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Abstract. In this paper, we propose Greyhound, the first concretely effi-
cient polynomial commitment scheme from standard lattice assumptions.
At the core of our construction lies a simple three-round protocol for
proving evaluations for polynomials of bounded degree N with verifier
time complexity O(\/N) By composing it with the LaBRADOR proof
system (CRYPTO 2023), we obtain a succinct proof of polynomial evalu-
ation (i.e. polylogarithmic in N) that admits a sublinear verifier runtime.

To highlight practicality of Greyhound, we provide implementation details
including concrete sizes and runtimes. Notably, for large polynomials of
degree at most N = 230 the scheme produces evaluation proofs of size
53KB, which is more than 10* times smaller than the recent lattice-based
framework, called SLAP (EUROCRYPT 2024), and around three orders
of magnitude smaller than Ligero (CCS 2017) and Brakedown (CRYPTO
2023).
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1 Introduction

A polynomial commitment scheme [KZG10| is a cryptographic primitive that
allows one to commit to a degree-bounded polynomial f € R<N[X] over a ring
R, and later prove evaluation statements, such as f(z) = y for public z,y € R.
It is crucial for real-world applications that the size of the evaluation proof is
succinct and can be efficiently verified (i.e. sublinear in V). Polynomial commit-
ments, and variations thereof, have found numerous applications in constructing
succinct non-interactive arguments of knowledge (SNARKs) [BFS20, BHR ™21,
CHM ™20, | GWC19, MBKM19|, look-up arguments [STW23|, verifiable secret
sharing [BDK13|, and multi-party computation [BHV™23].

Due to fast development in building quantum computers, there is currently
a strong need in designing quantum-safe polynomial commitments. This is ev-
idenced by the NIST Post-Quantum Competition for standardizing quantum-
safe key encapsulation mechanisms and digital signatures, where three out of
four schemes, that were recently selected for standardization, rely on lattice-
based assumptions. Not only does it imply that algebraic lattices are a suitable



candidate for building more advanced quantum-safe applications in general, but
also that lattice-based SNARKS are the most natural choice for upgrading the
newly-standardized encryption and signature schemes with privacy-preserving
properties, e.g. verifiable encryption or anonymous credentials.

Prior works on lattice-based polynomial commitments have been mainly of
theoretical interest. Starting with the construction by Libert et al. [LRY 16|, poly-
nomial commitments were treated as a direct application of (inner-product) func-
tional commitments from lattices [ACL'22, [BCFL23| dCP23, |[FLV23, WW23b].
Even though the constructions offer succinct proofs, their verification runtime
is sublinear in the degree N of the committed polynomial (via preprocessing)
only if the evaluation point z is known in advanceﬂ This is unfortunately not
the case in SNARK-related applications, where the evaluation points are chosen
uniformly at random. Moreover, only the works of [ACL™22, | BCFL23, FLV23]
provide extractability, although under a knowledge assumption that has indepen-
dently been broken in both classical [WW23a] and quantum setting [DAFS24].

A different (yet still intuitive) approach for building polynomial commitments
can be described as simply combining a standard commitment scheme with an
interactive proof of polynomial evaluation. The latter can then be turned non-
interactive using Fiat-Shamir transformation [FS86|. For instance, Bootle et al.
[BCS23] recently proposed a “Bulletproofs-type” polynomial evaluation proof,
which achieves succinct verification via a delegation protocol [Lee21]. The result-
ing polynomial commitment relies only on a standard Module-SIS problem and
requires no trusted setup. Unfortunately, as inherited from the original lattice-
Bulletproofs [BLNS20], soundness error of the core evaluation protocol is non-
negligible. Even though parallel repetition can be used to amplify soundness in
the interactive setting [AF22], the Fiat-Shamir transformed protocol would suffer
a super-polynomial reduction loss in the random oracle model (ROM) [AFK22].
Similar limitation can be found in the polynomial commitment scheme by Cini
et al. [CLM23|, whose security relies on a new Vanishing-SIS problem.

More recent constructions depart from the Bulletproofs paradigm and focus
on the “split-and-fold” approach used in FRI low-degree test [BBHR18|. Notably,
Fenzi et al. [FMN23| proposed a non-interactive polynomial commitment secure
in the ROM under a new assumption called Power-BASIS — a more structured
variant of the BASIS assumption introduced in [WW23b]. Unfortunately, the
scheme requires a trusted setup, and what is worse, both the common reference
string (CRS) size and committing runtime are quadratic in the degree bound
N. A follow-up work by Albrecht et al. [AFLN24], called SLAP, removed the
need of a new assumption, thus relying only on Module-SIS, while making the
prover runtime quasi-linear. However, the remaining requirement on a trusted
setup, together with concrete proof sizes reaching tens of megabytes make the
scheme very unlikely to be practical. Some issues have been circumvented by the
recent work by Cini et al. [CMNW24] who built an elegant SIS-based polynomial
commitment with transparent setup and polylogarithmic verifier runtime. The

3 It is worth noting that Orbweaver [FLV23] explicitly circumvents this issue.



concrete instantiation of the scheme, however, provides proof sizes in the order
of single-digit megabytes for N > 225,

Even though none of the currently state-of-the-art lattice-based polynomial
commitments have shown any significant sign of practicality, concretely efficient
proof of knowledge for NP can be constructed from standard lattice assumptions.
Notably, Beullens and Seiler |[BS23] proposed a succinct proof system called
LaBRADOR that achieves impressive proofs of size ~ 50KB for large N. As a
drawback, the protocol suffers from having linear verifier runtime, which limits
the range of applications where the proof system could be used.

Based on the discussion above, we focus on the following research question:

Can we build a concretely efficient polynomial commitment scheme with
transparent setup, sublinear verification complexity, and secure under standard
lattice assumptions?

1.1 Owur Contributions

Polynomial commitment scheme. In this work we propose Greyhound, the first
practical lattice-based polynomial commitment scheme in the random oracle
model. The construction requires no trusted setup and relies on the well-studied
Module-SIS assumption.

Asymptotically, our scheme produces evaluation proofs of size polylog(N)
which can be verified in time O(v/N). As for concrete efficiency, we provide
more details, as well as comparison with prior (plausibly) post-quantum poly-
nomial commitments, in Tables [1| and Notably, for large degrees N Grey-
hound provides 10 smaller evaluation proofs than SLAP |[AFLN24], and around
three orders of magnitude smaller proofs than the hash-based constructions
[AHIV17, BBHR18, GLS"21|. Our construction also produces much smaller
proof sizes compared to the more recent lattice-based polynomial commitments
[CMNW24, [HSS24] by a factor of at least 30. As for the commit and prover
running time, Greyhound performs around 5 — 10X faster than Brakedown and
Ligero. As a drawback, our verification time seems comparable with Brakedown
and two times slower than Ligero.

Library for fast ring operations. We have implemented an AVX-512 optimized
library for polynomial arithmetic over small-degree power-of-two cyclotomic ring
modulo multi-precision primes of the form ¢ =5 (mod 8). This library includes
functions for sampling polynomials from several standard distributions as well
as computing ring automorphisms directly in several different polynomial rep-
resentations such as coefficient representations and multi-modular NTT repre-
sentations. Moreover, our library contains a very fast implementation of the
Johnson-Lindenstrauss projection |[GHL22| needed in recent lattice-based zero-
knowledge protocols [BS23, |[LNP22]. The implementation uses the Four Russian
algorithm and vector shuffle instructions for in-register lookups. See Section [f]
for more details.



Transparent Proof sizes for
Scheme Structure setup N=2% | N=2% | N=2%
Brakedown-PC Hashes v 49157 93767 181948
Ligero-PC Hashes v 7256 14383 28631
FRI-PC Hashes v 740 - -
FMN23-PC Lattices X - - 8499
SLAP-PC Lattices X - - 785408
CMNW24-PC Lattices v 1546 - 5294
HSS24-PC Lattices v 48640 - —
Greyhound Lattices v 46 53 53

Table 1: Concrete evaluation proof sizes (in KB) of Greyhound and comparison with
prior plausibly post-quantum extractable polynomial commitments. Here, N is the
degree bound on the committed polynomial over a suitably chosen finite field F,;. Con-
crete sizes are set to reach A\-bit security level, where A ~ 128. Sizes for Brakedown-PC
|GLS"21], Ligero-PC |[AHIV17] (Reed-Solomon rate of p = 1/4) and FRI-PC [BBHR1§]
are taken directly from |GLS™ 21} Figure 8], where for simplicity we assume that sizes
for degree 22° and 2%¢ are the same (and identically for N = 228 230). As stated in the
aforementioned figure, for N > 225 no sizes are provided for FRI-PC since the prover
ran out of memory. Similarly for CMNW24-PC [CMNW24] and HSS24-PC [HSS24], the
reported sizes (taken from the respective works) correspond to the degree 2% instead of
226 where the instantiation of the latter scheme additionally provides zero-knowledge.
Proof sizes for SLAP-PC [AFLN24] and FMN23-PC [FMN23| are taken from the re-
spective works.

