
AQQUA: Augmenting Quisquis with
Auditability

George Papadoulis1, Danai Balla12, Panagiotis Grontas1, and Aris Pagourtzis12

1 National Technical University of Athens
2 Archimedes/Athena RC

geopapadoulis@gmail.com, balla.danai@gmail.com, pgrontas@corelab.ntua.gr,

pagour@cs.ntua.gr

Abstract. We present AQQUA, a permissionless, private, and auditable
payment system built on top of Quisquis. Unlike other auditable decen-
tralized payment systems, AQQUA supports auditing, while maintaining
anonymity and confidentiality. It allows users to hold multiple accounts,
perform concurrent transactions, and features a non-increasing state.
AQQUA achieves auditability by introducing two authorities: one for
registration and one for auditing. These authorities cannot censor finan-
cial exchanges, thus preserving the decentralized nature of the system.
Users create an initial account with the registration authority and then
transact with privacy by using provably unlinkable updates of it. Audits
can be voluntarily initiated by the users or requested by the audit au-
thority at any time. Compliance is proved in zero-knowledge against a set
of policies which includes a maximum limit in the amount sent/received
during a time period or in a single transfer, non-participation in a specific
transaction or selective disclosure of the value exchanged. In order to an-
alyze the properties of AQQUA we formally define a security model for
private and auditable decentralized payment systems. Using this model,
we prove that AQQUA satisfies anonymity, theft prevention, and audit
soundness.

Keywords: digital payment systems, cryptocurrencies, privacy, auditabil-
ity, updatable public keys

1 Introduction

Fifteen years after the introduction of Bitcoin [21], the integration of blockchain-
based cryptocurrencies - or more formally Distributed Payment Systems (DPS)
- with the traditional financial system is still underwhelming, despite their huge
popularity. This state of affairs is attributed by [27] to the lack of three factors:
performance, privacy, and regulation. While the lack of performance is a conse-
quence of the underlying consensus mechanism, privacy and regulation present
a deeper issue due to the inherent conflict between these two desiderata.

Regarding privacy, the inadequacy of Bitcoin’s renewable pseudonyms to
protect user privacy was demonstrated early on [20]. To overcome this problem,
privacy-enhanced cryptocurrencies (e.g. Zerocash [4], Monero [23], Zether [8],

Quisquis [15], Nopenena [1]) arose. These systems hide transaction identities
and/or amounts exchanged, thus providing privacy in a provable cryptographic
manner. At the same time, however, they make it easier for malicious users to
conduct illegal activities (e.g. money laundering, unauthorized funds transfer,
tax evasion), thus diminishing any regulation prospects and making mainstream
adoption even more unlikely.

Consequently, auditable privacy solutions [16, 11, 18, 19, 22, 27, 13, 2, 26,
7] arose to make private cryptocurrencies regulation-friendly without (entirely)
compromising user privacy. Financial regulations that are usually supported in
such schemes are KYC (Know-Your-Customer), Anti Money Laundering (AML),
as well as restrictions to the number or the value of transactions a single user
can make, or to the total value that can be exchanged in a single transaction.

In this work, we address privacy and auditability through AQQUA.

Overview AQQUA equips Quisquis with auditability without changing its de-
centralized, permissionless, and trustless nature, while maintaining transaction
anonymity and confidentiality. To this end, we introduce two new entities: A
Registration Authority (RA) to enroll users into the system, and an Audit Au-
thority (AA) to perform audits. In order to transact in AQQUA, users must first
register with the RA and provide their real-world credentials, thus fulfilling KYC.
Then they acquire a cryptographic pseudonym in the form of an initial updatable
public key as in [15], which is used to create new accounts within the system.

AQQUA accounts consist of a public key, and hiding commitments for the
balance, the total amount of coins spent, and the total amount of coins received.
New accounts can be created by updating the public key in a provably unlink-
able manner as in [15]. As a result, users can own as many accounts as they
wish, contrary to other private and auditable DPS. The number of accounts per
user is recorded in the state of the system, which is split between two sets: the
UTXOSet contains user accounts, and the UserSet maintains a mapping between
a registered public key and the number of accounts that have been created by
updating this public key. Of course, this number is maintained in committed
form. For each new account this commitment must be updated. The addition
of a new public key to the UserSet can happen only after approval by the RA.
Nevertheless, the RA cannot censor or identify user transactions after enrollment.

In AQQUA, transactions can be thought of as ‘wealth redistribution’ be-
tween inputs and outputs, an idea from Quisquis [15]. Input accounts include
the set of senders, the set of recipients as well as an anonymity set. Each account
participating in these sets is an update of an account from the UserSet. Output
accounts are new, updated but unlikable accounts for the senders, recipients,
and decoys. To enforce theft prevention, the sender proves in zero-knowledge
that they have correctly updated the accounts and have not taken coins away
from anyone except themselves.

A user can produce a proof of compliance with a policy for a specific transac-
tion or all their exchanges for a particular time period of interest. To do so their
initial public key is required, which may be disclosed to the AA voluntarily by the
user themselves, or the AA might acquire it in cooperation with the RA. Then, the

2

user proves in zero-knowledge that they are compliant with the audited policy,
using data that are only stored on-chain.

AQQUA enables voluntarily auditing, i.e. honest users may initiate the audit,
in order to enjoy some advantage [7]. As an example, consider the case in which
the AA is a cryptocurrency exchange. A user can prove to the AA that their
AQQUA accounts are compliant with a policy, before being allowed to use the
exchange for AQQUA coins. Another example is the case in which the user is
among the set of suspects for some illicit activity, in which case honest users
are able to prove their ‘innocence’ without giving up their privacy. On the other
hand audits may be initiated by the collaboration of the AA and RA. In such
cases, auditing can be effectively made mandatory if combined with off-chain
penalties to non-compliant or irresponsive users.

2 Related Work

AQQUA takes the auditability route to regulation; there is an external auditor
(the AA) who can request an ‘explanation’ of the data stored on the blockchain
at will. The other option is accountability [9], where policies are evaluated at the
system level when certain predicates are met, and non-conforming transactions
never make it to the blockchain. Auditability is better suited to the Quisquis
setting, since it imposes no extra burden to its consensus layer.

Most works that combine privacy and regulation, apply to the permissioned
setting [18, 25, 11, 13, 22, 26], which is considered appropriate for Central Bank
Digital Currencies (CBDC). These approaches use a distributed ledger to record
transactions between banks or large financial organizations, which might also
play the role of validators. In contrast, AQQUA makes no assumptions about
its users. In order to limit the power of the validators while enforcing compli-
ance, [18, 25] use secure multi-party computation techniques to distribute the
application of regulation policies between different parties. PGC [11] provides
a generalized design and an implementation that combines confidentiality with
auditability, altogether skipping anonymity. Their proposal supports a rich set of
regulation policies to limit money laundering and enable taxation. AQQUA tries
to apply the expressiveness of PGC’s policies to the permissionless setting, while
also being anonymous to outsiders and to auditors in-between audits. UTT [25]
has the unique approach of allowing users a privacy budget to spend in order
to satisfy KYC policies. In AQQUA, there are no limits either in spending or in
the number of accounts that can be created.

In the permissionless setting, there are some works that combine auditability
and privacy utilizing points of concentration like privacy mixers [5, 14, 7] or
exchanges [19]. In Haze [14], compliance amounts to approving only the trans-
actions which do not originate from a black list of banned addresses, even if the
address is banned after funds were deposited on the mixer. Pisces [19] achieves
anonymity for all asset types that might be traded in an exchange, while sup-
porting aggregation of statistics that allow tax calculation. Privacy pools [7]
allows users to prove that their withdrawals (do not) originate from (black-)

3

white-listed deposits. Our approach in AQQUA has two advantages over [5, 14,
19, 7]: Firstly, it is censorship-resistant since our authorities do not participate
in transactions. Secondly, AQQUA has a global view of the blockchain, which
means that compliance can be based on more complete data.

To the best of our knowledge, the closest work to AQQUA is [16] which
modifies the Zerocash [4] coin format by adding counters that allow the data ag-
gregation that may be used for auditing. However, [16] is plagued with the same
problems as Zerocash; a monotonically increasing UTXO set that affects perfor-
mance which is exacerbated by the addition of auxiliary information. AQQUA
inherits from Quisquis [15] in which transactions don’t increase the size of the
UTXO set. Furthermore, in contrast to [16], AQQUA does not have an option for
transaction tracing, and while account information is revealed during an audit,
user privacy is immediately restored afterwards.

3 Preliminaries

Notation. We denote by λ the security parameter. M is the message space
of our cryptographic schemes and V = {0, . . . , V } defines the range of valid
currency values, where V is an upper bound on the maximum possible number
of coins (|V| ≪ |M|). When an element x is sampled uniformly at random from
a set X , we write x←$ X . Given a tuple t = (a, b) we employ the dot notation,
i.e. t.a or t.b and denote tx = (a, b)x = (ax, bx) and t1 · t2 = (t1.a · t2.a, t1.b · t2.b).
Our cryptographic primitives operate in a group G of prime order p generated
by g ∈ G (G, p, g) where the DDH is hard, with corresponding field Fp.

Updatable Public Keys. An Updatable Public Key [15] (UPK) can be up-
dated while remaining indistinguishable from freshly generated keys. We utilize
the construction of [15] where a public key pki is a tuple (gi, g

sk
i) where sk ←$ Fp

is the secret key and gi ∈ G. UPKs can be updated through Update({pki}; r)
which computes

{
pk′i = pkri

}
, r ←$ F∗

p for all i. Using the secret key one can ver-
ify if a keypair pk = (g′, h′) is an UPK by calling VerifyKP(sk, pk) which checks
if (g′)sk = h′. Finally, one can use VerifyUpdate(pk′, pk, r) to verify if pk′ is a
valid update of pk using r, by checking if Update({pk}; r) = pk′. The security
properties of UPKs prevent an adversary from distinguish between a new pub-
lic key and an updated one (indistinguishability), and from explaining a public
key update without the secret key and the randomness. We provide a formal
description in Appendix A.1.

Commitments. We use a computationally hiding, unconditionally binding, ad-
ditively homomorphic (thus re-randomizable), and key anonymous commitment

scheme over (G, p, g) with m
def
= Commit(pk,m; r) = (c, d) = (gri , g

mhri).

Using UPKs as commitment public keys, one can verify and open them using
the secret key, without needing to know the randomness used.

4

– VerifyCom(sk, pk, com,m): Verifies that com = (c, d) is a commitment to m
under pk, by checking if d = gmcsk holds.

– OpenCom(sk, m): Given m = (c, d), retrieves m by calculating dc−sk and
brute-forcing to obtain m.

Σ-protocols. AQQUA utilizes well known Σ-protocols for proving discrete
logarithm knowledge [24], and DDH tuples [10]. We also use the variation of the
Bayer-Groth shuffle proof [3] from [15], and Bulletproofs [6] for range proofs.
Furthermore, we utilize two specific Σ-protocols from [15] (cf. Appendix A.2):

– Σvu proves the validity of a UPK update, i.e. knowledge of w: pk′ = pkw.
– Σcom for proving that two commitments hide the same value, i.e. knowledge

of w = (v, r1, r2) such that com1 = Commit(pk1, v; r1), com2 = Commit(pk2, v; r2)

4 AQQUA Architecture

Entities. In AQQUA there are the following types of entities:

– Registration Authority (RA): Enrolls users by linking their real-world identity
to an initial public key (pk0). All users’ accounts within the system will
originate from pk0, through updates. RA stores identity data off-chain for
enforcement penalties on non-compliant users.

– Audit Authority (AA): Initiates audits to verify user compliance with system’s
policies. AA cooperates with RA to penalize non-compliant users.

– Users (U): Participants that own and transact through multiple accounts.

State. In AQQUA the state (denoted state) is composed of two sets:

– UTXOSet: Contains the ’unspent’ user accounts that are outputs of valid
transactions but have not yet been used as inputs.

– UserSet: Stores a mapping between the user’s initial public key and a com-
mitment to the number of accounts they own. This ensures that the user
cannot withhold information from the AA during audits. While all users can
update existing information in the UserSet, only the RA may add new entries.

Accounts. Users may own multiple accounts of the form acct = (pk, bl , out , in),
where bl is the account balance and out, in are the total amounts the account
has sent and received, respectively.

Accounts functionalities include: NewAcct(pk0; r⃗ = (r1, r2, r3, r4)), which
outputs a new account with an updated public key pk = Update(pk0; r1) and
zero-value commitments for balance, sent, and received amounts, using ran-
domness r2, r3, r4 respectively, VerifyAcct(acct, sk, bl, out, in), which verifies if
the commitments in the account correspond to the provided values by using
VerifyCom, UpdateAcct({accti, vbli, vini, vouti}ni=1; r⃗), which outputs a new set of

unlinkable accounts by updating their public key and adding vXi to accti. X

5

for X ∈ {bl, in, out}, using the homomorphic properties of the commitment
scheme, and VerifyUpdateAcct({acct′i, accti, vbli, vouti, vini}ni=1; r⃗), which verifies
if an account update was performed correctly by comparing the original and
updated accounts, balances, and randomness. For the detailed formal definitions
of these functionalities, see Appendix B.1.

User information. Each user is associated with a tuple userInfo = (pk0, #accs),
which is stored in the UserSet, where pk0 represents the initial public key as-

signed at registration, and #accs is a commitment to the number of accounts
the user owns in the UTXOSet. This commitment ensures that users cannot
conceal any accounts during audits, and its opening is disclosed only to the AA.

