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Abstract

We introduce WHIR, a new IOP of proximity that offers small query complexity and excep-
tionally fast verification time. The WHIR verifier typically runs in a few hundred microseconds,
whereas other verifiers in the literature require several milliseconds (if not much more). This
significantly improves the state of the art in verifier time for hash-based SNARGs (and beyond).

Crucially, WHIR is an IOP of proximity for constrained Reed–Solomon codes, which can
express a rich class of queries to multilinear polynomials and to univariate polynomials. In
particular, WHIR serves as a direct replacement for protocols like FRI, STIR, BaseFold, and
others. Leveraging the rich queries supported by WHIR and a new compiler for multilinear
polynomial IOPs, we obtain a highly efficient SNARG for generalized R1CS.

As a comparison point, our techniques also yield state-of-the-art constructions of hash-based
(non-interactive) polynomial commitment schemes for both univariate and multivariate poly-
nomials (since sumcheck queries naturally express polynomial evaluations). For example, if we
use WHIR to construct a polynomial commitment scheme for degree 222, with 100 bits of secu-
rity, then the time to commit and open is 1.2 seconds, the sender communicates 63 KiB to the
receiver, and the opening verification time is 360 microseconds.

Keywords: interactive oracle proofs; Reed–Solomon proximity testing; multilinear sumcheck; polyno-
mial commitment scheme
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1 Introduction

Succinct non-interactive arguments (SNARGs) are short cryptographic proofs that admit fast veri-
fication. SNARGs are widely deployed across different applications in blockchain technology, cloud
computing, and decentralized systems. These applications demand highly efficient SNARGs, moti-
vating the goal of reducing the computational costs of running a SNARG’s prover and verifier, as
well as reducing the SNARG’s argument size.
SNARGs from polynomial IOPs. A popular approach to constructing efficient SNARGs con-
sists of two steps [CHMMVW20; BFS20]. First, design a poly-IOP (polynomial interactive oracle
proof) for the desired computational statement; a poly-IOP is a specialized form of an interac-
tive oracle proof (IOP) wherein the prover (honest or malicious) is restricted to sending messages
that are evaluations of univariate or multivariate polynomials over a finite field F. Second, use a
polynomial commitment scheme (PCS) [KZG10; PST13] to compile the poly-IOP into a SNARG
(relying on a random oracle, non-falsifiable assumptions, or both). This approach has been widely
adopted to construct efficient SNARGs [BCCGP16; AHIV17; WTSTW18; BBBPWM18; GWC19;
MBKM19; CBBZ23; STW23].

Another popular approach to construct efficient SNARGs also starts from a poly-IOP: many
SNARGs are obtained via the BCS transformation [BCS16] starting from an IOP that is, in turn,
obtained from an underlying poly-IOP. This alternate “compilation path” yields so-called hash-based
SNARGs as it solely uses a random oracle and offers key advantages: a transparent setup (the choice
of hash function to instantiate the random oracle), post-quantum security (in the quantum random
oracle model), exceptionally fast SNARG provers (due to the use of small fields), and more.
Improving the efficiency of hash-based SNARGs. Achieving highly efficient hash-based
SNARGs from poly-IOPs demands highly efficient methods to “compile” the given poly-IOP into a
corresponding IOP. Several works do this for univariate poly-IOPs by combining an IOP of proximity
for the Reed–Solomon code (such as FRI [BBHR18] or STIR [ACFY24]) and a quotient enforcing
technique [BBHR19]; this has led to state-of-the-art compilers for univariate poly-IOPs [ACY23;
ACFY24]. Other works do this for multilinear poly-IOPs (e.g., [CBBZ23; STW23; GLSTW23;
ZCF24]), which allows for particularly efficient prover algorithms thanks to the (highly-efficient)
multilinear sumcheck protocol; in this setting, many compilation approaches are akin to constructing
a multilinear PCS in the IOP model.

The aforementioned constructions present trade-offs between prover efficiency, argument size,
and verifier efficiency. Optimizing some of these often comes at the expense of the others. For
instance, using a smaller rate for the underlying code can reduce argument size and verifier time
but increases prover time. From a technical perspective, the main challenge in improving the
efficiency of hash-based SNARGs typically lies in achieving compilers that improve one efficiency
measure without compromising the others. In this paper, our focus is on reducing verifier time of
hash-based SNARGs while maintaining state-of-the-art prover time and argument size.

1.1 Our contributions

We introduce WHIR, a new IOP of proximity that offers small query complexity and exceptionally
fast verification time; in particular, the WHIR verifier typically runs in a few hundred microseconds,
whereas other verifiers in the literature require several milliseconds (if not much more). Crucially,
WHIR is an IOP of proximity for constrained Reed–Solomon codes, which can express a rich
class of queries to multilinear polynomials and to univariate polynomials. In particular, WHIR
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serves as a direct replacement for protocols like FRI, STIR, BaseFold, and others. Leveraging the
rich queries supported by WHIR, we obtain a highly efficient IOP for generalized R1CS (introduced
in [DMS24]). We elaborate on these steps next.
Constrained Reed–Solomon codes. The Reed–Solomon code with field F, evaluation domain
L ⊆ F, and degree d ∈ N is the set of evaluations over L of univariate polynomials (over F) of degree
(strictly) less than d. We restrict our attention to Reed–Solomon codes that are “smooth”: L is a
multiplicative coset of F∗ whose order is a power of two and the degree bound d = 2m is also a
power of two. Equivalently, such Reed–Solomon codes can be viewed as evaluations of multilinear
polynomials in m variables [ZCF24]:

RS[F,L,m] :=
{
f : L → F : ∃ ĝ ∈ F<2m [X] s.t. ∀x ∈ L , f(x) = ĝ(x)

}
=
{
f : L → F : ∃ f̂ ∈ F<2[X1, . . . , Xm] s.t. ∀x ∈ L , f(x) = f̂(x2

0
, x2

1
, . . . , x2

m−1
)
}

.

We define a subcode that additionally considers a sumcheck-like constraint on the multilinear
polynomial underlying the codeword.

Definition 1. The constrained Reed–Solomon code with field F, smooth evaluation domain
L ⊆ F, number of variables m ∈ N, weight polynomial ŵ ∈ F[Z,X1, . . . , Xm], and target σ ∈ F is

CRS[F,L,m, ŵ, σ] :=

f ∈ RS[F,L,m] :
∑

b∈{0,1}m
ŵ(f̂(b), b) = σ

 .

These sumcheck-like constraints are highly versatile. For example, one can choose the weight
polynomial ŵ in order to express an evaluation constraint of the form f̂(z) = σ, for a given
evaluation point z ∈ Fm and target σ ∈ F. Indeed, f̂(X) =

∑
b∈{0,1}m f̂(b) · eq(b,X) is the

multilinear extension of f ∈ RS[F,L,m], where eq(Z,X) is the (unique) multilinear polynomial that
extends the equality function on the boolean hypercube.1 Hence, f̂(z) =

∑
b∈{0,1}m f̂(b) ·eq(b, z) =∑

b∈{0,1}m ŵ(f̂(b), b), where the weight polynomial is ŵ(Z,X) = Z · eq(X, z).
IOP of proximity for CRS codes. We construct WHIR, a concretely efficient IOP of proximity
for constrained Reed–Solomon codes with small query complexity and a super fast verifier. The
theorem below reports parameters of WHIR under a “list-decoding” conjecture on Reed–Solomon
codes similar to those used in prior works (e.g., [BCIKS20; BGKS20; ACFY24]) that we discuss
later in Section 1.2; less efficient parameters can be proved for WHIR without any conjectures.

Theorem 1 (informal). Let C := CRS[F,L,m, ŵ, σ] be a constrained Reed–Solomon code with rate
ρ := 2m/|L|, λ ∈ N be a security parameter, and k ∈ N be a folding parameter. Assuming Conjec-
ture 1 and F is large enough, the code C has an IOPP with round-by-round soundness2 error 2−λ,
round complexity O(m/k), and the following properties.

• The prover sends O(|L|) field elements and makes Õ(|L|) field operations.
• The verifier makes qWHIR := O

(
λ

log(1/ρ) +
λ
k · log

(
m

k·log(1/ρ)

)
+ m

k

)
queries over the alphabet F2k ,

and makes O
(
qWHIR · (2k +m)

)
field operations. (In fact, the verifier makes no divisions.)

1For every x,y ∈ {0, 1}m, eq(x,y) = 1 if x = y and eq(x,y) = 0 if x ̸= y.
2Round-by-round soundness is a strengthening of regular soundness that ensures Fiat–Shamir and BCS security.
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The parameter k is a folding parameter that facilitates a tradeoff between the number of queries
and the alphabet size. In a typical setting, where m ≤ λ and ρ = O(1), we set k ≈ logm. In
this case, the WHIR verifier makes qWHIR = O(λ) queries, which is optimal.3 Moreover, the WHIR
verifier makes O(λ ·m) field operations, which is linear in the number of field elements it reads.

We discuss the asymptotic efficiency of WHIR compared to relevant prior work; see Table 1.

• BaseFold [ZCF24] is a polynomial commitment scheme for multilinear polynomials constructed
from any foldable code. When applied to smooth Reed–Solomon codes, the core component of
BaseFold can be viewed as an IOPP for a specific constrained Reed–Solomon code. In BaseFold,
the verifier makes qBF := Oρ (λ ·m) queries (over the alphabet F2), which is much larger than
qWHIR. Notably, BaseFold is only proven sound for distances within the unique-decoding regime,
meaning the number of queries per round approaches λ as ρ is set to a value close 0. In contrast,
WHIR offers practical advantages by supporting distances beyond unique decoding, where the
number of queries per round approaches 0 as ρ tends to 0. Additionally, WHIR has fewer rounds
than BaseFold thanks to its use of a folding parameter k > 1.

• FRI [BBHR18] is a low-degree test for Reed–Solomon codes. Since WHIR can be used as an
IOPP for standard Reed–Solomon codes (univariate polynomials of degree < 2m), the two can
be compared. The FRI verifier for degree 2m makes qFRI := Oρ (λ+ λ ·m/k) queries over the
alphabet F2k and performs O

(
qFRI · 2k

)
field operations.

• STIR [ACFY24] has the same small query complexity as WHIR (qSTIR = qWHIR) but the STIR
verifier performs O

(
qSTIR · 2k + λ2

k · 2
k
)

field operations.

Queries Verifier Time Alphabet

BaseFold qBF := O (λ ·m) O(qBF) F2

FRI qFRI := O
(
λ+ λ

k ·m
)

O
(
qFRI · 2k

)
F2k

STIR qSTIR := O
(
λ+ λ

k · log
m
k

)
O
(
qSTIR · 2k + λ2

k · 2
k
)

F2k

WHIR qWHIR := O
(
λ+ λ

k · log
m
k

)
O
(
qWHIR · (2k +m)

)
F2k

Table 1: A comparison of WHIR with BaseFold, FRI, and STIR. Here, λ is the security parameter,
k is the folding parameter, and m is the number of variables for the multilinear case or the logarithm
of the degree for the univariate case. The dependence on the rate ρ is suppressed, and we assume that
m ≤ λ.

For each of the protocols above, the BCS transformation [BCS16] yields a non-interactive suc-
cinct argument. The argument verifier checks qX Merkle paths, where X ∈ {BF,FRI,STIR,WHIR},
resulting in an additional O(qX ·m) hash computations. Therefore, the WHIR verifier offers small
hash complexity (due to its low query complexity) in addition to small arithmetic complexity.

In many applications, a fast argument verifier is essential. We highlight two examples.
3For a wide range of values of k, any IOPP must perform at least Ω(λ) queries. It is an open problem to design

an IOPP with the efficiency of WHIR over an alphabet of size |F|O(1).
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• A verifier that is embedded in a blockchain smart contract such as Ethereum, where each operation
performed by the verifier incurs gas fees, which directly affect the cost of executing the contract.

• A recursive proof system, where the verified computation includes a proof verification. A fast
verifier directly impacts the size and complexity of the verified computation, which leads to smaller
argument size and prover time in each recursive step.

IOPs (& SNARKs) from CRS codes. We introduce a powerful new variant of multilinear
poly-IOPs, which we refer to as Σ-IOP. In this model, the verifier can make queries from a rich
class of sumcheck-like queries: the verifier may select a weight polynomial ŵ ∈ F[Z,X1, . . . , Xm] to
query a multilinear polynomial f̂ sent by the prover, and obtain as answer the sum∑

b∈{0,1}m
ŵ(f̂(b), b) .

As previously noted, this query class includes, in particular, polynomial evaluation queries such as
“evaluate f̂ at z ∈ Fm”, by using the weight polynomial ŵ(Z,X) = Z · eq(X, z).

We describe how to efficiently compile any Σ-IOP, using an IOPP for CRS codes (in particu-
lar, WHIR), into a standard IOP (see Section 7 for details). Moreover, we describe a Σ-IOP for
generalized R1CS [DMS24] that achieves additional concrete efficiency by using sumcheck queries
(see Appendix A). Via the BCS transformation [BCS16], we obtain a highly efficient SNARK for
generalized R1CS.

We believe that the sumcheck queries allowed in a Σ-IOP will enable others to design significantly
more efficient IOPs for other languages (beyond generalized R1CS) by designing highly efficient
Σ-IOPs for those languages and then applying our new compiler.
Hash-based PCS from CRS codes. Polynomial commitment schemes (PCSs) [KZG10; PST13]
are a cryptographic primitive that enables a sender to succinctly commit to a polynomial and then
subsequently succinctly open desired evaluations of the committed polynomial. The aforementioned
compiler can be adapted to directly yield (again via the BCS transformation) state-of-the-art hash-
based PCS constructions for multilinear polynomials and for univariate polynomials. Indeed, the
evaluation of a multilinear polynomial f̂ at z ∈ Fm corresponds to the sumcheck query with weight
polynomial ŵ(Z,X) = Z · eq(X, z). Moreover, the evaluation of a univariate polynomial at z ∈ F
can be reduced to the multilinear case by considering the evaluation point z = (z2

0
, . . . , z2

m−1
) and

using the weight polynomial ŵ(Z,X) = Z · eq(X, (z2
0
, . . . , z2

m−1
)).

Experimental results. We implement WHIR in Rust using the arkworks ecosystem [ark]. We
compare WHIR with Basefold [ZCF24] as a proximity test for constrained Reed–Solomon codes,
with FRI [BBHR19] and STIR [ACFY24] as a proximity test for (standard) Reed–Solomon codes.
Also, WHIR yields a hash-based PCS, which we compare with other PCSs: Brakedown [GLSTW23],
Ligero [AHIV17], Greyhound [NS24], Hyrax [WTSTW18], PST [PST13], and KZG [KZG10]. The
details and results of our experiments are available in Section 6. We provide an open-source at
github.com/WizardOfMenlo/whir, which we plan to upstream into arkworks.

Our experiments show that WHIR achieves a significant improvement in verifier time. At the
100-bit security level, WHIR verification with initial rate 1/2 takes between 400µs to 770µs for
instances of size from 218 to 230, and with rate 1/16 these times reduce to between 210µs to 360µs.
At the 128-bit security level, for instances in the same range as above, with initial rate 1/2 the WHIR
verifier runs in time between 0.9ms and 1.7ms, and with rate 1/16 these times reduce to between
400µs and 800µs. Simultaneously, WHIR achieves state-of-the-art argument size and verifier hash
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complexity for hash-based schemes, on par with STIR (and much better than FRI and BaseFold)
while maintaining similar prover times. Fixing the initial rate to ρ = 1/2, at the 100-bit security
level, WHIR arguments range from 76 KiB to 123 KiB, while at the 128-bit security level, they
range from 120 KiB to 187 KiB. Decreasing the rate to ρ = 1/16, at the 100-bit security level, the
argument size reduces to ranging from 36 KiB to 58 KiB, while at the 128-bit security level, the
new range is from 56 KiB to 87 KiB.

1.2 Mutual correlated agreement

The problem of testing the proximity of a batch of vectors f1, . . . , fℓ to a linear code C arises in
many settings, including probabilistic proofs and distributed storage systems, and is a fundamental
problem in coding theory. This problem was first explored in [RVW13], where it was shown that the
maximal distance of any of the vectors to C is related to the distance of a random line through the
vectors. Subsequent works [AHIV17; BKS18] tightened this connection, culminating in [BCIKS20],
which introduced the concept of correlated agreement for Reed–Solomon codes.

Correlated agreement for Reed–Solomon codes is one of the main technical tools in the analysis
of prior IOPPs such as FRI and STIR, and is also at the heart of the security proof of WHIR.
Informally, it says that if a random curve that goes through functions f1, . . . , fℓ is close to low-
degree with probability above a small error threshold, then f1, . . . , fℓ share a subdomain where they
all agree with the code C.

In more detail, the code C := RS[F,L,m] has (δ, ε)-correlated agreement if for every f1, . . . , fℓ,
with probability 1−ε over a uniform choice of α← F the following holds: if there exists a set S ⊆ L
with |S| ≥ (1−δ)·|L| on which f∗α :=

∑ℓ
i=1 α

i−1 ·fi agrees with C,4 then there exists a set T ⊆ L with
|T | ≥ (1− δ) · |L| such that every fi agrees with C on T . [BCIKS20] show that Reed–Solomon codes
with rate ρ have correlated agreement for δ ∈ (0, 1 −√ρ) with error ε := poly(2m,1/ρ)

|F| . In practice,
when designing IOPPs for hash-based SNARKs, it is common to assume that Reed–Solomon codes
have correlated agreement with small ε for δ ∈ (0, 1− ρ) (see, e.g., [BGKS20; ACFY24]).

In this work, we introduce a notion stronger than correlated agreement, which we call mutual
correlated agreement. This notion equates the sets S and T , implying that f1, . . . , fℓ agree with C
on every set where f∗α agrees with C. We apply this extended definition in the soundness analysis
of WHIR and believe it has the potential to be useful for other protocols as well.

Definition 2 (informal). C := RS[F,L,m] has (δ, ε)-mutual correlated agreement if for every
f1, . . . , fℓ : L → F, with probability 1− ε over a uniform choice of α← F: for every set S ⊆ L with
|S| ≥ (1− δ) · |L| on which f∗α :=

∑ℓ
i=1 α

i−1 · fi agrees with C, every fi agrees with C on S.

See Definition 4.9 for a formal definition. We conjecture that mutual correlated agreement and
(standard) correlated agreement hold for essentially the same parameters.

Conjecture 1 (informal). Every Reed–Solomon code C := RS[F,L,m] that has (δ, ε)-correlated
agreement for ε := poly(2m,1/ρ)

|F| has (δ, ε′)-mutual correlated agreement for ε′ := poly(2m,1/ρ)
|F| .

In Section 4.2 we show that Conjecture 1 holds with ε′ = ε for the unique decoding regime,
i.e., δ ∈

(
0, 1−ρ2

)
. We believe that the techniques of [BCIKS20] can be adapted to prove mutual

correlated agreement beyond the unique decoding regime; however, as their proof is highly technical,
we leave this for future work.

4We say that a function f agrees with C on S if there exists a codeword u ∈ C with f(x) = u(x) for every x ∈ S.
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2 Technical overview

We discuss the main ideas behind our results. In Section 2.1, we present the WHIR protocol, an
IOPP for constrained Reed–Solomon codes. This includes an overview of the protocol and a sketch
of its soundness. The analysis relies on a strengthening of the properties of folding for Reed–Solomon
codes which we prove using mutual correlated agreement. In Section 2.2, we outline how to compile
Σ-IOPs into IOPs by using such an IOPP for constrained Reed–Solomon codes.

2.1 WHIR protocol

We present WHIR, an IOPP for constrained Reed–Solomon codes. WHIR takes inspiration from
the use of sumcheck in Basefold [ZCF24] and the rate-improving ideas in STIR [ACFY24].

WHIR is an IOPP for CRS[F,L,m, ŵ, σ], where F is a finite field,5 L is a “smooth” subset of L
of size n (L ⊆ F∗ and n is a power of two), m specifies the number of variables, ŵ is a polynomial
constraint (a polynomial in m+1 variables that, for simplicity in this section, we restrict to individual
degree at most 1 in each variable), and σ ∈ F specifies the target value for the constraint. The
rate of the code is ρ := 2m/n. For i ∈ N, we let L(i) := {xi | x ∈ L}. Since L is smooth, if i is a
power of two then |L(i)| = |L|/i. For a codeword u ∈ CRS[F,L,m, ŵ, σ], we let û be the multilinear
polynomial whose evaluation on L is equal to u (we use this also for standard Reed–Solomon codes).

2.1.1 High-level overview of WHIR

A WHIR iteration is parameterized by a folding parameter k ≥ 1, and reduces the task of testing

f ∈ C := CRS[F,L,m, ŵ, σ]

to the task of testing that

f ′ ∈ C′ := CRS[F,L(2),m− k, ŵ′, σ′]

for a new function f ′, related constraint polynomial ŵ′, and target value σ′ (where now ŵ′ has
m− k + 1 variables, and is roughly as expensive to evaluate as ŵ). Inspired from STIR [ACFY24],
the rate of the code decreases from ρ to ρ′ := 21−k · ρ: the size of the domain decreases from n to
n/2, while the number of variables decreases by k. This makes C′ easier to test and reduces the
query complexity of the overall protocol. A WHIR iteration consists of k+2 rounds, where the proof
length consists of roughly n/2 field elements, and the verifier performs t queries over the alphabet
F2k . For soundness, WHIR has the following property: letting δ ∈ (0, 1−√ρ) and δ′ ∈ (0, 1−

√
ρ′),

if the original function f is δ-far from C then, except with probability roughly (1 − δ)t, the new
function f ′ is δ′-far from C′.

The WHIR protocol has M := m/k such iterations, reducing testing proximity to C(0) := C
to testing proximity to C(M) := CRS[F,L(2M ), O(1), ŵ(M), σ(M)]. In iteration i ∈ {0, . . . ,M − 1},
the protocol reduces testing proximity from C(i) := CRS[F,L(2i),m− i · k, ŵ(i), σ(i)] to C(i+1) via ti
queries and by sending an oracle of size n/2i+1. Finally, f (M) is verified to be a constant degree
constrained Reed–Solomon codeword as follows: the prover sends the coefficients of f (M) as a
message (of constant size), and the verifier checks that the constraint holds, either by directly

5Throughout this paper we assume that char(F) ̸= 2. This in particular is required for the field to have a large
2-smooth multiplicative subgroup and to define the folding operation that we use.
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performing a constant number of evaluations of ŵ(M) or by performing an additional sumcheck
protocol to reduce this constraint checking to a single evaluation (which is the option we chose in
our protocol). In total, WHIR has O(m/k) rounds, query complexity

∑M−1
i=0 ti, and proof length∑M−1

i=0 |L(2
i)|/2 = O(n). If the initial function has distance δ ∈ (0, 1 − √ρ) from C(0), and we

set δi := 1 − √ρi − ηi (for a small constant ηi that we ignore in this preliminary section) the
round-by-round errors of each round are (roughly)

(1− δ)t0 , ρ
t1/2
1 , . . . , ρ

tM−1/2
M−1 .

(Above, for simplicity, we assume F to be large enough and omit errors that depend on 1/|F|.)
The decrease in rate leads to small query complexity to achieve round-by-round soundness errors

2−λ. Overall, the query complexity (input queries and proof queries combined) is the same as in
STIR, namely (omitting factors that do not depend on λ):

qWHIR := O

(
λ+

λ

k
· log m

k

)
.

Compared to STIR, each verifier query demands less verifier time, leading to an overall verifier time
(in field operations) of

O
(
qWHIR ·

(
2k +m

))
.

Having concluded this high-level overview, we discuss certain properties of the folding operation for
Reed–Solomon codes and then describe a WHIR iteration in more detail.

2.1.2 Folding Reed–Solomon codes and list preservation

Folding of Reed–Solomon codes is a method for lowering the complexity of a code at a relatively
small cost and lies at the core of IOPPs for Reed–Solomon codes, including WHIR. We review the
folding of a Reed–Solomon code, discuss why folding preserves distance with high probability, and
then describe a strengthening of the distance-preserving property via mutual correlated agreement.

For α ∈ F we define Fold(f, α) : L(2) → F as follows. For y ∈ L(2), letting x,−x ∈ L be the roots
of y (i.e., x2 = (−x)2 = y):6

Fold(f, α)(y) :=
f(x) + f(−x)

2
+ α · f(x)− f(−x)

2 · x
.

