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Abstract. Homomorphic message authenticators allow a user to per-
form computation on previously authenticated data producing a tag σ
that can be used to verify the authenticity of the computation. We extend
this notion to consider a multi-party setting where we wish to produce a
tag that allows verifying (possibly different) computations on all party’s
data at once. Moreover, the size of this tag should not grow as a func-
tion of the number of parties or the complexity of the computations. We
construct the first aggregate homomorphic MAC scheme that achieves
such aggregation of homomorphic tags. Moreover, the final aggregate
tag consists of only a single group element. Our construction supports
aggregation of computations that can be expressed by bounded-depth
arithmetic circuits and is secure in the random oracle model based on
the hardness of the Computational Co-Diffie-Hellman problem over an
asymmetric bilinear map.

Keywords: homomorphic authenticators · aggregate MAC · verifiable
computation

1 Introduction

Consider a scenario where a scientist wishes to collect aggregate measurements
about some scientific phenomena, for example average or standard deviation of
ocean temperature around the world. She can deploy sensors to collect data
in different regions and, to minimize communication, have the sensors upload
their readings to the cloud. Moreover, since the scientist is only interested in
aggregate statistics, she does not need to view all of the uploaded measurements,
just the resulting aggregate statistics. So, instead of having the cloud store all
the collected data, she can have it compute the aggregates and only review the
results.

However, this requires that the scientist rely on the cloud to compute the
aggregate statistics. A malicious cloud can change the original readings or add
error into the computations to produce faulty results. Thus, the scientist needs
to check that the aggregate statistics are correct for all the sensors even with-
out seeing the original sensor readings. Moreover, to reduce communication and
storage, we want the “proof” of correctness to be small – of size not growing
with either the complexity of the computed statistics or the number of sensors.
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Moreover, even if the cloud is able to learn the secret keys of some of the sensors,
we want the authenticity of the computation on the remaining sensors’ data to
be preserved.

To address this challenge we turn to the use of homomorphic authentica-
tors [1, 2, 3, 4, 5, 6, 7]. Homomorphic authenticators allow a user to use their
secret key to authenticate an input x. Anybody can then use an associated (pub-
lic) evaluation key to evaluate a program P on the authenticated input produc-
ing the result along with a tag authenticating the output. Finally, a party with
knowledge of the user’s verification key – a public key in the case of signatures,
and a secret key in the case of message authentication codes – can verify that
the final output was computed correctly on the originally authenticated input.
In our previously described application this would amount to the scientist provi-
sioning secret keys to each sensor, the sensor authenticating their measurement
and sending it to the cloud, who evaluates the program P allowing the scientist
to verify the output.

Originally, homomorphic authenticators focused on the case of a single user
authenticating their input, but more recent work [6, 7] has considered the case of
homomorphic authenticators over multiple users. These allowed authenticating
computation that took input from multiple users. The first work to consider this
setting by Fiore et al. [6] restricted the computation to low-depth circuits. A
very recent breakthrough work by Anthoine et al. [7] overcame this limitation,
but the resulting authenticators grow either with the number of users or the
depth of the computation.

Our goal is different from these works. First, while we aim to support multi-
ple users with different authentication keys so that compromising one user’s key
does not compromise the other users, we only consider computations that work
over the inputs of a single user – i.e., we only wish to compute over readings
for each sensor, not across sensors. However, to minimize storage and commu-
nication we insist that the size of the final authenticator be independent of the
number of users whose computation is authenticated and the depth and size of
the computed circuits. Specifically, it will consist of only a single group element.
Thus our goal is both weaker and stronger than the prior work supporting a more
restrictive class of computations, but enforcing a much stricter length bound on
the authenticator.

In order to compress the authenticators to achieve this length bound, we
turn to another well-studied tool in the cryptographic literature – aggregate
signatures [8, 9, 10, 11]. Aggregate signatures allow the compression of multiple
signatures into a single short signature that does not grow with the number of
input signatures. However, they do not provide any homomorphic functionality
and the original inputs are necessary to verify the signature.

We build on these two tools to develop a primitive we call a HA-MAC which
combines the benefits of both of these primitives allowing verification of compu-
tation over the sensors’ inputs while only requiring an authenticator consisting
of only one group element.
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1.1 Our Construction

Our Homomorphic Aggregate MAC (HA-MAC) combines the properties of ho-
momorphic authenticators and aggregate authenticator to achieve functionality
and security that are a good fit for the outsourced measurement use-case de-
scribed previously. We briefly describe these in what follows before sketching
the intuition behind our construction.

Functionality A HA-MAC is a symmetric-key primitive where each of the P
users is given a secret key ski. Using this secret key each user can authenticate
inputs of his choice. An evaluator who does not know the secret key, but has a
corresponding evaluation key eki can evaluate (possibly different) programs over
each user’s inputs and aggregate the results of any subset of the users into a
short aggregate MAC. Finally, a verifying party who knows all of the secret keys
of the included users can use this MAC to verify that the evaluator correctly
computed all of the aggregated values. Importantly, the verifier can do this even
without knowing the original values authenticated by the users.

Security Our HA-MAC also provides strong security guarantees. The MAC guar-
antees the integrity of an honest user’s input and computation even if all of the
remaining users collude with the evaluator meaning that users have nothing to
fear from participating. Moreover, security is achieved even against an adversary
who is additionally allowed to ask for an unbounded number of authentications,
as well as MAC verifications and aggregate MAC verifications with tags includ-
ing the honest user. We prove our HA-MAC secure in the random oracle model
under the standard co-CDH assumption over pairing-friendly elliptic curves.

Specifically, we prove the following theorem:

Theorem 1 (Informal). For any pairing friendly elliptic curve E with a bilin-
ear map e : G1 × G2 −→ GT and efficiently computable isomorphism ψ : G2 −→ G1
such that the co-Computational Diffie-Hellman (co-CDH) problem is hard, the
HA-MAC construction Θ given in Figure 2 is a secure HA-MAC in the random
oracle model.

1.2 Overview of Our Techniques

We begin with the construction of a single-user homomorphic message authen-
tication code due to Catalano and Fiore [3]. In their construction, all authenti-
cation tags correspond to polynomials in Zp[x] represented as a vector of their
coefficients. To authenticate an input m ∈ Zp with a label1 τ ∈ {0, 1}λ the initial
authentication tag is a degree-1 polynomial y ∈ Zp[x] such that y(0) = m and
y(x) = PRFK(τ) for a hidden point x ∈ Zp and a PRF key K. Looking forward,
x and K will be part of a user’s secret key.

1 Labels are used to identify the input wires in an arithmetic circuit describing a
homomorphic computation.
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For any depth-D arithmetic circuit f with n input labels, the homomor-
phic tag authenticating the output of f is a degree-D polynomial yf ∈ Zp[x]
constructed as follows from the input polynomials yi. Going through the cir-
cuit f gate-by-gate, for every addition gate, we add the input polynomials
(by adding the coefficients). For every multiplication gate, we multiply the in-
put polynomials (by computing a convolution of their coefficients). It is easy
to see that these operations are naturally homomorphic with respect to the
evaluation of the polynomials at any evaluation point. Specifically, we observe
that yf (0) = f(y1(0), . . . , yn(0)) = f(m1, . . . ,mn) where y1, . . . , yn are the
original input tags on inputs m1, . . . ,mn and yf (x) = f(y1(x), . . . , yn(x)) =
f(PRFK(τ1), . . . ,PRFK(τn)) where x is the hidden point used in constructing
the initial authentication tags. Observe that if the hidden evaluation point x is
random and unknown to an adversary, then to check the validity of a claimed
Mac y′, it is sufficient to check whether these two equalities hold. Specifically, on
an input polynomial y′ if y′(0) = yf (0) and y′(x) = yf (x) then by the Schwartz-
Zippel lemma, with overwhelming probability, y′ = yf is a valid tag. Note,
however, that when computed in this way the degree of the output polynomial
yf is D and thus D + 1 coefficients are necessary to represent this polynomial
resulting in a tag that grows linearly with the depth of the circuit f .

To avoid this increase in the size of the tags, Catalano and Fiore instead
encode and evaluate these polynomials in the exponent in a multiplicative group
G. More concretely, for some program P = (f, (τi)∀i∈[n]), let (yi)∀i∈D be the
coefficients of the polynomial yf computed as before. Succinct tag Λ is computed
as Λ =

∏D
i=1(u

xi

)yi where the values ux
i

for i ∈ [D] are part of a user’s public
evaluation key and u is a generator of the group G. Intuitively, Λ is computed
by taking an inner product between the coefficient vector of y with powers of
x excluding the degree-0 coefficient. This corresponds to evaluating y(x)− y(0)
in the exponent, so Λ = uy(x)−y(0). Now, on input a tuple (m,P, Λ), we can
perform the Schwartz-Zippel test in the exponent by checking that um · Λ = uρ

where ρ = y(x), the evaluation of the polynomial at the hidden point x. For
purposes of the security proof and in order to allow further functionality instead
of performing the above check directly – as done by Catalano and Fiore – we
instead perform this check using a bilinear pairing to map the values into a target
group GT . Specifically, for groups (G1,G2) with a bilinear map e : G1×G2 → GT ,
Λ is computed in G1. We then choose a random element w = H2(m) ∈ G2
(for a hash function H2 modeled as a random oracle) and use the bilinear map
to compute e(Λ,w), e(um, w), and e(uρ, w) and use these values to verify that
e(um, w) · e(Λ,w) = e(uρ, w).

Armed with this single-user homomorphic Mac construction, we now recall
our goal of an aggregate homomorphic Mac. Specifically, we wish to aggregate the
Macs of a subset U of users to authenticate computations performed by each of
the users. An immediate way to realize this aggregation is via the trivial approach
of concatenating the homomorphic Macs of all the users in U . Specifically, each
user l ∈ U has a secret key skl and evaluation key ekl, where ekl contains l’s
generator ul for the previously described Mac. Then, an aggregate Mac for U
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can just consist of (Λ1, . . . , Λ|U |) and can be verified by checking that for all
l ∈ U with wl = H2(ml),

e(Λl, wl) = e(ul, w
ρ
l ) · e(ul, w

ml

l )−1 (1)

However, this trivial aggregation fails to meet our goal of an aggregate Mac
that does not grow with the number of parties in the set U . Thus, to achieve
this goal, we modify the aggregation procedure to combine all of the users’ Macs
into a single group element. Intuitively, this is done by taking a random lin-
ear combination of the users’ Macs in the exponent. To ensure that the verifier
can recompute the linear combination for verification, but at the same time an
adversary cannot predict the random weights that will be used in the linear
combination we again turn to the hash function H2. Specifically, for any subset
of users U ⊆ P , for each user in U the aggregate algorithm computes e(Λl, wl)
as before and then it multiplies all of these into one group element in GT . Us-
ing e(g1, g2) as the generator in GT , correct aggregation under evaluation keys

(ekl)∀l∈U ← (u
xk
l0

l )∀k∈D evaluates to the following in the exponent:

Σ∀l∈U γlbl

(
ml +

D∑
k=1

yl,kx
k
l0

)
= Σ∀l∈U γlblfl(rτl,1 , . . . , rτl,n)

where γl and bl are exponents such that gbl2 ← wl, g
γl

1 ← ul for some γl←$ Zp.
Note that bl and γl are both secret to the adversary since bl is the discrete log
of the hash output wl and γl is the discrete log of the random generator ul.

Verification of aggregate MAC σ∗ involves checking whether σ∗ is equal to
e(g1, g2)

Σ∀l∈U γlbl(fl(rτl,1 ,...,rτl,n )−ml). Since the adversary does not know γl or bl,
he cannot produce a forged Mac σ∗ that passes this verification.

2 Related Work

Homomorphic Authenticators: Since their introduction by Ronald Rivest [12],
homomorphic authenticators have been widely investigated (e.g. [13, 1, 2, 3, 4,
5, 6, 7]) both in the public-key (i.e., homomorphic signatures) and private-key
(i.e., homomorphic Mac) variants. Of these, we follow the line of work on fully-
homomorphic authenticators initiated by Gennaro and Wichs [4] and follow-on
work [3, 6, 7].

In particular, our starting point is the work of Catalano and Fiore [3] who
showed how to build practical fully-homomorphic Macs from the ℓ-Diffie-Hellman
Inversion assumption. However, this work is restricted to the single-key setting
whereas we are aiming to support authentications under multiple keys. Follow-
on work by Fiore et al. [6] did achieve support for multi-key homomorphic Macs,
however they were limited to only low-degree computations. Very recently, An-
thoine et al. [7] showed how to lift this limitation achieving homomorphic Macs
for arbitrary computation across inputs authenticated by multiple clients. How-
ever, their resulting Mac, while sublinear in the number of clients and the size
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of the computation, still required that the number of group elements grows with
the number of parties. We, on the other hand, only aim for a weaker primitive
allowing homomorphic computation only on inputs from each party separately
followed by an aggregation of the results. But, this allows us to achieve a final
Mac consisting of only a single group element.

Aggregate Signatures and MACs: Another line of work closely related to ours is
aggregate signatures and Macs (e.g. [8, 9, 10, 14, 11, 15]). These primitives focus
on aggregating multiple signatures or Macs into a single (very) short authenti-
cator. However, they do not consider computation on these authenticators. Our
construction directly builds on the work of Boneh et al. [8] and thus inherits
their need of a random oracle. While later work [14] showed how to avoid this
random oracle assumption, this was at the cost of very strong computational
assumptions. We see constructing a HA-MAC scheme secure in the standard
model as an interesting open question.

Verifiable Computation: Homomorphic aggregate MACs are also closely related
to the more general notion of verifiable computation [16, 17, 18, 19, 20, 21, 22, 23,
24]. Generally, this line of work differs from homomorphic Macs in that verifiable
computation often requires interaction whereas homomorphic Macs are non-
interactive. Moreover, homomorphic Macs allow any party with knowledge of the
public evaluation keys to verifiably compute functions on authenticated inputs
with no additional communication. On the other hand, verifiable computation
is heavily focused on reducing the amount of computation necessary to verify
while we focus primarily on reducing communication. We refer readers to [4] for
a more in-depth discussion.

Succinct Non-Interactive Arguments of Knowledge: Another way to achieve a
homomorphic aggregate Mac is via the use of SNARKs [25, 26, 27, 28]. While
SNARKs do provide an alternative solution to ours, they are generally more
expensive – especially for the prover, and necessarily rely on non-falsifiable as-
sumptions [29].

3 Preliminaries

3.1 Notation

We let λ ∈ N denote a security parameter. A function ν: N → N is negligible
if ν(λ) = O(λ−c) for every constant c > 0 and a function p is polynomial
if p(λ) = O(λc) for some constant c > 0. For a finite set S, we use x←$ S
to denote sampling a uniformly random element from S. When analyzing the
concrete security of a primitive, we say that a primitive is (t, ϵ)-secure if any
adversary running for time at most t succeeds in breaking the scheme with
probability at most ϵ. We use F to refer to a finite field, bold variables (e.g., r)
to represent vectors, and PRF to denote a pseudorandom function. We refer the
reader to the text by Katz and Lindell [30] for the formal definition.
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3.2 Arithmetic Circuits

Definition 1. Arithmetic Circuit [31, 3, 32] An arithmetic circuit over a
field F and a set of variables X = (τi)∀i∈[n] is a directed acyclic graph represent-
ing polynomial computation. We say that a polynomial f ∈ F[τ1, . . . , τn], over a
field F is computable by a circuit of size s and depth D if there exists a directed
acyclic graph with s nodes and depth D such that its leaf nodes are labelled by
variables or field constants, internal nodes are labelled with + and ×, and f is
the polynomial computed at the root node.

In this paper, we consider evaluations of arithmetic circuits over field elements
and over polynomials. We briefly describe these below:

– Computing on field elements: We interpret f as a bounded depth arithmetic
circuit over Fp. Meaning f on input x ∈ Fn

p outputs a scalar in Fp. Here the
evaluation takes place gate by gate where each gate is either + or × mod p.