The functionalities for user information include: GenUser() that creates a
new user by producing a new key pair (sk, pk0), a new account for pk0 through
CreateAcct and a userInfo tuple consisting of pk0 and a commitment to value 1,
VerifyUser((pk0, com), (sk, #accs)) that verifies the correctness of the user infor-
mation by checking if the commitment matches the number of accounts #accs
using VerifyCom, UpdateUser({userInfoi, v#accsi}

n
i=1; r) that updates a set of user

information tuples by modifying the commitment to reflect the updated num-
ber of accounts, VerifyUpdateUser({userInfo′i, useri, v#accsi}

n
i=1; r): that verifies

the correctness of the updated user information by comparing the original and
updated values and commitments. For the detailed formal definitions of these
functionalities, see Appendix B.2.

Policies. AQQUA supports policies that address Anti-Money Laundering (AML)
requirements and selective disclosure, allowing for compliance with regulations,
while preserving user privacy. We express policies as predicates over an initial
public key pk0, a time period represented by a starting state state1 and an ending
state state2, and auxiliary information aux specific to a compliance objective.

We introduce our supported policy predicates, where A1, A2 denote the sets
of accounts owned by the user with pk0 in state1.UTXOSet, state2.UTXOSet,
respectively, and bl, out, in represent the variables acct.bl, acct.out, acct.in for
a specific account acct, accordingly.

– Predicate f{slimit,rlimit}(pk0, (state1, state2), amax) for sending/receiving limit :
Restricts the amount that a user can send/receive within a given time period,
thus helping the enforcement of AML regulations. The sent and received
amounts should not exceed a predefined threshold amax, i.e.:

∑
acct∈A2

out−∑
acct∈A1

out ≤ amax. For frlimit we use in instead of out respectively.

– Predicate ftxlimit(pk0, (state1, state2), vmax) for transaction value limit : Set
an upper bound vmax to the value transferred in a single transaction, i.e.:∑

acct∈A1
bl−

∑
acct∈A2

bl ≤ vmax.

– Predicate fnp(pk0, (state1, state2)) for non-participation: Verifies that a user
has not participated in any transaction during a given time period, i.e.:
(
∑

acct∈A1
out−

∑
acct∈A2

out = 0) ∧ (
∑

acct∈A1
in−

∑
acct∈A2

in = 0).

6

– Predicate fopen(pk0, (state1, state2), vopen) for open transaction: Selective dis-
closure of value sent or received (vopen) in a specific transaction, i.e.: (v =
(
∑

acct∈A2
bl−

∑
acct∈A1

bl) ∈ V) ∧ (v = vopen ∨ v = −vopen).

Tracking the number of accounts a user owns is essential for enforcing value-
limit policies. Without this, users could bypass these policies by creating multiple
sybil identities [9]. For this reason AQQUA includes an RA.

5 AQQUA Functionalities

AQQUA consists of functionalities to set up the system, register users, issue
transactions and undergo audits. Registration functionalities are used to create,
verify, and add registration data. Transaction functionalities are used to send
funds, create and delete accounts, verify transactions and apply transactions to
the state. Audit functionalities create and verify audit proofs.

5.1 Setup

The (state0, pp) ← Setup(λ) algorithm takes as input the security parameter λ
and returns the public parameters pp and the initial state state0 which contains
an empty UserSet and UTXOSet.

5.2 Registration

In order for users to register in AQQUA, they use the (sk, userInfo, acct, π) ←
Register() algorithm to create an initial updatable public key pair pk0 and the
corresponding secret key sk. Using pk0, the algorithm creates the user’s first

account acct = (pk, 0 , 0 , 0), where pk is an update of pk0, and the cor-

responding userInfo = (pk0, 1) entry. It also creates a NIZK argument π of
correct construction, starting that both pk0, pk correspond to sk, that userInfo
contains a commitment to 1 as the initial number of accounts, and that the acct
commitments contain 0 as the initial balance, total amount sent/received.

Then, the user sends their real-world identification information along with
userInfo, acct and π to the RA, which verifies them. To this end, it invokes 0/1←
VerifyRegister(userInfo, acct, π, state), which first checks that the userInfo.pk0 does
not already exist in a userInfo entry of UserSet. It then executes the verification
algorithm for the NIZK argument π and returns its result. If the arguments verify,
the RA notifies validators for (userInfo, acct, π) through an authenticated channel,
so they can update the state using the state′ ← ApplyRegister(userInfo, acct, state)
algorithm. The algorithm adds userInfo to state.UserSet and acct to state.UTXOSet,
and returns the resulting new state state′. The details are in Appendix B.3.

5.3 Transactions

Transactions are used to exchange money and create or remove accounts.

7

Trans Algorithm. AQQUA’s transaction algorithm extends the one in Quisquis [15]
by introducing additional fields to update the total amount sent from and re-
ceived by each participating account.

When a user wants to send coins to one or more recipients they invoke
tx← Trans(sk, S, R, #»vS,

#»vR, A). The accounts in the set S are owned by sk, while R
contains the receivers. The vectors #»vS,

#»vR contain the amounts to be subtracted
from and added to the balance of each account in S, R, respectively. Finally, the
anonymity set A is used to hide the identity of the sender and receiver accounts.
The Trans algorithm which is specified in Appendix B.4 works as follows:

– Ensures that each account in S is owned by sk by using VerifyKP, and that
|S| = | #»vS|, |R| = | #»vR|.

– Ensures that the sum of entries of #»vS,
#»vR is zero, values in #»vR are positive,

values in #»vS are negative, and after adding the value of #»vS to the balance of
the corresponding account, the result stays non-negative (i.e. each account
has enough funds to send).

– Sorts S ∪ R ∪ A in some canonical order and stores the result in inputs.
– Using UpdateAcct, re-randomizes the public keys of accounts of inputs

and re-randomizes and updates their balances, total amount sent and to-
tal amount received. The balances of accounts in S are reduced by the value
in the matching entry in #»vS and the ones in R are increased according to #»vR.
Balances of accounts in A remain unaltered, only re-randomized. The total
amount received and sent are updated appropriately, i.e. if an account is
a sender/receiver account, the total amount sent/received is increased by
the amount sent from/received by the account. Finally it sorts the updated
accounts in some canonical order. The results are assigned to outputs.

– Forms a NIZK argument π which proves that the accounts in outputs are
created with the above procedure.

– Returns tx = (inputs, outputs, π).

Every account can appear in at most two transactions; once when it is created
as an output and once when included in the inputs of another transaction, re-
gardless of whether it is the actual sender or is included for anonymity only.

Create Account Algorithm. Within the system, every user can create a
new account for any other registered user, which improves efficiency [15]. Since
each account can appear only once as input in a transaction, if two concurrent
transactions include the same account in their input set, one of them should be
rejected. As a result, owning multiple accounts enables a user to send or receive
funds by transactions created in parallel. Furthermore, increasing the number of
accounts decreases the probability of including the same acount in the anonymity
sets of two concurrent transactions.

The txCA = (acct, inputs, outputs, π) ← CreateAcct(userInfo, A) algorithm
can be used by any user to construct a transaction that creates a new account
for the owner of userInfo. It takes as input an anonymity set containing entries
of UserSet, used to hide userInfo. The algorithm creates the new account acct =

8

(pk, 0 , 0 , 0), where pk is an update of userInfo.pk0. Using UpdateUser, it
updates userInfo by increasing by one and re-randomizing the committed value
for the number of accounts the user owns, and re-randomizes all commitments of
entries of A. Thus, inputs = {userInfo}∪A in some canonical order and outputs

consists of the re-randomized and updated inputs. Finally, π is a NIZK argument
that txCA has been constructed according to the above procedure. The detailed
description of the CreateAcct algorithm is depicted in Appendix B.5.

Delete Account Algorithm. Allowing users to delete zero-balance accounts
reduces the storage overhead of AQQUA, since accounts that have no balance
left might be abandoned and thus not needed to be stored in the UTXOSet.
Furthermore, due to the fact that senders usually create new accounts for their
intended recipients, the number of accounts in the UTXOSet increases if the
option to remove zero-balance accounts is not given. Users should be incentivized
to delete the zero-balance accounts they own and don’t need to keep.

The txDA = (inputs, outputs, π) ← DelAcct(sk, userInfo, acctD, acctC, A1, A2)
takes as input the user’s secret key sk, user information userInfo, the zero-balance
account to be deleted acctD, an account acctC to transfer the information con-
taining the total amount sent and received of acctD, and anonymity sets A1, A2
to hide acctD, acctC and userInfo, respectively. In txDA, the set inputs consists
of A1 ∪ {acctD, acctC}, A2 ∪ {userInfo} in some canonical order. The algorithm
re-randomizes and decreases by one the commitment to the number of accounts
the user owns in userInfo, adds to the corresponding fields of acctC the total
amount sent and received of acctD and re-randomizes acctC, removes acctD, and
re-randomizes all other accounts and user information. The set outputs consists
of the resulting accounts and user information in some canonical order, and π
consists of a NIZK argument of correct construction. The detailed description of
the DelAcct algorithm can be found in Appendix B.6.

Transaction Verification. The 0/1← VerifyTrans(tx, state) algorithm guaran-
tees the validity of transaction tx, which can be either transfer, create or delete
account transaction. The algorithm checks that all accounts in tx.inputs are
present in state and executes the verification algorithm for π.

Apply Transaction. The state′ ← ApplyTrans(tx, state) algorithm is executed
after the verification of the tx to update the state by adding tx.outputs and
removing tx.inputs. It returns the new state state′.

Similarly to [15], upon receiving a new state, users whose accounts are in-
cluded in a transaction’s inputs should identify their updated accounts in outputs.
This can be accomplished by iterating through every acct ∈ outputs and us-
ing VerifyKP(sk, acct.pk). Once the user identifies an updated account, they can
check whether their account was used as part of the anonymity set or as a re-
cipient, by running VerifyCom(sk, acct.pk, acct.combl, bl), passing as input the
account’s previous balance bl. If the result is 1, then the account was used as

9

part of the anonymity set. Otherwise, the user must find out the new value for
the balance. The value is small enough so that the computation of its discrete
logarithm requires reasonable time.

5.4 Audit

In the audit procedure, the AA selects a user by their initial public key pk0,
and two state snapshots state1, state2. For the policies applied to transactions
(namely ftxlimit, fopen), state2 should be the state that results from applying
the transaction to state1. For the policies applied to a time period (namely
fslimit, frlimit, fnp), the snapshots state1, state2 represent the beginning and end of
the time period the auditor is interested in.

The user should open for each of the two snapshots the committed value of the
number of accounts they own (#accs field of userInfo). Then, they re-randomize
and shuffle all accounts in each snapshot, and reveal their re-randomized accounts
in each of the resulting snapshots’ UTXOSet. For each re-randomized snapshot,
they should reveal a number of accounts equal to the corresponding commit-
ment opening. Finally, they create a NIZK argument that proves the correct
re-randomization of states, the ownership of the accounts, and that the sets of
re-randomized accounts satisfy the required policy predicate (cf. section 4).

As an example, consider a user that is audited for fslimit with aux = amax,
and let {acct1i}#accs1i=1 , {acct2i}#accs2i=1 be the sets of their accounts in each re-

randomized snapshot. The user calculates out∗j =
∏#accsj
i=1 acctji. out for j =

1, 2, and out∗ = out∗2

(
out∗1

)−1

. Notice that the value out∗ corresponds to

the total amount sent in transactions of the user in the time period defined by
state1 and state2. Finally, they prove in zero-knowledge that out∗ ≤ amax [6].

All these actions are performed in the auditInfo← PrepareAudit(sk, pk0, state1,
state2, (f, aux)) algorithm which is invoked by the user. The algorithm returns
auditInfo = (outputs1, outputs2, #accs1, {acct1i}

#accs1
i=1 , #accs2, {acct2i}#accs2i=1 , π),

where outputsj is the re-randomized statej .UTXOSet, for j = 1, 2. We detail its
operations in Appendix B.7.

We note that since the user re-randomizes state1.UTXOSet, state2.UTXOSet
and then discloses their accounts in the resulting sets, the AA is unable to link
the disclosed accounts with the user’s original accounts in the initial snapshots.
This guarantees that the user’s privacy is preserved during individual audits.

To check the compliance of a user with a policy, the AA executes the 0/1 ←
VerifyAudit(pk0, state1, state2, (f, aux), auditInfo) algorithm, which verifies π of
auditInfo and returns its result.

6 Security analysis

A private and auditable payment system should possess anonymity, theft pre-
vention, and audit soundness in order to be secure. We formally define these
properties using security games. Our adversary can corrupt users of the system,

10

can create, delete and register new accounts, issue transactions, and request and
receive audit proofs, through access to the following oracles:

– sk ← OCorrupt(pk, state): Returns the secret key for a public key of the
provided state.

– state← ORegister(): Creates a keypair and registers the public key. Returns
the new state.

– (txCA, state)← OCreateAcct(userInfo, A): Creates a new account for a userInfo
entry using the anonymity set A. Returns the corresponding transaction and
resulting state after the transaction application.

– (txDA, state)← ODelAcct(userInfo, acctC, acctD, A1, A2): Creates and applies a
transaction to delete an account. Returns the transaction and the resulting
state after the transaction application.

