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Abstract

We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols,
conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives
have many applications in cryptography. We study these primitives requiring information-
theoretic security. The complexity of these primitives has been dramatically improved in the
last few years are they are closely related, i.e., the the 2-server PIR protocol of Dvir and Gopi
(J. ACM 2016) was transformed to construct the CDS protocols of Liu, Vaikuntanathan, and
Wee (CRYPTO 2017, Eurocrypt 2018) and these CDS protocols are the main ingredient in the
construction of the best known secret-sharing schemes. To date, the messages size required in
PIR and CDS protocols and the share size required in secret-sharing schemes is not understood
and there are big gaps between their upper bounds and lower bounds. The goal of this paper is to
try to better understand the upper bounds by simplifying current constructions and improving
their complexity.

We obtain the following two independent results:
• We simplify, abstract, and generalize the 2-server PIR protocol of Dvir and Gopi (J. ACM

2016) and the 2-server and multi-server CDS protocols of Liu et al. (CRYPTO 2017, Euro-
crypt 2018) and Beimel, Farràs, and Lasri (TCC 2023). This is done by considering a new
variant of matching vectors and by using a general share conversion. In addition to simpli-
fying previous protocols, our protocols can use matching vectors over any m that is product
of two distinct primes. Our construction does not improve the communication complexity
of PIR and CDS protocols; however, construction of better matching vectors over any m
that is product of two distinct primes will improve their communication complexity.

• In many applications of secret-sharing schemes it is important that the scheme is linear,
e.g., by using the fact that parties can locally add shares of two secrets and obtain shares
of the sum of the secrets. We provide a construction of linear secret-sharing schemes
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for n-party access structures with improved share size of 20.7563n. Previously, the best
share size for linear secret-sharing schemes was 20.7576n and it is known that for most
n-party access structures the shares size is at least 20.5n. This results is achieved by a
reduction to unbalanced CDS protocols (compared to balanced CDS protocols in previous
constructions).

1 Introduction
Private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols, and
secret-sharing schemes are cryptographic primitives that have many applications (these primitives
are defined in Section 1.1). We study these primitives requiring information-theoretic security.
These primitives are closely related, e.g., the same techniques are used to construct PIR and CDS
protocols and CDS protocols are used to construct secret-sharing schemes for arbitrary access
structures. Furthermore, the goal of these primitives is to protect the secrecy of some inputs (i.e.,
a database, private inputs of servers, or a secret), and they are non-interactive.

The complexity of PIR and CDS protocols and secret-sharing schemes has been dramatically
improved in the last few years; yet their complexity is far from being understood. For example,
the share size in the best known secret-sharing schemes for arbitrary n-party access structure is
exponential, i.e., 2O(n), while the best lower bound is Ω(n2/ log n) [29, 28]. Determining the optimal
complexity of these primitives is a major open problem. Improving the known upper bounds will
lead to better complexity in the protocols that use them, and proving better lower bounds will show
their limitations. Furthermore, understanding the exact complexity of these primitives may lead to
understanding the optimal complexity of more complex interactive cryptographic primitives, e.g.,
the communication complexity required for information-theoretic secure multi-party computation
(MPC) protocols. Our goal in this paper is to advance the understanding of the upper bounds
for PIR and CDS protocols and secret-sharing schemes, especially, linear secret-sharing schemes.
Towards this goal, we will try simplify and generalize the current constructions, provide new tools
for better constructions, and construct better schemes.

1.1 PIR, CDS, and Linear Secret Sharing
Before presenting our results, we informally discuss the primitives we study in this work.

Private Information Retrieval. Private information retrieval protocols enable a user to obtain
an item from a database held by two or more servers such that each server does not learn information
on the retrieved item. Specifically, in a 2-server PIR protocol, a user holds an index i ∈ [N ], and
two servers, Alice and Bob, each holds the same database D ∈ {0, 1}N . The goal is for the user
to learn Di, using one round of communication, without revealing any information about i to each
server. To achieve this goal, the user computes a pair of queries qA and qB and sends them to Alice
and Bob respectively. Each server computes an answer, based on the query that it got and the
database, and sends the answer to the user, which reconstructs Di from the index, its randomness,
and the answers.

Private information retrieval protocols were introduced by Chor, Goldreich, Kushilevitz, and
Sudan [26] in 1995. Since then, the communication complexity of private information retrieval
protocol has been studied in a line of works [2, 42, 45, 16, 49, 64, 65, 35, 46, 25, 34]. Specifically,
Efremenko [35] constructed a 3-server PIR protocol with query length 2O(√

log N log log N) and answer
length is 1, which is currently the best known 3-server PIR protocol. Dvir and Gopi [34], broke the
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N1/3 barrier for the communication complexity for 2-server PIR protocol, and showed a construction
with communication complexity of 2O(√

log N log log N), which currently the best known 2-server PIR
protocol. Both works of Efremenko [35], and Dvir and Gopi [34] are based on matching vector
families. Beimel, Ishai, Kushilevitz, and Orlov [19] generalize the 3-server protocol of Efremenko
by using share conversions; specifically, they can use matching vectors over more products of primes
m. The best known lower bound on the total communication complexity of 2-server PIR protocols
is 5 log n, proved by Wehner and de Wolf [63] (improving on [55, 50]).

Conditional Disclosure of Secrets. Conditional disclosure of secrets (CDS) protocol are a
cryptographic primitive, introduced by Gertner, Ishai, Kushilevitz, and Malkin [39]. Their mo-
tivation was to construct symmetric private information retrieval protocols. CDS protocols were
later used in constructions of other cryptographic applications, such as attribute based encryp-
tion [38, 10, 62] and priced oblivious transfer [1]; they are a central tool in the construction of
secret-sharing schemes for arbitrary access structures [52, 6, 9, 20].

