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Abstract

True Random Number Generators (TRNGs) and Physically Unclonable Functions (PUFs) are criti-
cal hardware primitives for cryptographic systems, providing randomness and device-specific security.
TRNGs require complete randomness, while PUFs rely on consistent, device-unique responses. In this
work, both primitives are implemented on a System-on-Chip Field-Programmable Gate Array (SoC
FPGA), leveraging the integrated Phase-Locked Loops (PLLs) for robust entropy generation in PLL-
based TRNGs. A novel backtracking parameter selection algorithm for the TRNG implementation
is employed, alongside a methodology to boost data generation rates without compromising entropy.
The design is rigorously evaluated using the German BSI AIS-20/31 standards. For the PUF imple-
mentation, the Arbiter PUF, known for its lightweight design and key generation, is enhanced to resist
machine learning attacks by implementing a 32-bit and a 64-bit component-differentially challenged
XOR Arbiter PUF (CDC-XPUF). These designs are tested using standard PUF metrics, including
uniformity, correctness, and uniqueness. Finally, a combined 4-PLL-TRNG and 64-bit CDC-XPUF
design is introduced and evaluated for its suitability in Internet-of-Things (IoT) systems, demonstrat-
ing strong performance in both TRNG and PUF tests. The tests are conducted on the Xilinx Zynq
7020 SoC using a ZC702 evaluation board, confirming the effectiveness of this integrated approach for
secure, low-resource applications like IoT.
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1 Introduction

Random numbers play a fundamental role in
cryptography, where they are used to generate
confidential keys, padding data, initialization vec-
tors, and nonces in challenge-response protocols.
These random numbers also generate masks to
mitigate side-channel attacks. Random Number
Generators (RNGs), key cryptographic primitives,

are designed to produce bit sequences with no
discernible patterns, requiring both independence
and uniform distribution. Among RNGs, there are
two main types: True Random Number Genera-
tors (TRNGs) and Pseudo-Random Number Gen-
erators (PRNGs). Those who wish to gain more
in-depth knowledge about random numbers can
refer to [1] and [2] for further study. Recently, a
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related hardware primitive, the Physically Unclon-
able Function (PUF), has emerged. PUFs are
used for hardware authentication and generat-
ing device-specific keys, making them suitable
for secure cryptographic systems. More detailed
information about PUFs can be found in [3].

The circuitry for both PUFs and TRNGs
demands minimal systematic mismatch to avoid
bias. While both produce unpredictable outputs,
the key distinction is that PUFs deliver consistent
responses to the same challenge, whereas TRNGs
generate new, random outputs each time they are
run, as indicated in [4].

System-on-chip (SoC) Field-Programmable
Gate Arrays (FPGAs), or SoCs, have gained sig-
nificant popularity due to their ability to combine
programmable logic with hard processor cores on
a single semiconductor device. This integration
offers several advantages, including higher integra-
tion density, reduced power consumption, smaller
form factors, and improved communication band-
width between the processor and FPGA. In this
work, an SoC was chosen over a traditional FPGA,
as the inclusion of hard processor cores in the
SoC enables the execution of additional applica-
tions directly on the chip, eliminating the need for
external hardware connections.

Phase-locked loops (PLLs) are essential com-
ponents in both FPGAs and SoCs, functioning
as feedback control systems that synchronize the
phase of a locally generated signal with an input
signal. These structures are particularly useful
in the design of TRNGs, leveraging their analog
properties to provide a source of unpredictable
randomness [5]. Additionally, PLLs contribute
to enhancing clock distribution and on-chip fre-
quency synthesis, with isolated power sources in
FPGAs further improving security. However, the
limited number of available PLLs restricts their
scalability for larger designs.

A key challenge in PLL-based TRNG design
is the selection of optimal settings from a large
configuration space. The selected parameters must
ensure both adequate entropy generation and
sufficient output bit rates, as described in the
parameter selection methodology by [6].

Once random numbers are generated, it is
essential to evaluate their quality thoroughly. Two
prominent methodologies for this evaluation are
the NIST SP 800-22 standard and the AIS-20/31

guideline, both of which provide rigorous frame-
works for assessing the randomness and security
of these numbers. The NIST SP 800-22 suite pro-
vides a pass or fail result for each test as it is
explained in [7]. If a particular test fails, the ran-
domness of the RNG may be called into question.
In contrast, AIS-20/31 offers a more comprehen-
sive evaluation framework aimed at determining
the security levels of an RNG as it is described
in [8]. For a TRNG, this evaluation not only
considers the randomness of the output but also
assesses the entropy source and operational secu-
rity to ensure the generator’s robustness from a
security standpoint. In this work, by considering
the properties of the AIS-20/31, the generated
random numbers are evaluated using the AIS-
20/31 [8] standard, a methodology set forth by the
German Federal Office for Information Security
(BSI), to assess their quality and ensure com-
pliance with security standards. This evaluation
confirms the improved performance and reliability
of the proposed design.

While PLL-based TRNGs offer high entropy,
they often suffer from low data output rates. To
address this, a novel TRNG design utilizing four
PLLs is proposed in [9], significantly enhancing
performance. We implement both the classical and
our improved approach and present the imple-
mentation details of these and the successful
AIS-20/31 test results in [9].

The Arbiter PUF, the first silicon-based phys-
ically unclonable function, efficiently generates
numerous secret keys from input data while main-
taining a lightweight structure, making it ideal
for device authentication in resource-constrained
environments such as IoT systems. However, its
vulnerability to machine learning (ML) attacks
underscores the need for enhanced designs to bol-
ster security. To mitigate this weakness, various
improvements have been made to arbiter PUF
designs, specifically targeting resistance to ML
attacks, and XOR PUFs were proposed in [10] to
improve security against ML attacks.

In [11], we implemented a Component-
Differentially Challenged XOR Arbiter PUF
(CDC-XPUF), which is resistant to such attacks.
Drawing on the designs proposed in [12] and [13],
this implementation focuses on using 64-bit or
longer challenges and at least seven parallel PUF
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streams. Research has shown that these configu-
rations are robust against advanced ML attacks
[13].

Given their roles in cryptographic systems,
TRNGs and PUFs have become essential com-
ponents in modern IoT devices. When combined,
these primitives can provide a strong root of
trust for embedded devices. This integration not
only enhances security but also optimizes resource
usage, particularly on SoC or FPGA platforms. In
this study, after implementing TRNGs and PUFs
individually on an SoC in previous works [9] and
[11], a combined design is proposed where the ran-
dom numbers produced by the TRNG are used
to generate six out of the seven challenges for the
CDC-7-XPUF, excluding the main challenge. Our
work presents two primary contributions:

• By combining the 4-PLL-TRNG and the 64-
bit CDC-7-XPUF, a design functioning as both
a TRNG and a PUF is developed, creating a
structure that can serve as a hardware prim-
itive in IoT systems. In this dual structure,
the random numbers generated by the TRNG
are used to create new challenges by XORing
the main challenge in the PUF. Test scenarios
are designed considering that both subsystems
could operate simultaneously in real-time appli-
cations. Within these test scenarios, the tests
applied to both the TRNG and the PUF are
also applied to this dual structure. As a result
of these tests, it is demonstrated that the new
structure is secure for use.

• It is shown that the combined structure of 4-
PLL-TRNG and 64-bit CDC-7-XPUF has an
efficient structure in terms the resources of the
SoC. Hence, it is a suitable and promising can-
didate, allocating the necessary design resources
for the software and firmware.

The organization of the paper is as follows:

• In Section 2, preliminary information about
TRNGs, PUFs, PLL-TRNG, and SoCs is pre-
sented.

• In Section 3, the details of PLL-TRNG and
CDC-7-XPUF implementations are presented.

• In Section 4, we describe the implementation
of the combined design of 4-PLL-TRNG and
64-bit CDC-7-XPUF in detail and subsequently
present the results and comparisons with the
discrete implementations of TRNG and PUF.

• In Section 5 The results of the combined imple-
mentations and their indications are discussed.

• In Section 6, we give the conclusion of our work
and some future directions.