– (tx, state) ← OTrans(S, R, #»vS,
#»vR, A): Creates and applies a transaction, re-

turns the transaction and the new state.
– state ← OApplyTrans(tx): Checks if a transaction is valid and if so, applies

it. Returns the resulting state.
– auditInfo ← OPrepareAudit(pk0, state1, state2, (f, aux)): Creates and returns

an audit proof.

Our security games make use of bookkeeping functionalities which can be
called by the challenger and the available oracles. The bookkeeping keeps a list
states of consecutive states created through oracle queries, a set entries containing
all the secret keys that control the accounts appearing in these states, and a
partition of the keys set into honest and corrupt (controlled by the adversary)
keys, honest and corrupt, respectively. The bookkeeping functionalities are:

– sk← findSecretKey(pk, state): Finds the secret key corresponding to a public
key present in a state.

– s← totalWealth(set, state): Returns the total amount of funds of the accounts
of state that are owned by a set of secret keys (set = honest or set = corrupt).

– 0/1 ← verifyPolicy(pk0, state1, state2, (f, aux)): Checks whether pk0 is com-
pliant with policy f for the time period represented by state1, state2.

We provide formal descriptions in Appendix C.1 and Appendix C.2.

6.1 Anonymity

Anonymity requires that an observer of the system cannot find the identities of
senders and receivers of a transaction if they don’t own the sender’s private key,
and that even the recipient of a transaction cannot know the sender. Anonymity
is defined in Game 1 and Definition 1, where the following rules must be enforced
or else the adversary could trivially guess b.

– Both senders must be honest. If one of the senders were corrupted, the
adversary would be able to see whose account’s balance decreases.

11

Game 1: Anonymity game ExpanonA (λ)

Input : λ
Output: {0, 1}
b←$ {0, 1}
(state0, pp)← Setup(λ)
(acct0, acct1, acct

′
0, acct

′
1, A, v0, v1)←

AOCorrupt,ORegister,OCreateAcct,ODelAcct,OTrans,OApplyTrans(state0)
state← states[−1] // most recent state of bookkeeping

sk0 ← findSecretKey(acct0.pk, state); sk1 ← findSecretKey(acct1.pk, state)
sk′0 ← findSecretKey(acct′0.pk, state); sk

′
1 ← findSecretKey(acct′1.pk, state)

if (sk0 ∈ corrupt ∨ sk1 ∈ corrupt) ∨ ((sk′0 ∈ corrupt ∨ sk′1 ∈ corrupt) ∧ ((acct′0 ̸=
acct′1) ∨ (acct′0 = acct′1 ∧ v0 ̸= v1))) ∨ (acct0.bl < v0 ∨ acct1.bl < v1) then

return ⊥
for y ∈ {0, 1} do

Ay ← A

if sk0 ̸= sk1 then Ay ← A ∪ {acct1−y}
if sk′0 ̸= sk′1 then Ay ← A ∪ {acct′1−y}
txy ← Trans(sky, {accty}, {acct′y}, (−vy), (vy), Ay)
if VerifyTrans(txy, state) = 0 then return ⊥

state′ ← ApplyTrans(txb, state)
b′ ← A(state′)
return (b = b′)

– Both receivers are honest. If both were corrupted then acct′0 = acct′1 and
v0 = v1. If one is corrupted, the adversary would be able to see which
account’s balance increased or the amount by which it increased.

Definition 1. The advantage of the adversary in winning the anonymity game

is defined as: AdvanonA (λ) =| Pr[ExpanonA (λ) = 1]−1

2
| . A DPS satisfies anonymity

if for every PPT adversary A, AdvanonA (λ) is negligible in λ.

We formally prove that AQQUA provides anonymity, through a sequence of
hybrid arguments (cf. Appendix C.3). Intuitively, we argue that any PPT adver-
sary A capable of distinguishing between tx0, tx1 in the anonymity game (find if
b′ = b) can be used to break either the indistinguishability of the UPK scheme,
the hiding property of the commitment scheme, or the zero-knowledge property
of the NIZK arguments. Transactions consist of inputs, outputs, and NIZK ar-
gument π (and if the transaction is the result of CreateAcct or DelAcct a newly
created account acct). One way A could determine b is based on π, but that vi-
olates the zero-knowledge property of the NIZK arguments. Another way that A
could determine b is to distinguish between tx0, tx1 through the outputs sets of
each tx. The only differences in the two outputs sets tx0.outputs, tx1.outputs
are the accounts which are used in P = S ∪ R and in A as well as the amount v
used to increase/decrease the variables in the accounts of P. However, since both
the accounts’ amounts and transferred value v are presented in a committed
form, if A could determine b based on the different values v0, v1 then the hiding

12

property of the commitment scheme would be violated. In addition, since all the
accounts participating in the transaction are updated and randomly permuted,
A cannot use P0, A0, P1, A1 to distinguish the two transactions without violating
the indistinguishability property of the UPK scheme.

6.2 Theft prevention

Theft prevention means that users can only move funds from accounts they own.
It is formally defined in Game 2 and Definition 2. In order for the adversary to
win the theft prevention game, they have to output a valid transaction that,
when applied, either increases the wealth of the users they control, decreases the
wealth of the honest parties, or alters the total wealth of all the users (i.e. the
adversary’s transaction either created or destroyed wealth).

Game 2: Theft prevention game ExptheftA (λ)

Input : λ
Output: {0, 1}
(state0, pp)← Setup(λ)

tx← AOCorrupt,ORegister,OCreateAcct,ODelAcct,OTrans,OApplyTrans(state0)
state← states[−1] // most recent state of bookkeeping

sh ← totalWealth(honest, state)
sc ← totalWealth(corrupt, state)
if VerifyTrans(tx, state) = 0 then return ⊥
state′ ← ApplyTrans(tx, state)
s′h ← totalWealth(honest, state′)
s′c ← totalWealth(corrupt, state′)
return (s′h < sh) ∨ (s′c > sc) ∨ (s′c + s′h ̸= sc + sh)

Definition 2. The advantage of the adversary in winning the theft prevention
game is defined as AdvtheftA (λ) = Pr[ExptheftA (λ) = 1]. A DPS satisfies theft
prevention if for every PPT adversary A, AdvtheftA (λ) is negligible in λ.

We formally prove that AQQUA satisfies theft prevention in Appendix C.4.
Intuitively, we argue that any PPT adversary A, capable of winning the theft-
prevention game, can be used to break either the unforgeability property of the
UPK scheme, the binding property of the commitment scheme, or the soundness
property of the NIZK arguments. In order to win the theft-prevention game, A
should submit a transaction tx that either increases the total balance of the
corrupted users, decreases the balance of honest users, or does not maintain
preservation of value. This can happen in the following ways: Firstly, if the
adversary is able to transfer some amount from a honest user’s account. How-
ever, this means that A can compute the sk of the honest account, thus the
unforgeability property of the UPK scheme is violated. Secondly, if A manages

13

to transfer more coins than the corrupted account holds. But in order for such
a transaction to be valid, the adversary should either be able to make a NIZK
argument that violates the soundness property, or to compute an opening to a
commitment with balance different from the real one, hence breaking the binding
property of the commitment scheme. The third way is by creating a transaction
that breaks preservation of value, but in order for such a transaction to be valid,
A should again be able to construct an unsound NIZK argument or break the
binding property of the commitment scheme.

6.3 Audit soundness

Audit soundness means that there cannot be a successfully verified audit gener-
ated by a user who is non-compliant. Our definition in Game 3 is inspired from
verifiability in electronic voting [12]. In order for the adversary to win the audit
soundness game for a policy f , they have to output a valid audit proof for a user
that is non-compliant regarding the particular policy.

Game 3: Audit soundness game ExpausoundA,f (λ)

Input : λ
Output: {0, 1}
state0, pp← Setup(λ)
(pk0, state1, state2, f, aux, auditInfo)←
AOCorrupt,ORegister,OCreateAcct,ODelAcct,OTrans,OApplyTrans,OPrepareAudit(state0)

if VerifyAudit(pk0, state1, state2, (f, aux), auditInfo) = 1 then
// check if f is satisfied and that state1, state2 are valid

if verifyPolicy(pk0, state1, state2, (f, aux)) = 1 then return 0
else return 1

else
return ⊥

Definition 3. The advantage of the adversary in winning the audit sound-
ness game for policy f is defined as: AdvausoundA,f (λ) = Pr[ExpausoundA,f (λ) = 1].
A DPS satisfies audit soundness for a policy f if for every PPT adversary A,
AdvausoundA,f (λ) is negligible in λ.

We formally prove that AQQUA possesses audit soundness in Appendix C.5.
Intuitively, we argue that any PPT adversary A capable of winning the audit
soundness game can be used to break either the binding property of commitment
scheme or the soundness property of the NIZK arguments. In order to win the the
audit soundness game, A should either create a valid NIZK argument without
knowing the corresponding witness, or hide some of their accounts from the
AA. However, the former attack violates the soundness property of the NIZK
argument. The latter requires A to be able to open their commitment #accs

to a different value, but this again breaks binding.

14

7 Performance

We follow the approach of Quisquis [15] to reason about the performance of
AQQUA. Each AQQUA account consists of 8 group elements, twice the 4 used in
[15], resulting in doubling the number of group elements required per transaction.
Thus, AQQUA transactions contain 48n group elements, compared to 24n in [15],
where n represents the number of accounts in the inputs or outputs list. Using
the same elliptic curve as [15], with each group element requiring 33 bytes, we
project that an AQQUA transaction requires 1584n bytes.

In AQQUA, the inclusion of the new variables out, in results in each proof
requiring additional Σ-protocols to verify both the correct shuffling of the com-
mitments to these values and the proper updating of these values, as described
in the transaction algorithm. Specifically, to implement this, each proof uses
4n+2|S|+2 log2(|S|)+2 log2(log2(V))+8 more group elements and 8n+4|S|+9
more field elements compared to Quisquis. Recall that the total size of the proof
in Quisquis is 6n+22

√
n+52+2(log2(|S|+ |R|)+ log2(log2(V))) group elements

and 6n+10
√
n+39 field elements. Thus, asymptotically, the transaction proofs

in AQQUA and Quisquis require the same size.
Regarding the audit, AQQUA requires O(

√
|UTXOSet|) group and field ele-

ments for shuffling. Additionally, the audit involves a constant number of group
and field elements equal to the number of accounts owned by the audited user,
alongside 2 log2(log2(V)) + 4 group elements and 5 field elements. The audit
can be optimized by introducing a smaller anonymity set instead of the whole
UTXOSet.

8 Conclusion and Future Work

In this work we presented AQQUA, a decentralized private and auditable pay-
ment system. AQQUA accounts allow the aggregation of the total influx/outflux
for an updatable public key while maintaining privacy. AQQUA authorities al-
low checking compliance to specific policies without intervening in the normal
flow of transactions. Auditing may be voluntary and follows minimal informa-
tion disclosure practices. External mechanisms can be used to prevent AA from
abusing its power and requesting unnecessary audits. We also formally defined
and proved security for AQQUA.

This work is a first step towards a general framework for non-invasive but au-
ditable and private cryptocurrencies. In this regard, we plan to explore applying
the AQQUA architecture to other cryptocurrencies beyond Quisquis (i.e. in [1]).
We also plan to explore more policies that can be supported by AQQUA and
to address in a game-theoretic manner the motivation of users to participate
in audits. Additionally, we aim to provide ways to strengthen user privacy in
relation to the size of the anonymity set and its sampling, without disregarding
their effect on performance. Finally, another direction we are considering is to
convert audit proofs to be designated-verifier [17]. As a result, the AA will be able
to simulate them, and thus it will be the only entity convinced about the audit

15

results. This may increase the privacy of the participants, but it will interfere
with the trust dynamics of the system. As a result, a thorough consideration
and formal modelling of the motives and actions of the AA is required.

References

[1] Jayamine Alupotha, Mathieu Gestin, and Christian Cachin. Nopenena
Untraceable Payments: Defeating Graph Analysis with Small Decoy Sets.
Cryptology ePrint Archive, Paper 2024/903. 2024. url: https://eprint.
iacr.org/2024/903.

[2] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya,
Kaoutar Elkhiyaoui, and Björn Tackmann. “Privacy-preserving auditable
token payments in a permissioned blockchain system”. In: Proceedings of
the 2nd ACM Conference on Advances in Financial Technologies. AFT
’20. New York, NY, USA: Association for Computing Machinery, 2020,
255–267. isbn: 9781450381390. doi: 10.1145/3419614.3423259. url:
https://doi.org/10.1145/3419614.3423259.

[3] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument
for Correctness of a Shuffle”. In: Advances in Cryptology – EUROCRYPT
2012. Ed. by David Pointcheval and Thomas Johansson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, pp. 263–280. isbn: 978-3-642-29011-
4.

[4] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized Anony-
mous Payments from Bitcoin”. In: 2014 IEEE Symposium on Security and
Privacy. 2014, pp. 459–474. doi: 10.1109/SP.2014.36.

[5] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua
A. Kroll, and Edward W. Felten. “Mixcoin: Anonymity for Bitcoin with
Accountable Mixes”. In: Financial Cryptography and Data Security - 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-
7, 2014, Revised Selected Papers. Ed. by Nicolas Christin and Reihaneh
Safavi-Naini. Vol. 8437. Lecture Notes in Computer Science. Springer,
2014, pp. 486–504. doi: 10.1007/978-3-662-45472-5_31. url: https:
//doi.org/10.1007/978-3-662-45472-5_31.