In a CDS protocol, several servers hold the same secret and a common random string, and each
server holds a private input. Additionally, there is a referee who knows the private inputs of all
servers. The referee should learn the secret if and only if the private inputs of the servers satisfy
some condition, specified by a predicate f . To achieve this goal, each server sends a single message
to the referee; the message of each server is a function of the secret, the common random string,
and its private input. The referee can reconstruct the message from the messages if and only if the
inputs satisfy the condition.

Constructions of CDS protocols were given in [40, 17, 38, 53, 54, 21, 4, 3]. The best known
2-server CDS protocol has message length 2O(√

log N log log N) [53]. The best known lower bounds for
2-server CDS protocols is Ω(log N), proved by Applebaum, Arkis, Raykov, and Vasudevan [5] (see
also [38, 8]). The best k-server CDS construction is due to Liu et al. [54] and has a message size
of 2Õ(

√
k·log N). Applebaum and Arkis [3] (improving on [4]) constructed a CDS protocol for long

secrets, where the message length is only 4 times the length of the secret.

Secret Sharing. Secret-sharing schemes, introduced by Shamir [61] and Blakley [23] for the
threshold case and Ito, Saito, and Nishizeki [44] for the general case, allows a dealer holding a
secret to distribute strings (called shares) to parties, such that only authorized sets of parties
can reconstruct the secret, while unauthorized sets learn nothing about the secret. The collection
of authorized sets is called an access structure. Secret sharing has found many applications in
cryptography, distributed computing, and complexity theory (see [12]). Identifying the necessary
and sufficient share size of secret-sharing schemes for general access structures is a major open
problem. The best-known schemes for n-parties access structure achieve share complexity of 2cn

for a constant c < 1 [52, 6, 7, 9], with Applebaum and Nir [9] constructing the best scheme, which
achieves share size 1.5n < 20.585n. On the negative side, the best lower bound on the total share
size is Ω(n2/ log n) due to Csirmaz [29, 28].

Linear Secret Sharing. Linear secret-sharing are schemes in which the shares are computed
by applying a linear function (over some finite field) on the secret and some random elements
from the field. Alternatively, these are schemes in which each share is a vector over the field
and every authorized set reconstruct the secret by applying a linear function on its shares. In
many applications of secret-sharing schemes it is important that the scheme is linear, e.g., they
use the fact that parties can locally add shares of two secrets and obtain shares of the sum of the
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secrets. Such applications include the secure multi-party computation protocol secure against an
arbitrary (Q2) adversary structure [27] and the construction of public-key (multi-user) attribute-
based encryption [10, 62]. Prior to our work, the best previous linear scheme of [9] has share size
20.7576n for any n-party access structure. On the other hand, it is known that almost all n-party
access structures cannot be realized by a linear secret-sharing scheme with share size less 20.5n, as
proved by Babbai, Gal, and Wigderson [11].

Until recently, most of the constructions of secret-sharing schemes were linear, e.g., [61, 24, 44,
22, 48]. In particular, linear secret-sharing schemes are equivalent to monotone span programs, a
linear-algebraic model of computation introduced by Karchmer and Wigderson [48]. Linear secret-
sharing schemes have many advantages, e.g., they are homomorphic, the sharing and reconstruction
are efficient, and they are closed under duality. Lower bounds on the share size in linear secret-
sharing schemes and monotone span programs for explicit access structures were proven in [15,
11, 36, 37, 59, 57, 58]; the best result is that there exists explicit access structures for which every
linear secret-sharing scheme realizing the access structures has shares of length at least 2cn for some
constant 0 ≤ c < 0.5, proved by Pitassi and Robere [58]. Lower bounds for share size in linear
secret-sharing schemes for almost all access structures were proven in [11, 60, 13], in particular,
almost all access structures require shares of length at least 20.5n in any linear secret-sharing scheme
realizing them [11].

All the above primitives are closely related, e.g.,

• The 2-server PIR protocol of Dvir and Gopi [33] was transformed to construct the CDS
protocols of Liu et al. [53, 54].

• CDS protocols are basically a special case of secret-sharing schemes, i.e., 2-server CDS proto-
cols are equivalent to secret-sharing schemes for forbidden bipartite graph access structures.

• CDS protocols are a central ingredient in constructing the best known secret-sharing schemes
for arbitrary access structures, see [52, 7, 9]. Similarly, the best known linear secret-sharing
schemes for arbitrary access structures are constructed from linear CDS protocols.

Furthermore, in all the above primitives the optimal communication complexity/share-size is not
known and there are large gaps between the known lower bounds and upper bounds.

1.2 Our Results
We provide two new techniques addressing the upper bounds for the above primitives.

Abstraction of the DG PIR protocol and the LVW CDS protocol. Our first result is
an abstraction of the 2-server PIR protocol of Dvir and Gopi [34] and the CDS protocol of Liu et
al. [53] and its generalization by Beimel, Farràs, and Lasri [14], henceforth the DG, LVW, BFL
protocols, respectively. Although we do not obtain (asymptotically) better communication, our
constructions have the benefit of being both simpler and more general. The latter could potentially
lead to improvements in the future.

In more detail, the DG, LVW, and BFL protocols use matching vectors [41] – a combinatorial
object that was used to construct explicit Ramsey graphs [41], and later found other applications in
computer science such as error-correcting codes [32], PIR protocols [35, 34], and CDS protocols [53,
54]. Roughly speaking, a matching vector family over Zh

m is a collection of vectors ((ui, vi))N
i=1,

each in Zh
m, such that for all i ̸= j it holds that ⟨ui, vi⟩ ∈ S and ⟨ui, vj⟩ ∈ T, where S and T are
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disjoint subsets of Zm, and the inner products are done mod m. The DG and LVW constructions
use m = 6 and the BFL construction uses m = p1 · p2 for any two primes such that p1 | p2 −
1. Our construction, on the other hand, works for any m = p1p2, where p1 ̸= p2 are prime
numbers. Therefore, any improved construction of matching vectors (for some m, such that log m =
2o(

√
log N log log N)) immediately implies an improved construction of PIR and CDS protocols.