– Computing on polynomials: We interpret f as a D degree polynomial that f
computes. Meaning f on input n degree-1 polynomials ({yi}∀i∈[n] outputs a
degree-D polynomial y∗ over Fp. We represent polynomials in coefficient no-
tation, i.e., each yi = (y0i , y

1
i ) and y∗ is a vector of D+1 coefficients. Here the

evaluation is performed gate by gate evaluation where multiplication gates
correspond to polynomial multiplication (corresponding to a convolution of
the coefficient vectors) and addition gates correspond to polynomial addi-
tions (corresponding to component-wise addition of the coefficient vectors.)

3.3 Labeled Programs

We recall the definition of labeled programs [4, 3]. A labelled program is a tuple
P = (f, τ1, . . . , τn), where f : Fn → F is a function represented by an arithmetic
circuit and τ1, . . . , τn are binary strings that are used as labels to identify the
inputs of this function.

All data is authenticated with a label σ ← Auth(sk, (τ,m)) which is used
to identify a particular input to the circuit and to indicate which input of the
circuit it corresponds to. Specifically, given a labeled program P = (f, τ1, . . . , τn)
and a set of tags (σ1, . . . , σn) that authenticate message mi under label τi, ho-
momorphic evaluation allows anyone to evaluate the program P on messages mi

as long as the labels τi match those specified in the program.
We denote the identity program associated with label τ as Iτ = (gid, τ),

where gid signifies the canonical identity function, i.e., gid(x) = x for all inputs
x, and τ ∈ {0, 1}∗ denotes an input label.

We recall the definition of well defined program [3].

Definition 2. A labeled program P =
(
f, (τi)∀i∈[n]

)
is considered well-defined

over a table T if one of the following conditions holds:

– Either, for every label τi ∈ P, T contains an entry (τi,mi, ·) for some mes-
sage mi previously authenticated under label τi. Or,
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– if there exists an index i ∈ [n] such that the tuple (τi, ·, ·) is absent from T
then the output f({mj}(τj ,mj ,·)∈T ∪{m̃j}(τ ′

j ,·,·)/∈T ) remains constant over all
possible choices of m̃j from M.
In this case the output of f({mj}(τj ,mj ,·)∈T ∪ {m̃j}(τ ′

j ,·,·)/∈T ) remains the
same over all possible choices for m̃j from M. I.e., the output of f is fixed
given the already authenticated inputs.

We also recall proposition 1 from [3] below for completeness.

Proposition 1 [3] Let λ, n ∈ N and let F be the class of arithmetic circuits
f : Fn −→ F over a finite field F of order p and such that the degree of f is at
most d, with d

p <
1
2 . Then, there exists a probabilistic algorithm that given f st

f ∈ F decides whether ∃y ∈ F such that f(u) = y, ∀u ∈ Fn(i.e., if f is constant)
and is correct with probability at least (1− 2−λ).

Proof. The algorithm begins by sampling uniformly at random λ + 1 tuples
{ui}λi=0 from Fn. It then checks if f(u0) = · · · = f(uλ). If this condition holds,
it concludes constant ; otherwise, it concludes non-constant. If f is constant,
the algorithm is correct with certainty. In the case where f is not constant,
the probability of the algorithm being wrong is essentially the probability that
f(u0) = · · · = f(uλ) over all possible choices of ui’s i ∈ [0, λ]. This probability

can be bounded above by (Prui←Fn [f(ui) = y0 | y0 = f(u0)])
λ ≤

(
d
p

)λ
≤ 2−λ,

where the upper bound by d
p follows from the Schwartz-Zippel Lemma[33], [34].

3.4 Computational Assumptions

We now recall the necessary definitions of a bilinear maps and associated com-
putational hardness assumptions.

Let G1 and G2 are two (multiplicative) cyclic groups of prime order p. g1 is a
generator of G1 and g2 is a generator of G2. ψ is an isomorphism from G2 to G1,
with ψ(g2) = g1. e is a bilinear map e : G1×G2 −→ GT such that e(g1, g2) ̸= 1. For
our paper, we consider subgroups G1,G2 as G1 ⊆ E(Fq) and G2 ⊆ E(Fql) where
E is the elliptic curve over the respective finite field. Two groups (G1,G2) are a
bilinear group if the group action on either can be computed in one time unit,
the map ψ from G2 to G1 can be computed in one unit time, a bilinear map e
exists and e is computable in one unit time.

Computational co-Diffie Hellman Problem The Computational co-Diffie-
Hellman problem(co-CDH) over groups G1 and G2 is defined as the problem of
computing ha ∈ G1 given g2, ga2 ∈ G2 and h ∈ G1.

Next we define the advantage of any PPT algorithm A in solving the Com-
putational co-Diffie-Hellman problem in groups G1 and G2 as

Advco−CDH
A

def
= Pr[A(g2, ga2 , h) = ha|a←$ Zp, h←$ G1] (2)

where the probability is taken over the uniform random choice of a from Zp

and h from G1 and over the coin tosses of A.
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Definition 3. co-CDH [35, 8] Co-CDH is (t′, ϵ′)-hard over (G1,G2) if for any
adversary running in time at most t′, Advco−CDH

A < ϵ′.

observation: We note the following useful property that holds for any tuple
(g2, g

a
2 , h, h

b) where g2 ∈ G2, and h ∈ G1

a = b mod p ⇐⇒ e(h, ga2 ) = e(hb, g2) (3)

4 Multi-Key Fully-Homomorphic Aggregate MAC
(HA-MAC) for Bounded-Depth Arithmetic Circuits

We now describe our main primitive, a multi-key homomorphic MAC that allows
authenticating arbitrary bounded-depth computation on each user’s inputs and
aggregating the resulting MACs into a single short tag that can be used to
verify all users’ computations. We now proceed to describe the functionality and
security of this primitive.

4.1 Functionality

In the description below, we abuse notation to use P both as the set of parties
and the number of parties (i.e., |P |). A multi-key fully-homomorphic aggregate
MAC consists of the following six algorithms:

– KeyGen(1λ, 1n, 1D, 1P ) : On input the security parameter λ ∈ N, input size
n, depth bound D, and number of users P , KeyGen outputs a secret key and
a public evaluation key (sk, ek) for all P parties.

– Auth(skl, τ,m) : On input the secret key skl of user l ∈ P and a message
m ∈M with input label τ ∈ {0, 1}λ, Auth outputs a message authentication
code σ.

– Eval(ekl, f, σ1, . . . , σn): On input the evaluation key of party l ∈ P , a function
f : Mn −→ M and input message authentication codes σ1, . . . , σn, Eval
outputs a message authentication code Λ. Note that since the parties’ ek’s
are public any party is able to run Eval if it has valid input MACs.

– Ver(skl,m,P, Λ): On input secret key skl for some l ∈ P , a program
P = (f, τ1, . . . , τn), a message m and a message authentication code Λ, Ver
outputs 0/1 to indicate whether Λ is a valid tag authenticating that m is a
valid output of computation of program P.

– Aggregate((Λl,ml)∀l∈U ): On input |U | tuples of message and message au-
thentication codes for some set of parties U ⊆ P , Aggregate outputs an
HA-MAC σ∗.

– AggVer((ml, skl,Pl)∀l∈U , σ
∗): On input |U | tuples of (message, secret key,

program) for some subset of parties U ⊆ P and HA-MAC σ∗, AggVer outputs
a 0/1 indicating whether σ∗ is a valid HA-MAC on messages m1, . . . ,m|U |
resulting from evaluating the programs P1, . . . ,P|U | for each of the |U | par-
ties.
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We now define three notions of correctness that a HA-MAC scheme must
satisfy.

Authentication Correctness:
For any message m ∈M, any label τ ∈ {0, 1}λ, for all
(sk, ek)←$ KeyGen(1λ, 1n, 1D, 1P ) and any tag σ←$ Auth(sk, τ,m) we require
that

Pr[Ver(sk,m, Iτ , σ) = 1] = 1

where Iτ is a special identity program that on input m outputs m and the
probability is taken over the random coins of KeyGen.

Evaluation Correctness:
For any (sk, ek)←$ KeyGen(1λ, 1n, 1D, 1P ), a function f :Mn −→M, any set of
message tag tuple {(mi, σi)}ni=1, if for all i ∈ [n] Ver(sk,mi, Iτi , σi) = 1 then for
m∗ ← f((mi)i∈n) and Λ← Eval(ek, f, σ1, . . . , σn) we require that

Ver(sk,m∗,P, Λ) = 1

Aggregation Correctness:
For any set of parties U ⊆ P , given |U | tuples (ml, Λl,Pl)∀l∈U such that
Ver(skl,ml,Pl, Λl) = 1 for all l ∈ U then,

Pr[AggVer((skl,ml,Pl)∀l∈U , σ
∗) = 1] = 1

where σ∗ ← Aggregate((ml, Λl)∀l∈U ) and the probability is taken over the ran-
dom coins of KeyGen.

4.2 Security

We now turn to defining security of an HA-MAC scheme. Roughly, we want a
strong definition of security where an adversary can corrupt, and hence learn the
secret keys of, all the parties except one designated challenge party. Without loss
of generality we refer to this party as p1.

We allow the adversary to see authentications under secret key of p1 on mes-
sages and labels of its choice and he can thus evaluate programs of his choice on
these messages and to aggregate the resulting tags with arbitrary computations
over inputs from all other parties. Additionally, we allow the adversary to ask
verification and aggregate verfication queries on initial and aggregate MACs that
include p1 respectively.

Informally, security of our HA-MAC requires that the adversary not be able
to forge original or aggregate MACs that include p1’s input. Of course, the
adversary can run evaluation on the MACs that he has received for p1. Thus,
what we require is that A not be able to produce a valid MAC or aggregate MAC
that authenticates some program P ′ for p1 such that P ′ cannot be computed
from the inputs and labels on which A has requested tags. This is akin to the
usual chosen message security of a MAC.
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This definition guarantees that even if all but one parties are controlled by
the adversary any inputs and computations provided by an honest party will be
validly authenticated. So, the verifier can be certain that the the honest party’s
values are correctly computed given the final aggregate MAC.

Formally, we define existential unforgeability against a chosen message attack
for a homomorphic aggregate MAC using the game GHA-UF-CMA

Θ,A (1λ, 1n, 1D, 1P )
between a challenger and an adversary A given in Figure 1.

GHA-UF-CMA
Θ,A (1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ← ∅
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )
3 Return ek1, (ekl, skl)∀l∈[2,P ]

AuthO(τ,m):
4 if (τ,m, ·) ∈ T , σ ← T (τ,m, ·)
5 if (τ,m, ·) ̸∈ T , σ ← Authsk1(τ,m); T = T ∪ (τ,m, σ)
6 if (τ, ·, ·) ∈ T , ignore
7 Return σ

VerO(m,P, σ):
8 Return Versk1(m,P, σ)
AVerO((m′

j ,P ′
j)∀j∈U , (ek

′
j)∀j∈U\{1}, σ

′): // U ⊆ P, (ek′j)∀j∈U\{1} ⊆ (ekj)∀j∈P

9 Return AggVer((m′
j ,P ′

j)∀j∈U , (sk1, skj)∀j∈U\{1}, σ
′)

Finalize(IN):
10 if IN =

(
(m∗

j ,P∗
j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗)
11 Return CheckA((m

∗
j ,P∗

j )∀j∈U , (ek
∗
j )∀j∈U\{1}, σ

∗))
12 else if IN = (m∗,P∗, σ∗)
13 Return CheckV (m∗,P∗, σ∗)

Fig. 1: Game defining required security game for Θ

Output We say that A wins, i.e. that the output of GHA-UF-CMA
Θ,A = 1 iff

Finalize returns 1. This happens if either CheckA = 1 or CheckV = 1.
We now describe the CheckA and CheckV algorithms that we use to define the

notion of a forgery. These algorithms capture what is meant by a valid aggregate
forgery and a valid forgery respectively. As mentioned previously an adversary
can easily produce valid MACs and aggregate MACs on inputs for which he has
already seen valid MACs, thus these algorithms check whether a claimed forgery
was really for something new. To define these formally, we turn to the notion of
well-defined program with respect to a table T as defined in Section 3.3.

Algorithm CheckA For any input
(
(m∗j ,P∗j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗),
CheckA

(
(m∗j ,P∗j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗) = 1 iff
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– AggVer((m∗j ,P∗j )∀j∈U , (skj)∀j∈U\{1}, σ∗) = 1 and
– m∗1 /∈ T , meaning the forgery is non-trivial, and
– one of the below two events happens:
• (Type 1 Forgery) P∗1 is not well defined with respect to T . This im-

plies that the adversary has not seen MACs on all the inputs needed to
compute P∗1 .

• (Type 2 Forgery) P∗1 is well defined with respect to T but
m∗1 ̸= f∗1

(
(mj)(τ∗

1,j ,mj)∈T

)
. This captures the case when m∗1 is not the

correct output of the labeled program P∗1 when executed on previously
authenticated messages (mj)∀j∈[n].

Algorithm CheckV For any input (m∗,P∗, σ∗), CheckV (m∗,P∗, σ∗) = 1 iff

– Versk1 (m
∗,P∗, σ∗) = 1 and

– m∗ /∈ T , meaning the forgery is non-trivial and
– one of the below two happens
• (Type 1 Forgery) P∗ is not well defined with respect to T
• (Type 2 Forgery) P∗ is well defined with respect to T but
m∗ ̸= f∗

(
(mj)(τ∗

1,j ,mj)∈T

)
. This attests that m∗ is not the correct out-

put of the labeleld program P∗ when executed on previously authenti-
cated messages (mj)∀j∈[n].

Definition We say that a multi-key fully homomorphic aggregate MAC (HA-
MAC) scheme is secure if for any PPT adversary A there exists a negligible
function ν such that

AdvHA
Θ,A(1

λ, 1n, 1D, 1P ) = Pr[GHA-UF-CMA
Θ,A (1λ, 1n, 1D, 1P )⇒ 1] ≤ ν(λ) (4)

where the probability is over the random coins of A and KeyGen

Understanding GHA-UF-CMA
Θ,A : The game begins with the Initialize proce-

dure in which the challenger creates P (sk, ek) pairs. He gives all of these except
the challenge party’s sk1 to A. This allows A to produce arbitrary MACs for
any party other than p1.

Additionally, A can make queries to AuthO to get tags under sk1 for (m, τ)
message label pairs of his choice. The challenger records all such queries in a
table T and answers consistently on repeated queries or if multiple values are
requested with the same label.
A can also make queries to VerO and AVerO on any messages, programs,

and MACs. In particular, for the AVerO queries A can choose any subset of
parties to aggregate as long as they include p1. Computing aggregate MACs
without p1 is trivial since A has all the other sk’s.

Finally, A outputs in the Finalize phase either an attempted forgery of the
original MAC or an attempted aggregate forgery. He wins if the produced forgery
couldn’t be computed by simply running Eval on MACs he has already seen (i.e.,



Multi-Key Fully-Homomorphic Aggregate MAC for Arithmetic Circuits 13

the ones contained in the table T ). The CheckA and CheckV procedures perform
this check for AVerO and VerO respectively. Thus, the adversary wins if he is
able to produce a valid MAC or aggregate MAC that cannot be computed from
the table T .

5 Construction of Multi Key Fully Homomorphic
Aggregate MAC for Arithmetic Circuits

We are now ready to present the details of our HA-MAC constructions. Our
construction largely follows the construction of Catalano and Fiore [3] with the
major differences, that we highlight, to enable aggregation. The details of the
construction are given in Figure 2.

Setup: As described in Section 3.4, we assume the existence of groups G1 and G2
of order p with generators g1 and g2 respectively. With an efficiently computable
isomorphism ψ from G2 to G1 such that ψ(g2) = g1 and a bilinear map e :
G1 × G2 → GT such that e(g1, g2) ̸= 1 and the co-CDH problem in G1 and G2 is
hard. We assume that all of these are public parameters that are available to all
of the subsequent algorithms. We additionally assume the existence of a hash
function H2 : {0, 1}∗ → G2 which is modelled as random oracle [36].

