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Abstract. Private set intersection (PSI) allows Sender holding a set X
and Receiver holding a set Y to compute only the intersection X ∩Y for
Receiver. We focus on a variant of PSI, called fuzzy PSI (FPSI), where
Receiver only gets points in X that are at a distance not greater than a
threshold from some points in Y .
Most current FPSI approaches first pick out pairs of points that are po-
tentially close and then determine whether the distance of each selected
pair is indeed small enough to yield FPSI result. Their complexity bot-
tlenecks stem from the excessive number of point pairs selected by the
first picking process. Regarding this process, we consider a more general
notion, called fuzzy mapping (Fmap), which can map each point of two
parties to a set of identifiers, with closely located points having a same
identifier, which forms the selected point pairs.
We initiate the formal study on Fmap and show novel Fmap instances for
Hamming and L∞ distances to reduce the number of selected pairs. We
demonstrate the powerful capability of Fmap with some superior prop-
erties in constructing FPSI variants and provide a generic construction
from Fmap to FPSI.
Our new Fmap instances lead to the fastest semi-honest secure FPSI pro-
tocols in high-dimensional space to date, for both Hamming and general
Lp∈[1,∞] distances. For Hamming distance, our protocol is the first one
that achieves strict linear complexity with input sizes. For Lp∈[1,∞] dis-
tance, our protocol is the first one that achieves linear complexity with
input sizes, dimension, and threshold.

Keywords: Fuzzy private set intersection · Fuzzy mapping · Multi-
query fuzzy reverse private membership test.

1 Introduction

Private set intersection (PSI) enables two parties, each with a private set, to
compute the intersection of their sets without revealing any information more
than the intersection itself. Since its high practical value in threat detection,
private contact discovery, sample alignment, and other scenarios, numerous PSI
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protocols [17,21,22] have been designed in last decades. And recent PSI protocols
have achieved extremely high efficiency [21]. Facing various complex practical
needs, there is also a growing interest in works on variants of PSI, including
labeled PSI (LPSI) [3, 5, 9], which outputs labels associated with elements in
intersection to Receiver; PSI cardinality (PSI-card) [10,16,25], which only reveals
intersection cardinality to Receiver.

This work focus on a variant of PSI, fuzzy PSI (FPSI). The input of FPSI
consists of m points from Sender in a d-dimensional space and n points from Re-
ceiver in the same space. And FPSI’s output only informs Receiver those Sender’s
points that have the distance (e.g., Hamming distance, L2 distance, etc.) with
some Receiver’s points not greater than the threshold δ, while nothing is re-
vealed to Sender. FPSI has many potential applications in fields that involve
fuzzy matching on datasets, such as privacy-preserving biometric search [23],
illegal content detection [1], and vulnerable password detection [4]. For instance,
the deployment of biometric systems in public places for searching for sensitive
groups (such as fugitives) yields significant benefits to public safety. However,
public concerns over privacy protection make it impractical to upload locally rec-
ognized biometric features to a cloud database for matching. Using PSI can solve
the privacy issue, but since biometric features always contain some noises (e.g.,
due to environmental disturbance, algorithms’ randomness, etc.), conventional
PSI cannot fulfill feature matching. In such cases, FPSI becomes indispensable.

Since the concept of fuzzy matching was introduced in PSI by Freedman,
Nissim, and Pinkas [11] in 2004, there has been a long list of works related
to FPSI [1, 4, 7, 8, 13–15, 23, 26]. The majority of them concern with FPSI for
Hamming distance, and the few exceptions [13–15] only consider about one or two
of L1, L2, and L∞ distances. Until 2024, Baarsen and Pu [1] make a breakthrough
by presenting the first FPSI protocol supporting general Lp distance with p ∈
[1,∞]. As the state-of-the-art FPSI for Lp∈[1,∞] distance, the communication
and computation costs of their protocols for high dimension scale linearly or
quadratically with the dimension d. They also conduct research on some variants
of FPSI, including labeled FPSI (LFPSI), fuzzy PSI-card (FPSI-card), and FPSI
with sender privacy (FPSI-SP). Regrettably, due to the super-linear factor in
complexities, their protocols still have room for improvement.

1.1 Motivation

Current FPSI protocols might have expensive overheads for their super-linear
factors in complexities.

First, all existing FPSI protocols for Hamming distance retain super-linear
factors with input sizes in their complexities. Starting from [11], most FPSI
protocols for Hamming distance employ the same idea: perform fuzzy matching
over all m·n pairs of inputs in order to select the final result. Existing works often
focus on improving fuzzy matching protocol for Hamming distance, and rarely
deal with m · n factor introduced by this idea. The current best FPSI protocol
for Hamming distance reducing this quadratic factor at the cost of introducing
assumption on inputs from both parties, only achieves near-linear complexity [8].
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Second, the efficiency of existing FPSI protocols for Lp∈[1,∞] distance is also
not satisfactory. Using oblivious key-value store (OKVS) and decisional Diffie-
Hellman (DDH) tuple, Baarsen and Pu [1] provide FPSI protocols with pre-
vious optimal complexities. However, most of their protocols are still troubled
by super-linear complexity with dimension. Although their protocol based on
locality-sensitive hashing (LSH) has communication and computation costs scal-
ing linearly with dimension, its costs scale super-linearly with Receiver’s input
size. Unfortunately, the prevalence of real databases with substantial dimension
and size (such as facial feature databases) makes the previously mentioned flaws
greatly hindering the applications of their protocols.

So, there exist two fascinating open questions:

– Can we construct an FPSI protocol for Hamming distance with communica-
tion and computation complexities that are strictly linear with m and n3?

– Can we construct an FPSI protocol for Lp∈[1,∞] distance of which costs scale
linearly with anyone of m, n, d, and δ?

1.2 Our Contribution

We provide affirmative answers to these two questions in the semi-honest setting.
Our main contributions are summarized as below.

– A New Cryptographic Primitive Called Fuzzy Mapping. We intro-
duce the abstraction of a new cryptographic primitive called fuzzy mapping
(Fmap). We show that many FPSI protocols [1,4,7,11,13,15,23,26] actually
are based on instances of Fmap, and complexity bottlenecks in these proto-
cols are derived from the excessive expansion rates of their Fmap instances.
Under some reasonable assumptions about inputs, we present a non-trivial
Fmap instance for Hamming distance and an Fmap instance for L∞ distance
with expansion rate of 1.

– FPSI for Hamming Distance of Which Costs Scale Strictly Linearly
with m and n. We provide a generic construction for FPSI from Fmap
that does not introduce any additional assumptions about inputs. As an
instance of it, we construct an FPSI protocol for Hamming distance using
our Fmap instance for Hamming distance. Due to the employment of this
non-trivial Fmap instance, communication and computation complexity of
the new protocol achieve strict linearity with m and n for the first time.

– FPSI for Lp∈[1,∞] Distance of Which Costs Scale Linearly with
Anyone of m, n, d, and δ. We show how to construct multi-query fuzzy
reverse private membership test (mqFRPMT), the fuzzy version of multi-
query reverse private membership test (mqRPMT), from Fmap without ex-
pansion on Sender’s set. Using mqFRPMT, we can easily obtain FPSI and its
variants, including FPSI-card, LFPSI, and FPSI-SP. By instantiating with
our Fmap instance for L∞ distance with expansion rate of 1, we ultimately

3 That is to say, as both m and n grow to be k times larger, communication and
computation costs of the protocol increase to k times at most.
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construct a new FPSI protocol for Lp∈[1,∞] distance. Its costs scale linearly
with any one of m, n, d, and δ, which allows it to perform better than prior
protocols.

– Performance. Our experimental results demonstrate that compared with
the state-of-the-art protocols, our protocol achieves a 4.6× reduction in com-
munication cost for Hamming distance when both parties input 128-bit bi-
nary strings and δ is set to 4, and achieves a 28−166× speedup and 6−40×
reduction in communication cost for Lp∈{1,2,∞} distance when d ≥ 6.

1.3 Related Work

We review previous semi-honest secure FPSI protocols, which can be divided
into two categories: FPSI for Hamming distance and FPSI for Lp∈[1,∞] distance.
A comparison of asymptotic complexities is given in Table 1.

FPSI for Hamming Distance. Freedman et al. [11] first propose the concept
of FPSI and provide a protocol for Hamming distance based on polynomial in-
terpolation and additively homomorphic encryption (AHE). Their protocol has
been proved insecure by Chmielewski and Hoepman [7]. For a long time, subse-
quent works on FPSI mainly focus on Hamming distance. Ye et al. [26] design
FPSI for Hamming distance with oblivious polynomial evaluation technique. In-
dyk and Woodruff [15] deal with FPSI for Hamming and L2 distances, but their
protocols rely on AHE and costly garbled circuits. Uzun et al. [23] construct
LFPSI for Hamming distance based on fully homomorphic encryption (FHE),
another costly technique. Using vector oblivious linear evaluation, Chakraborti
et al. [4] propose an efficient FPSI for Hamming distance of which cost is inde-
pendent of d, but at the cost of a non-negligible false positive rate. In addition,
they propose an efficient FPSI for L1 distance in one-dimensional space with the
concept of prefix matching. These protocols always perform a brute-force search
over all m · n pairs of inputs from both parties, which results in an m · n explo-
sion in communication and computation complexities. In 2024, Chongchitmate
et al. [8] propose the most efficient FPSI for Hamming distance to date. Their
protocol reduces the m ·n explosion through approximating FPSI result via mul-
tiple rounds of PSI on sampled components of points. However, its complexities
still fail to achieve strict linearity with m and n. Moreover, same with previous
protocols in [4, 23], they only consider Hamming distance over F2.

