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Abstract—Side-channel analysis based on machine learning,
especially neural networks, has gained significant attention in
recent years. However, many existing methods still suffer from
certain limitations. Despite the inherent capability of neural
networks to extract features, there remains a risk of extracting
irrelevant information. The heavy reliance on profiled traces
makes it challenging to adapt to remote attack scenarios with
limited profiled traces. Besides, attack traces also contain crit-
ical information that can be used in the training process to
assist model learning. In this paper, we propose a side-channel
analysis approach based on contrastive learning named CL-
SCA to address these issues. We also leverage a stochastic
data augmentation technique to assist model to effectively filter
out irrelevant information from the profiled traces. Through
experiments of different datasets from different platforms, we
demonstrate that CL-SCA significantly outperforms various
conventional machine learning side-channel analysis techniques.
Moreover, by incorporating attack traces into the training process
using our approach, known as CL-SCA+, it becomes possible to
achieve even greater enhancements. This extension can further
improve the effectiveness of key recovery, which is fully verified
through experiments on different datasets.

Index Terms—Side-channel analysis, Contrastive learning,
Neural networks, Data augmentation.

I. INTRODUCTION

THE widespread use of Internet of Things (IoT) technol-
ogy [1] has raised significant concerns about the safety

of smart devices. For IoT smart devices, side-channel analysis
(SCA) has become one of the most well-known threats. This
technique is first proposed in 1996 [2], which has been
extensively studied over the past three decades.

Cryptographic devices may unintentionally leak physical
information during the execution of cryptographic algorithms,
such as power consumption [3], electromagnetic emissions [4],
and time deviation [5]. SCA exploits the physical information
to recover the key of the cryptographic algorithm. By com-
bining physical observations with the hypothesis of relevant
intermediate values or manipulated operations, it is possible
to recover the intermediate state of the device. Subsequently,
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an attack can be launched against the target device to recover
the key.

Profiled side-channel analysis is regarded as one of the most
threatening techniques of SCA [6], [7]. It assumes that the
attacker has a profiled device identical to the target device,
and can construct the template of profiled device’s leakage
traces to recover the key of the target device. Template attack
is a traditional profiled side-channel analysis technology [8].
It uses the mean vectors and a covariance matrix to build a
template, and then uses the traces of the target device to match
it to recover the key. However, it should be noted that template
attack is primarily suitable for handling low-dimensional data.
This technique heavily relies on preprocessing to reduce the
dimensionality of traces.

In 2011, Hospodar et al. noted that profiled side-channel
analysis can be seen as a classification problem [9]. This
observation paved the way for utilizing machine learning
techniques to address this issue. Several machine learning
methods, including support vector machine (SVM) [9]–[13],
random forest (RF) [14], rotation forest [15]–[17], decision
tree [15], [16], naive Bayes [13], [15], [18] and so on have
been applied in the SCA community to recover the key. These
methods have demonstrated higher efficiency and improved
performance compared to traditional approaches. Importantly,
machine learning methods have shown promise in overcoming
the limitations of traditional template attacks, which struggle
to handle high-dimensional data [19]. To improve key recov-
ery effectiveness, these techniques often incorporate various
feature extraction methods, including principal component
analysis (PCA) [20] and linear discriminant analysis (LDA)
[21], to extract informative features.

As a type of machine learning technology, neural net-
works have been extensively studied in the field of SCA
due to their ability to accurately identify critical features
in the leakage traces. This mitigates the need for feature
extraction technologies, as neural networks themselves can
achieve good results. Numerous studies have demonstrated
that neural networks can construct more effective models
compared to traditional machine learning approaches in SCA
[22]. Multilayer perceptron (MLP) stands out as an effective
method for optimizing power attack performance, surpassing
conventional techniques like differential power attack (DPA)
[23] and simple power attack [24]. Weissbart et al. noted
that MLP has a much simpler structure, enabling easier
hyperparameter tuning and contributing to the explainability
of neural network inner working [25]. Convolutional neural
networks (CNN) has also gained widespread application in
SCA [26]–[29]. It has been proved that CNN is effective in
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attacking unaligned traces or cryptographic algorithms with
random delay countermeasures [26]. Furthermore, the classical
long short term memory architecture has been employed to
encode traces implemented by the AES on FPGA, resulting in
a nearly tenfold improvement in DPA efficiency [30].

Although neural networks have been widely applied to SCA
and have achieved significant results, current technologies still
have some limitations. Firstly, for remote attack scenarios,
the number of profiled traces is limited due to collection
difficulties. The effectiveness of SCA methods based on neural
network will be affected. Secondly, previous researches have
mainly focused on the profiled device and rarely utilized the
traces from the target device for training, leading to a potential
loss of valuable information.

