also write O𝑖 if bwd𝑖 is part of the onion in consid-
eration, recall that bwd𝑖 is only end-to-end authenticated, which
will require special handling. We write U 𝑖 (or U 𝑖→, U 𝑗

← if the direc-
tion of the corresponding Onionize is not clear from the context)
for these intermediate onions, we write 𝑐 𝑗 for these ciphertexts
containing meta 𝑗 = (role 𝑗 , 𝑃 𝑗) or meta 𝑗 = (role 𝑗 , next 𝑗), and so
on. In our proofs, we will modify these intermediate results, and
let the algorithms (usually FormOnion or Onionize) continue with
the modified values. This allows us to succinctly describe the steps
in the security reduction.

We define RecognizeOnion and ExtractPayload needed in the
security games via these intermediate results. That is,

• RecognizeOnion((𝑖, dir),O,𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1 ,R)where

dir ∈ {→,←}. Use R to recompute the onion. Then com-
pare 𝑐𝑖

dir
with 𝑐 , where (𝜏, 𝑐) = 𝐵1 = O.hdr [1] and 𝑐𝑖

dir
is

the PKE ciphertext in U 𝑖
dir

. Output 1 if they are equal and
𝜏 is valid, i.e., MAC.Verify𝐾𝑖MAC (𝜏, (O.hdr,O.fwd)) = 1.
Else output 0.

• ExtractPayload((𝑖,→),O,𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1 ,R): UseR

to recompute the ephemeral keys𝐾 𝑗← andUnwrap the pay-
load until the backward receiver, (i.e., original sender) is
reached, i.e. until 𝑗 = 𝑛←, then run the final ProcOnion
processing (of the sender), which yields the backward mes-
sage.

C.2 Security proof of 𝐿𝑈 +→, 𝑗 < 𝑛
We use the notation from Appendix C.1 in this section. Since we
only need the forward direction, i.e. 𝐾→, O→, etc., we sometimes
drop the→ unless statements are ambiguous.

We will argue security via game hops. To describe our changes,
we describe changes applied to the partial onions U 𝑖→ as defined
within the challenge execution²⁵ of FormOnion and processing of
the challenge query O

𝑗
→. The following (partial) onions are of pri-

mary interest, which we will consider (and modify) them in the
security proof:

• O1
→, i.e. the actual challenge onion.

• U
𝑗
→ and U 𝑗+1

→ , the intermediate partial onions during com-
putation ofO1

→ in Onionize. Most modifications toO1
→ are

done by modifying these intermediate values.
• O

𝑗
→, the recognized challenge query (onion)whichA sends

to Proc(𝑃𝐻 ,O 𝑗→). Due to integrity protection, a success-
fully processed query O 𝑗 will agree with U

𝑗
→ (except for

the backward payload).
• O

𝑗+1
→ , a newly variable introduced in the security proof to

capture the modified output of Proc(𝑃𝐻 ,O 𝑗).

²⁵We note, that these intermediate results correspond to FormOnion(𝑗 > 1, . . .) in
[20]. However, we did not introduce FormOnion(𝑗, . . .) for 𝑗 > 1, as this is not
required for our security experiments anymore.

23

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

Through game hops, we gradually modify the computation of
O
𝑗+1, which initially is defined via honest processingwithProcOnion,

until it is a completely independent, freshly computed onion. We
alsomodify the computation ofO1, the challenge onion, until even-
tually the 𝐿𝑈 +→ game changes from 𝑏 = 0 to 𝑏 = 1. Most of the
proof steps relate only to header and forward payload, i.e., to U 1

(resp. U 𝑗) and U 𝑗+1, as the backward payload is garbage (and thus
completely malleable by the adversary).

We give an overview of the security reduction (for 𝑗 < 𝑛) in
Table 2. There and in the proof below, unless noted otherwise, all
changes are in theOnionize call of the challenge onion; non-challenge
onions are always processed honestly. Moreover, missing direction
subscripts/superscripts are forward (→). E.g., by 𝑛 we denote 𝑛→
(unless noted otherwise).

Game G0. This game is the 𝐿𝑈 +→ game with challenge bit 0.

Game G1.1. In the challenge execution of FormOnion make fol-
lowing changes: Replace 𝑐𝑛←← ← PKE.EncPKI[𝑃𝑛←←] (meta𝑛←←) (in
line 36) ofO← = Onionize(. . .) by 𝑐𝑛←← ← PKE.EncPKI[𝑃𝑛←←] (�meta),
where �meta = (SNDR, 𝐾 ′, (𝑛→, 𝑛←)) for 𝐾 ′ ←R K. When process-
ing the (recognized) challenge onion, when recognizing 𝑐𝑛←← , in-
stead of decrypting (in Unwrap) use the oldmeta𝑛←← , i.e.meta𝑛←← =
(SNDR, 𝐾𝑛←← , (𝑛→, 𝑛←)).

This change removes the onion master secret key omsk = 𝐾𝑛←←
from 𝑐𝑛←← . Observe that PKE.Enc and PKE.Dec are always used
black-box in Onionize and Unwrap. Thus, by a straightforward re-
duction, we obtain

Pr[G1.1] − Pr[G1.2] ≤ Advind-ccaPKE,B1.2
.

GameG1.2. Replace 𝑐 𝑗→ ← PKE.EncPKI[𝑃 𝑗→]
(meta

𝑗
→) (in line 35)

of O→ = Onionize(. . .) by 𝑐 𝑗→ ← PKE.EncPKI[𝑃 𝑗→]
(�meta), where�meta = (RCVR, 𝐾 ′′,⊥) for 𝐾 ′′ ←R K.²⁶ When processing the (rec-

ognized) challenge onion, when recognizing 𝑐 𝑗←, instead of decrypt-
ing 𝑐 𝑗← (inUnwrap) use the oldmeta

𝑗
→, i.e,meta

𝑗
→ = (HOP, 𝐾 𝑗→, 𝑃 𝑗+1).

This change removes the derived key 𝐾 𝑗→ from 𝑐
𝑗
→. Completely

analogous to game G1.1, we get

Pr[G1.1] − Pr[G1.2] ≤ Advind-ccaPKE,B1.2
.

Game G2. In the challenge execution of FormOnion, replace all
keys (𝐾𝑖→)

𝑛→
𝑖=1 and (𝐾

𝑖
←)

𝑛←−1
𝑖=1 which are derived from omsk = 𝐾𝑛←←

(in FormOnion) by truly random keys.
The use of KDF with omsk (in FormOnion, line 64) is black-box,

and omsk is chosen uniformly. Thus, by a straightforward reduc-
tion, we obtain

Pr[G1.2] − Pr[G2] ≤ AdvprfKDF,B2
.

Game G3. In the challenge execution of O→ = Onionize(. . .),
replace the derived keys 𝐾 𝑗SKE, 𝐾

𝑗
MAC, 𝐾

𝑗
PRF (in Onionize, Wrap

and AE) by truly random choices, i.e. replace KDF(𝐾 𝑗→, _) by a
truly random function.

²⁶We set the next relay to⊥ already, as we eventually have make O1 an onion without
reply information in game 𝐿𝑈 +→ with 𝑏 = 1.

All uses of KDF with 𝐾 𝑗→ are black-box, and 𝐾 𝑗→ is chosen uni-
formly due toG2.1.Thus, by a straightforward reduction, we obtain

Pr[G2] − Pr[G3] ≤ AdvprfKDF,B3
.