For a vector α = (α1, . . . , αk) ∈ Fk we denote Fold(f,α) : L(2k) → F to be the function output
by folding iteratively on each of the entries in α: let Fold(f,α) := fk where we recursively define
fi := Fold(fi−1, (αi, . . . , αk)) and f0 := f . Given the evaluation of f on the k-th roots of y (of which
there are 2k since L is a multiplicative subgroup whose order is greater than 2k and is a power of
two), the point Fold(f,α)(y) can be computed in time O(k · 2k) by following the recursion.
Distance preservation under folding. Folding preserves distance of functions to Reed–Solomon
codes in the following sense: if f is δ-far from RS[F,L,m] then, with high probability over a uniformly
random choice of α, Fold(f, α) is δ-far from RS[F,L(2),m− 1]. This is a consequence of correlated
agreement and a motivation for the main theorem in [BCIKS20], which shows that Reed–Solomon
codes have correlated agreement with small error (see Section 1.2 for more on correlated agreement.)

6Recall that L is a multiplicative subgroup of F whose order is a power of two, so x and −x both belong to L.
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We sketch a proof of distance preservation assuming correlated agreement. Suppose that C′ :=
RS[F,L(2),m − 1] has (δ, ε)-correlated agreement and consider the functions f0(x

2) := f(x)+f(−x)
2

and f1(x
2) := f(x)−f(−x)

2·x . Then, it holds that Fold(f, α)(x2) = f0(x
2) + α · f1(x2). By correlated

agreement, except with probability 1 − ε if there is a set S with |S| ≥ (1 − δ) · |L(2)| such that
Fold(f, α) is δ-close to C′ then there is a set T with |T | ≥ (1− δ) · |L(2)| such that f0 and f1 are both
close to C′ on T . Let û0 and û1 be the m− 1 variate polynomials where ûi(z

20 , . . . , z2
m−2

) = fi(z)
for z ∈ T . Then the polynomial,

w(X1, . . . , Xm) := u0(X2, . . . , Xm) +X1 · u1(X2, . . . , Xm) ,

agrees with f on every x with x2 ∈ T as follows:

w(x2
0
, . . . , x2

m−1
) = û0(x

21 , . . . , x2
m−1

) + x · û1(x2
1
, . . . , x2

m−1
)

= û0

(
(x2)2

0
, . . . , (x2)2

m−2
)
+ x · û1

(
(x2)2

0
, . . . , (x2)2

m−2
)

=
f(x) + f(−x)

2
+ x · f(x)− f(−x)

2 · x
= f(x) .

Observe that T covers a 1 − δ fraction of the domain L(2) := {x2 | x ∈ L} and this agreement
holds for every x with x2 ∈ T , so w agrees with f on a 1− δ fraction of L. Since w is a m-variate
multilinear polynomial, we conclude that f is δ-close to RS[F,L,m].
Mutual correlated agreement and list preservation. We strengthen the distance preservation
property of folding using mutual correlated agreement: we show that with high probability over α,
every codeword close to Fold(f, α) is the result of folding a codeword close to f .

Lemma 1 (informal). Suppose that RS[F,L(2),m − 1] has (δ, ε)-mutual correlated agreement. For
every f : L → F the following holds with probability 1 − ε over the choice of α ← F: for every
u ∈ RS[F,L(2),m − 1] with ∆(Fold(f, α), u) ≤ δ, there is w ∈ RS[F,L,m] with ∆(f, w) ≤ δ such
that u = Fold(w,α).

The proof of Lemma 1 closely follows the proof described above of the distance preservation
lemma. The main difference is that, by mutual correlated agreement, for every set S on which
Fold(f, α) is δ-close to C′, the functions f0 and f1 are also close to C′ on S (rather than on some set
T that is possibly unrelated to S). Thus we are able to conclude that w agrees with f on all of the
roots of points in S. Moreover, notice that the folding of w agrees with Fold(f, α) on S. Thus, every
set S on which Fold(f, α)(x2) is close to a polynomial can be explained by taking a polynomial w
that is close to f and folding it, proving the lemma.

Looking ahead, Lemma 1 will allow us to argue that if all of the codewords that are close to a
function f do not satisfy a constraint, then with high probability all of the codewords that are close
to the folding of f will not satisfy a “folding of the constraint”.

2.1.3 WHIR protocol

We give a recursive description of the WHIR protocol, in which each step reduces testing proximity
of f ∈ C := CRS[F,L,m, ŵ, σ] to testing that f ′ ∈ C′ := CRS[F,L(2),m− k, ŵ′, σ′]. In this overview,
we assume that ŵ is multilinear. The full version of the protocol allows for a more general setting
of evaluation domains, folding parameters, and constraint polynomial degrees.
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1. Sumcheck rounds. The prover and the verifier engage in k rounds of the sumcheck protocol for
the claim ∑

b∈{0,1}m
ŵ(f̂(b), b) = σ ,

where f̂ is the multilinear polynomial associated with f . At the end of the interaction, the
prover will have sent polynomials (ĥ1, . . . , ĥk) while the verifier will have sampled randomness
α = (α1, . . . , αk) ∈ Fk. This reduces the initial claim to the simpler claim∑

b∈{0,1}m−k

ŵ(f̂(α, b),α, b) = ĥk(αk) .

2. Send folded function. The prover sends a function g : L(2) → F. In the honest case, the prover
defines the polynomial ĝ ≡ f̂(α, ·), and g is defined as the evaluation of ĝ over the domain L(2).

3. Out-of-domain sample. The verifier samples and sends z0 ← F. We set z0 := (z2
0

0 , . . . , z2
m−k−1

0 ).
4. Out-of-domain answers. The prover sends y ∈ F. In the honest case, y0 := ĝ(z0).
5. Shift queries and combination randomness The verifier, for every i ∈ [t], samples and sends

zi ← L(2
k), obtains yi := Fold(f,α)(zi) by querying f , and sets zi := (z2

0

i , . . . , z2
m−k−1

i ). The
verifier further samples and sends γ ← F.

6. Recursive claim. The prover and verifier define the new weight polynomials and target

ŵ′(Z,X) := ŵ(Z,α,X) + Z ·
t∑

i=0

γi+1 · eq(zi,X) ,

σ′ := ĥk(αk) +

t∑
i=0

γi+1 · yi ,

and recurse on the claim that g ∈ CRS[F,L(2),m − k, ŵ′, σ′]. Above, eq(b, z) :=
∏m

i=1 bi · zi +
(1− bi) · (1− zi) is such that, for b, z ∈ {0, 1}m, eq(b, z) = 1 if b = z and eq(b, z) = 0 if b ̸= z.

We analyze the soundness of an iteration of WHIR. In the full proof in Section 5.1 we extend this
analysis to showing round-by-round soundness.

Theorem 2 (informal). If f is δ-far from CRS[F,L,m, ŵ, σ], then g is (1−
√
ρ′)-far from CRS[F,L(2),m−

k, ŵ′, σ′], except with probability at most (1− δ)t + poly(2m, 1/ρ)/|F|.

Proof sketch. Throughout this proof we assume that the prover only sends sumcheck polynomials
ĥ1, . . . , ĥk that satisfy verification of the intermediate rounds of the sumcheck protocol, i.e., such
that

∑
b∈{0,1} ĥ1(b) = σ and for i > 1,

∑
b∈{0,1} ĥi(b) = ĥi−1(αi−1). Otherwise, the verifier rejects

regardless of any other prover message. We rely on the following lemma.

Lemma 2 (informal). Let C := CRS[F,L,m, ŵ, σ] be a constrained Reed–Solomon code with σ :=∑
b∈{0,1} ĥ(b) for ĥ ∈ F<3[X] with rate ρ := 2m/|L|. Assume Conjecture 1, and fix any proximity

parameter δ ∈ (0, 1−√ρ) and function f : L → F with ∆(f, C) > δ. Then

Pr
α←F

[∆(Fold(f, α), Cα) ≤ δ] ≤ poly(2m, 1/ρ)

|F|
,

where Cα := CRS[F,L(2),m− 1, ŵα, σα] for ŵα(Z,X) := ŵ(Z,α,X) and σα := ĥ(α).
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Proof of lemma. We consider and bound two bad events (over the choice of α): (i) the event that an
invalid constraint turns into a valid one; and (ii) the event that folding introduces new codewords
that cannot be “explained” as foldings of codewords in the original code.

• E1 is the event that there exists some codeword z ∈ RS[F,L,m] with ∆(f, z) ≤ δ such that∑
b∈{0,1}m−1

ŵα(ẑ(α, b), b) = σα .

Consider what it means for such a codeword z to exist. Since ∆(f, C) > δ, z being close
to f as a Reed–Solomon codeword means that z does not satisfy the constraint laid out in
C, i.e.,

∑
b∈{0,1}m ŵ(ẑ(b), b) ̸= σ. Then, since (by assumption) σ =

∑
b∈{0,1} ĥ(b) it must be

that
∑
{0,1}m−1 ŵ(ẑ(X, b), X, b) ̸≡ ĥ(X), and thus, by the polynomial identity lemma and since

deg ŵ = 1, the probability that∑
b∈{0,1}m−1

ŵα(ẑ(α, b), b) =
∑

b∈{0,1}m−1

ŵ(ẑ(α, b), α, b) = ĥ(α) = σα ,

is at most 2/|F|.
By the Johnson bound, the number of codewords of RS[F,L,m] that are δ-close to f is poly(2m, 1/ρ).
By taking the union bound over all of these codewords, we conclude that E1 occurs with proba-
bility at most poly(2m, 1/ρ)/|F|.

• E2 is the event that for some codeword u ∈ RS[F,L(2),m − 1] with ∆(Fold(f, α), u) ≤ δ there
exists no z ∈ RS[F,L,m] such that ∆(f, w) ≤ δ and u = Fold(z, α). Under Conjecture 1,
RS[F,L(2),m − 1] has (δ, ε)-mutual correlated agreement with ε := poly(2m, 1/ρ)/|F|. Thus, by
Lemma 1, E2 occurs with probability at most ε.

Fix any α for which E1 and E2 both do not hold. Suppose that ∆(Fold(f, α), Cα) ≤ δ, implying
that there exists some codeword u ∈ RS[F,L(2),m − 1] with ∆(Fold(f, α), u) ≤ δ. Then, since
¬E2 holds, there must exist z ∈ RS[F,L,m] with ∆(f, z) ≤ δ such that u = Fold(z, α). Since
z ∈ RS[F,L,m] and ∆(f, z) ≤ δ, by ¬E1 it must be that the constraint on z is not satisfied, and as
such:

σα ̸=
∑

{0,1}m−1

ŵα(ẑ(α, b), b) =
∑

{0,1}m−1

ŵα(û(b), b) ,

where the last equality follows since if u = Fold(z, α) then û(·) = ẑ(α, ·). A union bound over the
probability of either E1 or E2 happening concludes the proof.

With the above in place, we proceed with the analysis of the protocol. Denote f0 := f , ŵ0 := ŵ,
σ0 := σ, for i ≥ 1 let fi := Fold(fi−1, αi), ŵi(Z,X) := ŵ(Z, (α1, . . . , αi), X), and σi := ĥi(αi).

1. Observe that ∆(f0,CRS[F,L,m, ŵ0, σ0]) > δ. Supposing that

∆
(
fi−1,CRS[F,L(2

i−1),m− i+ 1, ŵi−1, σi−1]
)
> δ ,

and applying Lemma 2, we have that

∆
(
Fold(fi,CRS[F,L(2

i),m− i, ŵi, σi]
)
≤ δ ,
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with probability at most poly(2m, 1/ρ)/|F|.
Thus, by iteratively applying the above argument k times (and noting that fk = Fold(f,α)), we
conclude that with probability at least 1 − k · poly(2m, 1/ρ)/|F| = 1 − poly(2m, 1/ρ)/|F| it holds
that

∆
(
Fold(f,α),CRS[F,L(2k),m− k, ŵk, σk]

)
> δ . (1)

2. The protocol continues with the prover sending an oracle g : L(2) → F, and the verifier then
samples an out-of-domain sample z0 ← Fm−k, to which the prover replies with an out-of-domain
answer y0 ∈ F. As shown in [ACFY24, Lemma 4.5], with probability at least 1−poly(2m, 1/ρ)/|F|,
there is at most one codeword u ∈ RS[F,L(2),m−k] with ∆(g, u) ≤ 1−

√
ρ′ such that û(z0) = y0.

3. The verifier proceeds by sampling z1, . . . , zt ← L(2
k), and sets zi := (z2

0

i , . . . , z2
m−k−1

i ). We
show that, except with probability at most (1 − δ)t, for every u ∈ RS[F,L(2),m − k] with
∆(g, u) ≤ 1−

√
ρ′ at least one of the following does not hold.

(a) Agreement with the out-of-domain sample: û(z0) = y0.
(b) Agreement with sumcheck claim:

∑
b∈{0,1}m−k ŵk(û(b), b) = σk.

(c) Agreement with the folded function: for every i ∈ [t], û(zi) = yi.

As previously argued, Item 3a holds for at most one codeword u. If all codewords do not satisfy
Item 3a, we are done. Assuming this is not the case, let u be the unique codeword satisfying the
Item 3a out-of-domain sample. By Equation 1 it must be that either

∑
b∈{0,1}m−k ŵk(û(b), b) ̸=

σk or ∆(Fold(f,α), u) > δ. In the first case, Item 3b does not hold for u, and we are done.
Otherwise, except with probability at most (1− δ)t, there is a sample zi that lands on a location
where u and the folding of f disagree. In this case, Item 3c does not hold for u.

4. Finally, the verifier selects randomness γ ← F, and combines the t + 2 constraints defined in
Items 3a to 3c into a single one by taking a random linear combination of their respective
“weight polynomials”. Fix u ∈ RS[F,L(2),m− k] with ∆(g, u) ≤ 1−

√
ρ′. Following the previous

paragraph, one of Items 3a to 3c does not hold for u. Then, the following polynomials in formal
variable R must not be identical:∑

b∈{0,1}m−k

ŵk(û(b), b) +

t∑
i=0

Ri+1 · û(zi) ̸≡ σk +

t∑
i=0

Ri+1 · yi .

By the polynomial identity lemma and expanding the definition of ŵ′ then, unless with probability
at most (t+ 2)/|F| = poly(2m, 1/ρ)/|F|, it must be that

∑
b∈{0,1}m−k

ŵ′(û(b), b) =
∑

b∈{0,1}m−k

ŵk(û(b), b) +

t∑
i=0

γi+1 · û(b) · eq(b, zi)

̸= σk +
t∑

i=0

γi+1 · yi = σ′ .

Taking a union bound over codewords in the list (which, according to the Johnson bound, is
small) concludes the proof.
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2.1.4 Verifier efficiency

We analyze the query complexity and running time of the verifier. Recall that the protocol is run
over m/k iterations of the form described in the previous section, where in iteration i a function fi
is being tested and the code being checked has mi := m− i · k variables and rate ρi := (2/k)i · ρ.
Proof length. For iteration i, the prover sends a single oracle message of length |L(2i)|, and k+1
non oracle messages, which in total consist of 3 ·k+1 field elements. Overall, the total proof length
(in field elements) is

O

m/k∑
i=1

|L(2i)|+ 3 · k + 1

 = O (|L|+m) .

Query complexity. For iteration i, the verifier tests proximity to fi and needs to evaluate
Fold(fi,α) at ti := O

(
λ

log(1/ρi)

)
points. This requires making ti queries to fi over alphabet 2k. The

total query complexity of the protocol is qWHIR :=
∑

i ti = O
(

λ
log(1/ρ) +

λ
k · log

(
m

k·log(1/ρ)

)
+ m

k

)
.

We remark that this is identical to the query complexity of STIR [ACFY24], but we make the
dependency on k explicit, whereas k in [ACFY24] was regarded as constant in the big-O notation.
Separetly, the verifier reads in full the non-oracle messages sent, which we do not count as part of
the query complexity.
Field operations. For iteration i, the verifier runs the sumcheck verification algorithm for elim-
inating k variables, making O(k) field operations. It then evaluates Fold(fi,α) at ti points. As
explained in Section 2.1.2 evaluating Fold(fi,α) on a single point means reading 2k evaluations
of fi and doing O

(
k · 2k

)
field operations. Finally, the verifier must evaluate ŵ′, which requires

evaluating eq on ti different points, which can be done using O(mi) field operations. Overall, the
running time is

O

m/k∑
i=1

(
k + ti · k · 2k + ti ·mi

) = O
(
qWHIR ·

(
k · 2k +m

))
.

Improving running time via alternate domain evaluation. Looking back to the descrip-
tion of a WHIR iteration, we observe that for every y ∈ L(2k), the function py(X1, . . . , Xk) :=
Fold(f,X1, . . . , Xk)(y) is a multilinear polynomial with 2k coefficients that depend only on y, and
the evaluation of f on the k-th roots of y.

In light of this view, we optimize the verifier in the following way. The prover sends f over
L encoded as follows; for each y ∈ L2k , the prover writes down the coefficients of the multilinear
polynomial py. The verifier, upon choosing α and y, queries (the coefficients of) py and evaluates
it on the point α.

Observe that the size of the message sent by the prover and the alphabet size are identical
to the standard evaluation-based encoding of f on L. Moreover, completeness and soundness are
unaffected since the verifier’s checks already only depended on the evaluation of py; the prover simply
encodes py differently using the same number of bits. However, crucially, given the coefficients of
py the verifier can compute py(α) in time O(2k), as opposed to O(k · 2k). We remark that this (and
the rest of the verifier’s computations) can be done with no division of field elements.

Overall, this optimization improves the running time of the verifier from O
(
qWHIR ·

(
k · 2k +m

))
to O

(
qWHIR ·

(
2k +m

))
, at no cost to proof length and minor overhead to the prover, who needs
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to do the added work of computing the coefficients of each polynomial py. Experimentally, this
optimization improves the verifier running time by more than 20%.

2.2 Compiling Σ-IOPs into IOPs

We outline a compiler that constructs an IOP by combining two ingredients. The first ingredient is a
Σ-IOP (Ppoly,Vpoly) for the desired relation. Recall that a Σ-IOP is a variant of a multilinear poly-IOP
where the verifier can make certain sumcheck queries: the verifier may query a multilinear polyno-
mial f̂ ∈ F[X1, . . . , Xm] sent by the prover with a weight polynomial ŵ ∈ F[Z,X1, . . . , Xm], and re-
ceive as answer the sum

∑
b∈{0,1}m ŵ(f̂(b), b). The second ingredient is an IOPP (Pprx,Vprx) for con-

strained Reed–Solomon codes (such as WHIR). In fact, we consider multi-constrained Reed–Solomon
codes CRS[F,L,m, (ŵ1, σ1), . . . , (ŵn, σn)] := ∩i∈[n]CRS[F,L,m, ŵi, σi], which are constrained Reed–
Solomon codes with multiple simultaneous constraints. An IOPP for constrained Reed–Solomon
implies, in a black-box way, an IOPP for multi-constrained Reed–Solomon codes (see Section 5.2).

Our compiler resembles the ones described in [ACY23; ACFY24] in that the prover sends Reed–
Solomon encodings of the polynomials the Σ-IOP prover would have sent and uses out-of-domain
samples to force the prover to “select a single polynomial” within a list of polynomials associated
with the sent oracle. While prior compilers use quotients to both enforce the out-of-domain con-
sistency checks and ensure that the answers sent by the prover are consistent with the committed
polynomials, our compiler differs in that these constraints are directly enforced by the proximity
test without the use of quotients.

We describe the resulting IOP in terms of the above ingredients.

1. For i = 1, . . . , kpoly:
(a) The prover runs Ppoly to obtain a polynomial f̂i ∈ F<2[X1, . . . , Xm] and sends fi : L → F,

the evaluation of f̂i on L.
(b) The verifier samples and sends zi ← F. Define zi := (z2

0

i , . . . , z2
m−1

i ).
(c) The prover replies with yi := f̂i(zi).
(d) The verifier sends the message that Vpoly sends in the i-th round.

2. For every i ∈ [kpoly], the prover sets ŵi,0 := Z · eq(zi, ·), computes the sets of queries Q′i :=

{ŵi,1, . . . , ŵi,qi} that Vpoly would have made to f̂i and for every j ∈ [qi] it sets

A(i)[j] :=
∑

b∈{0,1}m
ŵi,j(f̂i(b), b) .

The prover then sends A(1), . . . , A(kpoly) to the verifier.
3. For i ∈ [kpoly], the prover and the verifier use the (multi-)constrained Reed–Solomon proximity

test (Pprx,Vprx) to check that

fi ∈ CRS[F,L,m, (ŵi,0, yi), . . . , (ŵi,qi , A
(i)[j])] .

The verifier accepts if all the proximity tests succeed, and further Vpoly accepts when answering
queries with the corresponding entries of A(i)[j].

Completeness of the compiler follows directly from the completeness of the Σ-IOP and of the multi-
constrained Reed–Solomon IOPP. Moreover, we prove that if (Ppoly,Vpoly) is round-by-round knowl-
edge sound and (Pprx,Vprx) is round-by-round sound, then the resulting IOP is round-by-round
knowledge sound. This ensures that the IOP is suitable for the BCS transformation [BCS16].
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Batching. As presented above, the compiler invokes the IOPP (Pprx,Vprx) separately for each
polynomial sent in (Ppoly,Vpoly). For efficiency, it is desirable to batch these tests into a single
one. In Section 7, we describe and analyze optimized versions of the previous compiler, which
make a single invocation of (Pprx,Vprx). In Section 7.2, we show that Σ-IOPs in which the verifier is
restricted to queries ŵ with degZ ŵ ≤ 1 (linear Σ-IOPs) can be compiled into IOPs by using a single
constrained Reed–Solomon test. Then, in Section 7.3, we show how to compile, via an additional
invocation of the sumcheck protocol, a general Σ-IOP into a linear Σ-IOP. This shows that any
Σ-IOP can be compiled into an IOP using a single invocation of (Pprx,Vprx).
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3 Preliminaries

We define objects and state results that we use in this paper. We use the following notation.

• The “hat” symbol over a function (e.g., p̂) denotes that it is a polynomial.
• For a polynomial p̂ ∈ F[X1, . . . , Xm], we write deg(p̂) for the individual degree of p̂.
• For two functions f, g : L → F, ∆(f, g) is the fractional Hamming distance between f and g (the

fraction of points in which they disagree). For a set S ⊆ FL, ∆(f,S) := minh∈S ∆(f, h).
• For a set L ⊆ F and k ∈ N, L(k) := {xk : x ∈ L}.
• A set L ⊆ F is smooth if it is a multiplicative coset of F∗ whose order is a power of 2.
• For interactive (oracle) algorithms A and B, we denote by ⟨A(a),B(b)⟩(c) the random variable

describing the output of B following the interaction between A and B, where A is given private
input a, B is given private input b, and both parties are given joint input c.

• For a ternary relation R = {(x,y,w)}, let L(R) = {(x,y) | ∃w, (x,y,w) ∈ R} be the language
induced by R.

• For two functions f, g : L → F and a set S ⊆ L, we write f(S) = g(S) to mean that f(x) = g(x)
for every x ∈ S. Conversely, if f(S) ̸= g(S), then there exists x ∈ S so that f(x) ̸= g(x).

• We define pow(x,m) := (x2
0
, . . . , x2

m−1
).

3.1 IOPs of proximity

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that com-
bine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs [BFLS91;
FGLSS96; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08]. Below we
describe public-coin IOPs of proximity (IOPPs).

A k-round public-coin IOPP for a ternary relation R = {(x,y,w)} works as follows. The honest
prover receives as input (x,y,w), while the verifier receives as input x and oracle access to y. In
every round i ∈ [k], the verifier sends a uniformly random message αi to the prover; then the prover
sends a proof string πi to the verifier. After k rounds of interaction, the verifier makes some queries
to y and proof strings π1, . . . , πk sent by the prover, and then outputs a decision bit.

In more detail, let IOP = (P,V) be a tuple where P is an interactive algorithm and V is an
interactive oracle algorithm. We say that IOP is a public-coin IOP for a relation R with k rounds,
perfect completeness, and soundness error β if the following holds.

• (Perfect) Completeness. For every (x,y,w) ∈ R,

Pr
α1,...,αk

 Vy,π1,...,πk(x, α1, . . . , αk) = 1

π1 ← P(x,y,w)
...

πk ← P(x,y,w, α1, . . . , αk)

 = 1 .

• Soundness. For every (x,y) /∈ L(R) and unbounded malicious prover P̃,

Pr
α1,...,αk

 Vy,π1,...,πk(x, α1, . . . , αk) = 1

π1 ← P̃(α1)
...

πk ← P̃(α1, . . . , αk)

 ≤ β(x,y) .
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When the soundness error depends only on the lengths of the inputs and on the proximity δ of y
from the language Lx := {y′ : ∃w, (x,y′,w) ∈ R}, we write β(|x|, |y|, δ) (and sometimes leave
out |x| and |y|, writing β(δ), when the lengths are clear from context).