KeyGen: For each party l ∈ P , we choose a public generator ul = gγl

1 for a
random γl←$ Zp. Additionally, we choose a random evaluation point xl0 ←$ Zp

and a PRF key Kl. The secret key skl consists of (xl0 ,Kl, γl) while the public
evaluation key ekl consists of encodings of powers of xl0 in the exponent. That

is ekl consists of ul, u
xl0

l , u
x2
l0

l , . . . , u
xD
l0

l up to the specified depth bound D. We
note that our construction differs from [3] in that we include the generator ul in
the public evaluation key, whereas their construction required keeping this value
secret.

Auth: To authenticate a message m with label τ under user pl’s key, the tag σ
is a degree-1 univariate polynomial y such that y(0) = m and y(xl0) = rτ where
xl0 is the secret evaluation point in skl and rτ = PRFk(τ). We represent σ as a
vector of the coefficients of y: (y0, y1).

Eval: To compute the homomorphic tag for an evaluation of a depth-D arith-
metic circuit f and input tags σ1, . . . , σn we follow the procedure described in
Section 3.2 to evaluate f over the degree-1 polynomials in the σ’s. That is, for
every addition gate, we add the input polynomials and for every multiplication
gate we do a polynomial multiplication corresponding to performing a convolu-
tion on the coefficients.

At the end of this computation, we get a degree-D polynomial y such that
y(0) = f(m1,m2, . . . ,mn) and y(x0) = f(rτ1 , rτ2 , . . . , rτn)

2. We let yk for k ∈
{0, . . . , D} be the coefficients of y.
2 In what follows, for ease of presentation we drop the subscript l from all terms since

we are only considering the case of player pl.



14 Suvasree Biswas and Arkady Yerukhimovich

Now to compute the homomorphic tag, we essentially evaluate y(x0)−y(0) in
the exponent. Recall that ek contains h0 = u, h1 = ux0 , h2 = ux

2
0 , . . . , hD = ux

D
0 .

Now, note that y(x0) = y0 + y1x0 + y2x
2
0 + · · · + yDx

D
0 and y(0) = y0. So, to

evaluate y(x0)− y(0) in the exponent we compute the product

hy1

1 · h
y2

2 · · ·h
yD

D = uy(x0)−y(0).

Ver: On input the homomorphic tag Λ, program P, and message m, we first
compute ρ = f(rτ1 , rτ2 , . . . , rτn) = y(x0) where f is the function from P and
rτi = PRFK(τi) and y is the polynomial computed in Eval. Now recall that for
a valid tag Λ = uy(x0)−y(0) where y(0) = m, the homomorphic output. So, to
verify the homomorphic tag Λ, we just need to check whether Λ · um = uρ. The
case for verifying an original (i.e., non-homomorphic) tag is similar.

For reasons needed in the proof we deviate from [3]. Meaning, instead we
do this verification in the target group GT by pairing all terms in this equation
with w ← H2(m). Roughly, this is necessary to allow the security reduction to
program in the challenge from its challenger. A summary of the proof is given
in Section 6.

Aggregate: To aggregate homomorphic tags from a set of U users, we take a
weighted sum of the tags in the exponent. Specifically, for each message mi to
aggregate, we compute wi ← H2(mi). Viewing wi as gbi2 for random exponent bi,
we multiply Λi by bi in the exponent by computing e(Λi, wi). Finally we multiply
the resulting elements in GT together to compute a random linear combination
of the component tags.

AggVer: On input an aggregate mac on any subset of U users, its corresponding
messages and evaluation keys, AggVer algorithm uses its secret keys for the
users in set U to recompute the aggregate MAC and checks whether it is equal
to the input aggregate MAC. It accepts iff the equality holds. Note that since
ρ is computed by evaluating f at random points, aggregate verification does
not require the verifier to know the original inputs, only the outputs of the
homomorphic computations.

5.1 Correctness

We now prove that the construction in Figure 2 satisfies the necessary correctness
properties of HA-MAC.

Authentication Correctness. For any l ∈ P , recall that ρl ← y0 + y1 · xl0 .
Let γl←$ Zp, bl←$ Zp such that ul ← gγl

1 and wl ← gbl2 . Therefore we get that:

e(u
xl0

y1

l , wl) · e(ul, wy0

l ) = e(g1, g2)
γl·bl(y0+xl0

·y1) = e(ul, wl)
ρl (5)

Evaluation Correctness. For any l ∈ P , recall that ρl ← ml+Σ
D
k=1yl,k ·xkl0 .
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KeyGen(1λ, 1n, 1D, 1P ):

1 p←$ PrimeGen(1λ)
2 ∀l ∈ [P ] :
3 xl0 , γl←$ Z2

p, Kl←$K, ul ← g
γl
1

4 ∀k ∈ [0, D], hl,k ← u
xk
l0

l

5 skl ← (xl0 ,Kl, γl)
6 ekl ← (hl,0, hl,1, hl,2, . . . hl,D)
7 Return (ekl, skl)∀l∈[P ]

Auth(sk, (τ,m)):

8 (x0,K, γ)← sk
9 rτ ← PRFK(τ)

10 y0 ← m; y1 ← rτ−m
x0

mod p
11 Return σ ← (y0, y1)

Ver(sk,m,P, Λ):
12 (f, τ1, . . . , τn)← P
13 (x0,K, γ)← sk, w ← H2(m), u← gγ1
14 r← PRFK(τi)∀i∈[n], ρ← f(r)
15 If Λ = (y0, y1) then

return e(ux0·y1 , w) · e(u,wy0)
?
= e(u,wρ)

16 Else Return e(u,wm) · e(Λ,w) ?
= e(u,wρ)

Eval(ek, f, (σi)∀i∈[n]):

17 (yk)k∈[0,D] ← f((σi)∀i∈[n])
18 Λ← ΠD

k=1h
yk
k

19 Return Λ

Aggregate((Λl,ml)∀l∈U ):

20 wl ← H2(ml)
21 σ∗ ← Π∀l∈U e(Λl, wl)
22 Return σ∗

AggVer((skl,Pl,ml)∀l∈U , σ
∗):

23 ∀l ∈ U : (fl, τl,i)∀i∈[n] ← Pl, (xl0 ,Kl, γl)← skl
24 wl ← H2(ml), ul ← g

γl
1

25 rl ← PRFKl(τl,i)∀l∈U ,∀i∈[n], ρl ← fl(rl)

26 ReturnΠ∀l∈U e(ul, w
ρl
l )

?
= σ∗ ·Π∀l∈U e(ul, w

ml
l )

Fig. 2: The construction of HA-MAC Θ for bounded depth arithmetic circuits.

Therefore we get that

e(Λl, wl) · e(ul, wl)
ml = e(g

γl·ΣD
k=1yl,k·xk

l0
1 , gbl2 ) · e(gγl

1 , g
bl
2 )ml = e(ul, wl)

ρl (6)

Aggregation Correctness. For any subset of users U such that U ⊆ P

then for all l in U , let bl←$ Zp, γl←$ Zp, hash of message ml is wl ← gbl2 and
generator ul ← gγl

1 then we get that:

σ∗ · (Π∀l∈U e(ul, w
ml

l ))

= e(g1, g2)
Σ∀l∈U (γl·bl·(ΣD

k=1yl,k·xk
l0
)) · e(g1, g2)Σ∀l∈U (γl·bl·ml)

= e(g1, g2)
Σ∀l∈U (γl·bl·((ΣD

k=1yl,k·xk
l0
)+ml)) = Π∀l∈U e(ul, wl)

ρl (7)

5.2 Performance and Security

Finally, our HA-MAC scheme achieves the following performance and security:
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Efficiency: We note that the size our homomorphic tag and aggregate tag is
succinct consisting of just one field element independent of the number of parties
or complexity of the computed functions. Moreover, the original inputs into the
homomorphic computation are not needed to verify the final aggregate signature
so they do not need to be communicated.

Security: We say that a P -user HA-MAC scheme is (t, QH , QA, QV , QAV , P, ϵ)-
secure in the random oracle model if for any PPT adversary
A(t, QH , QA, QV , QAV , P, ϵ) in the GHA-UF-CMA

Θ,A game (figure 1)

– A runs in time at most t,
– A makes at most QH queries to the hash function,
– A makes at most QA queries to the authenticate oracle,
– A makes at most QV queries to the verification oracle, and
– A makes at most QAV queries to the aggregate verification oracle then
– Pr[GHA-UF-CMA

Θ,A = 1] ≤ ϵ

where the probability is over the random coins of A and KeyGen.
We can now formally state the security of our construction.

Theorem 1. If co-CDH is (t′, ϵ′) hard over groups (G1,G2) and PRF is ϵ′′ secure
then HA-MAC scheme as defined in figure 2 is (t, QH , QA, QV , QAV , P, ϵ)-secure
in the random oracle model for all t, ϵ satisfying

ϵ <
Q

2λ
+

DQ

p−DQ
+
DQ2

p
+ e

3
P PQ

(
e

1
Q + 1

)
ϵ′ + ϵ′′

and
t > t′ − c(s+ P +Q+ PQ+ sQ+ sPQ)

where Q is the maximum of QH , QA, QV , QAV , c is the maximum time to com-
pute any group operation, s is the size of the depth D function f as in definition
1 and P is the total number of users.

We sketch the intuition behind the proof of this theorem in Section 6. We
provide the full proof of security in the supplementary material B.

6 Proof of Security:

To prove the security of our construction, we define a series of games as depicted
in figures 3, 4, 5, 6, 7 and 8 in the supplementary material B. We briefly re-
view these games and the intuition behind the proof here, the full proof is in
supplementary material B.
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Game 0: Our starting point is the real-world security game GHA-UF-CMA
Θ,A (Figure

1). Game G0
Θ,A (Figure 3) is the same as the real game except for two changes.

In every VerO query (m,P, Λ), the challenger uses the probabilistic test of
Catalano and Fiore [3](recalled in Proposition 1) to test whether P is well defined
with respect to table T . Similarly, we also use this same test in every AVerO
query to check whether P ′1 (player p1’s program) is well defined. Since the test in
Proposition 1 is correct with all but negligible probability, this only introduces
a negligible difference between the games.

Game 1: Game G1
Θ,A (Figure 4) is the same as G0

Θ,A except that the PRF in
the Auth oracle is replaced by a trully random function(TRF) R : {0, 1}∗ −→ Zp.
Clearly this change is undetectable by the security of the PRF.

Game 2: Game G2
Θ,A (Figure 5) is the same as G1

Θ,A except the challenger
adjusts how it responds to VerO and AVerO queries.

– VerO Queries: For any VerO query (m,P, Λ) such that P is not well
defined in T , the challenger returns reject. For any well-defined P, the chal-
lenger acts exactly as in G1.
Thus, the only difference between G2 and G1 occurs if a Mac for a not well-
defined program is accepted in G1. We argue that for any adversary A such
a bad query only occurs with negligible probability. Roughly, making such
a query requires finding the correct value of ρ. However, finding ρ requires
guessing rτ for some τ not in T . Since rτ = R(τ) for a random function R,
this can only happen negligibly often.

– AVerO Queries: Similarly, G1 and G2 differ if A can find an aggregate Mac
σ′ such that the circuit for player p1 is not well-defined relative to T , but is
still accepted in G1. Here to prove that the probability of A finding such a
σ is negligible, we extract p1’s component of the aggregate (using the sk’s
of the other parties, which the challenger knows), and argue as above that
he must have predicted a value rτ . The full details of the proof are given in
Lemma 3.

Game 3: Game G3
Θ,A(figure 6) is the same as G2

Θ,A except the following change
in answering Auth queries. If the random value for some tag τ queried in Auth has
previously been used to answer a VerO or AVerO query, then just resample a
new, independent value rτ = R(τ). Since A can only learn a polynomial number
of possible rτ points, the probability that one of these is sampled is negligible. If
this doesn’t happen this game is the same as the previous one. The full details
are in Lemma 4.

Game 4: Game G4
Θ,A (figure 7) differs from G3

Θ,A in how the challenger answers
VerO queries for programs that are well-defined relative to T . Specifically, for
a query (m,P, Λ)3, for every input tag τi in P, the challenger finds the corre-
3 G4 also handles the case of verification of initial Macs in addition to homomorphi-

cally computed Macs, but we omit this case from our discussion here to simplify
presentation.
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sponding input Mac σi and message mi in T . (Since P is well-defined relative
to T , only wires that have no impact on the output may not have an entry in
T , in which case the challenger can just choose a random tag.) Next the chal-
lenger uses these tags σi to recompute the homomorphic Mac Λ∗∗∗ using Eval
and checks if it is equal to the claimed Mac Λ queried by the adversary. The
challenger returns accept if and only if they are equal.

This differs from G3 in that it eliminates the possibility of Type-2 forgeries
in VerO queries. In a Type-2 forgery, the adversary somehow produces a VerO
query for a well-defined program where the message used for one of the inputs is
not equal to the one in T . In this case the recomputed Λ∗∗∗ will not be correct,
but the query will still accept in G3.

We prove that an adversary can only make such a query with non-negligible
probability. To do so, we introduce one more change into G4 in that we change
how the challenger answers hash evaluation queries for H2. Specifically, instead
of just returning a random element in G2, the challenger now samples a random
exponent b and returns gb2 as the random element in G2 while storing b. This
knowledge of the discrete log b, allows the challenger to detect when an adversary
makes such a Type-2 forgery query.

Finally, we argue that such a query is negligibly likely by showing a reduc-
tion from an adversary making such a query to solving the co-CDH problem
in (G1,G2). To do so, intuitively the challenger roughly does the following. The
challenger randomly picks one of the VerO queries and programs the random
oracle to return the co-CDH challenge ga2 as the output of the corresponding H2

query. We can show that by embedding the other part of the co-CDH challenge
(the value h ∈ G1) in the evaluation key ek1, a Type-2 forgery query must al-
low extraction of the value ha, thus solving co-CDH. The full proof is given in
Lemmas 5–7.

Game 5: Game G5
Θ,A (figure 8) makes a similar change to the one in G4, but

to the AVerO queries. Here, again, the goal is to eliminate Type-2 forgeries
in AVerO queries. The added challenge here is that we have to deal with the
fact that some (in fact, all but one) of the macs included in an aggregate mac
come from malicious parties. We show that the challenger is able to extract the
claimed homomorphic Mac for party p1, and can then compare this to the Mac
recomputed from the table T , accepting if and only if they match. Effectively,
the challenger can recompute the random linear combination of the adversaries’
macs by using H2 to recompute the weights (in the exponent) for this sum.

With this check in place, the only way that G5 and G4 differ is if the ad-
versary queries an aggregate Mac that contains a Type-2 forgery for party 1.
However, by a reduction similar to the one described in the previous game, we
can show that any adversary that can make such a query must also solve the
co-CDH problem on (G1,G2). The full proof is given in Lemmas 8–10.

Unforgeability: To conclude the proof of unforgeability, we observe that
Pr[G5

Θ,A] = 0 because all verification queries and aggregate verification queries
for both Type-1 and Type-2 forgeries are answered with 0. Thus, there is no
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opportunity for any adversary to win in Game 5, and so for any adversary A its
advantage in G5 is 0.

7 Conclusion

In this paper, we introduced the concept of a multi-key fully-homomorphic ag-
gregate MAC (HA-MAC) for arithmetic circuits. This primitive enables an un-
trusted server to produce a short certificate to prove that he has performed
correct (disjoint) computations on multiple users’ data. The size of this proof is
independent of the number of users or the complexity of the performed computa-
tions. We give a construction of this primitive based on the co-CDH assumption
in the random oracle model.