Theorem 1.1 (Informal, simple PIR protocols). Let f : [N ]2 → {0, 1}, let p1 ̸= p2 be two prime
numbers, m = p1p2, and h ∈ N. Assume there exists a matching vector family ((ui, vi))N

i=1 over
Zh

m. Then there exist a 2-server PIR protocol with message size O(h · log m).

Theorem 1.2 (Informal, simple CDS protocols). Let f : [N ]2 → {0, 1}, let p1 ̸= p2 be two prime
numbers, m = p1p2, and h ∈ N. Assume there exists a matching vector family ((ui, vi))N

i=1 over
Zh

m. Then there exist a 2-server CDS protocol with message size O(h · log m).

More importantly, our protocols abstract and generalize the previous protocols and are simpler.
A similar result holds for k-server CDS protocols, i.e., if there is a family of decomposable

matching vectors in Zh
m (for m a product of two distinct primes), then there is k-server CDS

protocol with message length O(k2h log m).

Improved results for linear secret sharing. We generalize the reduction from secret-sharing
schemes to CDS protocols. This generalization allows us to obtain better linear secret-sharing
schemes, where the sharing and reconstruction algorithms are both linear mappings. Specifically,
while the best previous linear scheme due to [9] has share size 20.7576n for any n-party access
structure, we reduce the exponent down to 0.7563n. Recall that best known share size for general
secret-sharing schemes for arbitrary access structures is 20.585n.

Theorem 1.3 (Informal, linear secret-sharing schemes). Every n-party access structure can be
realized by a linear secret-sharing scheme with share size 20.7563n.

2 Our Techniques
2.1 A Simple PIR Protocol
Dvir and Gopi [34] presented a 2-server PIR protocol with communication 2O(

√
log N log log N); their

protocol uses matching vectors over Z6. Beimel, Farràs, and Lasri [14] implicitly generalized this
protocol by using matching vectors over Zm, where m is a product of two primes p1, p2 such that
p1|p2 − 1. We simplify and generalize these protocols.

Warm-up. We start with describing an inefficient two server PIR protocol that will provide the
motivation for our protocol. Let (ui)N

i=1 ∈ Fh
p be a set of orthonormal vectors over some fine field

Fq and h ∈ N, that is, ⟨ui, ui⟩ ≡ 1 (mod p) and ⟨ui, uj⟩ ≡ 0 (mod p) for every i ̸= j. The user
with index i chooses a random r ∈ Fh

p and sends qA = r to Alice and qB = r + ui mod p to Bob.
A server with query q and database D computes the answer

∑N
j=1⟨q, uj⟩Dj and sends the answer

to the user, which subtracts the answer of Alice from the answer of Bob and obtains Di as we next
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explain.

N∑
j=1
⟨r + ui, uj⟩Dj −

N∑
j=1
⟨r, uj⟩Dj ≡

N∑
j=1

(⟨r + ui, uj⟩ − ⟨r, uj⟩)Dj

≡
N∑

j=1
⟨ui, uj⟩Dj ≡ Di (mod p),

where the last equality follows from the orthonormality of the vectors. The obvious problem with
this construction is that the length of N orthonormal vectors is at least N and the protocol is
not efficient. Following [35], we will work with vectors over Zm for a composite m; specifically,
m is a product of two distinct primes p1, p2. As every set of orthonormal vectors over Zm is also
orthonormal over Fp1 , we need to relax the orthonormality requirements.

Matching Vectors. We use a matching vector family ((ui, vi))N
i=1 over Zh

m, where m = p1p2 for
primes p1 < p2, such that for all i ̸= j it holds that

⟨ui, vi⟩ mod m = 1 and ⟨ui, vj⟩ mod m ∈ Zm \ Z∗
m.

Observe that this is equivalent to

⟨ui, vi⟩ mod p1 = 1 and ⟨ui, vi⟩ mod p2 = 1

and
⟨ui, vj⟩ mod p1 = 0 or ⟨ui, vj⟩ mod p2 = 0.

Such a matching vector family with h = 2O(
√

log N log log N) can be constructed from the matching
vector families constructed in [41, 51]. Note that this definition is a modification of the definition
of matching vectors in previous papers, where it is required that ⟨ui, vi⟩ mod m = 0 and the
requirement for i ̸= j is also different. This modification allows us to simplify the protocol.

In the following, for a prime p let ⟨u, v⟩p =
∑h

ℓ=1 u[ℓ]v[ℓ] mod p.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 2.1.
Public parameters: Matching vectors ((ui, vi))N

i=1 over Zh
m, where m = p1p2 for two primes

p1 < p2.
Alice’s and Bob’s input: D ∈ {0, 1}N .
The user’s input: i ∈ [N ].

• The user chooses r ← Zh
p1 with uniform distribution and sends qA = r to Alice and qB =

ui + r mod p1 to Bob.

• Alice and Bob compute mA =
∑N

j=1(⟨qA, vj⟩p1 ·Dj)vj mod p2 and mB =
∑N

j=1(⟨qB, vj⟩p1Dj)·
vj mod p2 respectively and send the answers to the user (each answer is a vector in Zh

p2).