FPSI for Lp∈[1,∞] Distance. In 2022, Garimella et al. [13] construct the first
FPSI protocols for L1 and L∞ distance, which are considered as instances of
structure-aware PSI in their opinion. For FPSI, their key innovation lies in the
use of spatial hashing technique to decrease communication complexity. How-
ever, they do not discuss FPSI for general Lp distance and lack the improvement
in computation cost. In 2024, Baarsen and Pu [1] propose the first FPSI pro-
tocol supporting general Lp∈[1,∞] distance. They use spatial hashing or similar
techniques for coarse filtration on all pairs of both inputs, and propose a novel
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fuzzy matching protocol based on OKVS and DDH tuple for refined filtering to
complete FPSI. Additionally, they go further in protecting Sender privacy by
proposing and constructing FPSI-SP. Although many techniques are employed
to optimize complexity, complexities of their protocols still remain super-linear
factors in n or d, which make their efficiency suffer greatly.

Remark 1. Note that recent protocols are always based on assumptions. It is
necessary to introduce assumptions for making costs strictly linear with m and
n. The motivation is to limit the number of point pairs that might successfully
match in FPSI. If no restrictions are imposed, the number of point pairs that need
to be checked is m·n, which inevitably leads to an m·n factor in complexities [8].

Table 1. Asymptotic complexities of semi-honest secure FPSI protocols, where Sender
holds m points and Receiver holds n points in a d-dimensional space. M is the larger
one of m and n. δ is the threshold of FPSI. B1 and B2 are parameters in FHE scheme.
ρ ∈ (0, 1) is a parameter in LSH scheme. We ignore multiplicative factors of the com-
putational security parameter κ and statistical security parameter λ.

Distance Protocol Assumption Communication
Computation

Sender Receiver

Hamming

[26] – O
(
d2mn

)
O (poly(d)mn) O

(
d2mn

)
[23]⊖ FPR&FNR O (B1dmn) O (B2dmn) O

((
d
δ

)
n
)

[4]⊖ FNR O
(
δ2mn

)
O

(
(d+ δ2)mn

)
O ((d+ δ)mn)

[8]⊖ R ∧ S. cluster. O (dM logM) O (dM logM) O (dM logM)

Ours R. UniqC O
(
d2m+ δdn

)
O

(
d2m

)
O

(
d2m+ δdn

)

L∞

[13] R. lmin > 2δ O
(
m+ (4 log δ)dn

)
O

(
(2 log δ)dm

)
O

(
(2δ)dn

)
[1]

R. lmin > 2δ O
(
2dm+ δdn

)
O

(
2ddm

)
O

(
2dm+ δdn

)
R. disj. proj. O

(
m+ (δd)2n

)
O

(
d2m

)
O

(
m+ (δd)2n

)
Ours R ∧ S. disj. proj. O (δdm+ δdn) O (δdm+ n) O (m+ δdn)

Lp

[1]
R. lmin > 2δ

(
d

1
p + 1

)
O

(
δpm+ δ2ddn

)
O ((d+ δp)m) O

(
m+ δ2ddn

)
R. lmin > 1

ρ
δ O

(
(δpnρ logn)m+ δdnρ+1

)
O (((d+ δp)nρ logn)m) O

(
(nρ logn)m+ δdnρ+1

)
Ours R ∧ S. disj. proj. O ((δd+ p log δ)m+ δdn) O ((δd+ p log δ)m+ n) O (p log δm+ δdn)

- ⊖ means that this protocol only handles with Hamming distance on bit vectors.

- FPR (FNR) means that Receiver can tolerate a non-negligible false positive rate (false negative rate).
- R ∧ S. cluster. means that for both Sender’s set and Receiver’s set, the Hamming distance between any two points in the sa-
me set should be less than δ or greater than δ logn.
- R. UniqC means that for each Receiver’s point, there exists at least δ + 1 dimensions such that on each of them this point’s
component is different from others.

- R. lmin > l∗ means that the minimum distance between points of Receiver is greater than l∗.
- R. disj. proj. means that for each Receiver’s point, there exists at least one dimension on which its component keeps a dista-
nce greater than 2δ from other Receiver’s points.

- R ∧ S. disj. proj. means that the disj. proj. assumption should hold for both Sender’s set and Receiver’s set.
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2 Overview of Our Techniques

In this section, we present a high-level technical overview of our work. And the
ideal functionalities for FPSI and its several variants considered in our work are
given in Fig.1.

Parameters: Sender S, ReceiverR; Set size m,n; Dimension d; Distance function
dist(·, ·), Distance threshold δ; Leakage function leakage(·, ·); Label length σ.
Functionality:

– Wait an input Q ∈ Ud×m from S.
For LFPSI, wait another input LabelQ ∈ {0, 1}σ×m from S.

– Wait an input W ∈ Ud×n from R.
– Return leakage (Q,W) to R.

Leakage Functions: leakage(Q,W) is defined as:

– FPSI: leakage (Q,W) = {qj | ∃ i ∈ [n], dist (qj ,wi) ≤ δ}.
– LFPSI: leakage(Q,W) = {labelj | ∃ i ∈ [n], dist(qj ,wi) ≤ δ}, where labelj is

the label associated with qj .
– FPSI-card: leakage(Q,W) =

∑
j∈[m],i∈[n](dist(qj ,wi) ≤ δ).

– FPSI-SP: leakage(Q,W) = {wi | ∃ j ∈ [m], dist(qj ,wi) ≤ δ}.

Fig. 1. Ideal Functionalities for FPSI and Its Variants: FFPSI, FLFPSI, FFPSI−card, and
FFPSI−SP

2.1 Challenge in Efficient FPSI

Most FPSI protocols [1, 4, 7, 11, 13, 15, 23, 26], including ours, are based on the
same idea: perform FPSI using a batch of fuzzy matching, which can determine
whether a Sender’s point qj and a Receiver’s point wi satisfy dist(qj ,wi) ≤
δ, and return the result to Receiver. Therefore, there are two directions for
improving FPSI protocols: one is the optimization of fuzzy matching protocol,
which is the focus of most existing works [4,7,11,15,23,26], and the other is the
optimization of the process of reducing FPSI to fuzzy matching, which is the
focus of this work.

The above FPSI paradigm can be decomposed into two phases: “coarse map-
ping” and “refined filtering” [1]. Coarse mapping is used to assign several identi-
fiers to points of Sender and Receiver, and two points from Sender and Receiver
respectively with a same identifier will form a pair4. Refined filtering is used to
perform fuzzy matching on each pair obtained from coarse mapping to get the
final result.

The main complexity bottlenecks of existing works are derived from their
coarse mapping methods. For example, the naive coarse mapping which bru-
tally traverses all pairs of inputs from parties results in an unacceptable m · n
4 A point can appear in multiple pairs.
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blowup in complexities. Besides, [13] uses spatial hashing technique to perform
coarse mapping. In this coarse mapping, a Receiver’s point is mapped to O(2d)
identifiers. This expansion is the source of the factor 2d in complexities.

The challenge in efficient FPSI protocols is to construct coarse mapping meth-
ods with minor expansion on input sizes to break bottlenecks.

2.2 Fuzzy Mapping

We abstract the coarse mapping into a new cryptographic primitive named fuzzy
mapping (Fmap), with the complexity bottleneck being formalized as the expan-
sion rate of Fmap. As Sec 4.2 will demonstrate, almost all known FPSI protocols
are constructed based on instances of Fmap. Thus, proposing non-trivial Fmap
instances is the core task in this work.

The input of Fmap consists of m points (qj)j∈[m] ∈ Ud×m from Sender
and n points (wi)i∈[n] ∈ Ud×n from Receiver. The output of Fmap consists
of
(
ID (qj)

)
j∈[m]

for Sender and
(
ID (wi)

)
i∈[n]

for Receiver, where ID (q) and
ID (w) are subsets of an identifier universe I .

Three Requirements. For realizing the functionality of coarse mapping se-
curely, Fmap for dist (·, ·) of threshold δ should satisfy the following requirements:

– ID (qj) should intersect with ID (wi) when dist (qj ,wi) is not greater than
δ. Otherwise, coarse mapping would lose the pair (qj ,wi), leading to an
incorrect FPSI result. Note that the existence of refined filtering allows Fmap
to tolerate false positives5.

– The probability that there exist two distinct points wi and wi′ in W such
that ID (wi) intersects with ID (wi′) is negligible. Otherwise, an identifier
might lead to point pairs involving multiple Receiver’s points, which could
lead to incomplete executions of fuzzy matching in refined filtering6.

– For security, Fmap should not reveal any information about one party’s input
to the other party. In other words, the view of Receiver invoking Fmap with
Sender should be computationally indistinguishable from that with another
Sender, and the same applies to Sender’s perspective.

Expansion Rate. We define the Sender’s expansion rate and Receiver’s expan-
sion rate of Fmap as the ratio of the output size to the input size for Sender and
Receiver respectively.

It is clear that the optimal expansion rate of Fmap is 1. We use unit Fmap
(UFmap) to denote the Fmap with both expansion rates of 1, and unit Fmap for
Sender (sUFmap) to denote the Fmap with Sender’s expansion rate of 1.
5 That is to say, cases that ID (qj) intersects with ID (wi) and dist (qj ,wi) is greater

than δ are allowed.
6 In order to hide the distribution of points, Receiver can only initiate fuzzy matching

once for each identifier. If multiple fuzzy matchings are performed on an identifier,
Sender can infer that there are multiple Receiver’s points nearby.
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2.3 Non-trivial Fmap for Hamming Distance

There is no Fmap instance for Hamming distance except the naive one (i.e.
brutally traversing all m · n pairs of input points), which is the primary culprit
for m · n blowup in complexity. Therefore, we hope to find a non-trivial Fmap
to improve FPSI for Hamming distance.

We assume that each Receiver’s point has at least δ+1 unique components,
and denote this assumption as Receiver’s unique components (R. UniqC) as-
sumption. Typically, δ ≪ d holds for applications of FPSI [18, 19]. Thus, R.
UniqC assumption is intuitively reasonable, and furthermore, we formally prove
that it holds with overwhelming probability for uniformly random Receiver’s
input in Sec 5.1. R. UniqC assumption reflects real-world scenarios where legiti-
mate texts or numbers vary significantly, and their errors are merely deviations
of a few characters, while Receiver hopes to query several entries under such
circumstances [8].