IOPs. An IOP is an IOPP where y is the empty string (i.e., for a relation R = {(x,⊥,w)}, in
which case we generally omit ⊥ which results in R being a binary relation).
Efficiency measures. We study several efficiency measures. All of these complexity measures
are implicitly functions of the instance x.
• Rounds k: The IOP has k rounds of interaction.
• Alphabet Σ and alphabet size λ: the symbols of each πi come from the alphabet Σ, of size λ. In

this paper, the alphabet is always a field F.
• Proof length l: the total number of symbols in the proofs π1, . . . , πk.
• Input queries qy: the number of alphabet elements read by the verifier from y.
• Proof queries qπ: the number of alphabet elements read by the verifier from π1, . . . , πk.
• Randomness r: the verifier’s i-th message αi has length ri and r :=

∑k
i=1 ri is the total number of

random bits sent by the verifier.
• Verifier time vt: V runs in time vt measured in algebraic field operations.
• Prover time pt: P runs in time pt measured in algebraic field operations.
State function. Let (P,V) be an IOPP for a relation R = {(x,y,w)}. A state function for
(P,V) is a (possibly inefficient) function State that receives as inputs x, y, and a transcript tr and
outputs a bit, and has the following properties:

• Empty transcript: if tr = ∅ is the empty transcript, then State(x,y, tr) = 1 if and only (x,y) ∈
L(R).

• The prover moves: if tr is a transcript where the prover is about to move, and State(x,y, tr) = 0
then, for every prover message π, State(x,y, tr∥π) = 0.

• Full transcript: if tr is a full transcript and State(x,y, tr) = 0, then V rejects given this interaction
transcript.

Round-by-round knowledge soundness. A k-round IOPP (P,V) for a relationR = {(x,y,w)}
has round-by-round knowledge soundness with errors (ε1, . . . , εk) and extraction time et if the IOPP
has a state function State and there exists a deterministic “extractor” E that runs in time at most
et with the following property: for every x, y and transcript tr = (π1, α1, . . . , πi−1, αi−1, πi), if

• State(x,y, tr) = 0, and
• Prαi [State(x,y, tr∥αi) = 1] > εi(x,y),

then ((x,y),E(x,y, tr)) ∈ R.
As with standard soundness, we write εi as a function of proximity when appropriate. If et

is unbounded, then we omit the word “knowledge” and say that the IOPP has round-by-round
soundness.

3.2 Error correcting codes

We define error correcting codes.
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Definition 3.1. An error-correcting code of length n over an alphabet Σ is a subset C ⊆ Σn.
The code C is a linear code if Σ = F is a field and C is a subspace of Fn.

We define what it means for an error-correcting code to be list-decodable.

Definition 3.2. For a code C ⊆ Σn, function f ∈ Σn, and proximity parameter δ we let

Λ(C, f, δ) = {u ∈ C | ∆(f, u) ≤ δ} .

We say that C is (δ, ℓ)-list decodable if |Λ(C, f, δ)| ≤ ℓ for every f ∈ Σn. We say that δ is “within
unique decoding” if C is (δ, 1)–list decodable. Observe that, letting δC be the minimum distance of C,
any δ ≤ δC is within unique decoding.

We will further make use of code interleaving.

Definition 3.3. For a code C ⊆ Σn, we define the m-interleaved code Cm ⊆ (Σm)n.

Note that the alphabet of the interleaved code is now Σm, and that the distance of interleaved
codewords is with respect to this alphabet.

3.3 Multilinear polynomials

We recall the definition of the equality polynomial, and that multilinear evaluations can be rewritten
as a sumcheck claim with respect to such polynomials.

Definition 3.4. We define the equality polynomial eq as follows:

eq((X1, . . . , Xm), (Y1, . . . , Ym)) =

m∏
i=1

(Xi · Yi + (1−Xi) · (1− Yi)) .

Note that, for every f̂ ∈ F<2[X1, . . . , Xm] and z ∈ Fm,

f̂(z) =
∑

b∈{0,1}m
f̂(b) · eq(z, b) .
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4 Tools for Reed–Solomon codes

We present tools for Reed–Solomon codes that are useful for our protocols.

• In Section 4.1 we define “constrained” Reed–Solomon codes, which are Reed–Solomon codes whose
codewords must comply with a sumcheck-like constraint.

• In Section 4.2 we introduce the new notion of mutual correlated agreement for Reed–Solomon
codes and prove basic facts about it.

• In Section 4.3 we present the folding of Reed–Solomon codewords, and use mutual correlated
agreement to prove that folding preserves a list-decoding property.

• In Section 4.4 we describe the technique of out-of-domain sampling, which, informally, helps to
reduce the problem of proximity testing in the list-decoding regime into proximity testing with
properties related to the unique-decoding regime.

4.1 Constrained Reed–Solomon codes

The Reed–Solomon code consists of evaluations of low-degree univariate polynomials.

Definition 4.1. The Reed–Solomon code with field F, evaluation domain L ⊆ F, and degree
d ∈ N is the set of evaluations over L of univariate polynomials (over F) of degree (strictly) less
than d. The rate of the code is ρ := d/|L|.

In this paper we restrict our attention to Reed–Solomon codes that are “smooth”, i.e., L is a
multiplicative coset of F∗ whose order is a power of two and the degree bound d is also a power of
two. In this case we can equivalently view such Reed–Solomon codes as evaluations of multilinear
polynomials with a certain number of variables.

Definition 4.2. A Reed–Solomon code over field F, evaluation domain L ⊆ F, and degree d ∈ N is
smooth if L is a multiplicative coset of F∗ whose order is a power of two, and where d := 2m is a
power of two. We call m the number of variables and use the notation:

RS[F,L,m] :=
{
f : L → F : ∃ ĝ ∈ F<2m [X] s.t. ∀x ∈ L , f(x) = ĝ(x)

}
=
{
f : L → F : ∃ f̂ ∈ F<2[X1, . . . , Xm] s.t. ∀x ∈ L , f(x) = f̂(pow(x,m))

}
.

Above, pow(x,m) := (x2
0
, . . . , x2

m−1
). The rate of the code RS[F,L,m] is ρ := 2m/|L|.

Given a code RS[F,L,m] and function f : L → F, we use f̂ ∈ F<2[X1, . . . , Xm] to denote
the multilinear polynomial whose matching codeword in RS[F,L,m] is closest to f (breaking ties
arbitrarily).

The Johnson bound bounds the list size of the Reed–Solomon code.

Theorem 4.3 (Johnson bound). The Reed–Solomon code RS[F,L,m] is (1−√ρ−η, 1/(2η
√
ρ))-list

decodable for every η ∈ (0, 1−√ρ).

The interleaving of a list-decodable code was shown to be list-decodable in [GGR11] (where the
bounds does not depend on how many times the code was interleaved). In the case of Reed–Solomon
codes, a sharper bound can be obtained which shows that the size of the list of the interleaved code
is the same as the list-size of the non-interleaved code (similar proofs of this fact were present
in [Sta21]).
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Lemma 4.4. Let k ≥ 1 and C := RS[F,L,m] be Reed–Solomon code with rate ρ. The k-wise
interleaved code Ck is (1−√ρ− η, 1/(2η

√
ρ))-list decodable for every η ∈ (0, 1−√ρ).

Proof. Let K be an extension of F of degree k (i.e. so that |K| = |F|k) obtained by adjoining an
element α. Let ϕ : Fk → K be the bijection that maps (a1, . . . , ak) 7→

∑
i∈[k] ai · αi−1. For any

function f : L → Fk we define fK : L → K by post-composing with ϕ (i.e. setting fK := ϕ ◦ f).
Note that the function ·K : (Fm)L → KL which maps f 7→ fK is a bijection. We show that ·K
maps elements of Ck to elements of RS[K,L,m]. This is is easy to see, as if (f1, . . . , fk) ∈ Cm
there exists polynomials p̂1, . . . , p̂k such that, for all i ∈ [k], fi(L) = p̂i(L). Define the polynomial
p̂K(X) :=

∑
i∈[k] α

i−1 · p̂i(X). Then, for every x ∈ L

p̂K(x) =
∑
i∈[k]

αi−1 · p̂i(x) =
∑
i∈[k]

αi−1 · fi(x) = ϕ(f1(x), . . . , fm(x)) = (f1, . . . , fm)K(x) ,

and thus (f1, . . . , fm)K ∈ RS[K,L,m]. Thus, the codes Ck and RS[K,L,m] are equivalent (and in
particular, will have the same list-decodability). Applying Theorem 4.3 to RS[K,L,m] (and noting
that the bounds therein are independent of the size of the field, and that Ck has the same rate ρ as
C) concludes the result.

We also use a new code that we call “constrained Reed–Solomon code”, which is a Reed–Solomon
code where codewords are constrained to those consistent with a weight polynomial and sumcheck
target.

Definition 4.5. The constrained Reed–Solomon code with field F, smooth evaluation domain
L ⊆ F, number of variables m ∈ N, weight polynomial ŵ ∈ F[Z,X1, . . . , Xm], and target σ ∈ F is

CRS[F,L,m, ŵ, σ] :=

f ∈ RS[F,L,m] :
∑

b∈{0,1}m
ŵ(f̂(b), b) = σ

 .

Observe that CRS[F,L,m, 0, 0] = RS[F,L,m].
We naturally extend this definition to multiple constraints.

Definition 4.6. The multi-constrained Reed–Solomon code over field F, evaluation domain
L ⊆ F, number of variables m ∈ N, weight polynomials ŵ1, . . . , ŵt ∈ F[Z,X1, . . . , Xm], and point
claims σ1, . . . , σt ∈ F is

CRS[F,L,m, (ŵ1, σ1), . . . , (ŵt, σt)] :=
⋂
i∈[t]

CRS[F,L,m, ŵi, σi] .

4.2 Mutual correlated agreement for proximity generators

We rely on mutual correlated agreement, a new notion for proximity generators. First we define
proximity generators and cite known bounds for them, and then elaborate on the new property.

Definition 4.7. Let C ⊆ Fn be a linear code. We say that Gen is a proximity generator for C
with proximity bound B and error err if the following implication holds for every f1 . . . , fℓ : [n]→ F
and δ ∈ (0, 1− B(C, ℓ)). If

Pr
(r1,...rℓ)←Gen(ℓ)

∆
∑

i∈[ℓ]

ri · fi, C

 ≤ δ

 > err(C, ℓ, δ) ,
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then there exists S ⊆ [n] with |S| ≥ (1− δ) · n and

∀ i ∈ [ℓ], ∃u ∈ C, ∀x ∈ S, fi(x) = u(x) .

The following theorem shows that Reed–Solomon codes have good proximity generators.

Theorem 4.8 ([BCIKS20]). Let C := RS[F,L,m] be a Reed–Solomon code with rate ρ := 2m/|L|.
The function Gen(ℓ;α) = (1, α, . . . , αℓ−1) is a proximity generator for C with proximity bound
B(C, ℓ) := √ρ and the error err(C, ℓ, δ) defined below.

• If δ ∈
(
0, 1−ρ2

]
then

err(C, ℓ, δ) := (ℓ− 1) · 2m

ρ · |F|
.

• If δ ∈
(
1−ρ
2 , 1− B(C, ℓ)

)
then

err(C, ℓ, δ) := (ℓ− 1) · 22m

|F| ·
(
2 ·min

{
1−√ρ− δ,

√
ρ

20

})7 .
A proximity generator has mutual correlated agreement if with high probability the set of agree-

ment domains of the function resulting from the proximity generator is identical to the set of
correlated agreement domains between the functions f1, . . . , fℓ.

Definition 4.9. Let C ⊆ Fn be a linear code. We say that Gen is a proximity generator for C with
mutual correlated agreement with proximity bound B⋆ and error err⋆ if for every f1 . . . , fℓ : [n]→
F and δ ∈ (0, 1− B(C, ℓ)) the following holds:

Pr
(r1,...rℓ)←Gen(ℓ)

∃S ⊆ [n] s.t.
|S| ≥ (1− δ) · n
∧∃u ∈ C, u(S) =

∑
j∈[ℓ] rj · fj(S)

∧∃ i ∈ [ℓ], ∀u′ ∈ C, u′(S) ̸= fi(S)

 ≤ err⋆(C, ℓ, δ) .

We prove that, in the unique decoding regime, every proximity generator exhibits mutual cor-
related agreement. When combined with Theorem 4.8, this yields a result about mutual correlated
agreement for Reed–Solomon codes.

Lemma 4.10. Let C be a linear code with minimum distance δC and let Gen be a proximity generator
for C with proximity bound B and error err. Then Gen has mutual correlated agreement with proximity
bound B⋆(C, ℓ) = min{1− δC/2,B(C, ℓ)} and error err⋆(C, ℓ, δ) := err(C, ℓ, δ).

Corollary 4.11. Let C := RS[F,L,m] be a Reed–Solomon code with rate ρ. The function Gen(ℓ;α) =
(1, α, . . . , αℓ−1) is a proximity generator for C with mutual correlated agreement with proximity bound
B⋆(C, ℓ) := 1+ρ

2 and error err⋆(C, ℓ, δ) = (ℓ−1)·2m
ρ·|F| .

We now prove the lemma.

Proof of Lemma 4.10. We omit inputs such as C, ℓ, δ when clear from context, writing Gen := Gen(ℓ),
B⋆ := B⋆(C, ℓ), and so on. Fix functions f1, . . . , fℓ ∈ Fn and proximity parameter δ ∈ (0, 1 − B⋆).
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Let T ⊆ [n] be a maximal set such that for every fi there exists ui ∈ C such that fi(T ) = ui(T ).
Suppose towards contradiction of the maximality of T that

Pr
(r1,...rℓ)←Gen

∃S ⊆ [n] s.t.
|S| ≥ (1− δ) · n
∧∃u ∈ C, u(S) =

∑
j∈[ℓ] rj · fj(S)

∧∃ i ∈ [ℓ], ∀u′ ∈ C, u′(S) ̸= fi(S)

 > err⋆ = err .

Observe that ∆
(∑

i∈[ℓ] ri · fi, C
)
≤ δ whenever the event above occurs. Since Gen is a proximity

generator with error err and δ < 1−B, we deduce that there exists a set A ⊆ [n] with |A| ≥ (1−δ) ·n
such that for every i ∈ [ℓ] there is a codeword u′i with u′i(A) = fi(A). Since T is maximal, we can
use A to bound its size: |T | ≥ |A| ≥ (1− δ) · n.

Fix r = (r1, . . . , rℓ) in the image of Gen(ℓ) and define gr :=
∑

i∈[ℓ] ri · fi and wr :=
∑

i∈[ℓ] ri · ui.
Since C is linear wr ∈ C. Note that

∀x ∈ T , gr(x) =
∑
i∈[ℓ]

ri · fi(x) =
∑
i∈[ℓ]

ri · ui(x) = wr(x) ,

so wr ∈ Λ(C, gr, δ).
Consider a set S ⊆ [n] such that |S| ≥ (1 − δ) · n and gr agrees with w′ ∈ C on S, but there

exists fi such that fi does not agree on all of S with any codeword of C. Observe the following.

• S \ T ̸= ∅: this follows since for every fi there is a codeword that agrees with fi on all of T .
• w′ = wr: this holds since wr ∈ Λ(C, gr, δ) and w′ ∈ Λ(C, gr, δ) combined with the fact that,

because δ < δC/2, we have |Λ(C, gr, δ)| ≤ 1.

Combining these two observations we deduce that the set S \ T is nonempty and that, for every
x ∈ S \ T , gr(x) = w′(x) = wr(x). Recalling that gr(T ) = ur(T ), we conclude that

∆(gr, C) ≤ ∆(gr, wr) ≤ 1− |S ∪ T |
n

< 1− |T |
n

.

Therefore,

err⋆ = err ≤ Pr
(r1,...rℓ)←Gen

∃S ⊆ [n] s.t.
|S| ≥ (1− δ) · n
∧∃u ∈ C, u(S) =

∑
j∈[ℓ] rj · fj(S)

∧∃ i ∈ [ℓ], ∀u′ ∈ C, u′(S) ̸= fi(S)


≤ Pr

(r1,...rℓ)←Gen

∆
∑

i∈[ℓ]

ri · fi, C

 < 1− |T |/n

 .

Again applying the fact that Gen is a proximity generator for C, which we can do since 1 − |T |n ≤
δ < 1− B, we conclude that there exists a set W ⊆ [n] with |W | > |T | such that for every fi there
exists ui with fi(W ) = ui(W ), which contradicts the maximality of T .

Beyond unique decoding. We leave the question of proving mutual correlated agreement in the
list-decoding regime for future work. We set up two conjectures, grouped in the following. The
first relates to mutual correlated agreement up to the Johnson bound with error as in [BCIKS20],
and the second refers to conjectured parameters up to capacity, matching those commonly used in
practice for (standard) correlated agreement.
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Conjecture 4.12. The function Gen(ℓ;α) := (1, α, . . . , αℓ−1) is a proximity generator with mutual
correlated agreement for every smooth Reed–Solomon code C := RS[F,L,m] (with rate ρ := 2m/|L|).
We give two conjectures, for the parameters of the proximity bound B⋆ and the error err⋆:

1. Up to the Johnson bound: B⋆(C, ℓ) := √ρ, and

err(C, ℓ, δ) := (ℓ− 1) · 22m

|F| ·
(
2 ·min

{
1−√ρ− δ,

√
ρ

20

})7 .
2. Up to capacity: B⋆(C, ℓ) := ρ, and there exist constants c1, c2, c3 ∈ N such that for every η > 0

and 0 < δ < 1− ρ− η:

err⋆(C, ℓ, δ) := (ℓ− 1)c2 · dc2
ηc1 · ρc1+c2 · |F|

.

4.2.1 Mutual correlated agreement preserves list decoding

We show that applying a proximity generator and then list decoding gives the same result as first
list decoding, and then applying the proximity generator to all possible lists of results, so long as
the proximity generator exhibits mutual correlated agreement.

Lemma 4.13. Let C ⊆ Fn be a linear code with minimum distance δC, and let Gen be a proximity
generator for C with mutual correlated agreement with proximity bound B⋆ and error err⋆. Then, for
every f1, . . . , fℓ : [n]→ F and δ ∈ (0,min{δC , 1− B⋆(C, ℓ)}):

Pr
α←{0,1}w⋆
r:=Gen(ℓ;α)

Λ
C,∑

j∈[ℓ]

rj · fj , δ

 ̸=
∑

j∈[ℓ]

rj · uj : u ∈ Λ(Cℓ, (f1, . . . , fℓ), δ)


 ≤ err⋆(C, ℓ, δ) .

Proof. For r ∈ Fℓ, let

Tr := Λ

C,∑
j∈[ℓ]

rj · fj , δ


Sr :=

∑
j∈[ℓ]

rj · uj : u ∈ Λ(Cℓ, (f1, . . . , fℓ), δ)

 .

We prove each direction of the inclusion separately.
Sr ⊆ Tr. Let u ∈ Sr, which implies that u =

∑
j∈[ℓ] rj · uj for u ∈ Λ(Cℓ, (f1, . . . , fℓ), δ). Then,

there exists a set S ⊆ [n] with |S| ≥ (1− δ) · n such that, for every i ∈ [ℓ], fi(S) = ui(S). Then, for
every x ∈ S, it must be that ∑

j∈[ℓ]

rj · fj(x) =
∑
j∈[ℓ]

rj · uj(x) = u(x) ,

and thus ∆(u,
∑

j∈[ℓ] rj · fj) ≤ δ and u ∈ Tr.
Tr ⊆ Sr with high probability. Fix a r ← Gen(ℓ;α) such that, for every W ⊆ [n] of size
|W | ≥ (1− δ) · n either hold:
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1. for every u ∈ C, u(W ) ̸=
∑

j∈[ℓ] rj · fj(W ), or
2. for every i ∈ [ℓ], ∃ui ∈ C s.t. ui(W ) = fi(W ).

Since Gen is a proximity generator for C with mutual correlated agreement with error err⋆, there are
at least (1− err⋆(C, ℓ, δ)) · 2w⋆ choices of α that result in such a r.

Consider u ∈ Tr. By definition of Tr, u ∈ C and ∆
(
u,
∑

j∈[ℓ] rj · fj
)
≤ δ. Since Item 1 does not

hold, it must be that Item 2 holds, meaning that there exist u1, . . . , uℓ ∈ C with ui(x) = fi(x) for
every x ∈W . Let S ⊆ [n] be the maximal set for which ui(x) = fi(x) for every x ∈ S, and observe
that by definition W ⊆ S, meaning that |S| ≥ |W | ≥ (1− δ) · n.

By definition, for every x ∈ S, we have

u(x) =
∑
j∈[ℓ]

rj · fj(x) =
∑
j∈[ℓ]

rj · uj(x) ,

and so ∆
(
u,
∑

j∈[ℓ] rj · uj
)
≤ δ < δC . This implies that u ≡

∑
j∈[ℓ] rj · uj , and as a result u ∈ Sr.

Observe that the above analysis is true for every u ∈ Tr simultaneously, as long as r has the
mutual correlated agreement property. As mentioned in the outset of this proof, there are at least
1− err⋆(C, ℓ, δ) such choices. This concludes the proof.

4.3 Folding univariate functions

For a finite field F, we define the k-wise folding operator for functions f : L → F at points α as
follows.

Definition 4.14. Let f : L → F be a function, and α ∈ F. We define Fold(f, α) : L(2) → F as
follows:

∀x ∈ L , Fold(f, α)(x2) := f(x) + f(−x)
2

+ α · f(x)− f(−x)
2 · x

.

In order to compute Fold(f, α)(x2) it suffices to query f at x and −x.
For k ≤ m and α = (α1, . . . , αk) ∈ Fk we define Fold(f,α) : L(2k) → F to equal Fold(f,α) := fk

where fk is defined recursively as follows: f0 := f , and fi := Fold(fi−1, αi). For a set S ⊆ FL we
sometimes denote Fold(S,α) := {Fold(f,α) | f ∈ S}.

A similar folding operation was defined in [ACFY24]. Our definition is equivalent to performing
the 2-wise folding of [ACFY24] for k times, where the i-th folding is done at point αi.

The following claim shows that the folding of a Reed–Solomon codeword at any set of points
results in a Reed–Solomon codeword.

Claim 4.15. Let f : L → F be a function, α ∈ Fk folding randomness and let g := Fold(f,α). If
f ∈ RS[F,L,m] and k ≤ m, then g ∈ RS[F,L(2k),m− k], and further the multilinear extension of g
is given by ĝ(Xk, . . . , Xm) := f̂(α, Xk, . . . , Xm) where f̂ is the multilinear extension of f .

Proof. Consider a function f ′ ∈ RS[F,L′,m′] and α ∈ F. First we show that g′ := Fold(f ′, α) ∈
RS[F,L′(2),m′ − 1] and that ĝ′ := f̂ ′(α,X2, . . . , Xm′−1) where f̂ ′ ∈ F<2[X1, . . . , Xm′ ] is the mul-
tilinear extension of f ′, meaning that f ′(x) = f̂ ′(pow(x,m′)) for every x ∈ L′. Let f ′0, f

′
1 ∈

F<2[X2, . . . , Xm′ ] be the polynomials such that

f̂ ′(X1, . . . , Xm′) = f̂ ′0(X2, . . . , Xm′) +X1 · f̂ ′1(X2, . . . , Xm′) ,

26



and define ĝ′ := f̂ ′0 + α · f̂ ′1.
Let x ∈ L′ and z = x2 ∈ L′(2), define z := pow(z,m′ − 1), and observe that pow(x,m′) = (x, z)

and pow(−x,m′) = (−x, z). Therefore

g′(z) =
f ′(x) + f ′(−x)

2
+ α · f

′(x)− f ′(−x)
2 · x

=
f̂ ′(pow(x,m′)) + f̂ ′(pow(−x,m′))

2
+ α · f̂(pow(x,m

′))− f̂(pow(−x,m′))
2 · x

=
f̂ ′(x, z) + f̂ ′(−x, z)

2
+ α · f̂

′(x, z)− f̂ ′(−x, z)
2 · x

=
f̂ ′0(z) + x · f̂ ′1(z) + f̂ ′0(z)− x · f̂ ′1(z)

2
+ α · f̂0(z)− (−x) · f̂1(z) + f̂ ′0(z)− x · f̂ ′1(z)

2 · x
= f̂ ′0(z) + α · f̂ ′1(z) = ĝ′(z) .

Therefore, g′ ∈ RS[F,L′(2),m′ − 1] and its multilinear extension equals f ′(α,X2, . . . , Xm′).
Finally, we prove the claim inductively since, by assumption, f ∈ RS[F,L,m].

• The base case k = 1 follows by the previous argument.
• The inductive hypothesis posits that, for every α′ ∈ Fk−1, fk−1 := Fold(f,α′) ∈ RS[F,L(2k−1),m−
k − 1] and that f̂k−1 := f̂(α′, Xk−1, . . . , Xm). Thus, again invoking the argument above we
conclude that for every (α′, αk) = α ∈ Fk it holds that

fk := Fold(f,α) = Fold(Fold(f,α′), αk) = Fold(fk−1, αk) ∈ RS[F,L(2k),m− k] ,

and that f̂k(Xk, . . . , Xm) := f̂(α, Xk, . . . , Xm).