[6] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. “Bulletproofs: Short Proofs for Confidential
Transactions and More”. In: 2018 IEEE Symposium on Security and Pri-
vacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA. IEEE Computer Society, 2018, pp. 315–334. doi: 10.1109/SP.2018.
00020. url: https://doi.org/10.1109/SP.2018.00020.

[7] Vitalik Buterin, Jacob Illum, Matthias Nadler, Fabian Schär, and Ameen
Soleimani. “Blockchain privacy and regulatory compliance: Towards a prac-
tical equilibrium”. In: Blockchain: Research and Applications 5.1 (2024),
p. 100176. issn: 2096-7209. doi: https://doi.org/10.1016/j.bcra.

16

https://eprint.iacr.org/2024/903
https://eprint.iacr.org/2024/903
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1007/978-3-662-45472-5_31
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/https://doi.org/10.1016/j.bcra.2023.100176
https://doi.org/https://doi.org/10.1016/j.bcra.2023.100176

2023.100176. url: https://www.sciencedirect.com/science/article/
pii/S2096720923000519.

[8] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:
Towards Privacy in a Smart Contract World. Cryptology ePrint Archive,
Paper 2019/191. 2019. url: https://eprint.iacr.org/2019/191.

[9] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias.
“SoK: Auditability and Accountability in Distributed Payment Systems”.
In: Applied Cryptography and Network Security: 19th International Con-
ference, ACNS 2021, Kamakura, Japan, June 21–24, 2021, Proceedings,
Part II. Vol. 12727. Lecture Notes in Computer Science. Kamakura, Japan:
Springer-Verlag, 2021, 311–337. isbn: 978-3-030-78374-7. doi: 10.1007/
978-3-030-78375-4_13. url: https://doi.org/10.1007/978-3-030-
78375-4_13.

[10] David Chaum and Torben P. Pedersen. “Wallet Databases with Observers”.
In: Advances in Cryptology - CRYPTO ’92, 12th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 16-20,
1992, Proceedings. Ed. by Ernest F. Brickell. Vol. 740. Lecture Notes in
Computer Science. Springer, 1992, pp. 89–105. doi: 10.1007/3- 540-
48071-4_7. url: https://doi.org/10.1007/3-540-48071-4_7.

[11] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. “PGC: Decentral-
ized Confidential Payment System with Auditability”. In: Computer Se-
curity - ESORICS 2020 - 25th European Symposium on Research in Com-
puter Security, ESORICS 2020, Guildford, UK, September 14-18, 2020,
Proceedings, Part I. Ed. by Liqun Chen, Ninghui Li, Kaitai Liang, and
Steve A. Schneider. Vol. 12308. Lecture Notes in Computer Science. Springer,
2020, pp. 591–610. doi: 10.1007/978-3-030-58951-6_29. url: https:
//doi.org/10.1007/978-3-030-58951-6_29.

[12] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.
“Election Verifiability for Helios under Weaker Trust Assumptions”. In:
ESORICS 2014. Cham, 2014, pp. 327–344.

[13] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan
Boneh. “Provisions: Privacy-preserving Proofs of Solvency for Bitcoin Ex-
changes”. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’15. Denver, Colorado, USA: As-
sociation for Computing Machinery, 2015, 720–731. isbn: 9781450338325.
doi: 10.1145/2810103.2813674. url: https://doi.org/10.1145/
2810103.2813674.

[14] Maya Dotan, Ayelet Lotem, and Margarita Vald. “Haze: A Compliant
Privacy Mixer”. In: IACR Cryptol. ePrint Arch. (2023), p. 1152. url:
https://eprint.iacr.org/2023/1152.

[15] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi.
“Quisquis: A new design for anonymous cryptocurrencies”. In: Advances in
Cryptology–ASIACRYPT 2019: 25th International Conference on the The-
ory and Application of Cryptology and Information Security, Kobe, Japan,
December 8–12, 2019, Proceedings, Part I 25. Springer. 2019, pp. 649–678.

17

https://doi.org/https://doi.org/10.1016/j.bcra.2023.100176
https://doi.org/https://doi.org/10.1016/j.bcra.2023.100176
https://doi.org/https://doi.org/10.1016/j.bcra.2023.100176
https://www.sciencedirect.com/science/article/pii/S2096720923000519
https://www.sciencedirect.com/science/article/pii/S2096720923000519
https://eprint.iacr.org/2019/191
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1007/978-3-030-58951-6_29
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1145/2810103.2813674
https://eprint.iacr.org/2023/1152

[16] Christina Garman, Matthew Green, and Ian Miers. “Accountable Privacy
for Decentralized Anonymous Payments”. In: Financial Cryptography and
Data Security - 20th International Conference, FC 2016, Christ Church,
Barbados, February 22-26, 2016, Revised Selected Papers. Ed. by Jens
Grossklags and Bart Preneel. Vol. 9603. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 81–98. doi: 10.1007/978-3-662-54970-4_5.
url: https://doi.org/10.1007/978-3-662-54970-4_5.

[17] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Ver-
ifier Proofs and Their Applications”. In: Advances in Cryptology — EU-
ROCRYPT ’96. Ed. by Ueli Maurer. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 143–154. isbn: 978-3-540-68339-1.

[18] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. “PEReDi:
Privacy-Enhanced, Regulated and Distributed Central Bank Digital Cur-
rencies”. In: Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi. ACM, 2022, pp. 1739–1752. doi: 10 . 1145 / 3548606 .
3560707. url: https://doi.org/10.1145/3548606.3560707.

[19] Ya-Nan Li, Tian Qiu, and Qiang Tang. “Pisces: Private and Compli-
able Cryptocurrency Exchange”. In: IACR Cryptol. ePrint Arch. (2023),
p. 1317. url: https://eprint.iacr.org/2023/1317.

[20] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Da-
mon McCoy, Geoffrey M. Voelker, and Stefan Savage. “A fistful of Bitcoins:
characterizing payments among men with no names”. In: Commun. ACM
59.4 (2016), pp. 86–93. doi: 10.1145/2896384. url: https://doi.org/
10.1145/2896384.

[21] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:
(May 2009). url: http://www.bitcoin.org/bitcoin.pdf.

[22] Neha Narula, Willy Vasquez, and Madars Virza. “zkLedger: Privacy-Preserving
Auditing for Distributed Ledgers”. In: 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 65–80. isbn: 978-1-939133-01-4. url: https:
//www.usenix.org/conference/nsdi18/presentation/narula.

[23] Shen Noether. Ring Signature Confidential Transactions for Monero. Cryp-
tology ePrint Archive, Paper 2015/1098. 2015. url: https://eprint.
iacr.org/2015/1098.

[24] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards”. In: Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings. Ed. by Gilles Brassard. Vol. 435. Lecture Notes
in Computer Science. Springer, 1989, pp. 239–252. doi: 10.1007/0-387-
34805-0_22. url: https://doi.org/10.1007/0-387-34805-0_22.

[25] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. “UTT: Decentralized Ecash

18

https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1007/978-3-662-54970-4_5
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://doi.org/10.1145/3548606.3560707
https://eprint.iacr.org/2023/1317
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
http://www.bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/nsdi18/presentation/narula
https://www.usenix.org/conference/nsdi18/presentation/narula
https://eprint.iacr.org/2015/1098
https://eprint.iacr.org/2015/1098
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22

with Accountable Privacy”. In: IACR Cryptol. ePrint Arch. (2022), p. 452.
url: https://eprint.iacr.org/2022/452.

[26] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. “Platy-
pus: A Central Bank Digital Currency with Unlinkable Transactions and
Privacy-Preserving Regulation”. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’22. Los An-
geles, CA, USA: Association for Computing Machinery, 2022, 2947–2960.
isbn: 9781450394505. doi: 10.1145/3548606.3560617. url: https://
doi.org/10.1145/3548606.3560617.

[27] Karl Wüst, Kari Kostiainen, Vedran vCapkun, and Srdjan vCapkun. “PRCash:
Fast, Private and Regulated Transactions for Digital Currencies”. In: Fi-
nancial Cryptography and Data Security: 23rd International Conference,
FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers. St. Kitts, Saint Kitts and Nevis: Springer-Verlag, 2019,
158–178. isbn: 978-3-030-32100-0. doi: 10.1007/978-3-030-32101-7_11.
url: https://doi.org/10.1007/978-3-030-32101-7_11.

A Building Blocks

A.1 Updatable Public Keys

AQQUA accounts are built on the Updatable Public Key (UPK) primitive
from [15] In a UPK scheme public keys can be updated while remaining in-
distinguishable from freshly generated keys.

More specifically, a UPK scheme is a tuple (Setup,KGen,Update,VerifyKP,VerifyUpdate).

– Setup generates the public parameters, which are implicitly given as input
to all other algorithms, i.e. pp ← Setup(λ). For instance, pp could be a
prime-order group (G, g, p).

– KGen generates a keypair (pk, sk). Concretely, it is implemented as: Sample

r, sk←$ Fp, calculate pk = (gr, grṡk) and output (sk, pk).
– Update takes as input a set of public keys {pki}ni=1 and generates a new set

{pk′i}ni=1 where pk′i = pkri = (gri , g
r·sk
i) for all i.

– VerifyKP takes as input a keypair (sk, pk) and checks if it is valid, i.e. if pk
corresponds to sk. It is constructed by parsing pk = (g′, h′) and outputting

the result of the check (g′)sk
?
= h′.

– VerifyUpdate takes as input a pair of public keys and some randomness
(pk′, pk, r) and checks if pk′ is a valid update of pk using r. This is done

by checking if Update(pk; r)
?
= pk′.

An UPK scheme must satisfy the properties next, formally defined in [15]:

– Correctness: All honestly generated keys verify correctly, the update pro-
cess can be verified and the updated keys also verify successfully.

– Indistinguishability, meaning that an adversary cannot distinguish be-
tween a freshly generated public key and an updated version of a public key
it already knows.

19

https://eprint.iacr.org/2022/452
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1007/978-3-030-32101-7_11

– Unforgeability, meaning that for every honestly generated keypair an ad-
versary cannot learn the secret key of an updated public key without knowing
the secret key of the original public key.

If the DDH assumption holds in (G, g, p) then the construction of section 3
satisfies correctness, indistinguishability and unforgeability [15].

A.2 Σ-protocols

Let R be a binary relation for instances x and witnesses w, and let L be its
corresponding language, i.e. L = {x|∃w : (x,w) ∈ R}. A Σ-protocol for R
is a three-move public-coin protocol between two PPT algorithms P,V, whose
transcript consists of the following phases: (1) Commit: P commits to an initial
message a and sends it to V (2) Challenge: V sends a challenge c to P (3)
Response: P responds to the challenge with message z.

A Σ-protocol must satisfy the following properties:

– Completeness: if x ∈ L, then if P acts according to the protocol, V always
accepts the transcript.

– Special Soundness: given two transcripts with the same commitment and
different challenges (a, c, z), (a, c′, z′) one can efficient compute w such that
(x,w) ∈ R.

– Special honest-verifier zero-knowledge (SHVZK): there exists a PPT
simulator Sim that on input x ∈ L and a honestly generated verifier’s chal-
lenge c, outputs an accepting transcript of the form (a, c, z) with the same
probability distribution as a transcript between honest P,V on input x.

Additionally we utilize the following Σ-protocols defined in [15] and repeated
below for convenience:

– Σvu: proof a valid update. Prover shows knowledge of w such that pk′ = pkw.

Prover(pk, pk′, w) Verifier(pk, pk′)
s←$ Fp
α← pks = (gs, hs)

α−−→
c←−− c←$ {0, 1}κ

z ← cw + s
z−−→

Check pkz = (pk′)c · α

– Σcom : proof of knowledge of two commitments of the same value v under
different public keys. Prover shows knowledge of w = (v, r1, r2) such that
com1 = Commit(pk1, v; r1), com2 = Commit(pk2, v; r2).

20

pk1 = (g1, h1), com1 = (c1, d1)
pk2 = (g2, h2), com2 = (c2, d2)

Prover(v, r1, r2) Verifier
v′, r′1, r

′
2 ←$ Fp

(e1, f1)← (g
r′1
1 , g

v′h
r′1
1)

(e2, f2)← (g
r′2
2 , g

v′h
r′2
2)

e1,f1,e2,f2−−−−−−−→
x←−− x←$ {0, 1}κ

(zv, zr1 , zr2)← x(v, r1, r2) + (v′, r′1, r
′
2)

zv,zr1 ,zr2−−−−−−→
Check for i = 1, 2:

g
zri
i = cxi · ei
gzvh

zri
i = dxi · fi

B AQQUA Components

B.1 Accounts

The following functionalities create, verify and update accounts:

– acct← NewAcct(pk0; r1, r2, r3, r4): takes as input a public key pk0 and out-

puts a new account of the form acct = (pk, bl , out , in), where pk =

Update(pk0; r1), bl = Commit(pk, 0; r2), out = Commit(pk, 0; r3) and

in = Commit(pk, 0; r4).