To address these issues, we have applied the contrastive
learning technique to SCA. The use of this technique has
become widespread in various fields, including computer
graphics and natural language processing. Furthermore, es-
tablished learning frameworks, such as SimCLR [31], [32]
and MoCo [33], [34] have emerged to facilitate its adoption.
Contrastive learning divides the classification task into two
stages: pretrain and subsequent fine-tuning. This approach
enables the extraction of features in unsupervised scenarios,
followed by leveraging a small amount of labeled data to
achieve robust classification results. In this paper, we apply
the idea to SCA and propose a novel SCA approach based
on contrastive learning named CL-SCA. To the best of our
knowledge, this is the first time that a contrastive approach
has been used in profiled side-channel attacks.

The main contributions are summarized as follows:

• We propose a side-channel analysis approach based on
contrastive learning named CL-SCA. This approach ex-
tracts features in an unsupervised setting, which improves
the effectiveness of key recovery. The experimental re-
sults show that CL-SCA can recover the secret key
successfully with a great advantage in different datasets.

• We introduce a stochastic data augmentation technique
specifically tailored to bolster CL-SCA’s feature extrac-
tion capabilities. By effectively mitigating interference
from irrelevant information, this technique enables CL-
SCA to concentrate exclusively on extracting critical
leakage features imperative for successful key recovery.

• In addition to the profiled traces, we also incorporate
the target device’s traces into the training process of
CL-SCA, which helps to learn more useful information.
By assimilating the leakage information beforehand, CL-
SCA gains a profound understanding of the patterns
within the attack trace set, ultimately achieving a sub-
stantial improvement in the effectiveness of key recovery.

The organization of this paper is as follows: Section II intro-
duces the preliminary knowledge of profiled side-channel anal-
ysis, convolutional neural network and contrastive learning.
Section III shows the stochastic data augmentation technique
and CL-SCA in detail, and further proposes CL-SCA+. Section
IV describes the experimental results, and Section V presents
the conclusion.

II. PRELIMINARIES

A. Profiled Side-Channel Analysis

Profiled side-channel analysis leverages the inherent depen-
dence between a cryptographic device’s leakage traces and the
data it processes. This technique involves two main stages:
a profiled stage and an analysis stage. During the profiling
stage, the model for the secret value dependent form of the
cryptographic device is constructed with leakage traces. Then,
the secret value of the target device can be revealed by
comparing the traces collected from the target device with the
model prediction during the analysis stage.

The attacker can control a profiled device that is similar
to the target device during the profiling stage. Using this
device, the attacker can select the plaintext p and the secret
key k to execute the cryptographic algorithm and collects
the corresponding trace t. There is an association between
t and the intermediate value y used during the execution of
the cryptographic algorithm. For example, in the case of the
AES algorithm, the output of the Sbox is usually used as the
intermediate value y, and y can be expressed as Eq.(1).

y = Sbox(p⊕ k) (1)

During the profiling stage of profiled side-channel analysis,
the model φ(·) is established to map the trace to different
intermediate values of the cryptographic algorithm. Using the
model, the probability of each trace corresponding to different
intermediate values y can be calculated, as shown in Eq. (2).

φ(t) = Pr[Y = y | t]
= Pr[Y = Sbox(p⊕ k) | t]

(2)

During the analysis stage, the attacker collects the traces of
the target device with different plaintexts. Then the attacker
matches each trace with the model φ(·) to obtain the probabil-
ity of different intermediate values Pr[Y = y | t] for different
key candidates k ∈ K, where K is the set of all possible key
candidates K = {0, 1, · · · , 255}. By calculating the result of
Eq.(3), the profiled side-channel analysis can identify the key
corresponding to the highest log-likelihood estimation score,
denoted as kr. The recovered key kr is considered as the key
of the target device.

L(k) =

N∑
i=1

log Pr(ti; k) (3)

where N denotes the number of collected traces from the target
device. If the recovered key kr is same as the correct key k∗,
then the analysis is considered to be successful.

B. Convolutional Neural Network

Profiled SCA can be viewed as a classification problem,
which makes it easier to employ deep learning approaches.
Among these techniques, CNN has emerged as a widely
adopted solution within the SCA community for accurately
classifying leakage traces. Fig. 1 shows an example of trace
classification using a CNN. Similar to profiled side-channel
analysis, CNN also calculates the probabilities of each trace
corresponding to different intermediate values.
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Fig. 1. The schema of CNN.