2 Background

2.1 Basics of PLL

Phase-locked loops (PLLs), which vary in num-
ber and properties, can be found in any FPGA
or SoC. PLLs are feedback control systems that
automatically adjust the phase of a locally gen-
erated signal to align with the phase of an input
signal. A PLL is a circuit (as depicted in Fig. 1)
that uses an input signal to synchronize a signal
from an embedded oscillator on it. The grey blocks
represent the analog components, which cannot
be parameterized, whereas the M , N , and C inte-
ger division coefficients, depicted in white blocks,
need to be configured. These coefficients are essen-
tial for calculating the output frequency of the
PLL (fout) from the reference frequency (fref ), as
described in Equation (1).

fout = fref × M

N × C
(1)

Fig. 1 Block diagram of a PLL (PFD: phase frequency
detector, CP: charge pump, LF: loop filter, VCO: voltage-
controlled oscillator) [6]

2.2 Random Bit Generation
Principle of the PLL-TRNG

The working principle of the PLL-TRNG with one
PLL, and also two PLL versions of PLL-TRNG, is
presented in Fig. 2 and Fig. 3. The TRNG exploit-
ing the jitter introduced by the PLL, which is
presented in Fig. 2, was first proposed in [14]. The
jittered clock signal clk1 from the PLL is sam-
pled by a D flip-flop (D-FF) using the reference
clock signal clk0. The 1-bit counter records the
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number of samples that equal one. Due to the
frequency relationship established by the PLL, a
pattern with a period TQ = KD × T0 = KM × T1

emerges at the flip-flop output. As a result, some
samples are consistently 1 (shown as blue in Fig.
2 and these are 4th and 7th dots), some are always
0 (shown as green and these are 2nd and 5th dots),
and others are random (shown as red and these
are 1st, 3rd, 6th, and 8th dots). By applying the
coherent sampling principle and rearranging the
samples based on their positions, the waveform of
one period of clk1 can be reconstructed, as it is
also described in [15].

This work adopts a two PLL-TRNG archi-
tecture as a reference model due to its better
performance characteristics. The incorporation of
two PLLs significantly enhances design flexibil-
ity by expanding the practical operating ranges
for critical parameters, KM and KD, consequently
increasing attainable bit and entropy rates. More-
over, this configuration substantially reduces auto-
correlation between output bits. While incurring
increased implementation costs, these can often
be mitigated through resource sharing with other
system components, as proposed in [16].

In this two PLLs case, firstly, as it is stated in
Fig. 3, we have the following equality

f1
f0

=
KM

KD
, (2)

where KM and KD are integer values represent-
ing frequency multiplication and division factors,
depending on the configuration of PLLs. Each
PLL has its multiplication and division factors.
Moreover, they are related to KM and KD as:

KM = KM1 ·KD0 (3)

KD = KM0 ·KD1 (4)

Fig. 2 Principle of the PLL-TRNG with one PLL [15]

Fig. 3 PLL-TRNG with two PLLs Configuration [15]

The output (Q) of D-FF in the left part of Fig.
2 has a pseudo-random pattern with a certain
period. After XORing that pattern in the decima-
tor or 1-bit counter, the bit rate of the PLL-TRNG
is defined as follows:

R =
f0
KD

=
f1
KM

(5)

The entropy rate per bit at generator output
depends on the parameters of the jitter and on the
parameters of the generator, which are character-
ized by its sensitivity to the jitter:

S = ∆−1 = f0 ·KM = f1 ·KD (6)

The design of PLL-TRNG relies on choosing
appropriate PLL multiplication and division fac-
tors. However, selecting these factors can be chal-
lenging due to the physical constraints of the PLL,
such as the maximum and minimum values of N ,
M , C, and the input, output, PFD, and VCO
frequency range. Consequently, determining these
values is an optimization problem, and our solu-
tion to this problem is explained in Section 3.1.2
for Zynq 7020 SoC values listed in Table 1.

Table 1 The ranges of possible
values for the PLL parameters
and frequencies for Zynq-7000
SoC [17], [18]

Parameters
Xilinx

Zynq-7000
Min Max

fref (MHz) 19 800
PV CO 1 1
M 2 64
N 1 56
C 1 128

fPFD(MHz) 19 450
fV CO(MHz) 800 1600
fout (MHz) 6.25 464
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2.3 Basics of PUFs

PUF extracts entropy from the physical charac-
teristics of an integrated circuit (IC). Each chip
exhibits variations due to the inherent unpre-
dictability in the manufacturing process. PUFs
harness static entropy from the fluctuations in
the manufacturing process. Once the chip is fab-
ricated, the disparities in the manufacturing pro-
cess become consolidated and undergo minimal
changes throughout the chip’s lifespan. Conse-
quently, this form of entropy is termed static
entropy as it is stated in [19]. Basically, a PUF
generates a sequence (response) of the unique sig-
nature by input initial states (challenge), so-called
challenge-response pairs (CRPs). Each PUF can
be represented as a black box, R = f(C), as
illustrated in Fig. 4, where the f() is secret.

Fig. 4 Generic PUF model [19]

In the literature, there are various types of
PUFs, and they can be classified with respect to
their entropy sources and their CRPs [20]. In this
research, an intrinsic and delay-based strong PUF,
named Arbiter PUF, is implemented. It is impor-
tant to note that the Arbiter PUF is a strong
PUF. A Strong PUF can generate a vast num-
ber of challenge-response pairs (CRPs), making
it impractical to read all possible CRPs within a
reasonable timeframe. This property makes them
suitable for applications requiring high security
due to their extensive challenge-response space.

2.4 Types of Arbiter PUFs

2.4.1 Basic Arbiter PUF

An Arbiter Physical Unclonable Function
(APUF), which was first defined in [21], is a
robust PUF relying on delay, featuring a race
condition between two symmetrical digital paths.
In each delay stage, two multiplexers (MUXes)
are incorporated, and their operation is governed
by challenges (C0 Cn−1).

Upon activation, the APUF initiates its oper-
ation with a trigger signal. This signal traverses
two paths determined by a pre-input challenge,

ultimately reaching an arbiter. The arbiter then
determines which of the two paths is faster in gen-
erating the binary response that aligns with the
black-box model (R = f(C)), as it is illustrated
in Fig. 4, where C is the challenge and R is the
response.

2.4.2 XOR Arbiter PUF (XOR-PUF)

Due to the limited resistance of arbiter PUFs
against machine learning modeling attacks, a
new PUF design was introduced in [10]. This
new design incorporates a non-linear XOR gate
into multiple arbiter PUFs to generate the final
response and is referred to as the XOR arbiter
PUF. An n-XOR-PUF consists of n-component
arbiter PUFs (also known as streams or sub-
challenges), wherein the responses from all n-
component arbiter PUFs are XORed together at
the XOR gate to produce a single-bit response. It
is important to note that all component arbiter
PUFs in an XOR-PUF are supplied with the same
challenge bits as described in [13]. The approach of
generating all challenges using the same bitstream,
as also argued in [12], has proven insufficient for
achieving the desired resistance to machine learn-
ing attacks. Consequently, this has led to the
development of a new PUF model, CDC-XPUF,
which will be detailed in the following section.

2.4.3 Component-Differentially
Challenged XOR-PUF
(CDC-XPUF)

Component-differentially challenged XOR-PUF
(CDC-XPUF), which was introduced in [22] and
[23], and XOR-PUF share a similar architecture,
comprising multiple arbiter PUF components and
XOR gates. The key distinction between CDC-
XPUF and XOR-PUF lies in the challenge inputs:
each component arbiter PUF in a CDC-XPUF
receives different challenge inputs, whereas all
component arbiter PUFs in an XOR-PUF receive
the same challenges [13]. Fig. 5 illustrates the
structure of CDC-XPUF.

Studies such as [24], [25], [26], and [23] high-
light that varying the challenges applied to XOR-
PUF components can help mitigate vulnerability
to machine learning (ML) attacks. Specifically,
CDC-XPUFs demonstrate substantial improve-
ments in security as the number of component
PUFs increases. Notably, 64-bit CDC-XPUFs
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Fig. 5 A CDC-XPUF with 2 streams and n bits of each
stream [13]

with seven components have been shown to be
entirely resistant to the two ML attack methods
tested in [13]. This outcome is highly promising
for the IoT security sector, as many CDC-XPUFs,
particularly those featuring 64-bit challenges with
seven or more components, remain secure against
advanced ML attacks. The experimental results
in [13] effectively redefine the boundary between
secure and insecure regions within the PUF circuit
parameter space, providing key insights for PUF
manufacturers and IoT security developers to
refine protocols in CDC-XPUF-based applications
and mitigate potential risks.