– 0/1 ← VerifyAcct(acct, sk, bl, out, in): Parses acct as (pk, com1, com2, com3)
and outputs 1 if

VerifyKP(sk, pk) ∧ VerifyCom(sk, pk, com1, bl)∧
VerifyCom(sk, pk, com2, out) ∧ VerifyCom(sk, pk, com3, in)∧
(bl, out, in ∈ V)

– {acct′i}ni=1 ← UpdateAcct({accti, vbli, vouti, vini}ni=1; r1, r2, r3, r4)

takes as input a set of accounts accti = (pki, combli, comouti, comini) and
values |vbli|, vouti, vini ∈ V and outputs a new set of accounts {acct′i}ni=1,
where

acct′i ←(Update(pki; r1), combli ⊙ Commit(pki, vbli; r2),

comouti ⊙ Commit(pki, vouti; r3), comini ⊙ Commit(pki, vini; r4)).

– 0/1 ← VerifyUpdateAcct({acct′i, accti, vbli, vouti, vini}ni=1; r1, r2, r3, r4): out-
puts 1 if

{acct′i}ni=1 = UpdateAcct({accti, vbli, vouti, vini}ni=1; r1, r2, r3, r4) ∧ (|vbl|, vout, vin ∈ V).

21

B.2 User Information

The following functions create, verify and update userInfo entries of the UserSet.

– (sk, userInfo, acct) ← GenUser(): Picks r1, r2, r3, r4, r5 ←$ F∗
p and let r⃗ =

(r1, r2, r3, r4). Then runs (sk, pk0)← KGen(), acct← NewAcct(pk0; r⃗), calcu-
lates the tuple userInfo = (pk0,Commit(pk0, 1; r5)) and returns (sk, userInfo, acct).

– 0/1← VerifyUser((pk0, com), (sk, #accs)): outputs 1 if VerifyUpdate(sk, pk0)∧
VerifyCom(sk, pk0, com, #accs) ∧ (#accs ∈ V)

– {userInfo′i}ni=1 ← UpdateUser({userInfoi, v#accsi}
n
i=1; r) takes as input a set

of user-value pairs, where userInfoi = (pk0i, com#accsi) and v#accsi ∈ V, and
outputs a new set of users {userInfo′i}ni=1 = {(pk0i, com#accs

′
i)}ni=1 where

com′#accsi = com#accsi ⊙ Commit(pk0, v#accs; r)

– 0/1← VerifyUpdateUser({userInfo′i, useri, v#accsi}
n
i=1; r) outputs 1 if

{userInfo′}ni=1 = UpdateUser({userInfoi, v#accsi}
n
i=1; r) ∧ (v#accs ∈ V)

B.3 Registration Algorithm

The registration algorithm is depicted in Figure 1.

The Register algorithm performs the following steps:

1. Run (sk, userInfo, acct)← GenUser().
2. Create a NIZK argument π of the relation R(x,w), where x = (acct, userInfo), w =

(sk) and R(x,w) = 1 if:

VerifyCom(userInfo.pk0, userInfo.com#accs, (sk, 1)) = 1

∧ VerifyKP(userInfo.pk0, sk) = 1

∧ VerifyAcct(acct, sk, 0, 0, 0) = 1

3. Return (sk, userInfo, acct, π).

Fig. 1. The Register algorithm.

B.4 Transaction Algorithm

The detailed description of the Trans algorithm appears in Figure 2. The algo-
rithm takes as input the sender’s secret key sk, the set of sender accounts S, the
set of receiver accounts R, two vectors #»vS,

#»vR containing the desired changes to
the balances of the sender and receiver accounts respectively, and an anonymity
set A. It returns a transaction tx = (inputs, outputs, π), where π is a NIZK
argument that outputs is created correctly.

22

The algorithm tx← Trans(sk, S, R, #»vS,
#»vR, A) performs the following steps:

1. Ensure that for each acct ∈ S, VerifyKP(sk, acct.pk) = 1, and that |S| = | #»vS|, |R| =
| #»vR|.

2. Let IS = {1, . . . , |S|}. For all i ∈ IS, calculate the opening of the committed balance

bli of accti ∈ S, denoted bli.

3. Let # »vbl = #»vS|| #»vR, where || denotes vector concatenation. Let also IR = {|S| +
1, . . . , |S|+ |R|}. Ensure that:
(a)

∑
i∈IS∪IR

vbli = 0
(b) ∀i ∈ IR : vbli ∈ V
(c) ∀i ∈ IS : −vbli ∈ V ∧ bli + vbli ∈ V

4. Construct # »vout,
»vin as follows:

(a) # »vout =
#»vS|| (0, . . . , 0)︸ ︷︷ ︸

length |R|

|| (0, . . . , 0)︸ ︷︷ ︸
length |A|

(b) # »vin = (0, . . . , 0)︸ ︷︷ ︸
length |S|

|| #»vR|| (0, . . . , 0)︸ ︷︷ ︸
length |A|

.

Furthermore, expand # »vbl too with zero values for each acct ∈ A.
5. Sort P ∪ A in some canonical order and stores the result in inputs. Let also

»vbl
′, # »vout

′, # »vin
′ be the permutation of # »vbl,

»vout,
»vin in the same order. Let I∗S , I

∗
R , I

∗
A

denote the indices of the respective accounts of the sender, the recipients and the
anonymity set in this list.

6. Pick r1, r2, r3, r4 ←$ F∗
p and let #»r = (r1, r2, r3, r4).

Perform UpdateAcct(inputs, # »vbl
′, # »vout

′, # »vin
′; #»r) and sort the result in some canon-

ical order. The results are assigned to outputs.
7. Let ψ : {1, ..., n} → {1, ..., n} be the implicit permutation mapping inputs into

outputs; such that accounts accti ∈ inputs and acct′ψ(i) ∈ outputs share the
same secret key.

8. Form a NIZK argument π of the relation R(x,w), where x =
(inputs, outputs), w = (sk, {bli, outi, ini}i∈I∗S

, # »vbl
′, # »vout

′, # »vin
′, #»r , ψ, I∗S , I

∗
R , I

∗
A),

and R(x,w) = 1 if

VerifyUpdateAcct(acct′ψ(i), accti, 0, 0, 0;
#»r) = 1 ∀i ∈ I

∗
A

∧ (VerifyUpdateAcct(acct′ψ(i), accti, vbl
′
i, vout

′
i, vin

′
i;

#»r) = 1 ∧ vbl
′
i, vout

′
i, vin

′
i ∈ V) ∀i ∈ I

∗
R

∧ VerifyUpdateAcct(acct′ψ(i), accti, vbl
′
i, vout

′
i, vin

′
i;

#»r) = 1 ∀i ∈ I
∗
S

∧ VerifyAcct(acct′ψ(i), sk, bli + vbl
′
i, outi + vout

′
i, ini + vin

′
i) = 1 ∀i ∈ I

∗
S

∧
∑

i∈I∗S ∪I∗R ∪I∗A

vbl
′
i = 0

∧ −vbl′i = vout
′
i ∀i ∈ I

∗
S

∧ vbl
′
i = vin

′
i ∀i ∈ I

∗
R

∧ vout
′
i = v

′
ini = 0 ∀i ∈ I

∗
A

The transaction created is tx = (inputs, outputs, π).

Fig. 2. The Trans algorithm.

23

Proof of transaction correctness In each transaction created from Trans
algorithm a prover essentially has to prove in zero-knowledge that:

1. accounts in outputs are proper updates of inputs
2. the updates of balances satisfy preservation of value
3. balances in accounts of recipients and anonymity set do not decrease
4. the sender account in outputs contain a balance in V
5. the vectors − # »vbl

′, # »vout
′ have the same values for the sender accounts and

»vbl
′, # »vin

′ for the receivers accounts and (# »vout
′, # »vin

′) have zero value for the
rest.

The properties 3,4 can be proved by range proofs - i.e. with Bulletproofs [6].
For the properties 1,2,5 similarly to Quisquis[15] it holds that:.

Let the sender’s accounts be inputs1, . . . , inputss and the receivers’ ac-
counts be inputss+1, . . . , inputst. In order to easily verify the validity of the up-

dates, the prover creates accounts ⃗acctδ, where acctδ,i = (pki, vbli , vouti , vini).

Since the sender-prover knows all the values of the acctδ, they can create com-
mitments for the same values under a different public key pkϵ = (g, h), where h =
gskϵ . So the prover creates ⃗acctϵ where acctϵi = ((g, h), vbli

ϵ
, vouti

ϵ
, vini

ϵ
).

Then they use the homomorphic property of the commitment in order to prove
the preservation of value, since

∑
i vbli = 0 ⇐⇒

∏
i vbli

ϵ
is a commitment

of 0 under pkϵ = (g, h). The values in acctϵ,s+1, . . . , acctϵ,t will be used to prove
that balances of recipients set and anonymity set is not decreased, meaning
vblϵ,s+1, . . . , vblϵ,n ∈ V. In addition, in order to prove property 5, the prover
shows that for acctϵ,1, . . . , acctϵ,s the values under the vbli

ϵ
and vouti

ϵ
are

the opposite. Respectively for the recipients, for acctϵ,s+1, . . . , acctϵ,t the values
under the vbli

ϵ
and vini

ϵ
are the same.

Now in order to hide the sender’s and the receiver’s position in inputs and
outputs we first shuffle inputs list to inputs′ before the updates, then we ex-
ecute the updates to produce outputs′, and finally we shuffle again after the
updates to get outputs in arbitrary order. The first shuffle uses the aforemen-
tioned permutation where senders’ accounts are first,followed by recipients’ ac-
counts and then the anonymity set. The second shuffle uses a permutation in
order to order the outputs lexicographically.

Therefore, we need some auxiliary functions for the proof that are defined as
following:

– CreateDelta({accti}ni=1, {vbli}ni=1, {vouti}ni=1, {vini}ni=1): Creates a set of ac-
counts that contains the differences between accounts’ variables bl, out, in
in the input and output accounts, and another set of accounts that also
contains these differences but all with the global public key (g, h):
1. Parse accti = (pki, combl,i, comout,i, comin,i). Sample r(bl|out|in),1, . . . , r(bl|out|in),n−1 ←$

Fp and set r(bl|out|in),n = −
∑n−1
i=1 r(bl|out|in),i.

2. Set acctδ,i = (pki,Commit(pki, vbli; rbl,i),Commit(pki, vouti; rout,i),Commit(pki, vini; rin,i))
3. Set acctϵ,i = ((g, h),Commit((g, h), vbli; rbl,i),Commit((g, h), vouti; rout,i),Commit((g, h), vini; rin,i))
4. Output ({acctδ,i}ni=1, {acctϵ,i}ni=1, r⃗bl, ⃗rout, r⃗in)

24

– VerifyDelta({acctδ,i}ni=1, {acctϵ,i}ni=1, v⃗bl, ⃗vout, v⃗in, r⃗bl, ⃗rout, r⃗in): Verifies that
accounts created using CreateDelta are consistent:

1. Parse acctδ,i = (pki, vbli , vouti , vini).

2. If
∏n
i=1 acctϵ,i. vbl = (1, 1) and ∀i vbli = Commit(pki, vbli; rbl,i) ∧

vouti = Commit(pki, vouti; rout,i) ∧ vini = Commit(pki, vini; rin,i)

∧ VerifyAcct(acctϵ,i, skϵ, vbli, vouti, vini) output 1. Else output 0.

– VerifyNonNegative(acctϵ, v, r): Verifies that an account contains a balances
in V. More specifically, if acctϵ.pk = (g, h) ∧ acctϵ. vbl = (gr, gvhr) ∧ v ∈ V
outputs 1. Else output 0.

– UpdateDelta({accti}ni=1, {acctδ,i}ni=1): Updates the input accounts by vbli, vouti, vini
but with the public key unchanged:

1. Parse accti = (pki, combl,i, comout,i, comin,i) and acctδ,i = (pk′i, vbli , vouti , vini).

2. If pki = pk′i ∀i output {(pki, combl,i · vbli , comout,i · vouti , comin,i ·
vini)}, else output ⊥.

– VerifyUD(acct, acct′, acctδ): Verifies that UpdateDelta was performed correctly:

1. Parse acct = (pk, combl, comout, comin), acct
′ = (pk, com′bl, com

′
out, com

′
in)

and acctδ = (pkδ, vbl , vout , vin).

2. Check that pk = pk′ = pkδ ∧ com′bl = combl · vbl ∧ com′out =

comout · vout ∧ com′in = comin · vin .

– VerifyDeltaSender(acctϵ, v, rbl, rout): Verifies that sender’s value out is cor-
rect.

1. Parse acctϵ = ((g, h), vbl
ϵ
, vout

ϵ
, vin

ϵ
).

2. If vbl
ϵ
= Commit((g, h),−v; rbl)∧ vout

ϵ
= Commit((g, h), v; rout) then

return 1. Else return 0.

– VerifyDeltaReceiver(acctϵ, v, rbl, rin): Verifies that receiver’s value in is cor-
rect.

1. Parse acctϵ = ((g, h), vbl
ϵ
, vout

ϵ
, vin

ϵ
).

2. If vbl
ϵ
= Commit((g, h), v; rbl) ∧ vin

ϵ
= Commit((g, h), v; rin) then

return 1. Else return 0.

Then the NIZK.ProveTrans(x,w) performs the following steps:

1. Parse x = (inputs, outputs), w = (sk, {bli, outi, ini}i∈I∗S ,
»vbl

′, # »vout
′, # »vin

′, #»r , ψ, I∗S , I
∗
R , I

∗
A).