Under R. UniqC assumption, a non-trivial Fmap for Hamming distance,
which we refer to as UniqC Fmap, can be constructed, where Receiver’s points
are mapped to their unique components, while each Sender’s point is mapped to
all of its d components. More details about UniqC Fmap are shown in Sec 5.1.

2.4 UFmap for L∞ Distance

UFmap for L∞ Distance is Enough. To overcome complexity bottlenecks
in FPSI protocols for Lp∈[1,∞] distance, we hanker for a UFmap for Lp∈[1,∞]

distance. Fortunately, benefiting from the facts that Fmap can tolerate false
positives and that the L∞ distance between any two points is always no greater
than the Lp∈[1,∞] distance, we can use Fmap for L∞ distance in FPSI for general
Lp∈[1,∞] distance. Therefore, we will only discuss the construction of UFmap for
L∞ distance in the following paragraphs.

A Toy Protocol from Spatial Additive Sharing. Let us first consider a toy
protocol in a simplified setting where Receiver chooses seedw,R for w ∈ W as
an assignment and Sender wants to choose seedq,R as the assignment of q ∈ Q
meeting seedq,R equals to seedw,R when L∞ (q,w) is not greater than δ.

The rough idea is to share assignment seedw,R of Receiver’s point w via addi-
tive secret sharing across those positions close to its components on d dimensions
as their assignments7, and then have Sender reconstruct the point’s assignment
using shares from each dimension. This idea is termed as spatial additive sharing
(SAS).

Certainly, Receiver’s assignments at these positions (Receiver’s assigned co-
ordinate system), should not be obtained in plaintext by Sender, or Sender will
know which is the component of w by comparing whether two adjacent posi-
tions were assigned the same shares, which violates security. Therefore, Receiver
should use AHE to hide the assigned coordinate system.
7 There are 2δ+1 positions centered around each component and their 2δ+1 assign-

ments are the same secret share.
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Conversion from Toy Protocol to UFmap. The toy protocol satisfies the
first requirement of Fmap in simplified setting. For crossing the gap between it
and UFmap, we should enhance the design to fully meet all three requirements.

By introducing the assumption from [1] that each Receiver’s point maintains
a distance of more than 2δ on at least one dimension from the others, we can
ensure that each Receiver’s point has at least a share that is independent of the
others. Consequently, the second requirement is satisfied.

Moreover, Sender can perform exactly the same as Receiver, including as-
signing values to coordinate system and points. Thus, if the same assumption
also holds for Sender’s input, each assignment of Sender’s point in own assigned
coordinate system is also imported with at least one independently uniform ran-
dom share. In order to prevent the final result from being used to deduce the
assignment of one’s own point in the opponent’s assigned coordinate system, we
additionally embed a Diffie-Hellman (DH) subprotocol.

In summary, a point’s ID from this Fmap contains only one element called
id, which is the sum, protected by the DH keys of both parties, of assignments
of the point in assigned coordinate systems of both parties. Building on the
above idea, we construct a UFmap for L∞ distance, which we call SAS Fmap.
Since its expansion rate is 1, SAS Fmap is capable of circumventing complexity
bottlenecks in FPSI protocols for Lp∈[1,∞] distance.

2.5 Applications of Fmap

mqFRPMT from sUFmap. Chen et al. [6] demonstrate the powerful ca-
pabilities of mqRPMT as a central block in their private set operation (PSO)
framework. An attractive idea is to use the fuzzy version of mqRPMT to pro-
vide a unified framework for FPSI and its variants. Thus, we propose multi-query
fuzzy RPMT (mqFRPMT).

Roughly speaking, mqFRPMT is a two-party protocol between Sender hold-
ing Q = (q1, · · · ,qm) and Receiver holding W = (w1, · · · ,wn). After invoking
of mqFRPMT for distance dist (·, ·) and threshold δ, Receiver learns an indica-
tion bit vector e = (e1, · · · , em) ∈ {0, 1}m such that ei equals to 1 if and only
if there exists a point wj ∈W meeting dist (qi,wj) is not greater than δ, while
Sender learns nothing.

We present a generic construction of mqFRPMT from sUFmap, OKVS, and
fuzzy matching. Firstly, Receiver and Sender invoke sUFmap to get identifiers
for their points. The first requirement of sUFmap guarantees that a Sender’s
point and a Receiver’s point have a same identifier when they are close enough.
For each Receiver’s point, Receiver generates keys with the point’s identifiers,
and uses the message required to execute fuzzy matching with this point as
value. Using these key-value pairs, Receiver encodes an OKVS and sends it to
Sender. Sender decodes the OKVS using keys from identifiers of Sender’s points
and continues to execute fuzzy matching, which will eliminate false positives in
sUFmap result, ultimately allowing Receiver to obtain the result of mqFRPMT.
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FPSI from Fmap. Consider a general Fmap that might not be an sUFmap. For
each point of Sender, Receiver obtains multiple fuzzy matching results instead
of one, and the number of 1 in these results may reveal additional information
about this Sender’s point to Receiver, violating the security of mqFRPMT.

However, if the ultimate goal is to construct FPSI, this leakage will not affect
the security8. Thus, any Fmap can be utilized to construct the corresponding
FPSI using a generic method, while only sUFmap can directly yield mqFRPMT9.

2.6 Applications of mqFRPMT

With oblivious transfer (OT), we can derive FPSI, LFPSI, and FPSI-card from
mqFRPMT by adopting the exact same approaches as that from mqRPMT to
obtain PSI, LPSI, and PSI-card.

Special Variant FPSI-SP from mqFRPMT and UFmap. As an excep-
tion, FPSI-SP cannot be simply realized by replicating the framework of PSI
because of its asymmetry. We observe that, Sender can obtain unique identi-
fiers of Receiver’s points in FPSI-SP result from UFmap. Therefore, if Sender
uses the result of UFmap as points’ labels, Receiver can learn the corresponding
identifiers of points in FPSI-SP result by invoking LFPSI with Sender. At last,
Receiver can trace back to get the result of FPSI-SP with these identifiers.

Fig.2 gives a pictorial overview of our work.

mqFRPMT
Sec 6

FPSI
Sec 7

LFPSI
Sec 7.2

FPSI-card
Sec 7.2

FPSI-SP
Sec 7.2

sUFmap

Fmap
Sec 4

OT OT OT + UFmap

OKVS + fuzzy matching

OKVS +
fuzzy matching+OT

Fig. 2. Summary of our work. The rectangles denote notions newly in this work.

8 Because FPSI allows Receiver to obtain information about these points.
9 As will be shown later, using fuzzy matching that outputs secret shares can solve

this problem.
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3 Preliminaries

For lack of space, we put Additively Homomorphic Encryption, Oblivious Trans-
fer, and Semi-Honest Security Model in the full version.

3.1 Notation

We use κ, λ to denote the computational and statistical security parameters
respectively. We use [n] to denote the set {1, 2, · · · , n} and [n,m] to denote the
set {n, n+ 1, · · · ,m}. We assume that every set X of size |X| has a default order
(e.g. lexicographical order), and represent it as X =

(
x1, · · · , x|X|

)
= (xi)i∈[|X|].

We use ← to denote assignment and x
R←− X to denote sampling x uniformly

at random from X. A function is negligible in ℓ, written negl(ℓ), if it vanishes
faster than the inverse of any polynomial in ℓ. x∥y is the concatenation of two
strings x and y. For a key-value pairs multiset List, we use List[k] to denote the
value for key k.

For parameters in FPSI, we use d to denote the dimension of space, δ to
denote the threshold, and dist (·, ·) to denote the distance function. We use H,
L∞, and Lp distance as Hamming, infinite norm, and Minkowski distance, re-
spectively. To simplify the statement, we use Lp∈[1,∞] to represent the union of
Lp∈[1,∞) and L∞. We use S to denote Sender, who holds set Q ∈ Ud×m of size
m, and R to denote Receiver, who holds set W ∈ Ud×n of size n, where d is
the dimension. Here we use 2u to denote size of alphabet U. We use qj and wi

as points in Q and W respectively. qj,k represents the component of point qj

on dimension k, and wi,k is analogous. balldist(·,·)wi
represents a d-dimensional ball

with wi as center and δ as radius. We use I to denote the identifier universe.
ID (qj) , ID (wi) ⊂ I are sets of qj ’s identifiers and wi’s identifiers respectively.

Specifically, for any two points q,w ∈ Ud, Hamming distance over U is
HU (q,w) = H (q,w) =

∑d
k=1 (qk ̸= wk), and Hamming distance over UP is

HUP (q,w) =
∑ d

P −1

k′=0 (q̃k′ ̸= w̃k′), where q̃k′ = qk′·P+1∥qk′·P+2∥ · · · ∥qk′·P+P and
w̃k′ = wk′·P+1∥wk′·P+2∥ · · · ∥wk′·P+P .

3.2 Oblivious Key-Value Store

The oblivious key-value store (OKVS) is a data structure consisting of Encode
and Decode algorithms that enables encoding n key-value pairs such that an
adversary can not infer the original input keys with the encoding result, when
the input values are random [12].

In addition, our Fmap and mqFRPMT protocols require independence prop-
erty for OKVS, which means decoding a non-encoded key will yield a uniformly
random result. Bienstoc et al. [2] prove that their RB-OKVS satisfies indepen-
dence property 10.

10 They call this property “random decoding”.
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The formal definitions of OKVS and its independence property are given in
the full version.

For evaluating the efficiency of OKVS, there are typically three measures:
rate, encoding cost, and decoding cost. The rate is the ratio between number n
of input pairs and output size m. Recent OKVS constructions [2,12,21] achieve
constant rate, O(nλ) encoding cost, and O(λ) decoding cost.