CNN is typically composed of three main types of layers:
convolutional layers, pooling layers, and fully connected lay-
ers. The convolutional layer applies filters to the input trace to
generate feature maps. Each filter convolves with a small input
patch, producing a single value placed in the corresponding
position of the output feature map. The convolutional layer
produces multiple feature maps representing different filters,
which are then passed to the next layer for further processing.

The pooling layer is typically applied after one or more con-
volutional layers. Its primary purpose is to reduce the spatial
dimensions of the feature maps produced by the convolutional
layers, while also preserving the most important information.
There are various types of pooling operations, but for this
paper, we will only focus on average pooling. The output of
this layer is the average value of a specific area in the feature
map.

Fully connected layers process the entire input volume,
unlike convolutional and pooling layers which perform local
operations on specific regions of the input data. The input
to the fully connected layer usually consists of a flattened
feature map that has been produced by one or more preceding
convolutional and pooling layers. The flattened feature map is
a one-dimensional array of values that represent the features
detected in the input trace. The fully connected layer then
applies a series of matrix operations to these features to
generate a set of output values that correspond to the predicted
class probabilities.

C. Contrastive Learning

Self-supervised learning is a type of neural network tech-
nology that can learn the representations of data without the
need for human-labeled annotations. The main advantage of
self-supervised learning lies in its ability to derive meaningful
representations from large quantities of unlabeled data, which
can then be fine-tuned on smaller labeled datasets for down-
stream tasks.

Contrastive learning is a type of self-supervised learning that
involves training an encoder f(·) to learn representations of
data by contrasting positive and negative examples. The goal
of contrastive learning is to learn a representation space where
similar samples are mapped close together and dissimilar
samples are mapped far apart, even if Eq.(4) holds true. Fig.
2 illustrates this process.

score(f(x), f(x+)) >> score(f(x), f(x−)) (4)

Fig. 2. The process of contrastive learning.

Here, x+ represents a positive sample that shares similarities
with the sample x, and the pair consisting of x+ and x is
regarded as a positive pair. x− represents a sample that is
dissimilar to x, and it forms a negative pair with x. The score
is a measure of similarity between representations, and the
function f(·) transforms the samples into their corresponding
feature vectors.

In this paper, we use a stochastic data augmentation tech-
nique to augment each trace into two different traces. The
augmented traces have the same intermediate value, and are
therefore considered as a positive pair. The traces augmented
from different original traces are considered negative samples.

The contrastive loss function is also an important compo-
nent. We use the normalized temperature-scaled cross entropy
loss as loss function, which is named NT-Xent. NT-Xent takes a
pair of traces and their labels as input, and computes a loss that
encourages the network to learn representations that separate
the positive and negative pairs. The loss function penalizes
the distance between the representations of positive pairs, and
rewards the distance between the representations of negative
pairs.

Overall, contrastive learning is a powerful technique for
unsupervised learning, which is applied to side-channel anal-
ysis in this paper. By learning useful representations in an
unsupervised manner, we prove that contrastive learning can
help improve the performance of supervised side-channel
analysis based on machine learning.

III. PROPOSED SIDE-CHANNEL ANALYSIS APPROACH
BASED ON CONTRASTIVE LEARNING

In this section, we provide a detailed introduction to our
proposed side-channel analysis approach. The process of our
approach is illustrated in Fig. 3, which includes two parts:
pretraining and fine-tuning. In the pretraining part, each trace
undergoes augmentation twice using stochastic data augmen-
tation technique. The objective of this part is to train a feature
extraction encoder that encourages similarity between the two
augmented traces. In the fine-tuning part, a neural network for
classification is built based on the trained encoder. By training
on the profiled set, the network can classify the traces in the
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Fig. 3. The basic flow of CL-SCA.

Fig. 4. The illustrations of stochastic data augmentation techniques

attack set and recover the key. The specific details of each part
are described in the following subsections.

A. Stochastic Data Augmentation

Data augmentation has been shown to be an effective
method for improving the capabilities of neural networks [26].
The first step of our proposed approach is also to perform
stochastic data augmentation on each trace in the input dataset.
Our goal is to generate two distinct augmented traces from a
common original trace t as a positive pair, denoted as xi and
xj . We aim to create variations in the augmented traces while
preserving the critical features for accurate classification. By
doing so, the encoder can effectively extract the commonalities
between the positive pairs during the pretraining part, so that it
can identify the essential features for classification and discard
irrelevant information.