1.2 Technical Overview

Denote \ as a security parameter. Let d be a power-of-two and R := Z[X]/(X?+
1) be the ring of integers of the 2d-th cyclotomic field. Take an odd prime ¢ and
define R, := R/(¢) and ¢ := |logg|. For the sake of the overview, we consider
base-two gadget matrices G,, := In®[1 24 ... 25] € RQX"‘S for n = 1. We define
the standard inverse function G ! : Ry — RZ‘;, which decomposes each entry
w.r.t. base 2. In particular, for any t € R, G, *(t) has binary coefficients and
G,G. () =t.

Inner and outer commitments. The starting point of our construction is the
basic commitment scheme from LaBRADOR [BS23|. Let n, m,r € N and define
the commitment key as a pair of uniformly random matrices A € RZ}XWS and
Be RZXT”‘S. Suppose we want to commit to arbitrary r vectors fi, ..., f, € Ry of
length m. The first step is to compute inner commitments t; := AG,,!(f;) € Ry
and their binary decomposition t; := G (t;) for i € [r]. Then, the final outer
commitment is
ty

u:=B| | eR (1)

q

>
3



N — 926 N — 928 N = 930
Scheme Commit‘Prove Verify || Commit | Prove | Verify || Commit | Prove | Verify
Brakedown-PC 36 3.21 [ 0.703 150 13 | 2.56 605 48.6 | 2.96
Ligero-PC 39.9 | 3.11 | 0.196 169 12.4 | 0.402 17 50 |0.846
FRI-PC 168 185 | 0.041 - - - - -
HSS24-PC 188 1.07 - - - - - -
Greyhound 4.37 ‘ 2.03 | 0.492 21.2 821 | 1.15 132 41.2 | 2.80

Table 2: Concrete running time (in seconds) of the Greyhound polynomial commit-
ment scheme and comparison with Brakedown-PC |GLS™21|, Ligero-PC |AHIV17]
(Reed-Solomon rate of p = 1/2) and FRI-PC [BBHR18|. The Greyhound runtimes
were obtained by running the code on a single Intel Xeon Sapphire Rapids core at 3.2
GHz. The values for the related works are taken directly from [GLS™21} Figure 8] and
[HSS24), Table 3], where for simplicity we assume that running times for degree 22° and
2%% are the same (and identically for N = 228 230),

Commitment opening for the message (f;);e[r] consists of short vectors (s, ti)ic r
which satisfy (i) f; = G,,s;, (ii) As; = G,t; for i € [r] and (iii) Equation (1)).
Computational binding property follows directly from the Module-SIS assump-
tion.

Simple proof of quadratic relations. Our base for constructing proofs of
polynomial evaluation is the following three-round proof of knowledge of a com-
mitment opening (s;, t;);e[] for the message (f;);c[,) which satisfies

am [fi]--|f.]b=y.
The protocol can be described as follows. The prover starts by sending
wT:=aTl[fi|---|f.] =aTG,, [s1]---[s,] € R}
to the verifier. Then, given a short challenge vector ¢ € Ry, the prover outputs
(fi)ie[r] and  z:= [s1]---[s;]c.
Finally, verifier checks whether (fi)ie[r] ,z are short and if the following hold:

ty

K
wTb = Yy, WTc Z a'G,,z, Az Z Z ¢;Gpt; and u ‘B . (2)
i=1 :
7%

Communication complexity of the three-round protocol is O(rn + md) elements
over Ry, which is sublinear in the witness size N = r-m.



Reducing the proof size. We propose two substantial changes to the protocol
above. The first one is that instead of sending w in the clear, we commit to it
by computing W := G, !(w) and outputting v := DW, where D € Ry~ is
a uniformly random matrix. Then, in the final round, the prover reveals w,
together with (Ei)ie[r],z. The verifer checks whether w is short, Dw < v, and
if conditions in hold for the reconstructed w := G,w. The modified three-
round protocol is summarized in Figure

At a first sight, this modification gives no advantage, or even worse, makes
the protocol less efficient. Indeed, instead of sending w, the prover outputs the
commitment v, together with opening w which has the same bit-length as w.
The key observation here is that the verification conditions can be described as
a standard lattice-type statement, i.e. checking whether w,t = (‘Ei)ie[r], z have
small norm and they satisfy the following linear relation over R,:

D 0 0 v

0 B 0 w u
b'G, 0 0 tl=1y (3)
cTG, 0 —-aTG,, Z 0

0 c®G, —-A 0

Therefore, instead of sending w,t,z in the clear, we apply the LaBRADOR
[BS23] proof system to prove knowledge of short W, t,z which satisfy (3. This
results in succinct proof sizes comparable with LaBRADOR, i.e. asymptotically
poly (A, log N) bits. More importantly, we notice that by running the LaBRADOR
sub-protocol on an instance and witness of size Oy (r +m) = Ox(v/N) for a suit-
able choice of 7 and m, our verifier for the polynomial evaluation protocol has
sublinear time complexity.

Polynomial evaluation proof. To transform the protocol above into a poly-
nomial evaluation prooﬂ over R, we use the following (standard) observation.
Suppose N = m - r for some m,r > 1. Then, for any f = Zfi;l Xie R;N[X],
and any evaluation point € R, we have:

al := [1 zz?--- mm_l]

f(z)=aT[fi]---|f.]b where bT:=[la™ (z™)% .- (z™)"!]
£ = [fi—1ym f—1ym+1 -+ fim—1] for i€ [r]

Hence, we can invoke the protocol described above to prove statements of the
form f(x) = y over R,. Finally, we apply the generic transformation from
[AFLN24] to convert our construction into a polynomial commitment scheme
over a finite field F,.

4 In a similar fashion we can also construct bivariate polynomial commitments, which
are used in, e.g. Sonic [MBKM19].



2 Preliminaries

2.1 Notation

Let ¢ be an odd prime. Denote Z; to be the ring of integers modulo g. For
n € N, we define [n] := {1,2,...,n}. Let X to be the security parameter. We
write Ox(T') to denote T - poly()). For a probability distribution X (resp. finite
set X), x < X means that x is sampled from X (resp. = is chosen uniformly at
random from the set X). We write negl(\) to denote an unspecified negligible
function.

For a power of two d and a positive integer ¢, denote R and R, respectively
to be the rings Z[X]/(X? + 1) and Z,[X]/(X? + 1). Lower-case letters denote
elements in R or R, and bold lower-case (resp. upper-case) letters represent

column vectors (resp. matrices) with coefficients in R or R,. For y = Z;‘tol Yi
X' e R, we write ct(y) := yo € Z to denote the constant term of y.
q

We define ' = r mod™ ¢ to be the unique element ’ in the range —%1 <

r < q;21 such that ' = r mod g. We also denote ' = r mod*q to be the

unique element 7’ in the range 0 < 7’ < ¢ such that v = r mod q. When the
exact representation is not important, we simply write » mod ¢. For an element
w € Z,, we write |w|, to mean |w mod™ g|. Define the £, and ¢, norms for
w=wy+wi X +...+wg_1 X4 eR as follows:

[wleo = max wjleo, ], = {/Hwo\lé’o +o A |waa

If w=(wy,...,wy,) e RF, then

[Wleo = maxfejleo,  |wlp = SMwi [P+ w7

By default, |[w| := |w]2. Similarly, we define the norms for vectors over Z,.
We recall the main result by Lyubashevsky and Seiler [LS18] which says that
short polynomials over R, are invertible.

Lemma 2.1 ([LS18]). Let ¢ =5 (mod 8) be a prime. Then, any f € R, which
satisfies either 0 < | fllo < %ql/Q or 0 < || < ¢"? has an inverse in R,.

The set of invertible elements of R, is denoted by R

Let b,n € N. We define the gadget vector gJ := [1 bb?--- b‘s], where § =
|log, ¢|. Then, the matrix matrix Gy, is defined as Gy, := I, ® gJ. Conversely,
we define Gb_}l t RPX™ — R™X™ 4o be the inverse function which decomposes
each entry w.r.t. base b > 2. Clearly, for any t € Ry, we have

GG, (t) =t and [G, ) (t)]s <

N o

Next, we recall the standard Module-SIS (MSIS) problem [LS15].