4.3.1 Block relative distance

We define block relative distance and list sizes for constrained Reed–Solomon codes. The blocks
that we consider are cosets, as these are the most relevant to folding of smooth Reed–Solomon codes.

Definition 4.16. Let L ⊆ F be a smooth evaluation domain and k ∈ N be a folding parameter. For
z ∈ L(2k), define Block(L, k, z) := {y ∈ L : y2

k
= z}.

Definition 4.17. Let C := CRS[F,L,m, ŵ, σ] be a constrained Reed–Solomon code and let f, g : L →
F. We define the k-wise block relative distance as

∆b(C, k, f, g) =
|{z ∈ L(2k) : ∃ y ∈ Block(L, k, z), f(y) ̸= g(y)}|

|L(2k)|
,

and, for S ⊆ FL, we let ∆b(C, k, f, S) := ming∈S ∆b(C, k, f, g).

Note that ∆b(C, 0, f, g) = ∆(f, g) for any C. We define the block list decoding of a codeword.

Definition 4.18. For a constrained Reed–Solomon code C := CRS[F,L,m, ŵ, σ], proximity param-
eter δ ∈ [0, 1], and f : L → F, we let

Λb(C, k, f, δ) := {u ∈ C | ∆b(C, k, f, u) ≤ δ} ,

denote the list of codewords in C within relative block distance at most δ from f .
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Block relative distance is bounded from below by Hamming distance.

Claim 4.19. For any C := CRS[F,L,m, ŵ, σ], k ∈ N, and f, g : L → F, we have that ∆(f, g) ≤
∆b(C, k, f, g). Consequently, Λb(C, k, f, δ) ⊆ Λ(C, f, δ) for every δ ∈ [0, 1].

Proof. Let S = {z ∈ L(2k) : ∀ y ∈ Block(L, k, z), f(y) = g(y)} be the set of identifiers of
blocks where f and g agree on their entirety. By definition, ∆b(C, k, f, g) = 1 − |S|

|Lk| . Define
Z = ∪z∈SBlock(C, k, z) to be the set of points in the agreement blocks of f and g. Since C is
smooth, {Block(C, k, z)}z∈Z is a set of disjoint sets each of size 2k. Therefore |Z| = 2k · |S|. Observ-
ing that f(x) = g(x) for every x ∈ Block(L, k, z) and z ∈ Z. Thus,

∆(f, g) ≤ 1− |Z|
|L|

= 1− 2k · |S|
|L|

= 1− |S|
|L(2k)|

= ∆b(C, k, f, g) .

4.3.2 Folding preserves list decoding

The following theorem shows that, if we have mutual correlated agreement, then the list-decoding
of a function is preserved under folding in the sense that with high probability the folding of the
list-decoding of f is equal to the list-decoding of the folding of f . In other words, any codeword in
the list-decoding of the folding of f can be explained as the result of the folding of a codeword in
the list-decoding of f .

Theorem 4.20. Let C := RS[F,L,m] be a smooth Reed–Solomon code and k ≤ m. For 0 ≤ i ≤ k
let C(i) := RS[F,L(2i),m− i]. Let Gen(ℓ;α) = (1, α, . . . , αℓ−1) be a proximity generator with mutual
correlated agreement for the codes C(1), . . . , C(k) with proximity bound B⋆ and error err⋆. Then for
every f : L → F and δ ∈ (0, 1−maxi∈[k]{B⋆(C(i), 2)}),

Pr
α←Fk

 Fold(Λb(C, k, f, δ),α)
̸=

Λ(C(k),Fold(f,α), δ)

 < err(k)(C, δ) ,

where err(k)(C, δ) :=
∑k

i=1 err
⋆(C(i), 2, δ).

Proof. We say that a vector (α1, . . . , αi) ∈ Fi is good if

Fold(Λb(C, k, f, δ), (α1, . . . , αi)) = Λb(C(i), k − i,Fold(f, (α1, . . . , αi)), δ) .

The length 0 vector is good in the sense that by doing no folding the two sets above are identical.
Suppose that (α1, . . . , αi−1) ∈ Fi−1 is good for some 0 < i ≤ k, and let g := Fold(f, (α1, . . . , αi−1)).
By Lemma 4.21 (further below), we have

Pr
αi←F

 Fold(Λb(C(i−1), k − i− 1, g, δ), αi)
̸=

Λb(C(i), k − i,Fold(g, αi), δ)

 < err⋆(C(i), 2, δ) .
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Fix αi such that the sets in the above probability are equal. Then (α1, . . . , αi) is good since,

Fold(Λb(C, k, f, δ), (α1, . . . , αi))

= Fold(Fold(Λb(C, k, f, δ), (α1, . . . , αi−1)), αi)

= Fold(Λb(C(i−1), k − i− 1,Fold(f, (α1, . . . , αi−1)), δ), αi)

= Λb(C(i), k − i,Fold(Fold(f, (α1, . . . , αi−1)), αi), δ)

= Λb(C(i), k − i,Fold(f, (α1, . . . , αi)), δ) .

Thus,
Pr

αi←F
[(α1, . . . , αi) is not good | (α1, . . . , αi−1) is good] < err⋆(C(i), 2, δ) .

We conclude that

Pr
α←Fk

 Fold(Λb(C, k, f, δ),α)
̸=

Λ(C(k),Fold(f,α), δ)

 = Pr
α1,...,αk←Fk

[(α1, . . . , αk) is not good]

≤
k∑

i=1

Pr
αi←F

[(α1, . . . , αi) is not good | (α1, . . . , αi−1) is good]

<
k∑

i=1

err⋆(C(i), 2, δ) .

We now prove the basis of the induction.

Lemma 4.21. Let C := RS[F,L,m] be a Reed–Solomon code, and k ≤ m be a parameter. Denote
C′ := RS[F,L(2),m− 1]. Then for every f : L → F and δ ∈ (0, 1− B⋆(C′, 2)),

Pr
α←F

 Fold(Λb(C, k, f, δ), α)
̸=

Λb(C′, k − 1,Fold(f, α), δ)

 < err⋆(C′, 2, δ) .

Proof. We prove the lemma by showing that the first set is contained within the second for every α
(Claim 4.22), and that the second set is contained within the first except with probability err⋆(C′, 2, δ)
over the choice of α (Claim 4.23).

Claim 4.22. For every α ∈ F, Fold(Λb(C, k, f, δ), α) ⊆ Λb(C′, k − 1,Fold(f, α), δ).

Proof. Fix α ∈ F and consider u ∈ Λb(C, k, f, δ). Let

Z :=
{
z ∈ L(2) | ∀x ∈ Block(C, k − 1, z), u(x) = f(x)

}
.

Observe that, for every z, if x ∈ Block(C, k− 1, z) then −x ∈ Block(C, k− 1, z). Hence, if z ∈ Z and
x2 = z for x ∈ L then f(x) = u(x) and f(−x) = u(x), so

Fold(f, α)(z) =
f(x) + f(−x)

2
+α·f(x)− f(−x)

2 · x
=

u(x) + u(−x)
2

+α·u(x)− u(−x)
2 · x

= Fold(u, α)(z) .
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Thus, for every z ∈ Z, Fold(f, α) agrees with Fold(u, α) on all of the elements in Block(L, k − 1, z),
that is,

∆b(L(2), k − 1,Fold(f, α),Fold(u, α)) ≤ ∆b(L, k, f, u) ≤ δ .

The proof concludes since, by Claim 4.15, Fold(u, α) ∈ RS[F,L(2),m− 1] = C′, and so Fold(u, α) ∈
Λb(C′, k − 1,Fold(f, α), δ).

T1he following claim shows that, with high probability over α, every element in the (coset) list-
decoding of the folding of f can be explained as the folding of a codeword in the (coset) list-decoding
of f .

Claim 4.23. Prα←F

 Λb(C′, k − 1,Fold(f, α), δ)
̸⊆

Fold(Λb(C, k, f, δ), α)

 < err⋆(C′, 2, δ) .

Proof. Let f0, f1 : L(2) → F be defined as f0(x
2) := f(x)+f(−x)

2 and f1(x
2) := f(x)−f(−x)

2·x and fix
α ∈ F for which there is no set W ⊆ L2 for which the following conditions both hold:

• there exists u ∈ C(ℓ) such that u(x) = f0(x) + α · f1(x) for every x ∈W , and
• there exists b ∈ {0, 1} where for every u ∈ C(ℓ) there exists x ∈W such that u(x) ̸= fb(x).

Since Gen(2;α) = (1, α) is a proximity generator for C′ with mutual correlated agreement, error err⋆

and bound B⋆, there are at least (1− err⋆) · |F| such choices of α.
Suppose that v ∈ Λb(C′, k − 1,Fold(f, α), δ). Then noting that (L(2))(2k−1) = L(2k) and, letting

Z := {z ∈ L(2k) : ∀ y ∈ Block(L(2), k − 1, z), f0(y) + α · f1(y) = v(y)}

= {z ∈ (L(2))(2k−1) : ∀ y ∈ Block(L(2), k − 1, z), f0(y) + α · f1(y) = v(y)} ,

we deduce that Z ≤ (1 − δ) · |(L(2))(2k−1)| = (1 − δ) · |L(2k)|. Let Y :=
⋃

z∈Z Block(L(2), k − 1, z)
be the set of elements in the (k − 1)-cosets on which v agrees with f0 + α · f1. By our choice of α,
there exist u0, u1 ∈ C′ such that fb(y) = ub(y) = ûb(pow(y,m− 1)) for each y ∈ Y .

Define the multilinear polynomial

q̂(X1, . . . , Xm) = û0(X2, . . . , Xm) +X1 · û1(X2, . . . , Xm) .

For y ∈ Y and x ∈ L with x2 = y:

q(x) = q̂(pow(x,m)) = q̂(x, pow(y,m− 1))

= û0(pow(y,m− 1)) + x · û1(pow(y,m− 1))

= f0(y) + x · f1(y)

=
f(x) + f(−x)

2
+ x · f(x)− f(−x)

2 · x
= f(x) .

By the definition of Y , f and q agree on every x such that x2
k ∈ Z. Since |Z| ≥ (1 − δ) · |L(2k)|,

we have q ∈ Λb(C, k, f, δ). Since v = Fold(q, α), we have that v ∈ Fold(Λb(C, k, f, δ), α). Since the
above arguments hold for every v ∈ Λb(C′, k − 1,Fold(f, α), δ), we infer that for this choice of α,

Λb(C′, k − 1,Fold(f, α), δ) ⊆ Fold(Λb(C, k, f, δ), α) .

The claim holds by recalling that there are at least (1− err⋆) · |F| such choices for α.
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4.4 Out of domain sampling

We review results about the probability that there exist two distinct codewords in the list-decoding
set of a function that agree at a random point. The results and proofs are adapted from [ACFY24],
and we provide an equivalent formulation in the language of constrained Reed–Solomon codes.

Lemma 4.24. Let f : L → F be a function, m ∈ N be a number of variables, s ∈ N be a repetition
parameter, and let δ ∈ [0, 1] be a distance parameter. For every r1, . . . , rs ∈ Fm, the following are
equivalent statements.

• There exist distinct u, u′ ∈ Λ(RS[F,L,m], f, δ) such that, for every i ∈ [s], û(ri) = û′(ri).

• There exists σ1, . . . , σs ∈ F such that |Λ(CRS[F,L,m, ((Z·eq(r1, ·), σ1), . . . , (Z·eq(rs, ·), σs))], f, δ)| >
1.

Proof. We prove each direction.

• For i ∈ [s], let σi := û(ri). Then, u, u′ ∈ Λ(CRS[F,L,m, ((Z · eq(r1, ·), σ1), . . . , (Z · eq(rs, ·), σs))]
since u, u′ ∈ Λ(RS[F,L,m]) and by Definition 3.4. Since u, u′ are distinct, this direction follows.

• Let u, u′ ∈ Λ(CRS[F,L,m, ((Z ·eq(r1, ·), σ1), . . . , (Z ·eq(rs, ·), σs))], f, δ) be two distinct codewords
(which exist by hypothesis). Then, u, u′ ∈ Λ(RS[F,L,m], f, δ), and, by Definition 3.4, it must be
that, for every i ∈ [s], û(ri) = û′(ri).

Using Lemma 4.24, we can restate [ACFY24, Lemma 4.5] as follows.

Lemma 4.25 ([ACFY24]). Let f : L → F be a function, m ∈ N be a number of variables, s ∈ N be
a repetition parameter, and δ ∈ [0, 1] be a distance parameter. If RS[F,L,m] is (δ, ℓ)-list decodable
then

Pr
r1,...,rs←F

[
∃ σ1, . . . , σs ∈ F s.t.

|Λ(CRS[F,L,m, ((Z · eq(pow(rs,m), ·), σs))i∈[s]], f, δ)| > 1

]
= Pr

r1,...,rs←F

[
∃ distinct u, u′ ∈ Λ(RS[F,L,m], f, δ)

s.t. ∀ i ∈ [s], û(pow(ri,m)) = û′(pow(ri,m))

]
≤ ℓ2

2
·
(
2m

|F|

)s

.
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5 WHIR

We describe WHIR, an IOP of proximity for constrained Reed–Solomon codes. We begin by describ-
ing the construction and analyzing its complexity parameters, and in Section 5.1 we prove bounds
on the round-by-round soundness errors of the protocol. In Section 5.2 we show how to adapt
any IOPP for constrained Reed–Solomon codes into an IOPP for multi-constrained Reed–Solomon
codes, thus establishing WHIR for multi-constrained Reed–Solomon codes.

Construction 5.1. Consider the following ingredients and notation.
• a constrained Reed–Solomon code CRS[F,L0,m0, ŵ0, σ0];
• an iteration count M ∈ N;
• folding parameters k0, . . . , kM−1 such that

∑M−1
i=0 ki ≤ m;

• evaluation domains L1, . . . ,LM−1 ⊆ F where Li is a smooth coset of F∗ with order |Li| ≥ 2mi ;
• repetition parameters t1, . . . , tM with ti ≤ |Li|;
• define m0 := m and mi := m−

∑
j<i kj ;

• define d∗ := 1 + degZ(ŵ0) + maxi∈[m0] degXi
(ŵ0) and d := max{d∗, 3}.

The protocol proceeds as follows:

• Inputs. The verifier has oracle access to f0 : L0 → F. In the honest case, f0 ∈ CRS[F,L0,m0, ŵ0, σ0]
and the prover receives f̂0 ∈ F<2[X1, . . . , Xm] such that f0 = f̂0(L0) and

∑
b∈{0,1}m0 ŵ0(f̂0(b), b) =

σ0.

• Interaction phase.

1. Initial sumcheck: Set α0 := ∅. For ℓ = 1, . . . , k0:
(a) The prover sends ĥ0,ℓ ∈ F<d∗ [X]. In the honest case,

ĥ0,ℓ(X) :=
∑

b∈{0,1}m0−ℓ−1

ŵ0(f̂0(α0, X, b),α0, X, b) .

(b) The verifier samples α0,ℓ ← F. Update α0 := (α0∥α0,ℓ).
2. Main loop: For i = 1, . . . ,M − 1:

(a) Send folded function: The prover sends fi : Li → F. In the honest case, fi is the
evaluation of f̂i := f̂i−1(αi−1, ·) over Li.

(b) Out-of-domain sample: The verifier sends zi,0 ← F. Set zi,0 := pow(zi,0,mi).
(c) Out-of-domain reply: The prover sends yi,0 ∈ F. In the honest case, yi,0 := f̂i(zi,0).

(d) Shift message: The verifier samples zi,1, . . . , zi,ti−1 ← L
(2ki−1 )
i−1 and γi ← F. Set zi,j :=

pow(zi,j ,mi).
(e) Sumcheck rounds: Set αi := ∅. For ℓ = 1, . . . , ki:

i. The prover sends ĥi,ℓ ∈ F<d[X]. In the honest case,

ĥi,ℓ(X) :=
∑

b∈{0,1}mi−ℓ−1

ŵi(f̂i(αi, X, b),αi, X, b) ,

where

ŵi(Z,X1, . . . , Xmi) := ŵi−1(Z,αi−1, X1, . . . , Xmi)+Z·
ti−1∑
j=0

γj+1
i ·eq(zi,j , (X1, . . . , Xmi)) .

32



ii. The verifier samples αi,ℓ ← F. Update αi := (αi∥αi,ℓ).

3. Send final polynomial: The prover sends f̂M ∈ F<2[X1, . . . , XmM ]. In the honest case
f̂M := f̂M−1(αM−1, ·).

4. Sample final randomness: The verifier samples rfin
1 , . . . , r

fin
tM−1

← L(2
kM−1 )

M−1

• Decision phase.

1. Check initial sumcheck:

(a) Check that
∑

b∈{0,1} ĥ0,1(b) = σ0.

(b) Check that
∑

b∈{0,1} ĥ0,ℓ(b) = ĥ0,ℓ−1(α0,ℓ−1) for ℓ ∈ {2, . . . , k0}.
2. Check main loop: For i = 1, . . . ,M − 1:

(a) Let gi−1 := Fold(fi−1,αi−1).
(b) Compute the points {gi−1(zi,j)}j∈[ti−1] by querying fi−1 at the appropriate locations.
(c) Check that

∑
b∈{0,1}

ĥi,1(b) = ĥi−1,ki−1
(αi−1,ki−1

) + γi · yi,0 +
ti−1∑
j=1

γj+1
i · gi−1(zi,j) .

(d) Check that
∑

b∈{0,1} ĥi,ℓ(b) = ĥi,ℓ−1(αi,ℓ−1) for every ℓ ∈ {2, . . . , ki}.
3. Check final polynomial:

(a) Check that, for every ℓ ∈ [tM−1], f̂M (rfin
ℓ ) = gM−1(r

fin
ℓ ) where rfin

ℓ := pow(rfin
ℓ ,mM ).

(b) For i = 1, . . . ,M − 1 set

ŵi(Z,X1, . . . , Xmi) := ŵi−1(Z,αi−1, X1, . . . , Xmi) +Z ·
ti−1∑
j=0

γj+1
i · eq(zi,j , (X1, . . . , Xmi)) .

(c) Check that ∑
b∈{0,1}mM

ŵM−1(f̂M (b),αM−1, b) = ĥM−1,kM−1
(αM−1,kM−1

)

Complexity parameters. We analyze the complexity measures of Construction 5.1.

• Rounds. The protocol has O(M ·
∑M−1

i=0 ki) rounds.

• Proof length. The proof length is O(
∑M−1

i=1 (|Li|+ ki)).

• Input queries. The verifier reads 2k0 points t0 times. Since each set of 2k0 points are queried
together, they can be grouped together into a single symbol. The input query complexity over
this alphabet is t0.

• Proof queries. The verifier reads 2ki points ti times from fi. Since each set of 2ki points are
queried together, they can be grouped together into a single symbol. The input query complexity
over this alphabet is ti. Thus, the proof query complexity is O(

∑M−1
i=1 ti).
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5.1 Round-by-round soundness

We analyze the round-by-round soundness of Construction 5.1.

Theorem 5.2. Consider (F,M, (ki,mi,Li, ti)0≤i≤M−1, ŵ0, σ0,mM , tM , d∗, d) as in Construction 5.1.
For every f /∈ CRS[F,L0,m0, ŵ0, σ0] and every δ0, . . . , δM−1 and (ℓi,s)0≤i≤M−1

0≤s≤ki
where

• δ0 ∈ (0,∆(f,CRS[F,L0,m0, ŵ0, σ0]));
• the function Gen(ℓ;α) = (1, α, . . . , αℓ−1) is a proximity generator with mutual correlated agreement

for the codes (C(i,s)RS )0≤i≤M−1
0≤s≤ki

where C(i,s)RS := RS[F,L(2
s)

i ,mi − s] with bound B⋆ and error err⋆;

• for every 0 ≤ i < M , δi ∈ (0, 1− B⋆(C(i,s)RS , 2));
• for every 0 ≤ i < M , C(i,s)RS is (ℓi,s, δi)-list decodable.

The WHIR protocol (Construction 5.1) is an IOPP for CRS[F,L0,m0, ŵ0, σ0] with round-by-round
soundness error

((εfold0,s)s≤k0 , (ε
out
i , εshifti , (εfoldi,s)s≤ki)i≤M−1, ε

fin) ,

where:

• εfold0,s ≤
d∗·ℓ0,s−1

|F| + err⋆(C(0,s)RS , 2, δ0);

• εouti ≤
2mi ·ℓ2i,0
2·|F| ;

• εshifti ≤ (1− δi−1)
ti−1 +

ℓi,0·(ti−1+1)
|F| ;

• εfoldi,s ≤
d·ℓi,s−1

|F| + err⋆(C(i,s)RS , 2, δi);
• εfin ≤ (1− δM−1)

tM−1.

Proof. First we give notation, then describe a state function and finally we establish round-by-round
soundness errors based on this state function.
Notation. We say that a partial transcript is sumcheck-valid if the verifier’s checks in Item 1 and
Item 2 all pass for those messages that can be derived from the partial transcript. Observe that if a
partial transcript tr is not sumcheck-valid then (tr∥tr′) is not sumcheck-valid for any concatenation
tr′.

A (full) transcript of the protocol has the form:

tr :=


(ĥ0,ℓ, α0,ℓ)ℓ≤k0 ,(

fi, zi,0, yi,0, (zi,1, . . . , zi,ti−1 , γi), (ĥi,ℓ, αi,ℓ)ℓ≤ki

)
i<M

,

f̂M ,
rfin
1 , . . . , r

fin
tM−1

 .

We let f0 := f and, given a partial transcript, we denote the following (whenever they can be
derived from the partial transcript):

• fi,0 := fi and fi,ℓ := Fold(fi, αi,1, . . . , αi,ℓ) = Fold(fi,ℓ−1, αi,ℓ). Note that gi := fi,ki .
• ŵi,ℓ(Z,X1, . . . , Xmi−ℓ) := ŵi(Z,X1, . . . , Xmi−ℓ, αi,ℓ, . . . , αi,1).
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• σ0,0 := σ0,

σi,0 := ĥi−1,ki−1
(αi−1,ki−1

) + γi · yi,0 +
ti−1∑
j=1

γj+1
i · gi−1(zi,j) ,

and σi,ℓ := ĥi,ℓ−1(αi,ℓ−1).
• C(i,ℓ)RS := RS[F,L(2

ℓ)
i ,mi − ℓ].

• C(i,ℓ)CRS := CRS[F,L(2
ℓ)

i ,mi − ℓ, ŵi,ℓ, σi,ℓ].

Above, gi and ŵi are derived as in the protocol.
The state function. We define a state function State for the protocol and describe when it
outputs 1 for each partial transcript length. For simplicity, in the state function definition and later
analysis we omit the initial inputs f0, ŵ and σ, and consider only the transcript.

0. Initial transcript: For initial function f0 : L0 → F, we set State(∅) = 1 if and only if f0 ∈ C(0,0)CRS .

1. Initial sumcheck, round 1 ≤ s ≤ k0 (Item 1b): The transcript has the form

tr :=
(
(ĥ0,ℓ, α0,ℓ)ℓ<s, ĥ0,s

)
,

and the verifier chooses α0,s. We set State(tr∥α0,s) = 1 if and only if the following both hold:

(a) Valid decoding of folded function. |Λ(C(0,s)CRS , f0,s, δ0)| > 0.
(b) Sumcheck-validity. (tr∥α0,s) is sumcheck-valid.

2. Out-of-domain sample at iteration i (Item 2b): At this stage the transcript has the form

tr :=

 (ĥ0,ℓ, α0,ℓ)ℓ≤k0 ,(
fj , zj,0, yj,0, (zj,1, . . . , zj,tj−1 , γj), (ĥj,ℓ, αj,ℓ)ℓ≤kℓ

)
j<i

,

fi

 ,

and the verifier chooses zi,0. State(tr∥zi,0) = 1 if and only if at least one of the following holds:

(a) Multiple consistent codewords. There exist distinct u, u′ ∈ Λ(C(i,0)CRS , fi, δi) for which û(zi,0) =
û′(zi,0) where zi,0 := pow(zi,0,mi).

(b) Previous state function reverts. The following both hold:

i. Valid decoding of folded function. |Λ(C(i−1,ki−1)
CRS , gi−1, δi−1)| > 0, and

ii. Sumcheck-validity. (tr∥zi,0) is sumcheck-valid.