3.3 Fuzzy Matching

Fuzzy matching enables Sender and Receiver determine whether the Sender’s
point q and the Receiver’s point w satisfy dist(q,w) ≤ δ [1]. Its functionality
is given in Fig.3. Obviously, let the protocol return the result by secret shares,
and we get secret-shared fuzzy matching.

Our work is concerned with Hamming and Lp∈[1,∞] distances. For Hamming
distance, considering points of two parties as their Boolean shares in the case
U = {0, 1}, there is a trivial approach of (secret-shared) fuzzy matching that
consists of OT-based conversion of Boolean sharing to Arithmetic sharing and
(secret-shared) secure comparing [20]. This approach has O(d) communication
and computation costs. For Lp∈[1,∞] distance, Baarsen and Pu provide construc-
tions of fuzzy matching in [1].

Parameters: Sender S, Receiver R; Dimension d; Distance function dist(·, ·);
Distance threshold δ.
Functionality:

– Wait an input q ∈ Ud from S.
– Wait an input w ∈ Ud from R.
– Return e ∈ {0, 1} to R, where e = 1 if and only if dist (q,w) ≤ δ.

Fig. 3. Ideal Functionality for Fuzzy Matching FFMatch

One of building blocks we use is a special case of fuzzy matching, fuzzy
matching for interval (IFmat), by which Sender with an interval and Receiver
with a number can check whether this number belongs to the interval. Moreover,
if δ is set to 0, this special case of IFmat is private equality test (PEqT). Their
functionalities is given in Fig.4.

Using the idea of prefix matching, Chakraborti et al. [4] propose a semi-honest
secure IFmat protocol achieving communication and computation complexities
scaling logarithmically in the threshold. In all our constructions, we will use their
protocol to instantiate IFmat and PEqT.

4 Fuzzy Mapping

In this section, we provide the formal definitions for fuzzy mapping (Fmap) and
its expansion rate, and list existing instances of Fmap.
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Parameters: Sender S, Receiver R; Threshold δ.
Functionality:

– Wait an input a ∈ Z from S.
– Wait an input x ∈ Z from R.
– Return e to R, where e = 1 if and only if:

IFmat: x ∈ [a− δ, a+ δ]
PEqT: x = a

Fig. 4. Ideal Functionalities for IFmat FIFmat and PEqT FPEqT

4.1 Definition of Fmap

As mentioned in Sec 2.2, with Fmap, both parties can map each of their points
to a set of identifiers. If a Sender’s point and a Receiver’s point are close enough,
they will have a same identifier, and point pairs formed in this way will be further
filtered by fuzzy matching to obtain FPSI result.

The formal definition of Fmap is as follows.

Definition 1 (Fuzzy Mapping). A two-party protocol Π, where Sender’s in-
put Q = (qj)j∈[m] ∈ Ud×m results in ID (Q) =

(
ID (qj)

)
j∈[m]

and Receiver’s
input W = (wi)i∈[n] ∈ Ud×n results in ID (W) =

(
ID (wi)

)
i∈[n]

11, is a semi-

honest secure fuzzy mapping (Fmap) protocol Πdist(·,·)
Fmap of threshold δ for dist (·, ·),

if and only if Π satisfies:

– Correctness. For any two points qj ∈ Q and wi ∈W:

dist (qj ,wi) ≤ δ =⇒ ID (qj) ∩ ID (wi) ̸= ∅

– Distinctiveness. For the output ID (W) of Receiver, the following equation
holds:

Pr[∃ i, i′ ∈ [n] , s.t. (i ̸= i′) ∧ (ID (wi) ∩ ID (wi′) ̸= ∅)] = negl(κ)

– Security. Considering corrupt semi-honest Sender, for any Q ∈ Ud×m and
any W,W′ ∈ Ud×n, it holds that

viewΠ
S (κ, λ;Q,W)

c
≈ viewΠ

S (κ, λ;Q,W′)

Considering corrupt semi-honest Receiver, for any W ∈ Ud×n and any
Q,Q′ ∈ Ud×m, it holds that

viewΠ
R (κ, λ;Q,W)

c
≈ viewΠ

R (κ, λ;Q′,W)

To quantify the expansion of inputs, we define the expansion rate of Fmap.
11 ID (qj) , ID (wi) ⊂ I ; for security reason, we default to |ID(qj)| = |ID(qj′)| for

different j, j′ ∈ [m] and |ID(wi)| = |ID(wi′)| for different i, i′ ∈ [n].
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Definition 2 (Expansion Rate). The expansion rate of Fmap for Sender’s
input is

rateS =
1

m

∑
j∈[m]

|ID (qj)|

The expansion rate of Fmap for Receiver’s input is

rateR =
1

n

∑
i∈[n]

|ID (wi)|

The expansion rate of Fmap is

rate = max {rateS , rateR}

Definition 3 (Sender’s Unit Fmap). An Fmap is a Sender’s unit Fmap
(sUFmap) if and only if its expansion rate for Sender’s input is 1.

Definition 4 (Unit Fmap). An Fmap is a unit Fmap (UFmap) if and only if
its expansion rate is 1.

The efficiency of an Fmap instance is measured by:

– Expansion rate: Expansion rate of Fmap is positively related to complex-
ities of FPSI based on it, thus we hope it to be as small as possible. Note
that the optimal expansion rate is 1.

– Communication complexity: As a two-party protocol, Fmap’s own ef-
ficiency is influenced by its communication complexity. Since many Fmap
instances degenerate into two algorithms executed by Sender and Receiver
respectively, they have no communication.

– Computation complexity: The computation complexity of Fmap is also
a factor to consider, and it is clear that the lower bound of computation
complexity is the size of output.

A crucial observation is that as long as the complexity of Fmap does not
exceed that of the subsequent part, the asymptotic complexity of the entire
FPSI will not be affected.

Therefore, a high-level intuition is that we can improve the overall efficiency
of FPSI by reducing expansion rate of Fmap at the cost of a tolerable increase
in complexity of Fmap.

Lemma 1 (Reduction of Fmap). If there are two distance functions dist (·, ·)
and dist′ (·, ·) such that dist (q,w) ≤ dist′ (q,w) holds for any two points q and
w, then Fmap protocol Πdist(·,·)

Fmap realizes Fmap for dist′ (·, ·).

Proof. As Fmap for dist′ (·, ·), the distinctiveness and security of Π
dist(·,·)
Fmap are

guaranteed by Definition 1 of Fmap for dist (·, ·).
Now consider the correctness of Πdist(·,·)

Fmap for dist′ (·, ·). For any j ∈ [m] and
i ∈ [n], when dist′ (qj ,wi) ≤ δ. We have dist (qj ,wi) ≤ dist′ (qj ,wi) ≤ δ. Thus
the correctness for dist′ (·, ·) is guaranteed by the correctness for dist (·, ·).

Therefore, Πdist(·,·)
Fmap realizes Fmap for dist′ (·, ·).
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Corollary 1. For any P ∈ N+ and any two points q,w ∈ Ud, we have HUP (q,w) ≤
HU (q,w). According to Lemma 1, ΠHUP

Fmap can be seen as ΠHU
Fmap.

Corollary 2. For any two points q,w ∈ Ud, we have L∞ (q,w) ≤ Lp∈[1,∞] (q,w).
According to Lemma 1, ΠL∞

Fmap can be seen as Π
Lp∈[1,∞]

Fmap .

4.2 Existing Fmap Constructions

Table 2 lists existing constructions that fit to Definition 1 of Fmap. Many of
existing FPSI protocols are constructed using Fmap instances listed in this table.

As can be seen in Table 2, all of previous Fmap instances have communication
cost of zero and computation cost of theoretical lower bound but expansion
rate of pretty big value, while our UniqC Fmap is the only non-trivial Fmap
for Hamming distance and our SAS Fmap achieves the optimal expansion rate
but has non-optimal complexities. This trade-off works well because complexity
bottlenecks in previous FPSI protocols actually come from expansion rates rather
than costs of invoking Fmap.

Table 2. Comparison of Fmap instances, where m and n are set size of Sender’s and
Receiver’s inputs. d is the space dimension. ρ ∈ (0, 1) is a parameter in LSH scheme. We
ignore multiplicative factors of the computational security parameter κ and statistical
parameter λ.

Fmap Distance rateS rateR Communication
Computation

Sender Receiver

Naive [11] Anyone n 1 – O (nm) O (n)

Spatial Hashing [13] L∞ 1 O
(
2d
)

– O (m) O
(
2dn

)
Separated Balls [1] L∞ d O (δ) – O (dm) O (δn)

LSH [1] Lp∈[1,∞) O (nρ logn) O (nρ) – O ((nρ logn)m) O
(
nρ+1

)
Ours: UniqC Hamming d δ + 1 – O (dm) O (δn)

Ours: SAS L∞ 1 1 O (δdm+ δdn) O (δdm+ n) O (m+ δdn)

– Naive Fmap. A straightforward approach of FPSI is to perform fuzzy
matching on all pairs of these two inputs to obtain results. This idea can be
abstracted into a naive Fmap: for each Sender’s point qj , ID (qj) is {i}i∈[n],
thus rateS is O(n); for each Receiver’s point wi, ID (wi) is {i} where i is the
index of this point, thus rateR is 1. It does not rely on any assumptions and
can be used in FPSI for any distance function. Many existing FPSI proto-
cols [4,7,11,15,23,26] for Hamming distance adopt naive Fmap, which leads
to the m · n blowup in their complexities.

– Prior Non-trivial Fmap. Recently, some works [1,13] try to avoid the m·n
blowup. We abstracted three non-trivial Fmap from them, and the detailed
analysis can be found in the full version.

– New Fmap. Details of our Fmap instance will be given later.
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5 New Fmap Constructions

In this section, we present new semi-honest secure Fmap constructions for Ham-
ming and L∞ distances, which are the infrastructure for subsequent protocols.

