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Abstract

Given the recent progress in machine learning (ML), the cryptography community has started
exploring the applicability of ML methods to the design of new cryptanalytic approaches. While
current empirical results show promise, the extent to which such methods may outperform clas-
sical cryptanalytic approaches is still somewhat unclear.

In this work, we initiate exploration of the theory of ML-based cryptanalytic techniques, in
particular providing new results towards understanding whether they are fundamentally limited
compared to traditional approaches. Whereas most classic cryptanalysis crucially relies on di-
rectly processing individual samples (e.g., plaintext-ciphertext pairs), modern ML methods thus
far only interact with samples via gradient-based computations that average a loss function over
all samples. It is, therefore, conceivable that such gradient-based methods are inherently weaker
than classical approaches.

We introduce a unifying framework for capturing both “sample-based” adversaries that are
provided with direct access to individual samples and “gradient-based” ones that are restricted to
issuing gradient-based queries that are averaged over all given samples via a loss function. Within
our framework, we establish a general feasibility result showing that any sample-based adversary
can be simulated by a seemingly-weaker gradient-based one. Moreover, the simulation exhibits
a nearly optimal overhead in terms of the gradient-based simulator’s running time. Finally, we
extend and refine our simulation technique to construct a gradient-based simulator that is fully
parallelizable (crucial for avoiding an undesirable overhead for parallelizable cryptanalytic tasks),
which is then used to construct a gradient-based simulator that executes the particular and highly
useful gradient-descent method.

Taken together, although the extent to which ML methods may outperform classical
cryptanalytic approaches is still somewhat unclear, our results indicate that such gradient-based
methods are not inherently limited by their seemingly restricted access to the provided samples.
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1 Introduction

The interplay between cryptography and learning theory has been extensively studied over the years,
consistently leading to fundamental insights, both theoretical and practical. Traditionally, the study
of this interplay has mostly focused on establishing a fruitful relationship between the hardness of
cryptographic problems and that of learning problems (see, for example, [Val84, KV89, Riv91, Kha93,
Reg05, KS09, ABW10, SZB21] and the references therein). Quite recently, however, following the
tremendous progress in the area of machine learning, the cryptographic community has gradually
started revealing an additional exciting avenue: Exploring the applicability of modern machine
learning methods (in particular, those based on training deep neural networks, or DNNs) to the
design of new cryptanalytic approaches that may hopefully improve upon the classic, somewhat
“manual”, cryptanalytic approaches.

ML-based cryptanalysis. ML-based cryptanalytic methods have so far been developed mostly
for attacking block ciphers, starting with the work of Gohr [Goh19] focusing on differential cryptanal-
ysis of SPECK [BSS+13], and for attacking the LWE problem, starting with the work of Wenger,
Chen, Charton, and Lauter [WCC+22]. In both cases, essentially, the same high-level ML-based
methodology was followed: First, a large sample set was used to train a DNN using a certain net-
work architecture and learning algorithm. Then, the resulting DNN was challenged with respect to
an appropriate key recovery task or an indistinguishability task. For example, the sample set used
by Gohr consisted of samples ((C1, C2), y) corresponding to encryptions under a secret key of either
two uniformly random plaintexts (when y = 0) or uniformly chosen plaintexts that have a fixed
difference ∆ = P ⊕ P ′ (when y = 1).

Similarly, the sample set used by Wenger et al. consisted of a large number of independently
generated LWE samples (x, y = x · s+ e mod q) for a secret s and added noise e.

The work of Gohr and that of Wenger et al. motivated a large and growing amount of follow-up
work, as we further discuss in Section 1.2. This includes additional applications of ML-based methods
both in the context of block ciphers [JKM20, BGP+21, GLN22, BB22] and in the context of the
LWE problem [LSW+23a, LSW+23b, SWL+24]. The extent to which these ML-based techniques
outperform classic ones has been the subject of debate [DPS23], and further empiricism is warranted.
We suggest complementing empiricism with theoretical treatments. To date, however, no formal
frameworks have been suggested.

Sample-based vs. gradient-based methods. In this work, we initiate the exploration of the
theoretical foundations of ML-based cryptanalysis, focusing on the question of whether learning-
based approaches are fundamentally limited compared to others.

Motivating our exploration is the observation that modern ML-based methods fall into a specific
template (as discussed above) that only access samples via gradient-based computations, which are
averaged over all samples via a “loss function”. In comparison, traditional approaches use full access
to process samples directly. This crucial difference motivates the following question:

Are ML-based cryptanalytic methods inherently limited due to their
seemingly restricted access to cryptographic samples?

1.1 Our Contribution

We initiate a foundational exploration of the extent to which machine learning methods may lead
to significant cryptanalytic advances. First, we introduce a unifying framework that models both
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“sample-based” adversaries and “gradient-based” ones, and put forward strong simulation notions
capturing a concrete and quantifiable extent to which a sample-based adversary may be simulated
by a gradient-based one. Then, within our framework, we provide a somewhat surprising negative
answer to the above fundamental question via a sequence of increasingly refined general feasibility
results, showing that any sample-based adversary can be simulated by a seemingly weaker gradient-
based one with no significant loss in efficiency.

Taken together, our results indicate that the extent to which machine learning methods may lead
to significant cryptanalytic advances is not inherently limited by their seemingly restricted access to
the provided samples. In what follows, we provide a high-level overview of our main contributions.

Modeling gradient-based methods. Our notions of sample-based adversaries and gradient-
based ones model algorithms that are provided with access to a set S of samples (x, y) ∈ X ×Y, for
some finite sets X and Y. However, while sample-based adversaries receive the sample set S as an
explicit input, gradient-based ones receive only the size |S| of the sample set as an explicit input and
are then restricted to accessing the sample set itself by querying a corresponding “gradient oracle”
OG.

Our gradient oracle, which models a gradient-based training process, is provided with the sample
set S, and receives queries of the form (ℓ, h, θ⃗ ), where:

• ℓ : R× Y → R+ is a differentiable loss function, and

• h : Rp ×X → R is a differentiable model function equipped with its model parameters θ⃗ ∈ Rp.

At a high level, the model function h represents the gradient-based adversary’s current estimate of
a mapping between X and Y, and the loss function ℓ is used by the oracle to determine the extent
to which the estimated mapping is accurate. Specifically, given a sample set S and a query (ℓ, h, θ⃗ ),
the gradient oracle OG averages, over all samples (x, y) ∈ S, the gradient ∇θℓ(h(θ⃗, x), y) of the loss
function when composed with the model function h(θ⃗, ·). Intuitively, this provides a measure of the
way the model parameters θ⃗ may be modified in order to minimize the value of the loss function. Note
that the gradient oracle still enables general access in terms of adversarial choice of ℓ and h that can
change adaptively with each query. Common ML algorithms, including cryptanalytic ones, interact
with gradient oracles in a much more limited fashion, most often via gradient descent (GD). Here,
algorithms start with some initial set of parameters θ⃗0 and then, over a fixed number of iterations,
refine them by (1) querying (ℓ, h, θ⃗t−1 ) to obtain a gradient vector g⃗, and (2) applying a fixed update
rule θ⃗t = θ⃗t−1 − η · g⃗. Here, η is a parameter called the learning rate.

As we concretely demonstrate in Appendix A, this modeling of a gradient-based training process
is indeed sufficiently general and expressive for capturing the ML-based cryptanalytic methods that
have so far been developed. At the same time, such gradient-based and, even more so, GD-based
algorithms clearly utilize very limited access to samples. Intuitively, it would seem that this could
limit the power of such adversaries, at least compared to ones that have unfettered sample access.

Notions of simulation. To explore this intuition, we put forward strong simulation notions cap-
turing a concrete and quantifiable extent to which a sample-based adversary may be simulated by
a gradient-based one. Our simulation notions are strong in the sense that they enable replacing
any sample-based adversary in a cryptographic experiment with a gradient-based adversary that
simulates it. At a high level, we quantify the “ϵ-closeness” of such a simulation in an information-
theoretic manner, and say that a gradient-based adversary B simulates a sample-based one A if, for
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any distribution D that produces samples sets, it holds that

SDS←D

(
(S,A (S)) ,

(
S,BOG(S,·,·,·)

(
1|S|
)))

≤ ϵ,

where SD denotes the statistical distance between the above two distributions. This guarantees that
whenever we replace a sample-based adversary in a cryptographic experiment with a gradient-based
one that simulates it within distance ϵ, the results of the two experiments differ by statistical distance
at most ϵ.

Our results in this work, in fact, provide an even stronger guarantee that we formalize by asking
for a single “universal” gradient-based adversary that can be used to simulate any sample-based
algorithm. For this purpose, such a universal black-box gradient-based simulator is provided with
oracle access both to the gradient-based oracle and to the sample-based adversary it simulates.

Goal: gradient-based simulation—with low overhead. Equipped with our framework, we
then start exploring the feasibility of constructing gradient-based simulators for sample-based ad-
versaries. Concretely, our first goal is to understand whether any sample-based adversary may be
simulated by a gradient-based one. At this point, we crucially observe that such a feasibility result
on its own may be insufficient for cryptographic applications: Although simulating within statistical
distance ϵ guarantees that the success probability of the resulting gradient-based adversary would be
essentially identical to that of the sample-based adversary that it simulates, it does not capture the
efficiency overhead of the simulation.

Thus, given that the security of cryptographic primitives and schemes is measured via the trade-
off between the success probability of attacking them and the efficiency of the attack, we must
therefore additionally consider the efficiency overhead of the simulator. We capture this overhead
by considering the following two key measures of efficiency for any gradient-based simulator: The
internal running time of the simulator and the number of queries that it issues to the gradient oracle.

Black-box perfect simulation via DFS-based extraction. As our first construction, we present
a gradient-based adversary that black-box simulates any sample-based one. Moreover, the simulation
is perfect in terms of producing a completely identical output distribution, and is highly efficient in
terms of the simulator’s internal running time and query complexity (both are essentially linear in
the number of samples).

The main observation underlying this construction is that gradient queries are, somewhat coun-
terintuitively, sufficiently expressive for efficiently extracting the entire set of samples. Specifically,
we observe that, for any sample set S = {(xi, yi)}i∈[s] and for any given prefix z, a single gradient
query enables to distinguish between the case in which there are no samples xi that are prefixed
with z, the case in which there is exactly one sample xi that is prefixed with z, and the case in
which there is more than one sample xi that is prefixed with z. We then rely on this observation to
realize a recursive depth-first search (DFS) based exploration of the given sample set by interacting
with the gradient oracle. Ultimately, our simulator is rather efficient, using O(|S| · log |X |) gradient
queries and has time overhead O(|S| · log2 |X |) (see Theorem 4.1).

Our first construction provides a surprising negative answer to our main research question. But
it is somewhat unsatisfying because, while on the one hand, it constructively shows that gradient-
based adversaries are as strong as any sample-based one, it does so using gradient queries that are
fundamentally adaptive and, in particular, are not naturally produced by any GD-based adversary,
i.e., an adversary that only runs the GD algorithm on the samples. Therefore, it may still be the
case that although gradient-based methods are generally not inherently limited, the commonly-used
methods (most notably, GD and its various variants) are inherently limited.
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Gradient descent via parallelizable gradient queries. We therefore go on to extend our
approach to build a simulator that is GD-based. Such a simulator would have to somehow succeed
at simulating a sample-based adversary despite being severely restricted in its interaction with the
gradient oracle: it is not allowed to process the intermediate responses of the gradient oracle in
any way other than determining the next query based on the fixed GD update rule. Crucially,
the simulation can only choose the model function h and the loss function ℓ, along with the initial
parameters θ⃗0, the learning rate η, and the iteration number T . The output of the simulation then can
only rely on the final parameters θ⃗T produced by the GD algorithm. The techniques underlying our
DFS-based simulator above are now inapplicable as they rely on adaptively discarding “non-useful”
paths in order to be efficient. We need a different approach.

As an intermediate step on our way to construct a GD-based simulator, we first devise a non-
adaptive gradient-based simulation technique. We present a black-box gradient-based simulator
whose gradient queries are issued in a non-adaptive manner and are thus fully parallelizable (i.e., all
of its gradient queries can be issued within a single round of parallel queries). This simulator crucially
relies on randomization and thus does not provide a perfect simulation as our first simulation.
Instead, it provides simulation within any statistical distance ϵ, while its efficiency scales with just
log(1/ϵ) (therefore, from a cryptographic perspective, this allows choosing ϵ to be a negligible function
of the security parameter). In fact, as we discuss in Section 5, this construction does not only present
an intermediate simulation technique, but enables us to avoid an undesirable sequential overhead in
the simulation of parallelizable cryptanalytic tasks.

Finally, we build off our parallelizable simulator to obtain a black-box GD-based simulator. The
efficiency of this simulator crucially relies on our non-adaptive simulation, as each of its gradient
oracle queries essentially encodes a number of non-adaptive queries. While encoding multiple queries,
we introduce a mechanism to separate between them, such that each query issued by the GD-based
simulator only replicates a single query issued by the non-adaptive simulator. When concluding all
iterations, the simulator can extract the samples from the final set of parameters.

Summary and open problems. The framework we have introduced enables to formally reason on
the applicability of gradient-based methods to the design of new cryptanalytic approaches. Focusing
on the restricted manner in which such methods process their provided samples, our results indicate
that gradient-based methods are not inherently limited when compared to classical cryptanalytic
approaches. Moreover, this holds even when further restricting gradient-based methods to the most
common gradient-descent learning methodology.

Our exploration gives rise to a variety of interesting problems, with the aim of both improving our
concrete techniques and constructions, and extending the reach of this line of research to consider
various restrictions on ML-based methods. In what follows, we briefly exemplify some of these
potential future directions:

• Although our techniques already lead to highly efficient constructions in terms of their internal
time and query complexities, a natural goal is to establish lower bounds on the required overhead
for black-box simulating any sample-based adversary. Moreover, given that the running time
of our GD-based simulator is somewhat higher than that of our other simulators, it would be
interesting to identify any inherent additional overhead imposed by restricting the simulation
to use gradient descent.