3. Shift message at iteration i (Item 2d): At this stage the transcript has the form

tr :=

 (ĥ0,ℓ, α0,ℓ)ℓ≤k0 ,(
fj , zj,0, yj,0, (zj,1, . . . , zj,tj−1 , γj), (ĥj,ℓ, αj,ℓ)ℓ≤kℓ

)
j<i

,

fi, zi,0, yi,0


The verifier chooses zi,1, . . . , zi,ti−1 and γi, and we set

State(tr∥(zi,1, . . . , zi,ti−1 , γi)) = 1 ,

if and only if both of the following hold:
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(a) Valid decoding of folded function. |Λ(C(i,0)CRS , fi, δi)| > 0.

(b) Sumcheck-validity. tr∥(zi,1, . . . , zi,ti−1 , γi) is sumcheck-valid.

4. Sumcheck randomness at round 1 ≤ s ≤ ki of iteration i (Item 2(e)ii): At this stage the
transcript has the form

tr :=

 (ĥ0,ℓ, α0,ℓ)ℓ≤k0 ,(
fj , zj,0, yj,0, (zj,1, . . . , zj,tj−1 , γj), (ĥj,ℓ, αj,ℓ)ℓ≤kℓ

)
j<i

,

fi, zi,0, yi,0, (zi,1, . . . , zi,ti−1 , γi), (ĥi,ℓ, αi,ℓ)ℓ<s, ĥi,s

 .

The verifier chooses αi,s. State(tr∥αi,s) = 1 if and only if the following hold:

(a) Valid decoding of folded function. |Λ(C(i,s)CRS , fi,s, δi)| > 0.

(b) Sumcheck-validity. tr∥αi,s is sumcheck-valid.

5. Final randomness (Item 3): At this stage the transcript has the form

tr :=

 (ĥ0,ℓ, α0,ℓ)ℓ≤k0 ,(
fi, zi,0, yi,0, (zi,1, . . . , zi,ti−1 , γi), (ĥi,ℓ, αi,ℓ)ℓ≤ki

)
i<M

f̂M

 .

The verifier chooses rfin
1 , . . . , r

fin
tM

. State(tr∥rfin
1 , . . . , r

fin
tM−1) = 1 if and only if the following all hold:

(a) Fold agreement. For every ℓ ∈ [tM − 1], f̂M (rfin
ℓ ) = gM−1(r

fin
ℓ ).

(b) Constraint validity. ∑
b∈{0,1}mM

ŵM−1(αM−1, b) · f̂M (b) = ĥM−1(αM−1) .

(c) Sumcheck-validity. (tr∥rfin
1 , . . . , r

fin
tM−1) is sumcheck-valid.

Bounding the errors. We bound the round-by-round soundness errors based on the state function
described above. As with the definition of the state function, we separately bound the probability
of the state flipping for each partial transcript length.

1. Initial sumcheck. We show that if State(tr) = 0 then

εfold0,s = Pr
α0,s←F

[State(tr∥α0,s) = 1] ≤ d∗ · ℓ0,s−1
|F|

+ err⋆(C(0,s)RS , 2, δ0) .

We begin by noting that if State(tr) = 0 due to the fact that tr is not sumcheck-valid, then (tr∥α0,s)
is also not sumcheck-valid for any α0,s, which implies that State(tr∥α0,s) = 0. We therefore assume
that tr is sumcheck-valid, from which follows that∑

b∈{0,1}

ĥ0,s−1(b) = σ0,s−1 . (2)
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As a result, we conclude that |Λ(CRS(0,s−1), f0,s−1), δ0)| = 0 (recall that δ0 < ∆(f0,0, C(0,0)CRS ), and
so this holds also for s = 1). In other words, every codeword in C(0,s)RS is either δ0-far from f0,s or
has a weighted sum that does not equal σ0,s. By Theorem 4.20, since δ0 < 1− B⋆(C(i,s)RS , 2).

Pr
α0,s←F

[
Fold(Λb(C(0,s−1)RS , 1, f0,s, δ0), α0,s) ̸= Λ(C(0,s)RS ,Fold(f0,s, α0,s), δ0)

]
≤ err⋆(C(0,s)RS , 2, δ0) . (3)

In other words, the list of codewords that are δ0-close to f0,s (with respect to C(0,s)RS ) are (with
high probability) exactly the folding of the list of codewords whose block-distance is at most δ0
from f0,s−1. In the following claim we show that with high probability, each codeword in the coset
list-decoding of f0,s−1 will fold into a codeword of C(0,s)RS that is not in C(0,s)CRS (since it does not
comply with the constraint).

Claim 5.3.

Pr
α0,s←F

[
∃u ∈ Λb(C(0,s−1)RS , 1, f0,s−1, δ0), Fold(u, α0,s) ∈ Λ(C(0,s)CRS ,Fold(f0,s−1, α0,s), δ0)

]
≤ d∗ · ℓ0,s−1

|F|
.

Proof. Consider u ∈ Λb(C(0,s−1)RS , 1, fi, δ) and the degree d∗ univariate polynomial

p̂(X) :=
∑

b∈{0,1}m0−s

ŵs−1,i−1(û(b, X), b, X) .

Since |Λ(C(0,s−1)CRS , 1, f0,s, δ0)| = 0, it must be that:∑
b∈{0,1}

p̂(b) =
∑

b∈{0,1}m0−s+1

ŵs−1,i−1(û(b), b) ̸= σ0,s−1 =
∑

b∈{0,1}

ĥ0,s−1(b) ,

where the final equality follows from Equation 2. We conclude that p̂ and ĥ0,s are not identical
polynomials: p̂(X) ̸≡ ĥ0,s−1(X). The polynomials are both univariate polynomials of degree
smaller than d∗, and so by the polynomial identity lemma,

Pr
α0,s←F

[
p̂(α0,s) = ĥ0,s−1(α0,s)

]
≤ d∗

|F|
.

Whenever α0,s is chosen such that this is not the case, we have (by the definition of p̂)∑
b∈{0,1}m0−s

ŵ0,s(û(α0,s, b, ), α0,s, b) ̸= ĥ0,s−1(α0,s) = σ0,s ,

Since C(0,s)CRS := CRS[F,L(0,s),m0−s, ŵ0,s, σ0,s], we have that Fold(u, α0,s) /∈ C(0,s)CRS . Finally, the claim
holds by taking a union bound over the |Λb(C(0,s−1)RS , 1, f0,s−1, δ0)| ≤ |Λ(C(0,s−1)RS , 1, f0,s−1, δ0)| ≤
ℓ0,s−1 choices of u.

The bound on the round-by-round soundness error comes by taking a union bound over the
probabilities in Equation 3 and Claim 5.3, which together imply that except with probability
ℓ0,s−1

|F| + err⋆(C(0,s)RS , 1, δ0),

Λ(C(0,s)CRS ,Fold(f0,s−1, α0,s), δ0) ∩ Λ(C(0,s)RS ,Fold(f0,s−1, α0,s), δ0) = ∅ ,
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and so, since
Λ(C(0,s)CRS ,Fold(f0,s−1, α0,s), δ0) ⊆ Λ(C(0,s)RS ,Fold(f0,s−1, α0,s), δ0) ,

and f0,s := Fold(f0,s−1, α0,s), we have |Λ(C(0,s)CRS ,Fold(f0,s−1, α0,s), δ0)| = 0, so State(tr∥α0,s) = 0.

2. Out-of-domain sample at iteration i. We show that if State(f0, tr) = 0 then

εouti = Pr
zi,0←F

[State(tr∥zi,0) = 1] ≤
2mi · ℓ2i,0
2 · |F|

.

If State(tr) = 0, then Item 2b does not hold, since this is precisely what the state function
checks in this step (note that zi,0 does not affect the sumcheck-validity of the transcript). Thus,
in order to have State(f0, tr∥zi,0) = 1, it must be that Item 2a holds, i.e., there exist distinct
u, u′ ∈ Λ(C(i,0)CRS , fi, δi) with û(zi,0) = û′(zi,0). By Lemma 4.25 this happens with probability at

most
2mi ·ℓ2i,0
2·|F| .

3. Shift message at iteration i. We show that if State(f0, tr) = 0 then

εshifti = Pr[State(tr∥(zi,1, . . . , zi,ti , γi)) = 1] ≤ (1− δi−1)
ti−1 +

ℓi,0 · (ti−1 + 1)

|F|
.

Since State(f0, tr) = 0, both of the following are true:

(a) there are no distinct u, u′ ∈ Λ(C(i)RS , fi, δi) for which û(zi,0) = û′(zi,0).
(b) at least one of the following holds: (a) |Λ(C(i−1),ki−1

CRS , gi−1, δi−1)| = 0, or (b) tr is not sumcheck-
valid.

We begin by showing that if all of the codewords that are within list-decoding of fi have some
point in which they disagree with the required value, then with high probability the state will
remain 0:

Claim 5.4. Fix zi,1, . . . , zi,ti−1 such that for every u ∈ Λ(C(i,0)RS , fi, δi) one of the following hold:

•
∑

b ŵi−1(û(b), b,αi−1) ̸= ĥi−1(αi−1), or
• û(zi,0) ̸= yi, or
• there exists j ∈ [ti−1] for which û(zi,j) ̸= gi−1(zi,j).

Then Prγi←F[State(tr∥(zi,1, . . . , zi,ti−1 , γi)) = 1] ≤ ℓi,0·(ti−1+1)
|F| .

Proof. Fix u ∈ Λ(C(i,0)RS , fi, δi), and denote yi,0 := yi and yi,j := gi−1(zi,j). Then by the claim setup,
either

∑
b ŵi−1(û(b), b,αi−1) ̸= ĥi−1(αi−1) or there exists j ∈ {0, . . . , ti−1} for which∑

b∈{0,1}mi

û(b) · eq(zi,j , b) = û(zi,j) ̸= yi,j ,
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Thus, by the polynomial identity lemma

Pr

[∑
b

ŵi(û(b), b) = σi

]
= Pr

γi

∑
b

ŵi(û(b), b) = ĥi−1(αi−1) +

ti−1∑
j=0

γj+1
i · yi,j


= Pr

γi


∑

b ŵi−1(û(b), b,αi−1) +
∑ti−1

j=0 γ
j+1
i · (

∑
b û(b) · eq(zi,j , b))

=

ĥi−1(αi−1) +
∑ti−1

j=0 γ
j+1
i · yi,j


≤ ti−1 + 1

|F|
.

Taking the union bound over all (at most) ℓi,0 codewords in Λ(C(i,0)RS , fi,0, δi), we have that except
with probability ℓi,0·(ti−1+1)

|F| , there is no u ∈ Λ(C(i,0)RS , fi, δi) for which

∑
b

ŵi(û(b), b) = ĥi−1(αi−1) +

ti−1∑
j=0

γj+1
i · yi,j = σi,0 .

Recall that C(i,0)CRS = CRS[F,Li,mi, ŵi, σi,0] and so we conclude that, except with probability
ℓi,0·(ti−1+1)

|F| it is the case that |Λ(C(i,0)CRS , fi, δi)| = 0, and so the state is 0.

We now complete the proof by showing that the requirements for Claim 5.4 hold except with proba-
bility (1−δi−1)ti−1 over the choice of zi,1, . . . , zi,ti−1 . Item 3b in the State function definition posits
that in order to have State(f0, tr∥(zi,1, . . . , zi,ti−1 , γi)) = 1, it must be that tr∥(zi,1, . . . , zi,ti−1 , γi) is
sumcheck-valid, meaning tr is also sumcheck-valid. Thus, the only chance for the state to switch to
0 is in the case that tr is sumcheck-valid. The only way for State(tr) = 0 when tr is sumcheck-valid
is when |Λ(C(i−1,ki−1)

CRS , gi−1, δi−1)| = 0. We consider the following cases:

• There is no u ∈ Λ(C(i,0)RS , fi, δi) for which û(zi,0) = yi,0. In this case the requirements for
Claim 5.4 hold trivially.

• There is exactly one u ∈ Λ(C(i,0)RS , fi, δi) for which û(zi,0) = yi,0. Recall that |Λ(C(i−1,ti−1)
CRS , gi−1, δi−1)| =

0. Thus, u either disagrees with the constraint defined by ŵi−1 or u is δ-far from gi−1:
– if

∑
b ŵi−1(û(b), b,αi−1) ̸= ĥi−1(αi−1), then the requirements for Claim 5.4 hold trivially.

– if ∆(û|L, gi−1) ≥ δi then the probability that there exists a point zi,j with û(zi,j) = gi−1(zi,j)

is at most (1 − δi−1)
tM−1 . Since ŵ(zi,0) ̸= yi,0 for every w ∈ Λ(C(i)RS , fi, δi) with w ̸= u, we

conclude that except with probability (1− δi−1)
t−1, the requirements for Claim 5.4 hold.

• There are multiple codewords u ∈ Λ(C(i,0)RS , fi, δi) for which û(zi,0) = yi,0. As discussed at the
beginning of this analysis, this is ruled out by the fact that State(tr) = 0.

4. Folding randomness at round s of iteration i. We show that if State(tr) = 0 then

εfoldi,s = Pr
αi,s

[State(tr∥αi) = 1] ≤ d · ℓi,s−1
|F|

+ err⋆(C(i,s)RS , 2, δi) .

The analysis is identical to that in Item 1 with index i in place of 0, and degree d in place of d∗.
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5. Final randomness. We show that if State(tr) = 0 then

εfin = Pr
rfin1 ,...,rfintM

[
State(tr∥(rfin

1 , . . . , r
fin
tM−1

)) = 1
]
≤ (1− δM−1)

tM−1 .

If tr is not sumcheck-valid (Item 4b does not hold), then (tr∥(rfin
1 , . . . , r

fin
tM−1

)) is also not sumcheck-
valid and so Item 5c does not hold and State(tr∥(rfin

1 , . . . , r
fin
tM−1

)) = 0. Thus, we can assume
that tr is sumcheck-valid. Then, it must be that Item 1a does not hold, and as such the list
Λ(C(M−1,,ki−1)

CRS , gM−1, δM−1) is empty. We consider two options:

• ∆(f̂M , gM−1) ≤ δM−1. Let fM be the restriction of f̂M to the domain of C(M−1,kM−1)
CRS . Then

fM ∈ Λ(C(M−1,kM−1)
RS , gM−1, δM−1). Since |Λ(C(M−1,,ki−1)

CRS , gM−1, δM−1)| = 0, it must be that
fM /∈ Λ(C(M−1,kM−1)

CRS , gM−1, δM−1), meaning that fM does not conform to the constraint of the
code C(M−1,kM−1)

CRS , i.e., ∑
b∈{0,1}mM

ŵM−1(αM−1, b) · f̂M (b) ̸= ĥM−1(αM−1) .

As a result, Item 5b does not hold, and so State(tr∥(rfin
1 , . . . , r

fin
tM−1

)) = 0.

• ∆(f̂M , gM−1) > δM−1. Then f̂M agrees with gM−1 at tM−1 randomly selected locations with
probability at most (1− δM−1)

tM−1 , and if this does not occur then Item 5a does not hold.

6. Verifier decision. If State(tr) = 0, then the verifier rejects, since the verifier’s checks align
precisely with the definition of the state function at Item 5.

5.2 Batching multiple constraints

We show how to adapt proximity tests for constrained Reed–Solomon codes to handle Reed–Solomon
codes with multiple constraints.

Construction 5.5. Consider the following ingredients:
• a k-round IOPP (Pprx,Vprx) for constrained Reed–Solomon codes CRS[F,L,m, ·, ·].
• a number of weights t ∈ N;
• weight polynomials ŵ1, . . . ŵt where, for every i ∈ [t], ŵi ∈ F[Z,X1, . . . , Xm];
• answer points σ1, . . . σt ∈ F;
The protocol proceeds as follows:

• Initial input: Let f : L → F be an oracle function. In the honest case,

f ∈ CRS[F,L,m, (ŵ1, σ1), . . . , (ŵt, σt)] ,

and the prover is given f̂ ∈ F<2[X1, . . . , Xm] whose restriction to L is f and for which, for every
i ∈ [t], ∑

b∈{0,1}m
ŵi(f̂(b), b) = σi .
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• Interaction phase:

1. Combination randomness: The verifier samples γ ← F and sends it to the prover.

2. Proximity test interaction The prover and verifier jointly engage in the interaction phase
of (Pprx,Vprx) to check membership of f ∈ RS[F,L,m, ŵ, σ] where

ŵ(Z,X1, . . . , Xm) :=
∑
i∈[t]

γi−1 · ŵi(Z,X1, . . . , Xm) ,

and σ :=
∑

i∈[t] γ
i−1 · σi.

• Decision phase: The verifier engages in the decision phase of (Pprx,Vprx) with access to f .

Complexity parameters. The protocol in Construction 5.5 has the same complexity parameters
as one execution of (Pprx,Vprx) with an added verifier message at the beginning and O(t) verifier
computation in order to compute ŵ and σ.

5.2.1 Round-by-round soundness

We show that the new protocol has round-by-round soundness:

Theorem 5.6. Let (F,L,m,Pprx,Vprx, k, t, ŵ1, . . . , ŵt, σ1, . . . , σt) be as in Construction 5.5. Suppose
that (Pprx,Vprx) has round-by-round soundness error (errprx1 , . . . , errprxk ) and that RS[F,L,m] is (δ, ℓ)-
list decodable.

Then Construction 5.5 is an IOPP for CRS[F,L,m, (ŵ1, σ1), . . . , (ŵt, σt)] that, for proximity δ

has round-by-round soundness error
(
(t−1)·ℓ
|F| , errprx1 (δ), . . . , errprxk (δ)

)
.

Proof. Let Stateprx be the state function of (Pprx,Vprx). We first define a state function and then
prove that it has the required round-by-round soundness error.

0. Initial transcript. We set State(f, (ŵi, σi)i∈[t], ∅) = 1 if and only if f ∈ CRS[F,L,m, (ŵ1, σ1), . . . , (ŵt, σt)].

1. Combination interaction. The verifier samples γ. We set State(f, (ŵi, σi)i∈[t], γ) = 1 if and
only if f ∈ CRS[F,L,m, ŵ, σ].

2. Proximity test rounds. In round i of the proximity test, let tr = (γ, a1, β1, . . . , ai−1, βi−1, ai)
and the verifier chooses βi. We set

State(f, (ŵi, σi)i∈[t], tr∥βi) = Stateprx(f, ŵ, σ, a1, β1, . . . , ai−1, βi−1, ai, βi) .

We now analyze the round-by-round soundness error with respect to the above state function:

1. Combination interaction. If State(f, (ŵi, σi)i∈[t], ∅) = 0 then f /∈ CRS[F,L,m, (ŵ1, σ1), . . . , (ŵt, σt)].
If ∆(f,RS[F,L,m]) ≥ δ then f /∈ CRS[F,L,m, ŵ, σ], and so State(f, (ŵi, σi)i∈[t], γ) = 0 re-
gardless of γ. Suppose then that ∆(f,RS[F,L,m]) ≤ δ. Fix u ∈ Λ(RS[F,L,m], f, δ). Since
∆(f,CRS[F,L,m, ŵ, σ]) ≥ δ, there exists i ∈ [t] so that∑

b∈{0,1}m
ŵi(û(b), b) ̸= σi .
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Thus, by the polynomial identity lemma:

Pr
γ

 ∑
b∈{0,1}m

ŵ(û(b), b) = σ

 = Pr
γ

∑
i∈[t]

γi−1 ·

 ∑
b∈{0,1}m

ŵi(û(b), b)

 =
∑
i∈[t]

γi−1 · σi

 ≤ t− 1

|F|
.

We get the bound (t−1)·ℓ
|F| by taking a union over the list-decoding of f over RS[F,L,m].

2. Proximity test rounds. If i = 1, then State(f, (ŵi, σi)i∈[t], γ) = 0 implies that f /∈ CRS[F,L,m, ŵ, σ],
and so Stateprx(f, ŵ, σ, ∅) = 0. Otherwise, State(f, (ŵi, σi)i∈[t], γ, a1, β1, . . . , ai−1, βi−1) = 0 im-
plies Stateprx(f, ŵ, σ, a1, β1, . . . , ai−1, βi−1) = 0, and so

Pr
βi

[
State(f, (ŵi, σi)i∈[t], γ, a1, β1, . . . , ai−1, βi−1)ai, βi)

]
= Pr

βi

[Stateprx(f, ŵ, σ, a1, β1, . . . , ai−1, βi−1, ai, βi)] ≤ errprxi (δ) .

3. Verifier decision. The verifier rejects if Vprx rejects. If State(f, (ŵi, σi)i∈[t], γ, a1, β1, . . . , ak, βk) =
0 then Stateprx(f, ŵ, σ, a1, β1, . . . , ak, βk) = 0 and so Vprx rejects.
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6 Implementation and experiments

We evaluate the performance of WHIR as a proximity test for constrained Reed–Solomon codes
and also for (standard) Reed–Solomon codes. In the case of constrained Reed–Solomon codes,
we compare WHIR with BaseFold [ZCF24]. In the case of (standard) Reed–Solomon codes, we
compare WHIR with FRI [BBHR18] and STIR [ACFY24]. To do so, we compile the IOPPs into
an argument system via the [BCS16] transformation, and evaluate the resulting arguments with
regards to: (i) argument size; (ii) prover time; (iii) verifier time; and (iv) verifier hash complexity.
Further, we compare the compiled argument resulting from WHIR with several (univariate and
multilinear) polynomial commitment schemes.

6.1 Implementation

We implemented WHIR in Rust, by leveraging the arkworks [ark] ecosystem for developing zk-
SNARKs. Our implementation and scripts are available at the repository https://github.com/
WizardOfMenlo/whir/; later they will be integrated into arkworks.
Organization. We implement WHIR as an IOPP for multi-constrained Reed–Solomon codes
of the form CRS[F,L,m, (Z · eq(z1, ·), σ1), . . . , (Z · eq(zt, ·), σt)], for t ∈ N, z1, . . . ,zt ∈ Fm, and
σ1, . . . , σt ∈ F. This is a more restricted class of constrained Reed–Solomon codes than those
that our main protocol supports, but is sufficient for the comparisons that we consider. We leave
extending the implementation to support more general constrained Reed–Solomon codes to future
work. The IOPP is then compiled into an argument via the [BCS16] transformation.
Cryptographic primitives. We use arkworks [ark] for several underlying cryptographic primi-
tives. We use the crate ark-ff for field arithmetic, ark-poly for Fast Fourier Transforms, nimue
for the Fiat–Shamir transformation (which uses keccak as sponge, and blake3 for the proof-of-
work), and ark-crypto-primitives for Merkle commitment schemes. We use the crates keccak
and blake3 for the hash functions used in the Merkle commitment schemes.
Optimizations. Our implementation of WHIR should be considered as a partial optimized ref-
erence implementation. We leveraged optimizations such as path pruning for Merkle commitment
schemes (existing in arkworks) and sequential Lagrange evaluations (adapted from [CFFZ24]).
Nonetheless, we believe that there is room for further performance gains (especially on the prover
side) via additional optimizations (e.g., see [Rot24; DT24a; DT24b], which optimize multilinear
polynomial evaluation and sumcheck proving). Further, we provide a performant parallel prover
implementation.

6.2 Parameter choices

In our experiments, given a starting number of variables m and a rate ρ, we select parameters to
instantiate WHIR for a constrained Reed–Solomon code CRS[F,L,m, ŵ, σ]. We detail our parameter
choice next.
Field and evaluation domain choice. We consider two choices for the (base) field F in our
benchmarks: a 192-bit smooth prime field7 and the 64-bit Goldilocks field.8 In both cases we let L
be an arbitrary smooth domain in F with |L| = 2m/ρ.

7We selected F = Fp with p = 264 · 259536638529657107390708680683681617371 + 1 as in [ACFY24].
8That is, F = Fp with p = 232 · 4294967295 + 1.
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Folding parameter. We select a constant folding parameter throughout the whole protocol, and
set this folding parameter to be k = 4.
Soundness. To target λ bits of security we set the round-by-round soundness error of the IOPP
to be 2−λ and let the hash function output used in the BCS transformation to have length 256 bits.

The round-by-round soundness error of the IOPP is computed in three different ways, depending
on which proximity parameter is selected and which conjecture (if any) is used.

• (WHIR-UD) Unique Decoding. In this configuration, we set δ := 1−ρ
2 .

• (WHIR-JB) Johnson Bound. In this configuration, we set δ := 1 − √ρ − η for η :=
√
ρ/20 and

assume Item 1 in Conjecture 4.12 holds.
• (WHIR-CB) Capacity Bound. In this configuration, we set δ := 1− ρ− η for η := ρ/2 and assume

Item 2 in Conjecture 4.12 holds with c1 = c2 = c3 = 1.

To achieve the desired round-by-round soundness error three types of errors have to be bound
(see Section 5.1).
• Errors due to out-of-domain samples. The argument verifier samples challenges from a sufficiently

large extension of the base field, and asks more samples as required.
• Errors due to proximity gaps. The verifier samples challenges from a sufficiently large extension

of the base field, and, if required, performs a sufficiently large proof-of-work to achieve the desired
security level.