Definition 2.2 (Module-SIS). Let g = q(\), n =n(X), m =m(A), 8 = B(N)
and d = d(X). We say that the MSIS,, ,,, 4 g assumption holds if for any PPT
adversary A, the following holds:

A — Rpxm

Pr[Az—O/\O<||z||<B z(_A(A)]—negl()\).

2.2 Interactive Proofs

Let R € {0,1}* x{0,1}* x {0, 1}* be a ternary relation. For a triple (pp,x, W) € R,
we call pp the public parameters, x is a statement and w is a witness for x w.r.t.
pp. We denote R(pp,x) = {w : R(pp,x,w) = 1}. In this work, we only consider
NP relations R for which a witness w can be verified in time poly(|pp|,|x|) for
all (pp,x,w) € R.

An interactive proof system II = (S,P,V) for relation R consists of three
PPT algorithms: the setup algorithm S, prover P, and verifier V. The latter two
are interactive and stateful. We write (¢r, b) < (P(pp,x, W), V(pp, x)) for running
P and V on inputs pp,x,W and pp,x respectively and getting communication
transcript ¢r and the verifier’s decision bit b. We use the convention that b = 0
means reject and b = 1 means accept the prover’s claim of knowing w such
that (x,w) € R. Unless stated otherwise, we will assume that the first and
the last message are sent from a prover. Hence, the protocol between P and
VY has an odd number of rounds. Further, we say a protocol is public coin if
the verifier’s challenges are chosen uniformly at random independently of the
prover’s messages.

Definition 2.3 (Completeness). A proof system II = (S, P, V) for the rela-
tion R satisfies completeness with completeness error €(-) if for all adversaries

A,

pp — S(1%)
Pr|b=0n (pp,x,w)eR (x,W) — A(pp) | = €(A) + negl(A).
(tr,b) < (P(pp,x, W), V(pp,x))

If €(-) is a zero-function then we say II satisfies perfect completeness.

Definition 2.4 (Knowledge Soundness). A proof system II = (S, P,V) for
the relation R is knowledge sound with knowledge error e(\) if there exists an
expected PPT extractor £ such that for any stateful PPT adversary P*:

pp — S(1*)

(3, st™*) < P*(pp)

tr,b) «— (P*(pp,x,st*), V(pp, x))
w — 7% (pp, x)

Pr|b=1nx (pp,x,w)¢R ( = () +negl(N).

Here, the extractor £ has a black-box oracle access to the (malicious) prover P*
and can rewind it to any point in the interaction.



To prove knowledge soundness, we will show that our protocols satisfy coordinate-
wise special soundness (CWSS) defined in [FMN23|. Namely, let C be a finite
set and £ € N. For any two vectors @ = (21,...,2¢), % = (y1,...,%¢) € C’, define

[

the following relation “=,” for fixed i € [] as:
T=y <= z#y AV je[l\{i},z; =y, .

That is, vectors & and ¢/ have the same values in all coordinates apart from the
i-th one. Next, we define the set

P o Jkelt+1], Vield,
SS(C, 0) = {(xl,...,m) € Tt k), B

We are ready to define the notion of coordinate-wise special soundness for three-
round protocols (the general definition for multi-round protocols is not needed
here).

Definition 2.5 (CWSS for three-round protocols). Let IT = (S,P,V) be
a public-coin three-round interactive proof system for relation R, and suppose
the challenge space of V is C*. We say that IT is (-coordinate-wise special sound
if there exists a polynomial time algorithm that on input public parameters pp,
statement x and £+ 1 accepting transcripts (a, Ci, Z)ic[e41], With {C1,...,Coy1} €
SS(C, ¢) and common first message a, outputs a witness W € R(pp,x).

It was shown in [FMN23] that coordinate-wise special sound protocols are knowl-
edge sound

Lemma 2.6 (Lemma 2.31 of [FMN23|). Let II = (S,P,V) be public-coin
three-round protocol for relation R with the challenge space of C. If II is -
coordinate-wise special sound, then it is knowledge sound with knowledge error

¢/lcl.

2.3 Polynomial Commitment Scheme

Polynomial commitment schemes can be seen as standard commitments to poly-
nomials f (e.g. by committing to the coefficients of f) equipped with the ability
to prove evaluations of f. We define polynomial commitments in the interactive
setting. Due to the slack occurring in the lattice setting, we define the slack
space SL and fix a (public) identity element e € SL.

Definition 2.7. Let PCS = (Setup, Commit, Open, Eval) be a tuple of algorithms.
PCS is a polynomial commitment scheme over a ring R with degree bound N if:
— Setup(1*) — pp takes a security parameter X (specified in unary) and outputs
public parameters pp.
— Commit(pp, f) — (C,st) takes public parameters pp a message f € R<N[X]
and outputs a commitment C and decommitment state st.

® See |[FMN23| Lemma 2.32] for the non-interactive version in the random oracle
model.



— Open(pp, C, f,st,c) — 0/1 takes public parameters pp, a commitment C, a
message f € R<N[X], a decommitment state st and a relaxation factor c € SL
and outputs a bit indicating whether C is a valid commitment to f under pp.
We implicitly assume that if ¢ ¢ SL then Open outputs 0.

— Eval := (Eval.P,Eval.V) is a pair of probabilistic polynomial-time algorithms.
Here Eval.P(pp, (C, z,y), (f,st)) is the evaluation prover, Eval.V(pp, (C, z,y))
is the evaluation verifier.

An interactive polynomial commitment scheme can be transformed into a non-
interactive one using the Fiat-Shamir transformation [F'S86).

We require that the polynomial commitment scheme satisfies evaluation com-
pleteness, weak binding and knowledge soundness.

Definition 2.8 (Evaluation Completeness). We say that a polynomial com-
mitment scheme PCS = (Setup, Commit, Open, Eval) satisfies evaluation com-
pleteness with completeness error €(-) if for every polynomial f € R<N[X] and
any evaluation point r € R:

pp < Setup(1*)
Open(pp,C, f,st,e) = 0 C,st < Commit(pp, f) | _
Pr vb=0 x:= (C,z, f(x)),w:= (f,st) | €(A) + negl(A).
(tr,b) < (Eval.P(pp, x,w), Eval.V(pp,x))

Definition 2.9 (Weak Binding). A polynomial commitment scheme PCS =
(Setup, Commit, Open, Eval) satisfies weak binding if for every PPT adversary A:

f# A f f e RN[X]A A
« Setup(1?)

Pr Open(pp,C@ f,St,C) / p/p /
O S ) 1] (€ (58,0, (7. )) — Alpp)

= negl(\).
Definition 2.10 (Knowledge Soundness). We say that a polynomial com-
mitment scheme PCS = (Setup, Commit, Open, Eval) is knowledge sound with

knowledge error ¢ if for all stateful PPT adversaries P*, there exists an expected
PPT extractor € such that

pp « Setup(1*)

pr | (Open(pp,C, fist,c) # 1 v f(z) # y) x = (C,z,y),st* < P*(pp)
Ab=1 (tr,b) — (P*(pp,x,st*), V(pp,x))
(f.st.c) — 7" (pp.x)

=g(N) + negl(N).

Here, the extractor £ has a black-box oracle access to the (malicious) prover P*
and can rewind it to any point in the interaction.

2.4 Principal Relation

We recall the principal relation (alternatively called a dot-product relation) de-
fined in [BS23]. The relation is characterised by the rank n > 1, multiplicity

10



r > 1 and the norm bound § > 0. The statement is a triple (F, F’, 8), where F
and F' are families of functions f: Ry x ... x Ry — R, of the form

T

Fls1,o80) = Y aijlsisiy+ Y (disiy—b
i=1

i,j=1
for a; j, b€ Ry, ¢i € Ry, and 8 = 0. Then, a valid witness is a sequence of vectors
$1,...,8, € Ry which satisfy:

f(s1,...,8,) =0 VfeF

ct(f'(s1,...,8:)) =0 Vf'eF

T
Z Isil* < 8.
1=1

It was shown in [BS23| Section 7] that the Rank-1 Constraint System (R1CS)
can be reduced to the principal relation.

2.5 Inner and Outer Commitments

We recall the inner and outer commitments from [BS23], which will be the base
of our polynomial commitment. Let n,m,r,b,q € N and set ¢ := |log, ¢|]. Denote
B,%,% > 0 as the security-related norm bounds. Let (A € Ry, Be RZX”‘ST)
be the public parameters.