• Our parallelizable simulator crucially relies on randomization, as discussed above, and does
not provide a perfect simulation as our DFS-based deterministic one. A foundational research
direction is to explore the role of randomness in gradient-based simulation of sample-based
adversaries, and whether it is indeed essential for parallelism in this setting.
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• Each of our gradient-based simulators utilizes carefully crafted queries, which are based on non-
trivial choices of the loss function, model function, and parameters. This setting is somewhat
theoretical and might not fully reflect some common practices in ML. An interesting direction
for further research would be to explore whether similar results may be obtained even when
using a more restricted class of queries (e.g., fixing the loss function to be a commonly used
loss such as the square loss).

• A weakened variant of our gradient oracle may be obtained by adding a certain amount of
independent noise to each of its responses. This realistically models, for example, training
with limited-precision samples, and training in the presence of random labeling errors. For
this and other practically motivated variants of our gradient oracle, it would be fascinating to
identify the extent to which they enable simulating sample-based adversaries.

1.2 Related Work

ML-based cryptanalysis. As discussed above, ML-based cryptanalytic methods have so far been
developed in the contexts of block ciphers and the LWE problem. In the context of block ciphers,
Gohr [Goh19] focused on round-reduced versions of Speck32/64 [BSS+13], and trained a ResNet-
based [HZR+16] classification neural network to distinguish between ciphertext pairs that originate
from plaintexts with a predefined difference, and ciphertext pairs that originate from independent
plaintexts. Gohr’s neural distinguisher outperforms classical methods for 5 to 8 rounds of Speck32/64.
Additionally, a key-recovery attack for 11 rounds of Speck32/64 was proposed, based on the trained
model, with an estimated time complexity of 238, improving upon the best-known attack of Dinur
[Din14] with time complexity of 246, at the cost of higher data complexity of 214.5 ciphertext pairs.

Benamira, Gerault, Peyrin, and Tan [BGP+21] revisited Gohr’s work with the goal of obtain-
ing a better understanding of its success, suggesting that his distinguisher was able to effectively
approximate the cipher’s differential distribution tables (DDT). Baksi [BB22] and Jain, Kohli, and
Mishra [JKM20] proposed a somewhat different approach, and trained neural networks to classify
input differences from a set of predefined differences, instead of distinguishing between pairs with a
predefined difference and independent pairs. A significant amount of follow-up work subsequently
applied similar ML-based methods to other block ciphers (see, for example, [HRC21a, SZM21, YK21,
BB22, ZW22, BB22, CSY+23, ZW22, CSY+23, BB22, CSY+23, ZW22, JKM20, LLS+22, ZWw22,
HRC21b, BGL+21, LLS+22, GLN22, BLY+23]).

In the context of the LWE problem, Wenger, Chen, Charton, and Lauter [WCC+22] trained a
neural network on LWE samples with a shared secret s, which they then used for a secret-recovery
attack. This enables them to extract secrets for very sparse (only 3 or 4 nonzero bits) and low-
dimension (up to 128) instances of LWE. Li et al. [LSW+23b] proposed an improvement based on
a preprocessing step, in which the LWE samples are processed by BKZ [CN11], a lattice reduction
algorithm, for obtaining LWE samples with smaller coordinate variance. For larger moduli, this
enabled them to extract secrets for higher dimensions (up to 350) and larger Hamming weights (up
to 60). A follow-up work by Li et al. [LSW+23a] was then able to reduce the modulus size as well
as to additionally recover ternary and small Gaussian secrets. Stevens et al. [SWL+24] proposed
additional improvements that enabled to improve efficiency and reduce sample complexity. The
extent to which these methods can outperform classical methods is still unclear, as also noted by
Ducas et al. [DPS23]. In Appendix A we show how the previous ML-based cryptanalytic methods
are indeed captured within our framework.
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PAC vs. differential-based learning. In the context of machine learning theory, some works
focused on studying the power and limitations of learning with GD and stochastic gradient-descent
(SGD), a popular variant of GD. Abbe and Sandon [AS20] showed that a neural network trained
with SGD with a batch size of 1 (i.e., each gradient update is based on the gradient of a single
example) can implement any PAC learning algorithm [Val84]. Namely, any algorithm for learning
with examples can be used to generate a neural network, such that running batch-1 SGD over this
network simulates the learning algorithm. This result was extended by Abbe et al. [AKM+21],
showing that SGD with a larger batch size can also simulate algorithms for learning from examples,
as long as the gradients are not noisy, where the noise is modeled by the level of arithmetic precision.
These results show that with low noise, i.e., high arithmetic precision, SGD is equivalent to PAC
learning from examples, while SGD with high noise,i.e., low precision, is equivalent to learning from
Statistical Queries [Kea98], a learning framework known to be weaker than PAC.

These works focused on comparing different learning frameworks (e.g., learning with SGD versus
PAC and Statistical Query learning), but did not study the power of gradient-based algorithms in
the context of cryptography. From the technical perspective, the work of Abbe et al. focuses on (a
variant of) the SQ learning model as an intermediate learning model in between PAC learning and
differential-based learning. In the cryptographic context, however, the SQ learning model does not
seem to directly capture realistic applications (either classic ones or recent ML-based ones as those
discussed above). Therefore, we focus on directly exploring the interplay between samples-based
methods and gradient-based ones.

Specifically, in the SQ setting a learner interacts with the SQ oracle by issuing statistical queries
about the sample set, while in the gradient-based setting, the learner interacts with the gradient
oracle by issuing queries that consist of an estimated mapping (as a parameterized function) and a
loss function (used to estimate the quality of the estimate). This difference in interaction with the
oracle requires to structure the oracle queries differently in order to extract the same information,
namely the sample set. For this, Abbe et al. constructed “counting” queries, that ask for the number
of samples that match some rule, e.g., prefix. In our gradient-based setting, we construct the queries
by designing a dedicated loss function and parameterized model function such that the gradient with
respect to the samples will directly encode samples that match some rule, e.g., prefix. Most crucially,
our direct approach enables us to focus on quantitative measures that are more fundamental in the
cryptographic setting, such as the running time and query complexity of attackers, while Abbe et
al. focus most of their technical attention on identifying the level of numeric precision that separates
differential-based learning from either PAC learning or SQ learning.

Memorization in machine learning. Neural networks are known to be able to “memorize” some
of their training samples. Empirically it has been shown that large enough deep neural networks
can achieve good accuracy on large, randomized training sets [ZBH+17]. A line of previous works
explored this phenomenon using neural tangent kernels [JGH18] to show that large enough networks,
trained with GD, can, in theory, memorize the label of each sample in the training set [ADH+19,
DLL+19, Dan20]. Some works showed how individual training samples can be reconstructed from
trained models, both in the vision and in the text domains [CLE+19, HVY+22, BHY+23]. Song et
al. [SRS17] demonstrated that by maliciously modifying the training algorithm, an adversary can
cause intended memorization and increase its ability to extract samples or information about the
training set. Seen in this light, our simulators can be viewed as malicious training algorithms, and
our results go beyond prior ones by showing how to extract the entire training set (rather than just
a few points), and moreover to do so efficiently, as we show in this work. That said, our simulators
do not attempt to simultaneously memorize training data while also achieving good performance for

6



some baseline tasks.

1.3 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present several standard
notions that are used throughout this work. In Section 3 we present our framework for modeling
sample-based adversaries and gradient-based ones. In Section 4 we establish our general feasibility
result by presenting a gradient-based adversary that black-box simulates any sample-based one. In
Sections 5 and 6 we then show that our approach extends to providing a gradient-based simulator
whose gradient queries are fully parallelizable, and a gradient-based simulator that follows the par-
ticular gradient-descent algorithm, respectively. In Section 7 we provide extensions of our results,
from the single-bit output case to the multi-bit one, and from the full-batch gradient oracle to the
mini-batch case, as used in the popular SGD algorithm. In Appendix A we demonstrate the general-
ity of our notion of gradient-based adversaries, and exemplify how previous ML-based cryptanalytic
methods are indeed captured by it.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x← X
the process of sampling a value x from the distribution X. Similarly, for a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X . For a binary string
x ∈ {0, 1}n, we interchangeably refer to x both as a binary vector x = x1 · · ·xn ∈ {0, 1}n and as a
real-valued one x⃗ = (x1, . . . , xn) ∈ Rn. For two random variables X and Y over a finite domain Ω
we denote by SD(X,Y ) their statistical distance, which is defined as

SD(X,Y ) =
1

2

∑
ω∈Ω
|Pr [X = ω ]− Pr [ Y = ω ]| .

LetMn,k be a family of functions mapping from n-bit inputs to k-bit outputs. The familyMn,k

is said to be pairwise-independent if for every x1, x2 ∈ {0, 1}n such that x1 ̸= x2, and for every
y1, y2 ∈ {0, 1}k, it holds that

Pr
M←Mn,k

[M(x1) = y1 ∧M(x2) = y2 ] =
1

22k
.

For a differentiable function f : Rn → R, the gradient ∇f : Rn → Rn with respect to x⃗ =
(x1, . . . , xn) is defined as the vector of its partial derivatives with respect to each component of x⃗,
i.e.,

∇f(x⃗) =
(
∂f(x⃗)

∂x1
, . . . ,

∂f(x⃗)

∂xn

)
∈ Rn .

For functions defined over multiple inputs, we use subscript to denote the input with respect to
which the gradient is computed. For example, for a differentiable function f : Rn1 × Rn2 → R with
two input variables x ∈ Rn1 and z ∈ Rn2 , its gradient with respect to x is defined as

∇xf(x⃗, z⃗) =

(
∂f(x⃗, z⃗)

∂x1
, . . . ,

∂f(x⃗, z⃗)

∂xn

)
∈ Rn1 .

7



3 Our Framework

In this section, we present our framework for modeling both “sample-based” adversaries that are
provided with direct access to individual samples and “gradient-based” ones that are restricted to is-
suing gradient-based queries that are averaged over all given samples via a loss function. We begin by
formally defining our notion of sample-based adversaries and exemplifying the range of fundamental
cryptographic applications that they enable us to capture in this context. Then, we formally define
our notion of gradient-based adversaries, and provide strong simulation notions capturing a concrete
and quantifiable extent to which a sample-based adversary may be simulated by a gradient-based
one.

Sample-based adversaries. Our notion of sample-based adversaries captures the basic form of
an algorithm that explicitly receives as input a sample set, denoted S, and produces an output.
Throughout this work, when we refer to a “sample set”, we in fact refer to a list that contains pairs
of the form (x, y) ∈ X × Y, for some finite sets X and Y (the term set was chosen for consistency
with the common ML terminology of learning from datasets).

Definition 3.1 (Sample-based adversary). Let X and Y be finite sets, and let D be a distribution
over (X ×Y)∗. A sample-based adversary A is a potentially-randomized algorithm that, when given
as input a sample set S ← D, produces an output A(S) ∈ {0, 1}∗.

Despite its simplicity, our notion of a sample-based adversary captures a wide range of fun-
damental cryptographic applications, including both unpredictability and indistinguishability ones.
Specifically, providing the above distribution D (which produces the sample sets in Definition 3.1)
with access to a typically-keyed cryptographic primitive enables to capture various standard security
notions corresponding to the primitive, as we now exemplify.

The most interesting applications in our setting, however, are those in which the produced sample
sets correspond to ones that may be realistically used by ML-based cryptanalytic methods. Such
sample sets are typically generated by independently sampling each pair (x, y) from a given distri-
bution that originates from a hard-to-compute mapping between x and y (and, more generally, a
hard-to-compute relation). For unpredictability applications, this captures, in particular, key recov-
ery for various forms of keyed primitives (e.g., block ciphers, pseudorandom functions and encryption
schemes) as well as unforgeability for MACs and signatures. In both cases, sample sets may consist,
for example, of pairs (x, Fsk(x)), where F is the keyed primitive, and all of the x values are inde-
pendently sampled from a given distribution (e.g., the uniform distribution, which would correspond
to a random message attack). The goal of the adversary is either to extract the key sk (for key
recovery) or to produce a new “valid” pair (x∗, y∗) for a value x∗ that was not included in sample set
(for unforgeability of MACs and signatures).1

As somewhat expected, the above applications do not cover adaptive attacks (e.g., ones in which
an attacker would choose the x values one by one in an adaptive manner after observing each corre-
sponding output Fsk(x)). Indeed, realistic sample sets for ML-based methods are of a rather static
flavor, as discussed above, and we concretely exemplify this in Appendix A using those utilized by
Gohr [Goh19] and by Wenger, Chen, Charton, and Lauter [WCC+22]. Nevertheless, it is important

1Similarly, for indistinguishability applications, realistic ML sample sets naturally arise in various pseudorandom-
ness experiments (such as those used to define the security of weak pseudorandom functions, or hard-core predicates
for a one-way function). In these applications, the goal of the adversary is to distinguish between two distributions
from which the sample set S is sampled: In one distribution it consists of pairs (x, y) where y is a pseudorandom value
computed from x (e.g., the output of a weak pseudorandom function or a hard-core predicate applied to the inverse
of x), and in the other distribution it consists of such pairs where y is uniformly distributed.
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to note that our framework and results capture arbitrary sample sets that may be generated by any
distribution D, and not only those that may be viewed as realistic for ML-based cryptanalysis.

Gradient-based adversaries. Our notion of a gradient-based adversary relies on a corresponding
gradient oracle. This oracle, as formally defined in Figure 1, receives as input a sample set S, two
functions denoted ℓ and h, as well as a vector of parameters θ⃗ for the function h. The first function,
ℓ, typically referred to as the loss function, is a differentiable function ℓ : R × Y → R+. The
second function, h, typically referred to as the model, is a parameterized differentiable function
h : Rp × X → R, where θ⃗ ∈ Rp is its vector of parameters (θ⃗ is typically referred to as the model
parameters). Generally speaking, the function h represents the adversary’s current estimate of a
mapping between X and Y, and the loss function ℓ is used by the oracle to determine the extent to
which the estimated mapping is accurate.2

The gradient oracle OG

(
S, ℓ, h, θ⃗

)
:

1. Compute and output g⃗ ← 1
|S|
∑

(x⃗,y)∈S ∇θℓ(h(θ⃗, x⃗), y).