• Errors due to queries. The protocol is configured to perform m− log ρ− 3 bits of proof-of-work,
and to perform a sufficient number of queries so that the overall security of this round is above
the required threshold.

Compilation to a SNARG. We compile the IOPP into a SNARG via the BCS transformation
[BCS16]. This requires selecting a hash function for the Merkle commitment scheme and a hash
function for the Fiat–Shamir transformation. We use Blake3 for the Merkle commitment scheme
and SHA3 as the hash function for the Fiat–Shamir transformation.
Comparison. When comparing with other protocols, we make different parameter choices in order
to present fairer comparisons. We discuss these parameter choices in the respective comparison.

6.3 Benchmarks and Results

We ran our benchmarks on an AWS r6a.24xlarge instance with 96 vCPU and 768 GiB of memory
(AMD EPYC 7R13 Processor @ 2.65 GHz), and compiled using rustc 1.82.0-nightly. Our
methodology is the following. First we select a variable-rate pair (m, ρ) with number of variables
m ∈ {218, 220, 222, 224, 226, 228, 230} and rate ρ ∈ {1/2, 1/4, 1/8, 1/16}. We ignore the rate-degree pair
(m, ρ) = (230, 1/16), as our instance ran out of memory while running the argument prover. Further,
in the experiments with Goldilocks as the base field, we ignore pairs where m − log ρ > 32, as
the field does not have a sufficiently large smooth evaluation domain. Having chosen (m, ρ), we
select parameters as detailed in Section 6.2. Given those parameters, we benchmark the argument
prover and argument verifier, collecting: (i) argument size; (ii) prover time; (iii) verifier time; and
(iv) verifier hash complexity.

We present our comparison in the following sections.

• The data collected for comparison of WHIR-UD and WHIR-CB (targeting 100-bits of security)
is presented in Table 2. A graph comparing with BaseFold can be found in Figure 1.
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• The data collected for comparison of WHIR-UD, WHIR-JB, and WHIR-CB (targeting 128-bits
of security) is presented in Table 5. A graph of the comparison can be found in Figure 3.

• The data collected for comparison of FRI, STIR, and WHIR-CB (targeting 128-bits of security)
is presented in Table 3. A graph of the comparison can be found in Figure 2.

• The data collected for comparison of WHIR-CB with Brakedown, Ligero, Greyhound, Hyrax,
PST, and KZG is presented in Table 4.

Additional graphs are available in Appendix B. In all of our following comparisons, we focus on the
case where (m, ρ) = (24, 1/2) and the case where (m, ρ) = (28, 1/2).
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6.3.1 Comparison with BaseFold

We compare WHIR and BaseFold (instantiated with Reed–Solomon codes), as an IOPP for con-
strained Reed–Solomon codes. Both protocols use the Goldilocks field as the base field, targeting
λ = 100 bits of security. In this case, WHIR samples challenges from a quadratic extension of
the base field, and we collected data according to both the unique decoding and conjectured list
soundness settings. We obtained the BaseFold experimental result from [ZCF24], and we remark
that the BaseFold implementation was not optimized for argument size and verifier time. We run
our experiment with 16 threads, to compare prover time to the BaseFold implementation (which
also uses the same number of threads).

WHIR (in both its WHIR-UD and WHIR-CB variants) significantly improves on argument size,
verifier time and prover time compared to BaseFold for every number of variables and rate we
considered.

• On (m, ρ) = (24, 1/2), BaseFold’s arguments are 7.95 MiB, while WHIR-UD’s are 390 KiB and
WHIR-CB’s are 101 KiB, respectively a 20× and 74× improvement. BaseFold verifier in this
instance runs in 24 ms, while WHIR-UD’s runs in 2.39 ms and WHIR-CB’s in 0.61 ms, respectively
a 10× and 39× improvement. BaseFold prover runs in 8.0s while both WHIR-UD and WHIR-CB
run in 3.5s, a 2.3× improvement.

• On (m, ρ) = (26, 1/2),9 BaseFold’s arguments are 9.26 MiB, while WHIR-UD’s are 441 KiB
and WHIR-CB’s are 108 KiB, respectively a 21× and 86× improvement. BaseFold verifier in
this instance runs in 27 ms, while WHIR-UD’s runs in 2.62 ms and WHIR-CB’s in 0.73 ms,
respectively a 10× and 37× improvement. BaseFold prover runs in 32s while WHIR-UD and
WHIR-CB run in 14s, a 2.3× improvement.

We did not compare verifier hash complexity as the BaseFold data we had available did not include
verifier hash complexity. We include a graph of the comparison in Figure 1. Table 2 contains the
full data for WHIR-UD and WHIR-CB at this security level.

9The largest instance on which we had data for BaseFold
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ρ

d
218 220 222 224 226 228 230

Argument size (KiB)

1/2 (249, 76) (296, 86) (340, 93) (390, 101) (441, 108) (489, 116) (544, 123)

1/4 (217, 52) (260, 59) (302, 63) (346, 69) (394, 75) (438, 80) (492, 86)

1/8 (211, 42) (253, 47) (294, 51) (336, 57) (385, 62) (426, 63) -

1/16 (212, 36) (254, 41) (296, 44) (338, 48) (388, 54) (427, 58) -

Verifier time (ms)

1/2 (1.44, 0.4) (1.78, 0.49) (2.01, 0.55) (2.39, 0.61) (2.62, 0.66) (3.02, 0.73) (3.22, 0.77)

1/4 (1.22, 0.28) (1.55, 0.33) (1.74, 0.36) (2.11, 0.41) (2.31, 0.43) (2.7, 0.5) (2.87, 0.52)

1/8 (1.18, 0.24) (1.51, 0.27) (1.67, 0.29) (2.06, 0.34) (2.23, 0.36) (2.61, 0.39) -

1/16 (1.16, 0.21) (1.53, 0.24) (1.69, 0.26) (2.05, 0.29) (2.2, 0.32) (2.59, 0.36) -

Verifier hashes (×103)
1/2 (3.8, 1.2) (5.2, 1.6) (6.1, 1.8) (7.9, 2.1) (8.9, 2.3) (11, 2.5) (12, 2.7)

1/4 (3.5, 0.92) (4.8, 1.1) (5.7, 1.2) (7.3, 1.5) (8.1, 1.6) (10, 1.8) (11, 1.9)

1/8 (3.6, 0.78) (5, 0.94) (5.7, 1) (7.3, 1.2) (8.1, 1.4) (9.9, 1.4) -

1/16 (3.7, 0.68) (5.2, 0.84) (5.9, 0.91) (7.5, 1.1) (8.3, 1.2) (10, 1.3) -

Prover time (s)

1/2 (0.31, 0.31) (1.3, 1.3) (5.8, 5.9) (25, 26) (110, 110) (460, 470) (1900, 2000)

1/4 (0.49, 0.5) (2.2, 2.3) (9.6, 9.9) (42, 44) (180, 190) (790, 820) (3400, 3500)

1/8 (0.9, 0.91) (4.2, 4.3) (18, 18) (79, 80) (350, 360) (1500, 1500) -

1/16 (1.8, 1.8) (8.1, 8.2) (35, 35) (150, 160) (690, 700) (2900, 3000) -

1/2 (0.09, 0.07) (0.2, 0.21) (0.77, 0.74) (2.8, 2.8) (11, 11) (42, 42) (170, 170)

1/4 (0.11, 0.11) (0.38, 0.37) (1.2, 1.2) (4.7, 4.7) (18, 19) (74, 74) (290, 300)

1/8 (0.18, 0.16) (0.65, 0.62) (2.2, 2.3) (8.5, 8.6) (35, 35) (140, 140) -

1/16 (0.33, 0.33) (1.1, 1.2) (4.2, 4.2) (16, 16) (67, 67) (270, 270) -

Table 2: Costs of WHIR-UD and WHIR-CB over a quadratic extensions of Goldilocks, targeting
λ = 100 bits of security. Prover time includes single threaded (top) and multithreaded measurement
(on 32 threads, bottom). For all metrics, lower is better.
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Figure 1: Comparison of BaseFold and WHIR for ρ = 1/2. BaseFold: ×, WHIR-UD: ▲, WHIR-CB:
•. Prover time is displayed with logarithmic scaling. BaseFold’s implementation is unoptimized.
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6.3.2 Comparison with FRI and STIR

We compare WHIR to STIR and FRI as an IOPP for (unconstrained) Reed–Solomon codes. In
this case, the protocols run with an identical 192-bit prime field, targeting λ = 128 bits of security.
WHIR is run with conjectured list soundness settings. We obtained the STIR and FRI benchmarks
from [ACFY24, Table 2].10 Our experiments in this subsection are singlethreaded.

WHIR significantly improves on FRI in argument size, verifier hash complexity, and verification
time. Further, WHIR improves on STIR, slightly in argument size and significantly in verifier time
(while maintaining the same hash complexity). WHIR’s prover is slightly slower than FRI and
comparable to STIR.

• On (m, ρ) = (24, 1/2):

– Argument size. FRI’s arguments are 306 KiB, STIR’s are 160 KiB, and WHIR-CB’s are 157
KiB. Thus, WHIR improves on FRI’s arguments by a factor of 1.95×, and on STIR’s by 1.01×.

– Verifier time. FRI’s verifier runs in 3.9ms, STIR’s in 3.8ms, and WHIR-CB’s in 1.0ms. Thus,
WHIR improves on FRI’s verifier by a factor of 3.9×, and on STIR’s by 3.8×.

– Verifier hash complexity. FRI’s verifier performs 5.6 khashes, while STIR’s and WHIR-CB’s
perform 2.7 khashes, a roughly 2.1× improvement.

– Prover time. FRI’s prover runs in 28s, STIR’s in 36s and WHIR-CB’s in 34s. Thus, WHIR’s
prover is slower than FRI’s by a factor of 1.21×, and faster than STIR’s by a factor of 1.05×.

• On (m, ρ) = (28, 1/2):

– Argument size. FRI’s arguments are 430 KiB, STIR’s are 189 KiB, and WHIR-CB’s are 178
KiB. Thus, WHIR improves on FRI’s arguments by a factor of 2.42×, and on STIR’s by 1.06×.

– Verifier time. FRI’s verifier runs in 5.5ms, STIR’s in 4.3ms, and WHIR-CB’s in 1.2ms. Thus,
WHIR improves on FRI’s verifier by a factor of 4.6×, and on STIR’s by 3.6×.

– Verifier hash complexity. FRI’s verifier performs 8.5 khashes, while STIR’s and WHIR-CB’s
perform 3.4 khashes, a 2.5× improvement.

– Prover time. FRI’s prover runs in 420s, STIR’s in 640s, and WHIR-CB’s in 660s. Thus,
WHIR’s prover is slower than FRI’s by a factor of 1.57×, and slower than STIR’s by a factor
of 1.03×.

We include a graph of the comparison at Figure 2. Table 3 contains the full data for FRI, STIR,
and WHIR-CB at this security level.

10The previous experiments used a constant proof-of-work of 22 bits, while our implementation uses m− log ρ− 3
bits of proof-of-work.

49



ρ

d
218 220 222 224 226 228 230

Argument size (KiB)

1/2 (163, 114, 119) (211, 131, 133) (257, 143, 143) (306, 160, 157) (371, 172, 165) (430, 189, 178) (494, 200, 187)

1/4 (99, 73, 81) (129, 87, 89) (154, 94, 98) (177, 107, 106) (211, 114, 114) (249, 128, 122) (277, 136, 128)

1/8 (76, 58, 65) (96, 69, 70) (118, 75, 79) (134, 86, 84) (157, 93, 91) (184, 104, 99) (204, 110, 105)

1/16 (62, 50, 55) (77, 61, 62) (95, 66, 68) (107, 76, 74) (127, 82, 80) (147, 92, 87) -

Verifier time (ms)

1/2 (2.0, 2.9, 0.7) (2.6, 3.2, 0.8) (3.2, 3.4, 0.9) (3.9, 3.8, 1.0) (4.7, 3.9, 1.1) (5.5, 4.3, 1.2) (6.4, 4.4, 1.3)

1/4 (1.2, 1.7, 0.5) (1.6, 2.0, 0.6) (1.9, 2.1, 0.6) (2.3, 2.4, 0.7) (2.7, 2.5, 0.8) (3.2, 2.8, 0.9) (3.7, 2.9, 0.9)

1/8 (1.0, 1.2, 0.4) (1.2, 1.5, 0.5) (1.5, 1.6, 0.5) (1.8, 1.9, 0.6) (2.1, 2.0, 0.6) (2.4, 2.2, 0.7) (2.8, 2.3, 0.8)

1/16 (0.8, 1.0, 0.4) (1.0, 1.3, 0.4) (1.2, 1.4, 0.5) (1.4, 1.6, 0.5) (1.7, 1.7, 0.6) (2.0, 1.9, 0.6) -

Verifier hashes (×103)
1/2 (2.5, 1.4, 1.6) (3.5, 1.8, 2) (4.5, 2.2, 2.3) (5.6, 2.6, 2.7) (7.1, 3, 3) (8.5, 3.5, 3.4) (10, 3.8, 3.7)

1/4 (1.7, 1, 1.2) (2.3, 1.3, 1.5) (2.8, 1.5, 1.7) (3.5, 1.8, 1.9) (4.2, 2, 2.1) (5.1, 2.4, 2.4) (5.9, 2.6, 2.6)

1/8 (1.4, 0.84, 1) (1.8, 1.1, 1.2) (2.3, 1.3, 1.4) (2.7, 1.5, 1.6) (3.3, 1.7, 1.8) (3.9, 2, 2) (4.5, 2.2, 2.1)

1/16 (1.2, 0.76, 0.89) (1.5, 1, 1.1) (1.9, 1.1, 1.2) (2.2, 1.4, 1.4) (2.7, 1.5, 1.6) (3.2, 1.8, 1.8) -

Prover time (s)

1/2 (1.2, 2.2, 0.42) (3.2, 2.4, 1.8) (9.3, 9.8, 7.8) (28, 36, 34) (97, 150, 150) (420, 640, 660) (1700, 2700, 3200)

1/4 (2.3, 1.1, 0.74) (2.7, 3.9, 3.4) (11, 14, 14) (47, 58, 62) (200, 250, 290) (860, 1100, 1200) (3600, 4800, 5900)

1/8 (1.4, 1.9, 1.5) (5.4, 6.1, 6.6) (22, 26, 28) (93, 110, 120) (400, 480, 560) (1700, 2100, 2500) (7000, 8900, 12000)

1/16 (2.7, 2.9, 2.9) (10, 11, 13) (44, 48, 56) (190, 210, 250) (780, 930, 1100) (3300, 4100, 4900) -

Table 3: Costs of FRI, STIR, WHIR-CB, targeting λ = 128 bits of security over 192-bit prime field.
Prover measurements are single threaded. For all metrics, lower is better.

50



218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
a
sh

es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

20

22

24

26

28

210

212

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

1

2

3

4

5

6

T
im

e
(m

s)

Verifier time

Figure 2: Comparison of FRI, STIR and WHIR for ρ = 1/2. FRI: ×, STIR: •, WHIR-CB: ▲. Prover
time is displayed with logarithmic scaling.
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6.3.3 Comparison with polynomial commitment schemes

When instantiated as an IOPP for constrained Reed–Solomon codewords of the form CRS[F,L,m,Z ·
eq(z, ·), σ], WHIR natively yields a multilinear polynomial commitment (and consequently, a uni-
variate polynomial commitment). We compare WHIR (in this setting) with the following multilinear
polynomial commitment schemes: Brakedown [GLSTW23], Ligero [AHIV17], Greyhound [NS24],
Hyrax [WTSTW18], and PST [PST13]. Further, we chose to also compare with the univariate
polynomial commitment KZG [KZG10]. We compared at both the λ = 100 and λ = 128 secu-
rity levels. For the elliptic curve based schemes, we used the BN254 curve for the 100-bit security
level, and the BLS12_381 curve for the 128-bit security level. We benchmark the implementations
of Brakedown, Ligero, Hyrax and KZG present in arkworks, while the PST implementation used
was in the jellyfish library [jel]. The Greyhound verifier times were provided by the authors of
[NS24].

We find that WHIR-CB achieves significantly faster verification times compared to every poly-
nomial commitment scheme we considered. Notably this includes schemes such as PST and KZG,
which both require a trusted setup and the latter of which only supports univariate polynomial
evaluation queries.

• At the λ = 100 security level, WHIR-CB verifier takes between 0.61ms to 0.29ms (depending
on the selected rate), achieving a speedup of between 5700×-12000× against Brakedown, 1200×-
2500× against Ligero, 164×-345× against Hyrax, 13×-27× against PST and 4.0×-8.3× against
KZG.

• At the λ = 128 security level, WHIR-CB verifier takes between 1.4ms to 0.7ms (depending on
the selected rate), achieving a speedup of between 2600×-5300× against Brakedown, 535×-1100×
against Ligero, 93×-186× against Greyhound, 108×-216× against Hyrax, 7×-14× against PST
and 2.6×-5.2× against KZG.

Verifier time (ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR-1/2 WHIR-1/16
λ = 100 3500 733 - 100 7.81 2.42 0.61 0.29
λ = 128 3680 750 130 151 9.92 3.66 1.4 0.6

Table 4: Comparison of WHIR-CB’s verifier time versus other polynomial commitment schemes, on
24 variables. For the KZG degree 224 is used instead.
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6.3.4 Comparison of UD, JB, CB

We also compared the three versions of WHIR (as an IOPP for constrained Reed–Solomon codes):
WHIR-UD (Unique Decoding), WHIR-JB (Johnson Bound), WHIR-CB (Capacity Bound) to mea-
sure the impact of different security assumptions on the protocol’s efficiency. In this case, we use the
Goldilocks field as the base field, targeting λ = 128 bits of security. The protocol samples challenges
from a cubic extensions of the base field, and we run in all three mentioned soundness settings. As
expected, stronger assumptions lead to a more efficient protocol.

• On (m, ρ) = (24, 1/2):

– Argument size. WHIR-UD’s argument are 621 KiB, WHIR-JB’s are 299 KiB, and WHIR-CB’s
are 156 KiB.

– Verifier time. WHIR-UD’s verifier runs in 4.8ms, WHIR-JB’s in 2.5ms, and WHIR-CB’s in
1.4ms.

– Verifier hash complexity. WHIR-UD’s verifier performs 10 khashes, while WHIR-JB’s performs
5.1 khashes and WHIR-CB’s perform 2.7 khashes.

– Prover time. When run on a single thread, WHIR-UD’s prover runs in 49s, WHIR-JB’s in
50s and WHIR-CB’s in 47s. When running on 32 threads, WHIR-UD’s prover runs in 4s,
WHIR-JB’s in 4.1s and WHIR-CB’s in 3.9s.

• On (m, ρ) = (28, 1/2):

– Argument size. WHIR-UD’s argument are 770 KiB, WHIR-JB’s are 339 KiB, and WHIR-CB’s
are 177 KiB.

– Verifier time. WHIR-UD’s verifier runs in 6.7ms, WHIR-JB’s in 2.9ms, and WHIR-CB’s in
1.6ms.

– Verifier hash complexity. WHIR-UD’s verifier performs 14 khashes, while WHIR-JB’s performs
6.4 khashes and WHIR-CB’s perform 3.4 khashes.

– Prover time. When run on a single thread, WHIR-UD’s prover runs in 860s, WHIR-JB’s in
890s and WHIR-CB’s in 830s. When running on 32 threads, WHIR-UD’s prover runs in 62s,
WHIR-JB’s in 63s and WHIR-CB’s in 61s.

We include a graph of the comparison at Figure 3. Table 5 contains the full data for WHIR-UD,
WHIR-JB, WHIR-CB at this security level.
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ρ

d
218 220 222 224 226 228 230

Argument size (KiB)

1/2 (399, 228, 120) (481, 252, 133) (541, 274, 144) (621, 299, 156) (689, 317, 165) (770, 339, 177) (848, 358, 187)

1/4 (345, 151, 80) (419, 168, 89) (475, 184, 97) (548, 200, 106) (612, 215, 114) (692, 230, 123) (766, 244, 128)

1/8 (336, 120, 65) (408, 134, 71) (462, 150, 79) (534, 162, 86) (600, 174, 91) (675, 187, 99) -

1/16 (337, 104, 56) (407, 117, 62) (465, 128, 69) (535, 140, 74) (603, 150, 82) (677, 163, 87) -

Verifier time (ms)

1/2 (3.0, 1.8, 0.9) (3.7, 2.1, 1.1) (4.1, 2.3, 1.2) (4.8, 2.5, 1.4) (5.4, 2.7, 1.4) (6.1, 2.9, 1.6) (6.6, 3.1, 1.7)

1/4 (2.5, 1.2, 0.6) (3.1, 1.3, 0.7) (3.5, 1.5, 0.8) (4.2, 1.6, 0.9) (4.6, 1.8, 1.0) (5.4, 2.0, 1.1) (5.8, 2.1, 1.2)

1/8 (2.4, 0.9, 0.4) (3.0, 1.1, 0.5) (3.4, 1.2, 0.6) (4.1, 1.3, 0.7) (4.4, 1.4, 0.8) (5.2, 1.6, 0.9) -

1/16 (2.4, 0.8, 0.4) (3.0, 0.9, 0.4) (3.3, 1.0, 0.5) (4.0, 1.1, 0.6) (4.4, 1.2, 0.6) (5.2, 1.4, 0.8) -

Verifier hashes (×103)
1/2 (4.8, 2.9, 1.6) (6.7, 3.6, 2) (8, 4.3, 2.3) (10, 5.1, 2.7) (12, 5.6, 3) (14, 6.4, 3.4) (16, 7, 3.7)

1/4 (4.4, 2.1, 1.2) (6.3, 2.7, 1.5) (7.4, 3, 1.6) (9.6, 3.6, 1.9) (11, 4, 2.1) (13, 4.5, 2.4) (15, 4.9, 2.6)

1/8 (4.6, 1.8, 1) (6.5, 2.3, 1.2) (7.5, 2.6, 1.4) (9.7, 3, 1.6) (11, 3.3, 1.7) (14, 3.8, 2) -

1/16 (4.9, 1.6, 0.9) (6.8, 2.1, 1.1) (7.8, 2.3, 1.2) (10, 2.7, 1.4) (11, 2.9, 1.6) (14, 3.4, 1.8) -

Prover time (s)

1/2 (0.64, 0.66, 0.55) (2.7, 2.8, 2.6) (12, 12, 11) (49, 50, 47) (210, 210, 200) (860, 890, 830) (3700, 3800, 3600)

1/4 (0.88, 0.89, 0.84) (4, 4, 4) (17, 17, 17) (74, 75, 74) (320, 320, 320) (1400, 1400, 1400) (5900, 6000, 5900)

1/8 (1.5, 1.5, 1.6) (7.1, 7.1, 7.1) (30, 31, 31) (130, 130, 130) (590, 580, 580) (2500, 2500, 2500) -

1/16 (2.9, 3, 3) (13, 13, 13) (58, 58, 58) (250, 250, 250) (1100, 1100, 1100) (4800, 4800, 4800) -

1/2 (0.15, 0.13, 0.11) (0.33, 0.32, 0.29) (1.1, 1.1, 1) (4, 4.1, 3.9) (16, 16, 15) (62, 63, 61) (250, 260, 250)

1/4 (0.17, 0.16, 0.14) (0.48, 0.5, 0.49) (1.7, 1.7, 1.7) (6.5, 6.5, 6.5) (26, 26, 26) (100, 100, 100) (420, 430, 420)

1/8 (0.24, 0.24, 0.21) (0.83, 0.82, 0.82) (3, 3, 3) (12, 12, 11) (47, 47, 47) (190, 190, 190) -

1/16 (0.44, 0.41, 0.4) (1.5, 1.5, 1.4) (5.6, 5.6, 5.6) (22, 22, 22) (90, 90, 90) (370, 360, 360) -

Table 5: Costs of WHIR-UD, WHIR-JB and WHIR-CB over a cubic extension of the Goldilocks
field, targeting λ = 128 bits of security. Prover time includes single threaded (top) and multithreaded
measurement (on 32 threads, bottom). For all metrics, lower is better.
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Figure 3: Comparison of WHIR for ρ = 1/2. WHIR-UD: ▲, WHIR-JB: ▲, WHIR-CB: ▲. Prover time
is displayed with logarithmic scaling.
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7 Compiling Σ-IOP to IOPs

We show how to compile a rich family generalizing polynomial IOPs into IOPs that support a certain
“sumcheckable” structure into standard IOPs.

• In Section 7.1 we define a general class of protocols that we call F-IOPs, and use it to define the
class of Σ-IOPs.

• In Section 7.2 we show how to transform any linear Σ-IOP into a (standard) IOP using a proximity
test for multi-constrained Reed–Solomon tests (such as WHIR when adapted as in Section 5.2).

