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Abstract
Private set intersection (PSI) is a type of private set operation (PSO)

for which concretely efficient linear-complexity protocols do exist.

However, the situation is currently less satisfactory for other rele-

vant PSO problems such as private set union (PSU): For PSU, the

most promising protocols either rely entirely on computationally

expensive public-key operations or suffer from substantial commu-

nication overhead.

In this work, we present the first PSU protocol that is mainly

based on efficient symmetric-key primitives yet enjoys comparable

communication as public-key-based alternatives. Our core idea is to

re-purpose state-of-the-art circuit-based PSI to realize a multi-query

reverse private membership test (mq-RPMT), which is instrumental

for building PSU.We carefully analyze a privacy leakage issue result-

ing from the hashing paradigm commonly utilized in circuit-based

PSI and show how to mitigate this via oblivious pseudorandom

function (OPRF) and new shuffle sub-protocols. Our protocol is

modularly designed as a sequential execution of different building

blocks that can be easily replaced by more efficient variants in the

future, which will directly benefit the overall performance.

We implement our resulting PSU protocol, showing a run-time

improvement of 10% over the state-of-the-art public-key-based

protocol of Chen et al. (PKC’24) for input sets of size 2
20
. Further-

more, we improve communication by 1.6× over the state-of-the-art

symmetric-key-based protocol of Zhang et al. (USENIX Sec’23).
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1 Introduction
In general, the problem of private set operations (PSO) is to compute

some function over private input sets 𝑋 and 𝑌 held by parties 𝐴

and 𝐵, respectively. An extensively studied PSO problem is that of

private set intersection (PSI), where the goal is to compute 𝑋 ∩ 𝑌
without revealing any set elements that are not in the intersec-

tion. After more than 40 years of research on PSI, there exist very

efficient protocols. For example, the PSI protocol of [41] requires

less than 1 s and only around 30MB of communication to compute

the intersection between two sets with one million elements each.

There exist several variants of PSI, including circuit-based PSI pro-

tocols that allow to compute arbitrary functions of the intersection

of two sets [36, 37, 41].

Recently, the study of other PSO problems such as computing the

private set union (PSU) has receivedmore attention. In PSU, the goal

is to compute the union𝑋 ∪𝑌 without revealing which elements are

in the intersection, i.e., are held by both parties. This functionality

has various applications, e.g., implementing cross-organizational

access control lists or generating combined intrusion detection

reports in a privacy-preserving way. See, e.g., [25] for a discussion

of several real-world use cases for PSU.

In PSU, the receiving party learns only additional elements from

the sending party that it does not already have as input. Intuitively,

this is much harder to achieve than PSI, where the parties learn a

subset of elements they already know, i.e., the intersection.

The first PSU protocol was proposed in [27] and is based on poly-

nomial representations and additively homomorphic encryption.

Further PSU protocols include, e.g., [6, 15, 18, 22], most of which

are again based on computationally inefficient homomorphic en-

cryption or have unfavorable computation and/or communication

complexities.

Recent works such as [25, 28] were game-changers in this re-

spect as they proposed the first protocols that utilize mainly ef-

ficient symmetric-key primitives. However, their communication

complexity of 𝑂 (𝑛 log𝑛) and the concrete performance was still

sub-optimal.

This was changed very recently by works such as [13] and [47]

that achieve 𝑂 (𝑛) communication complexity. The fundamental

idea of these works is to use a functionality called multi-query

reverse private membership test (mq-RPMT) that in combination

with oblivious transfer (OT) can be turned into a PSU protocol.

However, this break-through was achieved by relying mostly on

public-key operations for the instantiation of the mq-RPMT func-

tionality, thereby requiring to perform 𝑂 (𝑛) exponentiations.

1.1 Our contributions
We observe that the mq-RPMT functionality introduced in [13, 47]

can be instantiated very efficiently using state-of-the-art circuit-

based PSI [41]. However, as circuit-based PSI protocols commonly

hash inputs to bins to improve complexity, this turns out to allow

the PSU receiver to infer some information about the sender’s

set. A concurrent and independent work by Liu et al. [29] already

showed an attack for a similar leakage issue in the unbalanced PSU

protocol of [44]. However, their solution to mitigate leakage, which

is to increase hashing-related parameters, results in a significant

performance penalty, specifically with respect to computation costs.

We, too, carefully analyze potential privacy leakage and propose

suitable countermeasures. More precisely, we propose to randomize

the mapping of inputs by first running a lightweight multi-point

oblivious pseudo-random function (OPRF) protocol [12]. Addition-

ally, we propose to obliviously shuffle the output of the circuit-

based PSI step to hide the mapping of new items that the PSU

receiver learns.

For the shuffle step, we discuss multiple options, ranging from

oblivious evaluation of traditional Benes [4] or Waksman [45] per-

mutation networks to different efficient instantiations of a “Combine-

and-Permute” (CnP) functionality. This allows the reconstruction of
a vector of shares towards the receiver with a permutation known

only to the sender. One possible instantiation of CnP is a new
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modified version of the oblivious punctured vector (OPV)-based

shuffle protocol of [11]. Alternatively, we show how to utilize a

very recent work on permutation correlations [33] for CnP. For
the latter option, our PSU protocol achieves linear computation

as well as communication while being mostly based on efficient

symmetric-key primitives.

Importantly, the modularity of our approach allows to upgrade

the building blocks easily. Thereby, we can immediately benefit

from future improvements in terms of OT, OPRF, circuit-based PSI,

and shuffling protocols. Moreover, by building on circuit-based PSI,

we can easily extend our PSU protocol to accommodate more func-

tionalities such as PSU with associated values (aka labeled PSU)

and PSU cardinality (PSU-CA). We briefly describe how to design

and integrate such extensions in Appendix B.

Finally, we implement our protocoland benchmark the individ-

ual components as well as overall performance in comparison to

related work. Thereby, we show that we concretely improve in

run-time over the state-of-the-art public-key-based PSU protocol

of [13]. More precisely, for sets of size 2
20
, we improve by 10 %

over [13] in a LAN network configuration. Furthermore, we show

communication improvements of 1.6× compared to the state-of-the-

art symmetric-key-based PSU protocol of [47], thereby presenting

an interesting new trade-off between the two protocol classes.

In short, we summarize our contributions as follows: We

• show how to construct PSU by instantiating the mq-RPMT

functionality in the framework of [13] with state-of-the-art

circuit-based PSI [41];

• analyze the privacy leakage resulting from input hashing

and mitigate this leakage by using combinations with OPRF

and shuffle protocols;

• propose new, efficient instantiations for the “Combine and

Permute” (CnP) functionality, resulting in linear-complexity

PSU, relying mostly on symmetric-key primitives;

• implement and evaluate our PSU protocol, showing run-

time improvements over state-of-the-art public-key-based

PSU [13] and communication improvements over symmetric-

key-based PSU [47].

1.2 Outline
In § 2, we introduce necessary preliminaries. Related works, in-

cluding further PSU variants, are discussed in § 3. In § 4, we give a

high-level overview of our PSU protocol based on circuit-based PSI,

explain why additional mitigations are necessary to prevent privacy

leakage, and rigorously prove security as well as correctness. One of

our mitigations relies on a shuffling functionality called “combine-

and-permute” (CnP), for which we we present a new efficient pro-

tocol in § 5. In § 6, we discuss possible instantiations for all other

required building blocks as well as their complexity. Finally, we

present our implementation and evaluation results in § 7, before

concluding in § 8.

2 Preliminaries
In this section, we introduce some of the primitives that are used

in our work.

2.1 Secret Sharing
We will use a simple form of Boolean 2-out-of-2 secret sharing. For

this, a secret value 𝑠 ∈ {0, 1} is split into two random shares 𝑠0, 𝑠1 ∈
{0, 1} such that 𝑠 = 𝑠0 ⊕ 𝑠1. Note that a party possessing only one

of the shares cannot learn any information about the value of 𝑠 .

2.2 Oblivious Transfer
The concept of oblivious transfer (OT) [40], in its simplest form,

allows a sender 𝑆 and a receiver 𝑅 to obliviously transfer one bit 𝑥𝑐
from 𝑆 to 𝑅 such that 𝑆 does not learn the choice bit 𝑐 and 𝑅 does

not learn the other bit 𝑥1−𝑐 (cf. Fig. 1). A large number of OTs can

be efficiently generated via OT extension [24]. Notably, “silent” OT

extension protocols [7, 8] manage to do this with sub-linear com-

munication overhead, leading to amortized costs as low as 0.1 bit

communication per (random) OT. We utilize OT (extension) primar-

ily on its own for oblivious data transfers. However, OT is also a

fundamental building block for secure two-party protocols such

as Yao’s garbled circuits [46] or the secret-sharing-based GMW

protocol [21], which we use for obliviously evaluating circuits.

Functionality FOT
Parameters: Sender 𝑆 has input {𝑥0, 𝑥1} and receiver 𝑅 has

choice bit 𝑐 ∈ {0, 1}.
Functionality: Upon receiving {𝑥0, 𝑥1} from 𝑆 and 𝑐 from 𝑅,

output 𝑥𝑐 to 𝑅.

Figure 1: Ideal functionality for oblivious transfer (OT).

2.3 Oblivious Pseudo-Random Functions
An oblivious pseudo-random function (OPRF) allows a sender 𝑆 to

receive a PRF key 𝑘 and the receiver 𝑅 to receive the PRF evalua-

tions 𝐹𝑘 (𝑦1), . . . , 𝐹𝑘 (𝑦𝑛) on its input set 𝑌 = {𝑦1, . . . , 𝑦𝑛}. Here, the
sender does not learn anything about the receiver’s input, and the

receiver does not learn anything about the key 𝑘 . We provide the

formal ideal functionality in Fig. 2.