Figure 1: The gradient oracle OG.

For a given query
(
S, ℓ, h, θ⃗

)
, the oracle evaluates ŷi = h(θ⃗, x⃗i) for each sample (x⃗i, yi) ∈ S, and

compares it to yi using ℓ, i.e., ℓ(ŷi, yi). Then, the oracle computes the gradient of the evaluation of the
loss function with respect to the parameters θ⃗. Denote the individual parameters as θ⃗ = (θ1, . . . , θp),
then the gradient is the vector of partial derivatives with respect to each parameter:

∇θℓ(h(θ⃗, x⃗i), yi) =

(
∂ℓ(h(θ⃗, x⃗i), yi)

∂θ1
, . . . ,

∂ℓ(h(θ⃗, x⃗i), yi)

∂θp

)
.

Then, the oracle outputs the average of this gradient over all samples in the set S. Computing
the gradient of the loss function, composed with h(θ⃗, ·), with respect to the parameters θ⃗ provides
a measure for the way these parameters may be modified in order to minimize the value of the
loss function. In other words, the oracle evaluates the performance of h(θ⃗, ·) over the sample set S
using the loss function ℓ and then computes the gradient in order to suggest a way to improve this
performance. Throughout this work, we do not explicitly require the oracle to verify that all queries
consist of differentiable functions. This is since, in all of our results, all issued queries consist of
differentiable functions (as explicitly established by our proofs).

Note that although it is not essential for our framework to explicitly force any computational
constraints over the functions ℓ and h, we do however assume their computation and derivation can
be computed in polynomial time when considering a sufficient level of precision (we would like to
avoid, for example, a function h that performs an exhaustive search over an exponentially-large key
space). Instead, we include the gradient computation and derivation time in the total running time
of a gradient-based adversary B, which includes the time required for expressing and forwarding a
certain explicit representation (e.g., an arithmetic circuit) of ℓ, h, and the parameters θ⃗ to the oracle
OG.

2While it may seem redundant to distinguish between h and θ⃗ and to provide the oracle both as input (since
θ⃗ can contain a function description and h can be a universal function computing the function provided by θ⃗), we
nevertheless distinguish between the two since this would be useful for defining our next class of adversaries, in which
both h and θ⃗ admit a particular structure.
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Definition 3.2 (Gradient-based adversary). Let X and Y be finite sets, and let D be a distribution
over (X × Y)∗. A gradient-based adversary B is a potentially-randomized algorithm that, when
provided with access to the oracle OG(S, ·, ·, ·) for a set S ← D, and given as input 1|S|, produces an
output BOG(S,·,·,·)(1|S|) ∈ {0, 1}∗.

Definition 3.2 allows the adversary B to perform arbitrary computations and interact with the
oracle OG in any way, under the only restriction that the queries must consist of differentiable
functions. However, in the most common learning methodology, the learner (adversary in our setting)
runs a particular iterative optimization algorithm in order to learn an estimate of some function or
mapping. The Gradient Descent (GD) algorithm is the base for the most popularly used optimization
algorithms. In this algorithm, given a fixed loss function ℓ and function h, the learner chooses
the first oracle query using some heuristic, meaning it chooses initial parameters θ⃗0. Then, the
following queries are dependent on a computation of a specific form over the oracle’s responses. This
computation, known as the GD update rule, receives the current query and the oracle’s response to
it, and defines the next one. More specifically, at each time step t, given the current query (ℓ, h, θ⃗t)
and the oracle’s response g⃗t, the parameters of next query (ℓ, h, θ⃗t+1) are defined as:

θ⃗t+1 = θ⃗t − η · g⃗t ,

where η ∈ R is known as the step size or learning rate. In other words, the GD algorithm uses the
gradients to direct the parameters of h towards a set of parameters that minimizes the loss functions.

Therefore, we additionally consider the following notion of a GD-based adversary as a refinement
of a gradient-based one: A GD-based adversary B

GD[T,ℓ,h,η,θ⃗0] is a gradient-based adversary that runs
a GD algorithm for T iterations, and can then perform any additional computation over the output
of the T -th iteration. We denote by PostProcess such additional computation, which can be viewed
either as part of the internal description of the adversary B

GD[T,ℓ,h,η,θ⃗0] or as a supplied parameter.
See Figure 2 for the formal description.

The GD-based adversary BOG(S,·,·,·)
GD[T,ℓ,h,η,θ⃗0]

:

1. For t ∈ {1, . . . , T} :
1.1 Query OG(S, ·, ·, ·) with (ℓ, h, θ⃗t−1) to obtain g⃗t.
1.2 Update θ⃗t = θ⃗t−1 − η · g⃗t.

2. Output v = PostProcess(θ⃗T ).

Figure 2: The GD-based adversary BGD.

In Appendix A, we demonstrate that our notion of a GD-based adversary enables us to capture
the ML-based cryptanalytic methods that have been studied so far. We exemplify this by focusing
on the methods developed by Gohr [Goh19] and by Wenger, Chen, Charton, and Lauter [WCC+22]
(as discussed in Section 1.2 and which have already led to additional similar methods), and showing
that they indeed fit into our framework.

We emphasize that GD is not the only optimization algorithm used in learning settings, and that
there are many others, such as SGD [RM51], ADAM [KB14], and many more [Rud16]. However,
in this work, we focus our attention on the GD algorithm, as it is the base algorithm behind many
of the popularly used algorithms. This is not a limitation of our work, and all of our results can
be adapted to other algorithms as well. In particular, in Section 7.2 we extend our approach to the
commonly used stochastic mini-batch setting (which also represents the key difference between the
GD and SGD algorithms).
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Our notions of simulation. We capture the extent to which a gradient-based adversary simulates
a sample-based one by measuring the statistical distance between their input-output distributions.
This enables to replace any sample-based adversary in a cryptographic experiment with a gradient-
based adversary that simulates it, and ensures that the statistical distance between the experiments
is bounded by the “closeness” of the simulation.

Definition 3.3 (ϵ-simulation). Let X and Y be finite sets, let ϵ ≥ 0, and let A and B be a sample-
based adversary and a gradient-based adversary, respectively. Then, we say that B ϵ-simulates A
with respect to X × Y if for any distribution D over (X × Y)∗, it holds that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·)

(
1|S|
)))

≤ ϵ,

where S ← D in both distributions.

Definition 3.3 presents a highly intuitive notion of simulation, providing a strong information-
theoretic guarantee that enables to replace any sample-based adversary with a gradient-based one
that simulates it. Our results in this work, in fact, provide an even stronger guarantee obtained
by naturally extending Definition 3.3 to ask for a single “universal” gradient-based algorithm that
ϵ-simulates for any sample-based algorithm. For this purpose, such a universal gradient-based algo-
rithm B is provided with oracle access both to the gradient-based oracle OG and to the sample-based
adversary A that it simulates.

Definition 3.4 (Black-box ϵ-simulation). Let X and Y be finite sets and let ϵ ≥ 0. We say that a
gradient-based algorithm B black-box ϵ-simulates all sample-based adversaries with respect to X ×Y
if for any distribution D over (X × Y)∗ and for any sample-based adversary A it holds that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|
)))

≤ ϵ,

where S ← D in both distributions.

Whenever Definitions 3.3 and 3.4 are satisfied by a gradient-based adversary B for ϵ = 0 (as in
the case with our simulator in Section 4), we refer to such an ϵ-simulation as prefect simulation.

Measuring the simulation overhead. Finally, for identifying the overhead incurred when sim-
ulating a sample-based adversary by a gradient-based one, throughout this work we focus on the
following main measures of efficiency for such algorithms A and B:

• We denote by TA = TA(s, |X |, |Y|) and TB = TB(s, |X |, |Y|, TA) the running time of A and B,
respectively, while naturally allowing the running time of B to depend on that of A. However,
when considering a black-box simulator B, we measure its running time as a function of only
s, |X | and |Y|, while separately accounting for the number of queries that it issues to A. In
order to account for the internal runtime of B, we assume as a standard baseline that simple
arithmetic operations (e.g., additions and multiplications) over a small constant number of
elements from X and Y can be executed in unit cost.

• We denote by QB = QB(s, |X |, |Y|, TA) the number of gradient-oracle queries issued by B
(where, again, we allow the number of queries issued by B to depend on the running time of
A – although this will not be used by our constructions).
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Simulation via neural networks. Neural networks (NN) are a particularly important class of
(typically) non-linear differentiable functions and are the most popular family of model functions
h used in the ML literature. As discussed above, in our framework the model functions h are
assumed to be computable in polynomial time, i.e., their computation can be implemented using
Turing machines (TM) running in polynomial time. As such, they can be represented by a bounded-
size NN. In a nutshell, this holds as poly-sized TMs can be implemented using poly-sized Boolean
circuits [Coo23, Lev73], which in turn can be represented by bounded-sized NNs [SSBD14]. As a
result, although being the most common function family in the ML community, in particular in the
ML-based cryptanalysis literature, we do not need to explicitly limit the class of functions h to neural
networks as any h can be represented as one.

Distinct vs. arbitrary samples. Our gradient-based simulators, which we present throughout
the following sections, assume that the sample sets S given as input to the gradient oracle OG(S, ·, ·, ·)
consist of “distinct” samples. Specifically, letting S = {(xi, yi)}i∈[s] ⊂ X × Y, our gradient-based
simulators assume that xi ̸= xj for any i ̸= j ∈ [s] (i.e., that the x-values within any sample set are
always distinct). This, however, may not be a valid assumption whenever the underlying distribution
D may generate non-distinct samples (say, with some non-negligible probability).

Nevertheless, this assumption does not limit the scope of our framework. This is due to the fact
that machine-learning methods naturally allow to preprocess sample sets, where in our case a naive
single-pass serialization suffices. That is, any sample set S = {(xi, yi)}i∈[s] can be easily transformed
into a serialized one S′ = {(i||xi, yi)}i∈[s] by concatenating an index to each sample. This increases
the bit-length of the x-values from log |X | to log |X |+log s, which for our results yields only a minor
lower-level overhead with no asymptotic effect.3 Thus, in the remainder of this work, we assume
that all sample sets which are given as input to the gradient oracle always consist of distinct samples
(and we will not explicitly serialize and deserialize them).

4 Perfect Simulation via DFS-Based Extraction

Equipped with our framework for modeling sample-based and gradient-based adversaries, in this
section we establish a general feasibility result by presenting a gradient-based adversary that black-
box simulates any sample-based one. Moreover, the simulation is perfect, ensuring a completely
identical output distribution (see Definition 3.4), and exhibits a nearly optimal overhead in terms of
the gradient-based adversary’s running time (when compared to that of the simulated sample-based
adversary).

For simplicity, here we state and prove our result for samples over X × Y where X = {0, 1}n for
some integer n ∈ N and Y = {0, 1}. In Section 7 we extend our result to capture the more general
setting in which Y = {0, 1}m for some integer m ∈ N. We prove the following theorem:

Theorem 4.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. There exists a gradient-based
adversary B that black-box perfectly-simulates all sample-based adversaries with respect to X × Y,
where:

• B runs in time TB(|S|, |X |, |Y|) = O(|S| · log2 |X |).
3Looking ahead, our gradient-based simulators would in fact extract the serialized sample set S′ via their oracle

queries, and then invoke the sample-based adversary A providing it with the original sample set S as input. This
naturally requires de-serializing each sample, which again yields only a minor lower-level overhead with no asymptotic
effect.
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• B issues QB(|S|, |X |, |Y|) = O(|S| · log |X |) queries to the gradient oracle, and a single query
to the simulated sample-based adversary.

For the more general setting in which log |Y| = m > 1, for some integer m ∈ N, our simulator
B runs in time TB(|S|, |X |, |Y|) = O(|S| · log |X | · (log |X |+ log |Y|)) and issues the same number of
queries QB(|S|, |X |, |Y|) = O(|S| · log |X |). We refer the reader to Section 7 for the extended result.
In what follows, we first discuss in more detail the overhead of our gradient-based simulator provided
by Theorem 4.1. Next, we provide a high-level technical overview of our proof of Theorem 4.1, and
then provide its formal proof.

The overhead of our gradient-based simulation. In terms of running time, as our gradient-
based simulator issues only a single query to the simulated sample-based adversary, then the running
time overhead is simply the simulator’s internal running time Ω(|S| · log2 |X |). Note that any sample-
based adversary that merely examines the entire sample set S would run in time Ω(|S| · log |X |),
and therefore compared to all such sample-based adversaries our overhead is asymptotically optimal
within a multiplicative factor of at most O(log |X |).

Proof overview. Inspired by the work of Abbe et al. [AKM+21] (as discussed in Section 1.2),
our main observation underlying the proof of Theorem 4.1 is that gradient queries are sufficiently
expressive for efficiently extracting the entire set of samples. That is, we show that there exists a
gradient based-adversary B that, for any set S ⊆ X × Y, can issue O(|S| · log |X |) queries to the
gradient oracle OG(S, ·, ·, ·) and extract the set S. Then, a single query to the simulated sample-based
adversary A provides the output A(S).