Our paper leaves open a number of interesting problems for further study.
Two immediate questions are removing the reliance on the random oracle and
improving the computational efficiency of verification. While the final Mac in
our construction is succinct – only 1 field element – verification still requires the
verifier to evaluate all functions on random inputs. Very recent work by Anthoine
et al. [7] showed how to amortize verification costs for multiple verifications of
the same computation in a similar setting. It would be interesting to apply sim-
ilar techniques to amortize verification costs for our HA-MAC. Further possible
improvements to our construction include allowing verification given only an ag-
gregate of the homomorphic outputs rather than requiring all of the outputs to
verify an aggregate Mac and eliminating the bounded-degree requirement of our
assumption. I.e., can we construct a scheme where the size of the keys required
does not grow with the depth of the homomorphic evaluations supported.
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A Deferred Notations

If S is a finite set, then |S| denotes its size. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x. By
1|X | we refer to the unary representation of the size of the finite set. By X \ {i}
we mean set X minus the element i of the set. X = X

⋃
y refers to the operation

of element y being included in the set X . Algorithms may be randomized unless
otherwise indicated. Running time is the worst case, which for an algorithm
with access to oracles means across all possible replies from the oracles. We use
⊥ (bot) as a special symbol to denote rejection, and it is assumed to not be in
{0, 1}∗. With reference to the proofs of the lemmas, we note that the superscript
notation of mi refers to the message in ith query to a respective oracle. Whereas
in each query, we further note that the subscript notation of mi for any message
m ∈M refers to the message authenticated under key pair ski, eki.

Games We use the code-based game-playing framework of BR [37]. By Pr[G⇒
y] we denote the probability that the execution of game G results in this output
being y, and write just Pr[G] for the probability that the execution of game G
results in the output of the execution being the boolean true.

Different games may have procedures (oracles) with the same names. In
games, integer variables, set variables, boolean variables, and string variables
are assumed initialized, respectively, to 0, the empty set ∅, the boolean false,
and the ⊥, flags with 0 or 1. For an adversary A playing game G, we may write
another adversary C in the same format as G, with the understanding that C
runs this game with A. These games are in the RO Model, with RO being the
random oracle available to both schemes algorithms and the adversary A play-
ing the game. The adversary’s queries to an oracle are required to satisfy the
conditions listed in the comment next to the oracle name, else the adversary is
considered invalid. We henceforth only consider valid adversaries.

proof We adhere to asymptotic security analysis[38]. A function ν: N → N is
negligible if for every positive polynomial p: N→ R there is a λp ∈ N such that
ν(λ) ≤ 1/p(λ) for all λ ≥ λp. “PT” stands for “polynomial time,” whether for
randomized or deterministic algorithms. Specifically “PPT” stands for “proba-
bilistic polynomial time. By 1λ we denote the unary representation of the integer
security parameter λ ∈ N.

Additionally we also analyse concrete security[30]. A concrete approach to
computational security quantifies the security of a cryptographic scheme by ex-
plicitly bounding the maximum success probability of any randomized adversary
running for some specific amount of time. Meaning a scheme is (t, ϵ)-secure if
any adversary running for time at most t succeeds in breaking the scheme with
probability at most ϵ for some t, ϵ ∈ N.
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B Deferred Proofs

To prove the security of our construction, we define a series of games as de-
picted in Figures 3, 4, 5, 6, 7 and 8. Moreover the construction of two associated
reduction adversaries can be found in Figures 9, 10.

For any PPT adversary A against our HA-MAC scheme Θ, we denote as d
as the answer the split out in any Ver or AggVer queries throughout the below
games. We capture changes in every subsequent hybrid in magenta. We denote
with Gi the event that the ith game Gi

A,Θ when run with the adversary A
outputs 1. We recall below theorem 1 here for completeness.

Theorem 1. If co-CDH is (t′, ϵ′) hard over groups (G1,G2) and PRF is ϵ′′ se-
cure then HA-MAC scheme as defined in Figure 2 is (t, QH , QA, QV , QAV , P, ϵ)-
secure in the random oracle model for all t, ϵ satisfying

ϵ <
Q

2λ
+

DQ

p−DQ
+
DQ2

p
+ e

3
P PQ

(
e

1
Q + 1

)
ϵ′ + ϵ′′

and
t > t′ − c(s+ P +Q+ PQ+ sQ+ sPQ)

where Q is the maximum of QH , QA, QV , QAV , c is the maximum time to com-
pute any group operation, s is the size of the depth D function f as in definition
1 and P is the total number of users.

In the remainder of the Section we prove Theorem 1 through a hybrid argu-
ment.

Lemma 1. |Pr[GHA-UF-CMA
Θ,A ]− Pr[G0

Θ,A]| ≤
QV +QAV

2λ
where λ is security pa-

rameter and QV , QAV is the number of VerO queries and AVerO Queries
made by the adversary A.

Proof. Note that the only difference between GHA-UF-CMA
Θ,A and G0

Θ,A is that
in G0 we use Proposition 1 to check whether programs in VerO and AVerO
queries are well formed. By proposition 1, the distinguishing advantage of A
from Ver of the protocol and that of G0

Θ,A is upper bounded by QV

2λ
and that of

AggVer of the protocol and that of G0
Θ,A is upper bounded by QAV

2λ
. Therefore A

distinguishes between real protocol and G0
Θ,A with probability at most QV

2λ
+QAV

2λ

where the probability is taken over the random values for the input labels. ⊓⊔

Lemma 2. |Pr[G0
Θ,A]−Pr[G1

Θ,A]| ≤ AdvPRF
D,F (λ) where D is a PRF adversary

and F is the family of functions {f |f : Fn −→ F}.

Proof. This proof can be obtained as a straightforward reduction to the security
of the PRF. ⊓⊔

Lemma 3. |Pr[G1
Θ,A]− Pr[G2

Θ,A]| ≤
QV (D+1)

p−D(QV −1) +
DQAV

p−D(QAV −1) where p is the
order of the group, D is the max depth of the circuit and QV , QAV are the
number of VerO and AVerO queries respectively made by the adversary A.
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Proof. Let η be the event that flag ζ ← 1 and let ηA be the event that flag
ζA ← 1 in G2

Θ,A. Let η2 be the event that either event η or event ηA has
occurred in G2

Θ,A (Figure 5). G1
Θ,A and G2

Θ,A are identical unless the event η2
occurs. Meaning the only change is in answering VerO queries where P is not
well defined on T and in answering AVerO queries where P ′1 is not well defined
on T .

We recall the following notation that challenge evaluation key is ek1 ←
(u

xk
1

1 )∀k∈[0,D] such that the x1 in the challenge secret key sk1. We also recall
the notation of hash H2 of any message m as w ← gb2 for some b←$ Zp. In case
of event η or ηA the challenger provides a different answer to some VerO or
AVerO queries respectively. It holds that Pr[G2

Θ,A∧¬η2] = Pr[G1
Θ,A], meaning

|Pr[G1
Θ,A]− Pr[G2

Θ,A]| ≤ Pr[η2]. By definition

Pr[η2] ≤ Pr[η] + Pr[ηA] (8)

Verification query

For j ∈ [QV ], let ξj be the event that flag ζ is assigned the value 1 only after
the jth verification query and not before that. Clearly, by union bound we have:

Pr[η] ≤
[QV ]∑
j=1

Pr[ξj ] (9)

Moreover, by the definition of ξj , event ζ ← 1 did not occur in the previous
j − 1 VerO queries. Therefore we have

Pr[ξj ] = Pr[ξj | ¬ξ1 ∧ · · · ∧ ¬ξj−1] (10)

The main part of this proof consists of estimating the probability Pr[ξj ],
which is taken over the random choices of the values r∗∗τ sampled by the chal-
lenger and for any possible values chosen by the adversary. In our analysis, we
will consider only verification queries (m,P, σ) such that P is not well-defined
in T , as these are the only queries that may cause setting ζ ← 1.

Let (m,P, σ) be the jth VerO query for some j←$ [QV ]. Depending on
whether σ = (y0, y1) or σ = Λ, we have two possible cases for ξj to occur:

– CASE A: Either z ← e(u1, w
ρ∗∗

1 ) · e(ux10
·y1

1 , w1)
−1 · e(u1, wy0

1 )−1 = 1

– CASE B: Or Z ← e(u1, w
ρ∗∗

1 ) · e(u1, wm
1 )−1 · e(Λ,w1)

−1 = 1

We note that in both cases ρ∗∗ is computed using at least one value r∗∗τ ∈ Zp

such that (τ, ·) /∈ T . For some j ∈ [QV ], let zj (correspondingly Zj) be the value
computed in the jth VerO query. Let NZj be the event ¬ξ1 ∧ · · · ∧ ¬ξj−1, and
note that for i ∈ [j − 1], ¬ξi may mean either zi ̸= 1 or Zi ̸= 1.

Since the input of the VerO query is either (y0, y1) or Λ, we get the following

Pr[ξj | ¬ξ1 ∧ . . . ∧ ¬ξj−1] ≤ Pr[zj = 1 | NZj ] + Pr[Zj = 1 | NZj ] (11)
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where the probability is taken over the random choice of r∗∗τ .
To evaluate the probabilities of equation 11, we observe that ρ∗∗ can be

thought of a univariate polynomial ρ∗∗ = α(r∗∗τ ) in the variable r∗∗τ such that
τ /∈ T and degree of α is at most D. We recall that we are in the case of P is
not well defined in T . So P must be a non constant polynomial. We also recall
that the value r∗∗τ was sampled uniformly at random and it was never was used
before to produce a tag since τ /∈ T .

Recall that the value of x10 is fixed at the beginning of the game. We observe
that prior to the adversary commencing VerO queries, there exist precisely p
tuples (x10 , {rτ}τ∈T ) consistent with her view. After the first query if Z1 ̸= 1 OR
(z1 ̸= 1) then the no of possible values {x, {rτ}τ∈T } becomes at least p−D as
the roots of a non zero polynomial of degree D are at most D. After the (j−1)th

query if (Zi)∀i∈[j−1] ̸= 1 OR (zi)∀i∈[j−1] ̸= 1) then the number of remaining
possible values (x, {rτ}τ∈T ) is at least p−D(j − 1).

Analysis of case A: In this case the ρ∗∗ is a one degree polynomial. Con-
ditioned on NZj−1 ̸= 1 the probability of the adversary A to guess r∗∗τ out of
the reduced space p−D(j− 1) at the jth query cannot be better than 1

p−D(j−1)
Analysis of case B: In this case the ρ∗∗ is a D degree polynomial. Condi-

tioned on NZj−1 ̸= 1 the probability of the adversary A to guess the D values
of r∗∗τ out of the reduced space p −D(j − 1) at the jth query cannot be better
than D

p−D(j−1)
Substituting these values into Equations 11, followed by 10 and then Equation

9, we get:

Pr[η] ≤
QV∑
j=1

(
1

p−D(j − 1)
+

D

p−D(j − 1)

)
≤ QV (D + 1)

p−D(QV − 1)
(12)

Aggregate Verification query

For jA ∈ [QAV ], let ξjA be the event that flag ζA is assigned the value 1
only after the jthA aggregate verification query but not before. Clearly, by union
bound we have:

Pr[ηA] ≤
[QAV ]∑
j=1

Pr[ξjA ] (13)

Moreover, by the definition of ξjA , event ζA ← 1 did not occur in the previous
jA − 1 AVerO queries. Therefore we have

Pr[ξjA ] = Pr[ξjA | ¬ξ1 ∧ · · · ∧ ¬ξjA−1] (14)

Let NZjA be the event ¬ξ1 ∧ · · · ∧ ¬ξjA−1, and note that for i ∈ [jA − 1], ¬ξi
may mean ZAi ̸= 1. Since the input of the AVerO query is in the form of
homomorphic tag e(Λ,w), we get the following

Pr[ξjA | ¬ξ1 ∧ . . . ∧ ¬ξjA−1] ≤ Pr[ZAjA
= 1 | NZjA ] (15)
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where the probability is taken over the random choice of r”τ”1,i such that τ”1,i /∈ T
for some i ∈ [n]. The intuition for the below proof is estimating the probability
Pr[ξjA ] taken over the random choices of r”τ”1,i such that τ”1,i /∈ T and over
any possible values chosen by the adversary.

We recall that if the event ηA did not happen then answers to AVerO of
G1

Θ,A is identical to that of G2
Θ,A. The only change is in the way the challenger

answers AVerO queries such that program P ′1 is not well defined on T as these
are the queries that may cause flag ζA ← 1.

Let
(
(m′l,P ′l)∀l∈U , (ek

′
l)∀l∈U\{1}

)
be the jthA AVerO query. Challenger re-

computes the hash of the queried messages as (wl)∀l∈U . Let (f ′l , (τ”l,i)∀i∈[n]) be
the lth program P ′l for some l ∈ U . Recall that P ′1 is not well defined in T ,
meaning there must exist at least one i ∈ [n] such that τ”1,i /∈ T . Therefore
∀τ”1,i /∈ T : challenger computes r”τ”1,i ← R(τ”1,i). Next challenger computes
ρ”1 from T using the internal algorithm on (r”τ”1,i)∀i∈[n]. It then also computes
(ρ”l)∀l∈U\{1} using the internal AggVer algorithm.

Next, given the queried aggregate MAC σ′, challenger extracts claimed ho-
momorphic mac of m′1 under ek1, sk1 by using equation 1. We note that the
above holds because we are analyzing the AVerO query that is accepted in real
but rejected in G2

Θ,A. We note that the only change from real to G2
Θ,A is in case

of party p1. This makes that MACs of all other parties must have been valid.
Therefore referring to equation 1, we substitute accordingly for parties in U \{1}
to get the following

B ← σ′ ·
(
Π∀l∈U\{1}e(ul, w

ρ”l
l )e(ul, w

m′
l

l )−1
)−1

(16)

Since B is the extracted MAC under ek1, sk1 the following must hold for ξjA
to occur, conditioned on NZjA :

ZA ← e(u1, w
ρ”1
1 )(B · e(u1, w

m′
1

1 )−1) = 1 (17)

We recall that B in equation 16 is the claimed extracted mac under ek1, sk1
on message m′1 as an output of P ′1. We note that after honest extraction of this
claimed mac by the internal AggVer algorithm, ρ”1 becomes a degree D polyno-
mial in r”τ”1,i for some τ”1,i /∈ T . More concretely, to evaluate the probability of
equation 14 we observe that honest extraction of the MAC of the first message
B allows the interpretation of ρ”1 as a univariate polynomial ρ”1 = α(r”τ”1,i
such that r”τ”1,i /∈ T for some τ”1,i /∈ T where i ∈ [n]. Therefore P ′1 must be a
non constant polynomial.

We recall that the value r”τ”1,i was sampled uniformly at random and it was
never used for any prior AVerO query to produce a tag since τ”1,i /∈ T . We recall
that x10 is fixed in the beginning. Before A made any AVerO query there are
exactly P tuples {x10 , {r”τ”1,i}τ”1,i∈T |∀i∈[n]}. After the first AVerO query if ZA

as defined in equation 17 is not equal to 1 then the number of possible values of
{x10 , {r”τ”1,i}τ”1,i∈T |∀i∈[n]} becomes at least p-D as the roots of a non zero poly-
nomial α of degree D is at most D. After the (jA−1)th query if (ZAi

)∀i∈[j−1] ̸= 1
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then the number of remaining values {x10 , {r”τ”1,i}τ”1,i∈T |∀i∈[n]} is at least
p−D(jA − 1).

We recall here that our construction only considers aggregation of homo-
morphically evaluated macs. Therefore ρ”1 is a D degree polynomial. Therefore
conditioned on NZj−1 ̸= 1, the probability that A guesses the D roots r”τ”1,i
for some i ∈ [n] out of the reduced space p−D(jA − 1) at the jthA query cannot
be better than D

p−D(jA−1) . More concretely consider the equation below

Pr[ZAjA
= 1 | NZjA ] ≤

D

p−D(jA − 1)
(18)

Substituting the above value in equation 15 and then in equation 14 and then
finally in equation 13

Pr[ηA] ≤
DQAV

p−D(QAV − 1)
(19)

Taking results of equations 12, 19 and substituting in equation 8 concludes
the proof of our claim above. ⊓⊔

Lemma 4. |Pr[G2
Θ,A] − Pr[G3

Θ,A]| ≤
DQ2

V

p +
DQ2

AV

p where p,D,QV , QAV are
as defined in lemma 3.