Game G4. We strengthen the RecognizeOnion check in step 7
as follows: If RecognizeOnion recognizes a query O, but O.hdr ≠
U 𝑗 .hdr orO.fwd ≠ U 𝑗 .fwd, then output FAIL instead of processing
the onion. In other words, if the ciphertext 𝑐 𝑗 is reused in a query
O, then O must agree with U 𝑗 , except for backward payload.

Note that MAC.Sign and MAC.Verify are used only blackbox,
and the key 𝐾MAC is uniformly due to G3. Thus, by a straightfor-
ward reduction, we obtain

Pr[G3] − Pr[G4] ≤ Advsuf-cma
MAC,B4

.

Game G5. We introduce O
𝑗+1 as a separate variable, which is

now the output A receives after the challenge Proc request. That
is, in step 7, when query O 𝑗 is recognized as challenge, we intro-
duce a new onion, denoted O 𝑗+1 := (hdr′, fwd′, bwd′), and defined
as

• hdr′ = U 𝑗+1 .hdr
• fwd′ = U 𝑗+1 .fwd
• bwd′ = AE.Unwrap(𝐾 𝑗→,O 𝑗 .bwd) (but use the truly ran-

dom𝐾
𝑗
MAC, 𝐾

𝑗
PRF inAE instead of deriving them fromKDF).

We note that the recognized challenge query O 𝑗 and the interme-
diate partial onion U 𝑗 during FormOnion (of the challenge onion)
coincide (by game 4).²⁷ Hence, processing of bwd′ is unchanged,
whereas hdr′ and fwd′ simply reuses the intermediate partial onion
U 𝑗+1, which is the output of processing U 𝑗 . The change in this
game is merely conceptual, thus

Pr[G4] = Pr[G5] .
In the following games, games G6.1 to G6.4, we disconnect the

computation of O 𝑗+1 (resp. U 𝑗+1) and the challenge onion O1 (resp.
U 𝑗).

GameG6.1. In header ofU 𝑗+1, we replace blocks𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁

by randomness 𝑅 𝑗+1𝑁− 𝑗+1, . . . , 𝑅
𝑗+1
𝑁 . This makes sure that the header

of O 𝑗+1 (resp. U 𝑗+1) is independent from previous keys (𝐾𝑖SKE)
𝑗
𝑖=1,

whose dependency is only in these garbage terms. A sketch of this
processing is provided in Fig. 5.

Note that Enc/Dec are always used blackbox, and the key 𝐾 𝑗SKE
is truly random since game G3. For the reduction to DLR$-CPA,
we generate the onion O1

→ by making oracle calls for the encryp-
tions (resp. decryption) which are under 𝐾 𝑗SKE. More concretely,
during Onionize, when computing the garbage terms in lines 37
to 43, and when Wrapping U 𝑗+1 to get U 𝑗 in line 57, the reduction
to DLR$-CPA uses the challenge oracle to encrypt or decrypt un-
der key 𝐾 𝑗→. Moreover, the plaintext-ciphertext pairs are cached
(and used to answer encryption/decryption queries).²⁸ To answer
Proc calls of the adversary, we observe that thanks to the checks
introduced in game G3, if the onion O = ((𝐵1, . . . , 𝐵𝑁), fwd, bwd)

²⁷As the backward payload O 𝑗 .bwd is malleable, it need not coincide with the honest
processing of the initial backward payload O1 .bwd.
²⁸For caching, we implicitly use that SKE is a (perfectly correct) permutation cipher.

24

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

Table 2: Overview of proof for 𝐿𝑈 +→, 𝑗 < 𝑛 + 1. Unless noted otherwise, all changes are in the Onionize call of the challenge.
Missing direction subscripts are forward (→).

Game Description/Changes Reduction
(0) The 𝐿𝑈 +→ game with challenge bit chosen as 0.
(1) Get rid of challenge keys in 𝑐 𝑗→ and 𝑐𝑛←←
(1.1) Replace the encryption 𝑐𝑛←← of meta𝑛←← = (SNDR, 𝐾𝑛←← , (𝑛→, 𝑛←)) by an encryption of

(SNDR, 𝐾 ′, (𝑛→, 𝑛←)), for fresh 𝐾 ′ ←R K. (Still use the old meta𝑛←← to process the challenge
in ProcOnion.)

IND-CCA

(1.2) Replace the encryption 𝑐 𝑗→ of meta
𝑗
→ = (HOP, 𝐾 𝑗→, 𝑃 𝑗+1) by an encryption of (RCVR, 𝐾 ′′,⊥),

for fresh 𝐾 ′′ ←R K. (Still use the old meta
𝑗
→ to process.)

IND-CCA

(2) Replace all keys (𝐾𝑖→)
𝑛→
𝑖=1 and (𝐾𝑖←)

𝑛←−1
𝑖=1 in challenge FormOnion by truly random keys (in-

stead of deriving them from omsk = 𝐾𝑛←←).
PRF

(3) Instead of deriving 𝐾 𝑗MAC, 𝐾
𝑗
SKE, 𝐾

𝑗
PRF from 𝐾

𝑗
→, use truly random keys when processing

challenge onion.
PRF

(4) In step 7 of 𝐿𝑈 +→, if RecognizeOnion recognizes query O, but O.hdr ≠ U 𝑗 .hdr or O.fwd ≠
U 𝑗 .fwd, then output FAIL instead of processing the onion. (Does not change the computation
of onions.)

SUF-CMA

(5) In step 7 of 𝐿𝑈 +→, when query O 𝑗 is recognized as challenge, output O 𝑗+1 := (hdr, fwd, bwd),
where instead of processing O 𝑗 , U 𝑗+1 is set to U 𝑗+1, and O

𝑗+1
.bwd = bwd 𝑗+1 is processed

honestly (via AE.Unwrap).

—

(6) “Disconnect” O 𝑗 and O
𝑗+1 by separating usage of keys

(6.1) In U 𝑗+1 (hence O 𝑗+1), remove use of (𝐾𝑖SKE)
𝑗
𝑖=1 (in garbage added by (𝑃𝑖→)

𝑗
𝑖=1), by replacing

blocks 𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 by randomness 𝑅 𝑗+1𝑁− 𝑗+1, . . . , 𝑅

𝑗+1
𝑁 .

DLR$-CPA

(6.2) In computation of payload of O 𝑗+1, remove use of 𝐾 𝑗SKE and 𝐾 𝑗SKE by replacing the backward
payload O

𝑗+1
.bwd by randomness. (Still choose O1 .bwd uniformly and independently.)

DLR$-CPA +
PRF

(6.3) In U 𝑗 , remove the use of keys (𝐾𝑖SKE, 𝐾
𝑖
MAC, 𝐾

𝑖
PRF)

𝑛→
𝑖=𝑗+1 in header blocks 𝐵 𝑗2, . . . , 𝐵

𝑗
𝑁− 𝑗+1 by

replacing these blocks with randomness 𝑅 𝑗2, . . . , 𝑅
𝑗
𝑁− 𝑗+1

DLR$-CPA

(6.4) In U 𝑗 , remove the use of (𝐾𝑖SKE)
𝑛→
𝑖=𝑗+1 in fwd 𝑗 , by replacing the value fwd 𝑗 with randomness

during wrapping in Onionize.
DLR$-CPA

(7) Compute O 𝑗+1 as FormOnion(𝑚, (𝑃𝑖→)
𝑛→
𝑖=𝑗+1, (𝑃

𝑖
←)

𝑛←
𝑖=1 ;R)

(7.1) In the header ofO 𝑗+1, replace (random) blocks𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 bywrapped fresh randomness,

i.e., (Enc𝐾 𝑗+1 (. . .Enc𝐾𝑛→ (𝑅𝑛→𝑖) . . .))
𝑁−(𝑛→− 𝑗)+1
𝑖=𝑁−𝑛→− 𝑗+1 for 𝑅

𝑛→
𝑖 ←R $.