Suppose we want to commit to a matrix S € Ry**", which can be represented
as r column vectors si,...,s, € Ry'. The inner commitments are the r vectors
t; := As; € Rj. Then, the outer commitment u is generated by computing

ty
u:=B|:|eRy, where t; = G;:L(ti) for i € [r]. (4)
t,
The decommitment state consists of (f:i)ie[r]. A weak opening for the commit-
ment u is a tuple (s;, ti, ¢i)ie[r], Which satisfies all the following conditions

Vielr]: lei-sill<B, lelli <& cie€ Ry, As;= Goynti
t t

B|:|=u and : < 7.
t, t,

Next, we show that the commitment scheme described above satisfies binding
with respect to weak openings under Module-SIS assumption [ALS20].

Lemma 2.11 (Weak Binding). There is a deterministic algorithm, that given
two weak openings (si, ti, Ci)ie[r] and (si, ti,c;)ie[r) for the commitment u € Ry
such that s; # s} for some j € [r]|, outputs a vector z € Rg”"‘;r such that

[A | B]z =0 and 0 < |z| < max(4&f3,27).

11



Proof. Note that if t; # t/ for some i € [r], then we have automatically found a
short, non-zero solution zp for the matrix B of norm at most 27. Suppose this
is not the case. In particular, we have

Although s; — s;- # 0 is not short, we know that
leici(s; — syl < e (ejs)l + llej(cs5)] < 2RB.

Finally, since both ¢;, ¢ are invertible over Ry, we deduce that z4 := ¢;c/(s;—s))
is a short non-zero solution for A. We conclude the proof by combining the two

cases. O

3 Proofs of Quadratic Relations with Sublinear
Verification

In this section, we propose a simple proof of knowledge of a commitment opening
which satisfies certain quadratic relations. More concretely, using the notation
from Section 2.5l we consider a relation:

(A,B,D), Vie[r], As; = Gb],nf'i;
Rbo,b1 = ( (aa bAa u, A)7 > B{; =u; aT [Sl‘ ce |Sr] b =y; . (5)
((s)ierr) t = (8i)ierry) 7 Vi€ [r], [sifoo < 25 [t < B

Here, width of the matrix Gy, ,, is & - n, where § := |log;, q|. Matrix D € R
has a role of an additional commitment key, used to commit to various prover
messages in order to preserve succinctness.

3.1 Simple Protocol

The three-round protocol is presented in Figure [I] As for the security analysis,
we focus on completeness and coordinate-wise special soundness.

12



Public parameters: A e Ry*™ B e R(’;X"‘;’", De Rgx‘;r
Witness: (Si € R;n)ie[r],t = (ti)ie[r] € RZMST
Statement: a€ Ry',be Ry, ue Ry,y € Ry,
Prover Verifier
wT:=a' [sl|~~~\srl e Ry
W= G;llm(w) eRY
v:=Dwe Ry
v
c=(c1y...,cr) < C"
- °©
z:=[s1]---|s;]c
w,t,z
Accept iff:
w
Lo|| & || < 3v/82(n+1)érd + (rebo)2md
z
[ D 0 0 v
0 B 0 w u
2. | BTGy, - 0 0 t|=1|vy
c'Gy, r 0 —aT' z 0
0 c®Gy . —A 0

Fig. 1: Proof of knowledge for the relation Ry, in . Here, ¢ := [log,, q].

Lemma 3.1 (Completeness). The protocol in Figurefor relation Ry, 4, sat-
isfies perfect completeness.

Proof. We start with the norm check. Since all coefficients of t and W are at
most b in the absolute value, we have [t| < Z+v/nérd and |w| < %+/ord.
Combining with [z]e < D3;_; [¢i-Si|ew < r&bo/2, this yields the first verification
check. As for the algebraic equations, directly from the relation Rg; we have the
outer-commitment equation Bt = u. Also, by construction Dw = v. Next, we

obtain

bTGy,w =bTw =w'b =aT [si]---[s;] b=y
and

"Gy, Ww=cTw=wlc=a' [S1| e \s,«] c=a'z
Finally,

T r
(cT® Gy )t = Z ¢iGprt; = Z c;As; = Az
i=1 i=1

which concludes the proof. O

13



As standard in lattice-based proof systems, we only manage to extract a relaxed
openings (cf. Section [2.5)). This corresponds to the following relaxed relation R*:

Vie [r], As; = Gy, nts;

RE o= ((: i)Bﬁ]?u)f Bt —u; al[si|-[s,]b=y;
bBR (&b, uy), vie [r], e sill < Billeilh < Rser e RE
((Si)ie[r]vt = (tz)1e[r]7 (01)76[7]) ”‘GH <75

(6)
Recall that, as shown in Lemma [2.11] the commitment scheme satisfies weak
binding under the Module-SIS assumption.
Next, we show that the three-round protocol satisfies coordinate-wise special
soundness under the Module-SIS assumption.

Lemma 3.2 (CWSS). Let 7 := 14/b3(n + 1)érd + (rkbo)?>md, B := 27 and
R := 2K. Suppose that & < %\/6 Then, there exists a polynomial time algorithm

that on input public parameters pp := (A, B, D), statement x := (a,b,u,y) and
r 4+ 1 accepting transcripts

tr; == (v, ¢, (Wi, ti,25)) fori=0,1,...,r
with (co, - .., ¢.) € SS(C,r) and common first message v, either outputs a witness
we Ry 35 .(pp,x), orz € R((IHH)M so that [B | D]z = 0 and 0 < |z| < B.

Proof. Assume without loss of generality that cg differs from each c; exactly
in the ¢ coordinate for ¢ € [r]. First, if for some distinct 4,5 € {0,1,...,r} we
have t; # ‘Ej, then we immediately yield a non-zero solution z := t; — fj to
B of norm at most 3. Similarly we argue for all W;. Thus, from now on we
assume that t := ty = ... = t, and W := Wy = ... = W,.. For presentation, set
wi= (wi,...,w,) = Gp, »W.

Fix i € [r] and denote ¢g := (c1,...,¢.) and ¢; := (¢1,...,Ci—1,C5, Cig1, -, Crp)
where ¢; # ¢}. The L; norm of ¢ := ¢; —c} is at most & = 2k and thus it is invert-
ible over R, by Lemma [2.1] Now, define §; := (2o — 2;)/¢;. Clearly, | - 8;| < B.
Next, from the verification equations for trg and tr; we have

o (cd iclT)w _ aT(ZO,_ Z1) _ s,
Cj Ci
In particular, combined with bTw = y, we obtain
aT [§1|-~-\§r]b =y.
Moreover, by parsing t := (‘E(l), . ,ﬁ(r)), where each t) e Rg‘s, we have

Y ) —ct - ¢l —cf - Zo — Z; _
Gbl,nt(l) = Gbl,n ( . G t ®In6> t = ( ; = L > ®Gb1,nt =A ( OE‘ ) = Asi-

1 T

Therefore, we conclude that
W= ((gi)ie[r]a (E(i))ie[r]v (éi)ie[r])

belongs to R;,B (pp, x). ]

YR
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Efficiency. The communication complexity from the prover’s side can be bounded
by
nd[log q| + (n + 1)drd[log(2b1)] + md[log(2rkby)]-

The prover’s running time is O(r(m + n + J)) operations over R,. On the other
hand, the verifier’s time complexity is O(n- (ndr +m)) operations over R,. Since
the witness size is m - r elements in R4, we deduce that the verifier runtime is
sublinear.

3.2 Batching

In this section we consider a full generalisation of the relation in Equation .
Namely, let k > 1 and fix a; € R}, b; € R} for j € [k]. Next, consider any k
positive integers L1, ..., Li. In the context of polynomial commitments, k is the
number of distinct evaluation points, and for the j-th point, we will prove L;
polynomial evaluations. Clearly, the previous protocol corresponds to the case
k=1and L; = 1.