• The user outputs 1 if
⟨ui, mB −mA⟩ ̸≡ 0 (mod p2), (1)

and 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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For comparison, we describe the simplest version of the PIR protocol of [34] in Appendix B. We
next prove that Protocol 2.1 is a PIR protocol. Each query to a server is uniformly distributed in
Zh

p1 regardless of i and the privacy clearly holds. We next show that correctness holds; this should
be carefully analyzed as we use inner product over Zp1 and Zp2 . The user computes

⟨ui, mB −mA⟩p2 ≡
〈

ui,
N∑

j=1
⟨ui + r, vj⟩p1 ·Djvj −

N∑
j=1
⟨r, vj⟩p1 ·Djvj

〉
p2

≡
N∑

j=1
(⟨ui + r, vj⟩p1 − ⟨r, vj⟩p1) · ⟨ui, vj⟩p2 ·Dj (mod p2). (2)

We claim that this sum is equal to α ·Di for some α ̸= 0, that is, in the sum in (2) each term for
j ̸= i is zero and the term for j = i is non-zero if and only if Di = 1.

We claim that for i ̸= j

(⟨ui + r, vj⟩p1 − ⟨r, vj⟩p1) · ⟨ui, vj⟩p2 ·Dj ≡ 0 (mod p2).

Clearly, this is true if ⟨ui, vj⟩p2 = 0. Otherwise, ⟨ui, vj⟩p1 = 0; thus,

⟨ui + r, vj⟩p1 ≡ ⟨ui, vj⟩p1 + ⟨r, vj⟩p1 ≡ ⟨r, vj⟩p1 (mod p1).

It follows that ⟨ui + r, vj⟩p1 = ⟨r, vj⟩p1 (since 0 ≤ ⟨ui + r, vj⟩p1 , ⟨r, vj⟩p1 < p1). As p1 < p2, the
equality holds modulo p2.

Therefore,

⟨ui, mB −mA⟩p2 ≡
N∑

j=1
(⟨ui + r, vj⟩p1 − ⟨r, vj⟩p1) · ⟨ui, vj⟩p2 ·Dj

≡ (⟨ui + r, vi⟩p1 − ⟨r, vi⟩p1) · ⟨ui, vi⟩p2 ·Di (mod p2).

Now,
⟨ui + r, vi⟩p1 ≡ (⟨ui, vi⟩p1 + ⟨r, vi⟩p1) mod p1 ≡ 1 + ⟨r, vi⟩p1 (mod p1).

If ⟨r, vi⟩p1 < p1 − 1 then ⟨ui + r, vi⟩p1 = 1 + ⟨r, vi⟩p1 over Fp2 and ⟨ui + r, vi⟩p1 − ⟨r, vi⟩p1 ≡ 1
(mod p2). Otherwise, ⟨r, vi⟩p1 = p1 − 1, and over Fp2

⟨ui + r, vi⟩p1 − ⟨r, vi⟩p1 = 0− ⟨r, vi⟩p1 = 1− p1.

In either case, it follows that
⟨ui, mB −mA⟩p2 = α ·Di, (3)

for some α ̸= 0 and the reconstruction of Di is correct.

2.2 A Simple CDS Protocol
We construct a CDS protocol for the index function INDEX : {0, 1}N × [N ] → {0, 1} defined as
INDEX(D, i) = Di. Note that a CDS for INDEX implies a CDS for any other function f : X×Y →
{0, 1} by letting D = (f(x, y))y∈Y . We make the observation that for all s ∈ {0, 1}, i ∈ [N ], and
r ∈ Zh

m

⟨ui,
N∑

j=1
⟨s · ui + r, vj⟩p1 ·Djvj −

N∑
j=1
⟨r, vj⟩p1 ·Djvj⟩p2 = s · α ·Di, (4)
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where α ̸= 0. Indeed, if s = 1 then (4) reduces to (3), and if s = 0 then the two terms cancel out
to the all-zero vector.

We describe the CDS protocol for INDEX in Protocol 2.2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 2.2.
Public parameters: Matching vectors ((ui, vi))N

i=1 over Zh
m, where m = p1p2 for two primes

p1 < p2.
Alice’s input: D ∈ {0, 1}N .
Bob’s input: i ∈ [N ].
The secret: s ∈ {0, 1}.
Shared randomness: r1 ∈ Fh

p1, r2 ∈ Fh
p2.

• Alice sends mA =
(∑N

j=1⟨r1, vj⟩p1 ·Djvj + r2
)

mod p2.

• Bob sends m1
B = sui + r1 mod p1 , m2

B ← ⟨ui, r2⟩ mod p2

• The referee outputs s = 1 if〈
ui,

 N∑
j=1

(⟨m1
B, vj⟩p1 ·Djvj)

−mA

〉
p2

+ m2
B ̸≡ 0 (mod p2), (5)

and s = 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Correctness follows from (4),

⟨ui,

 N∑
j=1

(⟨m1
B, vj⟩p1 ·Djvj)

−mA⟩p2 + m2
B

≡ ⟨ui,
N∑

j=1
⟨s · ui + r, vj⟩p1 ·Djvj −

N∑
j=1
⟨r, vj⟩p1 ·Djvj⟩p2

≡ s · α ·Di (mod p2).

For the security, notice that by (4) for Di = 0,〈
ui,

 N∑
j=1

(⟨m1
B, vj⟩p1 ·Djvj)

−mA

〉
p2

+ m2
B ≡ 0 (mod p)2.

The messages mA and m1
B are uniformly distributed (as they are masked by a one-time pad),

and m2
B can be computed from these messages and the database held by the referee. Thus, the

distribution of the view of the referee is independent of the secret.
In Section 4, we show more general PIR and CDS protocols that do not assume p1 < p2. Note

that if p2|p1 − 1, then (4) does not necessarily hold. To resolve this, we abstract the properties
of the operator ⟨q, v⟩p1 that we use in Protocol 2.1 and Protocol 2.2; instead the servers apply a
“so-called” share conversion C(⟨q, v⟩). There are a few reasons to describe the protocols using a
general share conversion:
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• The proofs are somewhat cleaner using this notation.