• In Section 7.3 we show how to transform any d-Σ-IOP into a linear Σ-IOP, thus strengthening
the above transformation to work for d-Σ-IOPs.

7.1 F-IOPs and Σ-IOPs

We consider F-IOPs, which are IOPPs that support a rich class of queries, from which we recover
poly-IOP as a special subclass. F-IOPs are a specialization of IOP with special queries as introduced
in [BCG20], in which we restrict the verifier to be non-adaptive and we do not consider holography.

Definition 7.1. Consider the following ingredients:

• an alphabet Σ;
• a number of rounds kpoly;
• for i ∈ [kpoly] a number of oracles si ∈ N;
• for i ∈ [kpoly], j ∈ [si]:

– an oracle set Oi,j;
– a query set Wi,j;
– an answer function Fi,j : Oi,j ×Wi,j → Σ.

Let Spec := (Σ, kpoly, (si)i∈[kpoly], ((Oi,j ,Wi,j ,Fi,j)j∈[si])i∈[kpoly]). (PIOP,VIOP) is a public-coin F-IOP
with specification Spec for a relation R proximity error β if the following properties hold.

• (Perfect) Completeness. For every (x,y,w) ∈ R,

Pr
α1,...,αk

 Vy,π1,...,πk
IOP (x, α1, . . . , αk) = 1

(f̂1,j)j∈[s1] ← PIOP(x,y,w)

π1 := ((F1,j(f̂1,j , ŵ))ŵ∈W1,j
)j∈[ℓ1]

...
(f̂k,j)j∈[sk] ← PIOP(x,y,w, α1, . . . , αk)

πk := ((Fk,j(f̂k,j , ŵ))ŵ∈Wk,j
)j∈[sk]

 = 1 .

• Soundness. For every (x,y) /∈ L(R) and unbounded malicious prover P̃,

Pr
α1,...,αk

 Vy,π1,...,πk
IOP (x, α1, . . . , αk) = 1

(f̂1,j)j∈[s1] ← P̃

π1 := ((F1,j(f̂1,j , ŵ))ŵ∈W1,j
)j∈[s1]

...
(f̂k,j)j∈[ℓk] ← P̃(α1, . . . , αk)

πk := ((Fk,j(f̂k,j , ŵ))ŵ∈Wk,j
)j∈[sk]

 ≤ β(x,y) .
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Specializing F-IOPs to the query sets that are of interest to us, we obtain Σ-IOPs.

Definition 7.2. Let Spec := (Σ, kpoly, (si)i∈[kpoly], ((Oi,j ,Wi,j ,Fi,j)j∈[si])i∈[kpoly]). A d-Σ-IOP over a
field F is a F-IOP with specification Spec where Σ = F and for i ∈ [k], j ∈ [si], there exists mi,j

such that:

Oi,j = F<2[X1, . . . , Xmi,j ]

Wi,j ⊆ {ŵ ∈ F[Z,X1, . . . , Xmi,j ] : degZ ŵ < d} ,

Fi,j(f̂ , ŵ) =
∑

b∈{0,1}mi,j

ŵ(f̂(b), b) .

We refer to 2-Σ-IOPs as linear Σ-IOPs.11

Remark 7.3. A multilinear PIOPP, in the standard sense, is simply a linear Σ-IOP where the
query set is restricted to be Wi,j := {Z · eq(r, ·) : r ∈ Fmi,j}. A univariate PIOPP instead is a
further restriction where Wi,j := {Z · eq(pow(r,mi,j), ·) : r ∈ F}.

7.2 Linear Σ-IOPs to IOPPs

We show how to compile linear Σ-IOPs (Definition 7.2) into IOPPs using an IOPP for constrained
Reed–Solomon codes (such as the WHIR protocol Construction 5.1). For simplicity, we assume
that all the polynomials sent in the input linear Σ-IOP have the same number of variables. This
is without loss of generality, as oracles with fewer variables can be corrected, see, for example,
[CBBZ23, Remark 3.2].

Construction 7.4. Consider the following ingredients and notation:
• a field F
• a number of variables m ∈ N;
• a kpoly-round linear Σ-IOP (Ppoly,Vpoly) for a relation R where in round i, the prover sends si

polynomials for a total of spoly =
∑

i∈[kpoly] si, and with query sets

Wi,j ⊆ {ŵ : F[Z,X1, . . . , Xm] : degZ ŵ < 2} ;

• let d := 1 + maxi,j,ŵ∈Wi,j
deg ŵ;

• an evaluation domain L ⊆ F with |L| ≥ 2m;
• a kprx-round IOPP of proximity (Pprx,Vprx) for multi-constrained Reed–Solomon codes CRS[F,L,m, ·, ·]

that accepts as input a list of pairs of the form (ŵ, σ) with degZ ŵ < 2 and deg ŵ < d.12

The protocol proceeds as follows:

• Initial inputs: The honest prover receives as input (x,y,w) ∈ R. The verifier receives x as
input and oracle access to y.

• Poly-IOP interaction phase: For i = 1, . . . , kpoly:
11This is because in that case one can write any query ŵ(Z,X) = â(X) · Z + ĉ(X) for â, ĉ ∈ F[X].
12See Section 5.2 for how to transform WHIR (or any other IOPP for constrained Reed–Solomon codes) into an

IOPP for multi-constrained Reed–Solomon codes.
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1. Poly-IOP prover message: The prover send fi,1, . . . , fi,si , where fi,j : L → F. In the honest
case, the prover derives f̂i,1, . . . , f̂i,si ← Ppoly(x,y,w, α1, . . . , αi−1), and, for j ∈ [si], let fi,j be
the evaluation of f̂i,j on L.

2. Out-of-domain sample: The verifier sends zi ← F. Let zi := pow(zi,m).
3. Out-of-domain reply: The prover sends field elements (yi,j)j∈[si]. In the honest case, yi,j =

f̂i,j(zi).
4. Poly-IOP verifier message: The verifier samples and sends αi ← {0, 1}ri where ri is the

number of random bits sent by Vpoly in round i.

• Send query results: The prover sends arrays of field elements (Ai,j)i∈[kpoly],j∈[si]. In the honest
case, the prover simulates the execution of

V
y,(f̂i,j)i∈[kpoly],j∈[si]

poly (x, α1, . . . , αkpoly) .

For every i ∈ [kpoly], j ∈ [si], the prover sets Qi,j ⊆ F<d[X1, . . . , Xm] for the set of queries made
by Vpoly to f̂i,j . The prover defines Q := ∪i∈[kpoly],j∈[si]Qi,j ∪ {Z · eq(zi, ·)} and sets Ai,j [ŵ] :=∑

b∈{0,1}m ŵ(f̂i,j(b), b) for ŵ ∈ Q.

• Constrained Reed–Solomon interaction phase:

1. Combination randomness: The verifier samples and sends γ ← F. For i ∈ [kpoly] and
j ∈ [si], let γi,j := γj−1+

∑
ℓ<i si .

2. Interaction phase: The verifier defines Q as the prover does in Construction 7.4, and parses
Q := {ŵ1, . . . , ŵq}. Note that we order Q so that, for i ∈ [kpoly], ŵi = Z · eq(zi, ·) matches
the out of domain samples sampled in Item 2. For k ∈ [q] the verifier parses ŵk(Z,X) =
Z · âk(X) + ĉk(X) (which is possible since degZ ŵk < 2), and the verifier sets

σk :=
∑

i∈[kpoly],j∈[si]

γi,j ·Ai,j [ŵk]

ŵ′k(Z,X) := Z · âk(X) +
∑

i∈[kpoly],j∈[si]

γi,j · ĉk(X) .

Run the interaction phase of the constrained Reed–Solomon proximity test (Pprx,Vprx) for
the code CRS[F,L,m, ((ŵ′k, σk))k∈[q]]. The honest prover acts according to the polynomial ĝ
defined as

ĝ(X) :=
∑

i∈[kpoly],j∈[si]

γi,j · f̂i,j(X) .

• Decision phase:

1. Out-of-domain sample consistency: The verifier checks that Ai,j [ŵi] = yi,j for every
i ∈ [kpoly] and j ∈ [si].

2. Constrained Reed–Solomon decision phase: The verifier checks that Vprx accepts in its
decision phase, answering a query z ∈ L made by Vprx to its input codeword g : L → F by
querying the virtual function

g(z) :=
∑

i∈[kpoly],j∈[si]

γi,j · fi,j(z) .
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3. PIOP-Verifier decision: The verifier checks that V
y,(f̂i,j)i∈[kpoly],j∈[si]

poly (x, α1, . . . , αkpoly) = 1,
answering queries to y by querying y directly, and answering a query ŵ ∈ Q to f̂i,j with Ai,j [ŵ]
(and rejecting if any query ŵ /∈ Q).

Complexity parameters. We analyze the complexity measures of Construction 7.4:

• Rounds. The protocol has O(kpoly + kprx) rounds.

• Proof length. The oracle proof length (in elements of F) is O(lprx + spoly · |L|), while the non-oracle
proof length is O(spoly · qpoly,π). The total proof length is then O(lprx + spoly · (|L|+ qpoly,π)).

• Input query complexity. The verifier makes qpoly,y queries to its oracle input y.

• Proof query complexity. The total proof query complexity is O(spoly · qprx,f + qprx,π).

• Verifier complexity. The verifier running time is O(vtpoly + vtprx) where vtpoly is the running time
of the PIOP verifier and vtprx is the running time of the IOPP verifier.

7.2.1 Round-by-round knowledge soundness

We analyze the round-by-round knowledge soundness error of the IOPP resulting from Construc-
tion 7.4.

Theorem 7.5. Consider (F,m, (Ppoly,Vpoly,R, kpoly, spoly, (si), (Q)i,j), d,L, (Pprx,Vprx, kprx)) as in Con-
struction 7.4. Fix δ ∈ (0, 1) and suppose the following:

• (Ppoly,Vpoly) has round-by-round knowledge soundness error (errpoly1 , . . . , errpolykpoly
) with extraction

time etpoly;
• (Pprx,Vprx) has round-by-round soundness error (errprx1 , . . . , errprxkprx);
• the function Gen(ℓ;α) = (1, α, . . . , αℓ−1) is a proximity generator with mutual correlated agreement

for the code RS[F,L,m] with bound B⋆ and error err⋆;
• δ < B⋆;
• the code CRS := RS[F,L,m] is (ℓ, δ)-list decodable with list-decoding time etRS.
• the interleaved code CspolyRS is (ℓspoly , δ)-list decodable.

The protocol derived from Construction 7.4 is an IOPP for R with extraction time O(etpoly + etRS +
ℓ · 2m) and round-by-round knowledge soundness error ((εouti , εpiopi )i∈[kpoly], ε

com, (εprxi )i∈[kprx]) where:

• εouti ≤
si·2m·ℓ2
2·|F| ;

• εpiopi ≤ errpolyi (x,y);

• εcom ≤ err⋆(CRS, spoly, δ) +
(spoly−1)·ℓspoly

|F| ;
• εprxi ≤ errprxi (δ).

Proof. Let Statepoly and Epoly be the state function and extractor of the PIOP scheme (Ppoly,Vpoly),
and Stateprx be the state function of the IOPP. We first prove a lemma showing that list-decoding
algorithms for Reed–Solomon codes imply list-decoding algorithms for constrained Reed–Solomon
codes. We then define the state function for our protocol and conclude by bounding the round-by-
round knowledge soundness errors derived using this state function.
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Lemma 7.6. Let C := RS[F,L,m] be a Reed–Solomon code. Suppose that C is (δ, ℓ)-list decodable
and that ERS is an extractor that list-decodes a codeword of distance at most δ from C in time at
most etRS.

For any z ∈ Fm, σ ∈ F, there exists an extractor ECRS that list-decodes a codeword of distance
at most δ from CRS[F,L,m,Z · eq(z, ·), σ] in time etRS +O(ℓ · 2m).

Proof. Consider the following extractor:

ECRS(f):
1. Compute Λ := ERS(f).
2. Return {u ∈ Λ : û(z) = σ}.

The running time of the extractor is etRS +O(ℓ · 2m) as claimed. It is also clear that the extractor
only returns codewords in CRS[F,L,m, eq(z, ·), σ], and since for every f : L → F,

Λ(CRS[F,L,m, eq(z, ·), σ], f, δ) ⊆ Λ(C, f, δ) ,

the results follows.

Remark 7.7. Lemma 7.6 can be generalized to an arbitrary constrained Reed–Solomon codes
CRS[F,L,m, ŵ, σ] , at an increase of the extractor running time to etRS +O(ℓ · 2m · |ŵ|), where |ŵ|
denotes the cost to evaluate ŵ at a point on the binary hypercube.

The state function and the extractor. Define the following codes

CRS := RS[F,L,m]

C(i,j)CRS := CRS[F,L,m,Z · eq(zi, ·), yi,j ]
CCRS := CRS[F,L,m, ((ŵ′k, σk))k∈[q]] .

We now define the state function and extractor:

0. Initial transcript: Given an instance x and an implicit input y we set State(x,y, ∅) =
Statepoly(x,y, ∅).

1. Out-of-domain sample: At this stage the transcript has the form

tr =

(
((fℓ,1, . . . , fℓ,sℓ), zℓ, (yℓ,1, . . . , yℓ,sℓ), αℓ)ℓ<i

(fi,1, . . . , fi,si)

)
.

The verifier chooses zi ← F.

• State function: We set State(x,y, tr∥zi) = 1 if and only if at least one of the following holds:

(a) Multiple consistent codewords: There exist ℓ ≤ i and j ∈ [si] with |Λ(C(i,j)CRS , fi,j , δ)| > 1.
(b) Previous rounds accepting: There exist codewords (uℓ,j)ℓ∈[i−1],j∈[sℓ] such that:

i. uℓ,j ∈ Λ(C(ℓ,j)CRS , fℓ,j , δ).
ii. Statepoly(x,y, ((uℓ,j)j∈[sℓ], αℓ)ℓ<i) = 1.

• Extractor: the extractor E(x,y, tr) outputs ⊥.
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2. Poly-IOP verifier message: At this stage the transcript has the form

tr =

(
((fℓ,1, . . . , fℓ,sℓ), zℓ, (yℓ,1, . . . , yℓ,sℓ), αℓ)ℓ<i

(fi,1, . . . , fi,si), zi, (yi,1, . . . , yi,si)

)
.

The verifier chooses αi ← {0, 1}ri .

• State function: We set State(x,y, tr∥αi) = 1 if and only if either of the following hold:

(a) Multiple consistent codewords: There exist ℓ ≤ i and j ∈ [sℓ] with |Λ(C(ℓ,j)CRS , fℓ,j , δ)| > 1.
(b) Rounds are accepting: There exist codewords (uℓ,j)ℓ∈[i],j∈[sℓ] such that:

i. uℓ,j ∈ Λ(C(ℓ,j)CRS , fℓ,j , δ).
ii. Statepoly(x,y, ((uℓ,j)j∈[sℓ], αℓ)ℓ∈[i]) = 1.

• Extractor: The extractor E(x,y, tr) proceeds as follows:

(a) For ℓ ≤ i and j ∈ [sℓ], the extractor computes Λℓ,j := Λ(C(ℓ,j)CRS , fℓ,j , δ) := ECRS(fℓ,j), and
let uℓ,j be an arbitrary codeword in Λℓ,j (the extractor outputs ⊥ if no such codeword
exists).

(b) Compute w := Epoly(x,y, ((ûℓ,j)j∈[sℓ], αℓ)ℓ<[i], ûi,j) and output w.

3. Combination randomness: At this stage the transcript has the form

tr =

(
((fi,1, . . . , fi,si), zi, (yi,1, . . . , yi,si), αi)i≤kpoly

(Ai,j)i∈[kpoly],j∈[si]

)
.

The verifier chooses γ ← F. Here, and hereafter, for i ∈ [kpoly] and j ∈ [si], let γi,j := γj−1+
∑

ℓ<i si ,
let Q := {ŵ1, . . . , ŵq}, and set g :=

∑
i,j γi,j · fi,j . For k ∈ [q], we parse ŵk(Z,X) = Z · âk(X) +

ĉk(X) and set:

ŵ′k(Z,X) := Z · âk(X) +
∑
i,j

γi,j · ĉk(X)

σk :=
∑
i,j

γi,j ·Ai,j [zk] .

• State function: We set State(x,y, tr∥γ) = 1 if all of the following hold

(a) Rounds are accepting: Vpoly accepts given access to y and given query answers according
to (Ai,j).

(b) Out-of-domain consistency: For each i ∈ [kpoly], j ∈ [si] it holds that Ai,j [zi] = yi,j .
(c) Proximity claim: ∆(g, CCRS) ≤ δ.

• Extractor: The extractor E(x,y, tr) outputs ⊥.

4. Proximity test: At this stage the transcript has the form

tr =

(
((fi,1, . . . , fi,si), zi, (yi,1, . . . , yi,si), αi)i≤kpoly

(Ai,j)i∈[kpoly],j∈[si], γ, (πℓ, αprx,ℓ)ℓ<t, πt

)
.

The verifier chooses αprx,i.
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• State function: We set State(x,y, tr∥αprx,i) = 1 if all of the following hold:

(a) Rounds are accepting: Vpoly accepts given access to y and given query answers according
to (Ai,j).

(b) Out-of-domain consistency: For each i ∈ [kpoly], j ∈ [si] it holds that Ai,j [zi] = yi,j .
(c) Proximity round-by-round: Stateprx(g, trprx) = 1, where trprx = (πℓ, αprx,ℓ)ℓ<t∥πi.

• Extractor: The extractor E(x,y, tr) outputs ⊥.

Bounding the errors. We now bound the round-by-round soundness errors based on the state
function described above. As with the definition of the state function, we separately bound the
probability of the state flipping for each partial transcript length.

1. Out-of-domain sample: We show that if State(x,y, tr) = 0, then

εouti = Pr [State(x,y, tr∥zi) = 1] ≤ si · 2m · ℓ2

2 · |F|
.

Since the error is always bounded by above, we do not require the extractor to be able to extract.
Since State(x,y, tr) = 0, it must be that Item 2b does not hold, and so it also must Item 1b must
not hold. We are left then to bound the probability that Item 1a holds. This follows directly by
Lemma 4.25, and taking a union-bound over the si functions sent by the prover.

2. Poly-IOP verifier message: We show that if State(x,y, tr) = 0, and

εpiopi = Pr [State(x,y, tr∥αi) = 1] > errpolyi (x,y) ,

the extractor outputs a witness w := E(x,y, tr) such that (x,y,w) ∈ R. For every ℓ ≤ i and
j ∈ [sℓ], by Item 1a, there is at most one codeword uℓ,j ∈ Λ(CRSℓ,j , fℓ,j , δ), and there must be
exactly one, as otherwise Item 2b cannot hold and State(x,y, tr∥αi) = 0 for every αi. Thus, the
extractor ECRS never outputs ⊥, and will return the codewords (uℓ,j)ℓ≤i,j∈[sℓ]. By Item 1b, it
must be that Statepoly(x,y, ((ûℓ,j)j , αℓ)ℓ<i) = 0. Now, for every αi, State(x,y, tr∥αi) = 0 implies
that Statepoly(x,y, ((ûℓ,j)j∈[sℓ], αℓ)ℓ<i∥ûi,j) = 1, and thus, by our assumption

Pr[Statepoly(x,y, ((uℓ,j)j∈[sℓ], αℓ)ℓ≤i) = 1] ≥ Pr[State(x,y, tr∥αi) = 1] > errpolyi (x,y) .

Thus, by round-by-round knowledge soundness of the PIOP it follows that

(x,y,E(x,y, tr)) = (x,y,Epoly(x,y, ((ûℓ,j)j∈[sℓ], αℓ)ℓ<i, (ûi,j)j∈[si])) ∈ R

3. Combination randomness: We show that if State(x,y, tr) = 0, then

εcom = Pr [State(x,y, tr∥γ) = 1] ≤ err⋆(CRS, spoly, δ) +
(spoly − 1) · ℓspoly

|F|
.

Since the error is always bounded by above, we do not require the extractor to be able to extract.
We assume that Items 3a and 3b both hold, as otherwise the state function will be 0. We are
left to bound the probability of Item 3c occurring. We first show that there exists a function fi,j
which is far from the constrained Reed–Solomon code.
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Claim 7.8. There exists i∗ ∈ [kpoly] and j∗ ∈ [si] with

∆
(
fi∗,j∗ , C(i

∗,j∗)
A

)
> δ ,

where C(i
∗,j∗)

A := CRS
[
F,L,m, ((ŵk, Ai∗,j∗ [ŵk]))k∈[q]

]
.

Proof. Consider ui,j ∈ C(i,j)A and observe that C(i,j)A ⊆ C(i,j)CRS . Thus, ui,j ∈ C(i,j)CRS . Moreover, by
definition, for every ŵ ∈ Qi,j it holds that Ai,j [ŵ] =

∑
b∈{0,1}m ŵ(ûi,j(b), b). Since the state is 0,

for every (ui,j)i∈[kpoly],j∈[si]:

• Either there is i∗, j∗ with ui∗,j∗ /∈ Λ(Ci
∗,j∗

CRS , fi∗,j∗ , fi∗,j∗ , δ), or
• Otherwise, Statepoly(x,y, ((ui,j)j∈[si], αi)i∈[kpoly]) = 0. However, since we are working under

the assumption that Item 3a holds, Vpoly accepts given access to y and the query answers
according to (Ai,j). Therefore, there must be ui∗,j∗ and ŵ ∈ Qi,j such that Ai∗,j∗ [ŵ] ̸=∑

b∈{0,1}m ŵ(ûi∗,j∗(b), b).

This proves the claim, as otherwise there would exist (ui,j)i∈[kpoly],j∈[si] that contradict the above
items.

We show that the state will switch to 1 with probability at most err⋆(CRS, spoly, δ) +
(spoly−1)·ℓspoly

|F|
over the choice of γ. For i ∈ [kpoly], j ∈ [si], let γi,j := γj−1+

∑
ℓ<i si and let f := (fi,j)i∈[kpoly],j∈[si].

According to Lemma 4.13 and from the fact that Gen(spoly; γ) := (1, γ, . . . , γspoly−1) is a proximity
generator for CRS with bound B⋆ ≥ δ and error err⋆, we have that the probability over γ that

Λ (CRS, g, δ) ̸=

 ∑
i∈[kpoly],j∈[si]

γi,j · ui,j : u ∈ Λ(CspolyRS ,f , δ)

 , (4)

is at most err⋆(CRS, spoly, δ). In other words, except with small probability, every Reed–Solomon
codeword that is close to g can be explained as the linear combination of spoly codewors that
are (jointly) close to the respective function fi,j . The following claim shows that with high
probability over γ, there are no such codewords that comply with the summed constraint.

Claim 7.9. The probability over the choice of γ that there exist u ∈ Λ(CspolyRS ,f , δ) such that, for
every k ∈ [q],

∑
b∈{0,1}m

ŵ′k

 ∑
i∈[kpoly],j∈[si]

γi,j · ûi,j(b), b

 =
∑

i∈[kpoly],j∈[si]

γi,j ·Ai,j [ŵk]

is at most
(spoly−1)·ℓspoly

|F| .

Proof. Fix i∗, j∗ as in Claim 7.8 and u ∈ Λ(CspolyRS ,f , δ) (recall that u ∈ (FL)spoly). Since
∆
(
fi∗,j∗ , C(i

∗,j∗)
A

)
> δ, there exists ŵk for which

∑
b∈{0,1}m ŵk(ûi∗,j∗(b), b) ̸= Ai∗,j∗ [ŵk]. Thus,
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defining the formal polynomials of degree spoly − 1:

p̂(Y ) :=
∑

b∈{0,1}m
ŵ′k

 ∑
i∈[kpoly],j∈[si]

Y j−1+
∑

ℓ<i si · ûi,j(b), b


q̂(Y ) :=

∑
i∈[kpoly],j∈[si]

Y j−1+
∑

ℓ<i si ·Ai,j [ŵk] ,

we have p̂ ̸≡ q̂. Hence

Pr
γ←F

[p̂(γ) = q̂(γ)] ≤ spoly − 1

|F|
,

The claim follows by taking a union bound over the (at most) ℓspoly options of choosing u ∈
Λ(CspolyRS ,f , δ) (since CspolyRS is (ℓspoly , δ)-list decodable).

By taking a union bound over the events that Equation 4 and Claim 7.8 hold, we have that
except with probability err⋆(CRS, spoly, δ) +

(spoly−1)·ℓspoly
|F| , we have that for every u ∈ Λ(CRS, g, δ) it

holds that there exists k with∑
b∈{0,1}m

ŵ′k (û(b), b) ̸=
∑

i∈[kpoly],j∈[si]

γi,j ·Ai,j [ŵk] = σk .