To achieve this goal, we employ randomness in our data
augmentation approach. The occurrence of augmentation can
be more unpredictable, and so that we can generate different
augmented traces. As shown in Fig. 4, our stochastic data aug-
mentation technique includes three types of data augmentation:
random shift, random cropping, and random denoising. The
procedure for each data augmentation technique is as follows:

1) Random Shift (RS): Given the maximum range for left or
right shifts Ls, the size of each shift is random. The specific
length of movement ls satisfies the Eq. (5), where ls is a
positive number for a left shift, and a negative number for
a right shift.

ls = random(−Ls, Ls) (5)

2) Random Cropping (RC): Cropping occurs with a proba-
bility of 50%. If cropping occurs, the position of the cropping
pc is random and determined by Eq. (6). Lc in the Eq. denotes
the size of the cropping, and L denotes the length of the
original trace. After cropping, it is essential to stretch the trace.
This involves uniformly filling the cropped trace to ensure that
its length remains consistent with its original length.

pc = random(0, L− Lc) (6)

3) Random Denoising (RD): Given the weighting factor W ,
denoising occurs randomly. The calculation process is shown
in Eq. (7). The notation tji in this equation represents the j-th
point of the original trace ti, while xj

i represents the j-th point
of the trace xi after denoising.

xj
i =

uj
i +W × uj+1

i

W + 1
, uj

i =
tji +W × tj−1

i

W + 1
(7)

B. SCA Approach based on Contrastive Learning

This section presents the proposed approach for CL-SCA,
which consists of two main parts: pretraining and fine-
tuning. In the pretraining part, we leverage stochastic data
augmentation techniques to effectively capture the valuable
features from the traces. To achieve this, we train the encoder
f(·) on Np traces obtained from the profiled device in an
unsupervised setting. It is important to note that these traces
and their corresponding labels can form the profiled set Dp.
Our encoder f(·) is trained using mini-batch gradient descent.
The following is a detailed description of CL-SCA for training:
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(1) Perform stochastic data augmentation: Perform two
rounds of stochastic data augmentation on each trace ti from
mini-batch to obtain two augmented traces xi and xj .

(2) Encode with the encoder f(·): Use the encoder f(·) to
encode the augmented traces xi and xj as feature vectors hi

and hj , respectively.
(3) Perform the projection head g(·): Encode the feature

vectors hi and hj into the projection head output vectors zi
and zj using the projection head function g(·).

(4) Calculate the loss and train the encoder f(·): Calculate
the similarity between zi and zj as loss function. Then apply
backward training to the encoder f(·) to adjust its weights
with the objective of maximizing this similarity.

The stochastic data augmentation technique used in step
(1) has been discussed in the previous. By maximizing the
similarity between the feature vectors for the positive pair, the
encoder is encouraged to focus on the critical leakage features
and ignore irrelevant features for classification, which can
improve the accuracy and robustness of fine-tuning network.

The projection head employed in step (3) is based on a
neural network. Specifically, the projection head is imple-
mented as an MLP with one hidden layer and ReLU activation
function. In the fine-tuning part, however, only the feature
vectors before the projection head are used for training the
model. But the introduction of projection heads in pretraining
part still improves the effectiveness of fine-tuning. This is
because maximizing the similarity of positive sample pairs
during the pretraining part makes the relevant feature vectors
of positive sample pairs being trained to be invariant. If the
projection head is not utilized, maximizing the similarity will
inadvertently erase information that is beneficial for fine-
tuning, resulting in a decrease in performance.

In step (4), in order to calculate the similarity for a positive
pair, we use ∥ · ∥ to represent ℓ2 regularization, and define the
cosine similarity of two vectors α and β as:

sim(α,β) =
(α)Tβ

∥α∥∥β∥
. (8)

We define the size of the mini-batch as n. After data
augmentation, there are n positive pairs, i.e. 2n augmented
traces. For a positive pair, we treat 2(n − 1) augmented
traces within a mini-batch as negative examples. Utilizing
cosine similarity sim(α,β) introduced earlier, we define a
loss function for the relevant vectors (zi, zj) of a positive pair
as:

ℓ(zi, zj) = − log

 exp
(

sim(zi,zj)
τ

)
∑2n

k=1 I[k ̸=i] exp
(

sim(zi,zk)
τ

)
 , (9)

where I[k ̸=i] is an indicator function evaluating to 1 iff k ̸= i.
τ represents a temperature parameter which is set to 0.07 in
our work. The numerator in the log calculates the similarity
of positive pair (zi, zj), while the denominator calculates the
similarity of negative examples of zi. By minimizing this loss,
the encoder can extract common critical features that are still
useful for classification after data augmentation. The final loss
function used during pretraining, which is termed as NT-Xent

in previous work, is the average loss of all positive pairs in a
mini-batch:

L =
1

2n

n∑
i=1

[ℓ(zi, zj) + ℓ(zj , zi)]. (10)

After training multiple epochs in the previous steps, the
encoder f(·) can unsupervisedly extract critical features from
the profiled set.