SKE is permu-
tation

(7.2) Derive keys 𝐾 𝑗+1→ , . . . , 𝐾𝑛→→ used in O
𝑗+1 from omsk PRF

(7.3) Encrypt (SNDR, omsk, (𝑛→ − 𝑗, 𝑛←)) in O.𝑐𝑛←← . (If 𝑛← = 0, this does nothing.) IND-CCA
(7.4) Use FormOnion(𝑚, (𝑃𝑖→)

𝑛→
𝑖=𝑗+1, (𝑃

𝑖
←)

𝑛←
𝑖=1 ;R) to compute O 𝑗+1 —

(8) Compute O1 as FormOnion(𝑚′, (𝑃𝑖→)
𝑗
𝑖=1, ();R

′)
(8.1) Make 𝑃 𝑗→ the receiver of a proper forward payload, by replacing fwd 𝑗 in O 𝑗 by payload

Enc
𝐾 𝑗SKE
(FWD, (O← .ℎ𝑒𝑎𝑑𝑒𝑟 = ⊥,𝑚′)), where𝑚′ ←R M

DLR$-CPA

(8.2) Revert the change of Game (4) (but still return O
𝑗+1 if challenge onion is recognized) SUF-CMA

(8.3) Revert the change in Game (3) by deriving 𝐾 𝑗MAC, 𝐾
𝑗
SKE, 𝐾

𝑗
PRF from 𝐾

𝑗
→ again PRF

(8.4) Derive keys (𝐾𝑖→)
𝑗
𝑖=1 used in O1 from freshly chosen omsk′ PRF

(8.5) In U 𝑗 , make block 𝐵 𝑗1 a real (receiver) block by encrypting (RCVR, 𝐾 𝑗→,⊥) in 𝑐 𝑗 . IND-CCA
(8.6) Use FormOnion(𝑚′, (𝑃𝑖→)

𝑗
𝑖=1, ();R

′) for freshly chosen R′ to compute O1 —
(9) The 𝐿𝑈 +→ game with challenge bit chosen as 1.

25

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

is recognized, i.e. if 𝐵1 = (𝜏, 𝑐) with 𝑐 = 𝑐 𝑗 , then Proc only pro-
cesses if ((𝐵1, . . . , 𝐵𝑁), fwd) = ((𝐵 𝑗1, . . . , 𝐵

𝑗
𝑁), fwd

𝑗) otherwise it
outputs FAIL. In particular, the header is identical to the respective
intermediate challenge onion header generated via the (modified)
FormOnion process.Thus, no encryption or decryption queries are
required to process a recognized onion query. Hence, there is no
nonce-reuse, and the reduction yields a valid adversary. By a hy-
brid argument, we obtain

Pr[G5] − Pr[G6.1] ≤ Advdbl$-cpaSKE,B6.1
.

Game G6.2. Instead of O 𝑗+1 .bwd = AE.Unwrap(𝐾 𝑗MAC, 𝐾
𝑗
PRF,

O 𝑗 .bwd), we computeO 𝑗+1 .bwd for recognized challenge queryO 𝑗

honestly, choose O
𝑗+1
.bwd uniformly randomly. This makes sure

that from now on, O 𝑗+1 is independent from 𝐾
𝑗
→, and hence all pre-

vious keys (𝐾𝑖→)
𝑗
𝑖=1, whose dependency in U 𝑗+1 (and hence O 𝑗+1)

is only in these garbage terms. (Observe that U 𝑗+1
.fwd = U 𝑗+1 .fwd

is independent of (𝐾𝑖→)
𝑗
𝑖=1 by its very definition (asOnionizewrap-

ping goes from 𝑛→ down to 𝑗 +1), and U 𝑗+1 .hdr was treated in the
previous step.)

By a reduction analogous to game G6.1 for bwd .ctxt and a PRF
reduction for bwd .mac, we obtain

Pr[G6.1] − Pr[G6.2] ≤ Advdbl$-cpaSKE,B6.2
+ AdvprfSKE,B′6.2

.

Game G6.3. During computation U 1 from U 𝑗 in Onionize, re-
place blocks 𝐵 𝑗2, . . . , 𝐵

𝑗
𝑁− 𝑗+1 by randomness 𝑅 𝑗2, . . . , 𝑅

𝑗
𝑁− 𝑗+1. This

makes sure that the header of U 𝑗 , hence the header of O1, is in-
dependent from the keys (𝐾𝑖→)

𝑛→
𝑖=𝑗+1, whose dependency in U 𝑗+1

(and hence O 𝑗+1) is only in these garbage terms.
The reduction is a hybrid argument, very similar to game G6.1.

One irrelevant difference is, that instead of replacing decryption
(of the constrained garbage terms) by randomness, now encryp-
tions (of the unconstrained garbage terms) are replaced by random-
ness. Refer to Fig. 5 for a sketch of the situation. Overall, we obtain,
completely analogous to G6.1, a reduction such that

Pr[G6.2] − Pr[G6.3] ≤ Advdbl$-cpaSKE,B6.3
.

Game G6.4. During computation U 1 from U 𝑗 (in Onionize), re-
place fwd 𝑗 by true randomness. Now, header and payload the chal-
lenge onion O1 are independent of the keys (𝐾𝑖→)

𝑛→
𝑖=𝑗+1 as well as

omsk.
The reduction is a direct reduction, completely analogous to the

previous ones. Thus we find

Pr[G6.3] − Pr[G6.4] ≤ Advdbl$-cpaSKE,B6.4
.

GameG7.1. In the header ofO
𝑗+1, we replace the (random) blocks

𝐵
𝑗+1
𝑁− 𝑗+1, . . . , 𝐵

𝑗+1
𝑁 by encrypted fresh randomness, i.e., replace them

by (Enc𝐾 𝑗+1 (. . .Enc𝐾𝑛→ (𝑅𝑛→𝑖) . . .))
𝑁−(𝑛→− 𝑗)+1
𝑖=𝑁−𝑛→− 𝑗+1 , for randomly cho-

sen 𝑅𝑛→𝑖 . Observe that this is as in FormOnion, with a path of
length 𝑛→ − 𝑗 .

This change is merely conceptual, as SKE is a permutation, the
distribution of 𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵

𝑗+1
𝑁 inO 𝑗+1→ is still uniform. (Because a

permutation of a uniformly random distribution is again uniformly
random.) We have

Pr[G6.4] = Pr[G7.1] .

Game G7.2. In this game, we derive the keys 𝐾 𝑗+1→ , . . . , 𝐾
𝑛− 𝑗
→

used in O
𝑗+1 from a uniformly random omsk ← K. That is, we

undo the change of game G3, but only for O 𝑗+1 and using an inde-
pendent omsk.

As in game G3, this is a straightforward reduction to PRF secu-
rity, and we find

Pr[G7.2] − Pr[G7.2] ≤ AdvprfKDF,B7.2
.

Game G7.3. Modify the change from game G1 to 𝑐𝑛←← further by
encrypting metabwd← = (SNDR, omsk, (𝑛→ − 𝑗, 𝑛←)), where omsk
is again the onion master secret key. Additionally, the encrypted
length of the forward path is reduced to 𝑛→ − 𝑗 . A completely
analogous reduction as for game G1.1 shows

Pr[G7.2] − Pr[G7.3] ≤ Advind-ccaPKE,B7.3
.