Functionality FOPRF
Parameters: Pseudorandom function 𝐹 : {0, 1}𝑙 × {0, 1}_ −→
{0, 1}_ , where 𝑙 is the length of the input and _ is the com-

putational security parameter. Receiver 𝑅 inputs set 𝑌 =

{𝑦1, . . . , 𝑦𝑛 }.
Functionality: Upon receiving 𝑌 from 𝑅, sample 𝑘 ←− {0, 1}_ ,
and return 𝐹𝑘 (𝑌 ) = {𝐹𝑘 (𝑦1 ), . . . , 𝐹𝑘 (𝑦𝑛 ) } to 𝑅 and 𝑘 to 𝑆 .

Figure 2: Ideal functionality for OPRF.

2.4 (Circuit-based) Private Set Intersection and
Cuckoo Hashing

PSI protocols enable two parties to compute the intersection 𝑋 ∩𝑌
for private input sets 𝑋 and 𝑌 such that the PSI receiver learns no

information about elements of the PSI sender that are not in the

intersection.
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A variant of PSI, called circuit-based PSI, additionally allows to

securely compute any (symmetric) function 𝑓 over the intersection

such that only the output 𝑓 (𝑋 ∩ 𝑌 ) is revealed, but no information

about the intermediate intersection result (cf. Fig. 3). There exist

many works that construct increasingly efficient circuit-based PSI

protocols [10, 35–38, 41, 43].

Functionality FcPSI
Parameters: Sender 𝑆 has input set 𝑋 and receiver 𝑅 has input

set 𝑌 , where |𝑋 | = |𝑌 | = 𝑛. 𝑓 is a symmetric function known

to 𝑆 and 𝑅.

Functionality: Upon receiving 𝑋 from 𝑆 and 𝑌 from 𝑅, com-

pute 𝑓 (𝑋 ∩𝑌 ) and return it to 𝑅.

Figure 3: Ideal functionality for circuit-based PSI.

Starting with [38], many of these protocols first place the items

of the input sets in hash tables to reduce the number of required

oblivious equality checks. Specifically, one party uses Cuckoo hash-

ing [32], which is a hashing scheme with two (or more) hash func-

tions ℎ1, ℎ2 to map items to bins such that it is guaranteed that

in each bin of the hash table T𝑌 there is at most one item stored.

The other party would follow a “simple hashing” scheme where

each item 𝑥 is stored in all bins indicated by the hash functions, i.e.,

in locations ℎ1 (𝑥) as well as ℎ2 (𝑥) of table T𝑋 . Then, obliviously
checking item T𝑌 [𝑖] (for all 𝑖 bins) against all items in the corre-

sponding simple hashing bin T𝑋 [𝑖] for equality allows to produce

a bit vector ®𝑍 . This vector indicates for each item in T𝑌 whether

it is in the intersection or not. In the context of circuit-based PSI,

the resulting bit vector ®𝑍 would usually be in a secret-shared form

such that with generic secure computation protocols, it is possible

to obliviously evaluate any (symmetric) function 𝑓 on it.

2.5 (Reverse) Private Membership Testing
A functionality related to PSI is private membership testing (PMT).

Here, the membership of a single item 𝑥 (instead of a set 𝑋 ) is

obliviously checked against a set 𝑌 , resulting in a single-bit output

indicating if a match was found or not, i.e., 𝑥 ∈ 𝑌 or not. Obviously,

PMT can be utilized to build PSI by running multiple queries for

all 𝑥 ∈ 𝑋 in parallel. If multiple 𝑥 are tested in one batch, this is

referred to as multi-query PMT (mq-PMT).

A variant of PMT is reverse PMT (RPMT), where the party hold-

ing set 𝑌 receives the output. This becomes interesting in the cor-

responding multi-query variant called mq-RPMT. Here, the sender

provides its set 𝑋 = {𝑥1, . . . , 𝑥𝑛} in random order and the receiver

obtains a bit vector ®𝑍 indicating the positions in 𝑋 that resulted

in a match with 𝑌 , i.e., ®𝑍 [𝑖] = 1 iff 𝑥𝑖 ∈ 𝑌 (cf. Fig. 4 for the ideal

functionality). This can be used to build various private set opera-

tions, including PSU, as we will see later in § 4. Note that since the

receiver is not aware of the ordering of 𝑋 , this functionality does

not reveal any information about the set intersection.

3 Related Works
In the following, we provide more details on existing PSU protocols.

Note that we do not explain “historic” protocols such as [6, 15, 18,

Functionality Fmq−RPMT

Parameters: Sender 𝑆 has input set 𝑋 and receiver 𝑅 has input

set 𝑌 , where |𝑋 | = |𝑌 | = 𝑛.

Functionality: Upon receiving 𝑋 from 𝑆 and 𝑌 from 𝑅, return

a bit vector ®𝑍 to 𝑅 such that ®𝑍 [𝑖 ] = 1 if 𝑥𝑖 ∈ 𝑌 , and ®𝑍 [𝑖 ] = 0

otherwise.

Figure 4: Ideal functionality for mq-RPMT.

22, 27] in detail but restrict the discussion to recent and state-of-the-

art protocols. Furthermore, we discuss existing works on leakage

analysis of PSU protocols.

Symmetric-key Protocols. Kolesnikov et al. [28] were the first

to build PSU primarily from symmetric-key techniques. In their

protocol, both parties hash their input sets to regular hash tables;

for all bins, they execute RPMT instances; the PSU receiver then

uses the RPMT output as OT input to obtain all non-matching

elements. Notably, the RPMT protocol used in [28] relies on efficient

symmetric-key OPRF- and equality test executions. Nevertheless,

their concrete performance is not compelling with single-threaded

run-times of more than 200 seconds for sets with 2
20

elements.

The more recent work of [25] addresses an inherent information

leakage in the protocol of [28], which occurs due to the utilized

hashing technique: as PSU is computed on a bucket level, the re-

ceiver can locate and therefore infer information about 𝑋 ∩ 𝑌 –

which should not be possible according to the definition of PSU.

To avoid this leakage, the authors of [25] first hash the inputs

sets following the Cuckoo/simple hashing paradigm and then run

a “Permute and Share” protocol on the Cuckoo table; the follow-

ing (multi-query) OPRF operations are then carried out over the

permuted and secret-shared table. The run-times of this protocol

are competitive with around one minute for sets with 2
20

elements;

however, the communication overhead is very high with more than

one gigabyte. Note that we also utilize permutations to prevent

information leakage from hashing. However, we apply this step at

a later protocol stage where we have to permute only a bit vector

instead of full-length inputs.

Conceptually, the closest to our work is the work of [20]. They

implement several PSO functionalities, including PSU, by combining

the OPPRF pre-processing step of the circuit-based PSI protocol

of [36] with oblivious shuffle and private equality testing protocols.

In contrast, our approach is more abstract and works directly with

any circuit-based PSI protocol following the Cuckoo/simple hashing

paradigm. Furthermore, we have significantly better performance

than [20], e.g., for set of size 2
20
, we require 4× less communication.

Public-key Protocols. The work of [47] achieved a major break-

through by proposing the first linear complexity PSU protocols.

The core of their protocols is the multi-query RPMT (mq-RPMT)

functionality (cf. § 2.5), which they introduce in their work. After

executing mq-RPMT, the PSU receiver can then learn the missing

elements in the union by running OTs using the mq-RPMT output

vector as choice vector.

For the instantiation of the mq-RPMT functionality, [47] pro-

poses a public-key and a symmetric-key variant, both of them

utilizing an oblivious key-value store (OKVS) data structure [34]
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for the encoding of the receiver’s input set. The public-key variant

has run-times in the order of 2.5 minutes for sets of size 2
20
. The

symmetric-key variant has more competitive run-times of under one

minute, but the communication overhead of over 400MB for sets of

size 2
20

is substantial. This is due to the fact that 𝑂 (𝑛) decryption
circuits of the MPC-friendly PRF “LowMC” [1] must be evaluated

obliviously. Our protocol results in similar run-times, but almost

halves the communication overhead.

The work of [5] proposes a computation/communication trade-

off for the OKVS data structure used in the mq-RPMT implementa-

tion of [47] to achieve a better rate when representing input sets,

and therefore slightly lower communication.

Very recently, the work of [13] has proposed multiple new,

purely public-key-based instantiations for the mq-RPMT frame-

work of [47] and demonstrated applications to various PSOs. Their

most efficient PSU variant, including new implementation tricks,

achieves a single-threaded run-time of roughly one minute with a

communication overhead of roughly 100MB for sets of size 2
20
. In

this work, we present a new trade-off: with mainly symmetric-key

techniques, we get 10 % better run-times than [13] at the cost of

about twice the communication. Note that we expect the run-time

benefit of our modular protocol to increase over time with improved

circuit-based PSI building blocks.

Unbalanced and Multi-Party PSU. Similar to PSI, there exist fur-

ther variants of PSU. For example, works such as [17, 44] study

unbalanced PSU protocols that are optimized for use cases where

the input set of one party is much smaller than for the other party.

Furthermore, multi-party PSU is a natural generalization of two-

party PSU [16, 19, 30]. In this work, we focus on (balanced) use

cases with two sets of roughly similar size.

Leakage Analysis. Recently, Jia et al. [26] revisited information

leakage in PSU protocols in more detail, which was already dis-

cussed in works such as [25]. In particular, they highlight “during-

execution” leakage issues that are inherent in most state-of-the-

art PSU protocols (including [5, 13, 20, 25, 44, 47]) where the el-

ements in 𝑋 \ 𝑌 are obtained by the PSU receiver via OT in the

final protocol step. This type of leakage occurs as the PSU receiver

learns the intersection size in the form of (randomly permuted) OT

choice bits before the protocol concludes. In practice, this might

result in unintended leakage of elements in the intersection 𝑋 ∩ 𝑌 .
For example, a maliciously acting receiver can abort the execution

after learning the intersection size (blaming an unreliable network

connection) and request repeating the protocol run; in such re-

peated runs, the malicious receiver can modify its input set, ob-

serve changes in the intersection size, and thus arrive at conclusions

about the intersection content. Note that this type of attack has

the potential to bypass conventional rate-limiting approaches that

typically limit the number of successful protocol executions but

might allow unsuccessful attempts to be repeated.