• This provides a more general protocol; in particular, it captures the BFL protocol (which
generalizes the DG protocol and the LVW protocol).

• In some scenarios, we will want the servers in Protocol 2.1 to send answers over a specific
field, e.g., given matching vectors over Z21, we will want to work in F7. We construct share
conversions that enable such property.

Remark 2.3. In [54], they use the notion of PIR encoding to describe their CDS protocol, which
looks similar to our protocol. However, the PIR encoding they construct for 2-servers is actually the
same as in [34, 53] and their construction and proofs are more complicated than our construction
and proofs.

2.3 An Improved Linear Secret Sharing
Our construction of an improved linear secret-sharing scheme follows the ideas of the recent con-
structions of linear secret-sharing schemes [52, 6, 7, 9], specifically, we use the blue-print of Apple-
baum and Nir [9]. This construction uses robust CDS protocols to realize downslice access structures
(see definition below). It then uses covering and bootstrapping techniques to construct better lin-
ear secret-sharing schemes for downslice access structures. As every n-party access structure can
be written as an intersection of n downslice access structures, this implies a linear secret-sharing
scheme for every access structure.

Let 0 < b < n. A b-downslice access structure Γ is an access structure where all maximal
unauthorized sets are of size b, that is there are some sets A1, . . . , Aℓ of size b such that A /∈ Γ if
and only if there is some 1 ≤ i ≤ ℓ such that A ⊆ Ai.
Example 2.4. Consider the access structure with n parties {p1, . . . , pn}, where a set is A au-
thorized if and only if it contains at least one party from

{
p1, . . . , pn/2

}
and at least one party

from
{

pn/2+1, . . . , pn

}
; this is an n/2-downslice in which the maximal unauthorized sets are{

p1, . . . , pn/2
}

and
{

pn/2+1, . . . , pn

}
.

Every access structure Γ can be written as ∩1≤b≤nΓb, where Γb is the b-downslice access structure
whose maximal unauthorized sets are the maximal unauthorized sets of Γ of size b.

Our construction is implied by a better construction of linear secret-sharing schemes for n-party
b-downslice access structures for b > n/2. We next explain the idea of our improvement. We achieve
this goal by a reduction to CDS protocols; specifically to robust CDS protocols (as introduced
in [7]). Previous construction of linear secret-sharings schemes using robust CDS protocols use
either reductions to 2-server protocols [7] or to

√
n-server protocols [7, 9]; our improvement is via

reduction to 2-server CDS protocols.
We first recall the notion of robust CDS protocols. The security requirement of a CDS protocol

for a function f ensures that if Alice sends its message for an input x and Bob sends its message for
an input y such that f(x, y) = 0, then the referee does not learn any information on the secret from
these messages. Assume that Alice also sends a message for an inputs x′ ̸= x with the same shared
randomness, such that also f(x′, y) = 0; the CDS protocol does not guarantee that the referee does
not learn any information on the secret from the 3 messages. In a (t1, t2)-robust CDS protocol the
security is guaranteed even if Alice sends messages for a set X1 with at most t1 inputs and Bob
sends messages for a set X2 with at most t2 inputs (such that f(x, y) = 0 for every x ∈ X1, y ∈ X2),
then the referee does not learn information on the secret from the t1 + t2 messages.

9



Warm-up. We show in Scheme 2.5 that, given an access structure Γ, an efficient (N, N)-robust
CDS protocol for a function fΓ defined below implies a good secret-sharing scheme for Γ. Let
{p1, . . . , pn} be the parties of Γ, P1 =

{
p1, . . . , pn/2

}
and P2 =

{
pn/2+1, . . . , pn

}
. Define fΓ :

2P1 × 2P2 → {0, 1}, where for A1 ⊆ P1, A2 ⊆ P2

fΓ(A1, A2) = 1 ⇐⇒ A1 ∪A2 ∈ Γ;

the size of the domain of each server is N = 2n/2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scheme 2.5.
Public parameters: An (N, N)-robust CDS protocol P for fΓ.
The secret: s ∈ {0, 1}.

• Choose a random string r for the CDS protocol.

• For every A1 ∈ 2P1, compute mA1 – the message in P of Alice with input A1 and random
string r, share mA1 in a |A1|-out-of-|A1| secret-sharing scheme, and give each share to a party
in A1.

• For every A2 ∈ 2P2, compute mA2 – the message in P of Bob with input A2 and random string
r, share mA2 in a |A2|-out-of-|A2| secret-sharing scheme, and give each share to a party in
A2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For a set A, let A1 = A ∩ P1, A2 = A ∩ P2. If A ∈ Γ, fΓ(A1, A2) = 1, thus the secret can be
reconstructed from mA1 , mA2 . As the parties in A can reconstruct these messages, the correctness
follows. For the security, consider a set A /∈ Γ. The parties in A can reconstruct only the messages
MB1 , MB2 for every B1 ⊆ A1 and B2 ⊆ A2. As Γ is monotone, B1 ∪B2 /∈ Γ for every such B1, B2,
thus, fΓ(B1, B2) = 0. By the (N, N)-robustness of the CDS protocol, the parties in A do not know
any information on the secret.

The problem in the above construction is the share size. The share of each party pi ∈ P1 is a
share of the message of each subset A1 ∈ P1 such that pi ∈ A1, there are 2n/2−1 such sets. The
best known (N, N)-robust CDS protocol for a function f : [N ] × [N ] → {0, 1} has message size
O(N/ log N); in our case N = 2n/2. Thus, the total share of each party is O(2n/2−1 ·N/ log N) =
2n−o(n). This share size is too big as our goal is share size 2cn for some constant c < 1.

