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Abstract—Recent years have seen great improvements in
zero-knowledge proofs (ZKPs). Among them, zero-knowledge
SNARKs are notable for their compact and efficiently-
verifiable proofs, but suffer from high prover costs. Wu et
al. (Usenix Security 2018) proposed to distribute the prov-
ing task across multiple machines, and achieved significant
improvements in proving time. However, existing distributed
ZKP systems still have quasi-linear prover cost, and may incur
a communication cost that is linear in circuit size.

In this paper, we introduce HyperPianist. Inspired by the
state-of-the-art distributed ZKP system Pianist (Liu et al.,
S&P 2024) and the multivariate proof system HyperPlonk
(Chen et al., EUROCRYPT 2023), we design a distributed
multivariate polynomial interactive oracle proof (PIOP) system
with a linear-time prover cost and logarithmic communication
cost. Unlike Pianist, HyperPianist incurs no extra overhead
in prover time or communication when applied to general
(non-data-parallel) circuits. To instantiate the PIOP system,
we adapt two additively-homomorphic multivariate polynomial
commitment schemes, multivariate KZG (Papamanthou et
al., TCC 2013) and Dory (Lee et al., TCC 2021), into the
distributed setting, and get HyperPianistK and HyperPianistD

respectively. Both systems have linear prover complexity and
logarithmic communication cost; furthermore, HyperPianistD

requires no trusted setup. We also propose HyperPianist+,
incorporating an optimized lookup argument based on Lasso
(Setty et al., EUROCRYPT 2024) with lower prover cost.

Experiments demonstrate HyperPianistK and HyperPianistD

achieve a speedup of 66.8× and 44.9× over HyperPlonk with
32 distributed machines. Compared to Pianist, HyperPianistK

can be 3.2× and 5.0× as fast and HyperPianistD can be 2.7×
and 4.1× as fast, on vanilla gates and custom gates respectively.

1. Introduction

Zero-knowledge proofs (ZKPs) were first introduced in
the 1980s by Goldwasser et al. [1], and have since become a
staple of modern cryptography. They allow a party to prove
the truth of a statement without revealing any additional

information. In recent years, the efficiency of ZKPs has
dramatically improved, enabling various new applications
in blockchains and machine learning, among others.

Zero-knowledge succinct non-interactive arguments of
knowledge (SNARKs) are a notable type of ZKPs where
the proof is short and fast to verify (“succinctness”). One
of the most popular constructions of modern SNARKs is
to first design a polynomial interactive oracle proof (PIOP)
system and then instantiate it with a polynomial commit-
ment scheme (PCS). Two of the most deployed SNARKs
in the industry, Plonk [2] and Marlin [3], fall into this
category. Plonk stands out with its compact proof size and
fast verifier, as well as support for custom gates; it has
been adopted in various blockchain-related applications such
as zkRollups and zkEVM (Ethereum Virtual Machine). An
extension work Plonkup [4] enhances Plonk with the lookup
arguments from Plookup [5], allowing the proof system to
efficiently handle non-linear functions.

However, high prover costs have inhibited the applica-
tion of SNARKs to large-scale circuits, such as complex
EVM execution traces and large language models. In 2018,
Wu et al. proposed DIZK [6], where the proof generation
process is distributed across multiple machines (called sub-
provers), and it demonstrated great improvements in proving
time. Nevertheless, as it is built on Groth16 [7], each sub-
prover runs in quasi-linear time due to polynomial interpo-
lation, and the communication cost among the sub-provers
is linear in circuit size. Subsequently, zkBridge introduced
deVirgo [8], a distributed ZKP system designed for data-
parallel circuits based on multivariate polynomials. The
multivariate PIOP in deVirgo has linear-time prover cost, but
the multivariate PCS still requires polynomial interpolation
and entails a linear communication cost among the sub-
provers. A very recent work Pianist [9] built a distributed
ZKP system on Plonk. To extend the univariate Plonk system
to the distributed setting, Pianist utilized bivariate PIOPs,
and designed a bivariate PCS based on the KZG polyno-
mial commitment scheme [10]. Pianist is able to achieve
a constant communication cost under a trusted setup, but
it still has quasi-linear prover cost for polynomial interpo-



lation. Another recent work HEKATON [11] proposed to
divide the circuit into different sub-circuits and prove each
sub-circuit with MIRAGE [12], a commit-carrying version
of Groth16 [7]. It allows the sub-circuits to be different
with a smaller common reference string, but similarly, it
requires quasi-linear prover cost. The authors compared
HEKATON with Pianist by extrapolation.1 However, the
claimed speedup factor of HEKATON may be overesti-
mated. Specifically, for a circuit of size 225, the prover time
of Pianist on 32 machines (with 2048 cores in total) was
approximately 5 s, in contrast to the “sub-10” s estimated
in HEKATON; as HEKATON’s prover takes 11.6 s on a
circuit of size 227 with 2048 cores, this suggests a speedup
factor of around 2×, rather than the claimed 3×.

We note that all these systems have quasi-linear prover
time caused by polynomial interpolation (either in PIOPs or
PCS). As reported by HyperPlonk [13], when circuit sizes
are larger than 221, the quasi-linear factor will account for
a significant portion of the overall proving time. Hyper-
Plonk [13] thus adapts Plonk’s univariate PIOP system to
a multivariate one; with a suitable linear-time multivariate
PCS, HyperPlonk can achieve a linear-time proving cost. As
the linear-time prover scales better than Plonk’s quasi-linear-
time prover, in practice, it can be nearly 3× as fast when
the circuit size is 220, and the difference becomes larger as
the circuit size increases. Moreover, HyperPlonk supports
more efficient high-degree custom gates than Plonk due to
its multivariate PIOP system.

1.1. Our Contributions

1.1.1. HyperPianist. In this work, we propose HyperPi-
anist2, a distributed ZKP system featuring linear proving
cost and logarithmic communication cost as well as succinct
proofs. It satisfies the notion of a “fully” distributed ZKP
system introduced in Pianist [9], as it supports general
circuits in addition to data-parallel ones. At the core of
HyperPianist, we design a distribution-friendly multivariate
PIOP system based on HyperPlonk, and two distributed mul-
tivariate polynomial commitment schemes for instantiation.
Distributed Multivariate PIOP System. We observe that
the constraint system of HyperPlonk can be reduced to mul-
tivariate SumCheck identities. We thus extend the distributed
SumCheck protocol in deVirgo to general circuits, and adapt
HyperPlonk’s multivariate PIOP system to the distributed
setting. This distributed PIOP system comes without extra
communication cost or new constraints for non-data-parallel
circuits, in contrast to Pianist, which requires a helper
polynomial and two additional constraints.

In HyperPlonk, the copy constraints are reduced to a
multiset check identity, which is in turn handled by the grand
product check PIOP from Quarks [14]. This PIOP involves a
helper polynomial that is unfriendly to distribution. Naïvely

1. Since they were unable to run Pianist stably for circuit size greater
than 221 or with more than 2 machines, the comparison was made by
extracting data from the figures provided by Pianist.

2. Stands for “HyperPlonk vIA uNlimited dISTribution”.

computing the polynomial would entail a linear commu-
nication cost among the sub-provers. To overcome this
problem, we opt for logarithmic derivative techniques [15]
to reduce the multiset check identity to a rational SumCheck
statement. This reduction requires no extra communication,
and the resulting PIOP has O(logN) communication cost
and O(logN) proof size. We can alternatively use layered
circuits to directly prove the product check relation, which
also incurs no extra costs. This method has O(log2 N)
communication cost and proof size, but has a faster prover.

Distributed Multivariate PCS. We observe that both the
quasi-linear prover cost and linear communication cost of
deVirgo result from its FRI-based multivariate PCS, which
requires univariate polynomial interpolation and witness ex-
change among sub-provers. We recognize that a multivariate
PCS with the additively-homomorphic property is more
compatible with the distributed setting, since partial results
from sub-provers can be easily aggregated with sublinear
communication costs. We thus design a distributed version
of the multivariate KZG [16] scheme (denoted by deMKZG).
Given a multilinear polynomial with logN variables and
M distributed sub-provers, deMKZG has O(1) commit-
ment size, O(logN) communication cost per sub-prover,
O(logN) proof size and O(logN) verifier time, but requires
a trusted setup.

We also design deDory, a distributed version of
Dory [17]. It is transparent, with the same asymptotic com-
plexity as deMKZG in commitment size and communication
cost, and O(logN+logM) evaluation proof size and verifier
time. In doing so, we re-organized the matrix representation
of Dory in a distribution-friendly fashion to reduce unnec-
essary communication costs for aggregation.

We compare deMKZG and deDory with the distributed
PCS from previous works in Table 1. By instantiating our
PIOP system with the two commitment schemes, we get
HyperPianistK and HyperPianistD respectively. We compare
our distributed ZKP systems with prior works in Table 2.

1.1.2. HyperPianist+. Our second contribution is Hyper-
Pianist+, an enhancement of HyperPianist with an optimized
distributed lookup argument based on Lasso [18]. Lookup
arguments allow a party to prove that every element in a
committed vector exists in a pre-determined table. They
are especially suitable for “non-arithmetic” functions like
bitwise operations, range checks and so on.

Plonkup [5] enhanced Plonk with the univariate lookup
protocol Plookup [5], and subsequently, HyperPlonk+
demonstrated how to extend the univariate protocol into
a multivariate one. However, this transformation entails
sorting the union table of public table and witnesses, and
as such the prover is not strictly linear. Our optimization
builds on Lasso [18], the most efficient construction of
multivariate lookup arguments so far. We note that Lasso
involves a well-formation check to guarantee the correctness
of certain polynomials committed during the protocol. In
Lasso, this is done by offline memory checking techniques
from Spartan [19]. We identify that this check can be han-
dled more efficiently using logarithmic derivative techniques
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TABLE 1: Comparisons of distributed PCS. (“Trans.”: transparent setup, N : witnesses size, M : the number of distributed
machines, T = N

M : the size of witnesses each machine holds. H,F,P,G,GT : hash, field, pairing, group, pairing target
group operations, | · |: the size of corresponding elements.)

PCS Polynomial Type Trans.? Pi Time V Time Proof size Communication

deVirgo [8] Multivariate ✓ O(T log T )F+O(T )H O(log2 N +M)H O(log2 N +M) |H| O(N) |F|
Pianist [9] Bivariate ✗ O(T )F+O(T )G O(1)P+O(logN)F O(1) |G| O(M) |G|
deDory Multivariate ✓ O(T )G O(logN + logM)GT O(logN + logM) |GT | O(M logN) |G|

deMKZG Multivariate ✗ O(T )G O(logN)P O(logN) |G| O(M logN) |G|

TABLE 2: Comparisons of distributed ZKP systems (“Fully”: fully distributed, other notations are same as in Table 1).
Scheme Trans.? Fully? Pi Time V Time Proof size Communication

deVirgo [8] ✓ ✗ O(T log T )F+O(T )H O(log2 N +M)H O(log2 N +M) |H| O(N) |F|
Pianist [9] ✗ ✓ O(T log T )F+O(T )G O(1)P+O(logN)F O(1) |G| O(M) |G|

HEKATON [11] ✗ ✓ O(T log T )F+O(T )G O(logM)G O(logM) |G| O(M) |G|

HyperPianistK ✗ ✓ O(T )F+O(T )G O(logN)F +
O(logN)P

O(logN)F +
O(logN) |G|

O(M · logN) |F| +
O(M · logN) |G|

HyperPianistD ✓ ✓ O(T )F+O(T )G O(logN)F +
O(logN + logM)GT

O(logN) |F| +
O(logN + logM) |GT |

O(M · logN) |F| +
O(M · logN) |GT |

from Logup [15]. By viewing the well-formation check
as a set inclusion relation, we can reduce it to a rational
SumCheck identity, and can cut 50% of the commitments
and roughly 30% in SumCheck prover cost.