5.1 UniqC Fmap for Hamming Distance

We present a construction of semi-honest secure Fmap for Hamming distance,
which is denoted by UniqC Fmap. Similar to existing Fmap constructions, UniqC
Fmap consists of two algorithms for Sender and Receiver respectively due to the
absence of interaction. For each Receiver’s point, Receiver chooses its δ+1 unique
components as its ID, while Sender selects all d components of a point as its ID.
The formal description of UniqC Fmap is shown in Fig.5.

Parameters:
– Sender S and Receiver R.

Input of S: Q = (q1, · · · ,qm) ∈ Ud×m.
Input of R: W = (w1, · · · ,wn) ∈ Ud×n.
S’s UniqC Fmap (Q):

1. For each j ∈ [m], S computes ID (qj)← {k∥qj,k}k∈[d].
2. Return ID (Q) = (ID (q1) , · · · , ID (qm)).

R’s UniqC Fmap (W):

1. For each i ∈ [n], R computes ID (wi)←
{
ui
k∥wi,ui

k

}
k∈[δ+1]

, where ui
k ∈ [d] is

a dimension such that wi,ui
k
̸= wi′,ui

k
holds for any i′ ∈ [n] \ {i}.

2. Return ID (W) = (ID (w1) , · · · , ID (wn)).

Fig. 5. Fmap Protocol for Hamming distance: ΠH
UniqC Fmap

Definition 5 (Unique Set). For a point w ∈ W in a d-dimensional space,
w has a unique component wk, if and only if its component on dimension k is
different from that of any other point in W. A point w is unique, if and only if
w has at least δ + 1 unique components. A set W is unique, if and only if all
points in W are unique.

Lemma 2 (Uniform Distribution). In a d-dimensional space, if points in
set W are uniformly distributed, then the probability that W is unique is 1 −
negl(d)12.
12 Here we default that the size of alphabet U is greater than n. When |U| = 2u ≤ n,

we can pack P components as one super-component such that
∣∣UP

∣∣ = 2uP > n, thus

R. UniqC assumption for HUP holds and Π
HUP
UniqC Fmap works. According to Corollary

1, we can use Π
HUP
UniqC Fmap as ΠHU

UniqC Fmap.
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Proof. For each wi ∈W and each dimension k ∈ [d], we have

Pr[wi,k is not a unique component] ≤ n− 1

2u

Hence, the probability that wi has exactly δ unique components is not greater
than

(
d
δ

)(
n−1
2u

)d−δ. By a union bound, it holds that

Pr[wi is not unique] ≤ δ
(
d
δ

)(n− 1

2u

)d−δ

≤ dδ+1

(
n− 1

2u

)d−δ

≜ f(d)

We default that 2u > n− 1 and thus f(d) is negl(d).

Pr[W is unique] = (1− Pr[wi is not unique])n ≥ (1− f(d))
n

which is 1− negl(d).

Remark 2. Considering 400-dimensional bio-bit-vectors and δ = 7 in [24], we
pack 16 bits into a super-component(i.e. d and u are updated to 25 and 16
respectively), and we choose statistical security parameter λ = 40.

Then, when n < 211, we have

Pr[W is unique] ≥

(
1− dδ+1

(
n− 1

2u

)d−δ
)n

≥ 1− 2−λ

For UniqC Fmap, we introduce the Receiver’s unique components (R. UniqC)
assumption:

Each Receiver’s point has unique components on at least δ + 1 dimensions.
If Receiver’s points are uniformly distributed, then according to Lemma 2,

R. UniqC assumption holds in high-dimensional case with overwhelming proba-
bility. Thus, it is acceptable to base our construction on it. Now, we prove the
protocol in Fig.5 is a semi-honest secure Fmap for Hamming distance.

Theorem 1 (Correctness). The protocol presented in Fig.5 satisfies the cor-
rectness defined in Definition 1 for Hamming distance.

Proof. For qj ∈ Q and wi ∈ W, if H (qj ,wi) ≤ δ, then qj has the same
component with wi on at least d − δ dimensions. wi has δ + 1 unique compo-
nents, so one of wi’s unique components is also qj ’s component. Hence, we have
ID (qj) ∩ ID (wi) ̸= ∅.

Theorem 2 (Distinctiveness). The protocol presented in Fig.5 satisfies the
distinctiveness defined in Definition 1.

Proof. The distinctiveness comes from Definition 5 of unique component.

Theorem 3 (Security). The protocol presented in Fig.5 satisfies the security
defined in Definition 1.

Proof. Since UniqC Fmap does degenerate into two algorithms without interac-
tion from a two-party protocol, outputs received by both parties are independent
of each other’s inputs. Thus, the security property is self-evident.
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5.2 SAS Fmap for L∞ Distance

We present a construction of semi-honest secure UFmap for L∞ distance, which
is denoted by SAS Fmap. We use idqj

and idwi
to represent the only element in

ID (qj) and ID (wi) respectively.
As described in Sec 2.4, for each point in input sets, SAS Fmap generates the

sum, protected by DH keys of two parties, of this point’s assignments in assigned
coordinate systems of two parties as its identifier.

We first deal with the assignment process with spatial additive sharing (SAS),
and then utilize the assignment algorithm to construct SAS Fmap.

Assignment Algorithm from SAS. SAS treats a point’s assignment as the
sum of its components’ assignments on d dimensions, thereby converting the
processing of a point in d-dimensional space into the processing of d points in
1-dimensional axes. And SAS ensures that the assignment of each component
of each point is also the assignment of the 2δ + 1 positions centered around
this component on the corresponding dimension. Our assignment algorithm is
described formally in Fig.6.

Parameters:
– Input size m.
– Space dimension d.
– Threshold δ.
– A finite group G.

Assignment
(
Q = (q1, · · · ,qm) ∈ Ud×m

)
:

1. Initialize key-value pairs multiset mListS ← ∅.
2. For each j ∈ [m] and each k ∈ [d]:

Sample Randj,k
R←− G.

For each t ∈ [−δ, δ]:
Update mListS ← mListS ∪ {(k∥ (qj,k + t) ,Randj,k)}.
While there exists assigned k∥ (qj,k + t) with other value in mListS :

Update values of its 2δ + 1 adjacent points with Randj,k.
3. Remove duplicates in mListS .
4. Pad mListS with dummy random elements to get ListS of size (2δ + 1)dm.
5. For each j ∈ [m]:

Set Seedqj ,S ←
∑

k∈[d] ListS [k∥qj,k].
6. Return ListS and

(
Seedqj ,S

)
j∈[m]

.

Fig. 6. Assignment Algorithm: Assignment(·)

UFmap Based on SAS. We assume that input sets of both parties have good
distribution in a high-dimensional space. Thus, we propose a semi-honest secure
UFmap based on SAS for L∞ distance.
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Intuitively, both parties first use assignment algorithm to attain their as-
signed coordinate systems (i.e. assigned axes of d dimensions). They encode their
assigned coordinate systems into OKVS in the form of ElGamal ciphertexts and
send OKVS to each other. By leveraging the homomorphism of ElGamal, both
of them can obtain ciphertexts of their own points assigned in the other’s co-
ordinate system. Finally, through a masked DH subprotocol, they can securely
acquire their own Fmap output. The formal description of SAS Fmap is in Fig.7.

Definition 6 (Separated Set). For two points q and q′ in a d-dimensional
space, q collides with q′ on dimension k if and only if the distance between their
components on dimension k is not greater than 2δ; otherwise, q is separated
from q′ on dimension k. A set Q is separated, if and only if, for each point
in Q, there exists a dimension such that this point is separated from anyone of
other points in Q on it.

Lemma 3 (Uniform Distribution [1]). In a d-dimensional space, if points
in set Q are uniformly distributed, then the probability that Q is separated is
1− negl(d).

For SAS Fmap, we introduce the R ∧ S. disj. proj. assumption:
Each Sender’s or Receiver’s point is separated from other points in the same

set on at least one dimension.
If points of inputs are uniformly distributed, then according to Lemma 3,

this assumption holds in high-dimensional case with overwhelming probability,
thus it is acceptable to base our construction on this assumption.

It is self-evident that the expansion rate of our protocol in Fig.7 is 1. Now,
we prove our protocol is a semi-honest secure Fmap for L∞ distance.

Theorem 4 (Correctness). The protocol presented in Fig.7 satisfies the cor-
rectness defined in Definition 1 for L∞ distance.

Proof. For qj ∈ Q and wi ∈ W, if L∞ (qj ,wi) ≤ δ, then for k ∈ [d], |qj,k −
wi,k| ≤ δ always holds, thus these qj,k are all assigned in ListR. According to
correctness of OKVS, S gets ElGamal ciphertexts of ListR [k∥qj,k] by decoding.

Since Assignment algorithm ensures that the 2δ + 1 points on dimension k
centered at wi,k all have the same assignment, it comes that ListR [k∥qj,k] =
ListR [k∥wi,k] for k ∈ [d]. Therefore, sum

pkElG,R
qj is the ElGamal ciphertext of

Seedwi,R. Then, it is clear that

Seed
qj

mkS,j ,R = skDH,R ·maskS,j ·
(
Seedqi,S + Seedwj ,R

)
=⇒ idqj = skDH,S · skDH,R ·

(
Seedqi,S + Seedwj ,R

)
Similarly, we can find that

idwi
= skDH,R · skDH,S ·

(
Seedwj ,R + Seedqi,S

)
Hence, idqj

equals idwi
when L∞ (qj ,wi) ≤ δ holds.
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Parameters:
– Sender S and Receiver R.
– A finite group G of prime order p and Fp.
– EC-ElGamal scheme E =

(
GenElG,EncElG,DecElG,⊕ElG

)
with plaintext space G.

– An OKVS scheme (Encode,Decode) and its random value r.

Input of S: Q = (q1, · · · ,qm) ∈ Ud×m.
Input of R: W = (w1, · · · ,wn) ∈ Ud×n.
Protocol:

Phase 1. Assignment and Summation:

1. S computes
(
ListS ,

(
Seedqj ,S

)
j∈[m]

)
← Assignment (Q).