In CDC-XPUFs, in order to generate different
challenge bits, a pseudorandom number generator
(PRNG) structure is proposed in [13] as follows:

Cn+1 = (a ∗ Cn + g) mod m, (7)

where C is the sequence of the generated random
number, a is a multiplier, g is a given constant,
and m = 2K , where K is the number of stages.

2.5 Evaluation Metrics of TRNGs
and PUFs

2.5.1 Evaluation Criteria of TRNGs

The BSI test suites of AIS-20/31 [8] are highly
regarded for evaluating the quality of RNGs due
to their widespread adoption and recognition as
reliable and effective tools. Hence, in this work,
for the evaluation metrics of TRNG, AIS-20/31
is chosen. The summary of the tests found in

AIS-20/31 under Procedure A and Procedure B
in [8], along with brief explanations based on
the standard used for cryptographic evaluation of
RNGs:

Procedure A in AIS-20/31 Tests:
Statistical Testing for Random Number
Generators

This procedure focuses on statistical randomness
of generated sequences and includes the following
key tests:

Test T1 - Monobit Test:

Purpose: Evaluates the balance of 1s and 0s in the
binary output of the RNG.
Explanation: Ensures that roughly half of the bits
are 1s and half are 0s, which is expected from a
random sequence.

Test T2 - Poker Test:

Purpose: Tests the frequency of different bit pat-
terns (like a poker hand).
Explanation: The goal is to assess the uniform dis-
tribution of small groups of bits (e.g., 4 bits) in the
output. A non-uniform distribution would indicate
potential bias or non-randomness.

Test T3 - Runs Test:

Purpose: Evaluates the length and frequency of
consecutive sequences of identical bits (runs of 0s
or 1s).
Explanation: This test checks if the runs of 0s and
1s appear with the expected frequency and length,
as expected in a random sequence.

Test T4 - Long Runs Test:

Purpose: Detects any overly long sequences of
identical bits.
Explanation: If the RNG produces unusually long
runs of 0s or 1s, this could indicate non-random
behavior, which the test aims to capture.

Test T5 - Autocorrelation Test:

Purpose: Measures the correlation between bits in
the sequence at various spacings.
Explanation: Ensures that the sequence is not
predictable and that the occurrence of one bit does
not depend on earlier bits.
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Procedure B in AIS-20/31 Tests: Entropy
and Stochastic Model Evaluation

This procedure emphasizes evaluating the RNG’s
entropy source and its model to ensure unpre-
dictability. The focus is less on statistical random-
ness and more on the inherent unpredictability of
the generated bits.

Test T6 - Uniform Distribution Test:

Purpose: This test evaluates whether the output
of the random number generator (RNG) follows a
uniform distribution.
Explanation: The RNG’s output should be uni-
formly distributed, meaning each possible output
value should have an equal probability of occur-
ring. If certain values are more or less frequent,
it would indicate a bias, which would compro-
mise the randomness and unpredictability of the
RNG. The Uniform Distribution Test checks for
this by analyzing the distribution of the generated
random numbers.

Test T7 - Test for Homogeneity:

Purpose: This test evaluates whether the output
from different sections or time periods of the RNG
behaves in a similar (homogeneous) manner.
Explanation: The homogeneity test checks if the
random numbers produced by the RNG are con-
sistent over time. It ensures that the quality
of randomness doesn’t fluctuate between differ-
ent runs or time periods. If the output from
various sections shows significant differences, it
could indicate a problem with the RNG’s stabil-
ity or the entropy source, potentially introducing
weaknesses in cryptographic applications.

Test T8 - Entropy Estimation Test:

Purpose: To measure the amount of entropy in the
output of the RNG, ensuring sufficient random-
ness.
Explanation: This test calculates the entropy
(often min-entropy) of the generated random
numbers. Entropy estimation assesses the unpre-
dictability of the sequence by examining how
difficult it is to predict the most likely out-
come. It ensures that the randomness generated
by the RNG has a high degree of unpredictabil-
ity, which is crucial for cryptographic security. A
lower-than-expected entropy value could indicate

predictability, thus compromising the security of
the random numbers.

Entropy is a very important parameter in
evaluating randomness. Hence, how it is evalu-
ated must examined carefully. The entropy values
produced by Procedure B of the BSI suite are
estimations of the min-entropy Hmin, which is
the most conservative measure of unpredictability,
calculated as the negative logarithm of the prob-
ability of the most likely outcome. Depending on
the application of the implemented entropy source
module, another related metric, Shannon entropy
HS , may be required. Shannon entropy can be
derived from min-entropy using the following for-
mula:

HS = −2−Hmin · log2
(
2−Hmin

)
−(

1− 2−Hmin
)
· log2

(
1− 2−Hmin

)
(8)

In addition to these, the BSI specifies that the
confidence level of the results is 99.87% [8].

2.5.2 Evaluation Metrics of PUFs

This section outlines a set of PUF characteris-
tics to evaluate the suitability of a PUF design
for security applications. Certain statistical prop-
erties, such as stability, correctness, diffuseness,
uniformity, and uniqueness, can be empirically
demonstrated through silicon-based experimenta-
tion. Other attributes, including the security vul-
nerability of PUFs, require computational analysis
for thorough assessment.

The first section explains how implemented
PUFs are not vulnerable to machine learning
(ML) attacks. In the subsequent sections, the eval-
uation criteria studied and constructed by either
Hori et al. [27] or Maiti et al. [28] are explained.
They are grouped with respect to three different
properties of the responses, and these groups are
listed below and explained in detail in the fol-
lowing sections. The metrics in the first and the
second groups evaluate the responses of the same
PUFs, although the metrics in the third group
evaluate how the responses vary between different
devices.

The quality of random numbers is pivotal in
cryptography, necessitating a thorough evaluation
of their properties. While Hori et al. [27] defines
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the randomness metric, Maiti et al. [28] defines the
uniformity metric. In this work, we think that the
uniformity metric is more suitable to use. Because,
although randomness in Hori et al. [27] indicates
that randomness is evaluated, only some kind of
uniformity is evaluated as in [28]. This choice can
be understood better by the explanation in Fin-
gerprint Property part below. In addition to these,
as indicated in [29], in general, how to deter-
mine the exact entropy of the PUF responses is
another very important open research problem.
Consequently, for the PUF implementation, only
the uniformity and diffuseness metrics are used to
evaluate entropy.

Resistance to Machine Learning (ML)
Attacks

PUFs are considered secure due to their inherently
unclonable architecture. However, several success-
ful studies have demonstrated that PUFs can be
mathematically cloned using the additive delay
model, see for instance [30]. Additionally, if adver-
saries gain access to a sufficient number of silicon
CRPs, PUFs may become susceptible to machine
learning attacks, as explained in [31], [32], [33],
[34]. Therefore, it is imperative for users to ensure
that PUFs are resistant to all forms of attacks
before deploying them in practical applications.

The study in [13], a comprehensive evalu-
ation of the security of CDC-XPUFs against
advanced ML attack methods, utilizing problem-
specific parameter values, was conducted to assess
the robustness of CDC-XPUFs. Compared to pre-
viously reported findings, their study uncovered
vulnerabilities in the CDC-XPUF with PUF cir-
cuit parameter configurations that were previously
not considered insecure. Specifically, they success-
fully compromised 64-bit CDC-6-XPUFs using
approximately 100 million simulated CRPs, and
64-bit CDC-5-XPUFs with 4.5 million simulated
CRPs or 2.5 million silicon CRPs. Additionally,
they managed to break 128-bit CDC-5-XPUFs
with 40 million simulated CRPs, instances that
had previously been considered resistant to any
existing ML attack methods. Notably, the method
in [13] was able to break 64-bit CDC-4-XPUFs
using only around 80,000 CRPs, significantly
fewer than those used in earlier studies. On the
other hand, it also demonstrates that the secu-
rity of CDC-XPUFs improves substantially as the

number of component PUFs increases, with 64-bit
CDC-XPUFs featuring seven components proving
entirely resilient to the two ML attack methods
employed. This finding is particularly encouraging
for the IoT security community, as many CDC-
XPUFs remain secure, especially those with 64-bit
or longer challenges and seven or more component
PUFs, which are resistant to the most advanced
ML attack methods developed to date. Conse-
quently, the experimental attack study in [13]
redefines the boundary between secure and inse-
cure regions within the PUF circuit parameter
space, offering valuable insights to PUF manufac-
turers and IoT security developers for refining the
protocols of CDC-XPUF-based applications and
mitigating potential risks.