More specifically, our gradient-based simulator (which is formally described in Figure 3 below),
is based on the following main observation: For any sample set S = {(xi, yi)}i∈[s] and for any given
prefix z, we can issue a query that enables to distinguish between the case in which there are no
samples xi that are prefixed with z, the case in which there is exactly one sample xi that is prefixed
with z, and the case in which there is more than one sample xi that is prefixed with z.4 Thus,
beginning with empty string z = ε, this enables our simulator to realize a recursive DFS-based
exploration of the sample set S. Specifically, when exploring a path corresponding to a certain prefix
z, if no samples are prefixed with z then this path is terminated, if there is exactly one sample
prefixed with z then the gradient oracle’s response in fact enables to extract the sample, and if there
is more than one such sample then the simulator continues recursively with the exploration paths
corresponding to the prefixes z0 and z1. The gradient queries issued by B enable, in particular,
to always correctly distinguish between these three cases, and this ensures that all samples are
eventually extracted (and that no false samples are “extracted”).

From a more technical perspective, the simulator B uses the same loss function ℓ across all queries,
which is defined as ℓ(ŷ, y) = (2 + y) · ŷ. As for our choice of the constant 2, since each y ∈ {0, 1}
is a single bit, we have that y < 2. Looking ahead, our proof relies on this property to distinguish
between the case where a single sample is prefixed by some z to the case where multiple samples are.
In Section 7.1 we extend our results to the multi-bit label setting, and show how to adjust the loss
function accordingly. Letting ℓ′(h(θ⃗, x⃗), y) denote the partial derivative of ℓ with respect to h(θ⃗, x⃗),
it holds that

ℓ′(h(θ⃗, x⃗), y) = 2 + y,

4Recall, as discussed in Section 3, that throughout this work we assume that sample sets always consist of distinct
samples, as otherwise straightforward single-pass serialization may be applied.
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and therefore the response g⃗ to any query (ℓ, h, θ⃗) issued by B to the gradient oracle OG(S, ·, ·, ·) is
of the following form (recall Figure 1 for the definition of the gradient oracle):

g⃗ =
1

|S|
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y) · ∇θh(θ⃗, x⃗)

=
1

|S|
∑

(x⃗,y)∈S

(2 + y) · ∇θh(θ⃗, x⃗).

At each step of the exploration B can now tailor the function h, whose gradient ∇θh(θ⃗, x⃗) depends
on the current prefix z, so that it enables to count the number of samples prefixed with z (and, in case
of a single match, to extract it). Specifically, B chooses h and θ⃗ such that ∇θh(θ⃗, x⃗) returns (x⃗, 1) if x⃗
is prefixed by z (the additional entry 1 enables counting), and otherwise returns the all-zeros vector.
That is, for a current prefix z = z1 . . . zk ∈ {0, 1}k, and for some vector of parameters w⃗ ∈ Rn+1,
we set θ⃗ = (w⃗, z) = ((w⃗)1, . . . , (w⃗)n+1, z1, . . . , zk) and define z to be a non-differentiable parameter.
Note that the exact value of w⃗ is not important as it is only used for its gradient behaviour, however
for consistency we will define it as the all-zeros vector (0, . . . , 0) ∈ Rn+1. We can obtain the desired
gradient behavior by defining the function h as follows:

h(θ⃗, x⃗) = w⃗ · ((x⃗)1, . . . , (x⃗)n, 1) · 1x1,...,k=z

= (w1(x⃗)1, . . . , wn(x⃗)n, wn+1) · 1x1,...,k=z ,

and we get:

∇θh(θ⃗, x⃗) =

(
∂h(θ⃗, x⃗)

∂w1
, . . . ,

∂h(θ⃗, x⃗)

∂wn
,
∂h(θ⃗, x⃗)

∂wn+1

)
= ((x⃗)1, . . . , (x⃗)n, 1) · 1x1,...,k=z

=

{
(0, . . . , 0) ∈ Rn+1 if x1...k ̸= z

((x⃗)1, . . . , (x⃗)n, 1) ∈ Rn+1 otherwise

Note that although θ⃗ contains both the differentiable parameters w⃗ and the non-differentiable
parameters z, for clarity we denote by ∇θ the gradient with respect to all differentiable parameters
(i.e., ∇θ represents ∇w). Using the function h and parameters θ⃗, as described above, enables us to
realize a recursive DFS-based exploration for extracting any sample set S.

Proof of Theorem 4.1. Let X = {0, 1}n for some n ≥ 1 and Y = {0, 1}. We show that the
gradient-based simulator B described in Figure 3 black-box perfectly simulates all sample-based
adversaries with respect to X × Y. In what follows we first prove the correctness of the simulation,
and then analyze the running time and query complexity of B.

Let D be a distribution over (X × Y)∗. For proving that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|
)))

= 0 ,

where S ← D in both distributions, we in fact prove a stronger statement. We prove that for any
s ≥ 1 and for any set S ⊆ (X × Y)s, the distribution of the output produced by the computation
BOG(S,·,·,·),A(·)(1s) is identical to the distribution of the output produced by the computation A(S).
For this purpose, it suffices to show that, for any such set S, the algorithm B always extracts the

14



The black-box gradient-based simulator BOG(S,·,·,·),A(·)(1s):

1. Set ℓ(ŷ, y) = (2 + y) · ŷ.

2. Set z = ε. // empty bit-string

3. Compute D = CHECK-MATCH(z).

4. Obtain v ← A(D) and output v.

The recursive procedure CHECK-MATCH(z):

1. Define k = |z| // bit-length of z

2. Define w⃗ = (0, . . . , 0) ∈ Rn+1 and set θ⃗ = (w⃗, z).

3. Define h(θ⃗, x⃗) = w⃗ · ((x⃗)1, . . . , (x⃗)n, 1) · 1x1,...,k=z.

4. Obtain g⃗ = OG(S, ℓ, h, θ⃗) ∈ Rn+1

5. If (g⃗)n+1 = 0: // no matches

Return ∅.

6. If 0 < |S| · (g⃗)n+1 < 4: // single match

Define x̂ = (1/(g⃗)n+1) · (g⃗)1...n and ŷ = |S| · ((g⃗)n+1 − 2)

Return (x̂, ŷ)

7. Else:

Define z0 = z0z1 . . . zk0 and z1 = z0z1 . . . zk1// concat 0 and 1 to z

Return CHECK-MATCH(z0) ∪ CHECK-MATCH(z1)

Figure 3: The black-box gradient-based simulator B.

sample set S via its queries to the gradient oracle (i.e., that in Step 3 of B’s description it holds that
D = S).

At each invocation of the procedure CHECK-MATCH with some prefix z, the algorithm B queries
the oracle OG(S, ·, ·, ·) with (ℓ, h, θ⃗), and obtains a response g⃗ computed as follows:

g⃗ =
1

|S|
∑

(x⃗,y)∈S

∇θℓ(h(θ⃗, x⃗), y) =
1

|S|
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y) · ∇θh(θ⃗, x⃗) .
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Denoting by Sz ⊆ S the set of samples (x⃗, y) ∈ S for which x⃗ is prefixed by z, we obtain:

1

|S|
∑

(x⃗,y)∈S

(2 + y) · ∇θh(θ⃗, x⃗)

=
1

|S|

 ∑
(x⃗,y)∈Sz

(2 + y) · ∇θh(θ⃗, x⃗) +
∑

(x⃗,y)∈S\Sz

(2 + y) · ∇θh(θ⃗, x⃗)


=

1

|S|

 ∑
(x⃗,y)∈Sz

(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1)

+
∑

(x⃗,y)∈S\Sz

(2 + y) · (0, . . . , 0)


=

1

|S|
∑

(x⃗,y)∈Sz

(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1)

=
1

|S|
∑

(x⃗,y)∈Sz

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y)) ,

and thus for the response g⃗ provided by the oracle it holds that

g⃗ =
1

|S|
∑

(x⃗,y)∈Sz

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y)) .

We now distinguish between the following three cases depending on the size of the set Sz:

• Case I: |Sz| = 0. In this case g⃗ = (0, . . . , 0) ∈ Rn+1, and therefore the procedure CHECK-MATCH
returns ⊥ at Step 5.

• Case II: |Sz| = 1. In this case, for Sz = {(x⃗′, y′)} we get:

g⃗ =
1

|S|
∑

(x⃗,y)∈Sz

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y))

=
1

|S|
·
(
(2 + y′) · (x⃗′)1, . . . , (2 + y′) · (x⃗′)n, (2 + y′)

)
,

thus the (n+1)-th component of the vector g⃗ will contain 1
|S| ·(2+y′). As y′ ∈ {0, 1} we get that

y′ < 2, and in particular 0 < 2 + y′ < 2 + 2 = 4. Therefore, the procedure CHECK-MATCH
extracts and returns the pair (x⃗′, y′) at Step 6.

– For the extraction of y′, we multiply the (n + 1)-th component of g⃗ by |S| and subtract
2, and we get

ŷ = |S| ·
(

1

|S|
· (2 + y′)

)
− 2 = y′ .

– For the extraction of x⃗′ we use the first n components of the vector g⃗. By multiplying
element-wise by |S|

(2+y′) we get

x̂ =
|S|

(2 + y′)
·
(

1

|S|
· (2 + y′) · x⃗′

)
= x⃗′ .
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• Case III: |Sz| ≥ 2. Without loss of generality, we will analyze this case for |Sz| = 2. Let
Sz = {(x⃗1, y1), (x⃗2, y2)}. We have:

g⃗ =
1

|S|
∑

(x⃗,y)∈Sz

((2 + y) · (x⃗)1, . . . , (2 + y))

=
1

|S|
(((2 + y1) · (x⃗1)1 + (2 + y2) · (x⃗2)1) , . . . , (4 + y1 + y2))

We can see that the the (n+1)-th component of g⃗ now contains 4+ y1 + y2 ≥ 4 and therefore
the procedure CHECK-MATCH will continue the search over longer prefix values at Step 7.

Thus, we have shown that in each call to CHECK-MATCH we either extract and return one
sample, return ⊥, or return nothing and continue the search recursively. By starting from an empty
string z, that matches all samples in S, we extend it bit-by-bit until we reach all prefixes of the
sample set. This ensures that we extract the entire set S, thus obtaining D = S and proving the
correctness of our algorithm.

After establishing correctness, we now bound the number of queries issued by B as well as B’s
running time. As there are |S| distinct samples, the search will reach at most 2|S| leaves of the
resulting tree: |S| leaves corresponding to the samples, and an additional |S| leaves corresponding
to prefixes that differ in their last bit from a sample. The maximal depth of the DFS tree is at most
the bit-length n of the samples, and therefore each time we reach a leaf, we visit n nodes on the way.
Although some of these nodes may be shared between different samples (meaning they correspond
to prefixes that match more than one sample), there are at most 2|S| · n visited nodes.

Each one of these node visits corresponds to one run of CHECK-MATCH, in which the simulator
B issues one oracle query and performs some basic arithmetic computations over the output g⃗. For
issuing the oracle query the simulator encodes a parameter vector θ⃗ = (w⃗, z) ∈ R(n+1)+k, where
k ranges from 0 to n. Therefore, we bound the number of parameters by O(n). The output g⃗
is of size n + 1 and thus in total we get that we perform O(n) basic arithmetic computations in
each run of CHECK-MATCH. We conclude that by running CHECK-MATCH for O(|S| · n) times
the simulator issues at most QB = O(|S| · n) = O(|S| · log |X |) queries and runs in time at most
TB = O((|S| ·n) ·n) = O(|S| ·n2) = O(|S| · log2 |X |) (assuming that basic arithmetic operations over
n-bits are values are counted at unit cost).

5 Statistical Simulation with Fully-Parallelizable Gradient Queries

In Section 4 we established a general feasibility result by presenting a gradient-based adversary that
black-box simulates any sample-based one. Although the presented simulator is highly efficient in
terms of both its running time and query complexity, it issues its gradient queries in a sequential
manner. Over the years, however, parallelization techniques have played an instrumental role in
speeding up cryptanalytic tasks. Such techniques have provided parallel algorithms for a variety of
cryptanalytic tasks, with notable examples ranging from classic ones such as discrete logarithm algo-
rithms via parallel variants of Pollard’s rho method [Pol78, vOW99, BKN+10, BCC+10, BKK+12]
and collision finding algorithms via parallel variants of Wagner’s generalized birthday attack [Wag02,
Ber07, BLN+09] to a wide variety of parallel algorithms for lattice problems [Mic] (for additional
examples see also [Nie12, Bos15] and the references therein). Thus, when simulating a sample-based
adversary for a cryptanalytic task that may highly benefit from parallelization techniques, a sequen-
tial query pattern as exhibited by our gradient-based adversary presented in Section 4 may introduce
an undesirable simulation bottleneck.

17



In this section we show that our sequential simulation approach can be modified to result in
a simulator whose gradient queries are fully parallelizable (i.e., all of its gradient queries can be
issued within a single round of parallel queries). This comes at a rather minor cost of statistical
simulation instead of perfect simulation (i.e., simulation within statistical distance ϵ for any fixed
ϵ > 0 as captured by Definition 3.4) together with a slight increase in the running time and query
complexity of the simulator for some ranges of the parameters (depending logarithmically on 1/ϵ
and thus enabling to efficiently support negligible values of ϵ). As we show below, for most natural
choices of the parameters, the multiplicative overhead compared to our sequential simulator is in
fact constant.

As in Section 4, for simplicity here we state and prove our result for samples over X × Y where
X = {0, 1}n for some integer n ∈ N and Y = {0, 1}. We prove the following theorem:

Theorem 5.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. For any ϵ > 0 there exists
a gradient-based adversary B that black-box ϵ-simulates all sample-based adversaries with respect to
X × Y, where:

• B runs in time TB(|S|, |X |, |Y|) = O((|S| · log(|S|/ϵ) · log |X |).

• B issues QB(|S|, |X |, |Y|) = O(|S| · log(|S|/ϵ)) parallel queries to the gradient oracle, followed
by a single query to the simulated sample-based adversary.

Recall that our sequential simulator provided by Theorem 4.1 runs in time O(|S| · log2 |X |) and
issues O(|S|·log |X |) gradient queries. Thus, in terms of both the running time and query complexity,
the performance of our parallel simulator provided by Theorem 5.1 matches that of our sequential
simulator within a multiplicative gap of log(|S|/ϵ)/ log |X |. Recall that |S| ≤ |X | = {0, 1}n, and
therefore even for an exponentially-small ϵ = exp(−Ω(n)) this multiplicative gap is constant.