If R(x,w) = 0 abort;

2. Let ψ1 be a permutation such that ψ1(I
∗
S) = [1, s], ψ1(I

∗
R) = [s + 1, t] and

ψ1(I
∗
A) = [t+ 1, n];

3. Sample ρ1, ρ2, ρ3, ρ4 ←$ Fp and let ρ⃗ = (ρ1, ρ2, ρ3, ρ4);

4. Set inputs′ = UpdateAcct({inputsψ1(i)
, 0, 0, 0}i; ρ⃗);

25

5. Set vectors # »vbl,
»vout,

»vin such that vbli = vbl
′
ψ(i), vouti = vout

′
ψ(i),vini =

vin
′
ψ(i);

6. Set ({acctδ,i}, {acctϵ,i}, r⃗bl, ⃗rout, r⃗in)←$ CreateDelta(inputs′, # »vbl,
»vout,

»vin);

7. Update outputs′ ← UpdateDelta(inputs′, {acctδ,i});

8. Let ψ2 = ψ−1
1 ◦ ψ, ρ′1 = r1

ρ1
, ρ⃗′2 = r2−ρ2

ρ1
− rbli, ρ⃗

′
3 = r3−ρ3

ρ1
− routi, ρ⃗

′
4 =

r4−ρ4
ρ1
− rini and let ρ⃗′ = (ρ′1, ρ⃗

′
2, ρ⃗

′
3, ρ⃗

′
4).

9. Update outputs = UpdateAcct({outputs′ψ2(i)
, 0, 0, 0}i; ρ⃗′)

10. Generate a ZK proof π = (inputs′, outputs′, acctδ, acctϵ, π1, π2, π3) for the
relation R1 ∧R2 ∧R3 where:

R1 = {(inputs, inputs′, (ψ1, ρ⃗))|
VerifyUpdateAcct({inputs′i, inputsψ1(i)

, 0, 0, 0}i; ρ⃗) = 1},
R2 = {((inputs′, outputs′, acctδ, acctϵ), (sk, {bl, out, in}si=0,

»vbl,
»vout,

»vin, r⃗bl, ⃗rout, r⃗in))|
VerifyUD(inputs′i, outputs

′
i, acctδ,i) = 1 ∀i

∧ VerifyUpdateAcct(inputs′i, outputs
′
i, 0, 0, 0; 1, rbl,i, rout,i, rin,i) = 1 ∀i ∈ [t+ 1, n]

∧ VerifyNonNegative(acctϵ,i, vbli, rbl,i) = 1 ∀i ∈ [s+ 1, t]

∧ VerifyAcct(outputs′i, (sk, bli + vbli)) = 1 ∀i ∈ [1, s]

∧ VerifyDelta({acctδ,i}, {acctϵ,i}, # »vbl,
»vout,

»vin, r⃗bl, ⃗rout, r⃗in) = 1

∧ VerifyDeltaSender(acctϵ,i, vouti, rbl,i, rout,i) = 1 ∀i ∈ [1, s]

∧ VerifyDeltaReceiver(acctϵ,i, vbli, rbl,i, rin,i) = 1 ∀i ∈ [s+ 1, t]},

R3 = {(outputs′, outputs, (ψ2, ρ⃗′))|

VerifyUpdateAcct({outputsi, outputs
′
ψ1(2)

, 0, 0, 0}i; ρ⃗′) = 1}

Now R1, R3 can be proven using a slight modification of the Bayer-Groth
shuffle argument [3]. The Σ2 protocol that proves R2 consists of the following
sub-protocols:

1. Σvu: trivial check of VerifyUD.

2. Σδ: prover shows knowledge of # »vbl,
»vout,

»vin, r⃗bl, ⃗rout, r⃗in such that
VerifyDelta({acctδ,i}ni=1, {acctϵ,i}ni=1,

»vbl,
»vout,

»vin, r⃗bl, ⃗rout, r⃗in) = 1.
Σδ can be implemented by using Σcom:
Σδ = ∧ni=1Σcom((pkδ,i, bl δ,i

), (pkϵ,i, bl ϵ,i
); (vbl, rbl,i, rbl,i))

∧ni=1 Σcom((pkδ,i, out δ,i
), (pkϵ,i, out ϵ,i

); (vout, rout,i, rout,i))

∧ni=1Σcom((pkδ,i, in δ,i
), (pkϵ,i, in ϵ,i

); (vin, rin,i, rin,i)) , but the verifier ad-

ditionally checks that ∀i pkϵ,i = (g, h) and that
∏n
i=1 vbli

ϵ
= (1, 1).

3. Σi
zero: prover shows knowledge of rbl,i, rout,i, rin,i such that

VerifyUpdateAcct(inputs′i, outputs
′
i, 0, 0, 0; (1, rbl,i, rout,i, rin,i)) = 1.

The sub-argument can be written as follows:
given acct1 = (pk, vbl

1
, vout

1
, vin

1
), acct2 = (pk, vbl

2
, vout

2
, vin

2
),

26

the prover knows rbl, rout, rin such that vbl
1

= vbl
2
· pkrbl , vout

1
=

vout
2
· pkrout , vin

1
= vin

2
· pkrin . The equation is equivalent to:

∧i={bl,out,in}VerifyUpdate(pk,
com2,i

com1,i
, ri) = 1, hence can be done using AND-

proofs of Σvu.
4. Σi

vds: prover shows knowledge of v, rbl,i, rout,i such that acctϵ,i has the op-
posite value under commitments vbl , vout , denoted as com1, com2 respec-

tively. This is equivalent to VerifyUpdate((g, h), com1 ·com2, rbl,i+rout,i). Σi
vds

can be implemented by using Σvu.
5. Σi

vdr: prover shows knowledge of v, rbl,i, rin,i such that acctϵ,i has the same
value under commitments vbl , vin , denoted as com1, com2 respectively.

This is equivalent to VerifyUpdate((g, h), com1
com2

, rbl,i − rout,i). Σi
vdr can be im-

plemented by using Σvu.
6. Σrange: prover shows knowledge of acctϵ, v, r such that VerifyNonNegative(acctϵ, v, r) =

1. In order to implement this we use Bulletproofs [6].
7. Finally in order to prove VerifyAcct(acct, sk, bl):

(a) the prover shows knowledge of sk using Σdlog.
(b) Since sender may not know the randomness used to open his commit-

ment, the prover opens the commitment with the sk and finds the value
bl.

(c) Chooses a new randomness r ←$ Fp and constructs acctϵ = ((g, h),Commit((g, h), bl; r)).
(d) Proves using Σcom that these two accounts has the same bl.
(e) Proves using Σrange(acctϵ, bl, r) that bl ∈ V.
So Σrange,sk = Σdlog ∧ Σcom ∧ Σrange.

Hence Σ2 = Σvud ∧ Σδ ∧
(
∧ti=s+1Σrange(acctδ,i, v

′
bli, rbl,i)

)
∧

(
∧ni=t+1Σ

i
zero

)
∧

(∧si=1Σrange,sk(outputs
′
i, bli + vbli, sk)) ∧

(
∧si=1Σ

i
vds

)
∧
(
∧ti=s+1Σ

i
vdr

)
. Σ2 is

a public-coin SHVZK argument of knowledge of the relation R2 as follows from
the properties of AND-proofs.

The full SHVZK argument knowledge of Trans is then Σ := Σ1 ∧Σ2 ∧Σ3.

B.5 Algorithm to create accounts

The algorithm CreateAcct(userInfo, A) in Figure 3 performs the following steps:

B.6 Delete Account Algorithm

The algorithm DelAcct(sk, userInfo, acctD, acctC, A1, A2) in Figure 4 performs the
following steps:

B.7 Auditing

The PrepareAudit algorithm in Figure 5 takes as input the user’s secret key sk,
the two blockchain snapshots (state1, state2), and the policy f along with the
necessary information aux.

Both the Register and PrepareAudit functionalities need a NIZK argument for
the statements:

27

1. Pick r1, r2, r3, r4 ←$ F∗
p and let r⃗ = (r1, r2, r3, r4). Let acct = (pk, 0 , 0 , 0) be

the output of NewAcct(userInfo.pk0; r⃗).
2. Let inputs = {userInfo}∪A in some canonical order. Let c, IA be the indices of the

chosen initial public key for which we wish to construct the new account, and the
anonymity set in this list.

3. Construct v⃗ as follows: vi = 0 ∀i ∈ IA and vc = 1.
4. Pick r5 ←$ F∗

p and let outputs be the output of UpdateUser(inputs, v⃗; r5).
5. Form a NIZK argument π of the relation R(x,w), where x =

(acct, inputs, outputs), w = (c, v⃗, r⃗, r5) andR(x,w) = 1 if ∀i ∈ {c}∪IA, userInfoi ∈
inputs, userInfo′i ∈ outputs we have that:

VerifyUpdateUser(userInfo′i, userInfoi, 0; r5) = 1 ∀i ∈ IA

∧ VerifyUpdateUser(userInfo′c, userInfoc, 1; r5) = 1

∧ VerifyUpdate(acct.pk, userInfoc.pk0, r1) = 1

∧ Commit(acct.pk, 0; r2) = acct.combl

∧ Commit(acct.pk, 0; r3) = acct.comout ∧ Commit(acct.pk, 0; r4) = acct.comin

The final transaction returned by the algorithm is txCA = (acct, inputs, outputs, π).

Fig. 3. The CreateAcct algorithm.

– VerifyKP(pk, sk): prover shows knowledge of a valid (pk, sk) key-pair. The
corresponding language can be written as:

Lvu := {pk = (X = gr, Y = gr·sk) ∃sk s.t. Y = Xsk}

This can be proven through Σdlog with arguments (X,Y, sk).
– VerifyCom(pk, com, sk, v): prover shows knowledge of secret key sk that opens

the commitment com to value v. The corresponding language can be written
as:

Lopen(sk) := {(com = (X = hr, Y = gvhsk·r), v) ∃sk s.t. Y/gv = Xsk}

This can be proven through Σdlog with arguments (X,Y/gv, sk).

The argument needed for Register results from the composition of these Σ-
protocols and a range proof for showing that bl ∈ V. The PrepareAudit proof
uses the same combination of these Σ-protocols and appropriate range proofs
for each policy fslimit, frlimit, fopen, ftxlimit, fnp.

C Security Proofs

C.1 Details of bookkeeping functionalities

The bookkeeping functionalities which are used in Game 1, Game 2 Game 3 are
analyzed in Figure 4:

28

1. Ensure that VerifyKP(sk, userInfo.pk) = 1 ∧ VerifyKP(sk, acctC.pk) = 1 ∧
VerifyKP(sk, acctD.pk) = 1.

2. For the account acctD, calculate the opening of the commitments
acctD.comout, acctD.comin, denoted outD, inD, using the secret key sk.

3. Let inputsUTXOSet = {acctC}∪A1 in some canonical order. Let c∗, IA1 denote the in-
dices of the account to be added the information and the accounts of the anonymity
set in this list.

4. Construct # »vbl,
»vout,

»vin as follows:
– # »vbl = 0 ∀i ∈ {c∗} ∪ IA1
– # »vout = 0 ∀i ∈ IA1 and voutc∗ = outD
– # »vin = 0 ∀i ∈ IA1 and vinc∗ = inD

5. Pick r1, r2, r3, r4 ←$ F∗
p. and let #»r = (r1, r2, r3, r4). Let outputsUTXOSet be the

output of UpdateAcct(inputsUTXOSet,
»vbl,

»vout,
»vin;

#»r) in some canonical order.
6. Let ψ : {1, ..., n} → {1, ..., n} be the implicit permutation mapping inputsUTXOSet

into outputsUTXOSet; such that accounts accti ∈ inputsUTXOSet and acct′ψ(i) ∈
outputsUTXOSet share the same secret key.

7. Form a NIZK argument π1 of the relation R(x,w), where
x = (acctD, inputsUTXOSet, outputsUTXOSet), w = (sk, outD, inD,

#»r , ψ, c∗, IA1), and
R(x,w) = 1 if

VerifyKP(sk, acctD.pk) = 1 ∧ VerifyKP(sk, acctc∗ .pk) = 1

∧ VerifyUpdateAcct(acct′ψ(i), accti, 0, 0, 0;
#»r) = 1 ∀i ∈ IA1

∧ VerifyUpdateAcct(acct′ψ(c∗), acctc∗ , 0, outD, inD;
#»r) = 1

∧ VerifyCom(acctD.pk, acctD.combl, (sk, 0)) = 1

8. Let inputsUserSet = {userInfo} ∪ A2 in some canonical order. Let s∗, IA2 denote the
indices of the chosen initial public key for which we wish to construct the new
account, and the anonymity set in this list.

9. Construct #»v as follows: vi = 0 ∀i ∈ IA2 and vs∗ = −1.
10. Pick r ←$ F∗

p and let outputsUserSet be the output of UpdateUser(inputsUserSet,
#»v ; r).

11. Form a NIZK argument π2 of the relation R(x,w), where x =
(inputsUserSet, outputsUserSet), w = (sk, r, s∗, IA2) and R(x,w) = 1 if
∀i ∈ {s∗} ∪ IA2 userInfoi ∈ inputsUserSet, userInfo

′
i ∈ outputsUserSet we have

that:

VerifyKP(sk, userInfos∗ .pk0) = 1

∧ VerifyUpdateUser(userInfo′i, userInfoi, 0; r) = 1 ∀i ∈ IA2

∧ VerifyUpdateUser(userInfo′s∗ , userInfos∗ ,−1; r) = 1

The final transaction returned by the algorithm is
txDA = (inputsUTXOSet, outputsUTXOSet, inputsUserSet, outputsUserSet, π = (π1, π2)).