To mitigate such leakage issues, the authors of [26] propose

extensions to the standard PSU ideal functionality (cf. Fig. 5) and

a suitable protocol for implementing this extended version based

mainly on symmetric-key operations. In more details, their protocol

produces encrypted outputs such that the receiver only learns the

intersection size in the very last decryption step. However, the

resulting communication performance is not concretely efficient

with more than 2GB of communication for sets of size 2
20
.

From a high-level perspective, we operate in the same OT-based

PSU framework as [13, 47], and our protocol is therefore subject to

the “during-execution” leakage discussed by [26]. However, given

that our protocol construction utilizes circuit-based PSI as the core

building block (and therefore can be easily reprogrammed to im-

plement slightly different functionalities), we are optimistic that

a similar methodology as in the protocol of [26] (i.e., providing

encrypted intermediate outputs) can be applied. Furthermore, as a

practical fix, deployments of our protocol can extend rate limiting

to consider partially completed protocol executions.

In a concurrent and independent work, Liu et al. [29] propose

an attack on the Cuckoo hashing-based unbalanced PSU protocol

of [44]. In particular, they show how the hashing-based RPMT

protocol might leak information about the intersection even after

using permutation to hide the location of the matches. Furthermore,

they show how the computational security of the protocol depends

on the size of the hash table and the number of hash functions. More

precisely, increasing these parameters will provide stronger security

guarantees. However, this negatively impacts the PSU performance.

For instance, using the parameter recommendations from [39], the

computation cost of [44] increases by 70%. Another solution briefly

mentioned in [29] is to apply an OPRF before the RPMT protocol.

This is precisely what we propose and evaluate, to mitigate one

of the two occurring leakage issues. We give a detailed analysis

of how using an OPRF in our protocol mitigates the leakage and

show experimentally that the performance of our leakage-resilient

protocol is very close to that of the leaky version of [44].

Runtime in s Communication

Protocol LAN WAN in MB

Public-key

[47] 173.44 173.96 176

[5] - 345.59 160

[13] 61.66 73.78 103

Symm.-key

[28] 238.88 406.15 2470

[20] 114.42 319.87 1155

[25] 48.70 67.76 1339

[47] 44.78 59.78 414

[26] 49.38 225.32 2430

Our work 53.19 77.10 252

Table 1: Comparison of PSU protocols. All results are taken
from the respective papers for single-threaded execution
and two sets with 2

20 elements each. Best in class results
are marked in bold. Note that [5] uses fairly incomparable
network settings in their evaluation.

4 Our Private Set Union (PSU) Protocol
A two-party private set union (PSU) protocol comprises of a sender 𝑆

and a receiver 𝑅 having private input sets 𝑋 and 𝑌 , respectively.

At the end of the protocol execution, the receiver obtains 𝑋 ∪ 𝑌 ,
without learning anything else about set 𝑋 . We formally define the

ideal PSU functionality in Fig. 5.
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Functionality FPSU
Parameters: The sender 𝑆 has as input set𝑋 and the receiver 𝑅

has input set 𝑌 , where |𝑋 | = |𝑌 | = 𝑛.

Functionality: Upon receiving 𝑋 from 𝑆 and 𝑌 from 𝑅, com-

pute 𝑋 ∪𝑌 and send it to 𝑅.

Figure 5: Ideal functionality for private set union (PSU).

In this work, we show how to construct PSU from any circuit-

based PSI protocol that follows the Cuckoo/simple hashing para-

digm (cf. § 2.4) and has the secret-shared intersection result as an

intermediate output [41, 43]. For this, in § 4.1, we first intuitively

illustrate how mq-RPMT can be instantiated from such protocols.

Additionally, we point out arising information leakage issues, and

how to address them. Then, in § 4.3, we formally define our PSU

protocol and prove correctness as well as security.

4.1 Intuition
In Fig. 7, we recall how many circuit-based PSI protocols (includ-

ing state-of-the art protocols such as [41]) work: The input sets 𝑋

and 𝑌 are mapped to hash tables using Cuckoo and simple hash-

ing, respectively. Then, some form of PMT is carried out between

corresponding bins to obliviously check if the item in the Cuckoo

table bin is contained in the corresponding simple hashing bin. The

results of these PMT executions form a vector ®𝑍 , which is then

usually made available in secret-shared form for further circuit

computations over the intersection, e.g., computing the cardinality

by counting the 1s in the vector. We call this functionality, where

the parties receive the secret shares of ®𝑍 , “intermediate” circuit-

based PSI (cf. Fig. 6).

Functionality FPSI
Parameters: Sender 𝑆 has input set 𝑋 and receiver 𝑅 has input

set 𝑌 , where |𝑋 | = |𝑌 | = 𝑛.

Functionality: Upon receiving 𝑋 from 𝑆 and 𝑌 from 𝑅, com-

pute𝑋 ∩𝑌 and return secret shares 𝑧0 and 𝑧1 of the bit-vector ®𝑍 ,

where 𝑍 [𝑖 ] = 1 if 𝑥𝑖 ∈ 𝑌 , and 0 otherwise.

Figure 6: Ideal functionality for “intermediate” circuit-
based PSI.

Here, we make an important observation: if the vector ®𝑍 is re-

constructed towards the party using simple hashing (cf. Fig. 7), this

effectively is a mq-RPMT output and could be immediately used

for computing PSU by requesting the elements from the Cuckoo

table for which ®𝑍 is 0 via OT.

However, somewhat similar to [28], this PSU construction can

leak information about𝑋∩𝑌 . Intuitively, this is because the hashing
schemes place restrictions on the order of the PSU sender’s vec-

tor (in mq-RPMT terminology). This can be exploited by the PSU

receiver, for example, if the vector ®𝑍 has a 1 in a position where

there is only one element𝑦 mapped to the corresponding bin, then𝑦

must be in the intersection.

𝑍	[1] = PMT(�⃗�[1], 𝑌[1])

PSI Receiver /
PSU Sender 𝑆

PSI Sender /
PSU Receiver 𝑅

𝑍[2] = PMT(�⃗�[2], 𝑌[2])

𝑍[3] = PMT(�⃗�[3], 𝑌[3])

𝑍[4] = PMT(�⃗�[4], 𝑌[4])

𝑍[5] = PMT(�⃗�[5], 𝑌[5])

𝑍[6] = PMT(�⃗�[6], 𝑌[6])

𝑍[7] = PMT(�⃗�[7], 𝑌[7])

𝑍[8] = PMT(�⃗�[8], 𝑌[8])
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Figure 7: Conceptual visualization of “intermediate” circuit-
based PSI constructions, and PSU based on circuit-based PSI,
simplified to use two hash functions. Note that ®𝑍 for
both PSI [23, 38] and PSU cannot be directly reconstructed to-
wards the respective receiving party (the party using Cuckoo
hashing for PSI and the party using simple hashing for PSU)
as this would leak additional information about private in-
puts. Instead, in regular circuit-based PSI (cf. Fig. 3) a (sym-
metric) function 𝑓 would be obliviously computed over ®𝑍 ,
whereas in PSU, a permuted version of ®𝑍 is reconstructed
towards the PSU receiver.

To circumvent this obvious leakage, we must shuffle the inter-

mediate circuit-based PSI result, i.e., the bit vector ®𝑍 , in a way such

that the PSU receiver learns the shuffled bit vector in the clear and

the PSU sender knows the permutation. This way, the PSU sender

can re-arrange its OT inputs according to the permutation.

However, even with shuffling, there still exists a more subtle

leakage issue: Once the PSU receiver learns all the new elements, the

receiver can use knowledge about the hash functions to identify all

of the new elements’ possible locations in the Cuckoo table, thereby

effectively reversing the mitigating effect of the shuffle step. To

prevent this, we can apply a (multi-point) OPRF step beforemapping

the elements to the tables. In this step, the PSU sender learns a single

key 𝑘 and the PSU receiver learns 𝐹𝑘 (𝑦) for each 𝑦 ∈ 𝑌 . The inputs
for the circuit-based PSI protocol are then the sets 𝐹𝑘 (𝑋 ) and 𝐹𝑘 (𝑌 ).
Due to not knowing 𝑘 , the PSU receiver cannot speculate about the

mapping of the newly learned elements.

Note that none of the two additional steps alone (OPRF and

shuffling) is sufficient: if we would only use the OPRF step but not

shuffling, then the PSU receiver can still infer information about

the intersection from the positions of 1s in ®𝑍 .
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4.2 Combine and Permute (CnP) Functionality
The shuffling that mitigates leakage occurring due to hashing in

circuit-based PSI can be realized using a so-called “Combine and

Permute” (CnP) functionality FCnP (cf. Fig. 8). This functionality

can be seen as a new variant of the “Permute and Share” functional-

ity introduced in [11]. It takes the shares of the bit vector ®𝑍 as input,

combines the shares, and permutes the combined vector using a

random permutation 𝜋 . We provide details of our protocol ΠCnP
that instantiates this functionality in § 5, and discuss different in-

stantiations in § 6.

Functionality FCnP
Parameters: The sender 𝑆 has as input a random permutation 𝜋

and share 𝑧0, and the receiver 𝑅 has as input share 𝑧1.

Functionality: Upon receiving (𝜋, 𝑧0 ) from 𝑆 and 𝑧1 from 𝑅,

compute 𝜋 (𝑧0 ⊕ 𝑧1 ) and send it to 𝑅.

Figure 8: Ideal functionality for CnP.