We focus on proving knowledge of short vectors (sj,L,i)jE[k],LE[Lj],ie[r]7 such
that

a}- [Sijvl| T |Sjv¢v’“] bj = Yj. Vje [k]’ LE [Lj]7

where all y;, are public. By including the commitment opening relation, we
define (for presentation we fix the indices j € [k],¢ € [L;] and i € [r]):

(A, (B] D j), V.j: L7i7Asj,Lz Gbl, AR

k
* Bt =u;
BRbOyb] = ( ((aj7bJ) A? 7(yJA,L)J L) V] . aT [SZ:]_l]‘- . ] |; ]b — y .
((85,0,0) g0, (65 = (£5,0,4)0,0)5) DA P
|oo < bo; Hthoc <b

Vj, L, i, ”Sj,L,i
(7)
As before, width of the matrix Gy, ,, is § - n for ¢ := [log;, q].
We present a three-round protocol for BRy, , in Figure |2| and provide an
informal description below due to more involved notation. The prover starts by
computing for all j € [k],. € [L;]:

Wj, = Gb_ll,r(ij) € RgT, where W;-,L = ajT [Sj7 7 . |Sj,w] e Ry
and sets W] := [W]ql W) ] for j € [k]. Finally, it commits to all Wy, ..., Wy
by sending
v:i=D;w; +...+ Dywy
to the verifier. Then, L; + ... + L vectors c¢1,1,...,C 1, generated uniformly

at random from C" are sent by the verifier. The prover responds by computing

Lj

Zj = Z [Sj,b,1|""sj,L,7”:| Cj. fOI‘j = 1,...,]6
=1
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and outputting (Wy,...,Wg),t,(2z1,...,2r). The verifier then checks whether

(W;) jelr] 1 k k
(t5)jemr] || < 3 bi(n + 1)or Z L; | d+ (rebg)? Z e |md  (8)
(Zj)je[k] Jj=1 j=1
and
k
Z DjVAVJ A%
j=1
k A~
Z B;t; =u
j=1
bIGy, Yia )
vj e [k], wi=|
b_;[ber ijLj
Vj e [k], [€]1Gbir o €] 1, Go | Wy = alz;
Vje [kl [c]1 ® G- €] ®Gun|t; = Az,

nxdérL;

Public parameters: A € RI*™, (B, € Ry """ D, e R} ) jelk]

. 2 nérL;
Witness: (8,00 € Rq')je[k].elL;],ielr]> (85 € Rq 7 )jelk]
Statement: (a; € Rq", b; € Ry)jelk], U € Ry, (Vi € Ra)je[r] elL;]s

Prover Verifier

For j € [k] :
For v e [L,] :
W= ay [sil I8 ] € Ry
W, 1= Gbl,r(wij) € Rq
Wl = [Wal o ] ]
k A
vi=2,_,D;Ww; e Ry
C1,15.-.,Ck,L;, < cr
C1,1y---,Ck,L;,
For j € [k] :
L
zj 1= 2,21 [SjalIsiur] € A
(VAVj7tj7Zj)jEU€]

Accept iff and @ hold

Fig. 2: Proof of knowledge for the relation BRy, 5, in .

Security analysis. We prove completeness and coordinate-wise special soundness.
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Lemma 3.3. The protocol in Figure@for relation BRy, », satisfies perfect com-
pleteness.

Proof. We start with the norm checks. We know that for j € [k], |[W;[o < &
and [|t;]e < %. Also, |z;]e < rrboLj/2. Hence, holds by applying the
naive {y-to-f5 inequality. Now, we move on to @ The first two equations hold

trivially. As for the third one, we note that for any j € [k] and ¢ € [L;]:
b Gy, + Wi, =biw;, =w] by =aj[sj.1|[8j.]bj = yj.-

As for the fourth item:

L;
T L rr T >
[€]1Gbar -+ €] 1 Gy r] Wy = Z c; Gy W,
=1
L;
_ T
- Wj,L 5t
=1
L;
- T s .
= D2l [sjual - Isjur] s
=1
— AT,
= ajz;
For the last equation, we know that:
L r
T T ¢ n
[€]1®Goim €] ®@Gun]ty =D ¢jiGryntyu
L oi=1
L r
= A DD CuiSini
v oi=1
= AZj.
This concludes the proof. O

Similarly as before, we consider a relaxed relation for proving coordinate-wise
special soundness:

Vi, i, Asj i = Gyt

)J) Z];:I ijij =u;
j . ) Vi, e,a] [8j01] 18, D5 = Y5
vjv Ly iv ”cj,l,,i : Sj,(,,iH <A ﬁv ch,l,.,iHI < R7
i € RE It <7

(10)

Lemma 3.4. Definedy := é\/b%(n +1)or (25:1 Lj) d + (rkby)? (22?21 @) md,
B =25 and E := 2K. Suppose that & < %\/6 Then, there exists a polynomial
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time algorithm that on input public parameters pp := (A, (B;,D;);), statement
x:= ((a;,b;);,u,(y;.);,.) and (ZJ 1 Lj)r + 1 accepting transcripts

k
tr; = (V,c(e)7 (wj(.e),fgf’)’ ;e))Je[k]) fore=0,1,..., (Z Lj) r
=1

with (c(®), € SS(C, (ZJ 1 Lj)r) and common first message v, either outputs a

(n+1)6r( k_ _1Lj)

witness W € BRZ< B =(pPp,X), orz€ Ry o that

[By||By|D:|-[Di]z=0 and 0<|z]|<p

The proof follows almost identically as for Lemma That is, we first claim that
 f

unless we found a short Module-SIS solution, all w ore=0,1,. (25:1 Lj)r,

must be the same (and similarly for t i )). Then, using the coordinate-wise special
soundness property, we extract each vector s; , ;.

Efficiency. Communication complexity from the prover’s side can be bounded
by

k
nd[logq] + (n + 1)6 (Z ) [log(2b1)] + Z md[log(2rkboL;)].

j=1

The prover’s running time is O((Z] 1 Lj)r(m+n+0)) operations over R,. On
the other hand, the verifier’s time complexity is dominated by the last equation
of (9, which takes O(n25r(2§=1 L;) + knm) ring operations. Thus, if each L; =
O(1) then the verifier runtime becomes asymptotically linear in k.

Remark 3.5. Note that trivially concatenating proofs would result in the verifi-

cation time i
O((n2~5~r+n-m)~ <2LJ>>
j=1

When Ly = ... = Ly = 1 (i.e. we prove k polynomial evaluations at k different
points) then our proposed batching method does not differ from trivially con-
catenating proofs. The main advantage of our approach comes when one wants
prove multiple polynomial evaluations at the same evaluation point.

4 Efficient Polynomial Commitments over Z,

In this section we show how to utilise the proofs of quadratic relations from
Section |3| to efficiently prove polynomial evaluations. The key idea is that for a

bivariate polynomial
m—1r—1
= 2 2 XY
i=0 j=0
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where the individual degrees of X and Y are m — 1 and r — 1 respectively, we
can write

1
foo -+ for—a v

FOGY) = [1X X2 .. xm=1]

f1:,0 f1,7:"71 v2 )

fmfl,O e fmfl,rfl Yr.fl

which is of the same form as in by setting s; to be the i-th column of the
middle matrix for i € [r], aT := [1 XX2... mel] and bT := [1 YY2... Yr’l].
Therefore, the protocols in Section [3| can intuitively prove polynomial evalua-
tions over R,. However, there are two caveats. First, the protocols only support
witnesses (s;); with short coefficients. Additionally, to achieve compatibility with
Polynomial IOPs, the polynomial commitments should be over finite fields, which
is not the case for R,. We deal with these issues as follows.

4.1 Adapting the Protocols from Section

Short coefficients. 1f we denote the i-th row of the middle matrix in as
f; € Ry for i € [r], then we can define s; := G, ' (f)e R0 for 6y := |logy, ql.

bo,m
Then, the coefficients of all s; are indeed short and

= m— dom
f(X,Y):aT[sl|~-.|sT]b where al .= [1XX2Xn 1]Gb0,mERqo |
bT := [1YY2...Y7’—1]ER(TI'

Hence, by setting Y := X™ and using the protocols in Section [3] we can prove
arbitrary polynomial evaluations of degree strictly less than m - r over R,.

Working over Z,. We recall how one translates proving polynomial evaluations
over Z; to R, as shown in |[AFLN24]. Suppose f(z) = y over Z, and f has
degree at most N — 1, where N is divisible by the ring dimension d. Then

N-1  N/d-1ld-1 o N/d=1 fd-1 _ 4
y= Z fix' = Z Z fiarja'@*9 = Z (Z fid+jxj> ()
i=0 i=0 j=0 i=0 \j=0

Let 0_; : R — R be the Galois automorphism, which maps X ~ X ~!. Thus, if
we define the following R ,-elements:

d—1 d—1
X 1= ij-Xj, f; = Zfidﬂ--Xj fori=0,1,...,N/d—1,
j=0 j=0

then the constant term (as defined in Section [2)) of

N/d—1

y= 2, o) fi- (=)'

=0
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variable description instantiation
q prime modulus, ¢ =5 (mod 8)
N degree bound on the polynomials
d ring dimension, power-of-two poly(X)
m folding parameter O(y/N/d)
r folding parameter O(y/N/d)
n height of matrices A, B,D O(1)
bo foo norm of s1,...,S, qt om
by {5 norm of fl, . ,ET ql/o(l)
b llog,, a] o(1)
61 llog,, a] o(1)
K ¢1 norm of a challenge w(1)
R slack parameter Va2 > R =2k
ol £5 norm of z 7 := /b3 (n + 1)017d + (rKbo)25omd
B £ norm bound on extracted witness 25
C C" is the challenge space {ceR:|c|: < &}
SL slack space {ceR:|c|1 <R}
e identity element in SL 1,...,1)

Fig. 3: Overview of the notation.

is equal to y [LNP22]. Also, the equation above is a polynomial evaluation state-
ment o_;(x) - f(z?) =y over R,, where the polynomial f € Ry N/ d[X] has coeffi-
cients

(f07 e >fN/d—1> € Ré\f/d7

the evaluation point is 2% € R, and the image is y defined above. Therefore, the
prover can first send y € R, in the clear and proceed with proving knowledge
of f such that f(z?) = o_1(x)~! -y. Note that now we prove evaluations for
polynomials of degree less than N /d rather than N. We refer to |AFLN24] Section
5.5] for more details.