Fig. 4. The DelAcct algorithm.

29

The algorithm auditInfo ← PrepareAudit(sk, pk0, state1, state2, (f, aux)) performs the
following steps:

1. Ensure that VerifyKP(sk, pk0). For each snapshot statej , j = 1, 2 find the userInfoj

that contains pk0, and calculate #accsj = OpenCom(sk, userInfo. #accsj)

2. For j = 1, 2 re-randomize the accounts in UTXOSetj = statej .UTXOSet. In partic-
ular:
(a) Let inputsj be all the accounts of UTXOSetj .
(b) Sample r1, r2, r3, r4 ←$ Fp and let r⃗ = (r1, r2, r3, r4).
(c) Compute outputsj = UpdateAcct(inputsj , 0⃗, 0⃗, 0⃗; r).
(d) Let ψ : {1, ..., |UTXOSetj |} → {1, ..., |UTXOSetj |} be the implicit permutation

mapping inputsj into outputsj ; such that accounts acctk ∈ inputsj and
acct′ψ(k) ∈ outputsj share the same secret key.

(e) Form a NIZK argument πp of the relation R(x,w), where
x = (inputsj , outputsj), w = (ψ, r), and R(x,w) = 1 if
VerifyUpdateAcct(acct′ψ(k), acctk, 0, 0, 0;

#»r) = 1 ∀k ∈ {1, ..., |UTXOSetj |}

The re-randomized sets of accounts are outputs1, outputs2.

3. For j = 1, 2, find the set of accounts Aj = {acct′i}
#accsj
i=1 from outputsj that belong

to the user. That is, ∀acct ∈ outputsj , if VerifyKP(acct.pk, sk) = 1, then add acct
to Aj .

4. Form a NIZK argument π1 of the relation R(x,w), where x =

(pk0, {#accsj , #accsj , {acct′ji}
#accsj
i=1 }

2
j=1), w = (sk) and R(x,w) = 1 if:

VerifyCom(pk0, #accsj , (sk, #accsj)) = 1 ∀j ∈ {1, 2}

∧ VerifyKP(pk0, sk) = 1

∧ VerifyKP(acct′ji.pk, sk) = 1 ∀i ∈ {1, . . . , #accsj}, ∀j ∈ {1, 2}

If f ∈ {fslimit, frlimit, fnp} then:
4. For j = 1, 2 calculate out∗j =

∏#accsj
i=1 acctji. out , in∗j =

∏#accsj
i=1 acct′ji. in .

Then calculate out∗ = out∗2 ·
(
out∗1

)−1

, in∗ = in∗2 ·
(
in∗1

)−1

.

Finally, calculate out∗ = OpenCom(sk, out∗), in∗ = OpenCom(sk, in∗).
These values represent the total amount of coins that the user spent/received
in the selected period of time.

5. Form a NIZK argument π2 of the relation R(x,w) where x =

({acct′1i}
#accsj
i=1 , {acct′2i}

#accsj
i=1 , out∗ , in∗ , aux), w = (out∗, in∗) and

R(x,w) = 1 if:
f(pk0, (state1, state2), aux) = 1

If f ∈ {ftxlimit, fopen} then:
4. For j = 1, 2 calculate bl∗j =

∏#accsj
i=1 acct′ji. bl . Then calculate bl∗ =

bl∗2 ·
(
bl∗1

)−1

and bl∗ = OpenCom(sk, bl∗).

5. Form a NIZK argument π2 of the relation R(x,w) where x =

({acct′1i}
#accsj
i=1 , {acct′2i}

#accsj
i=1 , bl∗ , aux), w = (bl∗) and R(x,w) = 1 if:

f(pk0, (state1, state2), aux) = 1

The final output is auditInfo = (outputs1, outputs2, #accs1, {acct
′
1i}#accsi=1 , #accs2,

{acct′2i}#accsi=1 , π = (πp, π1, π2)).

Fig. 5. The PrepareAudit algorithm.
30

Algorithm 4: bookkeeping functionalities

entries← ∅ // set of all secret keys

corrupt← ∅ // set of corrupt secret keys

honest← ∅ // set of honest secret keys

states← [] // list of states, updated through oracles

Function findSecretKey(pk, state)
if state ̸∈ states then

return ⊥
for sk ∈ entries do

for acct ∈ state.UTXOSet do
if acct.pk = pk ∧ VerifyKP(sk, acct.pk) = 1 then

return sk
for userInfo ∈ state.UserSet do

if userInfo.pk0 = pk ∧ VerifyKP(sk, userInfo.pk) = 1 then
return sk

return ⊥
Function totalWealth(set, state)

s← 0
for sk ∈ set do

for acct ∈ state.UTXOSet do
if VerifyKP(sk, acct.pk) then

s← s+ OpenCom(sk, acct.combl)
return s

Function verifyPolicy(pk0, state1, state2, f, aux)
if state1, state2 ̸∈ states ∨ state1 is not older than state2 then

return ⊥
A1, A2 ← ∅, ∅
sk← findSecretKey(pk0, state1)

// Find accounts owned by sk in state1.UTXOSet and

state2.UTXOSet resp.

for acct ∈ state1.UTXOSet do
if VerifyKP(sk, acct.pk) then

A1 ← A1 ∪ {acct}
for acct ∈ state2.UTXOSet do

if VerifyKP(sk, acct.pk) then
A2 ← A2 ∪ {acct}

if f(pk0, (state1, state2), aux) = 1 then
// Check if f holds using A1, A2, sk

return 1
return 0

31

C.2 Details of oracles

The oracles where the adversary has access in Game 1, Game 2 Game 3 are
analyzed in Figure 5:

C.3 Full proof of anonymity

Before we give the proof of anonymity, we first recall a definition for indistin-
guishability of UPK scheme [15].

Definition 4. The advantage of the adversary in winning the indistinguishabil-
ity game is defined as:

AdvindA (λ) =| Pr[ExpindA ((λ)) = 1]− 1

2
|

A DPS satisfies indistinguishability if for every PPT adversary A, AdvindA (λ) is
negligible in λ.

Note that in indistinguishability game the challenger can update many times the
pk∗ before creating pk0 due to the fact that even with more updates the pk0 can
be described as an update of pk∗ with a different randomness.

Lemma 1. The constructed UPK scheme satisfies 4 if the DDH assumption
holds in (G, g, p).

Proof of this lemma can be found in [15].

Theorem 1. AQQUA satisfies anonymity, as defined in Definition 1

Proof. We prove the theorem using a sequence of 14 hybrid games, as follows.
Hybrid 0 and Hybrid 7 are the anonymity game for b = 0, b = 1 respectively.
Each of the rest hybrids differs in oracles’ functionalities in a way that the suc-
cessive hybrids are indistinguishable from the view of the adversary. We use
these hybrids to prove that the adversary cannot distinguish anonymity game
for b = 0 and anonymity game with b = 1.
Hybrid 0. The anonymity game for b = 0.
Hybrid 1. Same as Hybrid 0, but here we run the NIZK extractor on each trans-
action generated by the adversary. That means, whenA runs the OApplyTrans(tx)
Oracle, the Oracle verifies tx by running VerifyTrans(tx, state) depending on the
transaction tx and if it is successful the oracle runs state′ ← ApplyTrans(state, tx),
as well as uses the NIZK extractor to extract the witness used to generate tx,
including sk.
Hybrid 2. Same as Hybrid 1, but here the zero-knowledge arguments of the
each transaction is replaced with the output of the corresponding simulator of
the zero-knowledge property of NIZK. In order to achieve this we change the
following oracles’ functionality:

32

Algorithm 5: Oracles for security definitions

Oracle OCorrupt(pk, state)
// pk should be a key of an account or user information in

state, aborts otherwise

sk← findSecretKey(pk, state)
honest← honest \ {sk}
corrupt← corrupt ∪ {sk}
return sk

Oracle ORegister()
state← bookkeeping.states[−1] // most recent state of bookkeeping

(sk, userInfo, acct, π)← Register()
if VerifyRegister(userInfo, acct, π, state) = 0 then

return ⊥ // cannot be registered given current state

entries← entries ∪ {sk}
honest← honest ∪ {sk}
state′ ← ApplyRegister(userInfo, acct, state); states← states ∪ [state′]
return state′

Oracle OCreateAcct(userInfo, A)
state← bookkeeping.states[−1] // most recent state of bookkeeping

txCA ← CreateAcct(userInfo, A)
if VerifyTrans(txCA, state) = 0 then

return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(txCA, state); states← states ∪ [state′]
return txCA, state

′

Oracle ODelAcct(userInfo, acctC, acctD, A1, A2)
state← bookkeeping.states[−1]
sk← findSecretKey(acctC)
txDA ← DelAcct(sk, userInfo, acctC, acctD, A1, A2)
if VerifyTrans(txDA, state) = 0 then

return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(txDA, state); states← states ∪ [state′]
return txDA, state

′

Oracle OTrans(S, R, #»vS,
#»vR, A)

state← bookkeeping.states[−1] // most recent state of bookkeeping

for sk ∈ entries do
Take an arbitrary acct ∈ S

if VerifyKP(sk, acct.pk) = 1 then
tx← Trans(S, R, #»vS,

#»vRA) // If sk is not the owner of all

accounts in S, the transaction will not be created.

if VerifyTrans(tx, state) = 0 then
return ⊥ // transaction cannot be applied to state

state′ ← ApplyTrans(tx, state); states← states ∪ [state′]
return tx, state′

return ⊥
Oracle OApplyTrans(tx)

if VerifyTrans(tx, state) = 0 then
return ⊥

state′ ← ApplyTrans(tx, state)
states← states ∪ [state′]; return state′

Oracle OPrepareAudit(pk0, state1, state2, f, aux)
sk← findSecretKey(pk0, state1)
if state1, state2 ∈ states ∧ state1 is older than state2 then

auditInfo← PrepareAudit(sk, pk0, state1, state2, f, aux)
if VerifyAudit(pk0, state1, state2, (f, aux), auditInfo) then

return auditInfo
return ⊥ // pk0 was invalid for the snapshots, state1, state2 were

not valid or f was not satisfied

33

Game 6: Indistinguishability game ExpindA (λ)

Input : λ
Output: {0, 1}
b← {0, 1}
(pk∗, sk∗)← KGen()
r ←$ F∗

p

pk0 ← Update(pk∗; r)
(pk1, sk1)← KGen()
b′ ← A(pk∗, pkb)
return (b = b′)

– when A or the challenger creates tx through the OTrans(S, R, #»vS,
#»vR, A) Oracle,

the Oracle runs tx← Trans(sk, S, R, #»vS,
#»vR, A), but replaces the zero-knowledge

arguments in tx with a simulated argument.

– when A or the challenger creates tx through the OCreateAcct(userInfo, A)
Oracle, the Oracle runs tx ← CreateAcct(userInfo, A), but replaces the zero-
knowledge arguments in tx with a simulated argument.

Hybrid 3. Same as Hybrid 2, but now the challenger replaces the potential
senders’ and receivers’ accounts of the challenge transaction tx0 (acct0, acct1, acct

′
0, acct

′
1),

with new accounts that have a freshly created key pair (sk, pk) derived from the
output of the KGen(). In order to achieve this we change the following oracles’
functionality:

– when A creates one of these accounts accti through the OTrans Oracle (these
accounts are presented in tx.outputs), the Oracle runs tx← Trans(sk, S, R, #»vS,

#»vR, A),
(pk′i, sk

′
i)← KGen and then return tx′, where tx′ = tx except that each accti ∈

{acct0, acct1, acct′0, acct′1} is replaced with acct′i = (pk′i, combli, comouti, comini).

– when A creates one of these accounts accti through the OCreateAcct Oracle,
the Oracle runs tx ← CreateAcct(userInfo, A), (pk′i, sk

′
i) ← KGen and then

return tx′, where tx′ = tx except that each accti ∈ {acct0, acct1, acct′0, acct′1}
is replaced with acct′i = (pk′i, 0 , 0 , 0).

Hybrid 4. Same as Hybrid 3, but here the challenger replaces also the commit-
ments of the accounts (acct0, acct1, acct

′
0, acct

′
1) with newly created commitments

to the same values with different randomness. In order to achieve this we change
the following oracles’ functionality:

– when A creates one of these accounts accti through the OTrans Oracle (these
accounts are presented in tx.outputs), the Oracle runs tx← Trans(sk, S, R, #»vS,

#»vR, A), (r1, r2, r3)←$

F∗
p, bli ← OpenCom(sk, accti.combl), outi ← OpenCom(sk, accti.comout),

ini ← OpenCom(sk, accti.comin), com
′
bl ← Commit(pk′, bli; r1), com

′
out ←

34

Commit(pk′, outi; r2), com
′
in ← Commit(pk′, ini; r3) and then return tx′, where

tx′ = tx except that each accti ∈ {acct0, acct1, acct′0, acct′1} is replaced with
acct′ = (pk, com′bl, com

′
out, com

′
in). (pk = pk′ as in the Hybrid 3).