Linear secret-sharing schemes for somewhat regular access structures. As in previous
papers, to improve the share size we reduce the question of constructing a linear secret-sharing
scheme for an arbitrary access structure Γ to the question of constructing a (t, N2)-robust CDS
protocol for functions f : [N1] × [N2] → {0, 1} for some t = o(N1); the message size of Alice in
the best known linear CDS protocol for such f is Õ(N1/t) and the message size of Bob is Õ(t) (up
to polynomial factors).1 Notice that the message sizes of Alice and Bob are not the same when
t ̸≈
√

N1.
We use a different approach, which results in a better share size. Rather than consider |P1| =

|P2| = n/2 as in the warm-up and [7], we take P1, P2 such that |P1| = µn and |P2| = (1 − µ)n
for some parameter 0 < µ < 1 and define fΓ : {0, 1}µn × {0, 1}(1−µ)n → {0, 1} with respect to

1To get this message size we need a more refined notion of robustness called (Z, N)-robustness. See Definition 3.9
for a definition of this notion and Section 5.1 for the details why we can use it.
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this partition. Following [7], we show in Section 5.1 that to realize b-downslice access structure it
suffices to consider somewhat regular access structure, which are access structures in which every
maximal unauthorized set A is “well partitioned”, i.e., |A∩P1| ≤ µb.2 We execute Scheme 2.5 with
the modified fΓ using a (t, N)-robust CDS protocol for t = 2µb.

The correctness follows as in the warm-up. For the security, consider an unauthorized set A;
recall that |A∩P1| ≤ µb, thus, the parties in A learn at most t = 2µb messages in the CDS protocol
P (one message for each A′ ⊆ A). The share of each pi ∈ P1 contains 2µn shares of messages of
Alice, each message of size Õ(N1/t) = 2µn/2µb; i.e., the share size is Õ(2µ(2n−b)). Similarly, the
share of each pi ∈ P2 contains 2(1−µ)n shares of messages of Bob, each message of size Õ(t) = 2µb;
i.e., the share size is Õ(2n−µ(n−b)). To minimize the maximum share size, we take µ such that
2µ(2n−b) = 2n−µ(n−b), i.e., µ = n

3n−2b ; this results in share size Õ(2n(2n−b)/(3n−2b)). For b > n/2 our
scheme improves on the scheme of [9].

Example 2.6. Consider b = 0.5412n (this is the value that we will use in our construction). In
this case µ = 1

3−2·0.5412 = 0.5214 and the share size is Õ(20.7607n). Notice that in this case more
parties are in P1, the set of parties attached to Alice.

Consider b = 0.4n. In this case µ = 0.4545 < 0.5 and the share size is Õ(20.7272n). Notice that
in this case less parties are in P1, the set of parties attached to Alice.

Linear secret-sharing schemes for arbitrary access structures. We use the fact that any
access structure Γ is the intersection of n downslices to realize an arbitrary access structure; however
as the share size for b-downslices approaches 2n as b approaches n, we cannot use the above schemes
for downslices as is. We use two techniques from previous papers to reduce the share size. The
first technique is the covering technique [6, 9], which shows that for every a < b, every b-downslice
access structure with n parties can be realized as the intersection of roughly

( n
n−b

)
/
(n−a

n−b

)
access

structures, each one of them is a b − a-downslice access structure with n − a parties. The second
technique is the boosting technique from [9] showing that for linear secret-sharing schemes each
b-downslice with n parties can realized by realizing b-downslice access structures with fewer parties
(and some multislice access structures). This results in a recursive construction that uses a scheme
for b-downslice access structures and results in a scheme for b-downslice access structures with
better share size.

Following [9], our scheme for an arbitrary access structure will have the following structure:

• Write Γ as ∩n
b=1Γb, where Γb is a b-downslice access structure.

• For every b < 0.5n, use the linear scheme of [9] to realize the b-downslice Γb.

• Use the boosting technique to realize 0.5n downslice access structures.

• For every 0.5n ≤ b ≤ 0.554n, use the covering technique to realize the b-downslice Γb using
the scheme for 0.5n downslice access structures.

• Use the covering technique to realize 0.554-downslice access structures using our scheme for
0.5214n-downslice access structures.

2Actually, the bounds on the sizes that we get are bigger by a factor of n0.2; we ignore this factor in this section.
Furthermore, following [7], we will also require that minimal authorized sets are well partitioned; we do not use this
property in this paper.
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• Use the resulting scheme for 0.554n-downslice access structures and the boosting technique
to get a better scheme for 0.554n-downslice access structures.

• For every 0.554n ≤ b ≤ n, use the covering technique to realize the b-downslice Γb using the
scheme for 0.554n downslice access structures.

The scheme in [9] had different constant instead of 0.554 and 0.5214n. Finding the exact con-
stants that optimize our scheme was done using a computer programs; this program also found the
parameters in the boosting.

Remark 2.7. In [9] and in this paper, we partition the possible values of 1 ≤ b ≤ n to 3 intervals.
It might seem that taking more intervals can reduce the share size; however, this is not true. For
example, the construction for 0.592n-downslice access structures (via covering) results in the highest
share size. For b = 0.592n, using the covering technique with 0.554n downslice access structures
is optimal, i.e., using the covering technique with a different a-downslice will result is bigger share
size. Although for other values 0.554n < b < n covering to a different downslice may improve the
share size for b-downslice access structure, it will not improve the maximum share size for Γ.

3 Preliminaries
3.1 Notations
For n ∈ N we use the notation [n] to denote the set {1, 2, . . . , n}. We denote by log the logarithmic
function with base 2. For strings x, y ∈ {0, 1}n we write x ≤ y if xi ≤ yi for every i ∈ [n]. We denote
the concatenated string as x||y. We let wt(x) denote the Hamming weight of x. We denote the
binary entropy function by h : [0, 1]→ [0, 1] and it is defined as h(x) = −x log x− (1−x) log(1−x)
for all x ∈ (0, 1), and h(0) = h(1) = 0. For every p ∈ Z, we denote ⟨·, ·⟩p the inner product
modulo p, i.e., for every two vectors x, y ∈ Zh

p , ⟨x, y⟩p =
∑h

ℓ=1 x[ℓ] · y[ℓ] mod p. For every m ∈ N,
we define the equivalence relation over Z × Z, for every a, b ∈ Z, we say that a ≡ b (mod m) if
a mod m = b mod m.