GameG7.4. We compute onionO 𝑗+1→ by running FormOnion(𝑚,
(𝑃𝑖→)

𝑛→
𝑖=𝑗+1, (𝑃

𝑖
←)

𝑛←
𝑖=1 ;R) (with fresh randomness). This change is

merely conceptual:

• By definition O
𝑗+1
.bwd is uniformly random.

• The changes made above ensure that U 𝑗+1 is computed via
the modification to U 𝑗+1 where all garbage terms 𝐵𝑛→2 , . . . ,

𝐵
𝑁− 𝑗+1
2 are uniformly random, as in Onionize with for-

ward path (𝑃𝑖→)
𝑛→
𝑖=𝑗+1 as input.

• The forward payload U
𝑗+1
.fwd was never changed.

• The remaining computation is as inOnionizewith forward
path (𝑃𝑖→)

𝑛→
𝑖=𝑗+1 as input.

We have yet to handle the backward onion contained in O
𝑗+1
.fwd.

This was almost unchanged in the sense that we only modified
𝑐𝑛←
bwd

, and in game G7.3. There, we set it to the proper value to make
O = FormOnion((𝑃𝑖→)

𝑛→
𝑖=𝑗+1, (𝑃

𝑖
←)

𝑛←
𝑖=1 ,𝑚;R) hold true. Also note,

that after the changes in games G6.1 to G6.4, all terms in O
𝑗+1 and

O1] independent.
We leave a more detailed verification of this to the reader. As

the change was conceptual, we find

Pr[G7.3] = Pr[G7.4] .

Game G8.1. We make 𝑃 𝑗 the receiver of a proper forward pay-
load (namely, message 𝑚′ in a non-repliable onion) by replacing
fwd 𝑗 (which was random since G6.4) with Enc

𝐾 𝑗SKE
(FWD, (⊥,𝑚′)),

where O← .ℎ𝑒𝑎𝑑𝑒𝑟 = ⊥ since the (eventually) formed onion will be
non-repliable.

Completely analogous to game G6.4, we exploit the blackbox
use of encryption (resp. decryption) and the key 𝐾 𝑗SKE to reduce
to DLR$-CPA security of SKE. We find

Pr[G7.4] − Pr[G8.1] ≤ Advdbl$-cpaSKE,B8.1
.

26

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

GameG8.2. We revert the change of gameG4, that is, we remove
the additional check on when RecognizeOnion recognizes a chal-
lenge for an oracle call Proc. We still process a challenge query O 𝑗

as before, in particular, we return O
𝑗+1 when the challenge onion

is recognized (by comparing it 𝐵 𝑗1 and assuming processing of O 𝑗
does not fail).

Completely analogous to game G4, this change reduces to SUF-
CMA security of MAC. Thus we find

Pr[G8.1] − Pr[G8.2] ≤ Advsuf-cma
MAC,B8.2

.

Game G8.3. We revert the change of game G3, that is, instead of
truly random keys 𝐾 𝑗MAC, 𝐾

𝑗
SKE, and 𝐾

𝑗
PRF, we derive these keys

from 𝐾
𝑗
→.

Completely analogous to game G3, this change reduces to the
PRF security of KDF, and we find

Pr[G8.2] − Pr[G8.3] ≤ AdvprfKDF,B8.3
.

Game G8.4. We partially revert the changes in game G2 as fol-
lows: We derive the keys 𝐾1

→, . . . , 𝐾
𝑗
→ used in O1 from freshly cho-

sen omsk′ (instead of uniformly at random, as we do since game
G2).

Completely analogous to game G1, this reduces to PRF security
of KDF and we obtain

Pr[G8.3] − Pr[G8.4] ≤ AdvprfKDF,B8.4
.

Game G8.5. We adapt the changes in game G2 as follows: We
modify the message in the ciphertext 𝑐 𝑗 again (i.e. the ciphertext
in block 𝐵 𝑗1 of U 𝑗 in Onionize), from meta 𝑗 = (RCVR, 𝐾 ′′,⊥) to
meta 𝑗 = (RCVR, 𝐾 𝑗→,⊥). This makes 𝑃 𝑗 the receiver (of an in game
G8.1 suitably modified forward).

Completely analogous to game G2, this reduces to IND-CCA se-
curity of PKE, we obtain

Pr[G8.4] − Pr[G8.5] ≤ Advind-ccaPKE,B8.5
.

GameG8.6. We computeO1 as FormOnion(𝑚′, (𝑃𝑖→)
𝑗
𝑖=1, ();R

′).
Observe that:

• Garbage blocks 𝐵 𝑗2, . . . , 𝐵
𝑗
𝑁− 𝑗+1 are uniformly random (due

to game G6.3).
• O 𝑗 .fwd is set as in Onionize for input (𝑃𝑖→)

𝑗
𝑖=1.

• O1 .bwd is uniformly random (independent of O 𝑗+1).
• 𝑐 𝑗 is set as for a non-repliable onion.

Overall it is easy to see that O1 can now equivalently be computed
as O1 = FormOnion(𝑚′, (𝑃𝑖→)

𝑗
𝑖=1, ();R

′). Consequently,
Pr[G8.5] = Pr[G8.6] .

It is worth noting, that in this case the onion master secret key
omsk′ is never encrypted underPKE, because there is no backward
path, and thus O← = ⊥ is encrypted in the forward payload.

Game G9. This is the 𝐿𝑈 +→ game, with challenge bit chosen as 1.
Again, this change is merely conceptual. Indeed we have changed
the computation of O1 and the output O 𝑗+1 of Proc for the chal-
lenges onion in steps (7) and (8), i.e. games G7.3 and G8.6, to inde-
pendent executions of FormOnion with suitably truncated paths
and payload, such that indeed,G8.6 is (up to syntactical differences)

identical to G9, i.e. the 𝐿𝑈 +→ game with challenge bit 1. Conse-
quently, Pr[G8.6] = Pr[G9].

C.3 Security proof of 𝐿𝑈 +→, 𝑗 = 𝑛
If 𝑗 = 𝑛, i.e., if the receiver is honest, we have following changes
to the 𝐿𝑈 +→ game (compared to 𝑗 < 𝑛):

• Instead of O 𝑗+1,A receives (𝑚,⊥) from the game (via the
oracle Proc(𝑃𝐻 ,O)).

• Additionally, A has access to Reply(𝑃𝐻 ,O,𝑚←), through
which it receives
– 𝑃1→, the next relay;
– O1

← .hdr the backward onion header;
– O1

← .fwd = PRG(KDF(𝐾𝑛→→ , PRG)), the pseudo-random
forward payload of the reply;

– O1
← .bwd = AE.Enc𝐾𝑛→→ (𝑚←), the E2E encrypted back-

ward payload𝑚.

By interpreting the forward layer 𝑛← + 1 as backward layer 1,
e.g., setting𝐾𝑛→+1→ = 𝐾1

←, U𝑛→+1→ = U 1
←, etc., the security proof for

𝐿𝑈 +→ with 𝑗 = 𝑛→ turns out mostly analogous to the case 𝑗 < 𝑛→,
and in fact simpler to some extent. Unfortunately, notationally, this
setting is less convenient since we have both forward onion and
backward onion parts. We let O1

← denote a new variable for the
backward onion, analogous to O

𝑗+1 in the case 𝑗 < 𝑛. As in the
proof for 𝐿𝑈 +→ with 𝑗 < 𝑛, we first set these variables to the honest
computations (as in 𝑏 = 0), and gradually modify them until we
arrive at 𝑏 = 1.