Proof (Proof of Lemma 4). G2
Θ,A and G3

Θ,A ( Figure 6) differ only in how the
random evaluation point rτ is sampled during authentication queries. For each
authentication query with label message pair (τ,m), suppose there were QV

prior verification queries involving the label τ . According to the argument in the
previous lemma, the number of possible values for rτ is at least p−DQV . More
precisely, the two games will only differ if sampling a new y∗∗1 results in one of
the DQV excluded values, given the condition NZQV

, where NZQV
means that

neither z nor Z is 1 in the preceding (QV − 1) queries. The probability of this
occurring is DQV

p . Applying the union bound in this case results in a difference

of DQ2
V

p between the games.
Similarly, consider that QAV number of AVerO queries were made before

AuthO queries. Also note that from the queried σ′, honest extraction of the
MAC on m′1 is computed by the internal AggVer algorithm. Therefore applying
similar argument as above yields that the difference between the two games is
DQ2

AV

p . We recall that G2
Θ,A and G3

Θ,A differs if either the output distribution of
VerO or AVerO differs from G2

Θ,A to G3
Θ,A. Therefore, over the two scenarios

collectively, the two games differ by a probability that is upper bounded by
DQ2

V

p +
DQ2

AV

p , where the probability is taken over the random sampling of y∗∗1 .
⊓⊔

Indistinguishability of G3
Θ,A and G4

Θ,A: In order to argue indistinguishability of
G3

Θ,A and G4
Θ,A we first define a bad even η4 and prove that as long as η4 does

not happen, the two games are identical. We then argue that η4 only happens
with negligible probability. See Lemmas 5, 6 and 7 and Claims B1–B3 for the
proof.
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Lemma 5. Pr[G3
Θ,A] = Pr[G4

Θ,A ∧ ¬η4]

Proof. Let η4 be the event that flag η is set to 1 in G4
Θ,A. Conditioned on event

η4 not occurring, we argue that Pr[G3
Θ,A] = Pr[G4

Θ,A]. Note that G3 and G4

differ in two ways. The first change is in the way the challenger answers verifi-
cation queries (m,P, σ) for a program P that is well defined on T . The second
change is that all the hash queries are instead answered by choosing a random
exponent b←$ Zp and outputting w ← gb2. Since w is a random group element
in g2, this does not change the output distribution. Now we consider a verifica-
tion query (m,P, σ) where σ is either (y0, y1) or Λ, and P = (f, (τ1,i)∀i∈[n]) is
well-defined on T .

Case I: We first examine the scenario where ∀i ∈ [n], (τ1,i,m1,i, σ1,i) ∈ T .
Challenger retrieves from the H table RO(m) as w ← gb2 for some b←$ Zp.
Recall that the challenger calculates σ∗∗∗ using the Eval algorithm under the

challenge key ek1. Also recall that (u
xk
10

1 )∀k∈[0,D] ← ek1 where sk1 contains x10 .
In this context when we evaluate the response given by the challenger, we observe
the following:

– Case A (σ = σ∗∗∗): In the case where σ = σ∗∗∗, the VerO query accepts in
both games.

– Case B: (σ ̸= σ∗∗∗ on input σ = (y0, y1), i.e., σ is an initial Mac): Let ρ1
denote the value computed by the internal verification algorithm to validate
equation 5. It is important to observe that ρ1 is the same when executing
both Ver(sk1,m,P, σ) and Ver(sk1,m,P, σ∗∗∗) since the same random values
have been used in evaluating the function.
Ver(sk1,m,P, σ∗∗∗)= 1 translates to the check e(ux10

y∗∗∗
1 , w1)e(u1, w

y∗∗∗
0

1 ) =
e(u1, w

ρ1

1 ). Ver(sk1,m,P, σ)= 1 translates to the check e(ux10y1 , w1)e(u1, w
y0

1 ) =
e(u1, w

ρ1

1 ). Note that RHS of both the above is the same. So returning 1 iff
z ← e(u

y1x1
1 ,w1)

e(u
y∗∗∗
1 x1

1 ,w1)
e(u1, w1)

(y0−y∗∗∗
0 ) = 1 is the same as returning the output

of Ver(m,P, σ).
– Case C (σ ̸= σ∗∗∗ on input σ = Λ, i.e., σ is a homomorphic Mac): Let ρ1

represent the value computed by the Ver algorithm to verify equation 6. It
is essential to note that ρ must be identical for both Ver(sk1,m,P, Λ) and
Ver(sk1,m,P, Λ∗∗∗) since the same rτ values are utilized in both scenarios.
We also recall that for Ver(m,P, Λ) to return 1 equation 6 must hold.
Ver(sk1,m,P, Λ∗∗∗)= 1 translates to the check e(Λ∗∗∗, w1)e(u1, w

m∗∗∗

1 ) =
e(u1, w

ρ1

1 ). Ver(sk1,m,P, Λ)= 1 translates to the check e(Λ,w1)e(u1, w
m
1 ) =

e(u1, w
ρ1

1 ). Note that RHS of both the above is the same. So returning 1 iff
Z ← e(Λ,w1)

e(Λ∗∗∗,w1)
· e(u1, w1)

(m−m∗∗∗) = 1 is the same as returning the output
of Ver(m,P, Λ).

Case II: Consider the case where P is well-defined on T but there exists an i
such that (τ1,i, ·) /∈ T . By the definition of well defined program we know that
keeping the input values of wires labeled with τ1,i where (τ1,i, ·) ∈ T for some
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i ∈ n always results in a consistent output from circuit f , irrespective of the
values of wires labeled with τ̃1,i where ( ˜τ1,i, ·) /∈ T . Meaning, the value corre-
sponding to the input wire τ̃1,i for any i ∈ [n] is irrelevant when evaluating f.
This remains true even during the homomorphic evaluations of f in Eval as well
as computing f in the Ver algorithm . This means that for all wires of queried
P with labels such that they are missing from T , the dummy tags chosen for
these labels do not contribute to the computation of σ∗∗∗. The same applies to
the computation of f on random values to obtain ρ1. Therefore, the previous
argument for the case when the queried program P is well defined program with
respect to T and none of the labels in P is missing from T applies here as well
where there exist labels of P missing from T .

⊓⊔

Lemma 6. Pr[η4] < e
QA+QV +QAV

QA+QV +PQAV (QA +QV + PQAV ) ·Advco−CDH
Θ,B where B

is any PPT adversary against the (t′, ϵ′) security of co-CDH assumption over
(G1,G2) and e is the base of natural log.

Proof (Proof of Lemma 6).
If there exists an adversary A(t, QH , QA, QV , QAV , P, ϵ) that makes a forgery

query i.e., a query such that event η4 occurs in VerO, with probability at
least ϵ, then we show that there exists an adversary B that breaks the co-CDH
assumption on (G1,G2) with probability at least ϵ′. By hardness of co-CDH this
implies that Pr[η4] < ϵ.

Using A, we construct an adversary B (Figure 9) that solves co-CDH in
(G1,G2) with probability at least ϵ′ and running time at most t′. By construc-
tion we know that every VerO and AVerO query calls the hash function in-
ternally. Without loss of generality we also consider that for every AuthO, the
hash function is called on the queried message internally. Therefore the follow-
ing analysis is under the scenario that all incoming messages to any oracle get
registered to the H list prior to the query being made. We recall from section A
that superscript refers to the query id and subscript refers to the party id. 4

At the start B is given g2, g
a
2 ∈ G2, h ∈ G1 as its challenge. Its objective is

to output ha. We recall from Section 3.4 that G1 has a generator g1 such that
g1 = ψ(g2). Then, viewing h as h = gδ1 for some δ ∈ Zp we can reinterpret B’s
goal as given g2, ga2 , g1, and gδ1 output gδa1 .
B simulates the challenger of G4

Θ,A and interacts with A as follows. B starts
by sampling its own key pairs for all P users by simulating KeyGen, except for
the challenge user party p1. For p1 B chooses x10 ←$ Zp and K1←$K and sets
sk1 = (x10 ,K1) and ek1 = (hx

k
10 )∀k∈[0,D] where h is the value from the co-CDH

challenge. B returns ek1 and the key pairs (eki, ski) for all the other parties.
Note that the output distribution of Initialize as seen by A when run by B is
identical to the distribution that is seen by A when run by challenger of G4

Θ,A.

4 In what follows in lemmas 6 through 7, for ease of presentation we drop the subscript
1 of coin c since VerO is under ek1, sk1 by definition. Moreover we also drop the
superscript unless otherwise needed.
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At any time algorithm A can query the RO with a message y. In order
to respond to the query, B maintains a list of tuples ⟨y, w, b, c⟩ called the H-
list which is initially empty. When A queries the RO at a point y ∈ {0, 1}∗,
algorithm B responds as follows:

– If the query y already appears on the H-list, B retrieves corresponding entry
and returns w back to A.

– Otherwise B tosses a random coin c ∈ {0, 1} such that
Pr[c = 0] = 1

QA+QV +PQAV
. Then, B samples b←$ Zp. If c = 0, B answers

A with w = ga+b
2 where ga2 is part of the co-CDH challenge, and b is the

sampled exponent. Else if c = 1 B answers A with w = gb2. It then stores the
tuple < y,w, b, c > in the H-list.

We observe that in either case, w is just a random element in G2. Thus, w is
independent of the bit c.

To respond to AuthO, VerO, and AVerO queries, B retrieves the corre-
sponding tuple ⟨m,w, b, c⟩ from the H-list. Then, as long as c = 1, he simulates
the answers exactly as in G4

Θ,A. If c = 0, then B stop responding to oracle queries
and proceeds to the output step i.e., Out procedure.

Now, lets consider the first query such that c = 0 in the corresponding H-
tuple. If such a query never occurs, then B aborts and outputs fail. Let this query
be a VerO query with input (m∗,P∗, σ∗). B checks whether the event η4 occurs
on this query, and if not, he aborts and outputs fail. Note that if the event η4
occurs then this query is one that will be accepted in G3

Θ,A but is rejected in
G4

Θ,A, we call this a forgery query. In the case of such a forgery query occurring
with c = 0, B runs the Out procedure to recover ha solving co-CDH.

We now describe how Out recovers ha on such a forgery query. Recall that
since c = 0, we program RO(m∗) = w = ga+b

2 . We now consider the two possible
cases for this query:

– A submitted σ∗ = Λ∗ (i.e., σ∗ is a homomorphic Mac): Recall that we are in
the case where P∗ = (f∗, (τ∗1,i)∀i∈[n]) is well-defined on T . Additionally, we
assume that ∀i ∈ [n], (τ∗1,i,m1,i, σ1,i) ∈ T , i.e., the values on all input wires
have been authenticated. Note that if this is not the case and there are some
input wires not in T , by the fact that P∗ is well-defined, we know that such
input wires have no impact on the output of f∗. So, B can just choose random
labels for these wires. Now, B computes the polynomial coefficients y1,k ←
f∗(σ(1,i)∀i∈[n]

) where σ1,i ← T (τ∗1,i) and uses ek1 to recompute the Mac

Λ̄← h
∑D

k=1 y1,kx
k
10 and message m̄ = f∗(m1,1, . . . ,m1,n). B also computes ρ∗

for P∗ using his internal Ver algorithm under sk1.
Since η4 occurs on this query, we know two things. First, (m∗,P∗, σ∗) cor-
rectly verifies in G3

Θ,A, and second, the ratio between the claimed Mac Λ∗

and recomputed Mac Λ̄ satisfies the relationship necessary to trigger η4.
Specifically, since we set u1 = h in the ek, and since (m∗,P∗, σ∗) correctly
verifies, we know that



32 Suvasree Biswas and Arkady Yerukhimovich

e(Λ∗, w) = e(h,w)(ρ
∗−m∗) (20)

From the fact that η4 has occurred, we know that

e(Λ̄, w) = e(Λ∗, w) · e(g1, w)(m
∗−m̄) (21)

Now, since we set w = ga+b
2 , combining terms we get that

e(h(a+b)((m∗−ρ∗)+
∑D

k=1 y1,kx
k
10

), g2) = e(g1, g
(a+b)(m∗−m̄)
2 ) (22)

So,

ha+b = ψ(w(m∗−m̄))(m
∗−ρ∗+

∑D
k=1 y1,kx

k
10

)−1

(23)

B then outputs ha = ha+b ·
(
hb
)−1

– Or A submitted σ∗ = (y∗0 , y
∗
1): We recall that we are in the case of non-trivial

forgery m∗ /∈ T . Therefore using similar analysis as above, in order to satisfy
equation 5, the following must hold.

e(h(a+b)x10 (ȳ1−y∗
1 )), g2) = e(g1, g

(a+b)(y∗
0−ȳ0)

2 ) (24)

It is straightforward to see that B correctly returns the solution ha of co-CDH
as

ψ(g
(a+b)(y∗

0−ȳ0)
2 )(x10

(ȳ1−y∗
1 ))

−1

·
(
hb
)−1

.

Now we need to show that B as described above solves the given instance of
the co-CDH problem in (G1,G2) with probability at least ϵ′. In order to prove that
we need to analyze the following events. Consider the following events needed
for B to succeed: (i) Let E1 be the event that B does not abort in Auth queries.
(ii) Let E2 be the event that B does not abort in Ver oracle. (iii) Let E3 be the
event that B does not abort in AggVer oracle. (iv)Let E4 be the event that valid
forgery query has taken place. (v)Let E5 be the event that event E4 has taken
place and in addition c = 0 where c is the component of the tuple m1 on the H
list.

We define B wins if all these events take place. We note that since E4 occurs
whenever E5 occurs, we do not need to include E4 in the final expression.

Pr[E1 ∧ E2 ∧ E3 ∧ E5] =
Pr[E1 ∧ E2 ∧ E3] · Pr[E4|E1 ∧ E2 ∧ E3] · Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4] (25)

The following claims B1, B2, B3 give the lower bound for each of these terms.

Claim B1 The probability that algorithm B does not abort due to the AuthO,
VerO and AVerO queries made by adversary A in G4

Θ,A is at least
(1− 1

QA+QV +PQAV
)QA+QV +QAV , where QA, QV , QAV represents the number of

Auth, Ver and AggVer queries made by A in G4. Therefore, Pr[E1 ∧ E2 ∧ E3] ≥
(1− 1

QA+QV +PQAV
)(QA+QV +QAV ).
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Proof (Proof of Claim B1).
Without loss of generality, we assume that A does not request the VerO on

the same message twice. We recall that every call to VerO is also an internal
call to RO. Therefore by making the prior assumption we are implicitly also
assuming that A does not request RO on the same message twice. We will show
by induction that after A makes l VerO queries, the probability that B does
not abort is at least (1 − 1

QA+QV +PQAV
)l. We define the superscript notation

(m(l), w(l), b(l), c(l)) with respect to lth query in any of Auth, Ver or AggVer
oracles.

The base case is trivial for l = 0. Let (m(l)) be A’s l-th VerO query, and
let (m(l), w(l), b(l), c(l)) be the corresponding tuple in the H-list. Before A issues
this query to VerO, the bit c(l) is independent of A’s view. Meaning before
A makes this VerO query the bit c(l) is independent of H(m(l)). After this
VerO query is made, the only value potentially dependent on c(l) that could
have been given to A is H(m(l)) which have the same distribution whether
c(l) = 0 or c(l) = 1. This is because H(m(l)) is a random element in G2 in both
the cases. Therefore, the probability that this query causes B to abort is at
most 1

QA+QV +PQAV
because of the independence from the bit c. Therefore by

inductive hypothesis, the probability that B does not abort after this query is
at least (1− 1

QA+QV +PQAV
)l.

Since A makes at most QV VerO queries, the probability that B does not
abort due to all VerO queries is at least (1 − 1

QA+QV +PQAV
)QV . Similarly,the

probability that B does not abort due to any of the Auth queries is at least
(1− 1

QA+QV +PQAV
)QA . Also, the probability that B does not abort due to any of

the AggVer queries is at least (1− 1
QA+QV +PQAV

)QAV . Multiplying this concludes
our claim that probability that B did not abort in Auth, Ver and AggVer queries.
Thus, we have Pr[E1 ∧ E2 ∧ E3] ≥ (1− 1

QA+QV +PQAV
)QA+QV +QAV .