We note a concurrent work [20] proposing a similar
optimization for Lasso. We emphasize that our construction
is developed independently of theirs, and we additionally
adapt it to the distributed setting to get a more functional
distributed ZKP system.

1.1.3. Implementation and Evaluations. We have fully
implemented our distributed ZKP system based on the
Rust ark-works ecosystem and conducted comprehensive
experiments. Both HyperPianistK and HyperPianistD show
a liner scalability in the number of distributed machines.
Specifically, they can achieve 4.7× and 4.1× speedups
over HyperPlonk with 2 machines, and 66.8× and 44.9×
speedups with 32 machines respectively.

As HEKATON is not open-sourced, we compare our
systems with Pianist, using vanilla circuits (of degree-2
multiplication gates) and Jellyfish circuits [21] (of degree-5
custom gates) with size 222 ∼ 226. HyperPianistK presents
up to 3.2× and 5.0× speedups over Pianist on the two
types of circuits, and HyperPianistD achieves 2.7× and 4.1×
speedups even with a transparent setup; both are superior
to the 2× speedup of HEKATON. Meanwhile, the com-
munication cost, proof size as well as verifier time of the
two systems are highly practical. Our optimized lookup
argument also shows an improvement of 2× in prover time
on 220 ∼ 224 XOR gates. We additionally show that even in
a general wide area network, our systems still have notable
improvements over Pianist for large circuits.

1.2. Organization of the Paper

Section 2 presents the preliminaries. Section 3 intro-
duces the distributed multivariate PIOP system of HyperPi-
anist. Section 4 presents the distributed multivariate polyno-
mial commitment schemes. Section 5 shows the construction

of our optimized lookup argument for HyperPianist+. Sec-
tion 6 gives some experimental results. We introduce some
additional related works in Appendix A.

2. Preliminaries

2.1. Notations

We use λ to denote the security parameter. A function
f(λ) is poly(λ) if there exists a c ∈ N such that f(λ) =
O(λc). If for all c ∈ N, f(λ) is o(λ−c), then f(λ) is in
negl(λ) and is said to be negligible. A probability that is
1−negl(λ) is overwhelming. We write all groups additively,
and assume we are given some method to sample Type III
pairings at a given security level. Then we are furnished with
a prime field F = Fp, three groups G1,G2,GT of order p, a
bilinear map e : G1 ×G2 → GT , and generators G1 ∈ G1,
G2 ∈ G2 such that e(G1, G2) generates GT . We generally
suppress the distinction between e(·, ·) and multiplication
of F,G1,G2 or GT by elements of F, writing all of these
bilinear maps as multiplication. We will use bold letters like
v,M for vectors and matrices, and use ⟨·, ·⟩ to denote the
generalized inner product given by ⟨a, b⟩ =

∑n
i=1 aibi, with

signatures: Fn × Fn → F, Fn × Gn
{1,2,T} → Gn

{1,2,T} or
Gn

1 ×Gn
2 → GT .

For n ∈ N, let [n] be the set {0, 1, . . . , n − 1}. Vector,
matrix and tensor indices will begin at 0. For any two vectors
v1,v2, we denote their concatenation by (v1||v2). For x, we
use notation x[i : k] to denote the slices of vector x, namely
x[i : k] = (xi, . . . , xk−1). We use ⊗ to denote the tensor
product. For any vector v of even length we will denote
the left and right halves of v by vL and vR. The natural
injection mapping an integer to its binary representation is
denoted as bin(·). We write ←$ S for uniformly random
samples of a set S. A relation is a set of pairs (x,w). An
indexed relation is a set of triples (i,x,w).

2.2. SNARKs

We adopt the definition of SNARKs in HyperPlonk [13].
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Definition 1 (Interactive Argument of Knowledge [13]). An
interactive protocol Π = (Setup, I,P,V) between a prover
P and verifier V is an argument of knowledge for an indexed
relation R with knowledge error δ : N → [0, 1] if the
following properties hold, where given an index i, common
input x and prover witness w, the deterministic indexer
outputs (vk, pk) ← I(i) and the output of the verifier is
denoted by the random variable ⟨P(pk,x,w),V(vk,x)⟩:
• Perfect Completeness: for all (i,x,w) ∈ R,

Pr

[
⟨P(pk,x,w),V(vk,x)⟩ = 1

∣∣∣∣ pp← Setup(1λ)
(vk, pk)← I(pp, i)

]
= 1.

• δ-Knowledge Soundness: There exists a polynomial
poly(·) and a PPT oracle machine E called the extractor
such that given oracle access to any pair of PPT adver-
sarial prover algorithm (A1,A2), the following holds:

Pr

⟨A2(i,x, st),V(vk,x)⟩ = 1
∧

(i,x,w) /∈ R

∣∣∣∣∣∣∣
pp← Setup(1λ)

(i,x, st)← A1(pp)
(vk, pk)← I(pp, i)
w← EA1,A2(pp, i,x)


≤ δ(|i|+ |x|).

An interactive protocol is knowledge sound if the knowl-
edge error δ is negligible in λ.

• Public coin: An interactive protocol is public-coin if V’s
messages are chosen uniformly at random.

If an interactive argument of knowledge protocol is
public-coin, then it can be made non-interactive by the Fiat-
Shamir transformation [22]. If the scheme further satisfies
the following property:
• Succinctness: The proof size is |π| = poly(λ, log |C|) and

the verification time is poly(λ, |x|, log |C|),
then it is a Succinct Non-interactive Argument of Knowl-
edge (SNARK).

2.3. Polynomial Interactive Oracle Proof

Definition 2 (Public-coin Polynomial Interactive Oracle
Proof [13]). A public-coin polynomial interactive oracle
proof (PIOP) is a public-coin interactive proof for a poly-
nomial oracle relation R = (i,x;w), where i and x can
contain oracles to n-variate polynomials over some field
F. These oracles can be queried at arbitrary points in
Fn to evaluate the polynomial at these points. The actual
polynomials corresponding to the oracles are contained in
pk and w, respectively. We denote an oracle to a polynomial
f by [[f ]]. In each round, P sends multivariate polynomial
oracles, and V replies with a random challenge.

2.4. Multilinear Extension

We define the set F (≤d)
n to be all n-variate polynomials

f : Fn → F where the degree is at most d in each
variable. In particular, an n-variate polynomial f is said
to be multilinear if f ∈ F (≤1)

n . For any f : {0, 1}n → F,
there is a unique multilinear polynomial f̃ : Fn → F such
that f̃(x) = f(x) for all x ∈ {0, 1}n. The polynomial f̃

is called the multilinear extension (MLE) of f , and can be
expressed as f̃(X) =

∑
x∈{0,1}n f(x) · ẽq(x,X), where

ẽq(x,X) :=
∏n

i=1(xiXi + (1− xi)(1−Xi)).

2.5. Polynomial Commitment Scheme

Definition 3 (Commitment Scheme [23]). A commitment
scheme for some space of messages X is a tuple of three
protocols (Gen,Commit,Open) where
• pp← Gen(1λ,F) generates public parameters pp.
• (com, π) ← Commit(pp;x) takes as input x ∈ X ;

produces a commitment com and an opening hint π.
• b← Open(pp; com, x, π): verifies the opening of commit-

ment com to x with the opening hint; outputs b ∈ {0, 1}.
Definition 4. A commitment scheme should satisfy the bind-
ing property, meaning that for all PPT adversaries A,

Pr

b0 = b1 ̸= 0
∧

x0 ̸= x1

∣∣∣∣∣∣∣
pp← Setup(1λ)

(com, x0, x1, π0, π1)← A1(pp)
b0 ← Open(pp, com, x0, π0)
b1 ← Open(pp, com, x1, π1)

 ≤ negl(λ).

One of our key building blocks is the Dory [17] commit-
ment scheme, which makes use of the Pedersen and AFGHO
commitments. For messages X = Fn and any i ∈ {1, 2, T},
the Pedersen commitment scheme is defined as:

Definition 5 (Pedersen Commitment [24]).
• pp← Gen(1λ) = (g ←$ Gn

i , h←$ Gi)
• (com, π)← Commit(pp;x) = {r ←$ F; (⟨x, g⟩)+rh, r)}
• Open(pp; com, x, π) : Check ⟨x, g⟩+ π · h = com.

AFGHO commitment is a structure-preserving commit-
ment to group elements. In this case we have X = Gn

i for
i ∈ {1, 2}, and we have:

Definition 6 (AFGHO Commitment [25]).
• pp← Gen(1λ) = (g ←$ Gn

3−i, H1 ←$ G1, H2 ←$ G2);
• (com, π) ← Commit(pp;x) = {r ←$ F; (⟨x, g⟩) + r ·
e(H1, H2), r)};

• Open(pp; com, x, π): Check ⟨x, g⟩+π·e(H1, H2) = com.

Let (GenF,CommitF,OpenF) be a commitment scheme
for F with public parameters ppF. The polynomial commit-
ment scheme for multilinear polynomials is defined as:

Definition 7 (Polynomial Commitment Scheme [17]). A tu-
ple of protocols (Gen,Commit,Open,Eval) is a polynomial
commitment scheme for n-variate multilinear polynomials if
• (Gen,Commit,Open) is a commitment scheme for n-

variate multilinear polynomials f , and
• Eval is an interactive argument of knowledge for:
REval(pp, ppF) = {((comf ,x, comv); (f, πf , v, πv))} s.t.
x ∈ Fn, f ∈ F (≤1)

n , f(x) = v, Open(pp; comf , f, πf ) =
1 and OpenF(ppF; comv, v, πv) = 1.

3. Distributed Multivariate PIOP System

In this section, we introduce the distributed multivariate
PIOP system of HyperPianist(+). We give an overview of the
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Figure 1: Overview of our multivariate PIOP system.
PIOP system in Figure 1. At a high level, HyperPianist fol-
lows HyperPlonk to decompose the circuit constraints into
gate identities and wiring identities (i.e., copy constraints). It
differs from HyperPlonk at the Multiset Check PIOP, which
avoids linear communication costs in the distributed setting.
In this section, we will present the PIOP system in a bottom-
up fashion, starting from the distributed SumCheck PIOP.

3.1. Starting Point: Distributed SumCheck PIOP

Definition 8 (SumCheck Relation [13]). The relation RSum
is the set of all tuples (x;w) = ((v, [[f ]]); f) where f ∈
F (≤d)

n and
∑

x∈{0,1}n f(x) = v.

We first review the well-known multivariate SumCheck
PIOP in the non-distributed setting. Given an n-variate mul-
tilinear polynomial f ∈ F (≤1)

n and its oracle [[f ]], the prover
P and the verifier V engage in n rounds of interactions. In
each round k, P sends a univariate polynomial

fk(Xk) :=
∑

x∈{0,1}n−k

f(r1, . . . , rk−1, Xk,x). (1)

V checks fk(0)+fk(1) = fk−1(rk−1) to assure the correct-
ness of the previous round, and then sends back the next
challenge rk. In the last round, V checks the final claim
using an oracle call to [[f ]].

In the distributed setting, our starting point is the dis-
tributed SumCheck in deVirgo [8]. The main focus of de-
Virgo is to aggregate multiple SumCheck instances for data-
parallel circuits. We generalize it, and distribute a single
SumCheck instance across multiple machines, assuming that
each machine initially holds part of the witnesses.