We briefly sketch the changes which are made to handle 𝑗 = 𝑛→
instead of 𝑗 < 𝑛→.

• Game 0 is 𝐿𝑈 +→ for 𝑗 = 𝑛→ with 𝑏 = 1.
• Game 1.1: Replace (RCVR, 𝐾𝑛→→ , 𝑃1←)with (RCVR, 𝐾 ′′,⊥), in-

stead of replacing (HOP, 𝐾 𝑗→, 𝑃 𝑗+1) with (RCVR, 𝐾 ′′,⊥).
• Game 2 is unchanged.
• Game 3 is unchanged, except that𝐾PRG is also replaced by

a truly random key.
• Game 4 is unchanged. (The change toRecognizeOnion now

applies to tests for Proc and Reply.)
• Game 5 now corresponds to two changes, one for Proc

queries and one for Reply queries.
– Proc: Here it corresponds to A learning (𝑚,⊥) (in-

stead of O 𝑗+1). The game is modified to always output
𝑚 if the challenge was recognized and decryption suc-
ceeds. At this point, this is a conceptual change.

– Reply: Here we replace the AE-encryption of𝑚← in
O
1
← .bwd with randomness.

• Game 6 only has one interesting step, namely Game 6.4
where the forward payload, which contains in particular
U 1
←, is randomized.With only this step,O1

← is already fully
separated from O1

→ (and𝑚 is hidden), since, unlike for 𝑗 <
𝑛, U 1

→ and U 1
← only “share” derived key material, which

was replaced by truly random keys in prior steps.
• Game 7 computesO1

← asFormOnion(𝑚←, (𝑃𝑖←)
𝑛←
𝑖=1 , ();R),

where𝑚← is the adversarially chosen message. Since U 1
←

is already independent of U 1
→, the main change are:

27

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

– We need an extra step to replace the pseudorandom
forward payloadU 1

← .fwd = PRG(𝐾PRG)withU
1
← .fwd =

SKE.Enc𝐾1
←,SKE

((⊥,𝑚←)). (Because O← has to be a
non-repliable forward onion containing𝑚←.)

– Game 7.3: ChangeO← .𝑐𝑛←→ from encrypting (SNDR, 𝐾 ′,
(𝑛→, 𝑛←)) to encrypting (RCVR, 𝐾 ′,⊥).

– Game 7.4: Derive all keys for O1
← again (from some

omsk′), instead of picking truly random keys. (Note
that, according to FormOnion, now only forward keys
are derived for O1

←; there is no backward header in-
cluded in O

1
←; the forward payload of O1

← encrypts
𝑚←; the backward payload is random (since Game 5).)

• Game 8 is unchanged. Now,we computeO1
→ asFormOnion(

𝑚′, (𝑃𝑖→)
𝑛→
𝑖=1 , ();R

′), where𝑚′ is random.
• Game 9 is 𝐿𝑈 +→ for 𝑗 = 𝑛→ with 𝑏 = 1.

The reductions for each of these steps are simple and analogous
to those in Appendix C.2 and thus left to the reader.

C.4 Security proof of 𝐿𝑈 +←, 𝑗 > 0
Thesecurity proof for Strong Backward Layer-Unlinkability is very
similar to the proof for Strong Forward Layer-Unlinkability. Thus,
we fist sketch the similarities and differences. Then we describe in
more detail how adaptations are made.

Basically, the proof of 𝐿𝑈 +→ was concerned with “splitting” (the
forward path of) an onion at an honest party 𝑃𝐻 , so that the new
onion ends at 𝑃𝐻 (and contains a forward message), and 𝑃𝐻 sends
out a fresh onion which ends at the actual destination and con-
tains the actual forward message. While 𝐿𝑈 +← is concerned with
the backward path, first observe that the onion headers are con-
structed almost identically using Onionize, with only the minor
difference in the role SNDR of the final receiver, a pseudorandom
forward payload, and a AE-encrypted backward payload. As such,
the steps we used to split the onion path in the header in the 𝐿𝑈 +→
game apply almost verbatim, with O→ replaced by O←, in this
case. Overall, the “onion-splitting” can simply be copied from our
proof of 𝐿𝑈 +→. At a few points, we have to take into account that
the game 𝐿𝑈 +← is a bit different, e.g. there are two steps where
RecognizeOnion is used, andwe need to ensure thatExtractPayload
can be computed throughout all steps. However, this will be easy
to see. Moreover, we need to ensure integrity of the backward pay-
load. For this, we rely on the PRF which is used as a MAC for AE
and the masking of the MAC by xoring a PRF value derived from
the ciphertext bwd .ctxt. This makes sure that, if the bwd .ctxt was
modified, then the MAC is completely randomized, hence will be
rejected with overwhelming probability at decryption.
Remark C.1. The definition of ExtractPayload((𝑖,←),O𝑖 ,𝑚,
(𝑃𝑖→)

𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1 ,R) given in Appendix C.1 is based on unwrap-

ping the onion. There are two abort events: Firstly, whether pro-
cessing aborts (because the MAC over onion header and forward
payload fails to verify). Secondly, whether the MAC on the final
AE decryption of the final backward payload fails. Observe that
instead of repeatedly running ProcOnion until reaching O

𝑛
←, i.e.,

completing the unwrapping, and then decrypting (via re-wrapping
as in ProcOnion case SNDR), we could instead just use the decryp-
tion routine (i.e., re-wrap) directly. That is, ExtractPayload could

just check the MAC tag on O
𝑖
←, and if valid, (re-)wrap the bwd𝑖 B

O𝑖 .bwd to obtain bwd1 (as it happens inProcOnion loop in line 92).
By perfect correctness of the scheme, this yields the same output.

The detailed game hops are presented in Table 3. Since most of
the steps in Table 3 can be argued exactly as for 𝐿𝑈 +→ in Table 2,
we only focus on the interesting steps in more detail below.

Game G4. Due to the difference in the games for 𝐿𝑈 +→ and 𝐿𝑈 +←,
we need to adapt this step. In 𝐿𝑈 +→, this step strengthens the check
ofRecognizeOnion to identify the challenge onion, by forcing both
header and forward payload of the query O to be identical to U

𝑗
←.

As we will use the same arguments to change onion computation
as done in 𝐿𝑈 +→, we also impose these changes onRecognizeOnion.

We note that to apply the reduction to SUF-CMA for exception
(2), we additionally need to replace 𝐾𝑛←MAC = KDF(𝐾𝑛←← , MAC) by a
truly random key and undo that change again, via the usual game
hops. Thus, we obtain

Pr[G3 = 1] − Pr[G4 = 1] ≤ 2 · Advdbl$-cpaMAC,B4
+ 2 · AdvprfKDF,B′4

.

Game G4′ . In this game, we change the output in exception (2)
of the 𝐿𝑈 +← experiment as follows: Suppose O 𝑗← is the²⁹ challenge
query in exception (1). Let 𝑚∗ = ExtractPayload((𝑗,←),O 𝑗←,𝑚,
(𝑃𝑖→)

𝑛→
𝑖=1 , (𝑃

𝑖
←)

𝑛←
𝑖=1 ,R) as computed in exception (1). If 𝑚∗ is not

defined (because exception (1) did not yet occur or the extracted
payload was ⊥), let𝑚∗ = ⊥. When RecognizeOnion in exception
(2) recognizes the query O𝑛← as challenge, let (𝑚′,⊥) be the output
of the (final) ProcOnion call (i.e., the decryption).