Reliability of Responses From the Same
PUFs

PUF responses must be reliable and trusted in
real-world applications. A PUF is considered reli-
able if it consistently generates the same response
when the same challenge is applied to the same
device. Several factors can affect the reliability of
these responses, particularly changes in the oper-
ating environment. These factors include, but are
not limited to, ambient temperature, humidity,
the junction temperature of the circuit, power
supply voltage, and circuit aging.

In this work, the environmental variances
listed above have not been changed. We have
worked at an ambient room temperature of
approximately 27oC, stable humidity, and sta-
ble core voltage of Zynq-7020 SoC. In terms of
the reliability of responses from the same PUFs,
steadiness, and correctness are examined in this
section.

Steadiness

Steadiness is a reliability metric that is defined
by Hori et al. [27]. When generating the same
responses multiple times on the same device, it
is expected that all responses must be identical.
Steadiness indicates how stably a PUF outputs
the same responses to the same challenge sets. The
steadiness result is 1 if there are no changes in the
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responses that were recorded during the experi-
ment. Steadiness can be calculated as follows:

S = 1 +
1

Nc

Nc∑
k=1

log2 max{
∑Na

j=1 bk,j

Na
,

1−
∑Na

j=1 bk,j

Na
}, (9)

where Nc denotes the number of different chal-
lenges used, Na denotes the number of times each
challenge is applied, and bk,j denotes the j-th
response among all Na responses to the k-th chal-
lenge in the set of all Nc challenges. The stable
CRPs that pass the steadiness test are known as
”Correct ID”. See [12] for details.

Correctness

This metric is defined by Hori et al. [27] and is
almost the same metric as reliability, which is
defined by Maiti et al. [28]. The only difference
between their equations is the normalization fac-
tor. Correctness is normalized by the maximum
value of the Fractional Hamming Distance of the
responses, while reliability is normalized by the
average. Hence, we only computed the correctness
value and ignored the reliability. The ideal value
of the correctness is 1, which can be calculated as
follows:

C = 1− 2

Nc ×Na

Nc∑
k=1

Na∑
j=1

(bk ⊕ bk,j), (10)

where bk is the ”Correct ID”. This ”Correct ID”
is determined by the majority voting of all of the
giving responses for the input challenge. Nc is the
number of challenges in the dataset. bk,j is the
response of the j-th response in the set of all Na

responses to the k-th challenge.

Entropy of Responses From the Same
PUFs

A PUF is considered uniform if it generates an
equal distribution of zeros and ones in response
to a set of challenges. This characteristic is par-
ticularly desirable in block and stream cipher
processes, as repeated patterns in secret keys are
deemed detrimental. In terms of entropy, Hori et
al. [27] introduced the diffuseness metric, while

Maiti et al. [28] proposed the uniformity met-
ric. Given the close resemblance between Hori’s
[27] randomness metric and Maiti’s [28] uniformity
metric, only the uniformity metric is assessed in
this context.

Diffuseness

The diffuseness metric, introduced by Hori et
al. [27], is an intra-chip metric that assesses the
variability of a PUF’s responses to different chal-
lenges. A PUF is considered to exhibit diffuse-
ness if it produces distinct responses for distinct
challenges; for instance, the response to a spe-
cific challenge X should differ from the responses
generated by other challenges. Diffuseness is quan-
tified by calculating the fractional Hamming dis-
tance between the responses produced by the same
device in response to a set of challenges. The
diffuseness can be computed using the following
formula:

D =
4

K2 × L

L∑
l=1

K−1∑
i=1

K∑
j=i+1

(bi,l ⊕ bj,l), (11)

where L is the responses’ length, counted in bits,
and K is the number of such multi-bit responses
used in the experimental study.

Uniformity

The uniformity, which was introduced by Maiti et
al. [28], of a PUF measures the degree of zeros and
ones in the produced responses. Its ideal value is
0.5. The uniformity can be calculated as follows:

U =
1

Nr

Nr∑
i=1

bi, (12)

where Nr is the response length in a set, and
bi is the i-th response bit. The randomness met-
ric, defined by Hori et al. [27], is not used for
the evaluation since it is very similar to the uni-
formity. In order to make this statement more
clear, the equations to calculate the randomness
are provided below:

H = − log2 max(p, 1− p), (13)
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where p is the frequency of ’1’ in the response set
given by:

p =
1

Nr

Nr∑
i=1

bi (14)

where Nr is the response length in a set, and
bi is the i-th response bit. It is obvious that
the Equations (12) and (14) are nearly the same.
These two equations define the same thing actu-
ally, and it is the uniformity of the responses.
Hori et al. [27] claim that taking this uniformity
and using them in (13) calculates the random-
ness. The approach presented by Hori et al. [27]
is not suitable for accurately calculating random-
ness. Equation (13) can only provide information
regarding the percentage distribution of 0s and 1s,
which is already captured in the uniformity met-
ric proposed by Maiti et al. [28] in Equation (12).
Thus, using this equation does not contribute to a
deeper understanding of randomness beyond what
uniformity already indicates. As stated in [29],
how to determine the exact entropy of the PUF
responses is another very important open research
problem. Hence, in order to evaluate entropy, we
use the uniformity metric introduced by Maiti et
al. [28].

Fingerprint Property

In this paper, we only consider the uniqueness
metric as the fingerprint property. PUF unique-
ness measures the variation in outputs across
different devices, serving as a key metric for deter-
mining a device’s ability to uniquely identify itself,
which is critical for secure authentication.

Uniqueness

The uniqueness was introduced by Maiti et al.
[28], and it can be calculated using a Hamming
Distance between two devices’ responses. The
calculation is as follows:

Uk =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

HD(IDi, IDj)

L
(15)

where IDi and IDj are two L-bit responses of
a PUF installed on two different chips (the i-th
and j-th chip) to the k-th challenge repeatedly

applied L times. The ideal value of the Maiti’s
uniqueness [28] is 0.5. In addition to these metrics,
the resource utilization rate is a metric for both
TRNGs and PUFs.

2.5.3 The Resource Utilization Ratio
of the SoC

Although it is not included in any standard evalu-
ation method, the resource utilization rate within
the SoC or FPGA has also been a key evalua-
tion metric in our study. This is because our goal
is to minimize the resource usage of the hard-
ware primitives we utilize, ensuring that there is
still space available for other designs that will
be implemented for additional applications within
the SoC or FPGA. This metric has been applied
for both the TRNGs and PUFs designs.

3 Implementation Details

In this section, the implementation details of the
combined TRNG and PUF are presented. Before
explaining the combined design, the TRNG and
PUF parts are explained in a detailed way.

3.1 4-PLL-TRNG Implementation

The internal structure and the process of deter-
mining the PLL-TRNG parameters are explained
in the following sections.

3.1.1 Internal Structure of
4-PLL-TRNG Configuration

A primary limitation of PLL-TRNGs is their
comparatively low output data rate. To address
this constraint, this work proposes a methodol-
ogy to enhance output capacity by leveraging
additional PLLs available within the SoC. The
Zynq 7020 SoC, featuring four PLLs, represents
the upper bound for this implementation. The
implemented PLL-TRNG with four PLLs, named
4-PLL-TRNG, with a specific interconnection is
shown in Fig. 6. In this configuration, two PLLs
are used as reference clocks, while two PLLs are
used as jittered clocks.