2. S generates
(
skElG,S , pkElG,S

)
← GenElG (1κ). S samples m masks{

maskS,j
R←− Fp

}
j∈[m]

and computes their inverses
{
mask−1

S,j

}
j∈[m]

.

3. S initializes set L̃istS ← ∅. For each (key, ListS [key]) ∈ ListS , S updates

L̃istS ← L̃istS ∪
{(

key,EncElGpkElG,S (ListS [key])
)}

.
4. S encodes ES ← Encode

(
L̃istS , r

)
, and sends ES , pkElG,S to R.

5. Symmetrically, R sends ER ← Encode
(
L̃istR, r

)
, pkElG,R to S.

6. For each j ∈ [m], S computes

sum
pkElG,R
qj ←

⊕ElG

pkElG,R
k∈[d]

Decode (ER, k∥qj,k, r)

cipher
pkElG,R
qj ← maskS,j ×

((
EncElGpkElG,R

(
Seedqj ,S

))
⊕ElG

pkElG,Rsum
pkElG,R
qj

)
Phase 2. Decryption and Exchange:

7. S sends m ElGamal ciphertexts
(
cipher

pkElG,R
qj

)
j∈[m]

to R.

8. Symmetrically, R sends n ElGamal ciphertexts
(
cipher

pkElG,S
wi

)
i∈[n]

to S.

9. S samples skDH,S
R←− Fp. For each i ∈ [n], S computes

Seedwi
mkR,i

← DecElGskElG,S

(
cipher

pkElG,S
wi

)
Seedwi

mkR,i,S ← skDH,S · Seedwi
mkR,i

10. S sends
(
Seedwi

mkR,i,S

)
i∈[n]

to R. Symmetrically, R sends
(
Seed

qj

mkS,j ,R

)
j∈[m]

.

11. For each i ∈ [m], S computes
(
Seed

qj

mkS,j ,R,S

)
← skDH,S ·

(
Seed

qj

mkS,j ,R

)
, and

unmasks
(
Seed

qj

mkS,j ,R,S

)
to get idqj ← mask−1

S,j ·
(
Seed

qj

mkS,j ,R,S

)
.

12. Symmetrically, R gets (idwi)i∈[n].

Fig. 7. UFmap Protocol for L∞ Distance Without Expansion: ΠL∞
SAS Fmap
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Theorem 5 (Distinctiveness). The protocol presented in Fig.7 satisfies the
distinctiveness defined in Definition 1.

Proof. First consider the side of S. For j ∈ [m], let us assume that qj is separated
from the others in W on dimension kj . With reference to proof of Theorem 4,
we have

idqj ≜ skDH,S · skDH,R ·
(
ListS

[
kj∥qj,kj

]
+∆j

)
Under R ∧ S. disj. proj. assumption, in assignment algorithm, the 2δ + 1

points centered at qj,kj on dimension kj do not cover any other assigned points
nor be covered by any other assigned points. Thus, ListS

[
kj∥qj,kj

]
is a uniformly

random value independent of any other assignments. So, the probability that idqj

equals some idqj′ is m−1
|G| . Hence, it holds that

Pr[∃ j, j′ ∈ [m] , s.t. (j ̸= j′) ∧ (ID (qj) ∩ ID (qj′) ̸= ∅)] ≤
m2

|G|
= negl(κ)

Symmetrically, the same discussion for R will complete the proof.

Theorem 6 (Randomness). In the protocol presented in Fig.7,
(
idqj

)
j∈[m]

is

computationally indistinguishable from Rid
R←− Gm, and (idwi)i∈[n] is computa-

tionally indistinguishable from Rid
R←− Gn, if the DDH assumption holds.

Proof. First consider the side of S. With proof of Theorem 4, we have

idqj = skDH,S ·
(
skDH,R · Seedqj ,S

)
+ skDH,S · skDH,R · Seedqj ,R

According to DDH assumption,
(
skDH,R · Seedqj ,S

)
j∈[m]

is computationally in-
distinguishable from uniformly random vector in Gm.

Since the assignment of S’s coordinate system and that of R’s coordinate
system are independent, Seedqj ,R is independent of Seedqj ,S . In conclusion,(
idqj

)
j∈[m]

is computationally indistinguishable from Rid
R←− Gm.

Symmetrically, the same discussion for R will complete the proof.

Theorem 7 (Security). The protocol presented in Fig.7 satisfies the security
defined in Definition 1 if the DDH assumption holds.

Proof. First consider the side of S. We exhibit simulator SimS
Fmap (Q, id (Q)W)

for simulating corrupt S where id (Q)W is the output of S holding Q who in-
vokes the protocol presented in Fig.7 with R holding W. And we argue the
indistinguishability of the produced transcript from the real execution.

SimS
Fmap simulating the view of corrupt semi-honest Sender executes as fol-

lows:

1. SimS
Fmap generates

(
skElG,S , pkElG,S

)
← GenElG (1κ), samples

{
maskS,j

R←− Fp}
j∈[m]

, computes
{
maskS,j

−1
}
j∈[m]

, and appends them to the view.
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2. SimS
Fmap encodes OKVS ER with (2δ+1)dn dummy key-value pairs, generates(

skElG,R, pkElG,R
)
← GenElG (1κ), and appends ER, pkElG,R to the view.

3. SimS
Fmap samples

(
Seedi

R←− G
)
i∈[n]

, computes
(
cipher

pkElG,S
i ← EncElG

pkElG,S
(Seedi

)
)
i∈[n]

, and appends
(
cipherpkElG,S

i

)
i∈[n]

to the view.

4. SimS
Fmap samples skDH,S

R←− Fp and appends it to the view.

5. SimS
Fmap computes

(
Seed

qj

mkS,j ,R ← maskS,j · skDH,S
−1 · id (qj)W

)
j∈[m]

and ap-

pends them to the view.

Now we show that the view output by SimS
Fmap is indistinguishable from the

real one via a hybrid argument. We define four hybrid transcripts T0, T1, T2, T3,
where T0 is the real view of S, and T3 is the output of SimS

Fmap.

– Hyb0. This hybrid is the real interaction described in Fig.7. Let T0 denote
S’s view in the real protocol.

– Hyb1. Let T1 be the same as T0, except that OKVS ER and pkElG,R are re-
placed by ER and pkElG,R. The values for encoding ER are (2δ+1)dn cipher-
texts encrypted with pkElG,R, which are computationally indistinguishable
from uniformly random ElGamal ciphertexts by DDH assumption. Combin-
ing the obliviousness of OKVS, ER and ER are computationally indistin-
guishable. Hence, we have T1

c
≈ T0.

– Hyb2. Let T2 be the same as T1, except that
(
skElG,S , pkElG,S

)
and

(
cipher

pkElG,S
wi

)
i∈[n]

are replaced by
(
skElG,S , pkElG,S

)
and

(
cipher

pkElG,S
i

)
i∈[n]

. Since each Seedwi

mkR,i

is masked by uniformly random maskR,i from R,
(
Seedwi

mkR,i

)
i∈[n]

are statis-

tically indistinguishable from
(
Seedi

R←− G
)
i∈[n]

. Therefore,
(
cipher

pkElG,S
wi

)
i∈[n]

and
(
cipher

pkElG,S
i

)
i∈[n]

are statistically indistinguishable, which means T2
s
≈

T1.
– Hyb3. Let T3 be the same as T2, except that {maskS,j}j∈[m],

{
maskS,j

−1
}
j∈[m]

,

skDH,S , and
(
Seed

qj

mkS,j ,R

)
j∈[m]

are replaced by
{
maskS,j

}
j∈[m]

,
{
maskS,j

−1}
j∈[m]

, skDH,S , and
(
Seed

qj

mkS,j ,R

)
j∈[m]

. It is clear that masks {maskS,j}j∈[m]

and
{
maskS,j

}
j∈[m]

are distributed identically; skDH,S and skDH,S are dis-

tributed identically. Hence,
(
Seed

qj

mkS,j ,R

)
j∈[m]

and
(
Seed

qj

mkS,j ,R

)
j∈[m]

are

statistically indistinguishable. Thus T3
s
≈ T2 holds.

From the argument above, it holds that

view
ΠSAS Fmap

R (κ, λ;Q,W)
c
≈ SimS

Fmap (Q, id (Q)W)
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In addition, according to Theorem 6, we have

SimS
Fmap (Q, id (Q)W)

c
≈ SimS

Fmap

(
Q,Rid

R←− Gm
)

Therefore, it comes that

view
ΠSAS Fmap

R (κ, λ;Q,W)
c
≈ SimS

Fmap

(
Q,Rid

R←− Gm
)

c
≈ view

ΠSAS Fmap

R (κ, λ;Q,W′)

Symmetrically, the same discussion for R will complete the proof.

Remark 3 (Complexity). The protocol presented in Fig.7 has communication
complexity O (((2δ + 1)dκ+ 2κ+ κ) (m+ n)), computation complexity O ((2δ
+1)dm+ n) for S, and computation complexity O ((2δ + 1)dn+m) forR, if the
OKVS has a constant rate, linear encoding time, and constant decoding time.

6 Multi-Query Fuzzy RPMT Based on sUFmap

In this section, we provide the ideal functionality for mqFRPMT and present
mqFRPMT protocols for L∞ distance and for Lp∈[1,∞) distance respectively,
using sUFmap for L∞ distance.

6.1 Definition of mqFRPMT

mqFRPMT is the fuzzy version of mqRPMT, and we define the ideal functional-
ity for mqFRPMT in Fig.8. Combining with OT, mqFRPMT can directly yield
FPSI, FPSI-card, and LFPSI.

Parameters: Sender S, ReceiverR; Set size m,n; Dimension d; Distance function
dist(·, ·); Distance threshold δ.
Functionality:

– Wait an input Q ∈ Ud×m from S.
– Wait an input W ∈ Ud×n from R.
– Return e = (e1, · · · , em) ∈ {0, 1}m to R, where ej = 1 if and only if there

exists wi ∈W such that dist (qj ,wi) ≤ δ.