3.2 Secret-Sharing Schemes
We start by defining (perfect) secret-sharing schemes.

Definition 3.1 (Access structures). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆
2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure Γ ⊆ 2{p1,...,pn} is
a monotone collection of non-empty sets. Sets in Γ are called authorized, and sets not in Γ are called
unauthorized. We will also represent an n-party access structure by a function f : {0, 1}n → {0, 1},
where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n represents the set Aσ = {pi : i ∈ [n], σi =
1}, and f(σ) = 1 if and only if A ∈ Γ. We will also call f an access structure.

A secret-sharing scheme defines a way to distribute shares to parties. Such a scheme is said to
realize an access structure Γ if the shares held by any authorized set of parties (i.e., a set in the
access structure) can be used to reconstruct the secret, and the shares held by any unauthorized
set of parties reveal nothing about the secret. The formal definition is given as follows.

Definition 3.2 (Secret-sharing schemes). A secret-sharing scheme Π over a set of parties P =
{p1, . . . , pn} with domain of secrets S and domain of random strings R is a mapping from S × R

12



to a set of n-tuples S1 × S2 × · · · × Sn (the set Sj is called the domain of shares of pj). A dealer
distributes a secret s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and privately communicating
each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(s; r) as the restriction of
Π(s; r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties. That is, for
any authorized set B =

{
pi1 , . . . , pi|B|

}
∈ Γ, there exists a reconstruction function ReconB :

Si1 × · · · ×Si|B| → S such that for every secret s ∈ S and every random string r ∈ R, it holds
that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from its shares. Formally,
for any set T /∈ Γ, every two secrets s1, s2 ∈ S, and for a uniformly distributed r ← R,(

ΠT (s1; r) = ⟨shj⟩pj∈T

)
≡
(
ΠT (s2; r) = ⟨shj⟩pj∈T

)
.

The size of the share of party pj is defined as log |Sj | and the size of the shares of Π is defined as
max1≤j≤n log |Sj |. The total share size of Π is defined as

∑n
j=1 log |Sj |. The scheme is called linear

over a finite field F if S = F, R = Fℓ for some integer ℓ ≥ 1, the sets S1, . . . , Sn are vector fields
over F, and the mapping Π is a linear mapping of the secret and the coordinates of the random
string r = (r1, . . . , rℓ). Finally, for an access structure Γ, let LSS(Γ) denote the minimum total
share size, where the minimum is taken over all linear secret-sharing schemes realizing Γ (over all
finite fields).

3.2.1 Multislice and Downslice Access Structures

We next introduce the multislic and downslice of an access structure. They have found use in
constructing secret-sharing schemes for general access structures [52, 6, 7, 9]. We first define
multislices. Roughly, the (a : b)-multislice of an access structure Γ agrees with Γ on all sets of size
between a and b, all sets of size less than a are unauthorized, and all sets of size greater than b are
authorized. Formally, it is defined as follows.

Definition 3.3 (Multislices). Let f : {0, 1}n → {0, 1} be an n-party access structure and let
a ≤ b ∈ [n]. The (a : b)-multislice of f is the access structure F : {0, 1}n → {0, 1} defined as

F (x) =


0 if wt(x) < a

f(x) if wt(x) ∈ [a, b]
1 if wt(x) > b

.

An access structure is called an (a : b, n)-multislice access structure if it is the (a : b)-multislice
of some access structure over n parties. For α < β ∈ [0, 1], we denote the linear exponent of
(αn : βn, n)-multislice access structure by

Mℓ (α : β) = lim sup
n→∞

max
F ∈M(α:β,n)

1
n

log LSS(F ),

where M(α : β, n) is the set of all (αn : βn, n)-multislice access structures.
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We next define a b-downslice of an access structure Γ. It is defined as the access structure
that agrees with Γ on all sets of size b, and whose max-terms are all of size b. That is, a set is
unauthorized if and only if it is contained in an unauthorized set of Γ of size b.

Definition 3.4 (Downslices). Let f : {0, 1}n → {0, 1} be an n-party access structure and let b ∈ [n].
The b-downslice of f is the access structure F : {0, 1}n → {0, 1} defined as

F (x) =
{

0 if ∃x′ : wt(x′) = b, x ≤ x′, f(x′) = 0
1 otherwise

.

An access structure is called a (b, n)-downslice access structure if it is the b-downslice of some
access structure over n parties. For β ∈ [0, 1], we denote the linear exponent of (βn, n)-downslice
access structure by

Dℓ (β) = lim sup
n→∞

max
F ∈D(β,n)

1
n

log LSS(F ),

where D(β, n) is the set of all (βn, n)-downslice access structures.

3.3 Conditional Disclosure of Secrets
In a 2-server CDS protocol, there are 2 servers, denote Alice and Bob, holding the same secret s
and a common random string. Additionally, Alice holds a private input x and Bob holds a private
input y. In addition, there is a referee, which knows x and y but, prior to the execution of the
protocol, the referee does not know the secret and the common random string. In a CDS protocol,
each server sends a single message to the referee. The message of each server is a function of the
secret, the common random string, and its private input; the message is independent of the input
and the messages computed by the other server. The referee should learn the secret s iff f(x, y) = 1,
for a fixed predicate f .