For the more general setting in which |Y| = m > 1 for some integer m ∈ N, our simulator B
runs in time TB(|S|, |X |, |Y|) = O(|S| · log(|S|/ϵ) · (log |X | + log |Y|)) and issues the same number
of queries QB(|S|, |X |, |Y|) = O(|S| · log(|S|/ϵ)). We refer the reader to Section 7 for the extended
result.

In what follows we first provide a high-level technical overview of our proof of Theorem 5.1 when
compared to that of Theorem 4.1, and then provide its formal proof.

Proof overview. Recall that our sequential simulation approach, as detailed in Section 4, relies
on the observation that gradient queries are sufficiently expressive for efficiently extracting the entire
set of samples. Specifically, we observed that, for any sample set S = {(xi, yi)}i∈[s] and for any
given prefix z, a single gradient query enables to distinguish between the case in which there are no
samples xi that are prefixed with z, the case in which there is exactly one sample xi that is prefixed
with z, and the case in which there is more than one sample xi that is prefixed with z. We then
used this observation to realize a recursive and completely deterministic DFS-based exploration of
the sample set S, leading to a highly sequential process for extracting all samples (e.g., whenever
two samples share a prefix of length ℓ, then our simulator must issue at least ℓ sequential queries in
order to extract them).

A natural approach for obtaining a less sequential process is to rely on randomization, and a naive
attempt would be to guess a prefix z, and hope that it matches exactly one sample (this is obviously
fully parallelizable). Unfortunately, on the one hand, for n-bit samples xi, guessing a rather short
prefix (say, of length O(log n) bits) may not enable to isolate any sample (e.g., consider a sample set
S in which all samples xi share the same n/2-bit prefix). On the other hand, guessing a rather long
prefix (say, of length Ω(n) bits) may lead to an exponentially small probability of even hitting the
prefix of any sample. Thus, this naive attempt completely fails.

18



Our approach relies on a more subtle form of randomization, where instead of guessing a prefix,
we guess an output of a hash function M : {0, 1}n → {0, 1}k that is independently sampled for each
gradient query from a pairwise-independent function family. Recall that the pairwise independence
guarantee provided by such a function family is that for any xi ̸= xj it holds that the random variables
M(xi) and M(xj) are independent and uniformly distributed over the choice of the function M from
the given function family. This guarantees that, even for a short output length k = O(log n), each
sample xi would be eventually isolated from all other samples, except any some pre-specified failure
probability ϵ that would determine the number of queries. Moreover, since the output length is
short, we can guess the output z = M(xi) of the hash function with a sufficiently high probability
and include it in the gradient query to enable the extraction of the sample.

From a more technical perspective, for each gradient query our simulator samples a string z ∈
{0, 1}k and a function M : {0, 1}n → {0, 1}k from a pairwise independent function family Mn,k.
For a vector of parameters w⃗ ∈ Rn+1, we define θ⃗ = (w⃗, z,M), where we assume M can be encoded
using ℓ(n, k) = O(n+ k) bits, and define z and M to be non-differentiable parameters. We remind
that although the exact value of w⃗ is not important, for consistency we will define it as the all-zeros
vector (0, . . . , 0) ∈ Rn+1. The function h is defined as follows:

h(θ⃗, x⃗) = w⃗ · ((x⃗)1, . . . , (x⃗)n, 1) · 1M(x)=z

= (w1(x⃗)1, . . . , wn(x⃗)n, wn+1) · 1M(x)=z .

The simulator then issues an oracle query (ℓ, h, θ⃗), for which it holds that

∇θh(θ⃗, x⃗) =

{
(0, . . . , 0) ∈ Rn+1 if M(x) ̸= z

((x⃗)1, . . . , (x⃗)n, 1) ∈ Rn+1 otherwise

As we noted in Section 4, we denote by ∇θ the gradient with respect to all differentiable parame-
ters in θ⃗, in this case this means w⃗ only. As these queries are now independent of each other, they can
all be issued in parallel. Our analysis below shows that, for any ϵ > 0, issuing T = O(|S| · log(|S|/ϵ))
such queries guarantees that all samples are extracted except with probability ϵ.

Proof of Theorem 5.1. Let X = {0, 1}n for some n ≥ 1, Y = {0, 1}, and let ϵ > 0. We show
that the gradient-based simulator B described in Figure 4 black-box ϵ-simulates all sample-based
adversaries with respect to X × Y. In what follows we first prove the correctness of the simulation,
and then analyze the running time and query complexity of B.

Let D be a distribution over (X × Y)∗. For proving that

SD
(
(S,A (S)) ,

(
S,BOG(S,·,·,·),A(·)

(
1|S|
)))

≤ ϵ,

where S ← D in both distributions, we in fact prove a stronger statement. We prove that for any
s ≥ 1 and for any set S ⊆ (X × Y)s, the output produced by the computation BOG(S,·,·,·),A(·)(1s) is
distributed as follows: With probability at most ϵ over the internal randomness of B it outputs ⊥,
and otherwise it is identical to the distribution of the output produced by the computation A(S).
For this purpose, it suffices to show that, for any such set S, with probability at least 1− ϵ over the
internal randomness of B, the algorithm B is able to extract the sample set S via its queries to the
gradient oracle.

For every t ∈ [T ] we denote by zt ∈ {0, 1}k and Mt ∈ Mn,k the random variables corresponding
to the bit-string and the function sampled at iteration t, respectively. For every i ∈ [s] and for each
iteration t ∈ [T ], we say that the sample (x⃗i, yi) is isolated by the t-th iteration if Mt(x⃗i) = zt and
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The black-box gradient-based simulator BOG(S,·,·,·),A(·)(1s):

1. Set k = ⌈log2(2s)⌉ and T = ⌈16s · ln (s/ϵ)⌉.

2. LetMn,k be a pairwise-independent function family, where M : {0, 1}n → {0, 1}k for every M ∈Mn,k.

3. Set ℓ(ŷ, y) = (2 + y) · ŷ.

4. Set D = ∅.

5. For t ∈ {1, . . . , T}: // can be performed in parallel

5.1. Sample z
$← {0, 1}k and M

$←Mn,k.

5.2. Define w⃗ = (0, . . . , 0) ∈ Rn+1 and set θ⃗ = (w⃗, z,M).

5.3. Define h(θ⃗, x⃗) = w⃗ · ((x⃗)1, . . . , (x⃗)n, 1) · 1M(x)=z.

5.4. Obtain g⃗ = OG(S, ℓ, h, θ⃗t) ∈ Rn+1.

5.5. If 0 < |S| · (g⃗)n+1 < 4: // single match

i. Define x̂ = (1/(g⃗)n+1) · (g⃗)1...n and ŷ = |S| · ((g⃗)n+1 − 2).
ii. Update D = D ∪ {(x̂, ŷ)}.

6. If |D| < s then output ⊥, and otherwise obtain v ← A(D) and output v.

Figure 4: The black-box gradient-based simulator B.

for every j ∈ [s] \ {i} it holds that Mt(xi) ̸= Mt(xj). For every i ∈ [s] we let Failurei denote the
event in which the sample (x⃗i, yi) is not isolated by any iteration, and we let Failure =

⋃
i∈[s] Failurei.

We will now show that if the event Failure does not occur, then the gradient-based simulator
extracts the entire set S (and otherwise outputs ⊥). For any iteration t ∈ [T ], the response of the
gradient oracle is as follows:

g⃗ =
1

|S|
∑

(x⃗,y)∈S

∇θℓ(h(θ⃗, x⃗), y)

=
1

|S|
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y) · ∇θh(θ⃗, x⃗)

=
1

|S|
∑

(x⃗,y)∈S

(2 + y) · ∇θh(θ⃗, x⃗) .
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Denoting by SM,z ⊆ S the set of samples (x⃗, y) ∈ S for which it holds that M(x) = z, we obtain

1

|S|
∑

(x⃗,y)∈S

(2 + y) · ∇θh(θ⃗, x⃗)

=
1

|S|

 ∑
(x⃗,y)∈SM,z

(2 + y) · ∇θh(θ⃗, x⃗) +
∑

(x⃗,y)∈S\SM,z

(2 + y) · ∇θh(θ⃗, x⃗)


=

1

|S|

 ∑
(x⃗,y)∈SM,z

(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1)

+
∑

(x⃗,y)∈S\SM,z

(2 + y) · (0, . . . , 0)


=

1

|S|
∑

(x⃗,y)∈SM,z

(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1)

=
1

|S|
∑

(x⃗,y)∈SM,z

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y)) ,

and thus for the response g⃗ provided by the oracle it holds that

g⃗ =
1

|S|
∑

(x⃗,y)∈SM,z

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y)) .

We now distinguish between the following three cases depending on the size of the set SM,z:

• Case I: |SM,z| = 0. In this case g⃗ = (0, . . . , 0) ∈ Rn+1 and therefore the condition in Step
5.5. is not satisfied, and the iteration will end with no samples being extracted.

• Case II: |SM,z| = 1. In this case it holds that

g⃗ =
1

|S|
∑

(x⃗,y)∈SM,z

((2 + y) · (x⃗)1, . . . , (2 + y) · (x⃗)n, (2 + y))

=
1

|S|
·
(
(2 + y′) · (x⃗′)1, . . . , (2 + y′) · (x⃗′)n, (2 + y′)

)
,

for SM,z = {(x⃗′, y′)}. The (n + 1)-th component of the vector g⃗ contains 1
|S| · (2 + y′). As

y′ ∈ {0, 1} we get that y′ < 2, and in particular 0 < 2 + y′ < 2 + 2 = 4. Therefore, the
condition in Step 5.5. is satisfied and we will extract the pair (x⃗′, y′) as follows:

– For the extraction of y′, we multiply the (n + 1)-th component of g⃗ by |S| and subtract
2, and we get

ŷ = |S| ·
(

1

|S|
· (2 + y′)

)
− 2 = y′ .

– For the extraction of x⃗′ we use the first n components of the vector g⃗ which contains
1
|S| · (2 + y′) · x⃗′. By multiplying element-wise by |S|

(2+y′) we get

x̂ =
|S|

(2 + y′)
·
(

1

|S|
· (2 + y′) · x⃗′

)
= x⃗′ .
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• Case III: |SM,z| ≥ 2. Without loss of generality, we analyze this case for |SM,z| = 2. In this
case,

g⃗ =
1

|S|
∑

(x⃗,y)∈M

((2 + y)(x⃗)1, . . . , (2 + y))

=
1

|S|
(((2 + y1) · (x⃗1)1 + (2 + y2) · (x⃗2)1) , . . . , (4 + y1 + y2)) ,

for SM,z = {(x⃗1, y1), (x⃗2, y2)}. We can see that the the (n+1)-th component of g⃗ now contains
4 + y1 + y2 ≥ 4 and therefore the condition in Step 5.5. is not satisfied and the iteration will
end with no samples being extracted.

We now show that the event Failure occurs with probability at most ϵ, and this finalizes the
correctness of the simulation. From the definition of the events {Failurei}i∈[s], for every i ∈ [s] it
holds that

Pr [Failurei] = (Pr [(x⃗i, yi) is not isolated by the first iteration])T

=

(
Pr

z1,M1

[ ∃j ∈ [s] \ {i} : M1(xi) = M1(xj) ∨ z1 ̸= M1(xi) ]

)T

=

(
1− Pr

z1,M1

[ ∄j ∈ [s] \ {i} : M1(xi) = M1(xj) ∧ z1 = M(xi) ]

)T

,

where the first equality follows from the independence across all iterations. Using the union bound,
we obtain

Pr
M1

[ ∄j ∈ [s] \ {i} : M1(xi) = M1(xj) ]

= 1− Pr
M1

[ ∃j ∈ [s] \ {i} : M1(xi) = M1(xj) ]

≥ 1−
∑

j∈[s]\{i}

Pr
M1

[M1(xi) = M1(xj) ]

= 1−
∑

j∈[s]\{i}

1

2k
= 1− (s− 1) · 1

2k
,

where the last equality follows from the pairwise-independence of the function familyMn,k. Since z1
is uniformly sampled and is independent of M1, the probability of a match between z1 and M1(xi),
given that there are no collisions can be computed as

Pr
z1,M1

[ z1 = M1(xi) | ∄j ∈ [s] \ {i} : M1(xi) = M1(xj) ] =
1

2k
.

Therefore,

Pr [Failurei] ≤
(
1−

(
1− s− 1

2k

)
· 1
2k

)T

=

(
1−

(
1

2k
− s− 1

22k

))T

,

and our choice of k = ⌈log2(2s)⌉ guarantees that

1

2k
− s− 1

22k
≥ s

22k
≥ 1

16s
,
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implying

Pr [Failurei] ≤
(
1− 1

16s

)T

≤ e−T/16s .

We conclude by observing that our choice of T = ⌈16s · ln (s/ϵ)⌉ now implies

Pr [ Failure ] = Pr

 ⋃
i∈[s]

Failurei

 ≤ s · e−T/16s ≤ ϵ .

After establishing correctness, we now bound the number of queries issued by B as well as B’s
running time. In each iteration the simulator issues a single oracle query and performs some basic
arithmetic computations over the output g⃗ ∈ Rn+1. For issuing the oracle query, the simulator
encodes the parameter vector θ⃗ = (w⃗, z,M) ∈ R(n+1)+k+ℓ(n,k) with ℓ(n, k) = O(n + k) being the
description length of the pairwise functions. As we defined k = O(log |S|), we can bound the number
of parameters, and correspondingly the runtime of a single iteration, by O(log |X | + log |S|) =
O(log |X |). By running for T = O(|S| · log(|S|/ϵ)) iterations we get a total runtime of TB = O(|S| ·
log(|S|/ϵ) · log |X |) and query complexity of QB = O(|S| · log(|S|/ϵ)).