Input:
𝑆 : set 𝑋

𝑅: set 𝑌

Output:
𝑃1: —

𝑃2: 𝑋 ∪ 𝑌
𝑆 𝑅

OPRF

𝑘 𝐹𝑘 (𝑌 )

𝑌

Compute 𝐹𝑘 (𝑋 )

PSI

𝑧0 𝑧1

𝐹𝑘 (𝑋 ) 𝐹𝑘 (𝑌 )

Sample random

permutation 𝜋

CnP
𝑍

𝜋, 𝑧0 𝑧1

𝑋 = 𝜋 (𝑋 )

OT

𝑋 − 𝑌

(𝑋,⊥) 𝑍

𝑋 ∪ 𝑌 = 𝑌 + (𝑋 − 𝑌 )

output 𝑋 ∪ 𝑌

Figure 9: Overview of our PSU protocol.

4.3 Protocol Specification
Following our intuitive explanation on the ingredients we need

and why we need them to construct PSU from circuit-based PSI, we

provide an overview of the full protocol in Fig. 9. On a high level,

the steps are as follows:

• The sender 𝑆 and the receiver 𝑅 engage in an OPRF protocol,

where 𝑅 inputs 𝑌 . 𝑆 obtains a key 𝑘 , and 𝑅 obtains 𝐹𝑘 (𝑌 ).
• 𝑆 and 𝑅 run an “intermediate” circuit-based PSI protocol

on their respective inputs 𝐹𝑘 (𝑋 ) and 𝐹𝑘 (𝑌 ). The parties

receive secret shares 𝑧0, 𝑧1 of the intermediate PSI result

bit vector ®𝑍 .

• Then, the parties run the Combine and Permute (CnP) pro-
tocol ΠCnP, and 𝑅 receives the combined and permuted bit

vector 𝑍 as output.

• 𝑆 and 𝑅 run an OT protocol, where 𝑅 inputs the permuted

bit vector𝑍 as the choice bit vector, and 𝑆 inputs the Cuckoo

hash table values in permuted order as its input.

• 𝑅 combines the result of OTwith its set𝑌 , and receives𝑋∪𝑌 .
We provide a full formal protocol definition in Fig. 10.

Protocol Π𝑃𝑆𝑈

Input: The sender 𝑆 inputs set 𝑋 and the receiver 𝑅 inputs

set 𝑌 . |𝑋 | = |𝑌 | = 𝑛.

Protocol:
(1) The sender 𝑆 and the receiver 𝑅 run a multi-point OPRF

protocol on their input sets 𝑋 and 𝑌 , respectively. 𝑆

obtains the PRF key 𝑘 and 𝑅 obtains 𝐹𝑘 (𝑌 ) .
(2) 𝑆 and 𝑅 run a circuit-based PSI protocol, where 𝑆 uses

Cuckoo hashing and 𝑅 uses simple hashing, with in-

puts 𝐹𝑘 (𝑋 ) and 𝐹𝑘 (𝑌 ) , respectively. 𝑆 and 𝑅 obtain

the secret shares 𝑧0 and 𝑧1 of the intersection bit vec-

tor ®𝑍 of length (1 + 𝜖 )𝑛, respectively. Here, 𝜖 is a small

constant Cuckoo hashing table expansion parameter.

(3) 𝑆 and 𝑅 run a CnP protocol, where 𝑆 inputs a random

permutation 𝜋 and 𝑧0, and 𝑅 inputs 𝑧1. 𝑅 obtains the

shuffled and combined bit vector 𝑍 .

(4) 𝑆 and 𝑅 perform (1 + 𝜖 )𝑛 OTs, where 𝑆 inputs tu-

ples (T𝑋 [𝜋 (𝑖 ) ],⊥) , where T𝑋 is the Cuckoo hash table

constructed by 𝑆 , and 𝑅 inputs choice bit 𝑍 [𝑖 ]. 𝑅 ob-

tains all 𝑥𝑖 ∈ 𝑋 for which 𝑥𝑖 ∉ 𝑋
⋂
𝑌 .

(5) 𝑅 adds the received 𝑥𝑖 to 𝑌 .

Output: The receiver 𝑅 obtains 𝑋
⋃
𝑌 .

Figure 10: Semi-honest PSU protocol from “intermediate”
circuit-based PSI.

4.4 Leakage Analysis
Without using OPRF in the first step of our protocol, the protocol

would leak some information about the sender’s set. In particu-

lar, when constructing hash tables based on plaintext inputs, this

leaks information to the receiver regarding which elements in the

receiver’s set are not in the intersection, and hence not in the

sender’s set.

This can be exploited by a corrupted receiver as follows: When

the receiver obtains the set of elements in 𝑋 − 𝑌 , it can hash these

elements using the agreed hash functions and find the possible bin

locations for each element. Corresponding to these bin locations,

the receiver can infer the elements in its simple hashing table that

did not match for an intersection. These elements are, therefore,

not in the sender’s set.

More formally, the leakage works as follows: Consider a bin 𝑖

such that 𝑥 ∈ 𝑋 was mapped to T𝑋 [𝑖] due to hash function ℎ 𝑗 ,

i.e., T𝑋 [𝑖] = 𝑥 for ℎ 𝑗 (𝑥) = 𝑖 . Moreover, for some 𝑦 ∈ 𝑌 with 𝑥 =

𝑦, T𝑌 [𝑖] = 𝑦 and ℎ 𝑗 (𝑦) = 𝑖 . Now consider another element 𝑥 ′ ∈ 𝑋
such that 𝑥 ′ ∉ 𝑌 . Let ℎ 𝑗 (𝑥 ′) = 𝑖′, then for all 𝑦 = T𝑌 [𝑖′], 𝑥 ′ ≠
𝑦 =⇒ 𝑦 ∉ 𝑋 . This is because 𝑦 ∉ 𝑋 ∩ 𝑌 and 𝑦 ∉ 𝑋 − 𝑌 , which
implies 𝑦 ∉ 𝑋 .
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Using an OPRF prevents the receiver from obtaining this addi-

tional knowledge about the sender’s set𝑋 as follows. Let 𝐹𝑘 (𝑥) = 𝜓

and 𝐹𝑘 (𝑦) = 𝜙 . Then, for 𝑥 = 𝑦, 𝜓 = 𝜙 whereas for 𝑥 ≠ 𝑦, 𝜓 ≠ 𝜙 .

Therefore, when the receiver obtains the elements in 𝑋 − 𝑌 , it

cannot compute the correct OPRF output for the elements as for

each 𝑥 ′ ∈ 𝑋 − 𝑌 , 𝑥 ′ ∉ 𝑌 , and therefore 𝐹𝑘 (𝑥 ′) ≠ 𝐹𝑘 (𝑦). This
implies ℎ 𝑗 (𝐹𝑘 (𝑥 ′)) ≠ ℎ 𝑗 (𝐹𝑘 (𝑦)). Therefore, the receiver cannot

compute the possible bin locations for the sender’s elements.

How to quantify the leakage. The leakage described in § 4.4 is

probabilistic and an adversary can only determine an element to

be in the intersection or not with a certain probability.

In [29], Liu et al. show that the leakage due to the hashing-based

approach depends on the number of hash functions and the size

of the hash table. In this section, we analyze the leakage in detail

and show that it depends not only on these parameters but also on

the size of the sets and the size of the intersection. We additionally

analyze the probability of this leakage and show that the probability

is worse than random selection. The notations for the analysis are

as follows: 𝑠 = |𝑋 ∩𝑌 |, 𝑛 = |𝑋 −𝑌 |,𝑚 = |𝑌 |, and 𝑡 is the size of the
hash table. We consider the number of hashes to be constant, i.e. 3.

In a random selection, for any 𝑦 ∈ 𝑌 ,

𝑃 [𝑦 ∈ 𝑋 ∩ 𝑌 ] = 𝑠

𝑚
. (1)

Now, it remains to show that the probability of 𝑦 ∈ 𝑋 ∩ 𝑌 is larger

than 𝑠/𝑚 in the case of the aforementioned leakage. More precisely,

we have to calculate the probability of 𝑦 ∈ 𝑋 ∩ 𝑌 given that for

some 𝑥 ∈ 𝑋 − 𝑌 , ℎ𝑖 (𝑥) = ℎ𝑖′ (𝑦) for 𝑖, 𝑖′ ∈ {1, 2, 3} (considering
the most common case of Cuckoo/simple hashing with three hash

functions). Let event 𝐴 : 𝑦 ∈ 𝑋 ∩ 𝑌 and event 𝐵 : ℎ𝑖 (𝑥) = ℎ𝑖′ (𝑦),
then

𝑃 [𝐵] = 3

𝑡
and 𝑃 [𝐵 |𝐴] = 2

𝑡 − 1 . (2)

Using Equations (1) and (2), we get

𝑃 [𝐴|𝐵] = 𝑃 [𝐴 ∩ 𝐵]
𝑃 [𝐵]

=
𝑃 [𝐴] · 𝑃 [𝐵 |𝐴]

𝑃 [𝐵]

=

𝑠
𝑚 ·

2

𝑡−1
3

𝑡

=
𝑠

𝑚
· 2𝑡

3(𝑡 − 1) <
𝑠

𝑚
.

(3)

Since in a Cuckoo hashing table, each element’s location de-

pends on other elements in 𝑋 as well, it is essential to take this

dependency into consideration while calculating the probability.

Let us now generalize the above probability by considering 𝑛 ele-

ments 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 − 𝑌 . The event 𝐵 is described as 𝐵 : ℎ𝑖 (𝑥 𝑗 ) =
ℎ𝑖′ (𝑦) and event 𝐴 is described as before. Then,

𝑃 [𝐵] =
(
3

𝑡

)𝑛
and 𝑃 [𝐵 |𝐴] =

(
2

𝑡 − 1

)𝑛
. (4)

Similar to Equation (3), using Equations (1) and (4), we get

𝑃 [𝐴|𝐵] = 𝑠

𝑚
·
(

2𝑡

3(𝑡 − 1)

)𝑛
<

𝑠

𝑚
. (5)

From Equation (5), we can see that as 𝑛 increases, the probability

of 𝑦 ∈ 𝑋 ∩ 𝑌 decreases. This in turn implies that the probability

of 𝑦 ∉ 𝑋 ∩ 𝑌 increases. In simple terms, this means that knowing

the concrete values of 𝑠 ,𝑚, and 𝑡 , an adversary can compute the

probability of some𝑦 ∉ 𝑋∩𝑌 (i.e., 1−𝑃 [𝐴|𝐵]) by finding the optimal

number of 𝑥 𝑗 ’s that satisfy ℎ𝑖 (𝑥 𝑗 ) = ℎ𝑖′ (𝑦), for 𝑖, 𝑖′ ∈ {1, 2, 3}.
In this context, note that our protocol (via the number of 1s in ®𝑍 )

as well as state-of-the-art PSU protocols inherently leak the size

of the intersection (i.e., 𝑠), and𝑚 as well as 𝑡 are known protocol

parameters.