Fig. 8. Ideal Functionality for Multi-Query Fuzzy RPMT FmqFRPMT

6.2 mqFRPMT for L∞ Distance from sUFmap

The high-level idea of sUFmap-based mqFRPMT is as described in Sec 2.5. In
mqFRPMT for L∞ distance, we instantiate fuzzy matching with an idea similar
to [1]. We give the detailed mqFRPMT protocol for L∞ distance in Fig.9.

We provide the proofs of correctness and security in the full version.



24 Y. Gao et al.

Parameters:
– Sender S and Receiver R.
– Space dimension d and threshold δ.
– An AHE scheme E = (Gen,Enc,Dec,⊕).
– An OKVS scheme (Encode,Decode) and its random value r.

Input of S: Q = (q1, · · · ,qm) ∈ Ud×m.
Input of R: W = (w1, · · · ,wn) ∈ Ud×n.
Protocol:

1. S and R invoke ΠL∞
sUFmap: S acts as Sender with input Q and R acts as Receiver

with input W. S receives ID (Q) and R receives ID (W).
2. R generates (sk, pk)← Gen (1κ). R initializes set List← ∅.
3. For each i ∈ [n], each k ∈ [d], and each t ∈ [−δ, δ], R update

List← List ∪ {(idwi∥k∥ (wi,k + t) ,Encpk(0))}idwi
∈ID(wi)

4. R encodes E ← Encode (List, r), and sends E, pk to S.
5. For each j ∈ [m], S samples maskj

R←− P and computes

cipherj ← Encpk (maskj)⊕pk

⊕
pk

k∈[d]

Decode
(
E, idqj∥k∥qj,k, r

)
Then, S sends

(
cipherj

)
j∈[m]

to R.
6. R computes

(
vj ← Decsk

(
cipherj

))
j∈[m]

.
7. For each j ∈ [m], S and R invoke FPEqT: S acts as Sender with input maskj

and R acts as Receiver with input vj . S receives nothing and R receives ej .
8. R learns e = (e1, · · · , em).

Fig. 9. mqFRPMT for L∞ from sUFmap: ΠL∞
mqFRPMT

Theorem 8 (Correctness). The protocol presented in Fig.9 realizes the func-
tionality FmqFRPMT defined in Fig.8 for L∞ distance correctly.

Theorem 9 (Security). The protocol presented in Fig.9 realizes the function-
ality FmqFRPMT defined in Fig.8 for L∞ distance against semi-honest adversaries
in the FPEqT-hybrid model if E satisfies IND-CPA security.

Remark 4 (Complexity). The protocol presented in Fig.9 has communication
complexity O (((2δ + 1)dκ+ 2κ+ κ) (m+ n)), computation complexity O ((2δ
+1)dm+ n) for S, and computation complexity O ((2δ + 1)dn+m) forR, if the
OKVS has a constant rate, linear encoding time, and constant decoding time;
the UFmap is SAS Fmap in Fig.7.

6.3 mqFRPMT for Lp ∈ [1,∞) Distance from sUFmap

The construction of mqFRPMT for Lp∈[1,∞) distance is similar to ΠL∞
mqFRPMT.

For computing Lp∈[1,∞) distance, in OKVS encoding, AHE ciphertexts of |t|p
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instead of 0 are used as values of idwi∥ (wi,k + t). Therefore, Sender can com-
pute AHE ciphertexts of the p power of distances and mask them. With IFmat
protocol, Receiver can complete the secure comparison between masked p power
of distances and masked δp with Sender to learn final result of mqFRPMT. We
give the detailed protocol and relevant proofs in the full version.

7 FPSI Protocols

7.1 Generic Construction of FPSI from Fmap

Fmap generates the same identifier for Sender’s point and Receiver’s point that
are close to each other, and then Sender and Receiver can use OKVS and fuzzy
matching to further filter the point pairs implied by these identifiers to obtain
the FPSI output. This is a generic approach to constructing FPSI from Fmap,
indicating the adaptability of Fmap for various distance functions.

FPSI for Distances with Translation Invariance. As a specific example,
let us now focus on constructing FPSI from Fmap for those distance functions
having theu translation invariance property.

Definition 7 (Translation Invariance). A distance function dist (·, ·) on Ud×
Ud has translation invariance property if and only if, for any two point q,w ∈ Ud

and any vector v ∈ Ud, it holds that

dist (q,w) = dist (q+ v,w + v)

It is not difficult to see that Hamming and Lp∈[1,∞] distances both have
translation invariance property. We provide the detailed generic construction
from Fmap to FPSI for distance with translation invariance in Fig.10. Thus,
this generic construction is a powerful tool for FPSI for Hamming and Lp∈[1,∞]

distances. Specifically, we can instantiate the Fmap and fuzzy matching in the
construction in Fig.10 with UniqC Fmap and trivial fuzzy matching for Hamming
distance in Sec 3.3 to obtain an FPSI for Hamming distance.

We provide the proofs of correctness and security in the full version.

Theorem 10 (Correctness). The protocol presented in Fig.10 realizes the func-
tionality FFPSI defined in Fig.1 for distance with translation invariance correctly.

Theorem 11 (Security). The protocol presented in Fig.10 realizes the func-
tionality FFPSI defined in Fig.1 for distance with translation invariance against
semi-honest adversaries in the (FssFMatch,FPEqT,FOT)-hybrid model, if E satisfies
IND-CPA security.

Remark 5 (Costs Analysis). The communication cost of protocol presented in
Fig.10 consists of: communication cost of Fmap, sending OKVS from n · rateR
pairs, sending m ·rateS masked ciphers of points, communication cost of m ·rateS
fuzzy matching, and communication cost of m OTs.
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Parameters:
– Sender S and Receiver R.
– Space dimension d, distance function dist (·, ·) having translation invariance,

and threshold δ.
– An AHE scheme E = (Gen,Enc,Dec,⊕).
– An OKVS scheme (Encode,Decode) and its random value r.

Input of S: Q = (q1, · · · ,qm) ∈ Ud×m.
Input of R: W = (w1, · · · ,wn) ∈ Ud×n.
Protocol:

0. S permutates Q randomly.
1. S and R invoke Π

dist(·,·)
Fmap : S acts as Sender with input Q and R acts as Receiver

with input W. S receives ID (Q) and permutates each ID (qj) randomly; R
receives ID (W).

2. R generates (sk, pk)← Gen (1κ). R initializes set List← ∅.
3. For each i ∈ [n], R update

List← List ∪
{(

idwi ,
(
Encpk (wi,1) , · · · ,Encpk (wi,d)

))}
idwi

∈ID(wi)

4. R encodes E ← Encode (List, r), and sends E, pk to S.
5. For each j ∈ [m] and each ℓ ∈ [rateS ], S samples maskj,ℓ = (maskj,ℓ,k)k∈[d]

R←−
Ud and computes

cipherj,ℓ ←
(
Encpk (maskj,ℓ,k)⊕pk Decode

(
E, idqj ,ℓ, r

)
k

)
k∈[d]

uj,ℓ ←maskj,ℓ + qj

Then, S sends
(
cipherj,ℓ

)
j∈[m],ℓ∈[rateS ]

to R.
6. R computes

(
vj,ℓ ← Decsk

(
cipherj,ℓ

))
j∈[m],ℓ∈[rateS ]

.

7. For each j ∈ [m] and each ℓ ∈ [rateS ], S and R invoke Fdist(·,·)
ssFMatch: S acts as

Sender with input uj,ℓ and R acts as Receiver with input vj,ℓ. S receives
eS,j,ℓ and R receives eR,j,ℓ.

8. For each j ∈ [m], S and R invoke FPEqT: S acts as Sender with input
(eS,j,ℓ)ℓ∈[rateS ] and R acts as Receiver with input (eR,j,ℓ)ℓ∈[rateS ]. S receives
nothing and R receives 1− ej . R learns e = (e1, · · · , em).

9. For each j ∈ [m], S and R invoke FOT: S acts as Sender with input
(m0 =⊥,m1 = qj) and R acts as Receiver with input ej . S receives noth-
ing and R receives mej .

10. R learns Ifuzzy ←
{
mej |(j ∈ [m]) ∧ (ej = 1)

}
as output.

Fig. 10. FPSI for dist (·, ·) with translation invariance from Fmap: Πdist(·,·)
FPSI
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For S, the computation cost of this protocol consists of: computation cost of
Fmap as Sender, m · rateS decoding of OKVS, m · rateS homomorphic masking of
points, computation cost of m ·rateS fuzzy matching as Sender, and computation
cost of m OTs as Sender.

For R, the computation cost of this protocol consists of: computation cost
of Fmap as Receiver, n · rateR encryptions of points, encoding of OKVS with
n · rateR pairs, m · rateS decryptions of points, computation cost of m · rateS
fuzzy matching as Receiver, and computation cost of m OTs as Receiver.

FPSI for Functions with Invariance. Note that our construction is not lim-
ited to distance functions with translation invariance, such as Hamming distance.
For any function with some invariance, we can obtain FPSI from Fmap using a
similar construction.

For example, a generic construction for function with rotation invariance,
such as cosine similarity, can be proposed via simply replacing additive masks
and AHE by rotational masks and homomorphic encryption allowing rotation
on ciphertexts.

7.2 FPSI(-Variants) from mqFRPMT

As shown in Sec 2.6, mqFRPMT can be used as a central building block to
construct FPSI and its various variants, including LFPSI, FPSI-card, and the
special FPSI-SP. For lack of space, we put the detailed method and proofs in
the full version.

In Sec 6.2 and Sec 6.3, we present mqFRPMT protocols for L∞ and Lp∈[1,∞)

distances respectively. Based on them, we can easily obtain FPSI for Lp∈[1,∞]

distance.