In the fine-tuning part, we utilize the encoder from the
pretraining part for profiled side-channel analysis. We add a
fully connected layer to the trained encoder f(·) to construct
the neural network. The process of fine-tuning part is to train
this required neural network using the labeled profiled trace
set Dp and evaluate its performance on Na traces from the
target device, which constitute the attack trace set Da.

C. CL-SCA+
While CL-SCA is effective in extracting crucial features,

there is still a potential waste of information. Specifically,
traces in the attack set also contain useful information that
have not been utilized. To address this problem, we propose
incorporating the attack trace set into the training process and
thereby introducing the CL-SCA+.

Fig. 5. The process of CL-SCA+.

We observe that the pretraining part of CL-SCA is unsuper-
vised. The pretraining only augments the traces of the profiled
set, and then trains the encoder to find the commonalities of
the positive pairs. This process does not require any labels of
the profiled set. Therefore, we can extend the original input
dataset to D, which is composed of the profiled trace set Dp

and the attack trace set Da without any labels. Through this,
we can enable the model to learn the useful information of the
attack trace set during the pretraining part, thereby improving
the effectiveness of key recovery.

Fig. 5 illustrates the CL-SCA+ process. This process begins
by utilizing unlabeled profiled trace set and attack trace set to
pretrain an encoder. This encoder is responsible for extract-
ing the valuable features. Subsequently, a neural network is
constructed based on this pretrained encoder and fine-tuned
using a labeled profiled trace set. Finally, the fine-tuned neural
network is employed to classify the traces present in the attack
trace set, ultimately leading to the key recovery.
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TABLE I
HYPERPARAMETERS

Network Architecture
Convolution Blocks 5

Filters {64, 128, 256, 512, 512}
Kernel Size 11

Activation Function ReLU
Pooling Layer Average

Fully Connected Layers 2
Neurons 4096

Petrain Hyperparameters
Optimizer Adam

Weight Decay 0.0001
Learning Rate 0.00001
Loss Function NT-Xent
τ in NT-Xent 0.07

Epochs 200
Projection Head Output 128

Fine-tuning Hyperparameters
Optimizer Adam

Learning Rate 0.00001
Loss Function Cross Entropy Loss

IV. EXPERIMENTS

This section describes the conducted experiments to evalu-
ate the effectiveness of the proposed approach. Two distinct
datasets were used for this purpose: the ASCAD dataset and
the AES-SAKURA dataset. We conduct the experiments using
the PyTorch library in Python on a workstation equipped
with an Nvidia GTX 3090 GPU and 128GB of RAM. The
hyperparameters used in all experiments are presented in Table
I. Our approach is capable of improving the performance
of all side-channel analysis methods based on the neural
network, and is applicable to various network models. We
only showcase the network presented in Table I for the sake
of brevity.

A. Experiments on ASCAD Dataset

The ANSSI SCA Database (ASCAD) [27] is a benchmark
proposed by Benadjila et al. in 2018 for evaluating the
performance of side-channel analysis method based on neural
networks. This dataset captures electromagnetic traces from
the protected AES algorithm executed on the 8-bit AVR archi-
tecture ATMega8515 development board. Each trace consists
of 700 data points and is associated with a fixed key.

Considering the remote attack scenarios with limited pro-
filed traces, we use a total of 20,000 traces of the ASCAD
dataset to apply CL-SCA. Of these, 10,000 traces were labeled
with the output of the Sbox and used as the profiled set, while
the remaining 10,000 traces were unlabeled and used to form
the attack trace set.

In the pretraining part, we utilize all 10,000 profiled traces
in Dp without labels to train the encoder. The stochastic data
augmentation technique is employed to augment the traces.
We fix the hyperparameters of refered data augmentations at
W = 1, Ls = 5 and Lc = 5. Due to the fact that most point
of the trace is related to the label, and the length of the trace
is very short, we keep parameter settings of data augmentation
low to avoid losing useful information.

Furthermore, a batch size of 500 is used during pretraining.
We employ cosine annealing for the learning rate, which

Fig. 6. GE of CL-SCA on ASCAD.

gradually decrease the learning rate over time in a cyclical
fashion. Linear warmup is also used for the first 10 epochs to
gradually increase the learning rate to its maximum value.

In the fine-tuning part, we concatenate a fully connected
layer for classification with the trained encoder. The classifi-
cation output dimension is set to 256, corresponding to the
256 possible outputs of one byte of Sbox. Notably, we don’t
freeze the trainable parameters of the encoder. In other words,
the encoder and the added fully connected layer is trained
simultaneously in the fine-tuning part. We train the neural
network with the profiled set and evaluate it with the attack
trace set.