4.2 Construction

We present our basic construction PCS = (Setup, Commit, Open, Eval, Verify) for-
polynomials over Z,[X] of degree less than N := m - r - d in Figure |4] Basic
notation is summarized in Figure |3| The slack space is defined as SL := {c €
R : |c)i < R} for & = 1. We set the identity e := (1,...,1) € SL. As before,
we define C := {c € R : |c|; < &}. As a building block, we need a proof system
I = (§',P', V') for the relation R’ defined as follows:

R :={(pp, (P,h,7),2) : Pz = h |z < 7}. (12)

We are ready to summarise the security properties of our polynomial commit-
ment.
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Setup(1*): Open(pp, u, f,st := (si,f:i)ie[,,,], (¢i)ierr])
1 A« RIX%om L f(X) = 2N X
2: B« RpXmoT 2: for i =0,1,...,N/d—1:
3: D« RXOT 3 fii= 370 furs X) €Ry
4: pp’ < S'(1Y) 4: fori=1,...,r:
5: return pp := (A, B, D, pp’) 5. f] = (fi—1yms-- - fim—1) € RY
Commit(pp, f € Z; N [X]): 6:  if Gpymsi # £ v Asi # Gy, nti
1 f(X) = Zil\;_l £X0 7 ) return 0 ) .
9 for i 0.1,.. L NJd—1: Sj if ﬂztuﬂ 3 Bvlely>rve¢ R
8: = Y7 fiass X € Ry 10: & 1= [£]]- - [E]]
4: for i =1,...,r: D :
) T m 11: if [t| > 5 v Bt #u
5: f1 = (f(i—l)nu e ,fim71) € Rq 19 return 0
6 sii= G;)I’M(fi) 13: return 1
7. t;:=As; '
8 ti:=G; !, (t:)
9: f', = (fi)ie[r] € RZ‘ST
10: u:= Bt
11: st:= (Si7Ei)ie[r]
12: return (u,st)
Eval.P(pp, (u,z,y), (f,st := (si, £:))): Eval.V(pp, (u, z,v)):
I f(X):= Zil\;)l fiX* 1: x:= Z?;é - X7
2: for i =0,1,...,N/d—1: 9. al = [1 24 2 x(mq)d] Goym
3 fi= Z?;S fia+; X7 € Rq 3: b7 o= [1 24 g2md .. x(r—l)md]y
R R ¢ 1 recei
=0 _ : receive (y,v) from Eval. P
5y = Zﬁvz/(‘fl o_1(x) - f; - (xd)Z 5: send ¢ < C" to Eval.P
6: al := [1 2% 22 ... x(mfl)d] Grym 6: compute P, h, ¥ as in Lines [I4]to [I6]of
7 bT = [1 xmd 1EQm,d x(r—l)md] !EvaI.P
8 wl:=a' [s1| ces \s,.] eR, 7 if ct(y) #y
9: wi=G; . (w)e R g lreturn;), ' (P.h.A
11: send (y,v) to Eval.V
12: receive c € C" from Eval.V
13: z:=[s1]| - [sr]c
D 0 0
0 B 0
14: P:= |bTGy,,» 0 0
c'Gy, r 0 —aT'
0 cT® Gy, n —A
v
w u
15:z:=|t]|, h:=|o1(x) "'y
Z 0
0
16: 7 := /b3 (n + 1)6rd + (rrbo)25omd
17: run P'(pp’, (P, h,7), 2)

Fig. 4: Description of the Setup, Commit, Open and Eval = (Eval.P, Eval.V) algorithms.
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Theorem 4.1. The polynomial commitment PCS defined in Figure []] satisfies
evaluation completeness, weak binding, and knowledge soundness under the Module-
SIS assumption. Namely, let II' = (S',P', V") be a proof system for the relation
R'. Then, the following hold.

1. For evaluation completeness, PCS satisfies evaluation completeness with com-
pleteness error €, where €' is the completeness error for IT'.

2. For weak binding, there is a deterministic algorithm, that given public param-
eters (A, B, D, pp’) « Setup(1?), and two weak openings (f, (Si7£i70i)ie[r])
and (f', (s}, t), c;)ier]) for the commitment u € R such that f # f', outputs
a vector z € Rgﬂ””"‘;” such that [A | B]z = 0 and 0 < |z| < max(4&S3, 27).

8. As for knowledge soundness, there is an expected PPT extractor € with the
folowing properties. Given rewindable black-box access to a PPT prover P*
that convinces Eval.V(pp, (u, x,v)), where pp := (A, B, D, pp’) « Setup(1*),
with probability €, extractor £ with probability at least

r

el

e—¢ —

either outputs f,st,(c;)icry] such that Open(pp,u, f,st, (¢i)icr]) = 1, or a
vector z € Rf{‘“)‘s” such that [B|D]z = 0 and 0 < |z| < 3, where &' is the
knowledge error of II'.

Proof. We first show that a modified scheme, where instead of running IT’ the
prover outputs z in the clear, satisfies perfect evaluation completeness. The state-
ment then follows by composition. Take any polynomial f € Zq<N [X]. Then, for
pp := (A, B, D, pp’) < Setup(1*) and (u, st := (si,fi)ie[r]) «— Commit(pp, f) we
have

GiymSi = Goy.mGy ' (Fi) = £ and  As; = t; = Gy, o(t;) forie[r].
Moreover, |s;| < boy/domd < B for all i. Therefore, Open(pp,u, f,st,e) = 1.
Finally, by applying the methodology described in Section [{.1] together with
Lemma 3.3 we conclude that the underlying evaluation protocol satisfies perfect
completeness, and thus the claim holds.

We move on to weak binding. From Lemma we deduce that either all
s; = s} for all ¢, or there is an efficient algorithm which finds a short solution
to [A|B]. Suppose the former case. Since f; = Gy, msi = Gy, ms; = f] for all ¢,
and therefore we conclude that f = f’, which leads to a contradiction.

As for knowledge soundness, we first consider the modified evaluation proto-
col, where instead of running II’, the prover outputs z in the clear. The state-
ment then follows by the composition result [BS23, Lemma 3.7]. To begin with,
we use Lemmas and to deduce that the knowledge error of the evalua-
tion protocol is at least r/|C|. This means that we can define an extractor that
with probability at least € — r/|C| either outputs a short solution to [B[D], or
st := (84, ti)ies] and (C;)ier) € SL such that for ||(t;),e,] < 7 and [& -8 < B
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size runtime
commitment eval. proof prover verifier
Ox(1) Ox(loglog V) OA(N) OA(VN)
Table 3: Asymptotic efficiency in terms of Z, elements and operations.

for all i € [r] and

md

[1 l'd de cee ZL'(mil)d] Gbo,m [§1| e |§T:| med = a—l(x)il Y.

x(rfl)md

Then, by defining f; := Gy, m8; for ¢ € [r] and following the strategy from
Section one can extract f € Z=N[X] so that f(z) = y over Z,. This concludes
the proof. o

Remark 4.2. We highlight that matrices A, B, D can be generated uniformly at
random from a seed. Thus, by embedding a Module-SIS challenge inside the
aforementioned matrices yields weak binding and knowledge soundness under
the Module-SIS assumption.

4.3 Instantiation and Asymptotic Efficiency

We set asymptotic parameters for our polynomial commitment scheme as de-
scribed in Figure [3] We instantiate our evaluation protocol with LaBRADOR
[BS23| as the underlying proof system II’. We first show that R’ is a folklore
lattice-type relation that is a special case of principal relations (cf. Section [2.4)).
Thus, we can directly apply the LaBRADOR proof system [BS23| to produce a
succinct proof.