• If𝑚′ = ⊥, then output (⊥,⊥) to the adversary.
• If𝑚′ ≠ ⊥, then output (𝑚∗,⊥) to the adversary. (If𝑚∗ = ⊥,

this becomes (⊥,⊥).)
In other words, we always output (𝑚∗,⊥) to the adversary, unless
the processing of O𝑛← failed.

Indistinguishability of this change follows by reduction to the
PRF-security, using that 𝐾PRF is truly random due to game (3). To
compute ProcOnion in exception (1), if O 𝑗← is recognized as the
challenge onion (and not aborted with FAIL), use the PRF oracle
to obtain 𝑟 = PRF𝐾PRF (O

𝑗
← .bwd .ctxt) and let O 𝑗+1 .bwd .mac =

O 𝑗 .bwd .𝜏 ⊕ 𝑟 . Note that, if onion O
𝑗
← is recognized as a challenge,

then header and forward payload ofO 𝑗← agreeswithU 𝑗
←, or further

processing is aborted with FAIL (as ensured in game (4)). Hence,
there is at most one call to ProcOnion which triggers processing
exception (2). It will decrypt the query by unwrapping the queried
challenge onion O𝑛 . If decryption failed, i.e. ProcOnion outputs
(⊥,⊥), then this does not change the output to the adversary. So
suppose decryption produced some (𝑚′,⊥) with𝑚′ ≠ ⊥. The un-
wrapping of query O during ProcOnion yields some intermediate
backward payload bwd 𝑗+1 (in pseudocode line 92). There are three
(non-disjoint) cases:

• If bwd 𝑗+1 = O
𝑗+1
← .bwd, then 𝑚′ = 𝑚∗. (Recall that, by

Remark C.1, ExtractPayload can just (re)wrap O𝑖 to ob-
tain the message𝑚∗ (or ⊥). In this case, this clearly means
𝑚′ =𝑚∗.)

²⁹By the changes in game G4 , the challenge query header must be U 𝑗← .hdr . As onions
the same header are only processed once, we have a at most one challenge query O 𝑗←

28

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

Table 3: Overview of proof for 𝐿𝑈 +←, 𝑗 > 0. Unless noted otherwise, all changes are in the Onionize call of the challenge. Missing
direction subscripts are backward (←). Important changes compared to Table 2 are highlighted.

Game Description/Changes Reduction
(0) The 𝐿𝑈 +← game with challenge bit chosen as 0.
(1) Get rid of challenge keys in 𝑐 𝑗→ and 𝑐𝑛←←
(1.1) Replace the encryption 𝑐𝑛←← of meta𝑛←← = (SNDR, 𝐾𝑛←← , (𝑛→, 𝑛←)) by an encryption of

(SNDR, 𝐾 ′, (𝑛→, 𝑛←)), for fresh 𝐾 ′ ←R K. (Still use the old meta𝑛←← to process the challenge
in ProcOnion.)

IND-CCA

(1.2) Replace the encryption 𝑐 𝑗← of meta
𝑗
← = (HOP, 𝐾 𝑗←, 𝑃 𝑗+1) by an encryption of (RCVR, 𝐾 ′′,⊥),

for fresh 𝐾 ′′ ←R K. (Still use the old meta
𝑗
← to process.)

IND-CCA

(2) Replace all keys (𝐾𝑖→)
𝑛→
𝑖=1 and (𝐾𝑖←)

𝑛←−1
𝑖=1 in challenge FormOnion by truly random keys (in-

stead of deriving them from omsk = 𝐾𝑛←←).
PRF

(3) Instead of deriving 𝐾 𝑗MAC, 𝐾
𝑗
SKE, 𝐾PRF from 𝐾

𝑗
←, use truly random keys when processing

challenge onion.
PRF

(4) In exception (1) (resp. (2)) of𝐿𝑈 +←, ifRecognizeOnion recognizes queryO, butO.hdr ≠ U
𝑗
← .hdr

or O.fwd ≠ U
𝑗
← .fwd (resp. O.hdr ≠ U𝑛←← .hdr or O.fwd ≠ U𝑛←← .fwd), then output FAIL instead

of processing the onion.

SUF-CMA +
PRF

(4’) Exception (2) of 𝐿𝑈 +←, if RecognizeOnion recognizes the challenge onion, and if ProcOnion
outputs (𝑚,⊥), always output𝑚∗ (unless𝑚 = ⊥).

PRF

(5) In exception (1) of 𝐿𝑈 +← , but not exception (2), when O
𝑗
← is recognized as challenge, output

O
𝑗+1
← := (hdr, fwd, bwd), where instead of processing O 𝑗←, O 𝑗+1← is set to U 𝑗+1

← , and O 𝑗+1← .bwd =
bwd 𝑗+1 is processed honestly (via AE.Unwrap).

—

(6) “Disconnect” O 𝑗← and O
𝑗+1
← by separating usage of keys

(6.1) In U
𝑗+1
← (hence O 𝑗+1←), remove use of (𝐾𝑖SKE)

𝑗
𝑖=1 (in garbage added by (𝑃𝑖←)

𝑗
𝑖=1), by replacing

blocks 𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 by randomness 𝑅 𝑗+1𝑁− 𝑗+1, . . . , 𝑅

𝑗+1
𝑁

DLR$-CPA

(6.2) In computation of payload of O 𝑗+1← , remove use of 𝐾 𝑗SKE and 𝐾 𝑗PRF by replacing the backward
payload O

𝑗+1
← .bwd by randomness

DLR$-CPA +
PRF

(6.3) In U
𝑗
←, remove the use of (𝐾𝑖SKE, 𝐾

𝑖
MAC, 𝐾

𝑖
PRF)

𝑛←
𝑖=𝑗+1 in header blocks 𝐵 𝑗2, . . . , 𝐵

𝑗
𝑁− 𝑗+1 by re-

placing these blocks with randomness 𝑅 𝑗2, . . . , 𝑅
𝑗
𝑁− 𝑗+1

DLR$-CPA

(6.4) In U
𝑗
←, remove the use of (𝐾𝑖SKE)

𝑛←
𝑖=𝑗+1 in fwd 𝑗 , by replacing the value fwd 𝑗 with randomness

during wrapping in Onionize.
DLR$-CPA

(6.5) This step is not applicable. (The challenge backward payload is adversarially chosen.) —
(7) Compute O 𝑗+1← as FormOnion(𝑚, (𝑃𝑖←)

𝑛←
𝑖=𝑗 , ();R)

(7.1) In the header ofO 𝑗+1← , replace (random) blocks𝐵 𝑗+1𝑁− 𝑗+1, . . . , 𝐵
𝑗+1
𝑁 bywrapped fresh randomness,

i.e., (Enc𝐾 𝑗+1 (. . .Enc𝐾𝑛← (𝑅𝑛←𝑖) . . .))
𝑁−(𝑛←− 𝑗)+1
𝑖=𝑁−𝑛←− 𝑗+1 for 𝑅

𝑛→
𝑖 ←R $.