Without loss of generality, suppose we have M = 2m

distributed machines acting as sub-provers. For an n-variate
polynomial f , each sub-prover holds 2n−m witnesses. We
assume that for the i-th sub-prover Pi, its 2n−m wit-
nesses are indexed by (x1, . . . , xn−m, bin(i)) where x1,
. . . , xn−m ∈ {0, 1}, and bin(i) is the binary representation
of the value i. In other words, each sub-prover Pi is allocated

with a fixed binary suffix bin(i) in its indices. Following
deVirgo [8], we define f (i)(x) := f(x, bin(i)), and have∑

x∈{0,1}n

f(x) =
∑

x∈{0,1}n−m

∑
bin(i)∈{0,1}m

f(x, bin(i))

=
∑
i∈[M ]

∑
x∈{0,1}n−m

f (i)(x).

Given this construction, it follows that in each round
k where 1 ≤ k ≤ n − m, each sub-prover Pi is able
to locally compute a univariate polynomial f

(i)
k (Xk) :=∑

x∈{0,1}n−m−k f(r1, . . . , rk−1, Xk,x, bin(i)), and∑
i∈[M ]

f
(i)
k (Xk) =

∑
bin(i)∈{0,1}m

f
(i)
k (Xk)

=
∑

x∈{0,1}n−k

f(r1, . . . , rk−1, Xk,x).

The RHS is exactly the univariate polynomial fk(Xk) de-
fined in Equation (1) in the regular SumCheck PIOP. Thus,
by letting a master prover, say, P0, collect and aggregate all
f
(i)
k (Xk) from the sub-provers, it can recover fk(Xk), and

then interact with V as in the regular SumCheck PIOP. After
receiving the random challenge rk from V in each round,
P0 needs to transmit it to the other sub-provers.

After the (n − m)-th round, the polynomial to be
checked is reduced to a m-varaite polynomial denoted by
f ′(x) = f(r1, · · · , rn−m,x) where x ∈ {0, 1}m. At
this point, the left SumCheck computations can not be
distributed, and need to be performed solely by the mas-
ter prover. Specifically, all sub-provers send the evaluation
f
(i)
n−m(r1, · · · , rn−m) to P0, who then constructs the poly-

nomial f ′(x) by f ′(bin(i)) = f
(i)
n−m(r1, · · · , rn−m) for

all i ∈ [M ]. In the following m rounds, P0 acts as the
single prover in the regular SumCheck PIOP on the claim∑

x∈{0,1}m f ′(x) = fn−m(rn−m). In the last round, V
invokes an oracle call to evaluate f(r1, · · · , rn) and checks
the final claim. We present the details in Protocol 3.1.

For SumCheck claims on high-degree polynomials f ∈
F (≤d)

n , HyperPlonk has proposed an algorithm with a
prover time of O(d log2 d · 2n). In this context, f(x) =
h(g0(x), . . . , gc−1(x)) such that h can be evaluated using
O(d) operations and gi ∈ F (≤1)

n ,∀i ∈ [c]. This algorithm
can be similarly adapted to the distributed setting, where
we assume each Pi holds partial polynomials g(i)0 , . . . , g

(i)
c−1,

and it knows the description of h. In the following, we will
abuse the notation of f (i) to refer to this allocation of g and
h. The detailed construction is given in Protocol B.1.

3.2. Distributed ZeroCheck PIOP

A ZeroCheck relation shows a multivariate polynomial
evaluates to zero everywhere on the boolean hypercube.

Definition 9 (ZeroCheck Relation [13]). The relation RZero

is the set of all tuples (x;w) = (([[f ]]); f) where f ∈ F (≤d)
n

and f(x) = 0 for all x ∈ {0, 1}n.
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PROTOCOL 3.1. Distributed SumCheck PIOP (for Multilinear Polynomials)

P0 claims ((v, [[f ]]); f) ∈ RSum to V where f ∈ F (≤1)
n . Pi holds f (i)(x) = f(x, bin(i)), i ∈ [M ]. Let f0 := v.

• In the k-th round where 1 ≤ k ≤ n−m:
– Each Pi sends a local univariate polynomial f (i)

k (Xk) :=
∑

x∈{0,1}n−m−k f(r1, . . . , rk−1, Xk,x, bin(i)) to P0.

– P0 sums up all the univariate polynomials to get fk(Xk) =
∑

i∈[M ] f
(i)
k (Xk), and sends it to V .

– V checks if fk−1 = fk(0) + fk(1). If the check passes, V sends a random rk ∈ F to P0, and sets fk := fk(rk).
– P0 transmits rk to the other Pi. Each Pi then updates the local evaluations of f (i)(x).

• Each Pi sends f (i)(r1, · · · , rn−m) to P0. P0 constructs the polynomial f ′(x) = f(r1, · · · , rn−m,x).
• P0 and V run the SumCheck PIOP to check fn−m =

∑
x∈{0,1}m f ′(x).

PROTOCOL 3.2. Distributed ZeroCheck PIOP

P0 claims (([[f ]]); f) ∈ RZero to V . Pi holds f (i)(x) = f(x, bin(i)), i ∈ [M ].
• V samples r ←$ Fn and sends it to P0. P0 transmits r to the other Pi.
• Each Pi views r as r = (r′, r′′) ∈ Fn−m×Fm, and locally computes f̂ (i)(x) = f (i)(x) · ẽq(x, r′) · ẽq(bin(i), r′′).
• P0, · · · ,PM−1 and V run the distributed SumCheck PIOP (Protocol 3.1) to check ((0, [[f̂ ]]); f̂) ∈ RSum.

In the non-distributed setting as in HyperPlonk, the
ZeroCheck relation is reduced to a SumCheck relation that∑

x ẽq(x, r)f(x) = 0 using a random challenge r from the
verifier; this reduction has negligible soundness error.

In the distributed setting, given the random challenge
vector r, the i-th sub-prover Pi can construct its local
witness to ẽq(x, r) by splitting the random challenge into
(r′, r′′) ∈ Fn−m × Fm and calculating the evaluation table
for ẽq(x, r′) · ẽq(bin(i), r′′). From here, the adaptation of
ZeroCheck PIOP to the distributed setting follows naturally.
The detailed construction is given in Protocol 3.2.

3.3. Distributed Multiset Check PIOP

A multiset is an extension of the concept of a set, where
every element has a positive multiplicity. Two finite multi-
sets are equal if they contain the same elements with the
same multiplicities. A Multiset Check (MsetCheck) relation
is defined as follows.

Definition 10 (Multiset Check Relation [13]). For any k ≥
1, the relation Rk

MSet is the set of all tuples

(x;w) =(([[f0]], . . . , [[fk−1]], [[g0]], . . . , [[gk−1]]);

(f0, . . . , fk−1, g0, . . . , gk−1))

where fj , gj ∈ F (≤d)
n ,∀j ∈ [k] and the following two multi-

sets of tuples are equal:
{
(f0(x), . . . , fk−1(x))

}
x∈{0,1}n ={

(g0(x), . . . , gk−1(x))
}
x∈{0,1}n .

Using a random challenge γ, a k-dimension multiset
check relation Rk

MSet can be reduced to a one-dimension
relation R1

MSet showing that {
∑

i∈[k] γ
ifi(x)}x∈{0,1}n =

{
∑

i∈[k] γ
ifi(x)}x∈{0,1}n . With another random challenge

β, this can be further reduced to a grand product check that∏
x∈{0,1}n

(
β+

∑
i∈[k]

γifi(x)
)
=

∏
x∈{0,1}n

(
β+

∑
i∈[k]

γigi(x)
)
. (2)

We formally define the grand product check relation below.

Definition 11 (Product Check Relation [13]). The relation
RProd is the set of all tuples (x;w) = ((s, [[f0]], [[f1]]);

(f0, f1)) where f0, f1 ∈ F (≤d)
n , f1(b) ̸= 0, ∀b ∈ {0, 1}n

and
∏

x∈{0,1}n f ′(x) = s, where f ′ = f0/f1.

HyperPlonk [13] utilizes the product check PIOP from
Quarks [14], which relies on the following theorem.

Theorem 1 ([14]). P =
∏

x∈{0,1}n f(x) iff there exists

h ∈ F (≤1)
n+1 s.t. h(1, . . . , 1, 0) = P , and ∀x ∈ {0, 1}n, the

following hold: h(0,x) = f(x), h(1,x) = h(x, 0) ·h(x, 1).

Given Theorem 1, to prove a product check relation, it
suffices to show the existence of such a multilinear polyno-
mial h. Specifically, P can provide an oracle purported to
be such an h, and proves that (1) h(1, · · · , 1, 0) = P , (2)
h(0,x) = f(x), and (3) h(1,x)−h(x, 0)·h(x, 1) = 0 for all
x ∈ {0, 1}n. Condition (1) is straightforward to verify with
an oracle call, while conditions (2) and (3) can be verified
using the ZeroCheck PIOP.

Problems When Distributing Product Check PIOP. Now
we focus on the distributed setting. Recall that after reducing
to the product check identity, each sub-prover Pi holds
its local sub-polynomial f (i)(x). To apply the distributed
ZeroCheck PIOP, Pi needs to construct its sub-polynomial
h(i)(x) := h(x, bin(i)). In Quarks [14], h is constructed
using the following criteria: (1) h(1, · · · , 1) = 0, and
(2) for all ℓ ∈ [0, n] and x ∈ {0, 1}n−ℓ, h(1ℓ, 0,x) =∏

y∈{0,1}ℓ v(x,y). Unfortunately, in the distributed setting
Pi is unable to locally construct h(i) from f (i). Due to the
definition of h, Pi needs some necessary values from other
sub-provers to construct h(i), which would incur a linear
communication cost. We thus need to seek other approaches.

Our Solution: Rational SumCheck. Our key insight here
is to use logarithmic derivatives techniques [15] to construct
a PIOP for multiset check relations, where the helper poly-
nomials are friendly to distribution. We explain this below.
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PROTOCOL 3.3. Distributed Rational SumCheck PIOP

P0 claims ((v, [[p]], [[q]]); (p, q)) ∈ RSum to V . Pi holds p(i)(x) = p(x, bin(i)), q(i)(x) = q(x, bin(i)), i ∈ [M ].
• Each Pi computes f (i)(x) = 1

q(i)(x)
, ∀x ∈ {0, 1}n−m.

• P0 sends an oracle [[f ]] to V .
• P0, · · · ,PM−1 and V run the distributed ZeroCheck PIOP (Protocol 3.2) to check (([[f · q− 1]]); f · q− 1) ∈ RZero.
• P0, · · · ,PM−1 and V run the distributed SumCheck PIOP (Protocol 3.1) to check ((v, [[p · f ]]); p · f) ∈ RSum.

PROTOCOL 3.4. Distributed Multiset Check PIOP

P0 claims (([[f0]], . . . , [[fk−1]], [[g0]], . . . , [[gk−1]]) ∈ Rk
MSet to V . Pi holds f

(i)
j (x), g(i)j (x), ∀j ∈ [k], i ∈ [M ].

• V samples β, γ ←$ F and sends them to P0. P0 transmits them to the other Pi.
• Each Pi computes f ′(i)(x) =

∑
j∈[k] γ

jf
(i)
j (x), g′(i)(x) =

∑
j∈[k] γ

jg
(i)
j (x).

• P0, · · · ,PM−1 and V run the distributed Rational SumCheck PIOP to check ((v, 1, [[f ′ + β]]); (1, f ′ + β)) ∈ RRSum
and ((v, 1, [[g′ + β]]); (1, g′ + β)) ∈ RRSum, where v =

∑
x∈{0,1}n 1/ (f ′(x) + β).

Definition 12 (Logarithmic Derivatives). The logarithmic
derivative of a polynomial p(X) over a field F is the rational
function p′(X)/p(X). In particular, when the polynomial
p(X) =

∏n
i=1(X + zi), with each zi ∈ F, the logarithmic

derivative of it is equal to p′(X)
p(X) =

∑n
i=1

1
X+zi

.