The length of the vector z is (n + 1)617 + m = O(4/N/d) elements in R,
while the height of the matrix P is 3n 4+ 2 = O(1). Denote by p] the i-th row
of P. We can then split the vector z into r’ subvectors z1, ...,z of length n’
each, where ' - n’ = (n + 1)d17 + m. We proceed similarly for all row vectors
p; = [P{1| - |p],.]. Then, the linear equation of can be rewritten as 3n+2
constraints of the form:

’

fil@) == (pij.z;y—hi =0 forie [3n+2]
j=1

where h := (hq,..., hgny2). Hence, we formulated the relation in using the
native language of LaBRADOR. We apply the LaBRADOR proof system as an
underlying building block and pick the most asymptotically optimal parameters
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as described in [BS23| Section 1.1]. In particular, we set the multiplicity ' and
rank n’ as follows:

= Oy (N%) and n' = O, (N%) )
Then, the LaBRADOR sub-protocol has O(loglog N) rounds and the total size
of prover’s messages in our evaluation protocol, in terms of the number of -
elements, is O) (loglog N).

The prover runtime (in terms of the number of R4-operations) of our evalu-
ation protocol can be split the two parts. The first one is running the protocol
in Figure [I} which takes Ox(r - m) = Ox(IN) operations. As for running the
LaBRADOR building block, the main bottleneck is computing the so-called
garbage cross-terms, which takes at most O, (' - n/) = Ox(N%3) operations
over Z,. Hence, the naive upper-bound on the prover time for this sub-protocol
is O,y (N2/3 loglog N). By combining the two parts, we conclude that the total
prover runtime is O (N).

Similarly as above, the verifier runtime can be analysed in two parts. The first
is receiving the vector v and generating the challenge ¢, which takes Oy (r) =
Ox(v/N) time. Further, the verifier runs the verification algorithm from the
LaBRADOR protocol, where the statement size is Ox(r + m) = Ox(v/N) ele-
ments over R,. Since the verifier time for LaBRADOR is linear in the size of
the statement, we conclude that the total verifier runtime is O,\(\/N ).

4.4 Batching Evaluation Proofs

Suppose we want to prove knowledge of L polynomials (fjﬁL)je[k]’Le[[j] over Z,
such that
fj,b(mj) = Yj. for j e [k]’L € [ej]

We can do this similarly as before by adapting the protocol in Figure 2] where &
is now the number of distinct evaluation points, and for the j-th point, we want
to prove £; > 1 polynomial evaluations. Then, by following the strategy from
Section the prover needs to send L := 25:1 ¢; ring elements (ijL)je[k],Le[gj]
in the clear.

Even though in many Polynomial IOPs we have L = O(1), and thus suc-
cinctness is asymptotically preserved, sending all L full-sized elements in R, can
be costly in practice. To circumvent this problem, one can instead commit to the
vector y = (yj,,) jelk].eelt;] € Ré and later prove its well-formedness, as well as
that the constant term of each y;, equals y;,. The key observation here is that
these “constant term”-type statements are also natively supported by principal
relations, and therefore we can still apply LaBRADOR in a black-box manner.

4.5 Hiding

Our current construction of the polynomial commitment scheme does not na-
tively satisfy the hiding property. Namely, both the commitment and the evalu-
ation protocol may reveal information about the committed values. To remedy
this, we introduce the following simple changes.
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Computationally hiding commitment scheme. First, we use the hiding version
of the outer commitment scheme by sampling a randomness vector r < x* and
computing the commitment u := Bt + Er (instead of u = Bt), where E € Ry™*
is an additional uniformly random matrix. By the (knapsack) Module-LWE as-
sumption, the commitment u looks pseudorandom. Hence, one needs to choose
the parameter p big enough to ensure that u does not leak any information
about t, while not too big since it directly affects efficiency of the underlying
scheme.

Defining weak binding. In the hiding version of the commitment, we define a
weak opening to additionally contain a short randomness vector r, such that
u = Bt + Er. More concretely, a weak opening for the commitment u is a tuple
((si, ti, Ci)ie[r]> ), Which satisfies all the following conditions

Viel[r]: |ei-si| <B, e <& cie R;, As; = Gb,n{;i
£ b

B|:|+Er=u and <A
2 t
t, r’“

Suppose we have two weak openings ((s;, ti, Ci)ie[r]> 1) and ((sj, f;7 ¢;)ier), ') for
the same commitment u. Note that if t; # f;; for some 4, then we immediately
yield a short solution for the uniformly random concatenated matrix [B | EJ.
We argue analogously for the case r # r’. The rest of the proof follows similarly
as in Lemma 2,111

Finally, we highlight that in the knowledge soundness argument, we will be
able to extract such a weak opening, since the additional randomness vector r
is a part of the witness for the LaBRADOR subroutine (see (14)).

HVZK Evaluation Proof. We modify the evaluation protocol to achieve honest-
verifier zero-knowledge (HVZK) as follows. To begin with, note that sending
y € R4 in the clear, and in particular the non-constant terms of y, may naturally
reveal some information about the secret polynomial f. To circumvent this issue,
we follow the strategy from [ENS20, LNP22|. Let L > 1 be the soundness pa-
rameter. The prover at the beginning samples masking terms 1 := (I1,...,l5) «
{le Ry : ct(l) = 0}L. Then, it computes 1:= Gb_l{L(l). Next, it commits to both

W,i by sampling r, < x* and computing
V= Do\x’ + Dli + EI‘U

where Do, D1, E are part of public parameters. Similarly as before, v is compu-
tationally indistinguishable from random. The first prover message is v.

In the second round, the verifier provides L challenges o, ...,ar < Z;. The
prover replies with j := (j1,...,4r) where
Jir=lLi+a;-y fori=1,... L. (13)
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Note that ct(j;) = ct(l; + a; - y) = a; - ct(y) = «; - y by definition of Iy, ...,1z.
In particular, the verifier can manually check whether constant terms of each
ji are exactly ay; - y. Moreover, sending all j; reveals no information about the
coeflicients of y apart from the constant term.

Finally, we have to prove well-formedness of polynomials ji,..., j; in Equa-

tion . That is,
ji=li+ai-o_1(x)-a [s1]---]s,|b
= eiGbLLi +a;-0-1(x) - bTGy, W
for ¢ € [L], where e; € Ré is the binary vector with l-entry in exactly i-th
position and a, b, w are constructed as before. Then, given a challenge ¢ « C",

the prover now runs the proof system II " to prove knowledge of short vectors
w, 1, r,, t,r,z which satisfy

DQ D1 E 0 0 O R A%
0 0 0 B E O w u
ar-o0_1(x) -bTGy, , e1Gy, ;L O 0 0 0 1 J1
: I S )
OéL'O'_l(X)'bTthT eLGbl,L 0 0 0 0 r jL
cTGy, 0 0 0 0 —aT z 0
i 0 0 0c"®Gp, 0 —A| 0

Finally, we require [T’ to satisfy HVZK. As demonstrated in [BS23| Section 6], we
can still apply LaBRADOR to achieve a hiding polynomial commitment scheme.

The intuition for knowledge soundness comes from the following observation,
which is used to formally argue (coordinate-wise) special soundness. Suppose we
are given two distinct tuples (ag1,...,20.1) # (0a,1,...,01,1), along with 2L
polynomials (jbi)se(0,1},ie[z] Such that

Jbi=1Ul+ap;y and ct(fp:) = -y forbe{0,1},i€e[L].

First, there exists some index 7 for which ag; # 1,, and thus ap; — o ; is
invertible over Z,. Also, the constant term of jo ; — j1,; = (o,; —a1,:)y is (s —
aq,;)y. Therefore, we conclude that the ct(y) = y, which is what we wanted.
Hence, the soundness error of our HVZK protocol is increased by an additive

factor of g~ %.

Remark 4.3. We note that the prover actually does not need to reveal all the
L ring elements ji,...,jr defined in . The reason is that LaBRADOR na-
tively also allows to prove statements related to constant terms (see Section
by applying the same “masking non-constant term” technique as shown above.
Thus, we can directly use the framework to prove that ct(y) = y.

5 Concrete Parameters

We now discuss how to set the various parameters in Greyhound. Similar strate-
gies as in LaBRADOR are employed. We use the standard power-of-two cyclo-
tomic ring of dimension d = 64 and modulus ¢ ~ 232, and challenges with 7, = 32
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non-zero coefficients that are +1 and 7 = 8 non-zero coefficients that are +2.
For simplicity, in the above presentation of the protocol we have used the same
SIS rank n for the inner and outer commitments (i.e. height of the matrices A
and B). However, it is indeed more efficient to allow for different ranks and we
denote them by n and nj for the inner and outer commitments, respectively.
They need to be chosen large enough to achieve (weak) binding. We do this in
the standard way with respect to the relevant norm bounds, c.f. [MROS]|.