6 Statistical Simulation via Gradient Descent

In this section we show that all sample-based adversaries can be simulated not only using general
gradient-based methods (as established by Theorems 4.1 and 5.1), but in fact using the particular
gradient-descent (GD) algorithm. Recall that whereas our notion of a gradient-based adversary allows
querying the gradient oracle in a rather arbitrary manner, our notion of a GD-based adversary forces
the application of a specific update rule for each query based on the response provided to the previous
one. As discussed in Section 3, this restriction models the GD algorithm, which is considered the
most common learning methodology.

Specifically, as detailed in Figure 2, a GD-based algorithm starts by initializing the parameters
θ according to some predefined distribution. Then, in each iteration, the algorithm updates these
parameters based on the current gradient information g⃗ (which, in our case, is received from the
gradient oracle) for “directing” the update towards parameters that minimize the loss function (and
thus correspond to a better estimate). In other words, at every iteration t ∈ [T ], given the current
parameters θ⃗(t−1) and the gradient vector g⃗, the algorithm updates the parameters by computing

θ⃗(t) = θ⃗(t−1) − η · g⃗ ,

where η is the algorithm’s “step size” (also known as the “learning rate”) which determines the size
of the steps taken in the direction of the gradient.

Our result in this section shows that, even in this significantly more restricted setting, we can
construct a GD-based adversary BGD that black-box ϵ-simulates any sample-based one. As in Sections
4 and 5, for simplicity here we state and prove our result for samples over X ×Y where X = {0, 1}n
for some integer n ∈ N and Y = {0, 1}. We prove the following theorem:

Theorem 6.1. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. For any ϵ > 0 there exists
a GD-based adversary BGD that black-box ϵ-simulates all sample-based adversaries with respect to
X × Y, where:

• BGD runs in time TBGD(|S|, |X |, |Y|) = O((|S| · log(|S|/ϵ))2 · log |X |).
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• BGD issues QBGD(|S|, |X |, |Y|) = O(|S| · log(|S|/ϵ)) queries to the gradient oracle, followed by a
single query to the simulated sample-based adversary.

For the more general setting in which |Y| = m > 1 for some integer m ∈ N, our simulator B
runs in time TB(|S|, |X |, |Y|) = O((|S| · log(|S|/ϵ))2 · (log |X |+ log |Y|)) and issues the same number
of queries QB(|S|, |X |, |Y|) = O(|S| · log(|S|/ϵ)). We refer the reader to Section 7 for the extended
result.

In the remainder of this section, we provide an overview of this proof and explaining the main
ideas underlying our GD-based simulator described in Figure 5, and then provide its formal proof.

The black-box GD-based simulator BOG(S,·,·,·),A(·)
GD (1s):

1. Set k = ⌈log2(2s)⌉, T = ⌈16s · ln (s/ϵ)⌉, and η = −s.

2. Set ℓ(ŷ, y) = (2 + y) · ŷ.

3. Initialize θ⃗(0) = (θ⃗
(0)
1 , . . . , θ⃗

(0)
T ), such that for all t ∈ [T ] we denote by θ⃗

(0)
t the set of parameters

(w⃗
(0)
t , zt,Mt, κ

(0)
t ) initialized as follows:

• w⃗
(0)
t = (0, . . . , 0) ∈ Rn+1

• zt ∈ {0, 1}k

• Mt ∈Mn,k

• κ
(0)
t = 0

4. Define h((w⃗, z,M, κ), x⃗) = (w⃗ · ((x⃗)1, . . . , (x⃗)n, 1)) · 1M(x)=z + κ.

5. Define h̃(θ⃗, x⃗) =
∑T

j=1 ϕ
(
κj−1, κj , h(θ⃗j , x⃗)

)
.

6. For t ∈ {1, . . . , T}: // Running GD for T iterations

6.1 Obtain g⃗ = OG(S, ℓ, h̃, θ⃗
(t−1)) ∈ R|θ⃗(t−1)|

6.2 Update θ⃗(t) = θ⃗(t−1) − η · g⃗.

7. Set D = ∅.

8. For t ∈ {1, . . . , T}: // decode extracted samples from parameters w⃗
(T )
1 , . . . , w⃗

(T )
T

8.1 If 0 < w⃗
(T )
t < 4:

i. Define x̂ = (1/(w⃗
(T )
t )n+1) · (w⃗(T )

t )1...n and ŷ = (w⃗
(T )
t )n+1 − 2.

ii. Update D = D ∪ {(x̂, ŷ)}.

9. Compute v ← A(D) and output v.

Figure 5: The black-box gradient-based simulator BGD.

Proof overview. The main challenge underlying the proof of Theorem 6.1 stems from the “non-
adaptive” nature of the GD updates. In Sections 4 and 5, we extracted samples after each query, for
queries that isolated a single sample. Here, we are allowed to extract samples only after completing
the entire execution of the GD algorithm, meaning concluding all T iterations. Towards this goal, we
extend our parameters so that they can store all of the gradient oracle’s responses, and we extract all
samples at once. This requires the size of the parameters to grow from O(log |X |) to O(T ·log |X |). In
addition, in our previous constructions we defined the parameters θ⃗ to include a vector of additional
parameters w⃗ ∈ Rn+1 that enabled to obtain the desired gradient behavior. As we only used w⃗ for
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its gradient vector, any specific choice of w⃗ could be used, and for consistency we used the all-zeros
vector w⃗ = (0, . . . , 0) ∈ Rn+1. In the GD setting, we can no longer extract the samples directly from
the value of g⃗, and must write the value of g⃗ to that of w⃗ in each iterations. Therefore, here we
require w⃗ to be initialized as the all-zeros vector.

Another main difference compared to Section 5 lies in the selection of the string z and the
pairwise independent function M in each of the T iterations. In the gradient-based construction the
adversary samples a fresh pair of (z,M) in each iteration and encodes them in the parameters θ⃗ so
they can be used by the gradient oracle OG, i.e., θ⃗ = (w⃗, z,M). In the GD-based setting this is no
longer possible, as the GD update rule does not allow the adversary to encode arbitrary new values
into the parameters θ⃗ in each iteration. As such, the sampling of the z’s and M ’s for all iterations
must be made in advance. Namely, our GD-based adversary running for T iterations will sample
in advance T pairs (z,M) and encode all of them at once in the initial parameters θ⃗. However, in
order to use a different set of parameters (z,M, w⃗) in each iteration, a “clock” mechanism must be
introduced, to direct the computation to use only the relevant parameters at each iteration. For this,
following Abbe et al. [AKM+21], we include in each set of parameters (z,M, w⃗) an additional bit κ
indicating whether this set was already used in some iteration. We initialize κ = 0, and after using
the corresponding set of parameters, the value of κ is updated to a value greater or equal to 2. At
each iteration, we only use the first set of parameters for which κ = 0.

More formally, we construct the model function and model parameters as follows. For any
parameter p, we denote by p(t) the value of the parameter at the end of iteration t. Then, for
every t ∈ [T ] the adversary initializes a set of parameters θ⃗

(0)
t = (w⃗

(0)
t , zt,Mt, κ

(0)
t ) such that w⃗

(0)
t =

(0, . . . , 0) ∈ Rn+1, zt ∈ {0, 1}k, Mt ∈ Mn,k, and κ
(0)
t = 0. Similarly to the construction in Figure 4,

we define the parameters z and M to be non-differentiable, and as such their value does not change
between different iterations. We get that the entire set of parameters at initialization time is of the
form:

θ⃗(0) =
(
θ⃗
(0)
1 , . . . , θ⃗

(0)
T

)
.

As the GD update rule requires the subtraction of the gradient vector g⃗ from the vector of
parameters θ⃗, we modify our notation of the gradient. In our previous results we denoted by ∇θ

the gradient with respect to only the differentiable parameters in θ⃗, so that when θ⃗ is composed
of pdiff differentiable parameters and pnon-diff non-differentiable ones , we get that |⃗g| = pdiff . Here
we will denote by ∇θ the gradient with respect to the differentiable parameters, and in positions
corresponding to non-differentiable parameters we will return 0, and we get |⃗g| = pdiff + pnon-diff .

Let ϕ : R3 → R be a differentiable function such that

ϕ(α1, α2, α3) =


α3 α1 ≥ 2 ∧ α2 = 0

0 α1 = α2

∗ otherwise
,

where the “∗” symbol may correspond to any arbitrary values that ensure the continuity of the
function, required for it to be differentiable. Then, we define the differentiable model h̃ as follows:

h̃(θ⃗, x⃗) =

T∑
j=1

ϕ
(
κj−1, κj , h(θ⃗j , x⃗)

)
,

where h is the differentiable function defined as in Figure 4, and we set κ0 = 2. We prove that this
construction indeed provides the clock mechanism described above, such that when running GD for
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T iterations we get that in each iteration we initiate an independent evaluation of h on a fresh set
of parameters θ⃗t.

It is important to note that while we extended the construction of our fully-parallelizable gradient-
based adversary, the construction here is not necessarily parallelizable. This is due to GD being an
iterative algorithm in its nature, where a fully-parallelizable solution is less intuitive. The construc-
tion in Figure 4 can be viewed as a one-step parallelizable variant of GD. The DFS-based construction
described in Figure 3 does not fit the GD-based construction as all “guesses” must be made in advance
and in a non-adaptive manner.

Proof of Theorem 6.1. For proving the correctness of the construction described in Figure 5 we
need to first prove the correctness of the clock mechanism. That is, to show that at each iteration
t ∈ [T ], only a single set of unused parameters is utilized, and all other parameters remain unmodified.
To conclude the correctness, we will need to also show that after running GD for T iterations using
the proposed construction, we get that for each pair (x⃗, y) ∈ S and with some probability, there exists
a t ∈ [T ] such that w⃗(T )

t “encodes” this pair, and we can extract it as described in the gradient-based
construction provided in Section 5.

For the clock mechanism, we show that after every iteration t ∈ [T ] of GD we get:

• Condition 1: future parameters. For every t < j ≤ T : w⃗
(t)
j = w⃗

(0)
j = 0n+1, and κ

(t)
j =

κ
(0)
j = 0. In other words, this means that by the end of iteration t, parameters that have yet

to be used remain in their initial value.

• Condition 2: past parameters. For every 0 < j < t: w
(t)
j = w

(j)
j , and κ

(t)
j ≥ 2. In other

words, this means that the value of parameters used by previous iterations remains unchanged
by the end of iteration t.

• Condition 3: current parameters. For j = t we have κ
(t)
j ≥ 2 and

w⃗
(t)
j =

{
(0, . . . , 0) ∈ Rn+1 when |Szt,Mt | = 0∑

(x⃗,y)∈Szt,Mt
(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1) when |Szt,Mt | ≥ 1

where Szt,Mt ⊆ S is defined to be the set of all samples (x⃗, y) ∈ S for which Mt(x) match zt,
i.e., ∀(x⃗, y) ∈ Szt,Mt : Mt(x) = zt. In other words, the parameters used at iteration t will be
modified by its end so that the value of κj be set to a value greater or equal to 2 and the value
of w⃗j contains the encoding of samples matched at this step.

Let Mn,k be any pairwise-independent function family, where M : {0, 1}n → {0, 1}k for every
M ∈ Mn,k, and let Sz,M = {(x⃗, y) ∈ S|M(x) = z} ⊆ S. For proving the statement above, we
provide the following lemma:

Lemma 6.2. There exists a differentiable model h(θ⃗, ·), with θ⃗ = (w⃗, z,M, κ), such that running
GD for one step, from an initialization θ⃗(0) = (w⃗(0), z,M, κ(0)) satisfying w⃗(0) = (0, . . . , 0) ∈ Rn+1,
κ(0) = 0, z ∈ {0, 1}k and M ∈Mn,k, where z,M are non-differentiable parameters, yields parameters
θ⃗(1) = (w⃗(1), z,M, κ(1)) such that we get:

1. w⃗(1) =

{
(0, . . . , 0) ∈ Rn+1 when |Sz,M | = 0∑

(x⃗,y)∈Sz,M
(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1) ∈ Rn+1 when |Sz,M | ≥ 1

2. κ(1) ≥ 2.
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Proof of Lemma 6.2. We define a differentiable model similar to the one defined in Figure 4:

h(θ⃗, x⃗) = (w⃗ · ((x⃗)1, . . . , (x⃗)n, 1)) · 1M(x)=z + κ .

As before, we get that the gradient with respect to w⃗ is:

∇w⃗h(θ⃗, x⃗) =

{
(0, . . . , 0) if M(x) ̸= z

((x⃗)1, . . . , (x⃗)n, 1) otherwise
∈ Rn+1

Therefore, by setting the learning rate η = −s, using the loss function ℓ defined in Figure
Algorithm 4, and performing one step of GD we get:

w⃗(1) = w⃗(0) − η · 1
s
·
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y)∇w⃗h(θ⃗, x⃗)

=
∑

(x⃗,y)∈S

(2 + y) · ∇w⃗h(θ⃗, x⃗)

=
∑

(x⃗,y)∈Sz,M

(2 + y) · ∇w⃗h(θ⃗, x⃗) +
∑

(x⃗,y)∈S\Sz,M

(2 + y) · ∇w⃗h(θ⃗, x⃗)

=
∑

(x⃗,y)∈Sz,M

(2 + y) · ((x⃗)1, . . . , (x⃗)n, 1) .

Similarly, we have:

∂h(θ⃗, x⃗)

∂κ
= 1 ,

and we get:

κ(1) = κ(0) − η · 1
s
·
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y) · ∂h(θ⃗, x⃗)
∂κ

=
∑

(x⃗,y)∈S

ℓ′(h(θ⃗, x⃗), y) · ∂h(θ⃗, x⃗)
∂κ

=
∑

(x⃗,y)∈S

(2 + y) ≥ 2 .