Our construction relies on the following theorem.

Theorem 2 ([15]). Let (ai)
n
i=1 and (bi)

n
i=1 be sequences

of a field F where |F| > n. Then
∏n

i=1(ai + X) =∏n
i=1(bi+X) in the polynomial ring F[X] iff

∑n
i=1

1
ai+X =∑n

i=1
1

bi+X in the fractional field F(X).

Recall that in HyperPlonk the multiset check identity is
reduced to Equation (2). Instead of the grand product check,
with Theorem 2 we can reduce it to a “SumCheck relation
on the fractions”. We will call it a Rational SumCheck
(RSumCheck) relation, defined as follows.

Definition 13 (Rational SumCheck Relation). The relation
RRSum is the set of all tuples (x;w) = ((v, [[p]], [[q]]);

(p, q)), where p, q ∈ F (≤d)
n , q(x) ̸= 0,∀x ∈ {0, 1}n and∑

x∈{0,1}n
p(x)
q(x) = v.

It is in the form of SumCheck, but the SumCheck PIOP
does not apply directly to fractions. As a workaround, we
can find the multilinear interpolation of the denominator part
f(x) = 1/q(x). This allows us to reduce the RSumCheck
identity to a regular SumCheck, along with a ZeroCheck to
guarantee the well formation of the helper polynomial f .

A key feature of the our RSumCheck PIOP is that
it’s well suited to the distributed setting: given the partial
polynomials q(i)(x), the corresponding f (i)(x) can be com-
puted locally by the sub-provers. We present the distributed
RSumCheck PIOP in Protocol 3.3. Based on it, we present
our distributed MsetCheck PIOP in Protocol 3.4.

Theorem 3. The PIOP forRRSum in Protocol 3.3 is perfectly
complete and has knowledge error O(dn/|F|).

We give the proof of this theorem in Appendix H.1.

Remark 1. Using layered circuits to directly prove the
product check relation in multiset check PIOP is also

distribution-friendly. It saves two commitments after instan-
tiation, with O(log2 N) communication cost and proof size.

3.4. Distributed Permutation Check PIOP

For two polynomials f, g ∈ F (≤d)
n , a permutation rela-

tion shows the evaluations of g is a predefined permutation σ
of f ’s evaluations on the boolean hypercube. We formalize
the Permutation Check (PermCheck) relation below.

Definition 14 (Permutation Check Relation [13]). The in-
dexed relation RPerm is the set of tuples (i;x;w) = (σ;

([[f ]], [[g]]); (f, g)), where f, g ∈ F (≤d)
n , σ is a permutation

{0, 1}n → {0, 1}n s.t. for all x ∈ {0, 1}n, f(σ(x)) = g(x).

Given a predefined permutation σ, HyperPlonk intro-
duces two polynomials sid, sσ ∈ F (≤1)

n where sid maps
each binary vector x ∈ {0, 1}n to the corresponding in-
teger value [x] =

∑n
i=1 xi · 2i−1 ∈ F and sσ maps

x ∈ {0, 1}n to [σ(x)]. Then the permutation check can be
reduced to a multiset check based on the observation that
f(σ(x)) = g(x) iff the two multisets {([x], f(x))}x∈{0,1}n

and {([σ(x)], g(x))}x∈{0,1}n are equal. Thus, we can con-
struct the distribuetd PermCheck PIOP by directly calling
the distributed MsetCheck PIOP for R2

MSet on the above two
multisets, assuming each Pi is assigned its sub-polynomial
s
(i)
id (x) = sid(x, bin(i)) and s

(i)
σ (x) = sσ(x, bin(i)).

3.5. Constraint System and Complexity Analysis

As shown in Figure 1, HyperPianist adopts the Plonkish
constraint system, and we present it in Appendix C.

We present the complexity analysis of our distributed
PIOPs in Table 3. For the SumCheck PIOP, using Proto-
col B.1, each sub-prover’s workload is O(d log2 d · 2n−m)

for polynomials f ∈ F (≤d)
n . The additional workload for

P0 is O(d · 2m) per round in the first n−m rounds to sum
2m degree-d univariate polynomials, and O(d log2 d ·2m) to
perform the remaining SumCheck. As to communication,
each sub-prover must send a degree-d univariate polyno-
mial, and retrieve the random challenge from P0 in each
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TABLE 3: The complexity of distributed PIOPs (k in MsetCheck is the length of each element in the multisets).

PIOP Pi Time P0 Extra Time V Time # of Queries # of Rounds Communication # of Extra Oracles
SumCheck O(d log2 d · 2n−m) O

(
(d · n+ d log2 d) · 2m

)
O(d · n) 1 n O(d · n) 0

ZeroCheck O(d log2 d · 2n−m) O
(
(d · n+ d log2 d) · 2m

)
O(d · n) 1 n+ 1 O(d · n) 0

RSumCheck O(d log2 d · 2n−m) O
(
(d · n+ d log2 d) · 2m

)
O(d · n) 4 2n+ 1 O(d · n) 1

MsetCheck O(d log2 d · 2n−m) O
(
(d · n+ d log2 d) · 2m

)
O(d · n) 2k + 4 4n+ 3 O(d · n) 2

PermCheck O(d log2 d · 2n−m) O
(
(d · n+ d log2 d) · 2m

)
O(d · n) 6 4n+ 2 O(d · n) 2

round. Consequently, the total communication overhead for
each sub-prover is O(d · n) over O(n) rounds. The Ze-
roCheck PIOP requires an additional communication round
for random challenges. The RSumCheck PIOP requires an
extra oracle of the helper polynomial, and an invocation
of ZeroCheck and SumCheck respectively. The MsetCheck
PIOP needs an additional round for random challenges, and
two invocations of the RSumCheck PIOP. We emphasize
that the number of rounds presented here is not optimal,
as communication rounds from sub-protocols can often be
parallelized without loss of soundness.

Remark 2. The above distributed PIOPs are not zero-
knowledge, but ZK properties can be achieved using the
standard techniques from HyperPlonk [13, Appendix A]. We
omit the details due to the page limit.

4. Distributed Multivariate PCS

In this section, we present two distributed multivariate
polynomial commitment schemes, deMKZG and deDory.

4.1. deMKZG: Distributed Multivariate KZG

We first review the original multivariate KZG scheme.

4.1.1. Review: multivariate KZG [16]. Given a multilinear
polynomial f ∈ F (≤1)

n , the commitment is computed as
(here we write [a]1 := a · G1 and [b]2 := b · G2, for some
fixed generator G1 and G2 for G1 and G2 respectively):
• pp← Gen(1λ): Samples trapdoor t, and generates

pp =
{
[1]1, [1]2, {[ẽq(x, t)]1}x∈{0,1}n , {[ti]2}ti∈t

}
.

• comf ← Commit(pp; f): Computes comf =
∑

x f(x) ·
[ẽq(x, t)]1.

• Open(pp; comf , f): Check comf =
∑

x f(x)·[ẽq(x, t)]1.
To open f at a random point r as v, the prover P needs

to calculate n polynomial divisions to obtain a sequence of
quotient polynomials Qk(Xk+1) and remainder polynomi-
als Rk(Xk+1), where Xk+1 denotes (Xk+1, . . . , Xn). Let
R0 := f(X), then for k = 1 to n, P computes:

Rk−1(Xk) := Qk(Xk+1) · (Xk − rk) +Rk(Xk+1). (3)

After obtaining these polynomials, the prover computes
the proof as commitments to all Qk, and the verifier checks

e(comf − [v]1, [1]2) =
∑n

k=1 e(comQk
, [tk − rk]2).

4.1.2. Construction of deMKZG. Recall that in the dis-
tributed setting, each sub-prover Pi holds a sub-polynomial
f (i)(x) = f(x, bin(i)). Thus, the commitment scheme
naturally admits distribution, with each Pi computing

com
(i)
f :=

∑
x∈{0,1}n−m f (i)(x) · [ẽq(x||bin(i), t)]1,

and sending it to P0 for aggregation.
To generate the evaluation proof distributively, we

use the observation that in Equation 3, the polynomials
Qk(Xk+1) and Rk(Xk+1) are multilinear. Thus they are
fully determined by their evaluations over x ∈ {0, 1}n−i.
Given the evaluations of Ri−1, by Equation 3, the prover
can compute the evaluations for Qk and Rk as:

Qk(x) := Rk−1(1,x)−Rk−1(0,x),

Rk(x) := (1− rk) ·Rk−1(0,x) + rk ·Rk−1(1,x).

Thus, each sub-prover Pi can construct Q(i)
k and R

(i)
k from

the local witnesses f (i), and the distribution of the evaluation
protocol follows naturally. We formalize the deMKZG PCS
in Protocol D.1.

Theorem 4. Given polynomial f(x) ∈ F (≤1)
n and 2m

sub-prover, Protocol D.1 is a PCS satisfying completeness
and knowledge soundness for arbitrary evaluation. Each
Pi computation consists of O(2n−m) group operations,
while P0 needs O(2m) additional group operations. The
communication cost of each Pi is O(n). The commitment
size is 1 G element, and the proof size is O(n) G elements.
The verification cost is O(n) pairings.

We give the proof of Theorem 4 in Appendix H.2.

4.2. deDory: Distributed Dory

We now present deDory. It is built on the Dory PCS,
and unlike deMKZG, it requires no trusted setup.

4.2.1. Review: Dory PCS [17]. Dory uses the following
matrix representation for multilinear polynomials:

Definition 15 (Matrix Representation of Multilinear Poly-
nomials [17]). For a multilinear polynomial f : Fn → F,
w.l.o.g., we assume n is even and let k := n/2. Then
f can be represented as a matrix M = (Mij), where
Mij = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ {0, 1}n and
i =

∑k
t=1 2

k−t · xt, j =
∑n

t=k+1 2
n−t · xt.

Given the above matrix representation, Dory proposes
a two-tiered homomorphic commitment scheme [26] by
combining the Pedersen and AFGHO commitments:
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• pp← Gen(1λ) = (Γ1 ←$ Gm
1 ,Γ2 ←$ Gn

2 );
• comM ← Commit(pp;Mij):

comrow ←
{
CommitPed(Γ1;Mij)

}
i∈[n]

;

comM ← CommitAFGHO(Γ2; comrow);

• Open(pp; comM ,M): Check
∑
i,j

MijΓ1jΓ2i = comM .

The evaluation proof of Dory builds on the following
observation: given the matrix representation of f , the eval-
uation of f at a point (r1, . . . , rn) ∈ Fn can be written as
a form of vector-matrix-vector product:

f(r1, . . . , rn) = (⊗k≤n/2vk)
TM(⊗k>n/2vk), (4)

where vk = (1−rk, rk). Dory defines the following relation
to capture the vector-matrix-vector product identity:

Definition 16 (Vector-Matrix-Vector Relation [17]). Let
L,R ∈ Fn be public vectors, M ∈ Fn×n be the secret
matrix, y = LTMR, comM be the commitment to M
using the two-tiered commitment, and comy be the Pedersen
commitment to y. The relation RVMV is the set of all tuples
((L,R, comM , comy); (M , y)).

To prove the opening of f at the point (r1, · · · , rn) ∈
Fn, it suffices to prove the following relation:

((⊗k≤n/2rk,⊗k>n/2rk, comM , comy); (M , y)) ∈ RVMV.