4.5 Correctness and Security
We first prove the correctness of our PSU protocol ΠPSU (Fig. 10).

Theorem 4.1 (Correctness). Protocol ΠPSU correctly computes
the functionality FPSU.

Figure 11: Venn diagram for set union.

Proof. From Fig. 11 it can be seen that the set union 𝑋 ∪𝑌 can

be computed by adding 𝑋 − 𝑌 (red area) to 𝑌 (blue area). Now we

show that the protocol ΠPSU correctly computes and sends𝑋 −𝑌 to

the receiver 𝑅, who combines it with their own set 𝑌 to get 𝑋 ∪ 𝑌 .
Let 𝐹𝑘 () be an (O)PRF. Then, by the correctness of the OPRF, we

get that for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝑥 = 𝑦 =⇒ 𝐹𝑘 (𝑥) = 𝐹𝑘 (𝑦)
and 𝑥 ≠ 𝑦 =⇒ 𝐹𝑘 (𝑥) ≠ 𝐹𝑘 (𝑦). In the next step, the OPRF

outputs 𝐹𝑘 (𝑋 ) and 𝐹𝑘 (𝑌 ), which are the inputs for the PSI protocol.

The output of the PSI protocol is a vector ®𝑍 indicating if matches

were found in the bins. In our case, this would translate to: for

some 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , 𝐹𝑘 (𝑥) = 𝐹𝑘 (𝑦) implies 𝑥 = 𝑦. Therefore,

the output of the PSI protocol is correct. The bit 𝑍 [𝑖] = 0 if 𝑥𝑖 ∉ 𝑌 ,

and 𝑍 [𝑖] = 1 if 𝑥𝑖 ∈ 𝑌 . Permuting both the vector ®𝑍 and the

sender’s (Cuckoo) hashing table T𝑋 by the same permutation 𝜋

would give us the same result. Now, in the last step, the parties

perform OT, where the sender’s input is {T𝑋 [𝜋 (𝑖)],⊥} and the

receiver’s input is 𝑍 [𝜋 (𝑖)]. This ensures that when 𝑍 [ 𝑗] = 0, the

receiver obtains 𝑥 𝑗 = T𝑋 [ 𝑗] and when 𝑍 [ 𝑗] = 1, the receiver

obtains ⊥, i.e., the receiver obtains all 𝑥𝑖 ∉ 𝑋 ∩ 𝑌 =⇒ 𝑥𝑖 ∈ 𝑋 − 𝑌 .
Therefore, the protocol ΠPSU correctly computes 𝑋 ∪ 𝑌 . □

We now prove the security of our PSU protocol in the presence

of semi-honest adversaries.

Theorem 4.2 (Security). Protocol ΠPSU securely computes the
functionality FPSU in a ΠOPRF, Circuit-PSI, ΠCnP and OT hybrid
model.

Proof. For proving the security of protocol ΠPSU, we consider

an adversary A that corrupts either the sender 𝑆 or the receiver 𝑅,

and construct a simulator Sim that generates the view of the cor-

rupted party. We also consider a trusted party TP that computes the

functionalities used as subprotocols in the hybrid model, i.e., the

functionalities FOPRF, FCnP, FPSI, and FOT. Then two cases arise:
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Case 1: We start with the more complex case where the re-

ceiver 𝑅 is corrupted. Here, the simulator Sim𝑅 is given as in-

put 1
𝑛, 𝑌 and 𝑋 ∪ 𝑌 . The simulation works as follows:

(1) Sim𝑅 sends 1
𝑛
to the TP computing the functionality FOPRF,

and A sends 𝑌 to TP. Sim𝑅 receives key 𝑘Sim from TP,
and A receives 𝐹𝑘Sim (𝑌 ).

(2) Sim𝑅 randomly chooses |𝑋 ∩𝑌 | values𝑦′
𝑖
∈ 𝑌 and sets𝑋 ′ =

(𝑋 − 𝑌 ) + {𝑦′
𝑖
}.1

(3) Sim𝑅 constructs a Cuckoo hashing table T′𝑋 using 𝐹𝑘Sim (𝑋 ′),
sends 𝐹𝑘Sim (𝑋 ′) to the TP computing the functionality FPSI
and receives 𝑧′

0
, and A receives 𝑧′

1
.

(4) Sim𝑅 selects a random permutation 𝜋 ′, sends 𝑧′
0
and 𝜋 ′ to

the TP computing FCnP, and A receives 𝜋 ′ (𝑧′
0
⊕ 𝑧′

1
) .

(5) Sim𝑅 sends (𝜋 ′ (T′𝑋 ),⊥) to the TP computing FOT, andA
receives 𝑋 ′ − 𝑌 .

The simulated view of the receiver 𝑅 is

Sim𝑅 (1𝑛, 𝑌 , 𝑋 ∪ 𝑌 ) = (𝐹𝑘Sim (𝑌 ), 𝑧
′
1
, 𝜋 ′ (𝑧′

0
⊕ 𝑧′

1
), 𝑋 ′ − 𝑌 ),

and the view of the receiver in the real execution is

view𝜋
𝑅
(𝑌 ) = (𝐹𝑘 (𝑌 ), 𝑧1, 𝜋 (𝑧0 ⊕ 𝑧1), 𝑋 − 𝑌 ).

Now, comparing the view of 𝑅 in the two executions, first, we see

that𝑋 ′−𝑌 = 𝑋 −𝑌 . Then, 𝐹𝑘Sim (𝑌 ) and 𝐹𝑘 (𝑌 ) are indistinguishable
due to the security of the OPRF protocol. 𝑧′

1
and 𝑧1 are indistinguish-

able as these are secret shares, and 𝜋 ′ (𝑧′
0
⊕ 𝑧′

1
) and 𝜋 (𝑧0 ⊕ 𝑧1) are

indistinguishable due to the security of theCnP protocol. Therefore,

we can conclude that

Sim𝑅 (1𝑛, 𝑌 , 𝑋 ∪ 𝑌 )
𝐶≡ view𝜋

𝑅
(𝑌 ) .

Case 2: The sender 𝑆 is corrupted. Here, the simulator Sim𝑆 gets

the set 𝑋 as input. The simulation works as follows.

(1) Sim𝑆 samples random elements 𝑦′
𝑖
and sends it to the TP

that computes the functionalityFOPRF and receives 𝐹𝑘Sim (𝑌 ),
and A receives 𝑘Sim.

(2) Sim𝑆 sends 𝐹𝑘Sim (𝑌 ) to the TP computingFPSI and receives 𝑧′1,
and A receives 𝑧′

0
.

(3) Sim𝑆 sends 𝑧
′
1
to the TP computingFCnP and receives𝜋 ′ (𝑧′0⊕

𝑧′
1
).

(4) Sim𝑆 sends 𝜋 ′ (𝑧′
0
⊕ 𝑧′

1
) to the TP computing FOT and re-

ceives 𝑋 − 𝑌 ′.
The simulated view of the sender 𝑆 is

Sim𝑆 (1𝑛, 𝑋 ) = (𝑘Sim, 𝑧′0),

and the view of the receiver in the real execution is

view𝜋
𝑆
(𝑋 ) = (𝑘, 𝑧0).

From the two views, we can see that 𝑘Sim and 𝑘 are computationally

indistinguishable due to the security of the OPRF protocol, and 𝑧′
0

and 𝑧0 are indistinguishable as they are secret shares. Therefore,

Sim𝑆 (1𝑛, 𝑋 )
𝐶≡ view𝜋

𝑆
(𝑋 ) .

Thus, the protocol ΠPSU securely computes the functionality FPSU.
□

1𝑋 − 𝑌 = (𝑋 ∪𝑌 ) − 𝑌 .

5 Combine and Permute (CnP) Protocol
As output of the circuit-based PSI step, the PSU sender 𝑆 and re-

ceiver 𝑅 obtain shares of a bit vector that indicates the bins of

the Cuckoo hashing table which were positive for intersection. In

order for the receiver to obtain the elements of the union, i.e., the

elements in 𝑋 that are not in the intersection, 𝑅 requires the com-

bined bit vector that can later be used for the OT phase. However,

naïvely sending the combined bit vector to the receiver leaks in-

formation about the bin locations that gave an intersection (cf. our

leakage discussion in § 4.4).

Therefore, we propose a novel “Combine and Permute” CnP
protocol to instantiate the functionality FCnP described in § 4.2.

In this protocol, the combined bit vector is first permuted before

sending to the receiver, thus dissociating the previous relation to

the bin locations. For this protocol, the sender chooses the random

permutation and permutes its own set accordingly, so that the

correctness of the PSU protocol is maintained.

Our protocol is formally described in Fig. 12. It uses the “Per-

mute and Share” protocol of [11] as inspiration, where a vector of

elements is permuted and then secret shared among two parties.

We modify this protocol to take two secret shares as input, com-

bine the shares, and permute the combined vector. The resulting

permuted vector is then provided to the receiver. Note that in our

case, the sender knows the random permutation 𝜋 that is used for

the permutation.

Protocol ΠCnP

Input: The sender 𝑆 has as input a random permutation 𝜋 and

share 𝑥0, and the receiver 𝑅 has as input share 𝑥1.