– when A creates one of these accounts accti through the OCreateAcct Oracle,
the Oracle runs
tx← CreateAcct(userInfo, A), (r1, r2, r3)←$ F∗

p, com
′
bl ← Commit(pk′0; r1), com

′
out ←

Commit(pk′, 0; r2), com
′
in ← Commit(pk′, 0; r3) and then return tx′, where

tx′ = tx except that each accti ∈ {acct0, acct1, acct′0, acct′1} is replaced with
acct′ = (pk, com′bl, com

′
out, com

′
in). (pk = pk′ as in the Hybrid 3).

Hybrid 5. Same as Hybrid 4, but here also the updated accounts of (acct0, acct1, acct
′
0, acct

′
1)

in the challenge tx.outputs are replaced by accounts with freshly created public
key pk′.
Hybrid 6. Same as Hybrid 5, but here also the updated accounts of (acct0, acct1, acct

′
0, acct

′
1)

in the challenge tx.outputs are replaced by accounts with freshly created com-
mitments to the same value.

Afterwards, we create Hybrids 7-13 that are the same with Hybrids 0-6 with
the difference that are made for the anonymity game with b = 1.

Note that in Hybrid 6 and in Hybrid 13 all accounts of the potential senders’
and receivers’ accounts of the challenge transaction txb (both in inputs and
outputs) are fresh accounts, where in outputs have been generated with values
corresponding to the case b = 0 — b = 1.

Now we will prove that A has negligible advantage of distinguish Hybrid 0
and Hybrid 7.

Lemma 2. Hybrid 0 and Hybrid 1 are indistinguishable.

Corollary 1. Hybrid 7 and Hybrid 8 are indistinguishable.

Proof. The adversary’s view in the two hybrids’ game are identical.

Lemma 3. Hybrid 1 and Hybrid 2 are indistinguishable.

Corollary 2. Hybrid 8 and Hybrid 9 are indistinguishable.

Proof. Let A be an adversary that can distinguish Hybrid 1 and Hybrid 2 with
advantage ϵ. We construct an adversary B that breaks the zero-knowledge prop-
erty of the NIZK proof π of transaction tx with probability ϵ.

Let Ozk(·) be an oracle that on input (tx.inputs, tx.outputs) creates a valid
NIZK argument for the transaction. Then B wins if they can decide wether Ozk(·)
is a prover or simulator oracle.
B takes as input the Ozk(·) and runs as follows:

1. B generates state← Setup(λ);

35

2. WhenA queries the OTrans(S, R, #»vS,
#»vR, A) oracle then B runs tx← Trans(sk, S, R, #»vS,

#»vR, A)
with the difference that B replace the proof with the output of Ozk(tx[inputs], tx[outputs])

3. WhenA queries the OCreateAcct(userInfo, A) oracle then B runs tx← CreateAcct(userInfo, A)
with the difference that B replace the proof with the output of Ozk(tx[inputs], tx[outputs])

4. B runs b← A(state);

If A answers Hybrid 0 then Ozk(·) is a prover oracle. If A answers Hybrid 1 then
Ozk(·) is a simulator oracle. So B wins with probability ϵ.

Lemma 4. Hybrid 2 and Hybrid 3 are indistinguishable.

Corollary 3. Hybrid 9 and Hybrid 10 are indistinguishable.

Proof. Note that A cannot distinguish Hybrid 2 and Hybrid 3 from the fact that
commitments are under different public key on the grounds that this breaks the
key-anonymous property of the commitment scheme. Let A be an adversary
that can distinguish Hybrid 2 and Hybrid 3 with advantage ϵ. We construct an
adversary B that breaks the indistinguishability property of the UPK scheme
with probability ϵ.

In order to create B, we define five sub-hybrids. Let h0 be Hybrid 2 and
for each i ∈ {1, 2, 3, 4} hi would be a sub-hybrid where we replace the account
acct0, acct1, acct

′
0, acct

′
1 respectively. In hybrid h4 all of the accounts will be

changed, therefore h4 is Hybrid 3. Lets A be an adversary that can distinguish
hi from hi+1. Let acctc be the account that we are replacing in this hybrid. Then:
B gets as input the tuple (acct∗, acctb) from the indistinguishability game and
runs as follows:

1. B generates state← Setup(λ).
2. when A uses the ORegister Oracle to create the initial account that share

the same secret key with acctc, B replaces this account with acct∗.
3. when A uses OTrans or OCreateAcct Oracle to create the account acctc, B

replaces acctc with acctb.
4. B reply to all other queries in the oracles as in the Hybrid h0.
5. B outputs b′ ← A(state).

We know thatA did not query the corrupt oracle on acctc or on any other account
that shares the same secret key with acctc cause it would have immediately lost
the anonymity game. Note that if b = 0 then the distribution of the game is
the same as hybrid hi and if b = 1 then the game has the same distribution as
hybrid hi+1. Hence B answer b′ and solves the indistinguishability game with
probability ϵ.

Lemma 5. Hybrid 3 and Hybrid 4 are indistinguishable.

Corollary 4. Hybrid 10 and Hybrid 11 are indistinguishable.

Proof. The only difference from this two Hybrids are the randomness to the
commitments of the real participants accounts. Therefore, they produce a com-
putationally indistinguishable distribution, due to the hiding property if the used
commitment scheme.

36

Corollary 5. Hybrid 4 and Hybrid 5 are indistinguishable.
Hybrid 11 and Hybrid 12 are indistinguishable.
It can be proven the same way as Hybrid 2 and Hybrid 3 are indistinguishable.

Corollary 6. Hybrid 5 and Hybrid 6 are indistinguishable.
Hybrid 12 and Hybrid 13 are indistinguishable.
It can be proven the same way as Hybrid 3 and Hybrid 4 are indistinguishable.

Lemma 6. Hybrid 6 and Hybrid 13 are indistinguishable.

Proof. Hybrid 6 and Hybrid 13 differ to (1) the accounts that are included in P

and in A as well as to (2) the balances that are stored in the real participants’ ac-
counts in the challenge query (accti =∈ {acct0, acct1, acct′0, acct′1}). Concerning
the former (1), in both Hybrids the inputs that A sees is obtained by permuting
(Px∪Ax) with a random permutation ψ. But the union of these set in both cases
(x = {0, 1}) produces identical distributions. As a result A cannot distinguish
the two Hybrids from (1). The second change (2) produces a computationally
indistinguishable distribution, due to the hiding property of the commitment
scheme. Therefore, if A could distinguish these Hybrids based on (2) then A
could break the hiding property of Commit.

Using the above lemmas and the triangle inequality, we prove that there is
not a PPT adversary A that can distinguish Hybrid 0 and Hybrid 7 with more
than negligible advantage.

C.4 Full proof of theft prevention

Theorem 2. AQQUA satisfies theft prevention, as defined in Definition 2.

Proof. Assume that there exists a PPT A that wins the theft prevention game
of Game 2 with non-negligible probability. Using the notation of the game, we
have that A outputted a valid transaction tx that verifies and that results in one
of the three winning conditions of the game being satisfied.

We have that tx = (inputs, outputs, π), where π is a ZK-proof for the
relation R(x,w) as defined in Figure 2, with x = (inputs, outputs) and w =
(sk, bl, out, in, # »vbl,

»vout,
»vin,

#»r , ψ, I∗S , I
∗
R , I

∗
A).

From the soundness property of the NIZK argument of the Trans algorithm,
we can extract a witness

w∗ = (sk∗, bl∗, · · · ,
»

v∗′bl, · · · ,
#»

r∗, · · ·) such that R(x,w∗) = 1.
Let acct ∈ inputs be the account such that VerifyKP(sk∗, acct.pk) = 1. We

divide into two cases.

1. It holds that sk∗ ∈ honest. In this case, we construct an adversary B that
breaks the unforgeability property of the UPK scheme with non-negligible
probability.
The reduction works as follows. The adversary B takes as input a public key
pk∗. It also keeps a directed tree with root (pk∗, 1) and whose nodes will be
tuples of the form (pk, r). The tree will be updated so that for every edge of
the form ((pk1, ·), (pk2, r2)) it will hold that VerifyUpdate(pk2, pk1, r2) = 1.
B answers to A’s oracle queries as follows.

37

• WhenA queries the ORegister oracle and this query results in the Register
algorithm to generate sk∗, B replaces userInfo.pk0 with pk∗, and when
NewAcct is called in the procedure, B gives as input pk∗. The adversary
B stores the public key of the newly created account and the randomness
used as a child of (pk∗, 1) in the tree. For the rest of the ORegister queries,
B answers honestly.

• When A queries the OCreateAcct oracle for an account whose public key
pk is contained in a leaf of the tree, B answers honestly and adds a child
to the leaf, composed of the updated public key of the updated account
and the randomness used.

• When A queries the OTrans oracle, the adversary B acts as follows.
∗ If the public keys of the accounts in S are contained in leaves of
the tree, B creates an outputs set and creates a simulated proof for
the transaction. B also updates the tree by creating new children
containing the updates of the public keys and the randomness.

∗ If there exist public keys of accounts in the anonymity set that are
contained in leaves of the tree, B creates new children containing the
updates of the public keys and the randomness.

• When A queries the OApplyTrans with a transaction whose inputs con-
tain a leaf of the tree, B uses the proof contained in the transaction to
extract the witness. Then, B creates new children for the updates of the
public keys, storing also the randomness of the witness.

• For the rest of the oracle queries, B answers honestly.
Finally, when A outputs the transaction tx of the theft prevention game, B
finds the acct ∈ inputs for which VerifyKP(sk∗, acct.pk) = 1, and finds the
leaf (pk, r) of the tree for which acct.pk = pk. Let r′ be the multiplication
of all randomnesses stored in the path from that leaf to the root. B returns
(pk, r′).
If A wins the theft prevention game, we have that VerifyKP(pk, sk∗) = 1 and
VerifyUpdate(pk, pk∗, r′) = 1. Since A can win with non-negligible probabil-
ity, B breaks unforgeability with non-negligible probability.

2. It holds that sk∗ ∈ corrupt.
Assume w.l.o.g. that the transaction tx that A outputs is the first transaction
that results in winning the game (that is, there is no transaction submitted
to OApplyTrans oracle prior to this point that would result in A winning).
Since A wins the game, we have that the sum of the openings of the com-
mitted balances of all the accounts (stored in the bookkeeping) of inputs is
different from those of outputs.
From the soundness property of the NIZK argument of the Trans algorithm,
we have that for every sender account acct′ of outputs, VerifyAcct(acct′, sk∗, bl∗+
v′∗bl, ·, ·) = 1.
Since VerifyAcct returns 1, and also

∑
v′∗bl∈

»

v′∗bl
v′∗bl = 0, and since A wins

the game, there exists an account acct ∈ outputs for which acct.combl has
two different openings: one resulting from the bookkeeping, and one derived
from the extracted witness (one of the values of the form bl∗ + v′∗bl for some
sender account). This trivially breaks the binding property of the commit-
ment scheme.

38

C.5 Full proof of audit soundness

Theorem 3. AQQUA satisfies audit soundness, as of Definition 3

Proof. Assume that there exist a PPT A that wins the audit soundness game of
Game 3 with non-negligible probability. Using the notation of the game, we have
that A outputted a proof π = (πp, π1, π2) that verifies but A is not compliant
with the specified policy.
A choose a policy f with its auxiliary parameters aux, an initial public key

pk0 and two snapshots from the blockchain state1, state2. Then A constructs π =
(πp, π1, π2) which as defined in Figure 5 is a ZK-proof for the correct shuffle of the

accounts and the relationsR1(x,w), with x = (pk0, {#accsj , #accsj , {acctji}
#accsj
i=1 }2j=1)

and w = (sk) and R2(x,w), with x = ({acct1i}
#accsj
i=1 , {acct2i}

#accsj
i=1 , v , aux) and

w = (sk, v), where v, aux are values that depend on the policy.
The soundness property of the correctness of the shuffle [3] prevents the

adversary from altering the values of the initial accounts.
From the soundness property of the NIZK argument of the π1, we can extract

a witness w∗ = sk∗ such that R1(x,w
∗) = 1. We have that every pk ∈ {pk0} ∪

{acctji.pk}
#accsj
i=1 , VerifyKP(sk∗, pk). Therefore similarly to theft-prevention proof

we can prove that if sk∗ ∈ honest then A can be used to break the unforgeability
property of UPK scheme. Else if sk∗ ∈ corrupt then since A wins the game, we
have that the opening to the commitment of #accs is different from the one
that resulting from bookkeeping. This trivially breaks the binding property of
the commitment scheme.

From the soundness property of the NIZK argument of the π2, we can extract
a witness w∗ = v∗ such that R1(x,w

∗) = 1. Again since A wince the game the
sum of the openings of the commited value of all the accounts that belongs to
A is different from the one that resulting from bookkeeping, so this breaks the
binding property of the commitment scheme.

39

	AQQUA: Augmenting Quisquis with Auditability
	Introduction
	Related Work
	Preliminaries
	AQQUA Architecture
	AQQUA Functionalities
	Setup
	Registration
	Transactions
	Audit

	Security analysis
	Anonymity
	Theft prevention
	Audit soundness

	Performance
	Conclusion and Future Work
	Building Blocks
	Updatable Public Keys
	-protocols

	AQQUA Components
	Accounts
	User Information
	Registration Algorithm
	Transaction Algorithm
	Algorithm to create accounts
	Delete Account Algorithm
	Auditing

	Security Proofs
	Details of bookkeeping functionalities
	Details of oracles
	Full proof of anonymity
	Full proof of theft prevention
	Full proof of audit soundness