The general strategy to prove RVMV is as follows.
Suppose commitment to y = LTMR is computed as
CommitPed(Γ1,fin; y) = comy. P can compute the vector
v = LTM , and by construction y = LTMR = ⟨v,R⟩.
Since Pedersen commitments are linearly homomorphic, we
have ⟨L, comrow⟩ = CommitPed(Γ1,v) is a commitment
to v. So to prove ((L,R, comM , comy); (M , y)) ∈ RVMV,
it suffices to prove knowledge of comrow ∈ Gn

1 ,v ∈ Fn

s.t. comM = ⟨comrow,Γ2⟩, ⟨L, comrow⟩ = ⟨v,Γ1⟩ and
comy = ⟨v,R⟩Γ1,fin. This is further proved by two direct
consistency checks and an Inner-Product Argument (IPA).
We formally define the inner-product relation below.

Definition 17 (Inner-Product Relation [17]). Let s1, s2 ∈
Fn be public vectors. The relation RInner is the set of all
tuples ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) , where v1 ∈
Gn

1 , v2 ∈ Gn
2 are witness vectors, and D1 = ⟨v1,Γ2⟩, D2 =

⟨Γ1,v2⟩, E1 = ⟨v1, s2⟩, E2 = ⟨s1,v2⟩, C = ⟨v1,v2⟩.
In Dory, we have v1 = comrow,v2 = vΓ2,fin, and

two public vectors s1 = R, s2 = L. Here we present the
intuition behind Dory’s IPA reduction. To reduce the size of
inner-product ⟨u,v⟩ by half, P first sends the cross terms
⟨uL,vR⟩ and ⟨uR,vL⟩ to V , and then retrieves a random
challenge a from V . Given the identity

⟨uL||uR,vL||vR⟩ =⟨auL + uR, a−1vL + vR⟩
− a⟨uL,vR⟩ − a−1⟨uR,vL⟩,

(5)

a length-n inner-product claim can be reduced to a length-
n/2 one by eliminating the cross terms. After log n iter-
ations, the length will be reduced to 1. V must compute

⟨s1,⊗n−1
k=0(αk, 1)⟩, ⟨s2,⊗n−1

k=0(α
−1
k , 1)⟩ to verify the final

identity. For polynomial evaluation proof, s1, s2 are tensor
products of n vectors of length 2 respectively. Thus we have
⟨⊗n−1

k=0(lk, rk),⊗
n−1
k=0(ak, 1)⟩ =

∏N−1
i=0 (lkak + rk), which

can be computed efficiently with O(log n) operations by V .

4.2.2. Construction of deDory. Now we adapt Dory to the
distributed setting. Unlike deMKZG, achieving logarithmic
communication cost for deDory is not trivial.
A Naïve Attempt. At first thought, one may think Dory
is naturally suitable for distribution: the polynomial is rep-
resented as a matrix, and the partial witnesses held by
the sub-provers constitute the columns of the matrix. The
commitment can thus be constructed by the sub-provers
computing on their respective columns and aggregating their
partial results. While the original Dory commits to M as
rows, it is trivial to commit to the rows of MT instead,
such that the commitment is over the columns of M .

Unfortunately, such a design would incur a communica-
tion cost of O(2n/2) for generating an evaluation proof. To
be more specific, note that the evaluation proof now needs to
demonstrate that y = RTMTL. The sub-provers then need
to compute v = RTMT . Here each sub-prover holds part
of the rows of MT , and can compute a partial result t(i).
However, this result is of size 2n/2, and must be sent to the
master sub-prover for summation: v =

∑
i t

(i). The master
prover also has to re-distribute v, so all sub-provers hold the
correct v(i) for the computation of C(i) and subsequent use
in the IPA protocol. This entails O(2n/2) communication
cost between each Pi and P0.
Achieving Logarithmic Communication Cost. To avoid
the problem, we need to re-organize the matrix to make
it distribution-friendly. Since each sub-prover Pi holds the
witnesses defining the sub-polynomial f (i)(x) ∈ F (≤1)

n−m,
we can represent them in matrix representations as well,
denoted by M (i) with size 2(n−m)/2 × 2(n−m)/2 (w.l.o.g.
we assume n − m is even). To enable the sub-provers to
compute their partial results of C = ⟨v, comrow⟩ locally
and independently from each other, we need to carefully
combine their sub-matrices into a large matrix in a block-
diagonal form. Specifically, we define a new matrix M̂ :

M̂ =

M
(0)

. . .
M (2m−1)

 ,

where each sub-matrix M (i) is placed diagonally along
the new matrix, with all other entries set to zero. This
arrangement enables each sub-prover to calculate their par-
tial results locally; moreover, the computation results are
the correct sub-vectors for IPA reduction. Therefore, it
eliminates the O(2n/2) communication cost in the naïve
approach. Below we give a detailed explanation of deDory,
and formally describe the deDory PCS in Protocol 4.1.
deDory Commitment. Since each sub-matrix M (i) has
size 2(n−m)/2 × 2(n−m)/2, the new matrix M̂ is of size
2(n+m)/2 × 2(n+m)/2. With the new matrix representation

9



PROTOCOL 4.1. deDory Polynomial Commitment Scheme

Given f ∈ F (≤1)
n , Pi holds a sub-polynomial f (i) ∈ F (≤1)

n−m s.t. f (i)(x) = f(x, bin(i)), ∀i ∈ [M ].
• deDory.Gen(1λ): Sample pp = (Γ1 ∈ GN

1 ,Γ2 ∈ GN
2 ).

• deDory.Commit(pp; f):
– Pi obtains the matrix representation of its sub-polynomial M (i), computes com

(i)
row := CommitPed(Γ

(i)
1 ;M (i)),

com
(i)
M := CommitAFGHO(Γ

(i)
2 ; com

(i)
row), and sends com

(i)
M to P0.

– P0 computes and outputs commitment comM :=
∑

i∈[M ] com
(i)
M .

• deDory.Open(pp; comM , f): V retrieves f from all Pi and checks comM = deDory.Commit(pp; f).
• deDory.Eval_RE(pp; f,L,R):

– Each Pi locally computes L(i) and R(i) corresponding to L and R.
– P0 computes the commitment to the purported value y := LMRT as comy, and sends it to V .
– Each Pi computes v(i) := L(i)TM (i), y(i) := ⟨v(i),R(i)⟩, C(i) := e(⟨v(i), com

(i)
row⟩,Γ2,fin),

E
(i)
2 := y(i)Γ2,fin, E(i)

1 := ⟨L(i), com
(i)
row⟩, D(i)

2 := e(⟨Γ(i)
1 ,v(i)⟩,Γ2,fin), and sends C(i), D

(i)
2 , E

(i)
1 , E

(i)
2 to P0.

– P0 aggregates C,D2, E1, E2 using the corresponding C(i), D
(i)
2 , E

(i)
1 , E

(i)
2 , and sends them to V .

– V checks that E2 = yΓ2,fin, comy = yΓ1,fin, and e(E1,Γ2,fin) = D2.
– P0, · · · ,PM−1 and V run deDory-IPA(L,R, C, comM , D2, E1, E2).

• deDory.Eval(pp; f, r) :
– V samples a random challenge u←$ F and sends to P0. Then P0 transmits u to the other Pi.
– P0, · · · ,PM−1 and V run deDory.Eval_RE(pp; f, L̂, R̂) and deDory.Eval_RE(pp; f, L̃, R̃), where L̂, R̂ is

specifies in Theorem 5, and L̃ = (1, u, . . . , u(n+m)/2−1), R̃ = (1, u(n+m)/2, . . . , u((n+m)/2−1)((n+m)/2)).

PROTOCOL 4.2. deDory-IPA(s1, s2, C,D1, D2, E1, E2)

Pi holds witness v
(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

For all j ∈ [n], all Pi compute Γ1,j+1 := (Γ1,j)L,Γ2,j+1 := (Γ2,j)L,∆1L,i := ⟨(Γ1,i)L,Γ2,i+1⟩,∆2L,i := ⟨Γ1,i+1,
(Γ2,i)L⟩ ∆1R,i := ⟨(Γ1,i)R,Γ2,i+1⟩, ∆2R,i := ⟨Γ1,i+1, (Γ2,i)R⟩, and for all j ∈ [n+ 1] compute χj := ⟨Γ1,j ,Γ2,j⟩.
• For j ∈ [n−m], all Pi and V run (s1, s2, C,D1, D2, E1, E2)← deDory-Reduce(s1, s2, C,D1, D2, E1, E2).

• Each Pi sends (s
(i)
1 , s

(i)
2 , C(i), D

(i)
1 , D

(i)
2 , E

(i)
1 , E

(i)
2 , v

(i)
1 , v

(i)
2 ) to P0.

• P0 aggregates C,D1, D2, E1, E2 using the corresponding C(i), D
(i)
1 , D

(i)
2 , E

(i)
1 , E

(i)
2 , and set

v1 := (v
(i)
1 )i∈[M ], v2 := (v

(i)
2 )i∈[M ], s1 := (s

(i)
1 )i∈[M ], s2 := (s

(i)
2 )i∈[M ].

• For j = n−m, . . . , n− 1, P0 and V run (s1, s2, C,D1, D2, E1, E2)← Dory-Reduce(s1, s2, C,D1, D2, E1, E2).
• P0 sends v1, v2 to V , and V accepts if ((s1, s2, C,D1, D2, E1, E2); (v1, v2)) ∈ RInner.

M̂ , the sub-provers can commit to M̂ by first committing
its local sub-matrix M (i) and then aggregating the results
together by the master prover.
deDory Evaluation Proof. As we re-arranged the structure
of the matrix, we need to re-arrange the public vectors L̂
and R̂ accordingly, such that L̂TM̂R̂ = f(r). To see how
to construct the two vectors, first recall that each sub-prover
Pi holds f (i)(x) satisfying

f(r) =
∑

i∈[2m]

ẽq(r[n−m : n], bin(i))f (i)(r[0 : n−m]).

We construct three vectors using the three parts of the
evaluation vector r, namely: L = ⊗rk∈r(0)(rk, 1−rk),R =
⊗rkr(1)(rk, 1−rk),E = ⊗rk∈r(2)(rk, 1−rk), where r(0) =
r[0 : (n − m)/2], r(1) = r[(n − m)/2 : n − m], r(2) =
r[n−m : n].

Recall that M (i) is represented as in Definition 15 for
f (i)(x), and then we have f (i)(r[0 : n−m]) = LTM (i)R.
while ẽq(r(2), bin(i)) is equal to Ei. Thus to make the

vector-matrix-vector relation satisfied, we could additionally
multiply L by the i-th element of the vector E. We formal-
ize the construction of L̂, R̂ in the following theorem.

Theorem 5. Let L̂ =
[
E0 ·L, · · · ,E2m−1 ·L

]
= E⊗L , R̂

=
[
R, · · · ,R

]
= ⊗k∈[2m](1, 1)⊗R, then L̂TM̂R̂ = f(r).

Proof. By construction, L̂TM̂R̂ =
∑2m−1

i=0 Ei ·LTM (i)R.
Since Ei = ẽq(r2, bin(i)), LTM (i)R = f (i)(r(0), r(1)),
then L̂TM̂R̂ =

∑
i∈[2m] ẽq(r

2, bin(i)) · f (i)(r(0), r(1)) =
f(r).

Let L̂(i) = Ei ·L, R̂(i) = R be the sub-vectors of L̂, R̂
held by sub-prover Pi. At this point, each Pi is able to
locally run the IPA reduction process with public vectors
L̂(i), R̂(i) and witness M (i) in (n − m)/2 rounds. After
that, P0 aggregates all the reduced results from the sub-
provers, and performs the last m rounds of IPA reduction
and the final verification with V as in the regular Dory.
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PROTOCOL 4.3. Lookup PIOP

P claims (b; ([[ã]], [[t̃]]); (ã, t̃)) ∈ RLookup to V , where t̃ is the MLE of a decomposable table.
• P sends oracles of E1, · · · , Ec and nz1, · · · , nzc to V .
• V picks a random r ∈ Flog ℓ to P , and makes an oracle call to ã and obtains ã(r)
• P,V run a SumCheck PIOP to check ã(r) =

∑
i∈{0,1}log ℓ ẽq(r, i)g(E1(k), · · · , Ec(i)).