Protocol:
(1) 𝑆 and 𝑅 run one instance of ShTr with 𝑆 providing as

input permutation 𝜋 .𝑅 obtains𝑎 and𝑏, and 𝑆 obtains Δ.
(2) 𝑅 sends𝑚 = 𝑥1 ⊕ 𝑎 to 𝑆 .

(3) 𝑆 computes �̃� = 𝜋 (𝑚 ⊕ 𝑥0 ) ⊕ Δ and sends it to 𝑅.

(4) 𝑅 computes �̃� = �̃� ⊕ 𝑏.
Output: The receiver𝑅 obtains the permuted combined vector �̃� .

Figure 12: Our semi-honest protocol for CnP.

5.1 Share Translation (ShTr)
Similar to [11], our CnP protocol has a “share translation” (ShTr)
protocol as the core building block. The ideal functionality FShTr is
depicted in Fig. 13. It takes a random permutation as input from the

sender, and returns some correlated random values to the sender

and the receiver. These random values are then later used for the

instantiation of CnP. This functionality can be implemented using

different techniques as will be discussed in § 6.3.2.

5.2 Correctness and Security of CnP
In this section, we prove the correctness and security of the proto-

col ΠCnP (cf. Fig. 12) that instantiates the CnP functionality FCnP.

Correctness: The correctness of the CnP protocol ΠCnP depends

on the correctness of the ShTr protocol. The ShTr protocol takes 𝜋
as input from the sender 𝑆 and returns random values 𝑎, 𝑏 to the
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Functionality FShTr
Parameters: The sender 𝑆 has as input a random permuta-

tion 𝜋 .

Functionality: Upon receiving 𝜋 form the sender, the func-

tionality returns two random vectors 𝑎 and 𝑏 to the receiver 𝑅,

and Δ = 𝜋 (𝑎) ⊕ 𝑏 to 𝑆 .

Figure 13: Ideal functionality for share translation.

receiver 𝑅, and Δ = 𝜋 (𝑎) ⊕ 𝑏 to 𝑆 . 𝑅 sends𝑚 = 𝑥1 ⊕ 𝑎 to 𝑆 . Then, 𝑆

computes �̃� = 𝜋 (𝑚 ⊕ 𝑥0) ⊕ Δ and sends it to 𝑅, where

�̃� = 𝜋 (𝑚 ⊕ 𝑥0) ⊕ Δ

= 𝜋 (𝑥1 ⊕ 𝑎 ⊕ 𝑥0) ⊕ 𝜋 (𝑎) ⊕ 𝑏
= 𝜋 (𝑥0 ⊕ 𝑥1) ⊕ 𝜋 (𝑎) ⊕ 𝜋 (𝑎) ⊕ 𝑏
= 𝜋 (𝑥) ⊕ 𝑏

𝑅 then computes 𝑥 = �̃� ⊕ 𝑏 to get 𝑥 = 𝜋 (𝑥), therefore obtaining
the permuted and combined bit vector.

Security: Here, we prove the security of protocol ΠCnP.

Theorem 5.1. The protocol ΠCnP securely computes the function-
ality FCnP in a ShTr-hybrid.

Proof. For proving the security of protocol ΠCnP, we first con-

sider an adversary that corrupts either the sender 𝑆 or the receiver𝑅.

Then two cases arise:

Case 1: The sender 𝑆 is corrupted by A. Consider a simula-

tor Sim𝑆 that has as inputs the inputs of 𝑆 , i.e., the share 𝑥0 and 𝜋 .

As 𝑆 does not receive any output, the simulation in this case is

straightforward and goes as follows:

• The sender 𝑆 and the simulator Sim𝑆 run the ShTr protocol,
acting as sender and receiver, respectively, and receive the

corresponding outputs.

• Sim𝑆 samples a random vector 𝑥 ′
1

$←− {0, 1} |𝑥0 | , and sends

𝑥 ′
1
⊕ 𝑏′ to 𝑆 .

• 𝑆 continues the protocol as in the real execution.

The view of the sender 𝑆 in the simulation and in the real execution

differ only in the message 𝑆 receives. Since the share 𝑥1 is random

and 𝑥 ′
1
is sampled randomly from the same message space, and

since 𝑏 and 𝑏′ are generated by the ShTr protocol and are random,

the messages 𝑥1 ⊕ 𝑏 and 𝑥 ′
1
⊕ 𝑏′ are indistinguishable. Therefore,

the view of 𝑆 in the simulation is indistinguishable to its view in

the real execution.

Case 2: The receiver 𝑅 is corrupted by the adversaryA. Consider

a simulator Sim𝑅 for the receiver that has as inputs the input and

output of 𝑅, i.e., 𝑥1 and 𝜋 (𝑥). The simulation works as follows:

• The simulator Sim𝑅 samples a random bit vector 𝑥 ′ such
that it has the same Hamming weight as 𝜋 (𝑥). Then, Sim𝑅

computes 𝑥 ′
0
= 𝑥 ′ ⊕ 𝑥1. Also, Sim𝑅 selects a random per-

mutation 𝜋 ′.
• The receiver 𝑅 and the simulator Sim𝑅 run the ShTr proto-

col as the receiver and the sender, respectively. Sim𝑅 gives

as input 𝜋 ′ and receives Δ′, and 𝑅 receives 𝑎′ and 𝑏′.
• Upon receiving 𝑥1⊕𝑎′ from 𝑅, the simulator computes𝑚′ =

𝜋 ′ (𝑥1 ⊕ 𝑎′ ⊕ 𝑥 ′
0
) ⊕ Δ and sends it to 𝑅.

• 𝑅 computes 𝜋 ′ (𝑥 ′) =𝑚′ ⊕ 𝑏′.
In this simulation, the view of the receiver 𝑅 differs in the re-

ceived𝑚′ and the output 𝜋 ′ (𝑥 ′). However, since all involved values
in 𝑚′ are randomly selected and due to the security of the ShTr
protocol, 𝑚 and 𝑚′ are indistinguishable. With respect to 𝜋 (𝑥)
and 𝜋 ′ (𝑥 ′), since 𝑥 and 𝑥 ′ have the same Hamming weight, and 𝜋

and 𝜋 ′ are randomly chosen permutations, they are indistinguish-

able as well. Thus, the view of𝑅 in the real and simulated executions

are indistinguishable.

Therefore, the protocol ΠCnP is secure in a ShTr-hybrid. □

6 Instantiating the Building Blocks
In this section, we discuss how the building blocks of our protocol

can be instantiated efficiently. Note that each of our building blocks

is sequentially executed in a black-box fashion, and therefore can

easily be upgraded with any future protocol that securely and

efficiently implements the respective ideal functionality.

6.1 OPRF
For instantiating the ideal OPRF functionality FOPRF (cf. Fig. 2),

we rely on the SoK in [9] to identify the most suitable protocol.

The required properties are to be efficient on batched inputs and

to be a multi-point OPRF, i.e., use the same PRF key for all inputs.

As per [9, Tab. 3], the state-of-the-art work in this category is the

lightweight OPRF construction of [12]. We refer to [12] for the full

protocol description along with correctness and security proofs.

Complexity. The multi-point OPRF protocol of [12] has an as-

ymptotic complexity of𝑂 (𝑛), and the concrete communication cost

for 2
20

elements of 128 bits each is 84.79 MB. From the experimental

results given in Tab. 2, it can be seen that the implementation gives

the expected value.

6.2 Circuit-based PSI
We suggest to utilize the state-of-the-art circuit-based PSI protocol

of [41], for which the authors report unprecedented run-times

and communication results. Integrating this protocol only requires

minor modifications in terms of notation and implementation to

suit our PSU protocol. Specifically, we interchange the functions

of the sender and the receiver such that the sender constructs

a Cuckoo hashing table and the receiver a simple hashing table.

Moreover, the inputs of both parties are the OPRF evaluations of

their respective sets. Let the sender set be 𝑋 and the receiver’s set

be 𝑌 , then Ψ = 𝐹𝑘 (𝑋 ) and Φ = 𝐹𝑘 (𝑌 ) are the OPRF evaluations of
their respective sets. The modified PSI protocol works as follows:

(1) The sender constructs a Cuckoo hashing table of their set Ψ
and the receiver constructs a simple hashing table of their

set Φ.
(2) For each 𝑖 ∈ [𝑚], the receiver samples a random value 𝑟𝑖 ←−
{0, 1}𝑙 , where 𝑙 = _+ log

2
𝑚 and𝑚 is the size of the Cuckoo

hashing table. For all 𝑖 and 𝑦 ∈ T𝑌 [𝑖], the receiver con-

structs a list 𝐿 = {(𝜙 ′, 𝑟𝑖 )}, where 𝜙 ′ = ℎ 𝑗 (𝜙).
The sender constructs a set Ψ′, which is defined as the

collection of all ℎ 𝑗 (𝜓 ) such that 𝜙 is stored at T𝑌 [ℎ 𝑗 (𝜓 )].
(3) The sender and the receiver then evaluate a programmable

OPRF (OPPRF) with Ψ′ and 𝐿 as their respective inputs,
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and the sender obtains Ψ∗ as output, where Ψ∗ = 𝑟 ′
𝑖
such

that 𝑟 ′
𝑖
= 𝑟𝑖 if𝜓 = 𝜙 , and 𝑟 ′

𝑖
≠ 𝑟𝑖 otherwise.

(4) The sender and the receiver use a generic MPC protocol to

check equality between each 𝑟 ′
𝑖
and 𝑟𝑖 pair and secret share

the result between the two parties.

Complexity. One of the first circuit-based PSI protocols of [23]

uses a “sort-compare-shuffle” (SCS) circuit to compute the intersec-

tion. This SCS protocol has an asymptotic complexity of𝑂 (𝑛 log𝑛)
and a very high concrete communication cost of more than 800MB.

Instead, the state-of-the-art “blazing fast” circuit-based PSI protocol

of [41] achieves an asymptotic communication complexity of𝑂 (𝑛𝑙),
where 𝑙 is the bit length of the elements. The concrete communica-

tion cost for 2
20

elements of 128 bits is 120.72 MB. However, the

run-time results reported in the original publication are achieved

using “silver” OT [14], which was shown to be insecure [42]. For

our experiments, we therefore use “silent” OT [7, 42] instead.