We employ the data augmentation techniques in the pre-
training part, and assess the performance of the model with
the attack trace set during the fine-tuning part. The evaluation
metric employed in our study is guessing entropy (GE). GE is
a widely used evaluation criterion in SCA field for evaluating
the effectiveness of different analysis methods. It quantifies
the ranking of the correct key among all candidate keys.
Therefore, a lower GE indicates a more accurate key recovery.
The results are depicted in Fig. 6. Throughout the experiments,
we maintain a fixed number of epochs at 40 to achieve optimal
performance. To obtain robust results, we shuffle and calculate
the GE curve of the attack set 100 times. Fig. 6 displays these
100 GE curves as gray lines, while the average curve of these
100 GE curves is depicted as a blue dashed line. CL-SCA
achieved a GE equal 0 and successfully recovered the correct
key using 3,860 traces.

The selection of data augmentation impacts the effective-
ness of CL-SCA. Hence, we evaluate the effect of different
data augmentation combination on the performance of our
approach. We use the CNN as a baseline, which has same
model architecture as CL-SCA. We conduct 10 experiments
for both CL-SCA and the CNN and calculated the average
performance across these 10 experiments. Fig. 7 and Table
II shows a comparison of the performance of CL-SCA with
different data augmentation techniques on the ASCAD dataset.
”None” represents the experimental result of CNN in Fig. 7.

When using only one type of data augmentation, CL-SCA
performs best with the RC. It requires about 3627 traces to
recover the secret key. CL-SCA with RD follows as the second
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Fig. 7. The results of different data augmentation combinations on ASCAD.

TABLE II
THE PERFORMANCE OF STOCHASTIC DATA AUGMENTATION

COMBINATIONS

Number of Types Types Required Traces
RC 3627
RD 3923One type
RS 4579

RD + RS 3733
RD + RC 4126Two types
RS + RC 4607

3888Three types RD + RS + RC

most effective technique, while the improvements achieved
through RS are more limited. But overall, all of them are better
than CNN. This is because not all 700 points in a trace are
relevant to the key, and random cropping can help remove
some irrelevant points. CL-SCA with RS enables the model
to avoid focusing solely on specific fixed samples within the
traces, and instead consider the relationships between different
samples. CL-SCA with RD improves the signal-to-noise ratio
(SNR), resulting in better performance.

When using two types of data augmentation, the best
results are achieved when RD and RS are combined. It uses
about 3733 traces when the secret key is recovered. However,
compared to using only RC, introducing RS or RD leads
to a slight decrease in the effectiveness of the experiment.
Nevertheless, the extent of decrease is relatively limited. The
performance still outperforms CNN.

When using a combination of all three data augmentation
techniques, approximately 3888 traces are required when the
secret key is recovered successfully. CL-SCA clearly out-
performs the CNN model by a significant margin, although
this experiment not achieving the top performance among the
conducted experiments.

All experiments about stochastic data augmentation empha-
size the importance of carefully selecting and utilizing suitable
data augmentation tailored to the specific characteristics of
the dataset. Notably, incorporating RS as a data augmenta-
tion technique proves particularly beneficial for the ASCAD
dataset. However, it is important to note that simply increasing
the number of data augmentation types does not guarantee

Fig. 8. Comparison of results obtained using different methods on ASCAD.

improved performance. Overall, our findings underscore the
significance of thoughtful augmentation strategy selection for
achieving better performance.

After confirming the data augmentation used for the AS-
CAD dataset, we choose RC as the best data augmentation, and
compare our results with various machine learning methods,
including CNN, MLP, SVM, and RF. The MLP uses a network
structure with three hidden layers. As SVM and RF are more
suitable for low-dimensional data, we first use LDA and PCA
to reduce the dimensionality of the traces before conducting
experiments. Similarly, the network structure of CNN is the
same as CL-SCA. The primary difference between CNN and
CL-SCA lies in the training process. The side-channel analysis
using CNN starts from a randomly initialized model, whereas
CL-SCA requires unsupervised pretraining. In addition, to
ensure a fair evaluation, all experiments based on neural
networks use the same optimizer, learning rate, and other
relevant parameters.

The experimental results are shown in Fig. 8, which dis-
plays the GE curves obtained from different methods for key
recovery. CL-SCA achieves the best performance and can
recover the key using about 3,610 attack traces. CNN also
performs well, but still needs 7,200 attack traces to recover the
key. The other methods, MLP, RF, and SVM cannot recover
the key within 10,000 attack traces. Compared to the CNN,
CL-SCA reduces the number of required attack traces by
3,590. These results mean that CL-SCA is superior to other
machine learning methods, and utilizing our proposed method
can effectively reduce the number of traces required for key
recovery using CNN by 49.86%.