• For j = 1 to c, P,V check Ej(k) is well-formed:
– P sends an oracle of mj(X) (defined in Equation (9)) to V , and retrieves random challenges β, γ ←$ F from V .
– P,V run the Rational SumCheck PIOP to check

∑
x∈{0,1}log ℓ

1
nzj(x)+γ·Ej(x)+β =

∑
x∈{0,1}log N

mj(x)
sid(x)+γ·T (x)+β .

Though this reorganization facilitates distribution, the
resulting product R̂L̂T no longer spans F(n+m)/2×(n+m)/2

over choices of r, which is required for the knowledge
extractor to work. This issue could be resolved by running
another vector-matrix-vector proof with the same matrix
M̂ and setting L̃ = (1, u, . . . , u(n+m)/2−1) and R̃ =
(1, u(n+m)/2, . . . , u((n+m)/2−1)((n+m)/2)) where u is the
random challenge. The sub-vectors L̃(i) and R̃(i) can be
computed by Pi using u locally. Notably, in HyperPianist,
only a single polynomial needs to be opened once using the
batching techniques. Additionally, these two vector-matrix-
vector proofs could be further batched into one using the
techniques from Dory [17].

We present the full distributed IPA protocol in Pro-
tocol 4.2 (and the distributed IPA reduction protocol
deDory-Reduce in Protocol E.1, the non-distributed IPA
reduction protocol Dory-Reduce protocol in Protocol E.2).
Based on this, the distributed vector-matrix-vector proof
naturally follows by adding several consistency checks,
which can be directly performed by P0 and V . Our approach
reduces the communication cost from O(2n/2) to O(n), with
only a modest increase in proof size from O(n) to O(n+m)
as the matrix size expands from 2n/2 to 2(n+m)/2.

Theorem 6. Given a polynomial f ∈ F (≤1)
n and 2m sub-

provers, Protocol 4.1 is a PCS satisfying completeness and
knowledge soundness for random evaluation. Each Pi needs
O(2n−m) group operations, while P0 needs O(2m) addi-
tional group operations. The communication cost of each
Pi is O(n). The commitment size is 1 GT element. The
proof size is O(n+m) GT elements. The verification cost
is O(n+m) GT operations plus O(1) pairing.

The proof of Theorem 6 can be found in Appendix H.3.

5. HyperPianist+: HyperPianist with Opti-
mized Lookup Arguments

In this section, we present an optimized lookup argument
and adapt it to the distributed setting. Our construction is
built on Lasso, which we review below.

5.1. Review: Lookup Arguments in Lasso

A lookup relation can be interpreted as a set inclusion
relation on committed vectors:

Definition 18 (Lookup Relation). The indexed relation
RLookup is the set of tuples (i;x;w) = (b; ([[ã]], [[t̃]]); (ã, t̃))
where b ∈ Fℓ, ã and t̃ are the MLEs of a ∈ Fℓ, and T ∈ FN

respectively, s.t. for all i ∈ {1, · · · , ℓ},ai = T [bi].

Lasso is specialized for structured tables. It makes the
observation that the lookup tables for many operations (like
bitwise AND) can be broken down into smaller-sized sub-
tables, such that for some x = (x1, · · · ,xc) and some
simple function g, T [x] = g(T1[x1], · · · ,Tc[xc]), where
Ti are the sub-tables of the table T .

In Lasso, proving a committed vector a is contained in
the table T is turned into proving the existence of some
sparse matrix M ∈ Fℓ×n s.t. there is only one non-zero
entry of value 1 in each row and M ·t = a. This is reduced
to a SumCheck claim that∑

y∈{0,1}log n M̃(r,y) · t̃(y) = ã(r), (6)

where r ∈ Flog ℓ is a random challenge vector from V , and
M̃, t̃ and ã are MLEs of M , t and a respectively.

As the table T and the matrix M may be huge, directly
running the SumCheck protocol may be expensive. Lasso
utilizes a key feature of the matrix M : it is extremely sparse,
i.e., only one entry in each row of M can be non-zero, and
the non-zero entry must be 1. Given this, Lasso transforms
Equation (6) into

∑
x∈{0,1}log ℓ ẽq(x, r) · T [nz(x)] = ã(r),

where for each x-th row of the matrix M , nz(x) denotes
the column index corresponding to the non-zero entry in
this row, and T [nz(x)] denotes the corresponding nz(x)-
th entry of the table T . Since we assume the table is
decomposable, we can write the LHS of the equation as∑

x∈{0,1}log ℓ ẽq(x, r) · g(T1[nz1(x)], · · · ,Tc[nzc(x)]).

Let Ej(x) be the MLE of Tj [nzj(x)]. Then we have∑
x∈{0,1}log ℓ ẽq(x, r) · g(E1(x), · · · , Ec(x)) = ã(r). (7)

Now P and V can engage in a new SumCheck instance
on Equation (7). To this end, the prover now needs to
provide oracles to new polynomials Ej . Additionally, it
needs to show that they are well-formed, i.e., indeed equal to
the MLE of Tj [nzj(x)]. This check is formulated as follows:
given a table Tj and a series of queries into the table de-
noted by nzj(x), it verifies the purported values Ej(x) are
retrieved from the table honestly. In Lasso, this is performed
using offline memory checking from Spartan [19].
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Figure 2: Prover time of HyperPianistD with different
number of machines on vanilla circuits.
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Figure 3: Prover time of HyperPianistK with different
number of machines on vanilla circuits.

5.2. Reducing Prover Cost of Lasso

We optimize the well-formation check of Lasso with the
following observation: if

{(nz(k), E(k))}k∈{0,1}log ℓ ⊂ {(x, T [x])}x∈{0,1}log N , (8)

then E(k) = T [nz(k)] for all k ∈ {0, 1}log ℓ. Based
on this observation, the well-formation statement can be
proved more efficiently with techniques from Logup [15],
[27], which rely on the logarithmic derivative technique—a
generalized version of Theorem 2.

Theorem 7 ([15]). Let F be a field of characteristic p >
max(ℓ,N). Suppose (ai)

ℓ
i=1, (bj)

N
j=1 are sequences of field

elements. Then {ai} ⊂ {bj} as sets if and only if there exists
a sequence (mj)

N
j=1 such that

∑ℓ
i=1

1
ai+X =

∑N
j=1

mj

bj+X .

To prove the set inclusion relation in Equation (8), we
first use a random challenge to combine each tuple into one
element. Then applying Theorem 7, we can get∑

x∈{0,1}log ℓ

1

nzj(x) + γ · Ej(x) + β

=
∑

x∈{0,1}log N

m(x)

sid(x) + γ · T (x) + β
,

(9)

where γ, β are random challenges from V , and the polyno-
mial sid ∈ F (≤1)

n is defined as in Section 3.4 (i.e., mapping
each binary vector to the corresponding integer).

Thus, to prove the well-formation of E, it suffices for
the prover to commit one additional polynomial m(x), and
invoke two Rational SumChecks to prove Equation (9). We
show the complete construction in Protocol 4.3.

To distribute the Lookup PIOP, note that m(x) can be
calculated during the circuit evaluation, and thus it can be
distributed along with other witness polynomials. The rest
follows directly by replacing the PIOP checks with their
distributed counterparts, so we omit the detailed construction
here due to the page limit.
Complexity Analysis. We provide a rough estimation for
both constructions. In Lasso, the prover commits 2c poly-
nomials of size ℓ and c polynomials of size N1/c, performs

a SumCheck for Equation 7, and c instances of memory
checking which incurs c polynomial commitments of size
2(N1/c+ℓ) and 2c ZeroCheck invocations of size (N1/c+ℓ)
via Quarks [14]. In our construction, the prover commits c
polynomials of size ℓ and N1/c, along with a SumCheck for
Equation 7; the well-formation check incurs c polynomial
commitments of size ℓ and N1/c, c ZeroCheck and c Sum-
Check invocations of size ℓ+N1/c. Compared to Lasso, our
optimization roughly reduces the commitment workload by
50% and SumCheck workload by 30%.3

6. Evaluation

In this section, we conduct comprehensive experiments
on HyperPianist(+) to evaluate its performance.
Implementation. We fully implemented4 HyperPianist and
HyperPianist+ based on the Rust ark-works [28] ecosystem.
We built the two systems on the open-source HyperPlonk,
with a full realization of the two distributed PCS deMKZG
and deDory. Our lookup argument is implemented as a mod-
ified port of Lasso from the Jolt project [29]. We noted that
the Gnark library [30] used in Pianist implemented a more
efficient multi-scalar-multiplication (MSM) algorithm [31]
than ark-works, and as such made several optimizations to
ark-works to get them on par. The curve used is BN254, the
same as Pianist.
Experimental Setup. We design various types of experi-
ments to show the following properties of HyperPianist(+):
1) Linear scalability: We measure the proving time of

HyperPianistD and HyperPianistK on random vanilla gate
circuits with different number of machines from 2 to 32,
and show they have linear scalability. We also evaluate
HyperPlonk on a single machine as a baseline.

2) Linear prover workload: We compare HyperPianistD

and HyperPianistK with Pianist on both vanilla gates and

3. Lasso enables the use of layered circuits to prove the grand product in
the multiset check to improve prover efficiency with O(log2 N) proof size.
A similar approach can be applied in our construction, with the detailed
method presented in Appendix F.

4. Our code and all evaluation results can be found in an anonymous
repository: https://anonymous.4open.science/r/HyperPianist.
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Figure 4: Comparisons of Pianist [9], HyperPianistK and
HyperPianistD on vanilla gates with 8 machines.
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Figure 5: Comparisons of Pianist [9], HyperPianistK and
HyperPianistD on custom gates with 8 machines.

degree-5 custom gates from Jellyfish Plonk [21] of size
222 ∼ 226, showing they enjoy better efficiency and only
a linear prover time growth in circuit size.

3) Efficient lookup support: As there is no implementa-
tion of lookup arguments in Pianist, we directly com-
pare our optimized lookup argument with Lasso in the
non-distributed setting using 32-bit XOR gates of size
220 ∼ 224, and show that it achieves better efficiency.
We applied the same MSM optimizations mentioned

above to HyperPlonk for a fair comparison. Since the im-
plementation of Pianist does not support custom gates, we
implemented this feature in their code. Also, as Lasso’s
implementation uses layered circuits by default, we im-
plemented a PIOP version of their protocol. We run the
experiments on Alibaba ecs.r8i.8xlarge cloud servers with
32 vCPUs and 256 GB memory in a local area network. All
reported results are taken as the average of multiple runs.
We additionally present some evaluation results running in
a (simulated) wide area network in Appendix G.

6.1. Linear Scalability

We show the overall proving time of HyperPianistD and
HyperPianistK with different number of machines in Figure 2
and 3 (axes in logarithmic scale). In each figure Hyper-
Plonk adopts the non-distributed version of the PCS used in
HyperPianist. Both figures demonstrate a linear decrease in
proving time as the number of machines increases. Specifi-
cally, for a circuit of size 226, HyperPlonk takes 261.2 s to
generate a proof on a single machine. With 2 machines using
HyperPianistK, it takes 55.0 s, achieving a 4.7× speedup over
HyperPlonk. Using 32 machines, the proving time further
drops to 3.9 s, for a 66.8× speedup. HyperPianistD also
shows a speedup of 4.1× with 2 machines and 44.9× with
32 machines on this circuit.