SKE is permu-
tation

(7.1’) In O
𝑗+1
← , replace the forward payload by an encryption Enc𝐾 𝑗+1 (. . .Enc𝐾𝑛← (𝑚) . . .) of 𝑚 =

(O← .hdr = ⊥,𝑚).
DLR$-CPA +
PRF

(7.2) Derive keys 𝐾 𝑗+1← , . . . , 𝐾𝑛←← used in O
𝑗+1 from omsk. PRF

(7.3) Encrypt (RCVR, omsk, (𝑛← − 𝑗, 0)) in O.𝑐𝑛←← . IND-CCA
(7.4) Use FormOnion(𝑚, (𝑃𝑖←)

𝑛←
𝑖=𝑗 , ();R) to compute O 𝑗+1← . —

(8) Compute O1
→ as FormOnion(𝑚, (𝑃𝑖→)

𝑛→
𝑖=1 , (𝑃

𝑖
→)

𝑗
𝑖=1;R

′)
(8.1) This step is not applicable. (Its counterpart is step (7.1’)) —
(8.2) Revert the change of Game (4) (but still return O

𝑗+1
← if challenge onion is recognized). SUF-CMA +

PRF
(8.3) Revert the change in Game (3) by deriving 𝐾 𝑗MAC, 𝐾

𝑗
SKE, 𝐾

𝑗
PRF from 𝐾

𝑗
← again PRF

(8.4) Derive all keys (𝐾𝑖→)
𝑛→
𝑖=1 and (𝐾

𝑖
←)

𝑗
𝑖=1 used in O1

← from freshly chosen omsk←′ PRF
(8.5) In U

𝑗
←, make block 𝐵 𝑗1 a real “backward receiver” block by encrypting (SNDR, 𝐾 𝑗←, omsk′) in

𝑐 𝑗 . (Note that 𝐾 𝑗← is, by definition, omsk′.)
IND-CCA

(8.6) Use FormOnion(𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , (𝑃

𝑖
→)

𝑗
𝑖=1;R

′) for freshly chosen R′ to compute O1 —
(9) The 𝐿𝑈 +← game with challenge bit chosen as 1. 29

Michael Klooß, Andy Rupp, Daniel Schadt, Thorsten Strufe, and Christiane Weis

• If bwd 𝑗+1 .mac ≠ O
𝑗+1
← .bwd .mac holds, while at the same

time bwd
𝑗+1
.ctxt = O

𝑗+1
← .bwd .ctxt, then this implies that

bwd
𝑗
≠ O

𝑗
← .bwd and bwd

𝑗
.ctxt = O

𝑗
← .bwd .ctxt (because

AE.Wrap is a permutation), and eventually bwd1 ≠ O
1
← .bwd

and bwd
1
.ctxt = O

1
← .bwd .ctxt. Note that AE.Dec (in pseu-

docode line 96) is just anotherAE.Wrap and a PRF equality
check. The PRF-based MAC is unique, i.e., there is only a
single valid MAC bwd1 .mac for bwd1 .ctxt, but bwd1 differs.
Thus, decryption must fail.

• If bwd 𝑗+1 .ctxt ≠ O
𝑗+1
← .bwd .ctxt holds, then this implies

bwd
𝑗
.mac = 𝑟 ⊕ bwd 𝑗+1 .mac for 𝑟 = PRF𝐾PRF (bwd

𝑗
.ctxt)

and bwd
𝑗
= Dec

𝐾 𝑗SKE
(BWD, bwd

𝑗+1
.ctxt). By an argument

analogous to the argument above, there is atmost one choice
of 𝑟 forwhich theMAC check succeeds. Since 𝑟 is a PRF out-
put, after we replace thePRFwith a truly random function,
the probability that theMAC check succeeds is atmost 2−𝜆 ,
as the output length of PRF is 𝜆 bits.

As 𝑟 = 0 is the only failure case, and this happens with probability
at most 2−𝜆 if the PRF were replaced by a truly random function,
we find that

Pr[G4 = 1] − Pr[G4′ = 1] ≤ 2 · AdvprfKDF,B4′
+ 2−𝜆 .

Game G6.5. In the 𝐿𝑈 +→ game, it was necessary to choose the
backward payload randomly in game G6.5. Because, by definition
of FormOnion, this is how the backward payload is constructed for
a forward onion. However, as we handle a backward onion here
(and never changed the honest generation of the forward onion
part), and the backward payload is chosen adversarially (since 𝑗 >
0 means that A controls the receiver), there is nothing to do here
— the backward payload of the challenge was already honestly gen-
erated and processed until this point.

Game G7.1′ . In this game, in O
𝑗+1, the random forward payload

is replaced by an encryption Enc
𝐾 𝑗+1SKE
(. . .Enc𝐾𝑛←SKE

(𝑚) . . .) of𝑚 =

(⊥,𝑚), where ⊥ is due to O← .hdr = ⊥ being encrypted in the for-
ward payload of a non-repliable onion. Indistinguishability of this
change follows from a few simple game hops: Since 𝐾𝑛←← is truly
random, we can first replace 𝐾𝑛←SKE = KDF(𝐾𝑛←← , SKE) by a truly
random key. Then apply a reduction to the DLR$-CPA security of
SKE, to replace the ciphertext by an encryption of 𝑚 = (⊥,𝑚).
Then derive 𝐾𝑛←SKE again. Thus, we find

Pr[G7.1 = 1] − Pr[G7.1′ = 1] ≤ Advdbl$-cpaSKE,B7.1′
+ 2 · AdvprfKDF,B′

7.1′
.

Game G7.3. This game differs slightly from game G7.2 in 𝐿𝑈 +→
because we must generate a non-repliable forward onion in O

𝑗+1.
Thus, instead of SNDR, we need to encrypt RCVR for the final re-
lay. Moreover, the final relay is the honest sender (since this is his
reply). In particular, 𝑗 < 𝑛←, since the honest sender cannot be cor-
rupted. Thus, 𝑛← − 𝑗 ≥ 1 and O← .𝑐𝑛←− 𝑗→ is always defined (unlike
in 𝐿𝑈 +→, where the challenge onion may be non-repliable). Analo-
gous to the 𝐿𝑈 +→ game, this step ensures that O 𝑗+1 will correspond
to a fresh FormOnion(𝑚, (𝑃𝑖←)

𝑛←
𝑖=𝑗 , ();R).

Game G8.5. This game differs slightly from game G8.5 in 𝐿𝑈 +→
because we must generate a repliable as challenge onion in O1.
Thus, instead of RCVR, we need to encrypt SNDR for the final re-
lay. Note that we handle only the case 𝑗 > 0, and hence the short-
ened backward path is not empty. Analogous to 𝐿𝑈 +→, this step en-
sures that O 𝑗+1 will correspond to a fresh FormOnion(𝑚, (𝑃𝑖→)

𝑛→
𝑖=1 ,

(𝑃𝑖→)
𝑗
𝑖=1;R

′).

Game G9. By appropriate syntactical transformations, we see
that game G8.5 is identical to the 𝐿𝑈 +← game with challenge bit
𝑏 = 1.

C.5 Security proof of 𝐿𝑈 +←, 𝑗 = 0
The proof steps are summarized in Table 4. The hybrid reductions
are analogous to prior ones and left to the reader.

30

EROR: Efficient Repliable Onion Routing with Strong Provable Privacy

Table 4: Overview of proof for 𝐿𝑈 +←, 𝑗 = 0. Unless noted otherwise, all changes are in the Onionize call of the challenge. Missing
direction subscripts are backward (←). Important changes compared to Table 3 are highlighted.