3.1.2 Determining PLL-TRNG
Parameters

In our combined design, as the parameter search
algorithm, the backtracking algorithm in [6] is

10



Fig. 6 Implemented 4-PLL-TRNG Configuration

selected. Given a set of variables explained in
Section 2.1 and Section 2.2 and constraints listed
in Table 1, this backtracking method iteratively
investigates potential solutions. Unlike a brute-
force approach, it promptly eliminates any vari-
able values that fail to meet a constraint, then
backtracks to explore other possible values until
all valid solutions are identified. The algorithm
detailed in [6] involves determining the PLL-
TRNG parameters that comply with both physical
constraints and application requirements.

The code in the backtracking is open-source
shared in [35]. Hence, we can modify it for Zynq
7020 SoC parameters provided in Fig. 1. Table 1
presenting the range of PLL values of Zynq-7020
SoC is prepared using [18]. However, the max-
imum value of fout is not determined by PLL
parameters, it is determined by BUFG properties.
BUFG must be used in the SoC design, and hence,
it restricts fout value for the search algorithm.
That maximum value can also be found in [18].

After determining the parameters for our
implementation, the algorithm results are ordered
with respect to three different configurations.
Those are the maximum bit rate (max. R), the
maximum sensitivity to jitter (max. S), and the
maximum R ·S value as the optimization between
max. S and max. R. After obtaining the candidate
results for three different configurations of the
PLL-TRNG implementation, those results must
be tested with one more criterion. The sampling
process of the jittered clock with the reference

clock is illustrated in Fig. 2. In order to obtain ran-
dom numbers at the output of this PLL-TRNG, at
least one sample is required to be affected by the
jitter. This necessitates that the distance between
any edge of clk0 and its corresponding edge on clk1
must be less than ∆. This condition is met if the
following condition holds, as given in [36] and [37]:

σjit > max(∆Tmin), (16)

where σjit is the standard deviation of the jitter
at the output of the PLL, and max(∆Tmin) is
the largest distance between the two closest edges
of clk0 and clk1. This can be computed as given
below, see [36] and [37]:

max(∆Tmin) =
Tclk0

4KM
gcd(2KM ,KD)

=
Tclk1

4KD
gcd(2KM ,KD), (17)

where gcd is the greatest common divisor of two
integers.

Upon executing the backtracking algorithm
and obtaining results for the selected SoC, the
maximum value of max(∆Tmin) can be deter-
mined. However, accurately measuring or esti-
mating σjit presents significant challenges. At
this juncture, the estimation tool named Clock-
ing Wizard in Vivado 2019.1 can be utilized. This
tool provides an estimation of the jitter at the
PLL’s output clock, given the PLL parameters.
Consequently, the results from the backtracking
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algorithm are first examined, and max. R, max.
S and the max. R · S are identified. These three
candidates are then evaluated against Equation
(16). Candidates failing to satisfy the equation
are discarded, and alternative candidates from the
backtracking results are considered.

The results of the search algorithms are listed
in Table 2. As it can be seen, all the selected
configurations satisfy Equation (16).

3.2 64-bit CDC-7-XPUF
Implementation

In our combined design, 64-bit CDC-7-XPUF is
implemented due to the considerations about the
ML attacks. Details about these considerations are
presented in Section Resistance to Machine Learn-
ing (ML) Attacks. In the version presented in the
literature, the challenges except the main chal-
lenge are derived from the main challenge using
PRNG, whose equation is presented in Equation
(7). However, this method is changed in the com-
bined design and the details of it are presented in
Section 3.3.

For the statistical characteristics CRPs, we
generated up to 16,000 (challenges) × 32 (itera-
tions) × 128 (response length) × 3 (Zynq 7020
SoCs) CRPs out of each design. The repetition of
the CRPs is needed to study the statistical char-
acteristics and investigate related metrics such as
correctness and steadiness. The CRPs were cap-
tured at an ambient temperature of approximately
27oC, and the core voltage was set to 1.0V. The
ambient temperature does not reflect the temper-
ature of the chip, which has changed as long as
the experiments continue.

3.3 Implementation of the
Combined Design 4-PLL-TRNG
and CDC-7-XPUF

4-PLL-TRNG is a version of PLL-TRNG prepared
with four discrete PLLs. The detailed illustra-
tion of this version is shown in Fig. 6. There are
three different configurations of PLL-TRNGs in
this work, as explained in Section 3.1.2. Those are
the maximum bit rate (max. R), the maximum
sensitivity to jitter (max. S), and the maximum
R · S value as the optimization between max. S
and max. R. In the combined designs, we choose

max. R to work with and use the values in Table
2 for PLL configuration.

In the PUF part, in order to differentiate
the challenges, a new approach is applied instead
of PRNGs. The results in [38] demonstrate that
PUFs utilizing fix-point-free permutations exhibit
a level of resistance to machine learning attacks
that is nearly equivalent to that of pseudoran-
dom input transformations, which [38] asserts to
be the most robust approach in mitigating such
adversarial techniques. Furthermore, the proposed
design incurs minimal hardware overhead, as it
solely involves a fixed routing mechanism for chal-
lenge bits to the individual arbiter chains. This
fix-point-free transformation is a one-to-one and
onto (or a bijective) function. In our work, we use
another bijective and random transformation to
generate other challenges from the main challenge.
In that method, we apply the XOR operation
to the main challenge with the random numbers,
which is the output of the 4-PLL-TRNG. As it is
in [38], we expect resistance to ML attacks.

The block diagram of this combined design
is shown in Fig. 7. CDC-7-XPUF needs random
numbers provided from 4-PLL-TRNG in order
to generate challenges. Hence, the 4-PLL-TRNG
must first be run, and random numbers must be
obtained. For this application, we have six 64-bit
challenges in addition to one 64-bit main chal-
lenge. Hence, we use 6 × 64 = 384 bit of random
numbers. Additionally, two discrete BRAMs con-
nected to these systems are used to allow the
two subsystems to operate separately. However,
since there is only one processor on the PS side,
the BRAMs are transferred to the PC via UART
and USB as random numbers or responses fill
them. Since the processor can only deal with one
BRAM at a time, this structure creates a bottle-
neck in terms of throughput. In real applications,
this bottleneck can be overcome by using differ-
ent architectures. The architecture to be employed
will vary depending on whether the random num-
bers and responses are used within the SoC or,
as in our implementations, transmitted externally,
as well as the interface used for external trans-
mission. One possible architectural design involves
converting the 4-PLL-TRNG and 64-bit CDC-
7-XPUF into intellectual property (IP) cores,
enabling communication with relevant units and
the hard processor via the Advanced eXtensible
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Table 2 Determined Parameters for the PLL-TRNG Implementations

Config.
fref

(MHz)

(M0, N0, C0)
(M1, N1, C1)

f0 (MHz)
f1 (MHz)

KM KD
R

(Mbit/s)

S

(ps−1)
R · S σjit max(∆Tmin)

Max. R 125
(51,4,4)
(11,1,3)

398.438
458.333

176 153 2.60417 0.07013 0.18263 76.706 3.56506

Max. S 125
(51,4,4)
(32,3,3)

398.438
444.444

512 459 0.86806 0.204 0.177084 100.882 1.22549

Max. R · S 125
(37,5,2)
(32,3,3)

462.5
444.444

320 333 1.38889 0.148 0.20556 100.882 1.68919

Interface (AXI) bus. Additionally, memory buffers
may be incorporated into the design to accommo-
date the communication speeds of the interacting
units.

The aim of the combined design is that in
a real-world application, both should be able
to work together, but that this interoperability
should not adversely affect the performance of the
other subsystem. To demonstrate that this aim is
achieved, three different test setups are prepared.
These three setups share the structure shown in
Fig. 7. However, due to the different implementa-
tions, only the content of the state machines and
hence the wrapper code changes.

The purpose of building the first test setup is
to run 4-PLL-TRNG and CDC-7-XPUF sequen-
tially to provide a reference run for the other two
test setups. In the first test setup, 4-PLL-TRNG
is run first. Then, the 6× 64 bit random numbers
are taken by CDC-7-XPUF, and CDC-7-XPUF is
run.