B. Experiments on AES-SAKURA Dataset

To demonstrate the effectiveness of CL-SCA, we also
conduct experiments on the AES-SAKURA dataset. The AES-
SAKURA dataset are electromagnetic traces of the AES-128
algorithm implemented on the SAKURA-G platform. The
dataset leaks the Hamming distance between the ciphertext
and the input of the last round Sbox. We collect a total of
44,200 traces with a length of 500 points (only containing the
last round of AES) for the approach, including 35,000 labeled
traces and another 9,200 unlabeled traces.
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Fig. 9. GE of CL-SCA on AES SAKURA.

Fig. 10. The results of different data augmentation combinations on AES-
SAKURA.

We first conduct CL-SCA on AES-SAKURA using all
data augmentation techniques in the pretraining part. All the
hyperparameters settings of the experiment are identical to
ASCAD, except for the epoch. Based on experiments, we
have discovered that setting the epoch to 30 is a more suitable
choice to mitigate overfitting.

We present the GE results of the fine-tuning part of CL-
SCA in Fig. 9. Due to the hardware parallel simultaneous
operation of 16 Sboxes in the same round, the SNR of the
traces is very low. Therefore, analyzing this dataset is more
challenging compared to ASCAD. Nonetheless, CL-SCA also
achieves excellent results. Attacking with 9,200 traces can
reduce the GE to 6, and the key can be recovered through
key enumeration.

We also evaluate the effectiveness of different data augmen-
tations on this dataset, and present the results in the Fig. 10.
It can be observed that for a single type of data augmentation,
CL-SCA with RD cannot improve the performance of CL-
SCA compared to the CNN experiment. On the contrary, CL-
SCA with RC greatly improves the performance, because the
SNR is higher at the peak position in the trace of hardware
implementation, while the SNR gradually decreases at other
positions. CL-SCA with RC can remove low-SNR points with
high probability, thereby improving the model’s performance.

When using two types of data augmentation, CL-SCA

Fig. 11. Comparison of results obtained using different methods on AES-
SAKURA.

combining RS with RD exhibits the most favorable results.
However, it is observed that the introduction of RD has
minimal impact on the performance improvement achieved
through RS alone. Conversely, when RC is combined with
other data augmentation methods, the experimental results are
notably poorer, indicating that increasing the number of data
augmentation types does not necessarily improve the perfor-
mance of CL-SCA. When three types of data augmentation are
used, the results of multiple experiments are further improved.
Its performance is significantly better than CNN and the other
data augmentation experiments.

These experiments once again prove that the selection of
data augmentation techniques based on the specific character-
istics of the trace dataset can lead to significant improvements.
Additionally, increasing the number of data augmentation tech-
niques does not necessarily result in improved performance.
Whereas, we would like to emphasize that the three data
augmentation combinations used in our experiments produce
excellent results on both ASCAD and AES-SAKURA datasets,
surpassing the performance of CNN. Therefore, we recom-
mend utilizing all three types of data augmentation when
applying CL-SCA to achieve superior generalization.

After selecting combination of all data augmentation types
as the most effective data augmentation techniques for the
AES-SAKURA dataset, we compare the performance of CL-
SCA with several other methods, including CNN, MLP, SVM,
and RF. The parameters of side-channel analysis based on
neural network are same as ASCAD. The GE results of these
experiment are shown in Fig. 11. It can be seen that only
the GE of CNN and CL-SCA exhibits a consistent downward
trend, with CL-SCA exhibiting the best performance. In con-
trast, the GE of MLP, RF, and SVM does not demonstrate a
decreasing pattern and fails to reach a satisfactory level even
with 9,200 traces for attack, remaining outside the top 50.
These results highlight the significant advantages of CL-SCA
across diverse platforms and implementations. It is evident
that CL-SCA outperforms these alternative methods in terms
of reducing the GE, further emphasizing its superiority.
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TABLE III
EXPERIMENT SETUP

CNN CL-SCA CL-SCA+

Pretrain with stochastic
data augmentation × ✓ ✓

Pretrain set × Profiled Traces Profiled Traces and
Attack Traces

Fine-tuning/
Regular training ✓ ✓ ✓

Train set Profiled Traces Profiled Traces Profiled Traces

C. Experiments for CL-SCA+

Although the previous subsection demonstrates the advan-
tages of CL-SCA, this approach still has limitations as it
does not utilize information from the attack trace set, despite
the presence of useful information in the attack trace set.
To address this issue, we utilize the useful information in
the attack trace set during the pretraining part of CL-SCA
and propose an enhanced approach called CL-SCA+. This
approach enables the model to learn some attack trace set’s
information in an unsupervised manner. In order to evaluate
the effectiveness of the enhanced approach, we will conduct
experimental verification on different datasets.