Game Description/Changes Reduction
(0) The 𝐿𝑈 +← game with challenge bit chosen as 0.
(1) Get rid of challenge keys in 𝑐𝑛→→ and 𝑐𝑛←←
(1.1) Replace the encryption 𝑐𝑛←← of meta𝑛←← = (SNDR, 𝐾𝑛←← , (𝑛→, 𝑛←)) by an encryption of

(SNDR, 𝐾 ′, (𝑛→, 𝑛←)), for fresh 𝐾 ′ ←R K. (Still use the old meta𝑛←← to process the challenge
in ProcOnion.)

IND-CCA

(1.2) Replace the encryption 𝑐𝑛→→ of meta𝑛→→ = (HOP, 𝐾𝑛→→ , 𝑃1←) by an encryption of (RCVR, 𝐾 ′′,⊥),
for fresh 𝐾 ′′ ←R K. (Still use the old meta𝑛→→ to process.)

IND-CCA

(2) Replace all keys (𝐾𝑖→)
𝑛→
𝑖=1 and (𝐾𝑖←)

𝑛←−1
𝑖=1 in challenge FormOnion by truly random keys (in-

stead of deriving them from omsk = 𝐾𝑛←←).
PRF

(3) Instead of deriving 𝐾𝑛→MAC, 𝐾
𝑛→
SKE, 𝐾

𝑛→
PRF, 𝐾PRG from 𝐾𝑛→→ , use truly random keys when pro-

cessing challenge onion.
PRF

(4) In exception (1) (resp. (2)) of 𝐿𝑈 +←, if RecognizeOnion recognizes query O, but O.hdr ≠
U𝑛→→ .hdr or O.fwd ≠ U𝑛→→ .fwd (resp. O.hdr ≠ U𝑛←← .hdr or O.fwd ≠ U𝑛←← .fwd), then out-
put FAIL instead of processing the onion.

SUF-CMA +
PRF

(4’) In Exception (2) of 𝐿𝑈 +←, if RecognizeOnion recognizes the challenge onion, and if ProcOnion
outputs (𝑚,⊥), always output𝑚∗ (unless𝑚 = ⊥).

PRF

(5) In exception (1) of 𝐿𝑈 +← , but not exception (2), when O𝑛→→ is recognized as challenge, output
O
1
← := (hdr, fwd, bwd), where instead of processing O𝑛→→ (ReplyOnion), O1

← .hdr is set to
U 1
← .hdr , O

1
← .fwd to U 1

← .fwd and O
1
← .bwd to an authenticated encryption of 𝑚← (for 𝑚←

provided in the ReplyOnion request) using 𝐾𝑛→SKE and 𝐾𝑛→PRF.

—

(6) “Disconnect” O𝑛→→ and O
1
← by separating usage of keys

(6.1) This step is not applicable. (O1
← does not contain garbage added by 𝑃𝑖←) —

(6.2) In computation of payload of O1
←, remove use of 𝐾𝑛→SKE and 𝐾𝑛→PRF by replacing the backward

payload O
1
← .bwd by randomness

DLR$-CPA +
PRF

(6.3) In the forward payload of O𝑛→→ , remove the use of (𝐾𝑖SKE, 𝐾
𝑖
MAC, 𝐾

𝑖
PRF)

𝑛←
𝑖=1 by replacing𝑚′ =

(U 1
← .hdr,𝑚) with with𝑚′ = (⊥,𝑚) in the forward payload fwd𝑛 = Enc𝐾𝑛→SKE

(𝑚′).
DLR$-CPA

(6.4) This step is obsolete given the change in Game (6.3). —
(6.5) This step is not applicable. (The challenge backward payload is adversarially chosen.) —
(7) Compute O1

← as FormOnion(𝑚, (𝑃𝑖←)
𝑛←
𝑖=1 , ();R)

(7.1) This step is not applicable. (O1
← does not contain garbage added by 𝑃𝑖←) —

(7.1’) In O
1
←, replace the forward payload by an encryption Enc𝐾1 (. . .Enc𝐾𝑛← (𝑚′) . . .) of 𝑚′ =

(O← .hdr = ⊥,𝑚).
DLR$-CPA +
PRF + PRG

(7.2) Derive keys 𝐾1
←, . . . , 𝐾

𝑛←
← used in O

1 from omsk. PRF
(7.3) Encrypt (RCVR, omsk, (𝑛←, 0)) in O.𝑐𝑛←← . IND-CCA
(7.4) Use FormOnion(𝑚, (𝑃𝑖←)

𝑛←
𝑖=1 , ();R) to compute O1

←. —
(8) Compute O1

→ as FormOnion(𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , ();R

′)
(8.1) This step is not applicable. (Its counterpart is step (7.1’)) —
(8.2) Revert the change of Game (4) (but still return O

1
← if challenge onion is recognized). SUF-CMA +

PRF
(8.3) Revert the change in Game (3) by deriving 𝐾𝑛→MAC, 𝐾

𝑛→
SKE, 𝐾

𝑛→
PRF, 𝐾PRG . from 𝐾𝑛→→ again PRF

(8.4) Derive all keys (𝐾𝑖→)
𝑛→
𝑖=1 from freshly chosen omsk′ (note that no backward keys are contained

in O1
→ .fwd).

PRF

(8.5) This step is not applicable. (Backward path in O1
→ is empty) —

(8.6) Use FormOnion(𝑚, (𝑃𝑖→)
𝑛→
𝑖=1 , ();R

′) for freshly chosen R′ to compute O1 —
(9) The 𝐿𝑈 +← game with challenge bit chosen as 1.

31

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.1.1 Pseudocode and Onion-specific Conventions

	2.2 Background on Onion Routing and Mix Networks
	2.3 Related Work on Onion Routing and Mix Network Packet Formats
	2.4 Background on Formalization
	2.4.1 Universal Composability
	2.4.2 Game-based Security Properties

	2.5 Related Work Formalization of Onion Routing and Mix Network Packet Formats

	3 Threat Model and Tagging Attack
	3.1 Threat Model
	3.2 Tagging Attack
	3.3 Impact of the Tagging Attack
	3.4 Protecting forward direction is sufficient
	3.5 Difficulty of securing the payload

	4 OR Security Definition and Properties
	4.1 Scope of the Model
	4.2 Onion Routing Scheme
	4.3 Ideal Functionality
	4.4 Auxiliary Functions
	4.5 OR Properties
	4.5.1 Strong Forward Layer-Unlinkability
	4.5.2 Strong Backward Layer-Unlinkability

	4.6 UC Realization

	5 Construction of EROR
	5.1 Notation and Conventions for Pseudocode
	5.2 EROR: Efficient Repliable Onion Routing
	5.3 Pseudocode and remarks
	5.4 Further Discussion on Security, Efficiency, and Trade-offs
	5.4.1 Identifying Replies
	5.4.2 Using KEMs
	5.4.3 Using PRP-CCA-secure SKE

	6 Security of EROR
	7 Performance
	7.1 Implementation
	7.2 Processing Benchmarks
	7.3 Onion Size
	7.4 Concise comparison to related work

	8 Conclusion
	A Preliminaries and further discussions
	A.1 Cryptographic primitives
	A.1.1 Symmetric-key Primitives
	A.1.2 Public-key Encryption (PKE)

	A.2 Correctness

	B Full proof of Theorem 4.7
	C Full security proof of EROR
	C.1 Notation and definitions of auxiliary algorithms
	C.2 Security proof of LU^{+}_{->}, j < n
	C.3 Security proof of LU^{+}_{->}, j = n
	C.4 Security proof of LU^{+}_{<-}, j > 0
	C.5 Security proof of LU^{+}_{<-}, j = 0