As a result, u /∈ CCRS = CRS[F,L,m, ((ŵ′k, σk))k∈[q]]. Since CCRS ⊆ CRS, we conclude that
∆(g, CCRS) > δ, which invalidates Item 3c, and so the state remains 0 except with probability

err⋆(CRS, spoly, δ) +
(spoly−1)·ℓspoly

|F| .

4. Proximity test: We show that if State(x,y, tr) = 0, then

Pr [State(x,y, tr∥αprx,i)] ≤ errprxi (δ) .

Since the error is always bounded from above, we do not require that the extractor is able to
extract. We consider two cases:

• i = 1. Since Item 4a and Item 4b are independent of αprx,1, we assume that they hold, or
else the state function will be 0. Then, it must be that Item 3c does not hold, and thus
Stateprx(g, ∅) = 0. Then,

εprx1 = Pr [State(x,y, tr∥αprx,i)] = Pr [State(g, π1∥αprx,1) = 1|State(g, π1) = 0] ≤ errprx1 (δ) .

• i > 1. Since Item 4a and Item 4b are independent of αprx,i, we assume that they hold, or
else the state function will be 0. Then, it must be that Item 4c does not hold, and thus
Stateprx(g, trprx) = 0. Then,

εprxi = Pr [State(x,y, tr∥αprx,i)] = Pr [State(g, trprx∥αprx,i) = 1|State(g, trprx) = 0] ≤ errprxi (δ) .

5. Verifier decision. If State(x,y, tr) = 0 for a full transcript, then the verifier rejects, as it checks
each of the items of the state function.
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7.3 d-Σ-IOPs to linear Σ-IOPs

We show how to compile d-Σ-IOPs to linear Σ-IOPs. Combining this with Construction 7.4 and an
IOPP for constrained Reed–Solomon codes (such as WHIR Construction 5.1) this yields IOPPs for
relations captured by d-Σ-IOPs. Alternatively, one could run Construction 7.4 while foregoing the
batching step and running an individual instance of the IOPP for constrained Reed–Solomon codes
for each tested oracle. Applying the chain of compilers that we present here can be significantly
more efficient, as a single invocation of the proximity test is required.

As in Construction 7.4, without loss of generality, we assume that each oracle sent in the input
d-Σ-IOPs has the same number of variables m.

Construction 7.10. Consider the following ingredients and notation:
• a field F;
• a number of variables m ∈ N;
• a kpoly-round d-Σ-IOP (Ppoly,Vpoly) for a relation R with where in round i, the prover sends si

polynomials for a total of spoly =
∑

i∈[kpoly] si, and with query sets

Wi,j ⊆ {ŵ : F[Z,X1, . . . , Xm] : degZ ŵ < d} ;

• let d∗ := 1 + d+maxi,j,ŵ∈Wi,j
deg ŵ;

The protocol proceeds as follows:

• Initial inputs: The honest prover receives as input (x,y,w) ∈ R. The verifier receives x as
input and oracle access to y.

• Poly-IOP interaction phase: For i = 1 to kpoly:

1. Poly-IOP prover message: The prover send f̂i,1, . . . , f̂i,si , where f̂i,j : F<2[X1, . . . , Xm]. In
the honest case, the prover derives f̂i,1, . . . , f̂i,si ← Ppoly(x,y,w, α1, . . . , αi−1).

2. Poly-IOP verifier message: The verifier samples and sends αi ← {0, 1}ri where ri is the
number of random bits sent by Vpoly in round i.

• Interaction phase:

1. Send query results: The prover sends arrays of field elements (Ai,j)i∈[kpoly],j∈[si]. In the
honest case, the prover simulates the execution of

V
y,(f̂i,j)i∈[kpoly],j∈[si]

poly (x, α1, . . . , αkpoly) .

For every i ∈ [kpoly], j ∈ [si], the prover sets Qi,j ⊆ F[Z,X1, . . . , Xm] for the set of queries made
by Vpoly to f̂i,j and sets Ai,j [ŵ] :=

∑
b∈{0,1}m ŵ(f̂i,j(b), b) for ŵ ∈ Qi,j .

2. Combination randomness: The verifier defines Q to be the set of (i, j, ŵ) entries in A, and
samples and sends γ ← F|Q|. Fix an ordering ϕ : Q → [|Q|] of Q, and for q ∈ Q let γq := γϕ(q).

3. Set β := ∅. For i = 1 to m:
(a) Sumcheck polynomial: The prover sends ĥi ∈ F<d∗ [X]. In the honest case the prover

defines ĝ(X) :=
∑

q=(i,j,ŵ)∈Q γq · ŵ(f̂i,j(X),X) and ĥi is defined as

ĥi(X) :=
∑

b∈{0,1}m−i−1

ĝ(β, X, b) .

65



(b) Sumcheck randomness: The verifier samples and sends βi ← F. Update β := (β∥βi).

• Decision phase:

1. PIOP verifier decision: The verifier checks that V
y,(f̂i,j)i∈[kpoly],j∈[si]

poly (x, α1, . . . , αkpoly) = 1,
rederiving Q and answering queries to y by querying y directly, and answering a query
(i, j, ŵ) ∈ Q to f̂i,j with Ai,j [ŵ] (and rejecting any invalid query).

2. Sumcheck checks: Check that∑
b∈{0,1}

ĥ1(b) =
∑

q=(i,j,ŵ)∈Q

γq ·Ai,j [ŵ] ,

and, for 1 < i ≤ m, ∑
b∈{0,1}

ĥi(b) = ĥi−1(βi−1) ,

3. Consistency checks: For every i, j the verifier queries f̂i,j at ŵ∗(Z,X) := Z · eq(β,X) to
obtain vi,j . For every q = (i, j, ŵ) ∈ Q, set vq := vi,j . The verifier checks that∑

q=(i,j,ŵ)∈Q

γq · ŵ(β, vq) = ĥm(βm) .

Complexity parameters. We analyze the complexity measures of Construction 7.10:

• Rounds. The protocol has O(kpoly +m) rounds.

• Number of polynomials. The prover sends spoly functions.

• Query degree. The queries ŵ∗ are multilinear.

• Input query complexity. The verifier makes qpoly,y queries to its oracle input y.

• Proof query complexity. The verifier makes O(spoly) multilinear queries.

• Verifier complexity. The verifier running time is O(vtpoly) where vtpoly is the running time of the
d-Σ-IOP verifier.

7.3.1 Round-by-round knowledge soundness

We analyze the round-by-round knowledge soundness error of the linear-Σ-IOP resulting from Con-
struction 7.10.

Theorem 7.11. Consider (F,m, (Ppoly,Vpoly,R, kpoly, (si), (Q)i,j), d∗) as in Construction 7.10. Fix
δ ∈ (0, 1) and suppose that (Ppoly,Vpoly) has round-by-round knowledge soundness error (errpoly1 , . . . , errpolykpoly

)

with extraction time etpoly.
The protocol derived from Construction 7.10 is a linear Σ-IOP for R with extraction time etpoly

and round-by-round knowledge soundness error ((εpiopi )i∈[kpoly], ε
com, (εsumi )i∈[m]) where:

• εpiopi ≤ errpolyi (x,y);
• εcom ≤ 1

|F| ;
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• εsumi ≤ d∗
|F| .

Proof. Let Statepoly and Epoly be the state function and extractor of the d-Σ-IOP scheme (Ppoly,Vpoly).
We describe the state function and the extractor, and then prove knowledge-soundness errors for
the protocol.
The state function and the extractor.

0. Initial transcript: Given an instance x and an implicit input y we set State(x,y, ∅) =
Statepoly(x,y, ∅).

1. Poly-IOP verifier message: At this stage the transcript has the form

tr =

(
((fℓ,1, . . . , fℓ,sℓ), αℓ)ℓ<i

(fi,1, . . . , fi,si)

)
.

The verifier chooses αi ← {0, 1}ri .

• State function: We set State(x,y, tr∥αi) = 1 if and only if Statepoly(x,y, tr∥αi) = 1.

• Extractor: The extractor is defined as E(x,y, tr) := Epoly(x,y, tr).

2. Combination randomness: At this stage the transcript has the form

tr =

(
((fℓ,1, . . . , fℓ,sℓ), αℓ)ℓ∈[kpoly]

(Ai,j)i∈[kpoly],j∈[si]

)
.

The verifier chooses γ ← F|Q|.

• State function: We set State(x,y, tr∥αi) = 1 if and only if the following both hold:

(a) Rounds are accepting: Vpoly accepts given access to y and given query answers according
to (Ai,j).

(b) True sumcheck claim: ∑
b∈{0,1}m

ĝ(b) =
∑

q=(i,j,ŵ)∈Q

γq ·Ai,j [ŵ] .

• Extractor: The extractor returns E(x,y, tr) := ⊥.

3. Sumcheck message: At this stage the transcript has the form

tr =

 ((fℓ,1, . . . , fℓ,sℓ), αℓ)ℓ∈[kpoly]
(Ai,j)i∈[kpoly],j∈[si],γ

(ĥℓ, βℓ)ℓ<i, ĥi

 .

The verifier chooses βi ← F.

• State function: We set State(x,y, tr∥βi) = 1 if and only if the following all hold:

(a) Rounds are accepting: Vpoly accepts given access to y and given query answers according
to (Ai,j).
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(b) Sumcheck checks:
∑

b∈{0,1} ĥ1(b) =
∑

q=(i,j,ŵ)∈Q γq ·Ai,j [ŵ] and, if i > 1, then for 1 < ℓ ≤
i,
∑

b∈{0,1} ĥℓ(b) = ĥℓ−1(βℓ−1).
(c) True sumcheck claim: ∑

b∈{0,1}m−i

ĝ(β1, . . . , βi, b) = ĥi(βi) .

• Extractor: the extractor returns E(x,y, tr) := ⊥.

Bounding the errors. We now bound the round-by-round soundness errors based on the state
function described above. As with the definition of the state function, we separately bound the
probability of the state flipping for each partial transcript length.

1. Poly-IOP verifier message: We show that if State(x,y, tr) = 0 and

εpiopi = Pr[State(x,y, tr∥αi) = 1] > errpolyi (x,y) ,

the extractor outputs a witness w := E(x,y, tr) such that (x,y,w) ∈ R. Since,

Pr[Statepoly(x,y, tr∥αi) = 1] = Pr[State(x,y, tr∥αi) = 1] > errpolyi (x,y) ,

the extractor Epoly outputs a valid witness, and thus (x,y,E(x,y, tr)) = (x,y,Epoly(x,y, tr)) ∈ R.

2. Combination randomness: We show that if State(x,y, tr) = 0 then

εcom = Pr[State(x,y, tr∥αi) = 1] ≤ 1

|F|
.

Since the error probability is always bounded from above, we do not require the extractor to be
able to extract.

Since Statepoly(x,y, tr) = State(x,y, tr) = 0, if for every (i, j, ŵ) ∈ Q we have that Ai,j [ŵ] =∑
b∈{0,1}m ŵ(f̂i,j(b), b), then Item 2a cannot hold. Then, there must be some index (i∗, j∗, ŵ∗) ∈

Q such that Ai∗,j∗ [ŵ
∗] ̸=

∑
b∈{0,1}m ŵ∗(f̂i∗,j∗(b), b). But then, by the polynomial identity lemma,

the probability that Item 2b holds is bounded above by

Pr

 ∑
b∈{0,1}m

ĝ(b) =
∑

q=(i,j,ŵ)∈Q

γq ·Ai,j [ŵ]


= Pr

γ←F|Q|

 ∑
q=(i,j,ŵ)∈Q

γq ·

 ∑
b∈{0,1}m

ŵ(f̂i,j(b), b)

 =
∑

q=(i,j,ŵ)∈Q

γq ·Ai,j [ŵ]

 ≤ 1

|F|
.

3. Sumcheck randomness: We show that if State(x, tr) = 0, then

εsumi = Pr[State(x,y, tr∥βi) = 1] ≤ d∗

|F|
.

Since the error is always bounded from above, we do not require the extractor to be able to
extract. We handle the case where i > 0, the case where i = 0 is identical, apart from the
values β0, . . . , βi−1 not appearing. If Item 3a does not hold, it will continue not to hold as it
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is independent of βi. Likewise, if Item 3b does not hold it will continue not to hold. Thus, we
assume that Item 3c does not hold for round i− 1, that is that∑

b∈{0,1}m−i+1

ĝ(β1, . . . , βi−1, b) ̸= ĥi−1(βi−1) .

Since Item 3b holds, we have
∑

b∈{0,1} ĥi(b) = ĥi−1(βi−1), and so we conclude that∑
b∈{0,1}m−i+1

ĝ(β1, . . . , βi−1, b) ̸=
∑

b∈{0,1}

ĥi(b) ,

as a result of which, ∑
b∈{0,1}m−i

ĝ(β1, . . . , βi−1, X, b) ̸≡ ĥi(X) ,

and by the polynomial identity lemma and since the above polynomials have degree bounded by
d∗:

Pr[State(x, tr∥βi) = 1] = Pr
βi←F

ĥi(βi) = ∑
b∈{0,1}m−i

ĝ(β1, . . . , βi, b)

 ≤ d∗

|F|
.

4. Verifier decision. If State(x,y, tr) = 0 for a full transcript, then the verifier rejects, as it checks
each of the items of the state function: Item 3a and Item 3b are checked directly. If Item 3c does
not hold for i = m then

ĝ(β1, . . . , βm) ̸= ĥi(βm) .

Letting β := (β1, . . . , βm) and opening up ĝ(β) :=
∑

q=(i,j,ŵ)∈Q γq · ŵ(f̂i,j(β),β), we infer that∑
q=(i,j,ŵ)∈Q

γq · ŵ(f̂i,j(β),β) ̸= ĥi(βm) .

Now, observe that for every q = (i, j, ŵ) ∈ Q,

f̂i,j(β) =
∑

b∈{0,1}m
f̂i,j(b) · eq(β, b) =

∑
b∈{0,1}m

ŵ∗(f̂i,j(b), b) = vq .

And so ∑
q=(i,j,ŵ)∈Q

γq · ŵ(vq,β) ̸= ĥi(βm) ,

which is checked by the verifier, and it will reject.
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A Linear Σ-IOP for generalized R1CS

We describe a polynomial IOP for the generalized R1CS relation (GR1CS), as defined in [DMS24].

Definition A.1. The relation RGR1CS is the set of all pairs ((F, k, n, c, t, v, C), w) where:
• F is a finite field;
• k ∈ N denotes the number of inputs of the constraint system;
• n ∈ N denotes the number of variables of the constraint system (with k ≤ n);
• c ∈ N denotes the number of constraint sets;
• t ∈ N denotes the arity of the predicates;
• v ∈ Fn−k is the input to the constraint system;
• w ∈ Fk is the witness to the constraint system;
• and C := ((di, Li,Mi,mi))i∈[c] is a set of custom constraints, where, for every i ∈ [c]:

– Mi := (Mi,1, . . . ,Mi,t) are constraint matrices, where for j ∈ [t], Mi,j ∈ Fmi×n;
– L̂i ∈ F<di [X1, . . . , Xt] is a local predicate;

and, for every i ∈ [c], j ∈ [mi]:

L̂i((Mi,1z)[j], . . . , (Mi,tz)[j]) = 0 ,

where z := (v, w) ∈ Fn.

We present a Σ-IOP for GR1CS. The Σ-IOP is inspired by prior (univariate and multivariate)
PIOPs for R1CS [BCRSVW19; Set19; STW23]. GR1CS instances of the form (F, k, n, 1, 3, v, (3, X1 ·
X2 −X3, (A,B,C), n)) exactly capture (non-generalized) R1CS instances. Moreover, GR1CS sub-
sumes other constraint systems such as CCS and CCS+ [STW23]. Hence, our Σ-IOP directly
supports a rich class of constraint systems.

Construction A.2. Let F be a field. Consider the following ingredients and notation.
• We assume that n is a power of two and n = 2m. Sometimes we refer to elements of {0, 1}m as

elements in [n]. Implicitly, we assume a bijection between the two and use it as appropriate to
translate between the two domains. For simplicity, we further assume that n = 2 · k.

• We let f̂v ∈ F<2[X1, . . . , Xm−1] be the unique multilinear polynomials such that f̂v(b) = v(b) for
every b ∈ {0, 1}m−1.

• For i ∈ [c], j ∈ [t], we let f̂i,j ∈ F<2[X1, . . . , X2m] be the unique multilinear polynomial such that
f̂i,j [a, b] = Mi,j [a, b] for a, b ∈ {0, 1}m.

• We let d := maxi∈[c] di be the maximum degree in the constraint system.
The IOP proceeds as follows.

• Inputs: The honest prover receives ((F, k, n, c, t, v, C), w) ∈ RGR1CS, and the verifier receives
(F, k, n, c, t, v, C).

• Interaction phase:

1. Commit to witness polynomial: The prover sends a polynomial f̂w ∈ F<2[X1, . . . , Xm−1].
In the honest case, f̂w is the unique multilinear polynomial such that f̂w(b) = w(b) for every
b ∈ {0, 1}m−1.

2. Combination randomness: The verifier samples and sends r ← Fm and γ ← F.
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3. Sumcheck: The prover and verifier engage in a sumcheck protocol. In the honest case, the
prover defines the polynomials

f̂z(X1, . . . , Xm) := (1−Xm) · f̂v(X1, . . . , Xm−1) +Xm · f̂w(X1, . . . , Xm−1) ,

∀ i ∈ [c], ĝi(X) := L̂i

 ∑
b∈{0,1}m

f̂i,1(X, b) · f̂z(b), . . . ,
∑

b∈{0,1}m
f̂i,t(X, b) · f̂z(b)

 ,

ĝγ(X) :=
∑
i∈[c]

γi−1 · ĝi(X) .

(a) Set α := ∅. For i = 0, . . . ,m− 1:
i. The prover sends ĥi ∈ F<d+1[X] (as a non-oracle message). In the honest case,

ĥi(X) =
∑

b∈{0,1}m−(i+1)

ĝγ(b, X,α) · eq(r, (b, X,α)) .

ii. The verifier samples and sends αi ← F. Update α := (αi∥α)

• Decision phase:

1. First sumcheck checks: The verifier checks
∑

b∈{0,1} ĥ0(b) = 0 and that, for i ∈ [m− 1],∑
b∈{0,1}

ĥi(b) = ĥi−1(αi−1) .

2. Query polynomial: For i ∈ [c], j ∈ [t] the verifier queries f̂w to compute

vi,j :=
∑

b∈{0,1}m
f̂i,j(α, b) · f̂z(b) =

∑
b∈{0,1}m−1

f̂i,j(α, b, 0) · f̂v(b) + f̂i,j(α, b, 1) · f̂w(b)

and checks that: ∑
i∈[c]

γi−1 · L̂i(vi,1, . . . , vi,t)

 · eq(r,α) = ĥm−1(αm−1)

Complexity parameters. We analyze the complexity measures of Construction A.2.

• Rounds. The protocol has log n+ 1 rounds.

• Proof length. The prover sends a single multilinear polynomial over log n − 1 variables, and
(d+ 1) · log n field elements.

• Query complexity. The verifier makes c · t linear sumcheck queries.
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A.1 Round-by-round knowledge soundness

We analyze the round-by-round knowledge soundness of Construction A.2.

Theorem A.3. Let (F, d,m, c) be as in Construction A.2. Then Construction A.2 is a Σ-IOP for
RGR1CS with round-by-round knowledge soundness error(

(d− 1)m+ c− 1

|F|
,
d

|F|
, . . . ,

d

|F|

)
.

Proof. We define the state function and extractor.
State function and extractor.

1. The transcript so far has the form tr := (f̂w). The verifier chooses r, γ.

• State function. We set
State(f0, tr∥(r, γ)) = 1 ,

if and only if
∑

b∈{0,1}m ĝγ(b) · eq(r, b) = 0, where ĝγ is defined as in the protocol.

• Extractor. The extractor Epoly returns w defined as w(b) = f̂w(b) for b ∈ {0, 1}m−1.
2. The transcript so far has the form tr := (r, γ, ĥ0, (αℓ∥ĥℓ+1)ℓ<i). The verifier chooses αi.

• State function. We set
State(f0, tr∥αi) = 1 ,

if and only if the following hold:

(a) Valid sumchecks.
∑

b∈{0,1} ĥ0(b) = 0, and, for 0 < ℓ < i,
∑

b∈{0,1} ĥℓ(b) = ĥℓ−1(αℓ−1).
(b) Valid reduction.

ĥi−1(αi) =
∑

b∈{0,1}m−(i+1)

ĝγ(b,α) · eq(r, (b,α)) .

(c) Extractor. The extractor returns Epoly(x, tr) = ⊥.

Bounding the errors.

1. Suppose that State(x, tr) = 0, and

Pr[State(x, tr∥(r, γ)) = 1] >
(d− 1)m+ c− 1

|F|
.

We show that (x,Epoly(x, tr)) ∈ RGR1CS. Write w := Epoly(x, tr), and note that, by definition of f̂z,
for b ∈ {0, 1}m−1, we have that f̂z(b, 0) = v(b) and f̂z(b, 1) = w(b), so letting z := (v, w), we
have that for every b ∈ {0, 1}m, f̂z(b) = z(b). Let ĝγ be defined as in the main protocol. Then,

(d− 1)m+ c− 1

|F|
< Pr[State(x, tr∥(r, γ)) = 1] = Pr[ĝγ(r) = 0]

Suppose that, for some i ∈ [c], ĝi ̸≡ 0. Then, unless with probability at most c−1
|F| , ĝγ ̸≡ 0, and

thus, since ĝγ ∈ F<d[X1, . . . , Xm], by the polynomial identity lemma, ĝγ(r) = 0 with probability
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at most (d−1)m
|F| . Thus, it must be that for every i ∈ [c], ĝi ≡ 0. Let i ∈ [c], j ∈ [mi] and let

b∗ ∈ {0, 1}m be the corresponding element of the binary hypercube. Then,

L̂i((Mi,1z)[j], . . . , (Mi,tz)[j]) = L̂i

(
n∑

k=0

Mi,1[j, k] · zk, . . . ,
n∑

k=0

Mi,t[j, k] · zk

)

= L̂i

 ∑
b∈{0,1}m

f̂i,1(b
∗, b) · f̂z(b), . . . ,

∑
b∈{0,1}m

f̂i,1(b
∗, b) · f̂z(b)


= ĝi(b

∗) = 0 .

This concludes the proof.
2. We show that if State(x, tr) = 0, then

Pr[State(x, tr∥αi) = 1] ≤ d

|F|
.

Since the error is always bounded from above, we do not require the extractor to be able to
extract. Since State(x, tr) = 0, it must be that either Item 2a do not hold or Item 2b do not
hold. Since Item 2a is independent of αi, it must hold or else State(x, tr∥αi) = 1. Thus, we
assume that Item 2b does not hold. First, suppose that

ĥi(X) ≡
∑

b∈{0,1}m−i

ĝ(b, X, αi−1, . . . , α0) · eq(r, (b, X, αi−1, . . . , α0)) .

Then, ∑
b∈{0,1}

ĥi(b) =
∑

b∈{0,1}m−(i−1)

ĝ(b, αi−1, . . . , α0) · eq(r, (b, αi−1, . . . , α0)) ̸= ĥi−1(αi−1) ,

where the last inequality follows since Item 2b does not hold. Then, it must be that

ĥi(X) ̸≡
∑

b∈{0,1}m−i

ĝ(b, X, αi−1, . . . , α0) · eq(b, X, αi−1, . . . , α0) .

and by the polynomial identity lemma it holds that

Pr[State(x, tr∥αi) = 1] = Pr

ĥi(αi) =
∑

b∈{0,1}m−i

ĝ(b,α) · eq(r, (b,α))

 ≤ d

|F|
.

3. Verifier decision. Since State(x, tr) = 0, it must be that either Item 2a do not hold or Item 2b
do not hold. If Item 2a does not hold, the verifier rejects as desired. If Item 2b does not hold,
this implies that

ĥm(αm) ̸= ĝ(α) · eq(r,α) ,

and, since ĝ(α) =
∑

i∈[c] γ
i−1 · L̂i(vi,1, . . . , vi,t), the verifier rejects as desired.
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B Additional experimental data

This section contains additional experimental data and plots collected during the evaluation process.
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Figure 4: Comparison of WHIR for ρ = 1/2, 1/4. WHIR-UD: ▲, WHIR-CB: •. Note that prover time
is displayed with logarithmic scaling.
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Figure 5: Comparison of WHIR for ρ = 1/8, 1/16. WHIR-UD: ▲, WHIR-CB: •. Note that prover time
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Figure 6: Comparison of FRI, STIR and WHIR for ρ = 1/2, 1/4. FRI: ×, STIR: •, WHIR-CB: ,▲.
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Figure 8: Comparison of WHIR for ρ = 1/2, 1/4. WHIR-UD •, WHIR-JB: •, WHIR-CB: •. Note that
prover time is displayed with logarithmic scaling.
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