The purpose of building the second test setup
is to show that the continuous operation of the
TRNG does not affect the PUF. In the second test
setup, the 4-PLL-TRNG is run for one round first.
This is because CDC-7-XPUF needs random num-
bers for the other 6 challenges other than the main
challenge. After the random numbers are gener-
ated, CDC-7-XPUF starts to run. However, while
CDC-7-XPUF runs, 4-PLL-TRNG also keeps run-
ning without stopping. In this test run, only the
results of the CDC-7-XPUF are recorded.

The purpose of the third test setup is to show
that, unlike the second test setup, the continu-
ous operation of CDC-7-XPUF does not cause any
deterioration in the performance of 4-PLL-TRNG.
In the third test setup, the 4-PLL-TRNG is run
for one round first. This is because CDC-7-XPUF
needs random numbers for the other 6 challenges
other than the main challenge. After the random
numbers are generated, CDC-7-XPUF starts to
run. However, while 4-PLL-TRNG runs, CDC-7-
XPUF also keeps running without stopping. In
this test run, only the results of the 4-PLL-TRNG

are recorded. In order to be sure that CDC-7-
XPUF runs continuously, the result of the fifth run
of 4-PLL-TRNG is recorded.

The implementation setup employed in this
study is illustrated in Fig. 7. It utilizes the ZC702
Rev1.1 Evaluation Board [39], which incorpo-
rates the Zynq 7020 XC7Z020-1CLG484C SoC
to facilitate the three different test implementa-
tions of the combined design 4-PLL-TRNG and
CDC-7-XPUF as detailed in this section. In the
PL section, three different test setups are devel-
oped using Vivado 2019.1 [40] in VHDL [41]. Two
dual-access BRAM blocks are employed to enable
real-time transmission of generated random num-
bers and CRPs to the PC. One port of each of
these BRAMs is connected to the PL, while the
other ports are connected to the PS section. The
requisite code for the PS section is written in the C
programming language [42]. The PL section gen-
erates random numbers and CRPs and writes a
predefined value to specific BRAM addresses to
indicate that the random bits or CRPs are ready.
Once this indication is given, the software in the
PS section outputs the random bits or CRPs to
the UART serial port, which are then converted
to USB and transmitted to the PC. The received
random bits or CRPs on the PC are saved in their
ASCII-coded hexadecimal form. Random bits are
later converted to binary form offline to serve as
input for AIS-20/31 Tests [43]. The codes of AIS-
20/31 Tests were compiled using [44] as it was.
Both Procedure A and Procedure B Tests of AIS-
20/31 are conducted for each result. Given that
these tests require approximately 7 Mb of ran-
dom bits, each output file is generated with a size
of approximately 7.2 Mb. For the PUF part, as
it is indicated in Section 3.2, for the statistical
characteristics CRPs, we generated up to 16,000
(challenges) × 32 (iterations) × 128 (response
length) × 3 (Zynq 7020 SoCs) CRPs out of each
design. The repetition of the CRPs is needed to
study the statistical characteristics and investigate
related metrics such as correctness and steadiness.
In order to calculate scores of metrics for the PUF
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Fig. 7 Block Diagram of Implementation Setup of the Combined Design of 4-PLL-TRNG and 64-bit CDC-7-XPUF

part, test codes are prepared in Python [45] and
compiled using Microsoft Studio 2022 [46]. Addi-
tionally, a 125 MHz clock frequency was selected
for the system’s main clock (clkin) due to timing
constraints inherent in the SoC. From the PS part
via UART, the random bits and the CRPs were
sent to the PC with a baud rate of 230,400 bit-
s/second between the PuTTY [47] terminal and
the SoCs.

In the setup in Fig. 7, the random bits and
CRPs were captured at an ambient temperature of
approximately 27oC, and the core voltage was set
to 1.0V. The ambient temperature does not reflect
the temperature of the chip, which has changed
as long as the experiments continue. Through a
dual-access BRAM, random bits and CRPs were
sent to the PS part.

In the following section, the implementation
results for those three different test setups are
presented.

4 Implementation Results of
the Combined Design
4-PLL-TRNG and
CDC-7-XPUF

A total of three different test configurations are
examined in this section:

1. Combined Design (a): In this first test
setup, 4-PLL-TRNG, and CDC-7-XPUF are
run sequentially to provide a reference run for
the other two test setups. Both generated ran-
dom numbers and responses are recorded in
this configuration.

2. Combined Design (b): In the second test
setup, TRNG works continuously, and after the
first run, only generated responses by PUF are
recorded.

3. Combined Design (c): In the third test
setup, PUF works continuously, and after the
first run, only generated random numbers by
TRNG are recorded.

4.1 Implementation Results of the
Random Numbers in
4-PLL-TRNG of Combined
Designs

AIS-20/31 test results of the combined designs
and for the reference discrete implementation of
4-PLL-TRNG with max. R configuration are pre-
sented in Table 3.

The Shannon entropy values of the combined
designs and, for reference, the discrete implemen-
tation of 4-PLL-TRNG with max. R configuration
with respect to AIS-20/31 test are presented in

14



Table 3 AIS-20/31 Test Results of the Combined Designs and the Reference Design of 4-PLL-TRNG

Implementation Type / Tests
Procedure A -

T0 Result
Procedure A -
T1-T5 Result

Procedure B -
T6-T8 Result

Discrete Implementation of
4-PLL-TRNG with

max. R Configuration
PASSED PASSED PASSED

Combined Design (a) PASSED PASSED PASSED
Combined Design (c) PASSED PASSED PASSED

Table 4 The Shannon Entropy Results with Respect to
AIS-20/31 of the Combined Designs and the Reference
Design of 4-PLL-TRNG

Implementation Type
Entropy

(Shannon)
Discrete Implementation of

4-PLL-TRNG with
max. R Configuration

0.999999972332402

Combined Design (a) 0.999999992061094
Combined Design (c) 0.999999971489810

Table 5 The Steadiness Results of the Combined
Designs and the Reference Design of 64-bit CDC-7-XPUF

Implementation Type Steadiness Score
Discrete Implementation of

64-bit CDC-7-XPUF
96.70%

Combined Design (a) 96.95%
Combined Design (b) 96.75%

Table 4. As expected, the Shannon entropy val-
ues of the referenced and the combined designs are
very close to each other.

4.2 Implementation Results of the
Responses in CDC-7-XPUF of
Combined Designs

The results of various metrics for the combined
and discrete implementations of the 64-bit CDC-
7-XPUF are presented in Tables 5, 6, 7 and 8.
Steadiness, correctness, diffuseness, and unifor-
mity scores for the combined designs are nearly
identical to those of the discrete implementation,
as expected. However, a notable improvement in
uniqueness is observed in the combined designs,
primarily due to the use of random numbers
generated by the 4-PLL-TRNG for producing
additional challenges, as detailed in Table 9.

Table 6 The Correctness Results of the Combined
Designs and the Reference Design of 64-bit CDC-7-XPUF

Implementation Type Correctness Score
Discrete Implementation of

64-bit CDC-7-XPUF
96.19%

Combined Design (a) 96.46%
Combined Design (b) 96.25%

Table 7 The Diffuseness Results of the Combined
Designs and the Reference Design of 64-bit CDC-7-XPUF

Implementation Type Diffuseness Score
Discrete Implementation of

64-bit CDC-7-XPUF
99.99%

Combined Design (a) 99.99%
Combined Design (b) 99.99%

Table 8 The Uniformity Results of the Combined
Designs and the Reference Design of 64-bit CDC-7-XPUF

Implementation Type Uniformity Score
Discrete Implementation of

64-bit CDC-7-XPUF
49.89%

Combined Design (a) 50.05%
Combined Design (b) 49.81%

4.3 Utilizations of Combined
Designs of Zynq-7020 SoCs

The utilization results of the combined designs
and, for reference, the discrete implementation of
4-PLL-TRNG with max. R configuration and 64-
bit CDC-7-XPUF are presented in Table 10. As
expected, the utilization rates of the combined
designs are very close to each other. Although
these usage rates are higher than those of dis-
crete implementations, they still consume fewer
resources than a design where discrete components
are used separately, each consuming resources
individually. In other words, the combined design
offers a lower utilization rate than a design that
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Table 9 The Uniqueness Results of the Combined
Designs and the Reference Design of 64-bit CDC-7-XPUF

Implementation Type Uniqueness Score
Discrete Implementation of

64-bit CDC-7-XPUF
18.96%

Combined Design (a) 50.30%
Combined Design (b) 50.07%

includes the discrete 4-PLL-TRNG and 64-bit
CDC-7-XPUF implementations.