We compare the performance of three different methods:
CNN, CL-SCA and CL-SCA+. The experimental setup is
shown in Table III. To ensure fairness, we use identical hy-
perparameters, including network architecture and optimizer,
as listed in Table I. We set the epoch for the fine-tuning part
and the CNN method to 40, in order to prevent overfitting and
achieve optimal key recovery. In addition, as recommended
before, we use the combination of all data augmentation tech-
niques instead of selecting the data augmentation according to
the characteristic of the datasets.

We conduct the experiments on ASCAD dataset, and the
results are shown in Fig. 12. Shadows of different colors
represent the GE range of different methods, while different
dark curves represent the average GE of these methods. It
can be observed that the CL-SCA has significant advantages
over the CNN. Several CNN experiments show that 10,000
attack traces are not sufficient to reduce GE to 0, whereas all
experiments of the CL-SCA can reduce GE to 0. This suggests
that simple training is not enough, and using contrastive
learning and stochastic data augmentation for pretraining can
help the model focus on previously overlooked information,
significantly improving its effectiveness.

The results of CL-SCA and CL-SCA+ exhibit a close
proximity, with an insignificant difference between them as
shown in Fig. 12. Therefore, we analyze the results from all
experiments of these two approaches in more detail. We cal-
culate the distribution of the number of required attack traces
separately, as shown in Fig. 13. The horizontal axis represents
the range of the number of traces required to reduce GE to 0,
while the vertical axis represents the number of experiments.
In the case of successful secret key recovery in CL-SCA+,
we have observed that the maximum number of experiments
occurs when the number of attack traces falls within the range
of (3000, 4000]. In contrast, when it comes to CL-SCA, the

Fig. 12. The results of CL-SCA and CL-SCA+ on ASCAD.

Fig. 13. Distribution of multiple experimental results of CL-SCA and CL-
SCA+ on ASCAD.

range of (4000, 5000] attack traces witnessed the highest
number of experiments. When processing the same amount of
traces, it is more likely for CL-SCA + to successfully recover
the key compared to CL-SCA. We also calculate the average
number of traces required for all experiments and find that
CL-SCA requires 3944 attack traces when the secret key is
successfully recovered, while CL-SCA+ requires 3658 traces.
Furthermore, CL-SCA+ demonstrates superior performance in
both the best and worst experimental results. This indicates
that utilizing the attack trace set in the pretraining part can
help the model learns more useful information and improves
key recovery performance.

We also conduct the experiments on AES-SAKURA dataset
using the configurations shown in Table III. The results are
presented in Fig. 14. It is evident that both CL-SCA methods
are significantly superior to CNN. Unlike the results on the
ASCAD dataset, the difference between CL-SCA+ and CL-
SCA is more pronounced in AES-SAKURA dataset. The
results of improved CL-SCA+ are more stable, and its GE
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Fig. 14. The results of CL-SCA and CL-SCA+ on AES-SAKURA.

is lower. These experimental results once again highlight the
benefits that contrastive learning and stochastic data augmenta-
tion bring to side-channel analysis, and the utilization of attack
trace sets can also improve the effectiveness of key recovery.

V. CONCLUSION

In this paper, we apply contrastive learning to the commu-
nity of side-channel analysis for the first time and propose
CL-SCA, which can extract useful information in unsuper-
vised setting. We also utilize stochastic data augmentation
technology to assist the model to ignore irrelevant information
and focus on critical features in the traces. We prove that
when using appropriate data augmentation techniques, which
are tailored to the characteristics of the dataset, CL-SCA can
perform even better. We also demonstrate that the performance
of CL-SCA outperforms traditional machine learning methods
through different experiments .

By introducing the attack trace set into the training process,
we propose an extension approach CL-SCA+. The improved
approach can unsupervisedly extract the useful information
in the attack trace set, making key recovery easier. We have
conducted a detailed analysis of the experimental results of
CL-SCA and CL-SCA+ on different datasets to verify this
point.

In the future, we intend to apply the concept of contrastive
learning to various research findings in SCA methods based
on neural network and investigate its ability for enhancing
these methods. In addition, we recognize the need for further
exploration into the impact of different components within CL-
SCA, such as the projection head and network structure, on
experimental results.
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