6.3 Shuffling
For the shuffling step, the ideal functionality for “Combine and

Permute” (FCnP, cf. Fig. 8) is realized. We explore two main options

for this. For the first option, we acknowledge that it is possible to

simply implement this as a classical permutation network in a cir-

cuit. The second option is to use our new protocol ΠCnP (cf. Fig. 12),

for which various instantiation options do exist.

6.3.1 Permutation Networks. Implementing permutation networks

in a circuit is a classical approach to shuffling, often proposed in

the context of circuit-based PSI protocols when there is no sym-

metric function computed on top of the intersection result [23].

There are two prominent approaches in this category: Benes [4]

and Waksman [2, 45] permutation networks. For an 𝑛 × 𝑛 permuta-

tion network, the Waksman network requires

𝑛

2

− 1 fewer switches
than the Benes network. Therefore, we recommend to useWaksman

networks when pursuing this option.

Complexity. This approach has an asymptotic complexity of

𝑂 (𝑛 log𝑛).

6.3.2 Combine and Permute Protocols. As an alternative to classic

permutation networks, there exist dedicated two-party shuffling

protocols, e.g., [11, 31]. The state-of-the-art work in this category

is [11], proposing the first shuffle protocol with mainly symmetric-

key techniques and 𝑂 (𝑛 log𝑛) complexity. We closely analyze the

protocol of [11] for applying it to our PSU protocol, and realize

it can be significantly modified and optimized for our purposes,

resulting in ourCnP protocol shown in Fig. 12. As discussed in § 5.1,

this protocol requires an underlying sub-protocol ShTr (cf. Fig. 13),
which in turn can be instantiated in a number of ways:

• Permutation networks. Interestingly, not only the en-

tire FCnP functionality, but also the FShTr functionality as

a sub-component of our CnP protocol ΠCnP can be instan-

tiated by implementing permutation networks in a circuit.

Here, the sender selects a permutation 𝜋 , and the receiver

selects two random strings 𝑎 and 𝑏. Now we can permute 𝑎

using permutation 𝜋 in a GMW [21] circuit, add 𝑏 to 𝜋 (𝑎),
and return the result to the sender.

Complexity. This method has 𝑂 (𝑛 log𝑛) complexity and is

the one we implement (using the Waksman [2, 45] permu-

tation network) and evaluate in § 7.

• Oblivious Punctured Vectors (OPV). The OPV-based

approach of [11] for the ShTr protocol can be applied to our

setting with some modifications. More precisely, the OPV

primitive is used to construct two 𝑛 × 𝑛 matrices 𝑉𝑠 and 𝑉𝑟
for the sender and the receiver, respectively. The sender

then uses its matrix 𝑉𝑠 to construct Δ as follows: for 𝑖 ∈
[𝑛], Δ[𝑖] = ∑

𝑗≠𝜋 (𝑖 )
𝑉𝑠 [𝑖] [ 𝑗] −

∑
𝑗≠𝑖

𝑉𝑠 [ 𝑗] [𝜋 (𝑖)]. The receiver

uses its matrix 𝑉𝑟 to obtain 𝑎 and 𝑏 as follows: for 𝑖 ∈
[𝑛], 𝑎[𝑖] = ∑

𝑖
𝑉𝑟 [𝑖] [ 𝑗], 𝑏 [𝑖] =

∑
𝑗
𝑉𝑟 [ 𝑗] [𝑖].

Complexity. This approach has𝑂 (𝑛 log𝑛) complexity. How-

ever, this method has a high concrete communication cost

of approximately 1.8 GB. This is mainly due to the ineffi-

ciency of the protocol for shuffling 1-bit inputs.

• Permutation Correlations. In the recent work of [33], a

permutation correlation generator based on MPC-friendly

PRFs is proposed. This correlation generator can be used

to instantiate the ShTr protocol using 𝑛 evaluations of

such PRFs. More precisely, the sender inputs 𝜋 (𝑖), and the

receiver inputs the PRF key 𝑘 ; then, the sender and the

receiver obtain secret shares of 𝜋 (𝑎) as outputs. I.e., the
sender receives Δ = 𝜋 (𝑎) + 𝑏, and the receiver obtains 𝑏

and computes 𝑎[𝑖] = 𝐹𝑘 (𝑖).
Complexity. The PRF-based solution of [33] has an asymp-

totic complexity of 𝑂 (𝑛) and a concrete communication

cost of approximately 16 MB.
2

6.4 OT
To obliviously transfer missing elements of 𝑋 from 𝑆 to 𝑅, we need

to instantiate 1-out-of-2 OT. For this, we can rely on communication

efficient silent OT [8, 42] in the setup phase to generate sufficiently

many random OTs. Using Beaver’s OT precomputation [3], we

can derandomize these precomputed random OTs using the actual

inputs in the online phase of the protocol.

The derandomization is done as follows: After running ran-

domOT, the sender gets two random values𝑚0 and𝑚1; the receiver

obtains𝑚𝑟 , corresponding to its random choice bit 𝑟 . Now, in the

online phase, the receiver reports 𝑐′ = 𝑐 ⊕ 𝑟 to the sender, where 𝑐

is the actual choice bit. The sender gives either (𝑥 ′
0
= 𝑥0 ⊕𝑚0, 𝑥

′
1
=

𝑥1 ⊕𝑚1) to the receiver if 𝑐′ = 0, or (𝑥 ′
0
= 𝑥0 ⊕𝑚1, 𝑥

′
1
= 𝑥1 ⊕𝑚0)

if 𝑐′ = 1. The receiver can then recover 𝑥𝑐 as 𝑥𝑐 = 𝑥 ′𝑐 ⊕𝑚𝑟 .

Since the sender’s second input in our OT phase is always ⊥,
we propose an optimization to significantly reduce the amount of

communication. For this, we only send the first element of the cor-

rection step (i.e., 𝑥 ′
0
) in the online phase. The receiver can then still

reconstruct the output (if necessary) using the precomputed ran-

dom OT messages. This optimization reduces the communication

in the OT phase by half.

Complexity. For transferring the missing elements, we require

1.4𝑛 OTs, where 1.4𝑛 is the concrete size of the Cuckoo hashing

2
Since their implementation is not yet available online, we could not verify this result

experimentally.
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table (setting 𝜖 = 0.4 for “stashless” hashing when using three

hash functions [41]). Using the optimization mentioned above, the

sender needs to send 1.4𝑛 elements to the receiver. Using silent OT

for precomputation, the OT step costs about 23 MB for 1.4 · 220
elements of 128 bits each.

7 Performance Evaluation
In this section, we describe the implementation of our PSU protocol,

the evaluation setup, provide (micro) benchmarks, and compare our

results to previous works. We provide additional benchmark results

for varying set sizes and the unbalanced setting in Appendix A.

7.1 Implementation
For our implementation, we rely on multiple existing implementa-

tions of protocol building blocks. Our OPRF implementation of the

protocol of [12] is based on the implementation included in [25]
3
.

For the circuit-based PSI protocol, we utilize the implementation

of [41]
4
. We replace the silver OT component with the latest ver-

sion of silent OT [8], provided as part of libOTe
5
. For shuffling, we

implement our CnP protocol with the share translation instanti-

ated with a Waksman network in the BetaCircuit framework of

the cryptoTools library
6
.

7.2 Setup
We execute our implementation on two Linux servers with Intel(R)

Core(TM) i9-7960X CPU @ 2.80GHz CPU and 128 GB RAM, con-

nected via a 10 Gbit/s switch. Our run-times are reported in two

network configurations, simulated by restricting bandwidth and

increasing RTT via the Linux tc command: A LAN configuration

with 10 Gbit/s bandwidth and 1 ms RTT, and a WAN configuration

with 100Mbit/s bandwidth and 100 ms RTT. We use the same setup

to evaluate the PSU protocol of [13]. We evaluate all implementa-

tions as single-threaded programs.

7.3 (Micro) Benchmarks
In Tab. 2, we report on the offline/online run-time as well as the

communication overhead for each of the protocol phases described

in § 6. We note that 15-20% of our protocol’s run-time is in the

setup phase, which is an advantage compared to purely public-

key-based protocols where almost all overhead (except for the OT

precomputation) occurs in the online phase. Furthermore, we note

that the protocol overhead is dominated by the circuit-based PSI

protocol (approx. 30 seconds). This is unexpected, as the paper [41]
reports half the run-time (approx. 15 seconds) in a comparable

hardware configuration. We speculate that this is mainly due to the

replacement of silver OT in the original protocol with silent OT,

which is necessary as the silver codes turned out to be insecure [42].

7.4 Comparison to Related Works
In Tab. 4, we compare the total run-time and communication over-

head of our protocol with previous works. We run the implemen-

tation of the state-of-the-art protocol of [13] in our benchmark

3
https://github.com/dujiajun/PSU

4
https://github.com/Visa-Research/volepsi

5
https://github.com/osu-crypto/libOTe

6
https://github.com/ladnir/cryptoTools

Protocol-Phase

Run-Time in ms Communication

LAN WAN in MB

Setup
CPSI 0.05 0.05 0.00

CNP 10 616.43 11 622.09 0.39

OT 181.05 1 189.91 0.32

Total 10 805.50 12 812.10 0.72

Online
MP-OPRF 11 403.41 12 717.22 84.81

CPSI 27 644.70 39 945.82 128.58

CNP 3 265.50 9 611.30 16.86

OT 66.00 2 012.84 21.23

Total 42 379.60 64 287.17 251.48

Total 53 185.10 77 099.27 252.19

Table 2: Run-time and communication overhead for all
phases of our PSU protocol for 𝑛 = 2

20 elements. Here,
CPSI=Circuit-based PSI, CnP=Combine and Permute, MP-
OPRF=Multi-point OPRF.