5 Discussion About
Implementation Result of
the Combined Designs

The aim of combining the 4-PLL-TRNG and the
64-bit CDC-7-XPUF in a unified design is to main-
tain the cryptographic properties of these two
subsystems while achieving a more compact solu-
tion rather than utilizing them separately and
embedding them within the SoC. In this integra-
tion process, the random numbers generated by
the TRNG are used to create additional challenges
within the PUF aside from the main challenge.
This approach not only allows for a mutualistic
integration where the output of one subsystem is
utilized by the other but also simplifies the opera-
tions required for generating additional challenges
in the CDC-7-XPUF by replacing the multiplica-
tion and addition processes with a simple XOR
operation.

In order to test this combined structure, three
different test configurations are created, one of
which serves as the reference. In the first test
configuration, which is also the reference config-
uration, random numbers are generated in the
initial stage via the 4-PLL-TRNG. Once this
subsystem completes its operation, a 6 × 64-bit
random number required for the operation of the
64-bit CDC-7-XPUF is transferred to the PUF
subsystem, and the additional challenges are gen-
erated by XORing these random numbers with
the main challenge. The PUF then begins the
process of generating the response. It should be
noted at this point that the two subsystems are
not operated simultaneously. However, in a real
application, such as in an IoT system, the con-
current operation of these two subsystems would

be naturally desirable. For this purpose, two addi-
tional test configurations are designed. In one of
these configurations, the PUF results are tested
while the TRNG continuously operates, and in the
other, the opposite scenario is tested.

In the second test configuration, which is cre-
ated to examine these scenarios, random numbers
are generated first, similar to the first configu-
ration. The 6 × 64-bit random number is then
transferred to the PUF for challenge generation.
However, unlike the first configuration, the TRNG
is not stopped and continues to operate. Mean-
while, the PUF generates the response, and the
results are recorded on the PC. In this configura-
tion, the effect of continuous TRNG operation on
the PUF is examined.

In the third test configuration, as in the pre-
vious ones, the TRNG is initially activated, and
the random number transfer process to the PUF
subsystem is repeated. Once the PUF starts gener-
ating challenges with these random numbers, the
TRNG continues to run to observe its potential
interference with the PUF. During this period,
the TRNG is reactivated three more times while
the PUF continues to operate in a loop without
interruption. The results of these four TRNG acti-
vations, including the first one, are not recorded.
On the fifth and final activation, the TRNG is
run again, and the random number outputs are
recorded on the PC. Consequently, in this last
test configuration, the effect of continuous PUF
operation on the TRNG is analyzed.

These three configurations are named Com-
bined Design (a), Combined Design (b), and Com-
bined Design (c). All of these test configurations
are implemented in the test setup whose block
diagram is presented in Fig. 7.

Starting with the evaluation of the random
number generation results in this combined struc-
ture, the random numbers are assessed using
AIS-20/31 tests, and their Shannon entropies are
calculated using the formula in Equation (8). For
these evaluations, the reference 4-PLL-TRNG in
[9] (with the max. R configuration) is used along-
side Combined Design (a) and Combined Design
(c). Tables 3 and 4 are prepared for this assess-
ment. As expected, all three configurations pass
the AIS-20/31 tests, and very similar Shannon
entropy values are measured in each case. Conse-
quently, these tests demonstrate that there is no
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Table 10 The Utilization Rates of the Combined Designs and the Reference Design of 4-PLL-TRNG and 64-bit
CDC-7-XPUF

Resource
Type

Avaliable
Resource
Quantity

Utilization % of
4-PLL-TRNG with

max. R Configuration
(Utilization)

Utilization % of
64-bit

CDC-7-XPUF
(Utilization)

Utilization % of
Combined Design

(a)
(Utilization)

Utilization % of
Combined Design

(b)
(Utilization)

Utilization % of
Combined Design

(c)
(Utilization)

LUT 53200
2.89%
(1539)

2.82%
(1500)

4.64%
(2469)

4.65%
(2474)

4.64%
(2466)

LUTRAM 17400
0.41%
(72)

0.41%
(72)

0.47%
(82)

0.47%
(82)

0.47%
(82)

FF 106400
1.77%
(1884)

1.67%
(1781)

2.79%
(2965)

2.79%
(2966)

2.76%
(2936)

BRAM 140
2.86%
(2)

2.86%
(2)

2.86%
(4)

2.86%
(4)

2.86%
(4)

DSP 220
0%
(0)

5.45%
(12)

4.55%
(10)

4.55%
(10)

4.55%
(10)

IO 200
4.00%
(8)

4.00%
(8)

4.00%
(8)

4.00%
(8)

4.00%
(8)

PLL 4
100%
(4)

0%
(0)

100%
(4)

100%
(4)

100%
(4)

issue in utilizing the combined design in terms of
random number generation.

The evaluation metrics for PUFs are thor-
oughly examined in Section 2.5.2. These metrics
include resilience against ML attacks, steadiness,
correctness, diffuseness, uniformity, and unique-
ness. For these evaluations, the reference 64-bit
CDC-7-XPUF in [11] is used in conjunction with
Combined Design (a) and Combined Design (b).

The evaluation of the combined PUF design
focuses on six key metrics: resilience against
ML attacks, steadiness, correctness, diffuseness,
uniformity, and uniqueness. Resilience against
ML attacks is enhanced through XORing chal-
lenges with random numbers from the 4-PLL-
TRNG, as opposed to a fixed transformation,
improving defense against ML attacks as it is
explained in Section 3.3 and mentioned in [38].
Steadiness, correctness, diffuseness, and unifor-
mity results are nearly identical to those of the ref-
erence design, confirming the design’s suitability.
Notably, uniqueness shows significant improve-
ment due to better challenge generation, confirm-
ing the combined design’s overall effectiveness.

Lastly, we compared the utilization rate of
the separate designs with the combined designs
in Table 10. Through simple mathematics, it is
shown that resources expected to be more heavily
utilized when used separately are used more effi-
ciently in the combined design. As can be seen in
Table 10, the utilization of all resources except the
PLL remained below 5%. This indicates that when
this combined design is used, there is still room in
the SoC for other designs to be implemented for
additional applications.

6 Conclusion and Future
Works

In conclusion, we have introduced and imple-
mented a combined 4-PLL-TRNG and 64-bit
CDC-7-XPUF in a unified design. While these
components have been implemented indepen-
dently in previous works [9] and [11], their integra-
tion follows the current trend of combining TRNG
and PUF hardware primitives for enhanced effi-
ciency and security. This combined design is evalu-
ated in terms of the TRNG and PUF metrics, and
we concluded that the combined design is highly
suitable for use in IoT systems. The analysis and
tests conducted in this work have demonstrated
that the combined design retains all the features of
the separately designed 4-PLL-TRNG and 64-bit
CDC-7-XPUF.