⊓⊔

Claim B2 If algorithm B does not abort due to the queries made by A in G4
Θ,A,

then the view of algorithm A in G4
Θ,A is identical to its view when run by B.

Hence, Pr[E4|E1 ∧ E2 ∧ E3] ≥ ϵ

Proof (Proof of Claim B2). The evaluation keys and the secret keys provided
to A when played by B have the same distribution as the evaluation keys and
secret keys generated by KeyGen in G4

Θ,A. Additionally, the responses to hash
queries are uniformly and independently distributed in G2. Since B does not
abort due to A’s authentication, verification, and aggregate verification queries,
all responses to those queries are valid. Therefore, the probability of event E4
given events E1, E2, and E3 have occurred is at least ϵ. In other words probability
that A made a query such that it is accepted in G3

Θ,A and rejected in G4
Θ,A for

a well defined program is negligible So, by contradiction it is concluded that
Pr[E4|E1 ∧ E2 ∧ E3] ≥ ϵ. ⊓⊔

For convenience we recall here that valid forgery refers to case of A making
Ver query with (m∗,P∗, σ∗) such that Pr[η4] ≥ ϵ.
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Claim B3 The probability of algorithm B not aborting after A outputs a valid
and non-trivial VerO forgery query in G4

Θ,A is at least: 1
QA+QV +PQAV

. Hence,
Pr[E5|E1 ∧ E2 ∧ E3] ≥ 1

QA+QV +PQAV
.

Proof (Proof of Claim B3). Given that the events E1, E2, E3 and E4 have oc-
curred, and A has produced a valid and non-trivial forgery query at c = 0. Let
⟨m∗, w, b, c⟩ be the tuple corresponding to m∗ on the H-list. Algorithm B will
abort unless A generates a forgery query at c = 0. We note that w is indepen-
dent of the c bit. Since the forgery query is non-trivial, A cannot have asked for
a MAC on m∗ under key sk∗1. Therefore A cannot have any information about
the value c. In the forged query, c = 0 occurs with probability 1

(QA+QV +PQAV ) .
Therefore Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4] ≥ 1

(QA+QV +PQAV ) as required.

We substitute back the results of claims B1, B2, B3 into equation 25 of
Lemma 6. By contradiction algorithm B breaks co-CDH with probability at
least ϵ′. Hence we concretely get the following

(1− 1

(QA +QV + PQAV )
)(QA+QV +QAV ) · ϵ · 1

(QA +QV + PQAV )
≥ ϵ′ (26)

Using taylor series approximation (1 − 1
x )

x ≥ 1
e on equation 26 we get the

following

ϵ ≥ e
QA+QV +QAV

QA+QV +PQAV (QA +QV + PQAV )ϵ
′

Therefore the following concludes the proof of lemma 6

Pr[η4] < e
QA+QV +QAV

QA+QV +PQAV (QA +QV + PQAV )ϵ
′ (27)

⊓⊔
⊓⊔

Lemma 7. Let (G1,G2) be a bilinear group pair for co-Diffie-Hellman. For any
PPT adversary A(t, QH , QA, QV , QAV , ϵ) that makes a VerO forgery query in
game G4

Θ,A with probability at least ϵ and running time at most t then there
exists another PPT adversary B against co-CDH assumption with probability at
least ϵ′ and running time at most t′ such that the following two inequalities hold

ϵ′ >
ϵ

e
QA+QV +QAV

QA+QV +PQAV (QA +QV + PQAV )
(28)

t′ < t+ cZ (QA + |f | (QV + PQAV + 2) + 1) + cG1QV +

cG2 (QH +QA + 3QV + (3P )QAV + 1) + cGT (QV +QAV + 1)+

ce (3QV + PQAV + 3)
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Proof (Proof of lemma 7).
By the proof of lemmas 6 and Claims till B3, we have proven by contradiction

that if an adversary A who breaks Θ by making a VerO forgery query in G4
Θ,A

with probability at least ϵ then there exists adversary B that breaks co-CDH
with probability at least ϵ′ such that ϵ′ > ϵ

e
QA+QV +QAV

QA+QV +PQAV (QA+QV +PQAV )

. Now it

remains to show, given that if there exists A that takes time at most t to break
Θ then there exists B that takes time at most t′ to break co-CDH.

The total running time of B consists of three main components: (1) The
running time of algorithm A, since B invokes A to receive queries, (2) The
time to respond to (QH + QA + QV + PQAV ) hash queries, each requiring an
exponentiation in G2, (3) The time to answer QA Auth queries, QV Ver queries,
QAV AggVer queries (4) the time to transform A’s final forgery into the co-CDH
solution. We recall Figure 2 for the analysis below.

Let cG1 , cG2 , cGT , cZ, ce denote the time for group operations in G1, G2, GT ,
Zp, compute map e. For simplicity PRF computation cost is not there in the
analysis.

– (QH+QA+QV +PQAV ) Hash queries: each hash query has 1 exponentiation
in G2. RO cost = cG2(QH +QA +QV + PQAV )

– QA Auth queries: Each auth query makes 2 operations in Zp. AuthO cost
= 2cz(QA)

– QV Ver queries: Each VerO query does |f | no of operations in Zp where f
is the function submitted. Depending on whether the Ver oracle gets queried
on initial MAC or homomorphic MAC, either 2 exponentiations in G2 +3
e operations + 1 mult in GT are performed OR 2 exponentiations in G2
+ 3 e operations + 1 mult in GT + 1 exponentiations in G1. Taking the
costlier operation for concrete calculation we get that total VerO cost =
QV (cz|f |+ 2cG2 + 3ce + cGT + cG1).

– QAV AggVer queries: Each AVerO query has P |f | no of operations in Zp +
2P exponentiations in G2 + P maps + (1+2P) mult in GT . Therefore total
AVerO cost = QAV (cZ(P |f |) + cG2(2P ) + ceP + cGT ).

– Forgery: Operations needed to calculate solution to co-CDH from the forgery
of homomorphic MAC under the honest key is |f | operations in Zp, 1 oper-
ation in Zp, 1 operation in G2, 3 map operations, 1 mult in GT . Total cost
for forgery inversion is cG2 + 3ce + cZ(2|f |+ 1) + cGT .

Summing these components, the total running time of B is at most :
t+ cZ (2QA + |f | (QV + PQAV + 2) + 1) + cG1QV +
cG2 (QH +QA + 3QV + (3P )QAV + 1) + cGT (QV +QAV + 1)+
ce (3QV + PQAV + 3).
This concludes the proof of lemma 7. ⊓⊔

Indistinguishability of G4
Θ,A and G5

Θ,A: In order to prove indistinguishability of
G4

Θ,A and G5
Θ,A, we again define an event η5 such that the two games are iden-

tical unless η5 occurs. We then show that η5 occurs with negligible probability.
See lemmas 8–10 for the proofs.
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Lemma 8. Pr[G4
Θ,A] ≡ Pr[G5

Θ,A ∧ ¬η5]

Proof. Let η5 represent the event where flag βA is assigned 1 in G5
Θ,A of Figure

8. If the event η5 does not occur, we claim that G4
Θ,A is identical to G5

Θ,A.
The only distinction lies in how the challenger responds to the AVerO query
((m′j ,P ′j)∀j∈U , (ek

′
j)∀j∈U\{1}), σ

′) such that P ′1 is well defined on T .
Let ((m′j ,P ′j)∀j∈U , (ek

′
j)∀j∈U\{1}, σ

′) be a AVerO query such that P ′1 is well
defined in T where P ′1 =

(
f ′1, (τ

′
1,i)∀i∈[n]

)
where we recall that n is the arity of

the program P.

CASE 1: First let us consider the case when ∀i ∈ [n], (τ ′1,i,m′1,i, σ′1,i) ∈ T st
m′1 = f ′1

(
(m′1,i)∀i∈[n]

)
. This means that a tag has already been generated for

all the initial messages that formed the homomorphic message m′1. Recall that
challenger computes Λ̄1 by running Eval algorithm on f ′1 and (σ′1,i)∀i∈[n] under
ek1. Let (ρl)∀l∈U be the value computed by the AggVer algorithm. Challenger
retrieves the outputs of RO for each of (m′j)∀j∈U . It thus obtains the |U | corre-
sponding tuples ⟨m′i, wi, bi⟩∀i∈U from the H list where wi = gbi2 . If m′i /∈ H then
challenger samples bi←$ Zp, computes wi = gbi2 . It then stores all these in H.
Using these he extracts the claimed MAC on message m′1 as the output of P ′1. It
uses equation 16 for this. Let us call this claimed MAC as B. He also computes
e(Λ̄1, w1) where w1 = gb12 . So it is equivalent to e(Λ̄1

b1 , g2).

– CASE A: if e(Λ̄1
b1 , g2) = B then the answer is correct by the correctness of

the scheme. Therefore σ′ is accepted.
– CASE B: If e(Λ̄1

b1 , g2) ̸= B : The challenger returns reject and computes
(ρl)∀l∈U by the internal AggVer algorithm to check equation 7. Also re-

call that ∀l ∈ U evaluation key is (u
xk
l0

l )∀k∈[0,D] ← ekl where xl0 is con-
tained in the skl. We reconstruct back the recomputed aggregate MAC σ̄′ as
σ̄′ ← e(Λ̄1

b1 , g2)·
(
Π∀l∈U\{1}e(ul, w

ρl

l )e(ul, w
m′

l

l )−1
)
. Intuitively observe that

(ρl)∀l∈U is the same while running both AggVer(. . . , σ̄′) on the recomputed
HA-MAC and AggVer(. . . , σ′) on the claim HA-MAC. By the correctness
of σ̄′, the equality check of AggVer(. . . , σ̄′) = 1 translates to the check of
whether the following equality holds
e(Λ̄1, w1)

(
Π∀l∈U\{1}e(ul, w

ρl

l )e(ul, w
m′

l

l )−1
)
=
(
Π∀l∈U e(ul, w

ρl

l )e(ul, w
m′

l

l )−1
)
.

Cancelling on both side give us the following

AggVer(. . . , σ̄′) = 1 =⇒ e(Λ̄1, w1)e(u1, w
m̄1
1 ) = e(u1, w

ρ1

1 ) (29)

Similarly by the correctness of σ′, the equality check of AggVer(. . . , σ′) = 1
translates to checking whether the following equality holds
B
(
Π∀l∈U\{1}e(ul, w

ρl

l )e(ul, w
m′

l

l )−1
)
=
(
Π∀l∈U e(ul, w

ρl

l )e(ul, w
m′

l

l )−1
)
. Can-

celling on both side give us the following

AggVer(. . . , σ) = 1 =⇒ Be(u1, w
m′

1
1 ) = e(u1, w

ρ1

1 ) (30)
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Since RHS of both equations 29 and 30 is the same hence Be(u1, w
m′

1
1 )−1 =

e(Λ̄1, w1)e(u1, w
m̄1
1 )−1 must hold. Hence returning 1 iff

ZA ← B

e(Λ̄1
b1 ,g2)

e(ub11 , g2)
(m′

1−m̄1) = 1 is the same as returning the output of

AggVer on input σ′ where w1 ← gb12 .

CASE II:We now consider the case of P ′1 is well defined on T but ∃i ∈ [n] such
that τ ′1,i /∈ T . By the definition of well defined program this means that if we
fix the input values of all wires labelled with τ ′1,i where (τ ′1,i, ·, ·) ∈ T then the
circuit f ′1 always returns the same output irrespective of the values of the wires
labelled τ ′1,i such that τ ′1,i /∈ T for some i ∈ [n]. Recall from section 3.2 that the
circuit f ′1 is once computed during Eval algorithm to get Λ̄1 as well as when f ′1
is evaluated during Ver algorithm to compute ρ1. The earlier statement means
that for both of these operations on f ′1 these labels τ ′1,i such that τ ′1,i /∈ T for
some i ∈ [n] do not affect the output of the circuit f ′1. This means that for all
of these labels the dummy tags chosen do not contribute to the computation of
Λ̄1 as well as in the computation of ρ1. This asserts that the above analysis of
CASE 1 holds in the CASE II too. ⊓⊔

Lemma 9. Pr[η5] < e
QA+QV +QAV +P

QA+QV +PQAV · (QA +QV + PQAV − 1) · Advco−CDH
Θ,C

where C is any PPT adversary against the (t′, ϵ′) security of co-CDH over
(G1,G2) and e is the base of the natural log.

Proof (Proof of Lemma 9).
If there exists an adversary A(t, QH , QA, QV , QAV , P, ϵ) that makes a forgery

query that is a query that triggers the event η5 in AVerO with probability at
least ϵ. Then we show that there exists an adversary C that breaks the co-CDH
with probability at least ϵ′. Because co-CDH is a computationally hard problem,
the above implies that Pr[η5] < ϵ.

In other words, using A we show the construction of adversary C(Figure 10)
that solves co-CDH in (G1,G2) with probability at least ϵ′ and running time
at most t′. C simulates the game G5

Θ,A and answers queires of A as follows.
For concrete details of the construction of C we recall the construction of B
from the proof of lemma 6. We also recall from the proof of Lemma 6 that the
below analysis is under the scenario that all incoming messages to any oracle
gets registered to the H list i.e., gets a c coin allocated to it. 5

In the start, C upon given g2, g
a
2 ∈ G2, h ∈ G1 such that ψ(g2) = g1, the

goal of C can be interpreted as that of outputting ha. We note below the key
distinctions in the construction of C from that of B.

The change in the AVerO oracle from G4
Θ,A to G5

Θ,A is as follows. When
c1 = 1, C uses the keys he generated and simulates answers to the AuthO,
VerO, AVerO identical to G5

Θ,A. Meaning conditioned on the bit c1 is not set
to 0 the output distribution of all three of these oracles are distributed identical
5 In what follows in lemmas 9 through 10, we retain the subscript i of coin c for au-

thentication under eki, ski for some i ∈ P . However we drop the superscript denoting
the query number unless otherwise needed.
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to G5
Θ,A. In other words, particularly the output distribution of AVerO as seen

by A when run by C is the same as seen by A when run by the challenger of
G5

Θ,A given that the message for which the c bit is set is not queried for any
party (pl)∀l∈U .

When c1 = 0, C aborts in AuthO,VerO,AVerO. In the case where A does
not make the forgery query such that event η5 occurs with probability at least ϵ
then A halted and conceded failure. In this case C halts and concedes failure too.
Next, consider the scenario that A made the query in AVerO such that event
η5 occurs with probability at least ϵ. Let ((m∗j ,P∗j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗) be
that query triggering event η5. We note that this is the query that gets accepted
in G4

Θ,A but not in G5
Θ,A. Therefore we call this a forgery query. Therefore it

can be interpreted as equivalent to A halted with success.
C now proceeds if c1 = 0 and ∀i ∈ U \ {1}, ci = 1. Otherwise C declares

failure and halts. We recall that at c1 = 0 hash of message m∗1 is w1 = ga+b1
2

and hash of message (m∗i )∀i∈U\{1} is wi = gbi2 for some bi←$ Zp.
Now we analyze how the C runs in the Out procedure to extract the correct

answer to be returned to his own challenger given that event η5 has happened.
We recall that σ∗ is in the format of Λ∗ denoting a homomorphically evaluated
Mac. On input ((m∗j ,P∗j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗) to Out, it proceeds as follows.
A must not have queried the AuthO on m∗1. Algorithm C now runs its own hash
algorithm at each m∗i ∀i ∈ U obtaining |U | corresponding tuples ⟨m∗i , wi, bi, ci⟩
on the H list.