Therefore, after one GD step, w(1) either encodes all the pairs (x⃗, y) that are matched by z and
M , or remains all zeros. As we have shown previously, in cases where only one pair matches, i.e.,
|Sz,M | = 1, we can extract the full value of the pair from the encoding (2 + y) · ((x⃗)1, . . . , (x⃗)n, 1).
Regardless of M(x) matching or not matching z, κ(1) would be greater or equal to 2.

By induction on t we get:

• For t = 1, from the initialization we get that for every j ∈ [T ]: κ
(0)
j = 0. Therefore, for every

j > 1 = t we get that:

ϕ
(
κ
(t−1)
j−1 , κ

(t−1)
j , h(θ⃗

(t−1)
j , x⃗)

)
= ϕ

(
0, 0, h(θ⃗

(t−1)
j , x⃗)

)
= 0 .

As such, the gradient w.r.t w
(t−1)
j and κ

(t−1)
j is zero and from the GD update rule Condition

1, described above, holds. Condition 2 holds as there are no possible j values in this range. As
for the case where j = t = 1, we get:

ϕ
(
κ
(t−1)
j−1 , κ

(t−1)
j , h(θ⃗

(t−1)
j , x⃗)

)
= ϕ

(
κ
(0)
0 , κ

(0)
1 , h(θ⃗

(0)
1 , x⃗)

)
= ϕ

(
2, 0, h(θ⃗

(0)
1 , x⃗)

)
= h(θ⃗

(0)
1 , x⃗) .

By applying Lemma 6.2 we get that Condition 3 holds.
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• Fix some t > 0 and assume all the conditions holds for t. We will now show they holds for
t+ 1 as well. By the assumption we have ∀j > t κ

(t)
j = 0 and ∀j ≤ t κ

(t)
j ≥ 2. We get that:

– For t+ 1 < j < T we get κ
(t)
j−1 = κ

(t)
j = 0 and therefore:

ϕ
(
κ
(t)
j−1, κ

(t)
j , h(θ⃗

(t)
j , x⃗)

)
= 0 ,

and the gradient w.r.t w
(t)
j and κ

(t)
j is zero so Condition 1 holds.

– For 1 < j < t+ 1 we get κ
(t)
j−1 = κ

(t)
j ≥ 2 and therefore:

ϕ
(
κ
(t)
j−1, κ

(t)
j , h(θ⃗

(t)
j , x⃗)

)
= 0 ,

and the gradient w.r.t w
(t)
j and κ

(t)
j is zero so Condition 2 holds.

– For j = t+ 1 we get κ
(t)
j−1 = κ

(t)
t ≥ 2 and κ

(t)
j = κ

(t)
t+1 = 0, therefore:

ϕ
(
κ
(t)
j−1, κ

(t)
j , h(θ⃗

(t)
j , x⃗)

)
= h(θ⃗

(t)
t+1, x⃗) .

By applying Lemma 6.2 we get that Condition 3 holds.

We have shown that the clock mechanism works as described, in the sense that after running
for T iterations we get that for each t ∈ [T ] the final parameters w⃗

(T )
t contains an encoding of the

samples that were matched in iteration t. The extraction process in this case is the same as in Figure
4, and therefore we do not repeat it. The same holds of the query complexity, which is equivalent to
that of Figure 4 following the same analysis.

As for the number of parameters, here we suffer from an increased size of θ⃗ in comparison to that
of the gradient-based adversary described in Section 5, as we have to store all the parameters that
will be used at once, and we cannot re-use parameters as in previous results. Here, our parameters
are composed of T tuples of the form θ⃗t = (w⃗, z,M, κ). As we have w⃗ ∈ Rn+1, z ∈ {0, 1}k,
M = l(n, k) = O(n + k), and κ ∈ {0, . . . , 3|S|} ∈ {0, 1}⌈log(3|S|+1)⌉ we get in total T · (n + 1 + k +
l(n, k) + ⌈log(3|S|+ 1)⌉) = O (T · (n+ k + log(|S|))) parameters. We defined T = O(|S| log(|S|/ϵ))
and k = O(log |S|) = O(log |X |), so we get O (|S| · log(|S|/ϵ) · log |X |) parameters. Thus, in total we
get a runtime of TBGD = O((|S| · log(|S|/ϵ))2 · log |X |).

7 Extensions of Our Results

In this section we provide two important extensions of our results. First, in Section 7.1 we extend
our proofs to consider samples over X × Y where Y = {0, 1}m for some integer m ∈ N (recall that
our proofs have so far considered single-bit labels, i.e., the case in which m = 1). Then, in Section
7.2 we extend our approach to the stochastic mini-batch setting, capturing common gradient-based
methods in which the gradient-based information is averaged over random smaller subsets of the
sample set instead of over the entire sample set.
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7.1 Supporting Multi-Bit Labels

As discussed in Sections 4, 5 and 6, our proofs considered for simplicity the case of single-bit labels.
That is, our proofs considered samples over X × Y where X = {0, 1}n for some integer n ∈ N and
Y = {0, 1}. Here, we show how to extend our proofs to consider the case of multi-bit labels where
Y = {0, 1}m for some integer m ∈ N. For concreteness, in what follows we focus on extending the
proof of Theorem 4.1, and note that similar extensions may be applied to the proofs of Theorems
5.1 and 6.1.

In this more general case, the structure of our gradient-based simulator remains unmodified, and
we are only required to generalize its loss function ℓ, the model functions h with which it queries the
gradient oracle and the manner in which it extracts the samples from the oracle’s responses. In turn,
this leads to increasing the running time TB of our simulator, without increasing the number QB of
gradient queries they issue. Specifically, the running time of the simulator provided by Theorem 4.1
increases from TB(|S|, |X |, |Y|) = O(|S| · log2 |X |) to TB(|S|, |X |, |Y|) = O(|S| · log |X | · (log |X | +
log |Y|)). Note that, assuming m = log |Y| = O(log |X |) = n, this does not introduce any asymptotic
overhead. First, as for the loss function ℓ, recall that for single-bit labels we defined ℓ(ŷ, y) = (2+y)·ŷ.
In this case, the partial derivative of ℓ with respect to ŷ, denoted for clarity by ℓ′(ŷ, y), satisfies

ℓ′(ŷ, y) = (2 + y) ∈ R .

Denote by 2⃗ = (2, . . . , 2) ∈ Rm. More generally, for m-bit labels, we let

ℓ(⃗̂y, y⃗) =
(
2⃗ + y⃗

)
· ⃗̂y =

(
(2 + (y⃗)1) · (⃗̂y)1, . . . , (2 + (y⃗)m) · (⃗̂y)m

)
∈ Rm ,

and it thus holds that

ℓ′(⃗̂y, y⃗) =

(
∂ℓ(⃗̂y, y⃗)

∂(⃗̂y)1
, . . . ,

∂ℓ(⃗̂y, y⃗)

∂(⃗̂y)m

)
= ((2 + (y⃗)1), . . . , (2 + (y⃗)m))

=
(
2⃗ + y⃗

)
∈ Rm

Second, as for the model functions h with which we query the gradient oracle as part of the
procedure CHECK-MATCH(z), recall that for single-bit queries their gradient with respect to θ was
defined to satisfy

∇θh(θ⃗, x⃗) =

{
(0, . . . , 0) ∈ Rn+1 if x⃗1...k ̸= z

((x⃗)1, . . . , (x⃗)n, 1) ∈ Rn+1 otherwise

More generally, for m-bit labels, we let their gradient5 with respect to θ satisfy

∇θh(θ⃗, x⃗) =




0 . . . 0

. . .

0 . . . 0

 ∈ Rm×(n+m) if x⃗1...k ̸= z


(x⃗)1 . . . (x⃗)n 1 0 . . . 0

(x⃗)1 . . . (x⃗)n 0 1 . . . 0
...

. . .
...

...
...

. . .
...

(x⃗)1 . . . (x⃗)n 0 0 . . . 1

 ∈ Rm×(n+m) otherwise

5This is in fact denoted the Jacobian of h with respect to θ. The term Gradient corresponds to the vector of partial
derivatives of scalar-valued functions, while the Jacobian corresponds to vector-valued functions.
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Denote by (v⃗||u⃗) the concatenation of two vectors v⃗ and u⃗, and for every j ∈ [m] denote by
e⃗j ∈ {0, 1}m the vector with 1 in its jth entry and 0’s elsewhere. Thus, we can describe our desired
gradient behavior as

∇θh(θ⃗, x⃗) =


x⃗||e⃗1
x⃗||e⃗2

...
x⃗||e⃗m

 · 1x⃗1...k=z ∈ Rm×(n+m) .

Equipped with the above loss function ℓ and model h for each iteration, our simulator obtains a
response g⃗ from the gradient oracle, where

g⃗ =
1

|S|
∑

(x⃗,y⃗)∈S

∇θℓ(hθ⃗(x⃗), y⃗)

=
1

|S|
∑

(x⃗,y⃗)∈S

ℓ′(h
θ⃗
(x⃗), y⃗) · ∇θhθ⃗(x⃗)

=
1

|S|
∑

(x⃗,y⃗)∈S

(
2⃗ + y⃗

)
· ∇θhθ⃗(x⃗) .

Denoting by Sz ⊆ S the set of samples (x⃗, y⃗) ∈ S for which x⃗ is prefixed by z, we obtain

g⃗ =
1

|S|
∑

(x⃗,y⃗)∈Sz

ℓ′(h(θ⃗, x⃗), y⃗) · ∇θh(θ⃗, x⃗)

=
1

|S|
∑

(x⃗,y⃗)∈Sz

(
2⃗ + y⃗

)
·


x⃗||e⃗1
x⃗||e⃗2

...
x⃗||e⃗m



=
1

|S|
·
∑

(x⃗,y⃗)∈Sz

(x⃗)1 ·
m∑
j=1

(2 + (y⃗)j), . . . , (x⃗)n ·
m∑
j=1

(2 + (y⃗)j)︸ ︷︷ ︸
(2⃗+y⃗)·(x⃗,...,x⃗)⊤

,

(2 + (y⃗)1), . . . , (2 + (y⃗)m)︸ ︷︷ ︸
(2⃗+y⃗)·(e⃗1,...,e⃗m)⊤

 ∈ Rn+m

Recall that, in the proof of Theorem 4.1, a sample (x⃗, y) was extracted only when the condition
0 < |S| · g⃗n+1 < 4 was satisfied in Step 6 of the procedure CHECK-MATCH. We now show that this
holds also in the more general case. First, we observe that

(g⃗)n+1 =
1

|S|
·
∑

(x⃗,y⃗)∈Sz

(2 + (y⃗)1) ,

and we distinguish between the following three cases depending on the size of the set Sz:
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• Case I: |Sz| = 0. In this case we get that g⃗ = (1/|S|) · (0, . . . , 0) ∈ Rn+m, and in particular
|S| · g⃗n+1 = 0. Therefore, the condition described above does not hold and no extraction will
be performed.

• Case II: |Sz| = 1. In this case, for Sz = {(x⃗′, y⃗′)} we get:

|S| · g⃗n+1 =
∑

(x⃗,y⃗)∈Sz

(2 + (y⃗)1) = 2 + (y⃗′)1 .

As y⃗′ ∈ {0, 1}m we get that (y⃗′)1 < 2, and in particular:
0 < 2+(y⃗′)1 < 2+2 = 4. Therefore, the condition holds and the pair {(x⃗′, y′)} can be extracted
as we describe below.

• Case III: |Sz| ≥ 2. Without loss of generality, we will analyze this case for |Sz| = 2. Let
Sz = {(x⃗1, y⃗1), (x⃗2, y⃗2)}. We have:

|S| · g⃗n+1 =
∑

(x⃗,y⃗)∈Sz

(2 + (y⃗)1)

= (2 + (y⃗1)1) + (2 + (y⃗2)1)

= 4 + (y⃗1)1 + (y⃗2)1 .

Therefore we get that |S| · g⃗n+1 ≥ 4, and as such, the condition above does not hold, and no
sample will be extracted.

The extraction process for the above Case II slightly differs from that of Section 4. Following the
notation above, let {(x⃗′, y⃗′)} be the sample to be extracted, and we extract it as follows:

• Extraction of x⃗′. Here we first compute the following term C:

C = |S| ·
n+m∑
j=n+1

(g⃗)j = |S| ·
n+m∑
j=n+1

1

|S|

(
2 + (y⃗′)j−n

)
=

m∑
j′=1

(2 + (y⃗′)j′) ,

and then compute

x⃗′′ =
|S|
C
· (g⃗)1...n .

Then, for every i ∈ [n] it holds that

(x⃗′′)i =
|S|
C
· (g⃗)i

=
|S|
C
·

 1

|S|
· (x⃗′)i ·

m∑
j=1

(
2 + (y⃗′)j

)
=
|S|
C
·
(

1

|S|
· (x⃗′)i · C

)
= (x⃗′)i .

• Extraction of y⃗′. The extraction is computed as follows:

y⃗′′ = (|S| · (g⃗)n+1...n+m)− 2⃗ .

Then, for every j ∈ [m] it holds that

(y⃗′′)j =

(
|S| ·

(
1

|S|
· (2 + (y⃗′)j)

))
− 2 = (2 + (y⃗′)j)− 2 = (y⃗′)j
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7.2 The Stochastic Mini-Batch Setting

Throughout this work we have defined the gradient oracle OG such that, given a query (S, ℓ, h, θ⃗), it
averages the gradient of the loss function ℓ composed with the model function h(θ⃗, ·) over the entire
sample set. This setting is referred to in the ML community as the full-batch setting.

In a wide variety of ML use cases, it is common for the learner to optimize the parameters θ⃗ of h
over many iterations using a very large set S. It is, therefore, computationally expensive to compute
the gradient over the entire set S at each time step. Thus, in order to avoid such a significant cost,
it is more common to operate in a stochastic mini-batch manner. In this setting, given a query
(S, ℓ, h, θ⃗), the oracle OG first uniformly samples a batch B ⊂ S, where |B| < |S|, and computes the
averaged gradient only over this subset. This variant is known in the ML community as stochastic
gradient descent (SGD). One particularly interesting sub-case of this setting is the single-sample
setting, in which the batch is composed of a single sample (i.e.,|B| = 1).