The N/d witness polynomials that make up the polynomial f € Z,[X] are
distributed over r vectors of length m. So we need to have rm > N/d. Then the
vectors are decomposed into dg parts with respect to the small integer basis by
in order to commit to them. So here we want to have dq log(bg) ~ log(g). In the
protocol the last prover message, i.e. the witness for the LaBRADOR statement,
consists of r commitments that are each decomposed into d parts of length n, the
decomposed w vector of length ér, and the amortized opening z of length dgm,
which is decomposed into two parts with respect to the basis b before handing it
over to LaBRADOR. Our goal is thus to minimize rd(n + 1) 4+ 2d¢pm under the
constraint rm > N /d. We approximate by = b and hence dy = §. Then we find

e I A

We predict the variance of the decomposed z vectors to be v, = %T(T1 + 475),
where we have used b2/12 for the variance of the discrete uniform distribution

on {—b/2,...,b/2 — 1}. Then we use log(b) = [%] as the decomposition

basis for z, and 6 = [log(q)/log(b)]. Finally, the square of the predicted total
norm for the LaBRADOR statement turns out to be

b2 Zy b2 q2

We summarize the concrete parameters that we have used in our implemen-
tation in Table [d For the parameters inside LaBRADOR and how to optimize
them see the Labrador paper. The concrete contributions from the Greyhound
protocol to the proof sizes for N = 226, N = 228 and N = 230 due to the
parameter choices in Table 4] are 3.75 KB, 3.75 KB and 4.25 KB, respectively.

Making the protocol zero-knowledge. As explained in Section for adding
zero-knowledge it suffices to add LWE randomness to the outer commitments
and mask the polynomial y where the uniformly random masks need to be
put into the first outer commitment. This is similar to LaBRADOR. Unlike in
LaBRADOR there is no Johnson-Lindenstrauss projection in Greyhound which
would be more complicated to mask since it would need a short mask and rejec-
tion sampling. We refer to [BS23| for the details. The relatively low-dimensional
randomness vectors and masks do not increase the total norm of the output wit-
ness much and hence the SIS ranks for the outer commitments can stay the same.
Since g ~ 232 we need L = 4 masking terms for y so the proof size of Greyhound
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N — 926 N — 228 N = 230
m 3156 6312 12625
T 333 665 1329
n 18 18 18
ni 7 7 7
bo 6 5 4
do 5 6 8
b 7 6 6
é 5 5 5

Table 4: Concrete parameter choices for Greyhound for three different polynomial
lengths N.

goes up by three additional polynomials, or 0.75KB. For the LWE randomness we
use the uniform distribution modulo b. Then the required LWE rank to achieve
the hiding property can be computed in the usual way, c.f. [ADPS15].

6 Implementation

We have implemented Greyhound and LaBRADOR in C with intrinsics for vec-
torization using the AVX-512 instruction set. The source can be found here:

https://github.com/lattice-dogs/labradorl

Our code is single-threaded and so we do not make use of parallization beyond
SIMD. We have deviated from the LaBRADOR paper in a few ways. Most im-
portantly we only use power-of-two bases for decomposing vectors, and sample
the matrices for the Johnson-Lindenstrauss projections to have coefficients that
are 1 instead of —1,0, 1. The heuristic from [GHL22, BS23] regarding the tail of
the distribution of the projected vectors still applies. The power-of-two decom-
position bases mean that we do not achieve the best possible proof sizes. Also we
have not yet implemented the most elaborated parameter selection strategy and
optimize the parameters for each LaBRADOR layer locally instead of globally
optimizing over all layers. The focus of this paper is on runtime and we leave
the proof size optimization to later work. The proof sizes are determined by the
later LaBRADOR layers where the instance sizes are already so small that those
layers do not contribute significantly to the runtime. Therefore we believe that
one can improve our proof sizes without influencing the runtime.

Since vectorized code on the Intel architecture often bottlenecks on the front-
end of the CPU pipeline we tried to structure our code in a way that is friendly
to the pop cache. Concretely, this means that we try to compute on chunks of
polynomial vectors that are short enough to fit into the data caches but long
enough that the same small code section (for example implementing an NTT)
is used on many polynomials and comes from the pop cache rather than the L1
instruction cache and decoding.
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For sampling randomness we use the new vectorized AES instructions from
the VAES instruction set that compute four (independent) AES-128 rounds si-
multaneously. Together with hiding the instruction latencies by computing suffi-
ciently many AES blocks in parallel this results in our sampler outputting blocks
of 512 bytes of randomness at a time. For the hashing needed in the Fiat-Shamir
transform we use SHAKE128.

6.1 Polynomial Arithmetic Library

As part of our implementation we provide an optimized library for polynomial
arithmetic modulo (low-degree) power-of-two cyclotomics and primes ¢ of the
form ¢ = 2% — a for d = 3,...,263 and minimal a such that ¢ = 5 (mod 8). The
library is fully vectorized and includes functions for sampling polynomials from
various distributions and applying ring automorphisms.

For theoretical reasons the prime ¢ defining the quotient polynomial ring R,
for the LaBRADOR proof system needs to have high inertia degree. Therefore
we can not use NTT-based multiplication directly for the ring R,. Instead we
use a multi-modular algorithm with NTT-based multiplication modulo several
small primes p;. This is similar to [CHK™21|. Unlike [CHK™21] where a divided-
difference based CRT algorithm is used to lift the results from mod p;, followed
by reduction modulo ¢, we use the explicit CRT mod ¢ from [BS07|. This is
advantageous in our case since we compute modulo more small primes primes
p;.

For the p; we use primes between 2'2 and 2'* that are fully splitting in the
main ring Z[X]/(X% + 1) in LaBRADOR. Such 16-bit primes allow us to use
the fast Montgomery arithmetic from [Seil8] and |[LS19] on the x86 instruction
set.

For the multi-precision arithmetic modulo ¢ we use 14-bit limbs. This is not
optimal but allows us to always compute on vectors of 16-bit integers. This
also includes the fixed-point approximation to the quotient in the explicit CRT.
Moreover, the 14-bit limbs enable a fast forward CRT-map using a (modified)
Montgomery reduction algorithm. The arithmetic mod ¢ is much less relevant
for the overall speed of our protocols compared to the arithmetic modulo the p;
where most of the operations take place.

We keep the computation of CRT maps and NTTs to a minimum and com-
pute in the multi-modular NTT representation as much as possible. This is
the main advantage of NTT-based multiplication in lattice-based protocols with
arithmetic in high-rank modules. In the case of Greyhound and LaBRADOR this
means that the arithmetic becomes effectively linear.

Instead of the usual sign-and-magnitude representation for the multi-precision
arithmetic modulo g we use two’s complement and allow for signed limbs in our
representation. The main advantage of this is that conversion to and from short
polynomials that are stored in signed single-precision representations are very
fast. This explains the reason for the 14 bits: positive limbs can go up to 2'> —1
to not overflow into negative values and we need one nail bit to handle the carries
in our vectorized algorithms.
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For computing commitments we compute over extension rings by viewing
them as vector spaces over our base ring. This reduces the randomness that
has to be sampled for the commitment matrices. The computational cost stays
quadratic in the extension degree (resp. the SIS rank).

6.2 Johnson-Lindenstrauss Projection

For fast computation of the Johnson-Lindenstrauss reductions in LaBRADOR
which essentially entails a matrix-vector product where the matrix has coeffi-
cients that are +1, we use the Four Russians algorithm on blocks of 4 integers.
We precompute 16 vector registers at a time, each containing the 16 possible
signed summations of 4 vector coefficients. Then, for every matrix row and four
times four columns we lookup the correct summations from the precomputed
vectors using vector shuffle instructions.

6.3 Future Work

Unlike AVX2, AVX-512 has 52-bit integer instructions that include fused low and
high half multiply and add instructions. These instructions enable fast vectorized
NTTs modulo 52-bit primes p;, ¢.f. |[BKST21]. The advantage of this approach
would be that one could compute the commitments directly with NTTs for
the extension rings instead of implementing the extension ring arithmetic using
quadratic linear algebra over the 64 dimensional base ring. Concretely we often
compute commitments in extension rings of rank 16 over R, = Z,[X]/(X%* +1)
with a cost of 162 pointwise multiplications of length 64 (note that the NTTs
don’t matter as they can be precomputed in case of the commitment matrices
and reused many times in case of the matrices and the vectors). By directly
computing length-1024 pointwise products when the p; are fully splitting in
Z,[X]/(X'92% +1) one can reduce the computational cost to only one pointwise
product of length 1024 and hence reduce the cost by a factor of 16.
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