As a future work, in addition to AIS-20/31,
NIST’s test suite [7] would also be applied. On
the other hand, the results of the combined design
would be tested in various environmental condi-
tions such as varying temperature and varying
voltage. Our combined design is also applicable to
other FPGA and SoC platforms, and so this design
would be tested on other platforms.
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Number Generator Embedded in Reconfig-
urable Hardware, in Workshop on Crypto-
graphic Hardware and Embedded Systems
(2002). https://api.semanticscholar.org/
CorpusID:5441670

[15] V. Fischer, F. Bernard, N. Bochard, Modern
Random Number Generator Design – Case
Study on a Secured PLL-Based TRNG. it -
Information Technology 61(1), 3–13 (2019).
https://doi.org/doi:10.1515/itit-2018-0025

[16] O. Petura, U. Mureddu, N. Bochard, V. Fis-
cher, Optimization of the PLL based TRNG
design using the genetic algorithm, in 2017
IEEE International Symposium on Circuits
and Systems (ISCAS) (2017), pp. 1–4. https:
//doi.org/10.1109/ISCAS.2017.8050839

[17] 7 Series FPGAs Clocking Resources User
Guide (UG472) (v1.14). https://docs.amd.
com/v/u/en-US/ug472 7Series Clocking.
Accessed: 2024-06-25

[18] Zynq-7000 SoC: DC and AC Switch-
ing Characteristics (DS187) (v1.21).
https://docs.amd.com/v/u/en-US/
ds187-XC7Z010-XC7Z020-Data-Sheet.
Accessed: 2024-02-25

18

https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1109/TC.2022.3218986
https://doi.org/10.1109/TC.2022.3218986
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://eprint.iacr.org/2024/1442
https://eprint.iacr.org/2024/1442
https://eprint.iacr.org/2024/1443
https://eprint.iacr.org/2024/1443
https://doi.org/10.5121/ijcnc.2022.14301
https://aircconline.com/ijcnc/V14N3/14322cnc01.pdf
https://aircconline.com/ijcnc/V14N3/14322cnc01.pdf
https://api.semanticscholar.org/CorpusID:5441670
https://api.semanticscholar.org/CorpusID:5441670
https://doi.org/doi:10.1515/itit-2018-0025
https://doi.org/10.1109/ISCAS.2017.8050839
https://doi.org/10.1109/ISCAS.2017.8050839
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ug472_7Series_Clocking
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
https://docs.amd.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet


[19] Y. Cao, W. Liu, L. Qin, B. Liu, S. Chen,
J. Ye, X. Xia, C. Wang, Entropy Sources
Based on Silicon Chips: True Random Num-
ber Generator and Physical Unclonable Func-
tion. Entropy 24(11) (2022). https://doi.org/
10.3390/e24111566

[20] M.B.R. Srinivas, K. Elango, Era of sentinel
tech: Charting hardware security landscapes
through post-silicon innovation, threat miti-
gation and future trajectories. IEEE Access
12, 68061–68108 (2024). http://dx.doi.org/
10.1109/ACCESS.2024.3400624

[21] B. Gassend, D. Clarke, M. van Dijk,
S. Devadas, Silicon physical random func-
tions, in Proceedings of the 9th ACM Con-
ference on Computer and Communications
Security (Association for Computing Machin-
ery, New York, NY, USA, 2002), CCS ’02,
p. 148–160. https://doi.org/10.1145/586110.
586132

[22] M. Majzoobi, F. Koushanfar, M. Potkon-
jak, Lightweight secure PUFs, in Proceedings
of the 2008 IEEE/ACM International Con-
ference on Computer-Aided Design (IEEE
Press, 2008), ICCAD ’08, p. 670–673

[23] M.D. Yu, M. Hiller, J. Delvaux, R. Sowell,
S. Devadas, I. Verbauwhede, A Lockdown
Technique to Prevent Machine Learning on
PUFs for Lightweight Authentication. IEEE
Transactions on Multi-Scale Computing Sys-
tems 2(3), 146–159 (2016). https://doi.org/
10.1109/TMSCS.2016.2553027

[24] K.T. Mursi, Y. Zhuang, Experimental
Examination of Component-Differentially-
Challenged XOR PUF Circuits, in Journal of
Physics: Conference Series, vol. 1729 (IOP
Publishing, 2021), p. 012006. https://dx.doi.
org/10.1088/1742-6596/1729/1/012006

[25] K.T. Mursi, B. Thapaliya, Y. Zhuang,
A.O. Aseeri, M.S. Alkatheiri, A Fast Deep
Learning Method for Security Vulnerability
Study of XOR PUFs. Electronics 9(10)
(2020). https://www.mdpi.com/2079-9292/
9/10/1715

[26] N. Wisiol, G.T. Becker, M. Margraf, T.A.A.
Soroceanu, J. Tobisch, B. Zengin. Break-
ing the lightweight secure PUF: Understand-
ing the relation of input transformations
and machine learning resistance. Cryptol-
ogy ePrint Archive, Paper 2019/799 (2019).

https://eprint.iacr.org/2019/799
[27] Y. Hori, T. Yoshida, T. Katashita, A. Satoh,

Quantitative and Statistical Performance
Evaluation of Arbiter Physical Unclonable
Functions on FPGAs, in 2010 International
Conference on Reconfigurable Computing and
FPGAs (2010), pp. 298–303. https://doi.org/
10.1109/ReConFig.2010.24. https://dl.acm.
org/doi/10.1109/ReConFig.2010.24

[28] A. Maiti, V. Gunreddy, P. Schaumont, A
Systematic Method to Evaluate and Com-
pare the Performance of Physical Unclonable
Functions (Springer New York, New York,
NY, 2013), pp. 245–267. https://doi.org/10.
1007/978-1-4614-1362-2 11. https://doi.org/
10.1007/978-1-4614-1362-2 11

[29] N.N. Anandakumar, M. Hashmi, M. Tehra-
nipoor, FPGA-based Physical Unclonable
Functions: A comprehensive overview of the-
ory and architectures. Integration 81 (2021).
https://doi.org/10.1016/j.vlsi.2021.06.001

[30] D. Lim, Extracting Secret Keys from Inte-
grated Circuits. Master’s thesis, Institute
of Technology (MIT), Massachusetts, Mass,
USA (2004)

[31] M.A. Alamro, K.T. Mursi, Y. Zhuang, A.O.
Aseeri, M.S. Alkatheiri, Robustness and
Unpredictability for Double Arbiter PUFs
on Silicon Data: Performance Evaluation and
Modeling Accuracy. Electronics 9(5) (2020).
https://doi.org/10.3390/electronics9050870

[32] M.S. Alkatheiri, Y. Zhuang, Towards Fast
and Accurate Machine Learning Attacks of
Feed-Forward Arbiter PUFs, in 2017 IEEE
Conference on Dependable and Secure Com-
puting (2017), pp. 181–187. http://dx.doi.
org/10.1109/DESEC.2017.8073845

[33] A.O. Aseeri, Y. Zhuang, M.S. Alkatheiri, A
Machine Learning-Based Security Vulnera-
bility Study on XOR PUFs for Resource-
Constraint Internet of Things, in 2018 IEEE
International Congress on Internet of Things
(ICIOT) (2018), pp. 49–56. http://dx.doi.
org/10.1109/ICIOT.2018.00014

[34] K.T. Mursi, Y. Zhuang, M.S. Alkatheiri,
A.O. Aseeri, Extensive Examination of XOR
Arbiter PUFs as Security Primitives for
Resource-Constrained IoT Devices, in 2019
17th International Conference on Privacy,

19

https://doi.org/10.3390/e24111566
https://doi.org/10.3390/e24111566
http://dx.doi.org/10.1109/ACCESS.2024.3400624
http://dx.doi.org/10.1109/ACCESS.2024.3400624
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1109/TMSCS.2016.2553027
https://doi.org/10.1109/TMSCS.2016.2553027
https://dx.doi.org/10.1088/1742-6596/1729/1/012006
https://dx.doi.org/10.1088/1742-6596/1729/1/012006
https://www.mdpi.com/2079-9292/9/10/1715
https://www.mdpi.com/2079-9292/9/10/1715
https://eprint.iacr.org/2019/799
https://doi.org/10.1109/ReConFig.2010.24
https://doi.org/10.1109/ReConFig.2010.24
https://dl.acm.org/doi/10.1109/ReConFig.2010.24
https://dl.acm.org/doi/10.1109/ReConFig.2010.24
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1016/j.vlsi.2021.06.001
https://doi.org/10.3390/electronics9050870
http://dx.doi.org/10.1109/DESEC.2017.8073845
http://dx.doi.org/10.1109/DESEC.2017.8073845
http://dx.doi.org/10.1109/ICIOT.2018.00014
http://dx.doi.org/10.1109/ICIOT.2018.00014


Security and Trust (PST) (2019), pp. 1–
9. http://dx.doi.org/10.1109/PST47121.
2019.8949070

[35] The source code of the backtracking algo-
rithm in [6]. https://gitlab.univ-st-etienne.
fr/sesam/pll-trng-constraint-programming/
tree/master. Accessed: 2024-02-25

[36] V. Fischer, M. Drutarovský, M. Simka,
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