6.2. Comparisons with Pianist

Prover Time. Figure 4 and 5 show the overall proving time
of our schemes versus Pianist, each with 8 machines, on
vanilla gates and custom gates respectively. HyperPianistK

achieves a speedup of 2.6 ∼ 3.1× for vanilla gates and

TABLE 4: Communication, proof size, and verifier time of
HyperPianistK and HyperPianistD with 8 machines.

Scheme HyperPianistK HyperPianistD

Circuit Size 222 224 226 222 224 226

Pi Commu. (KB) 58.5 68.0 78.2 89.7 102.1 115.2
Proof Size (KB) 41.1 47.2 53.7 75.3 83.8 92.8
V Time (ms) 5.0 5.3 5.8 13.4 14.5 15.6

4.2 ∼ 4.6× for custom gates, while HyperPianistD achieves
1.6 ∼ 2.4× and 2.6 ∼ 3.6× speedups in these settings. In
particular, our speedups grow as the size of sub-circuits each
sub-prover holds increases. This is likely due to the quasi-
linear prover cost of Pianist. For 2 machines and circuit
size 225 or 226, the speedup of HyperPianistK on vanilla
gates and custom gates can be 3.2× and nearly 5.0×, and
HyperPianistD can be 2.7× and 4.1× as fast respectively. For
a larger number of machines, the speedup only experience a
slight decline. For example, with 32 machines, HyperPianistK

is 2.7× and 4.4× as fast and HyperPianistD is 1.9× and 3.0×
as fast on vanilla and custom gates respectively.
Communication, Proof size, and Verifier Time. Table 4
shows the communication cost between each Pi and P0, the
proof size and the verifier time of our schemes running with
8 machines on vanilla gates. In Pianist, the communication
cost is 2.5 KB, the proof size is 1.7 KB, and the verifier
time is 3 ms for all instances. Though our schemes have
(poly-)logarithmic costs in this regard, in reality, they are
still reasonable and highly practical.
P0 Extra Time. For reference, we also measure the extra
time on P0 for proof aggregation and the remaining extra
computation (this part is included in the prover time reported
above). For HyperPianistD, this step takes less than 30 ms on
vanilla gates with 8 machines. For HyperPianistK, the extra
work only requires less than 16 ms.

6.3. Evaluations of the Lookup Argument

Table 5 shows the evaluation results of our lookup
argument and Lasso on XOR statements. Our prover can
achieve up to a 2× speedup over Lasso’s, with comparable
proof size and modestly increased verifier time. If we switch
to layered circuits, both Lasso and our lookup argument
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TABLE 5: Comparisons of our lookup argument and Lasso
on XOR gates (in non-distributed setting).

Scheme Ours Lasso [18]
Circuit Size 220 222 224 220 222 224

P Time (s) 2.1 8.0 30.2 4.2 15.2 57.9
V Time (ms) 0.6 0.6 0.7 0.2 0.2 0.3

Proof Size (KB) 8.2 8.7 9.2 6.9 7.2 7.5

show higher prover efficiency, but the verifier time and proof
size notably increased. In this case, our lookup argument still
demonstrates an improvement of 1.4× in proving time, and
1.2× in verifier time, with comparable proof size.
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Appendix A.
Additional Related Works

A.1. Collaborative ZKPs.

A series of recent works [32], [33], [34], [35] have
focused on distributing the proof generation process while
maintaining the privacy of the witnesses. One popular ap-
proach relies on the notation of collaborative ZKPs intro-
duced in [32]. This approach consists of two phases: First,
each server sends and receives its part of the witness in a
secret-sharing form. Then, all servers execute a certain se-
cure multi-party computation (MPC) protocol for the proof
generation circuit. We stress that these works are orthogonal
to ours: their emphasis is on security and privacy, while we
focus on scaling proof generation with sub-provers which
trust each other.

A.2. Lookup Arguments

Lookup arguments are extensively used in SNARKs
due to their efficiency in proving non-arithmetic operations,
such as range proofs and bitwise operations. A series of
recent works [15], [18], [36], [37], [38], [39], [40] have
focused on improving the efficiency of lookup arguments.
These works can be categorized into two settings: univariate
and multivariate. In the univariate setting, with a one-time
expensive setup, prover complexity can be made quasi-
linear to the number of queries. In the multivariate setting,
Lasso [18] provides a generalized approach for proving
lookup arguments on structured tables, significantly enhanc-
ing efficiency.

Appendix B.
Distributed SumCheck PIOP for High-Degree
Polynomials

In HyperPlonk [13], the authors proposed an algorithm
for high-degree polynomials with special structures. Con-
sider a multivariate polynomial

f(X) = h(g0(X), . . . , gc−1(X)) (10)

such that h ∈ F (≤d)
c can be evaluated through an arithmetic

circuit with O(d) gates and gi,∀i ∈ [1, c] are all multilinear
polynomials. The core idea is to compute the univariate
polynomial ri(X) symbolically.

Algorithm 1 Evaluating fk(X) for each round [13]

Input: The evaluation tables for current g0, . . . , gc−1, cur-
rent table length ℓ.

Output: The corresponding fk(X).
1: Construct gj,x(X) := gj(X,x),∀x ∈ {0, 1}ℓ,∀j ∈ [c].
2: Compute fx := h(g0,x(X), . . . , gc−1,x(X)),∀x{0, 1}ℓ

using Algorithm 2.
3: Compute fk(X) =

∑
x∈{0,1}ℓ fx.

4: return fk(X).

Algorithm 2 Evaluating fx(X) =
∏d−1

j=1 gj,x(X) [13]

Input: g0, . . . , gd−1 are linear univariate polynomials.
Output: The corresponding fk(X).

1: t1,j ← gj,x for all j ∈ [d]
2: for i = 0 to log d do
3: for j = 0 to d/2i − 1 do
4: ti+1,j(X)← ti,2j−1(X) · ti,2j(X) ▷ Using FFT
5: end for
6: end for
7: return fx(X) = tlog d,1(X).

Complexity. Let 2m be the number of sub-provers, f ∈
F (≤d)

n be the polynomial defined as Equation (10). The
complexity of Protocol B.1 is as follows:
• The running time of each sub-prover is O(d log2 d ·
2n−m)F operations.

• The extra proving time for master prover is O(d(n−m) ·
2m)F operations.

• The running time of the verifier is O(d · n)F operations.
• The proof size is O(d · n)F elements, plus an oracle

corresponding to the polynomial f .
• The communication complexity for each sub-prover is
O(d · n)F elements.

Appendix C.
Constraint System of HyperPianist

The constraint system of HyperPianist is derived directly
from the original Plonk [2]. Here we present a basic con-
struction with vanilla Plonk gates. Additional features (e.g.,
custom gates, lookup) are omitted for simplicity.
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PROTOCOL B.1. Distributed SumCheck PIOP (for High-degree Polynomials)

P0 claims ((v, [[f ]]); f) ∈ RSum to V , where f(X) = h(g0(X), . . . , gc−1(X)). Pi holds g
(i)
j ∈ F

(≤1)
n−m, s.t.

g
(i)
j (x) = gj(x, bin(i)),∀j ∈ [c], i ∈ [M ]. Let f0 := v.

• In the k-th round where 1 ≤ k ≤ n−m:
– Each Pi computes f

(i)
k (X) using Algorithm 1 with tables for g(i)j , and table length n−m− k, and sends it to P0.

– P0 sums up all the univariate polynomials to get fk(X) =
∑

i∈[M ] f
(k)
k (X), and sends it to V .

– V checks fk−1(rk−1) = fk(0) + fk(1), sends a random challenge rk ∈ F to P0, and sets fk = fk(rk).
– P0 transmits rk to the other Pi. Each Pi updates the table corresponding to each g

(i)
j .

• After the (n−m)-th round, each Pi sends g
(i)
j (r),∀j ∈ [c] to P0. P0 then constructs current table for gj ,∀j ∈ [c].

• In the k-th round where n−m+ 1 ≤ k ≤ n:
– P0 computes fk(X) using Algorithm 1 with tables for gj , and table length n−m− k, and sends it to V .
– V checks fk−1 = fk(0) + fk(1), sends a random challenge rk ∈ F to P0, and sets fk := fk(rk).
– P0 updates the table corresponding to each gj .

• Finally, the verifier checks fn(r) = h(g0(r), . . . , gc−1(r)) using oracle calls to g0, . . . , gc−1.

The HyperPianist constraint system is defined over a fan-
in-two arithmetic circuit. The left input, the right input,
and the output of each gate are encoded by multilinear
polynomials L(X), R(X), O(X) ∈ F (≤1)

n respectively.
The verifier needs to check the correct computation of each
gate (referred to as the gate identity), and also the correct
connections between the inputs and outputs of the gates as
specified by the structure of the circuit (referred to as the
wiring identity). We assume each sub-prover holds partial
witnesses to the circuit.
Gate Identity. The gate equation for a single gate is

0 = qL(x) · L(x) + qR(x) ·R(x)

+ qM (x) · L(x) ·R(x)−O(x)

where qL, qR, qM : Fn → {0, 1} are three selector polyno-
mials. For an addition gate, we set qL(x) = qR(x) = 1,
qM (x) = 0. For a multiplication gate, we set qL(x) =
qR(x) = 0, qM (x) = 1. To prove that all gates were
evaluated correctly, the sub-provers convince the verifier
that the gate equation holds for any x ∈ {0, 1}n with the
distributed ZeroCheck PIOP.
Wiring Identity. To prove the gates are connected correctly,
the sub-provers convince the verifier that the following
identity holds using the distributed Permutation Check PIOP

M(x) = M(σ(x)), ∀x ∈ {0, 1}n+2,

where M(0, 0,x) = L(x), M(0, 1,x) = R(x), M(1, 0,x)
= O(x), and σ is a permutation specified by the circuits.
Public Input Consistency. Without loss of generality, we
assume that there are 2k public inputs to the circuit, and
each public input is provided as the left input to each of the
first 2k gates. Consistency of the witnesses with the public
input can then be checked as an opening at L(rpi∥0n−k)
where rpi ∈ Fk is a random challenge.

Appendix D.
Formal Construction of deMKZG PCS

We give a formal description of the deMKZG PCS in
Protocol D.1.

Appendix E.
Distributed Dory Reduce

We give a formal description of the IPA Reduce protocol
of deDory in Protocol E.1 and the IPA reduction protocol
of Dory [17] in Protocol E.2 for completeness.

Appendix F.
Distributed Rational SumCheck with Layered
Circuits

In this section, we elaborate the distributed Rational
SumCheck protocol with layered circuits. The original pro-
tocol was proposed in [27].

The layered circuit to prove v =
∑

x∈{0,1}n
p(x)
q(x) is

greatly akin to the layered circuit for product check, where
layer 0 is the output layer and layer n is the input layer.
The input polynomial in layer n is specified by

(pn(x), qn(x)) = (p(x), q(x)).

Then in each j-th layer where 0 ≤ j ≤ n−1, each gate takes
inputs from two gates in the (j + 1)-th layer. The witness
polynomial (pj(x), qj(x)) for the j-th layer is specified by

pj(z) =
∑

x{0,1}j ẽq(x, z)(pj+1(0, z) · qj+1(1, z)

+ pj+1(1, z) · qj+1(0, z)),

qj(z) =
∑

x{0,1}j ẽq(x, z)qj+1(0,x)qj+1(1,x).

To prove the Rational SumCheck relation, P and V
need n invocations of the SumCheck protocol. The proof
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PROTOCOL D.1. deMKZG Polynomial Commitment Scheme

Given f ∈ F (≤1)
n , Pi holds a sub-polynomial f (i) ∈ F (≤1)

n−m s.t. f (i)(x) = f(x, bin(i)), ∀i ∈ [M ].

• pp← Gen(1λ): Samples trapdoor t, and generates pp =
{
[1]1, [1]2, {[ẽq(x, t)]1}x∈{0,1}n , {[ti]2}ti∈t

}
.