Using the internal AggVer algorithm, C also computes the (ρi)∀i∈U . The
claimed aggregate MAC σ∗ must satisfy equation 7 as recalled below

σ∗ = Π∀i∈U e(ui, wi)
ρi−m∗

i (31)

For each i > 1, e(Λ∗i , wi) = e(ui, wi)
ρi−m∗

i must hold according to equation 1.
This is because we are analyzing the AVerO query that was accepted in G4

Θ,A.
Since event η5 has occurred one of the things we know is that the MAC

for each of the users in U must verify in G4
Θ,A. Therefore for each i > 1, C

substitutes the MACs as e(ui, wi)
ρi−m∗

i . This is because Λ∗i is a valid homomor-
phic mac on m∗i whose hash is wi and whose evaluation key component is ui. C
extracts mac B under challenge key pair and hash w1 as e(Λ∗1, w1)

e(Λ∗1, w1) = σ∗ ·
(
Π∀i∈U\{1} e (Λ

∗
i , wi)

)−1
= σ∗ ·

(
Π∀i∈U\{1} e (ui, wi)

(ρi−m∗
i )
)−1
(32)

We recall that e(Λ∗1, w1) is the claimed mac on m∗1 submitted by A under
(hx

k
10 )∀k∈D ← ek∗1 as the challenge evaluation key where x10 is in sk∗1 using ga+b1

2

as the hash of message m∗1.
Recall that P∗1 is well defined in T such that ∀i ∈ [n], (τ∗1,i, ·, ·) ∈ T . Let

∀i ∈ [n], (τ∗1,i,m1,i, σ1,i) be the corresponding entries in T , such that m∗1 =

f∗1
(
(m1,i)∀i∈[n]

)
. Challenger computes (y1,k)∀k∈[0,D] using the internal Eval al-

gorithm, meaning it computes (y1,k)k∈[0,D] ← f∗1
(
(σ1,i)∀i∈[n]

)
. Eventually he
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computes e(Λ̄1, w1) as e(hΣ
D
k=1y1,kx

k

, ga+b1
2 ). For party p1 he also computes m̄1

as the homomorphic message as output of f∗1 on input the messages from the
table for the submitted input labels.

Because event η5 has occurred in G5
Θ,A we further know that the ratio be-

tween claimed MAC under ek∗1, sk
∗
1 that is Λ∗1 and the corresponding recomputed

MAC Λ̄1 fulfill the conditions required to initiate event η5. From Figure 8 we
recall below the expression that holds given that event η5 has occurred.

e(Λ̄1, w1) = e(Λ∗1, w1)e(g1, w1)
m∗

1−m̄1 (33)

Moreover, conditioned that c1 = 0, we recall hash of message m∗1 is w1 = ga+b1
2 .

The equation 33 then becomes the following

e(h(a+b1)(ΣD
k=1x

k
10
−ρ∗

1+m∗
1), g2) = e(g1, g

(a+b1)(m
∗
1−m̄1)

2 ) (34)

Using equation 3 , C correctly returns solution to his co-CDH challenge (ha ) as

(ψ(g
(a+b1)
2 )(m

∗
1−m̄1))(m

∗
1−ρ1+(ΣD

k=1y1,kx
k
10

))
−1

· (hb1)−1 (35)

After executing the Out procedure C aborts, so does A. We note that in
the event that forgery query has not been made η5 has not occurred. We further
prove in Claim B6 that view of A remains consistent in this case.

Now it remains to show that C solves the given instance of the co-CDH
problem in (G1,G2) with probability at least ϵ′. In order to do so consider the
following events.

– Let E1 be the event that C does not abort in Auth queries.
– Let E2 be the event that C does not abort in Ver oracle.
– Let E3 be the event that C does not abort in AggVer oracle.
– Let E4 be the event that valid forgery query has taken place.
– Let E5 be the event that event E4 has taken place and c1 = 0 and
∀l ∈ U \ {1}, cl = 1 where cl is the component of the tuple ml on the H list.

We define C wins if all these events take place.

Pr[E1 ∧ E2 ∧ E3 ∧ E5] =
Pr[E1 ∧ E2 ∧ E3] · Pr[E4|E1 ∧ E2 ∧ E3] · Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4]. (36)

The following Claims B4, B5, B6 give the lower bound for each of these terms.

Claim B4 The probability that algorithm C does not abort due to the Auth, Ver
and AggVer queries made by any adversary A in G5

Θ,A is at least
(1− 1

QA+QV +PQAV
)QA+QV +QAV , where QA, QV , QAV represents the number of

AuthO, VerO and AVerO queries made by A and P represents the total
number of users. Therefore, Pr[E1∧E2∧E3] ≥ (1− 1

QA+QV +PQAV
)(QA+QV +QAV ).

Proof (Proof of Claim B4).
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Assume without loss of generality that A does not request AVerO query on
the same message twice. We recall that AVerO calls RO by construction. So we
are also assuming that RO is not queried on the same message twice. We will
show by induction that after A makes l AVerO queries the probability that C

does not abort due to the AVerO queries is at least
(
1− 1

QA+QV +PQAV

)l
. The

base case for l = 0 is trivial. We define the superscript notation (m(l), w(l), b(l), c(l))
with respect to lth query in any of Auth, Ver or AggVer oracles. We recall that
the following proof is similar to proof of Claim B1 and we include here for com-
pleteness.

Let (m
(l)
j ,P(l)

j , σ′(l))∀j∈U be A’s lth aggregate verification query and let
(m

(l)
1 , w

(l)
1 , b

(l)
1 , c

(l)
1 ) be the corresponding tuple on the H list for the message m(l)

1

that is authenticated under challenge key ek∗1, sk
∗
1. 6 Before Amakes this query to

the AVerO, the bit c(l) is independent of A’s view. The only value potentially
dependent on c(l) that could have been given to A is H(m(l)

1 ) which has the
same distribution whether c(l) = 0 or c(l) = 1. This is because the output of RO
in both cases is a random element in G2. Therefore, the probability that this
query causes C to abort is at least 1

QA+QV +PQAV
. Using inductive hypothesis

and independence of bit c, the probability that C does not abort after this query
is at least (1 − 1

QA+QV +PQAV
)l. Since A makes at most QAV AVerO queries,

the probability that C does not abort due to all AVerO queries is at least
(1− 1

QA+QV +PQAV
)QAV .

We recall here again that we are arguing unforgeability of AVerO oracle.
This necessarily encompasses VerO and AuthO. This is because the message
for which the bit c is set to 0 can be queried to any of these oracles and thereby
used to forge AVerO. Therefore we consider the following now.

Analogously,the probability that C does not abort due to any of the VerO
queries is at least (1 − 1

QA+QV +PQAV
)QV . Also, the probability that C does

not abort due to any of the Auth queries is at least (1 − 1
QA+QV +PQAV

)QA .
Multiplying this concludes our claim that probability that C did not abort in
Auth, Ver and AggVer queries. Thus, we have
Pr[E1 ∧ E2 ∧ E3] ≥ (1− 1

QA+QV +PQAV
)QA+QV +QAV .

⊓⊔

Claim B5 If algorithm C does not abort due to the queries made by A in G5
Θ,A,

then the view of algorithm A in the protocol is identical to its view when run by
C. Hence, Pr[E4|E1 ∧ E2 ∧ E3] ≥ ϵ.

Proof (Proof of Claim B5). The evaluation keys and the secret keys provided to
A in G5

Θ,A(Figure 8) has the same distribution as that of the keys given to A
when played by C(Figure 10). Moreover, the responses to hash queries as seen by
A when run by C are uniformly and independently distributed in G2. Therefore
it is the same as the distribution seen by A when it runs in the real protocol.

6 What follows ahead, for simplicity we are omitting the subscript 1 of coin of lth

AVerO query c(l).
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Since C does not abort due to A’s authentication, verification, and aggregate
verification queries, all responses to those queries are valid. In other words, prior
to this, A did not make the forgery query in any of the oracles. Therefore, the
probability of event E4 (forgery) given events E1, E2, and E3 have occurred is at
least ϵ. In other words the probability that A made a forgery query in AVerO
such that it was accepted in G4

Θ,A but rejected in G5
Θ,A where P ′1 is well defined

on T is ϵ. More concretely, Pr[E4|E1 ∧ E2 ∧ E3] ≥ ϵ. ⊓⊔

Claim B6 The probability of algorithm C not aborting after A outputs a valid
and nontrivial agggregate verification forgery query in G5

Θ,A is at least:(
1− 1

QA+QV +PQAV

)P−1
1

QA+QV +PQAV
.

Meaning, Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4] ≥
(
1− 1

QA+QV +PQAV

)P−1
1

QA+QV +PQAV
.

Proof (Proof of Claim B6). 7

We are given that the events E1, E2, E3 and E4 have occurred, and A has pro-
duced a valid and non-trivial forgery query such that c1 = 0 and ∀i ∈ U \{1}, ci =
1. Let ((m∗j ,P∗j )∀j∈U\{1}, (ek

∗
j )∀j∈U\{1}, σ

∗) be the forgery query, meaning query
triggering event η5. We note that ∀i ∈ U \ {1}, ci is independent of each other.
For each m∗i , where i ∈ U \ {1}, let ⟨m∗i , wi, bi, ci⟩ be the corresponding tu-
ple retrieved from the H-list. So, output distribution of RO is independent of
programmed bit c.

Algorithm C will abort unless A generates a forgery such that c1 = 0 and for
i > 1, ci = 1. For concrete analysis we use P instead of |U |. Since the forgery is
non-trivial we know that A could not have queried AuthO, VerO, AVerO on
m∗1 under ek∗1 and sk∗1. Recall that for a well defined program P∗1 there must exist
m1, . . . ,mn ∈ T such that m∗1 = f∗1 (m1, . . . ,mn) under the challenge evaluation
key ek∗1. Nevertheless, A has no information about the value of c1. This is because
c1 = 0 occurs with probability 1

(QA+QV +PQAV ) .
For each i > 1, two cases arise for A. If A requested a authenticator under

key ek∗1 on m∗i or queried VerO on input m∗i then Pr[ci = 1] = 1. On the other
hand if A did not query the RO or AuthO or VerO on m∗i for some i ∈ P then
Pr[ci = 1] = (1 − 1

(QA+QV +PQAV ) ). The probability that ci = 1, ∀i ∈ [2, P ],
is at least (1 − 1

(QA+QV +PQAV ) )
P−1. Therefore, Pr[E5|E1 ∧ E2 ∧ E3 ∧ E4] ≥

(1− 1
(QA+QV +PQAV ) )

P−1 · 1
(QA+QV +PQAV ) , as required.

We substitute back the results of Claims B4, B5, B6 into equation 36 of
Lemma 9. By contradiction algorithm C breaks co-CDH with probability at
least ϵ′. Hence we concretely get the following(

1− 1

QA +QV + PQAV

)QA+QV +QAV +P−1

· 1

QA +QV + PQAV
· ϵ ≥ ϵ′ (37)

7 In the following proofs, for simplicity of presentation, we further drop from coin c
the superscript l denoting the lth aggregate verification oracle query.
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Using taylor series approximation (1− 1
x )

x ≥ 1
e we get the following

ϵ

e
QA+QV +QAV +P

QA+QV +PQAV · (QA +QV + PQAV − 1)
≥ ϵ′ (38)

Therefore the following concludes the proof of lemma 9.

Pr[η5] < e
QA+QV +QAV +P

QA+QV +PQAV · (QA +QV + PQAV − 1) ·Advco−CDH
Θ,A

⊓⊔
⊓⊔

Lemma 10. Let (G1,G2) be a bilinear group pair for co-Diffie-Hellman. For any
PPT adversary A(t, QH , QV , QA, QAV , ϵ) that makes an AVerO forgery query
in the G5

Θ,A with probability at least ϵ and running time at most t then there
exists another PPT adversary C against co-CDH assumption with probability at
least ϵ′ and running time at most t′ such that the following two inequalities hold

ϵ′ >
ϵ

e
QA+QV +QAV +P

QA+QV +PQAV · (QA +QV + PQAV − 1)

t′ < t+ cG1 [QV ] + cG2 [QH +QA + 3QV +QAV (3P ) + 2P + 2]+

cGT [2QAV + 5P + 3] + cZ[3QAV + |f |QV + P |f |QAV + 1]+

ce[3QV + PQAV + 2P + 3)]

Proof (Proof of lemma 10).
By Lemma 9 and Claims till B6, we have proven that given an adversary A

who breaks Θ by making an aggregate verification oracle forgery query in G5
Θ,A

with probability at least ϵ then there exists adversary C that breaks co-CDH
with probability at least ϵ′ such that ϵ′ > ϵ

e
QA+QV +QAV +P
QA+QV +PQAV ·(QA+QV +PQAV −1)

.

Now it remains to show, given that there exists A that takes time at most t to
break Θ then there exists C that takes time at most t′ to break co-CDH.

Referring to Figure 2 the total running time of C consists of three main
components: (1) The running time of algorithm A, since C invokes A to receive
queries, (2) The time to respond to (QH +QA+QV +PQAV ) hash queries, each
requiring an exponentiation in G2, (3) The time to answer QA Auth queries, QV

Ver queries, QAV AggVer queries (4) the time to transform A’s final forgery into
the co-CDH solution.

Let cG1 , cG2 , cGT , cZ, ce denote the time for group operations in G1, G2, GT ,
Zp, compute map e. For simplicity PRF computation cost is not there in the
analysis.

– (QH+QA+QV +PQAV ) Hash queries: each hash query has 1 exponentiation
in G2. RO cost = cG2(QH +QA +QV + PQAV )

– QA Auth queries: Each auth query makes 2 operations in Zp. AuthO cost
= 3cz(QA)
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– QV Ver queries: Each VerO query does |f | no of operations in Zp where f
is the function submitted. Depending on whether the Ver oracle gets queried
on initial MAC or homomorphic MAC, either 2 exponentiations in G2 +3
e operations + 1 multiplication in GT are performed OR 2 exponentiations
in G2 + 3 e operations + 1 multiplication in GT + 1 exponentiations in
G1. Taking the costlier operation for concrete calculation we get that total
VerO cost = QV (cz|f |+ 2cG2 + 3ce + cGT + cG1).

– QAV AggVer queries: Each AVerO query has P |f | no of operations in Zp

+ 2P exponentiations in G2 + P maps + (1 + 2P ) multiplications in GT .
Therefore total AVerO cost = QAV (cZ(P |f |) + cG2(2P ) + ceP + cGT ).

– Forgery: The calculation of B takes 2P exponentiations in G2, (1+P ) inver-
sions on GT , P multiplications in GT . This becomes cG22P+(1+P )cGT +(2+
P )GT . Moreover it needs P |f | operations in Zp for evaluating the function at
chosen random evaluation points. Next it needs 1 exponentiation in G2 + 1
map for the conditional check. Then to compute the solution to challenge it
needs 1 operation in Zp, 1 exponentiation in G2, 1 map computation. Total
cost for forgery inversion is (2P + 2)cG2 + (2P + 3)cGT + (2P + 3)ce.