Protocol

Run-Time in ms Communication

LAN WAN in MB

Chen et al. [13] 61 660.98 73 782.90 103.21

Our work 53 185.10 77 099.27 252.19

Table 3: Total run-time and communication overhead for our
and previous PSU protocol of [13] for 𝑛 = 2

20 elements.

environment. For the remaining works (marked with *), we take

the run-times and communication numbers from the original pub-

lications.

Furthermore, we calculate the cost of our linear complexity pro-

tocol (marked with †) using a theoretical cost analysis, but have

not implemented it because the code for the underlying novel per-

mutation correlation generator of [33] is not yet publicly available.

As shown in Tab. 4, while using the technique of [33] gives a nice

asymptotic result (linear complexity), the overall concrete com-

munication cost for relevant set sizes is virtually equivalent to

the naïve approach based on permutation networks. Evaluating

potential run-time differences is part of future work.

Compared to the state-of-the-art protocol of [13], we achieve

better total run-time in the LAN setting, while incurring 2.5× more

communication. The main benefit of our modular protocol is that it

can be upgraded easily with further advances in all building blocks.

With respect to the other public key-based protocol of [47], we

achieve approximately 3× better run-time in LAN and 2× in WAN.

Now, comparing to the symmetric key-based protocols [25, 28,

47], our protocol has 1.6 − 9.8× less communication, and has 3.2×
and 4.5× better run-times compared to [25] and [28], respectively.

In the LAN setting, our protocol is 0.9× slower than [47]. However,

our protocol has an online run-time of 42.38s, which is very close to

the reported online run-time of [47] and, more importantly, has 1.6×
lower communication.We also compare the scaling of protocol with

https://github.com/dujiajun/PSU
https://github.com/Visa-Research/volepsi
https://github.com/osu-crypto/libOTe
https://github.com/ladnir/cryptoTools


Chandran et al.

8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

50

55

60

Set Size (2
∗
)

R
u
n
t
i
m
e
(
s
)

Our work

[20]

[25]

[28]

[47]

[26]

(a) Run-time (LAN) vs Size

8 10 12 14 16 18 20

50

100

150

200

250

300

Set Size (2
∗
)

C
o
m
m
u
n
i
c
a
t
i
o
n
(
M
B
)

Our work

[20]

[25]

[28]

[47]

[26]

(b) Communication vs Size

Figure 14: Scaling of run-time (a) and communication (b) with increasing set sizes 𝑛 = {28, 210, 212, 214, 216, 218, 220} for symmetric
key-based PSU protocols.

Protocol Operations Asymptotic Total Comm. Run-Time in s
*-key Comm. in MB LAN WAN

Kolesnikov et al., ASIACRYPT’19 [28]* Symm 𝑂 (𝑛 log𝑛) 2 470.00 238.88 406.15

Garimella et al., PKC’21 [20]* Symm 𝑂 (𝑛 log𝑛) 1 155.00 114.42 319.87

Jia et al., USENIX Sec’22 [25]* Symm 𝑂 (𝑛 log𝑛) 1 339.00 173.15 266.98

Zhang et al., USENIX Sec’23 [47]* Public 𝑂 (𝑛) 176.00 173.40 184.55

Zhang et al., USENIX Sec’23 [47]* Symm 𝑂 (𝑛) 414.00 44.78 86.13

Chen et al., PKC’24 [13] Public 𝑂 (𝑛) 103.00 61.66 73.78

Jia et al., USENIX Sec’24 [26] Symm 𝑂 (𝑛 log𝑛) 2 430.00 49.38 225.32

Our work (w/ Perm. Network) Symm 𝑂 (𝑛 log𝑛) 252.00 53.19 77.09

Our work (w/ [33])† Symm 𝑂 (𝑛) 252.00 − −
Table 4: Comparison of PSU protocols in “chronological” order with respect to concrete and asymptotic communication cost and
run-time. All costs are for 𝑛 = 2

20 elements. ∗ indicates that the results are taken from the original paper, and † indicates that
the result is theoretical. The result of [5] is excluded from this table due to incomparable network settings in their benchmarks.

the other symmetric-key based protocols with respect to increasing

set sizes (cf. Fig. 14). In Fig. 14a, it can be seen that our runtime

scales almost similar to that of [26, 47]. Fig. 14b shows that our

communication costs scale better than all other symmetric-key

based protocols. The benchmark results of our protocol for different

set sizes are given in Tab. 5.

We also compare our results to the leaky PSU protocol of [44].

For the balanced setting, where the parties have 2
10

elements

each, [44] presents a runtime of 0.86s in LAN and 3.73s in WAN,

while we have 0.64s (1.3× faster) in LAN and 6.16s (1.6× slower)

in WAN. Their protocol requires 2.42 MB communication, while

ours is 1.21 MB (2× lower). This shows that, contrary to the result

of [29], we mitigate the leakage caused by Cuckoo hashing without

adding significant performance overhead. We also benchmark our

protocol in the unbalanced setting and discuss the results in Tab. 6

in § A.2. Moreover, as mentioned earlier, our protocol will directly

benefit from any future improvement in the sub-protocols.

8 Conclusion and Future Work
We propose an efficient symmetric-key-based PSU that employs

circuit-based PSI as a core building block. Our protocol is built on

four sequentially executed sub-components, allowing to replace

each component with a suitable protocol. For now, in terms of

performance, we present an appealing new trade-off between public-

and symmetric-key-based PSU protocols. In the future, our modular

protocol has a great potential for further improvements as each

component’s upgrades will directly boost the overall performance.

In addition, more functions can be computed on top of the simple

PSU using straightforward changes to our protocol.
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A Additional Benchmarks
A.1 Different Set Sizes
We also run our protocol for varying set sizes 𝑛 = {28, 210, 212, 216,
2
18, 220}, and benchmark the run-time and communication over-

head (cf. Tab. 5)
7
. We furthermore compare the scaling of our pro-

tocol with that of the other symmetric-key-based protocols, using

performance results reported in the original publications. Fig. 14a

shows that our protocol is slightly worse than that of [47] in terms

of run-time. However, the communication cost of our protocol

scales much better than that of [47], as we demonstrate in Fig. 14b.

Set Size

Run-Time in ms Communication

LAN WAN in MB

2
8

520.00 5 790.00 0.98

2
10

642.00 6 162.00 1.21

2
12

870.00 7 021.00 1.89

2
16

4 305.00 12 979.00 16.60

2
18

13 028.00 26 795.00 62.27

2
20

53 185.00 77 099.00 252.20

Table 5: Total run-time and communication overhead for
our PSU protocol for increasing set sizes from 𝑛 = 2

8 up
to 𝑛 = 2

20 elements.

A.2 Unbalanced PSU
Although our protocol is designed for the balanced case, it can

still be used to compute the set union in the unbalanced setting.

We benchmark the communication and computation costs for the

unbalanced case and present the results in Tab. 6. We compare

our results with that of [44] and observe that our runtime in the

LAN setting is consistently faster, while in the WAN setting, it is

slower. Our communication cost for the smaller size differences is

lower than that of [44], but it increases steadily when the difference

7
For 𝑛 = 2

14
, the circuit-based PSI implementation of [43] is faulty and, therefore,

could not be used for our benchmark.
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|𝑌 |
Run-Time in s Communication

LAN WAN in MB

Tu et al. [44] Ours Tu et al. [44] Ours Tu et al. [44] Ours

2
10

0.87 0.64 3.73 6.16 2.42 1.21

2
11

0.87 0.64 3.78 6.96 2.42 1.31

2
12

0.87 0.70 3.73 6.13 2.42 1.51

2
14

1.17 0.81 4.43 6.39 3.00 2.74

2
15

1.12 0.96 4.38 6.64 3.00 4.39

2
16

1.37 1.24 4.39 7.00 3.00 7.68

Table 6: Comparison of run-time and communication overhead of our PSU protocol with that of [44] for the unbalanced setting
where the sender has a set of size |𝑋 | = 2

10, and the receiver has varying set sizes from |𝑌 | = 2
10 to |𝑌 | = 2

16.

between the set sizes increases. In contrast, the communication cost

remains essentially constant for [44]. This can mostly be attributed

to the fact that, although we support unbalanced cases, our protocol

is optimized for the balanced scenario, while the protocol in [44] is

optimized for the unbalanced one.

B Extensions to PSU
Due to the modular construction of our protocol, we can easily

replace the intermediate protocols to accommodate more function-

alities in addition to the simple set union. Here, we briefly sketch

some of the extensions that are possible to our PSU protocol.

PSU with associated values. To obtain associated values along

with the normal PSU, also known as labeled PSU, our PSU protocol

can be easily extended by simply including the associated values in

the final OT step.

PSU Cardinality. We can also compute the PSU cardinality by

omitting the last two steps, i.e., the CnP and the OT step, and using

a circuit-based PSI cardinality (PSI-CA) protocol instead of simple

circuit-based PSI. The result of PSI-CA can then be used to compute

the PSU cardinality. The computation of PSU-CA can be done in

the circuit itself to hide the intermediate PSI-CA.

PSU Sum. The PSU Sum functionality lets the receiver learn the

sum of the associated values of all elements in the union. Since the

receiver knows its own associated values, all that remains is to send

the sum of the associated values for elements in 𝑋 −𝑌 . This can be

done as follows: The sender samples 𝑛 random values 𝑟𝑖 . Then, in

the OT step, the sender sets its input to be (𝑟𝑖 + 𝑎𝑖 , 𝑟𝑖 ), where 𝑎𝑖 is
the associated value, and the receiver has the CnP step’s output as

its choice bit string 𝑧𝑖 . At the end of the OT phase, the receiver can

calculate 𝑆 ′ = Σ𝑟𝑖 + 𝑧𝑖 · 𝑎𝑖 . The sender can send Σ𝑟𝑖 to the receiver,

and the receiver can finally calculate the sum of 𝑋 − 𝑌 as 𝑆 ′ − Σ𝑟𝑖 .
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