• deMKZG.Commit(pp; f):
– Pi computes com

(i)
f =

∑
x∈{0,1}n−m f (i)(x) · [ẽq(x||bin(i), t)]1.

– P0 computes and outputs commitment comf :=
∑

i∈[M ] com
(i)
f .

• deMKZG.Open(pp; comf , f): V retrieves f from all Pi and checks comf = deMKZG.Commit(pp; f).
• deMKZG.Eval(pp; f, r):

– In the k-th round where 1 ≤ k ≤ n−m, Pi computes R
(i)
k (x) = (1− rk) ·R(i)

k−1(0,x) + rk ·R(i)
k−1(1,x),

Q
(i)
k (x) = R

(i)
k−1(1,x)−R

(i)
k−1(0,x), ∀x ∈ {0, 1}n−k, and computes the commitment for Q(i)

k as com
(i)
Qk

.

– Pi sends
{
com

(i)
Qk

}n−m

k=1
, Q(i)

n−m and R
(i)
n−m to P0.

– P0 computes comQk
=

∑
i∈[M ] com

(i)
Qk

,∀k = 1, . . . , n−m and construct evaluation table for Qn−m and Rn−m.
– In the k-th round where n−m+ 1 ≤ k ≤ n, P0 computes Rk(x) = (1− rk) ·Rk−1(0,x) + rk ·Rk−1(1,x),

Qk(x) = Rk−1(1,x)−Rk−1(0,x), ∀x ∈ {0, 1}n−k, and computes the commitment for Qk as comQk
.

– P0 sends {comQk
}nk=1 to V . V accepts if e(comf − [v]1, [1]2) =

∑n
k=1 e(comQk

, [tk − rk]2).

PROTOCOL E.1. deDory-Reduce(s1, s2, C,D1, D2, E1, E2)

Pi holds witness v
(i)
1 ,v

(i)
2 w.r.t. v1,v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.

All Pi pre-compute ∆1L = ⟨Γ1L, Γ′
2⟩, ∆1R = ⟨Γ1R,Γ

′
2⟩, ∆2L = ⟨Γ′

1,Γ2L⟩, ∆2R = ⟨Γ′
1,Γ2R⟩, and χ = ⟨Γ1,Γ2⟩.

• Each Pi computes D
(i)
1L = ⟨v(i)

1L,Γ
′(i)
2 ⟩, D

(i)
1R = ⟨v(i)

1R,Γ
′(i)
2 ⟩, D

(i)
2L = ⟨Γ′(i)

1 ,v
(i)
2L⟩, D

(i)
2R = ⟨Γ′(i)

1 ,v
(i)
2R⟩,

E
(i)
1β = ⟨Γ(i)

1 , s
(i)
2 ⟩, E

(i)
2β = ⟨s(i)1 ,Γ

(i)
2 ⟩, and sends them to P0.

• P0 reconstructs D1L, D1R, D2L, D2R, E1β , E2β using the corresponding share, and sends them to V .
• V samples β ←$ F and sends it to P0. Then P0 transmits β to the other Pi.
• Each Pi sets v

(i)
1 ← v

(i)
1 + βΓ

(i)
1 and v

(i)
2 ← v

(i)
2 + β−1Γ

(i)
2 .

• Each Pi computes E
(i)
1+ = ⟨v(i)

1L, s
(i)
2R⟩, E

(i)
1− = ⟨v(i)

1R, s
(i)
2L⟩, E

(i)
2+ = ⟨s(i)1L,v

(i)
2R⟩, E

(i)
2− = ⟨s(i)1R,v

(i)
2L⟩,

C
(i)
+ = ⟨v(i)

1L,v
(i)
2R⟩, C

(i)
− = ⟨v(i)

1R,v
(i)
2L⟩, and sends them to P0.

• P0 reconstructs E1+, E1−, E2+, E2−, C+, C− using the corresponding share, and sends them to V .
• V samples α←$ F and sends it to P0. Then P0 transmits α to the other Pi.
• Each Pi sets v′

1
(i) ← αv

(i)
1L + v

(i)
1R and v′

2
(i) ← α−1v

(i)
1L + v

(i)
1R.

• The verifier V computes C ′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,
D′

1 = αD1L +D1R + αβ∆1L + β∆1R, D
′
2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E

′
2 = E2 + β−1E2β + αE2+ + α−1E2−.

• Each Pi sets s
′(i)
1 ← αs

(i)
1L + s

(i)
1R and s

′(i)
2 ← α−1s

(i)
2L + s

(i)
2R.

• V accepts if ((s′1, s
′
2, C

′, D′
1, D

′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.

starts from the layer 0, and the claim is finally reduced to
evaluations of the input polynomials p and q on a random
point.

Appendix G.
Evaluation Results in WAN

As our ZKP systems have a logarithmic communication
cost and round complexity among the distributed machines,
we demonstrate that in a general wide area network (with
80 Mbps bandwidth and 10 ms delay), our computational
advantage still dominates the overall proving time for large

circuits, and our systems still outperform Pianist with no-
table speedups. Specifically, for vanilla gates and custom
gates of size 226, the overall proving time of Pianist with 4
machines is 86.2 s and 229.4 s respectively, while Hyper-
PianistK takes 31.8 s and 51.9 s in this setting, achieving
a speedup of 2.7× and 4.4× respectively. HyperPianistD

also shows an improvement of 2.2× and 3.6× on the two
circuits. The gaps get larger with the size of the proving task
of each sub-prover increases. With 2 distributed machines
on circuit size 226, the improvements of HyperPianistK and
HyperPianistD over Pianist can be 2.9× and 2.5× on vanilla
gates, and 4.7× and 4.1× on custom gates respectively.
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PROTOCOL E.2. Dory-Reduce(s1, s2, C,D1, D2, E1, E2)

P holds v1,v2 s.t. ((s1, s2, C,D1, D2, E1, E2); (v1,v2)) ∈ RInner.
The prover pre-compute ∆1L = ⟨Γ1L,Γ

′
2⟩, ∆1R = ⟨Γ1R,Γ

′
2⟩, ∆2L = ⟨Γ′

1,Γ2L⟩, ∆2R = ⟨Γ′
1,Γ2R⟩, and χ = ⟨Γ1,Γ2⟩.

• P computes and sends D1L = ⟨v1L,Γ
′
2⟩, D1R = ⟨v1R,Γ′

2⟩, D2L = ⟨Γ′
1,v2L⟩, D2R = ⟨Γ′

1,v2R⟩, E1β = ⟨Γ1, s2⟩,
E2β = ⟨s1,Γ2⟩, then then retrieves random challenge β ←$ F from V .

• P sets v1 ← v1 + βΓ1, and v2 ← v2 + β−1Γ2.
• P computes and sends E1+ = ⟨v1L, s2R⟩, E1− = ⟨v1R, s2L⟩, E2+ = ⟨s1L,v2R⟩, E2− = ⟨s1R,v2L⟩,
C+ = ⟨v1L,v2R⟩, C− = ⟨v1R,v2L⟩, then retrieves random challenge α←$ F from V .

• P sets v′
1 ← αv1L + v1R, and v′

2 ← α−1v1L + v1R.
• V computes C ′ = C + χ+ βD2 + β−1D1 + αC+ + α−1C−,
D′

1 = αD1L +D1R + αβ∆1L + β∆1R, D
′
2 = α−1D2L +D2R + α−1β−1∆2L + β−1∆2R,

E′
1 = E1 + βE1β + αE1+ + α−1E1−, E

′
2 = E2 + β−1E2β + αE2+ + α−1E2−.

• P and V both set s′1 ← αs1L + s1R, and s′2 ← α−1s2L + s2R.
• V accepts if ((s′1, s

′
2, C

′, D′
1, D

′
2, E

′
1, E

′
2); (v

′
1,v

′
2)) ∈ RInner.

Appendix H.
Proof of Theorems

H.1. Proof of Theorem 3

Proof. Completeness. First, if the prover honestly
generates f , it holds that ([[f · q − 1]]; f · q − 1) ∈ RZero,
and the verifier accepts in the ZeroCheck PIOP, given that
ZeroCheck PIOP is complete. Second, if
((v, [[p]], [[q]]); (p, q)) ∈ RRSum, then v is exactly the
summation of p · f ’s evaluations on the {0, 1}n, and the
verifier accepts in the SumCheck PIOP, given that
SumCheck PIOP is complete.
Knowledge soundness. We will show the soundness error
of the protocol. For any ((v, [[p]], [[q]]); (p, q)) /∈ RRSum, it
holds that either q(x) = 0 for some x ∈ {0, 1}n, or∑

x∈{0,1}n

p(x)

q(x)
̸= v.

In the former situation, the probability that V accepts is at
most equal to the probability that the ZeroCheck PIOP
verifier accepts for ([[f · q − 1]], f · q − 1) /∈ RZero, which
is O(dn/|F|). In the later situation, the probability that V
accepts is at most equal to the probability that the
SumCheck PIOP verifier accepts for ((v, [[p · f ]]); p · f),
which is O(dn/|F|). Thus by union bound, the soundness
error of the Rational SumCheck PIOP is O(dn/|F|).

H.2. Proof of Theorem 4

Proof. The completeness and knowledge soundness follows
directly from the original protocol. In the following we
mainly focus on the efficiency of the protocol. To commit
the polynomial f(X), each sub-prover Pi need to compute
com

(i)
f , which costs O(2n−m) G1 operations, and the master

prover sums them up using additional O(2m)G1 operations.
To open the polynomial at r, each sub-prover Pi needs to
compute the corresponding Q

(i)
k and R

(i)
k for k = 1, . . . , n−

m. This costs O(2n−m−k)F operations for each k, which

adds up to O(2n−m)F operations. The master prover re-
constructs each comQk

using O(2m)G1 operations. The
remaining Qk and Rk, where k = n − m + 1, . . . , n, can
be computed by the master prover using a total O(2m)F
operations, while the remaining comQk

can be computed
using a total O(2m)G1 operations. For the communication,
in the commitment phase Pi sends com

(i)
f to P0, and in

opening phase, Pi sends com
(i)
Qk

,∀. Thus, the communica-
tion complexity per sub-prover is mainly O(n)G1 elements.
The proof size is O(n)G1 elements corresponding to all
comQk

, and the verifier time is mainly determined by O(n)
pairings.

H.3. Proof of Theorem 6

Proof. The completeness follows the original Dory proto-
col. The knowledge soundness follows directly from the
fact that deDory.Eval is knowledge sound for any vector-
matrix-vector product relation. In the following we mainly
focus on the efficiency of the protocol. To commit the
polynomial f(X), each sub-prover Pi need to compute
com

(i)
row and com

(i)
M , which costs O(2n−m)G1 operations

and O(2(n−m)/2) parings, and the master prover prod-
ucts them up using O(2m)GT operations. To open the
polynomial at r, each sub-prover needs to compute the
corresponding v(i), y(i), C(i), D

(i)
2 , E

(i)
1 , E

(i)
2 , which costs

O(2(n−m)/2)F, G1 operations and pairings, and the master
prover reconstruct the elements using O(2m)G1 and GT

operations. The cost in the IPA protocol is O(2n−m) G1

and GT operations for each sub-prover, and the additional
cost for master prover is O(2m) G1 and GT operations for
the final rounds. For the communication, in the commitment
phase Pi sends com

(i)
M to P0, and in opening phase, Pi

sends C(i), D
(i)
2 , E

(i)
1 , E

(i)
2 to P0 plus the O(n) G1 and GT

elements sent in the IPA protocol. Thus, the communication
complexity is O(n) G1 and GT elements. The proof size and
verification time are mainly determined by IPA protocol, and
in our case, they are both O(n+m).
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