In this section we show that our framework and results are not limited to the full-batch setting,
and both capture and apply to the mini-batch setting as well. We show this by extending our
framework to consider an appropriately-modified mini-batch gradient oracle, and then by adapting
our black-box simulator from Section 5 accordingly.

The mini-batch gradient-oracle. We say that a function b : N → N is a mini-batch function
if for any s ≥ 1 it holds that 1 ≤ b(s) ≤ s. For any such function b(·), we define the b-mini-batch
gradient oracle OG[b] as follows: On input (S, ℓ, h, θ⃗), the oracle samples a subset (a “mini-batch”)
B ⊆ S of size b(|S|) uniformly among all such subsets, and then computes the following gradient
vector with respect to this batch (instead of with respect to the entire sample set S as in Section 3):

g⃗ =
1

|B|
∑

(x⃗,y)∈B

∇θℓ(h(θ⃗, x⃗), y) .

This enables us to accordingly extend our notion of black-box simulation (recall Definition 3.4):

Definition 7.1 (Black-box ϵ-simulation – Mini-batch setting). Let X and Y be finite sets, let ϵ > 0,
and let b : N → N be a mini-batch function. We say that a gradient-based algorithm B black-
box ϵ-simulates all sample-based adversaries in the b-batch setting with respect to X × Y if for any
sample-based adversary A, integer s ≥ 1, and distribution D over (X × Y)s it holds that

SD
(
(S,A(S)), (S,BOG[b](S,·,·,·),A(·)(1s)

)
≤ ϵ,

where S ← D in both distributions.

Equipped with our adapted notions, we prove the following theorem that extents Theorem 5.1 to
the mini-batch setting. Note that for the case in which b(s) = s (i.e., the case in which the b-batch
gradient oracle is in fact the standard full-batch one) the statement of Theorem 7.2 coincides with
that of Theorem 5.1 as expected.

Theorem 7.2. Let X = {0, 1}n for some n ≥ 1, and let Y = {0, 1}. For any ϵ > 0 and batch
function b : N → N, there exists a gradient-based adversary B that black-box ϵ-simulates all sample-
based adversaries in the b-batch setting with respect to X × Y, where:

• B runs in time TB(|S|, |X |, |Y|) = O((|S|2/b) · log(|S|/ϵ) · log |X |).

• B issues QB(|S|, |X |, |Y|) = O((|S|2/b) · log(|S|/ϵ)) parallel queries to the b-batch gradient
oracle, followed by a single query to the simulated sample-based adversary.
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Proof of Theorem 7.2. The proof is nearly identical to that of Theorem 5.1 with the exception
that the number of iterations T = ⌈16s · ln (s/ϵ)⌉ in the description of the gradient-based simulator
described in Figure 4 is replaced with T = ⌈16 · (s2/b) · ln (s/ϵ)⌉, where b = b(s).

Equipped with these parameters, for every iteration t ∈ [T ] we denote by Bt the set of sample
indices chosen by the gradient oracle for responding to t-th iteration’s query. As in the proof of
Theorem 5.1, we also denote by zt ∈ {0, 1}k and Mt ∈Mn,k the random variables corresponding to
the bit-string and the function sampled at iteration t, respectively. Letting S = {(xi, yi)}i∈[s], then
for every i ∈ [s] and for each iteration t ∈ [T ] we now say that the sample (xi, yi) is isolated by the
t-th iteration if (xi, yi) ∈ Bt, Mt(xi) = zt, and for every j ∈ [s] \ {i} it holds that Mt(xi) ̸= Mt(xj).
For every i ∈ [s] we let Failurei denote the event in which the sample (xi, yi) is not isolated by any
iteration, and we let Failure =

⋃
i∈[s] Failurei.

As in the proof of Theorem 5.1, if the event Failure does not occur, then the gradient-based sim-
ulator extracts the entire set S (and otherwise outputs ⊥). Thus, we are only left with showing that
the event Failure occurs with probability at most ϵ. From the definition of the events {Failurei}i∈[s],
for every i ∈ [s] it holds that

Pr [Failurei] = (Pr [(xi, yi) is not isolated by the first iteration])T

=

(
1− Pr

B1,z1,M1

[
i ∈ B1 ∧ z1 = M(xi)

∧ ∄j ∈ [s] \ {i} : M1(xi) = M1(xj)

])T

,

where the above equality follows from the independence across all iterations. Using the union bound,
it holds that

Pr
M1

[ ∄j ∈ [s] \ {i} : M1(xi) = M1(xj) ]

= 1− Pr
M1

[ ∃j ∈ [s] \ {i} : M1(xi) = M1(xj) ]

≥ 1−
∑

j∈[s]\{i}

Pr
M1

[M1(xi) = M1(xj) ]

= 1−
∑

j∈[s]\{i}

1

2k

= 1− (s− 1) · 1
2k

,

where the last equality follows from the pairwise independence of the function familyMn,k. Since z1
is uniformly sampled and is independent of M1, the probability of a match between z1 and M1(xi),
given that there are no collisions can be computed as

Pr
z1,M1

[ z1 = M1(xi) | ∄j ∈ [s] \ {i} : M1(xi) = M1(xj) ] =
1

2k
.

In addition, since B1 is sampled independently of M1 and z1, then the probability of the event
i ∈ B1 is b/s even when conditioning on a match between z1 and M1(xi) and on having no collisions.
Therefore, Therefore,

Pr [Failurei] ≤
(
1−

(
1− s− 1

2k

)
· 1
2k
· b
s

)T

=

(
1−

(
1

2k
− b− 1

22k

)
· b
s

)T

,
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and our choice of k = ⌈log2(2s)⌉ guarantees that

1

2k
− s− 1

22k
≥ s

22k
≥ 1

16s
,

implying

Pr [Failurei] ≤
(
1− b

16s2

)T

≤ e−T ·b/16s
2
.

We conclude by observing that our choice of T = ⌈16 · (s2/b) · ln (s/ϵ)⌉ now implies

Pr [ Failure ] = Pr

 ⋃
i∈[s]

Failurei

 ≤ s · e−T ·b/16s2 ≤ ϵ .
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A Positioning Previous Work Within Our Framework

As we have discussed in Section 1.2, there has been a significant interest in ML-based cryptanalysis,
especially in the context of block ciphers and lattice-based cryptography. Most notably, this includes
the seminal work of Gohr [Goh19], that was the first to introduce differential-neural distinguishers,
and the work of Wenger, Chen, Charton, and Lauter [WCC+22], that trained an ML model for
attacking the LWE problem. In order to have a better intuition of the generality of our framework,
proposed and formalized in Section 3, we will now show how these two notable works can fit into
our framework. More specifically, we will explain how the attackers proposed in each work can fit
into our definition of the GD-based adversary, described in Figure Algorithm 2. For this, we will
define what does X and Y represent, and correspondingly the set S. In addition, we will define the
adversary’s parameters T, ℓ, h, η, the initialization of the parameters θ⃗0, as well as the computation
performed in the PostProcess step.

We note that while in our work we focused on the full-batch settings, these two works utilize the
more commonly used mini-batch setting. In the mini-batch setting, it is common to treat iterations
in terms of epochs, where each epoch corresponds to the number of iterations required to complete
one pass over the entire sample set. For aligning with our notation, we will describe by T , the
number of GD iterations, the total number of iterations, i.e., the number of epochs times the number
of iterations in each epoch. The latter depends on the size of the set and the batch size. Put
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differently, T = E × ⌈|S|/b⌉, for E epochs and a batch size of b. In addition, we focused on the
GD optimization algorithm, while Gohr and Wenger et al. used the ADAM optimization algorithm,
which is a variant of the GD algorithm. For simplicity we will replace ADAM with GD in this
discussion.

Differential-neural distinguishers. In the case of the differential-neural distinguishers, sug-
gested by Gohr [Goh19], a neural network was trained to distinguish between real ciphertext pairs,
i.e., those that correspond to plaintext pairs with specific input difference, and random ciphertext
pairs, i.e., those that correspond to plaintext pairs with some other input difference. This work
focused on a round reduced version of Speck32/64 [BSS+13] - a variant of the iterative block cipher
Speck, corresponding to 32-bit block size and 64-bit keys. Speck32/64 consists of 22 rounds, however
Gohr analyze a round-reduced variant of up to 8 rounds.

For framing the work of Gohr in the context of our framework we define the finite set X ∈
{0, 1}32 × {0, 1}32 to represent ciphertext pairs (C0, C1). More specifically, for a uniformly sampled
key K ∈ {0, 1}64 and a uniformly sampled plaintext pair (P0, P1) ∈ {0, 1}32×{0, 1}32, the ciphertext
pair (C0, C1) is obtained by encrypting each plaintext for 8 rounds using the key K. The finite
set Y ∈ {0, 1} represents the label y of each ciphertext pair, indicating whether the ciphertext pair
corresponds to a plaintext pair with a predefined input difference ∆in = 0x0040/0000 or not. More
specifically, for a ciphertext pair (C0, C1) ∈ X we get:

y =

{
1 if P0 ⊕ P1 = ∆in

0 otherwise
,

where (P0, P1) is the corresponding plaintext pair. The set S ⊆ (X × Y)s corresponds to a set of s
ciphertext pairs and their corresponding label.

Following the procedure in Gohr’s work, we define h to represent a ResNet-based neural network
[HZR+16]. We omit the exact details of the network’s architecture and refer the reader to [Goh19].
The model was trained for T = 360, 000 iterations (corresponding to 200 epochs with a batch size
of 5, 000), using the mean square error (MSE) as the loss function ℓ, including some additional
regularization terms. As for the learning rate η, a cyclic scheduling was used, defining a different
learning rate value at each iteration, we omit this discussion as well for clarity. The parameters θ⃗0
are randomly initialized.

Although Gohr proposed an additional partial key recovery attack based on the trained model,
it was not the core of the work, and therefore we will treat the accuracy of the trained model as the
output of the procedure, i.e., the prediction success rate over unseen ciphertext pairs. Therefore,
starting from θ⃗0, the model is trained for T iterations. Then, in the PostProcess step, the adversary
evaluates the performance of h(θ⃗T , ·) over a subset of samples Stest ⊂ S that were separated from
S before training. In such case, the model would have trained on Strain = S \ Stest. The output v
would be the accuracy computed with respect to the set Stest:

v =
1

|Stest|
∑

((C0,C1),y)∈Stest

1
h(θ⃗T ,(C0,C1))=y

We note that the notion of treating the accuracy as the output of the adversary aligns with our
simulation notation, as in this case it is natural to compare the accuracy achieved by a GD-based
adversary to that of a sample-based one.

We also note that Gohr additionally proposed to enhance the capabilities of neural distinguishers
by following a hybrid approach and allowing the adversary to interact with both a sample-based oracle
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and a gradient-based oracle. This approach is not directly captured by our framework. However,
we do allow a computationally light pre-processing step with direct access to samples, which we
used for serializing samples, as well as a post-processing step that does not have access to samples.
Allowing the post-processing step to also access samples and allowing more significant preprocessing
will indeed capture hybrid attackers as well.

Learning with errors. In this section we will show how the method proposed by Wenger et al.
[WCC+22] can be framed in the context of our GD-based adversary. Although there has been three
follow-up works of the same research group [LSW+23b, LSW+23a, SWL+24], for clarity we focus on
the method proposed in the first work.

This line of work focus on the Learning With Errors (LWE) problem, where given a dimension
n, integer modulus q, and a secret vector s ∈ Zn

q , the LWE problem is to find the secret s given
multiple noisy inner products of form b = a · s+ e mod q, where a ∈ Zn

q is a random vector, and e
is a small error value (i.e., noise), sampled from a narrow centered Gaussian distribution.

The method proposed by Wenger et al. trains a model to predict the value of b given a. Then,
the secret recovery is perform by querying the trained model using a specific form of queries, i.e.,
pairs of the form (a, b).

Thus, we defined the finite set X to represent the values of a, i.e., X ∈ {0, 1}n×log q. The authors
focus on binary secrets, and therefore given a predefined secret s ∈ {0, 1}n×log q, we define the finite
set Y to represent the values of b = a · s + e mod q, i.e., Y ∈ {0, 1}log q. We note that the authors
experimented with different bases for encoding the integer values. Here, for simplicity, we assume
they are encoded with base 2, i.e., binary representation. The set S ⊆ (X × Y)s corresponds to a
set of s pairs of the form (a, b = a · s+ e mod q).

The function h is defined to be a sequence-to-sequence transformer based neural network [VSP+17],
the parameters θ⃗0 are randomly initialized, the loss function ℓ is defined to be the cross-entropy loss
function, the learning rate η is set to 5× 10−5, and the number of iterations is roughly T = 585, 000.
This is an estimation as the model was trained on mini-batches of size 128, and each epoch consists
of 300, 000 samples, therefore leading to around 2343 iterations per epoch. The model is trained for
around 250 epochs, but can terminate earlier if a high enough accuracy is obtained.

After training is concluded, Wenger et al. performs a key recovery attack using queries to the
trained model h(θ⃗T , ·). We will not describe the actual algorithm, and refer the reader to [WCC+22].
Therefore, we define the PostProcess step to be the evaluation of this key recovery algorithm, and
thus the output value v will represent the estimate of the key outputted by this procedure.

We note that follow-up works [LSW+23b, LSW+23a, SWL+24] improve upon the results of
Wenger et al. by adding a preproccessing step, in which the LWE samples are processed by BKZ
[CN11], a lattice reduction algorithm. Similar to our discussion in Section 3, we allow preprocess-
ing in our framework, for example to serialize the samples. Therefore, the additional BKZ-based
preproccessing step can be captured by our framework as well.
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