Summing these components, the total running time of C is at most: t +
cG1 [QV ] + cG2 [QH +QA +3QV +QAV (3P )+ 2P +2]+ cGT [2(QAV )+ 5P +3)]+
cZ[2QA + |f |QV +P |f |QAV +1]+ ce[3QV +P (QAV )+ 2P +3)]. This concludes
the proof of lemma 10. This concludes the proof that for any PPT adversary
A in G5

Θ,A, aggregate verification oracle queries are unforgeable except with
probability at least ϵ (as computed through Lemma 5 and Claims till B6) and
running time at most t (as computed in Lemma 10). ⊓⊔

B.1 Summary

To conclude the proof of the theorem, we first sum up the results of all the
lemmas and express ϵ as below

AdvHA
Θ,A(1

λ, 1n, 1D, 1P ) <
QV +QAV

2λ
+AdvPRF

D,F (λ)+

QV (D + 1)

p−D(QV − 1)
+

DQAV

p−D(QAV − 1)
+
DQ2

V

p
+
DQ2

AV

p
+

e
QA+QV +QAV

QA+QV +PQAV (QA +QV + PQAV ) ·Advco−CDH
Θ,B

e
QA+QV +QAV +P

QA+QV +PQAV · (QA +QV + PQAV − 1) ·Advco−CDH
Θ,C

In the above we perform the following substitutions (i)Replace by Q the max-
imum of QH , QA, QV , QAV (ii) Advco−CDH

Θ,B (1λ, 1n, 1D, 1P ) and
Advco−CDH

Θ,C (1λ, 1n, 1D, 1P ) are both replaced by ϵ′ as defined prior (iii) Re-
placing AdvPRF

D,F (λ) as ϵ′′ (iii) losing constant coefficients (iv)P + 2 ≈ P (vv)
Substitute AdvHA

Θ,A(1
λ, 1n, 1D, 1P ) as ϵ. Hence we get the following precise ex-
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pression

ϵ <
Q

2λ
+

DQ

p−DQ
+
DQ2

p
+ e

3
P PQ

(
e

1
Q + 1

)
ϵ′ + ϵ′′ (39)

In order to get the exact expression for running time t of any ppt adversary
against Θ, we sum up the lemmas 7 and 10 above and perform the following
substitutions (i)maximum of cZ, cG1 , cG2 , cGT , ce as c (ii)Replace by Q the max-
imum of QH , QA, QV , QAV (iii) size of f is replaced by s. Therefore we get the
below:

t+ c(Q+ sQ+ sPQ+ s+ 1) + cQ+ c(Q+ PQ) + cQ+ c(Q+ PQ) + cQ+

c(Q+ PQ+ P ) + c(Q+ P ) + c(Q+ sQ+ sPQ) + c(Q+ PQ+ P ) < t′

=⇒ t+ c(s+Q+ P + sQ+ PQ+ sPQ) > t′ (40)

Since both D, P and Q is poly(λ) and ϵ′ and ϵ′′ are negligible as defined in
equation 4 therefore equation 39 evaluates to negligible. Meaning A has at most
negligible advantage of breaking the unforgeability of our construction Θ. Sim-
ilarly from equation 40 the total running time of A evaluates to approximately
running time of solving co-CDH. This conlcudes the proof of theorem 1.
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Game G0
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ← ∅
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )
3 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
4 same as real

AuthO(τ,m):
5 if (τ,m, ·) ∈ T , σ ← T (τ,m, ·)
6 if (τ,m, ·) /∈ T ,σ ← Authsk1(τ,m); T = T ∪ (τ,m, σ)
7 if (τ, ·, ·) ̸∈ T , ignore
8 Return σ

VerO(m,P, σ):
9 sample λ+ 1 tuples {Ui}λi=0 st Ui∀i∈[0,λ]

←$ Zn
p

10 Return 1 iff ∀i ∈ [1, λ], f(U0) = f(Ui)

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
11 sample λ+ 1 tuples {Ui}λi=0 st Ui∀i∈[0,λ]

←$ Zn
p

12 Return 1 iff ∀i ∈ [1, λ],f ′
1(U0) = f ′

1(Ui)

Finalize(IN):
13 if IN = (m∗

j ,P∗
j )∀j∈U , (ek

∗
j )∀j∈U\{1}, σ

∗)
14 Return CheckA((m

∗
j ,P∗

j )∀j∈U , (ek
∗
j )∀j∈U\{1}, σ

∗))
15 else if IN = (m∗,P∗, σ∗)
16 Return CheckV (m∗,P∗, σ∗)

Fig. 3: Game 0 for security proof for Θ
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Game G1
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ← ∅
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )
3 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
4 same as before

AuthO(τ,m):
5 if (τ,m, ·) ∈ T , σ ← T (τ,m, ·)
6 if (τ,m, ·) /∈ T ,σ ← Authsk(τ,m); T = T ∪ (τ,m, σ)
7 In Auth, Replace PRF with TRF R
8 if (τ, ·, ·) ̸∈ T , ignore
9 Return σ

VerO(m,P, σ):
10 same as before

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
11 same as before

Finalize(IN):
12 same as before

Fig. 4: Game 1 for security proof for Θ
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Game G2
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ,S,SA ← ∅, ζ, ζA ← 0
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )

3 (x10 ,K1, x1)← sk1, u1 ← gx1
1 , (u

xk
10

1 )∀k∈[0,D] ← ek1
4 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
5 same as before

AuthO(τ,m):
6 same as before

VerO(m,P, σ):
7 w1 ← H2(m), (f, τi)∀i∈n ← P
8 if P is well defined on T , do same as G1

Θ,A
9 if P not well defined on T : d← 0

10 ∀τi /∈ T : r∗∗τi ←R(τi); S = S ∪ r∗∗τi
11 ∀τi ∈ T : r∗∗τi ← T (τi, ·, ·); S = S ∪ r∗∗τi
12 ρ∗∗ ← f(S)
13 if σ = (y0, y1)

14 z ← e(u1, w
ρ∗∗

1 ) · e(ux1·y1
1 , v2)

−1 · e(u1, w
y0
1 )−1

15 if z = 1 mod p : ζ ← 1
16 else if σ = Λ; Z ← e(u1, w

ρ∗∗

1 ) · e(u1, w
m
1 )−1 · e(Λ,w1)

−1

17 if Z = 1 : ζ ← 1
18 Return d

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
19 wl ← H2(m

′
l), (f”l, τ”l,i)∀l∈U ,∀i∈n ← P ′

l

20 if P ′
1 is well defined on T , do same as G1

Θ,A
21 if P ′

1 is not well defined on T : d← 0
22 ∀τ”1,i /∈ T : r”τ”1,i ←R(τ”1,i); SA = SA ∪ r”τ”1,i ; i ∈ [n]
23 ∀τ”1,i ∈ T : r”τ”1,i ← T (τ”1,i); SA = SA ∪ r”τ”1,i ; i ∈ [n]
24 ρ”1 ← f”1(SA)
25 ∀l ∈ U \ {1}
26 ρ”l ← f”l((r”τl,i)∀i∈[n]) ,(r”τ”l,i)∀i∈[n] ← PRFKl(τ”l,i)∀i∈[n]

27 B ← σ′ ·
(
Π∀l∈U\{1}e(ul, w

ρ”l
l ) · e(ul, w

m′
l

l )−1
)−1

28 ZA ← e(u1, w
ρ”1
1 )e(u1, w

m′
1

1 )−1 ·B−1

29 if ZA = 1 : ζA ← 1
30 Return d

Finalize(IN):
31 same as before

Fig. 5: Game 2 for security proof for Θ
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Game G3
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ,S,SA ← ∅, ζ, ζA ← 0
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )

3 (x10 ,K1, x1)← sk1, u1 ← gx1
1 , (u

xk
10

1 )∀k∈[0,D] ← ek1
4 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
5 same as before

AuthO(τ,m):
6 if (τ,m, ·) ∈ T , σ ← T (τ,m, ·)
7 if (τ,m, ·) /∈ T ,σ ← Authsk1(τ,m) using R;
8 (y0, y1)← σ : if y1 ∈ SA ∪ S
9 y∗∗1 ←$ Zp ; σ ← y0, y

∗∗
1

10 T = T ∪ (τ,m, σ)
11 if (τ, ·, ·) ̸∈ T , ignore
12 Return σ

VerO(m,P, σ):
13 same as before

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
14 same as before

Finalize(IN):
15 same as before

Fig. 6: Game 3 for security proof for Θ
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Game G4
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 T ,S ← ∅, ζ ← 0, η ← 0,DM← ∅
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )

3 (x10 ,K1, x1)← sk1, u1 ← gx1
1 , (u

xk
10

1 )∀k∈[0,D] ← ek1
4 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
5 if y ∈ H, (y, w, b)← H[y] else:
6 b←$ Zp, w ← gb2, H = H ∪ (y, w, b)
7 Return w

AuthO(τ,m):
8 same as before

VerO(m,P, σ):
9 if P not well defined in T , do same as before.

10 if P is well defined on T :
11 ∀(τi, ·, ·) /∈ T : σ̂i←$ Z2

p ; DM = DM ∪ σ̂i

12 ∀(τi, ·, ·) ∈ T : σ̂i←$ T (τi, ·, ·);DM = DM ∪ σ̂i

13 σ∗∗∗ ← Eval(ek1, f,DM), m∗∗∗ ← f ((σ̂[0]i)∀i∈n))
14 if σ∗∗∗ = σ : d← 1 else d← 0
15 if ((y∗∗∗0 , y∗∗∗1 )← σ∗∗∗) ̸= ((y0, y1)← σ)

16 z ← e(u
y1x1
1 ,gb2)

e(u
y∗∗∗
1 x1

1 ,gb2)
e(g1, g

b
2)

(y0−y∗∗∗
0 )

17 if z = 1, η ← 1
18 if (Λ∗∗∗ ← σ∗∗∗) ̸= (Λ← σ)

19 Z ← e(Λ,gb2)

e(Λ∗∗∗,gb2)
· e(g1, gb2)(m−m∗∗∗)

20 if Z = 1, η ← 1
21 Return d

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
22 same as before

Finalize(IN):
23 same as before

Fig. 7: Game 4 for security proof for Θ
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Game G5
Θ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P ):
1 ζ ← 0 η ← 0, βA ← 0, C1 ← ∅
2 (skl, ekl)∀l∈P ←$ KeyGen(1λ, 1n, 1D, 1P )

3 (x10 ,K1, x1)← sk1, u1 ← gx1
1 , (u

xk
10

1 )∀k∈[0,D] ← ek1
4 Return ek1, (ekl, skl)∀l∈[2,P ]

RO(y):
5 same as before

AuthO(τ,m):
6 same as before

VerO(m,P, σ):
7 same as before

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
8 if P ′

1 not well defined in T , do same as before.
9 if P ′

1 is well defined on T :
10 ∀τ ′i ∈ P ′

1 : if τ ′1,i /∈ T : σ̄←$ Z2
p; C1 = C1 ∪ σ̄

11 if τ ′1,i ∈ T : σ̄ ← T (τ ′1,i, ·, ·); C1 = C1 ∪ σ̄
12 Λ̄1 ← Eval(ek1, f

′
1, C1), m̄1 ← f ′

1(C1[0])
13 B ← σ′ ·

(
Π∀l∈U\{1}

(
e(ul, w

ρl
l ) · e(ul, w

m′
l

l )−1
))−1

14 if e(Λ̄1, g
b1
2 ) = B, d← 1

15 if e(Λ̄1, g
b1
2 ) ̸= B, d← 0

16 ZA ← B

e(Λ̄1,g
b1
2 )

e(g1, g
b1
2 )m

′
1−m̄1

17 if ZA = 1, βA ← 1
18 Return d

Finalize(IN):
19 same as before

Fig. 8: Game 5 for security proof for Θ
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Adv BΘ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P , (g1, h) ∈ G1, (g2, ga2 ) ∈ G2):
1 K1←$K x10 ←$ Zp. , ek∗1 ← (hxk

10 )∀k∈[0,D], sk∗1 ← (x10 ,K1)
2 ∀l ∈ [2, P ] : Kl←$K, (xl0 , xl)←$ Z2

p, ul ← g
xl
1

3 ekl ← (u
xk
l0

l )∀k∈[0,D], skl ← (xl0 ,Kl, xl)
4 Return ek∗1, (skl, ekl)∀l∈[2,P ]

RO(y):
5 if y ∈ H, (y, w, b, c)← H[y] else:
6 c← {0, 1}, b←$ Zp, if c = 0: w ← ga+b

2

7 else if c = 1: w ← gb2
8 H = H ∪ (y, w, b, c)
9 Return w

AuthO(τ,m):
10 if c = 0: Return ⊥
11 else same as G4

Θ,A

VerO(m,P, σ):
12 if c = 0: Return ⊥
13 Return Out(m,P, σ)
14 else same as G4

Θ,A

AVerO((m′
1, . . . ,m

′
P ), (P ′

1, . . . ,P ′
P ), (ek

′
2, . . . , ek

′
P ), σ

′):
15 if c = 0: Return ⊥
16 else same as G4

Θ,A

Out(m∗,P∗, σ∗): // m∗ /∈ T

17 ρ∗ ← f∗
(
(rτ∗

1,i
)∀i∈n

)
, (rτ∗

1,i
)∀i∈[n] ← PRFK1(τ

∗
1,i)∀i∈[n]

18 (y1,k)∀k∈[0,D] ← f∗ ((σ1,i)∀i∈[n]

)
, (σ1,i)∀i∈[n] ← T ((τ∗1,i)∀i∈[n], ·, ·)

19 m̄← f∗
1

(
(m1,i)∀i∈[n]

)
, (m1,i)∀i∈[n] ← T ((τ∗1,i)∀i∈[n], ·)

20 if Λ∗ ← σ∗:

21 Return
(
ψ(g(a+b))(m

∗−m̄)
)(m∗−ρ∗+ΣD

k=1y1,kx
k
10

)−1

·
(
hb

)−1

22 if (y∗0 , y∗1)← σ∗ :

23 Return
(
ψ(g

(a+b)
2 )(y

∗
0−y1,0)

)(x10
(y1,1−y∗

1 ))−1

·
(
hb

)−1

Finalize(IN): // (·,m∗, ·) /∈ T
24 if c = 0, Return ⊥
25 else same as G4

Θ,A

Fig. 9: Adversary B against co-CDH assumption
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Adv CΘ,A(1λ, 1n, 1D, 1P )

Initialize(1λ, 1n, 1D, 1P , (g1, h) ∈ G1, (g2, ga2 ) ∈ G2):
1 K1←$K, x10 ←$ Zp , ek∗1 ← (hxk

10 )∀k∈[0,D], sk∗1 ← x10 ,K1

2 ∀l ∈ [2, P ] : Kl←$K, (xl0 , xl)←$ Z2
p, ul ← g

xl
1

3 ekl ← (u
xk
l0

l )∀k∈[0,D], skl ← (xl0 ,Kl, xl)
4 Return ek∗1, (skl, ekl)∀l∈[2,P ]

RO(y):
5 if y ∈ H, (y, w, b, c)← H[y] else:
6 c← {0, 1}, b←$ Zp, if c = 0: w ← ga+b

2

7 else if c = 1: w ← gb2
8 H = H ∪ (y, w, b, c)
9 Return w

AuthO(τ,m):
10 if c1 = 0: Return ⊥
11 else same as G5

Θ,A

VerO(m,P, σ):
12 if c1 = 0: Return ⊥
13 else same as G5

Θ,A

AVerO((m′
j ,P ′

j)∀j∈U , (ek
′
j)∀j∈U\{1}, σ

′):
14 if c1 = 0: Return ⊥
15 Return Out((m′

j ,P ′
j)∀j∈U , (ek

′
j)∀j∈U\{1}, σ

′)
16 else same as G5

Θ,A

Out((m∗
j ,P∗

j )∀j∈U , (ek
∗
j )∀j∈U\{1}, σ

∗): // m∗
1 /∈ T

17 if c1 = 0 and ∀l ∈ U \ {1} st cl = 1:
18 ∀l ∈ U , ρl ← f∗

l

(
(rτ∗

l,i
)∀i∈[n]

)
, (rτ∗

l,i
)∀i∈[n] ← PRFKl(τ

∗
l,i)∀i∈[n]

19 compute B ←
(
σ∗ ·

(
Π∀l∈U\{1}e(ul, w

ρl
l ) · e(ul, w

m∗
l

l )−1
)−1

)
20 (y1,k)∀k∈[0,D] ← f∗

1

(
(σ1,i)∀i∈[n]

)
, (σ1,i)∀i∈[n] ← T ((τ∗1,i)∀i∈[n], ·)

21 m̄1 ← f∗
1

(
(m1,i)∀i∈[n]

)
, (m1,i)∀i∈[n] ← T ((τ∗1,i)∀i∈[n], ·)

22 Return (ψ(g
(a+b1)
2 )(m

∗
1−m̄1))

(
m∗

1−ρ1+(ΣD
k=1y1,kx

k
10

)
)−1

· (hb1)−1

Finalize(IN): // (·,m∗
1, ·) /∈ T

23 if c1 = 0 Return ⊥
24 else same as G5

Θ,A

Fig. 10: Adversary C against co-CDH assumption