8 Implementation

We provide experimental details and specific data for FPSI, and compare our
performance with previous works. We also conduct experiments in unbalanced
setting and the data can be found in the full version.

8.1 Implementation Details

Environment. We run the experiments on a single machine with 2.00GHz Intel
Xeon Gold 6330 CPU and 256 GB RAM. We measure the time of online phase
in a local network setting with network latency of 0.02 ms and bandwidth of 10
Gbps.

Instantiations. We choose the computational security parameter κ = 128 and
the statistical security parameter λ = 40. Our protocols are written in C++ and
we use the following instantiations in our implementation.
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– OKVS: We use RB-OKVS in [2].
– OT: We use OT implementation in libOTe13.
– Goldwasser-Micali: We use GMP14 to implement Goldwasser-Micali cryp-

tosystem with key size of 2048-bit as AHE in our FPSI for Hamming dis-
tance.

– Paillier: We use the implementation of Paillier in Intel Paillier Cryptosystem
Library15 with key size of 2048-bit as AHE in our FPSI for Lp∈[1,∞] distance.

– Others: We use Curve25519 in cryptoTools16 as the underlying group G for
SAS Fmap. We adopt Coproto17 to realize network communication.

8.2 Performance

FPSI for Hamming Distance. We compare our FPSI form UniqC Fmap for
Hamming distance in Sec 7.1 with the near-linear protocol by Chongchitmate et
al., which is the only one overcomes the m ·n blowup in complexity among prior
works for Hamming distance [8]. Unfortunately, we do not have their code, thus
we use their experimental results directly from their paper [8] and run our code
with the same parameters.

The comparison is shown in Table 3. It can be observed that as m and n
increase from 256 to 4096, the communication and computation costs of our
protocol both scale linearly, and our protocol performs better than [8] in all
cases. Note that our protocol achieves a 4.6× reduction in communication cost,
which is independent of the running environment.

Table 3. Communication cost and running time of FPSI for Hamming distance, where
input set sizes m = n ∈ {256, 1024, 4096}, universe U = F2, dimension d = 128, and
threshold δ = 4. UniqC Fmap packs P = 16 bits as one super-component.

m = n Protocol Comm. (MB) Time (s)

256 [8] 465.68 38.7
Ours 91.889 5.18

1024 [8] 1779.3 147.85
Ours 367.53 19.428

4096 [8] 6870 569.9
Ours 1470 76.00

FPSI for Lp∈[1,∞] Distance. We compare our FPSI from SAS Fmap in Sec
7.2 with the state-of-the-art protocols in [1] including FPSI in low-dimensional
(denoted by [1]L) and high-dimensional (denoted by [1]H) space. We report the
13 https://github.com/osu-crypto/libOTe.git
14 https://gmplib.org/
15 https://github.com/intel/pailliercryptolib.git
16 https://github.com/ladnir/cryptoTools.git
17 https://github.com/Visa-Research/coproto.git

https://github.com/osu-crypto/libOTe.git
https://gmplib.org/
https://github.com/intel/pailliercryptolib.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/coproto.git


Efficient Fuzzy Private Set Intersection from Fuzzy Mapping 29

performances for input sizes m = n ∈
{
24, 28, 212, 216

}
, dimension d ∈ {2, 6, 10},

and threshold δ ∈ {10, 30}. Since [1]H needs more than 104 seconds when n ≥
212, we omit these data in our tables.

FPSI for Lp∈{1,2} Distance. Since there is no implementation of [1]H for Lp∈[1,∞)

distance, we estimate its costs with the hyper-parameter ρ = 0.5 for L1 distance
and ρ = 0.365 for L2 distance as reported in [1]. For comparison, we assume
that the costs of [1]H only consist of OKVS encoding and sending, and estimate
the encoding to take 800 machine cycles per pair, which is the best performance
of our machine. In short, we report a conservative estimates of [1]H for Lp∈{1,2}
distance in our table. Table 4 shows that, for L1 and L2 distance, our protocol
achieves a 28 − 166× speedup and reduces communication cost by a factor of
6− 40× when d ≥ 6.

Table 4. Communication cost (MB) and running time (s) of FPSI for Lp∈{1,2} distance.

m = n Protocol
(d, δ)

(2,10) (6,10) (10,10) (2,30) (6,30) (10,30)
Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time

L1 Distance

24
[1]H 4.512 31.64 13.54 94.93 22.56 158.2 13.11 87.96 39.32 263.9 65.53 439.8
[1]L 0.178 0.692 8.257 24.10 220.0 677.0 0.532 1.888 24.77 73.69 660.0 2042

Ours 0.469 0.374 1.371 0.840 2.274 1.261 1.330 0.742 3.951 1.884 6.570 2.636

28
[1]H 290.7 2084 872.1 6253 1453 10422 844.5 5714 2533 17140 4222 28567
[1]L 2.854 9.296 132.1 409.7 3520 11034 8.510 25.70 396.3 1225 > 104 > 104

Ours 7.502 4.057 21.84 9.570 36.38 15.23 21.28 8.433 63.21 22.81 105.2 37.37

212
[1]L 45.66 148.2 2113 6630 > 104 > 105 136.2 433.3 > 6000 > 104 > 105 > 105

Ours 120.0 56.92 351.0 155.0 589.2 260.2 340.3 130.2 1024 395.1 1703 650.4

216
[1]L 730.5 2480 > 104 > 105 > 105 > 106 2179 7008 > 104 > 105 > 106 > 106

Ours 1919 966.3 5685 2736 9427 4359 5513 2238 16382 6416 27253 10800
L2 Distance

24
[1]H 3.117 21.86 9.352 65.60 15.59 109.3 9.050 60.78 27.16 182.3 45.30 303.9
[1]L 0.222 0.844 8.300 24.19 220.1 677.9 0.957 3.082 25.19 74.80 660.4 2046

Ours 0.475 0.372 1.377 0.889 2.279 1.181 1.339 0.820 3.960 1.783 6.581 2.801

28
[1]H 137.2 983.4 411.5 2950 685.8 4917 398.4 2695 1195 8087 1992 13478
[1]L 3.557 11.19 132.8 411.9 3521 11042 15.31 45.34 403.1 1246 > 104 > 104

Ours 7.588 4.307 22.03 9.882 36.91 16.25 21.42 8.825 63.35 23.18 106.6 38.97

212
[1]L 56.91 180.4 2124 6657 > 104 > 105 244.9 742.6 > 6000 > 104 > 105 > 105

Ours 122.8 64.42 356.7 164.7 590.6 264.8 346.8 142.3 1026 402.7 1706 657.2

216
[1]L 910.5 2992 > 104 > 105 > 105 > 106 3919 12017 > 104 > 105 > 106 > 106

Ours 1964 1070 5707 2765 9449 4443 5549 2366 16419 6539 27289 10953

FPSI for L∞ Distance. Table 5 shows that our protocol for L∞ distance achieves
a 30 − 305× speedup and reduces communication cost by a factor of 6 − 67×
when d ≥ 6.
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Table 5. Communication cost (MB) and running time (s) of FPSI for L∞ distance.

m = n Protocol
(d, δ)

(2,10) (6,10) (10,10) (2,30) (6,30) (10,30)
Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time

24
[1]H 2.073 5.333 18.65 45.70 52.03 122.9 17.55 43.37 158.0 298.1 439.4 759.3
[1]L 0.173 0.660 8.251 24.09 220.0 677.1 0.517 1.891 24.75 73.61 660.0 2042

Ours 0.470 0.347 1.384 0.825 2.298 1.282 1.340 0.696 3.994 1.727 6.648 2.501

28
[1]H 33.22 78.67 298.8 734.6 833.7 2011 281.0 697.5 2528 4933 > 7000 > 104

[1]L 2.766 9.047 132.0 408.9 3520 11027 8.266 25.10 396.0 1225 > 104 > 104

Ours 7.518 3.732 22.14 9.029 36.75 14.96 21.44 7.930 63.90 22.28 106.4 36.99

212
[1]L 44.25 143.4 2112 6612 > 104 > 105 132.3 420.8 > 6000 > 104 > 105 > 105

Ours 120.2 53.74 354.1 151.1 588.0 253.2 343.0 128.9 1022 391.4 1702 644.1

216
[1]L 708.0 2401 > 104 > 105 > 105 > 106 2116 6796 > 104 > 105 > 106 > 106

Ours 1924 945.6 5665 2623 9408 4332 5488 2218 16358 6366 27228 10779

9 Conclusion

In this work, we abstract a new primitive called Fmap, which is a powerful tech-
nique for FPSI. Many existing FPSI protocols are based on Fmap and their com-
plexity bottlenecks mainly due to high expansion rate of their Fmap instances.
We give new constructions of Fmap with small expansion rate for Hamming and
Lp∈[1,∞] distances to break bottlenecks.

We report a generic construction of FPSI from Fmap, which leads to the
first FPSI for Hamming distance of which costs are strictly linear with m and n.
Meanwhile, we show a construction of mqFRPMT from sUFmap, an enhanced
Fmap. We propose an FPSI(-variants) framework from mqFRPMT. Using this
framework, we finally get FPSI for Lp∈[1,∞] distance of which costs scale linearly
with anyone of m, n, d, and δ for the first time.

Regarding future works, we present the following thoughts:

– The distinctiveness property of Fmap is intended to make subsequent OKVS
encoding possible, which seems unnatural. How to avoid the distinctiveness
property to gain a more general abstraction is an interesting question.

– Our FPSI for Lp∈[1,∞] distance uses R∧S. disj. proj., a stronger assumption
than R. disj. proj. of [1], to obtain optimal complexity. Is it possible to
construct a protocol under a more realistic assumption (i.e. something weaker
than R. disj. proj.) to achieve a near-linear asymptotic complexity and a
practical efficiency comparable to the protocol in this work? Any relevant
progress would be quite valuable.

– All these protocols above are in the semi-honest setting. We leave the con-
struction of efficient FPSI protocol in the malicious setting as a future work.
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