Definition 3.5 (Conditional disclosure of secrets (CDS) protocols). Let f : X × Y → {0, 1} be a
function. A 2-server CDS protocol P for f with domain of secrets S is a pair of functions (A, B)
with the following syntax. Alice and Bob hold private inputs x ∈ Alice and y ∈ Bc respectively. In
addition, both Alice and Bob receive the same secret s ∈ S and randomness r as common inputs.
Alice and Bob compute the message A(x, s; r) and B(y, s; r) respectively.

We say that a protocol P is a CDS protocol for f if it satisfies the following properties.

Correctness: There exists a deterministic reconstruction algorithm C receiving the private inputs
x and y of Alice and Bob, respectively, and their outputs, that is able to reconstruct s if
f(x, y) = 1. That is, for every inputs x ∈ X and y ∈ Y for which f(x, y) = 1, every secret
s ∈ S, and every common random string r ∈ R, it holds that C(x, y, A(x, s; r), A(y, s; r)) = s.

Security: If f(x, y) = 0 then C does not learn any information about the secret. Formally, for
every pair of secrets s1, s2 ∈ S, for all x ∈ X and y ∈ Y satisfying f(x, y) = 0, and for a
uniform random string r ← R,

(A(x, s1; r), B(y, s1; r)) ≡ (A(x, s2; r), B(y, s2; r)).

The message size of a CDS protocol P is defined as the size of the largest message sent by the
servers, i.e., maxx∈X,y∈Y,s∈S,r∈R{A(x, s; r), B(y, s; r)}.
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Definition 3.6 (The predicate INDEXN ). We define the function INDEXN : {0, 1}N × [N ] →
{0, 1} as follows. For every array D ∈ {0, 1}N (called a database) and every index i ∈ [N ], we let
INDEXN (D, i) = Di.

Observation 3.7. If there is a CDS protocol for INDEXN with message size M , then for every
f : [N ]2 → {0, 1} there is a CDS protocol with message size M .

3.3.1 Robust Conditional Disclosure of Secrets

Observe that in the security definition of a CDS protocol, if a server sends several messages for
different inputs with the same randomness, then it is not guaranteed that the referee does not
learn anything about the secret. Toward constructing better secret-sharing schemes, Applebaum et
al. [7] introduced the notion of robust CDS (RCDS) protocol, where the security is guaranteed to
hold even if the servers send several messages for different inputs that do not satisfy the predicate.
Before formally defining RCDS protocols, we first define the notion of a zero set, which is simply
a subset of inputs that are mapped to 0.

Definition 3.8 (Zero sets.). Let f : X × Y → {0, 1} be a function. We say that a set Z ⊆ X × Y
is a zero set of f if f(x, y) = 0 for all (x, y) ∈ Z.

Definition 3.9 (Z-robust CDS protocols). Let P be a CDS protocol for a function f : X × Y →
{0, 1}, and let Z = Z1 × Z2 ⊆ X × Y be a zero set of f . Let A(Z1, s; r) = (A(x, s; r))x∈Z1 and
B(Z2, s; r) = (B(y, s; r))y∈Z2. We say that P is robust for the set Z if for every pair of secrets
s1, s2 ∈ S and for r ← R it holds that

(A(Z1, s1; r), B(Z2, s1; r)) ≡ (A(Z1, s1; r), B(Z2, s2; r)).

Let Z1 ⊆ 2X ,Z2 ⊆ 2Y . We say that P is (Z1,Z2)-robust if it is robust for every zero set Z = Z1×Z2
such that Z1 ∈ Z1, Z2 ∈ Z2. Furthermore, for an integer t1 we say that P is (Z1, t2)-robust if it is
(Z1,Z2)-robust for Z2 = {A ⊆∈ Y : |A| ≤ t2}; (t1, t2)-robustness is defined similarly. Finally, for
an integer t, we say that P is t-robust if it is (t, t)-robust.

3.4 Private Information Retrieval (PIR)
A 2-server PIR protocol involves two servers, Alice and Bob and a user Charlie. Each server hold
the same database D ∈ {0, 1}N , and the user who holds an index i ∈ [N ] wants to retrieve the
bit Di without revealing i. In a 2-server PIR protocol, Charlie sends each server a random query,
each server Alice and Bob send Charlie back an answer which is a function of the query the server
received and the database D. Given the answers from the servers Charlie reconstruct Di.

Definition 3.10 (Private information retrieval (PIR) protocols). A 2-server PIR protocol P for
a database D ∈ {0, 1}N and an index i ∈ [N ] consists of two randomized query functions QA,QB,
two answer functions AA,AB and a reconstruction function C. The user Charlie holds the index
i, and sends a query to the servers Alice and Bob qA ← QA(i; r), qB ← QB(i; r) respectively. The
servers Alice and Bob hold the database D, receive a query from Charlie and send each an answer
aA ← AA(qA, D), aB ← AB(qB, D) respectively. Finally, Charlie computes his output by applying
the reconstruction function, C(aA, aB, i). We say that a protocol P = (QA,QB,AA,AB, C) is a
2-server PIR protocol if it satisfies the following properties.
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Correctness: Charlie outputs the correct value. Formally, for every database D ∈ {0, 1}N , index
i ∈ [N ], and a random string r ∈ R,

C(AA(QA(i; r), D),AB(QB(i; r), D), i) = Di.

Security: Each server learns no information about i from its query. Formally, for every pair of
indexes i1, i2, and for a uniform random string r ← R, it holds that

QA(i1; r) ≡ QA(i2; r) and QB(i1; r) ≡ QB(i2; r).

The communication complexity of a 2-server PIR protocol is the largest message communicated
between the servers and the user, i.e., max {|qA|, |qB|, |aA|, |aB|} as defined above of over all D ∈
{0, 1}N , i ∈ [N ], r ∈ R.

3.5 Matching Vectors
We next define matching vectors (MV). Matching vectors are the key tool for the constructions of
the best known non-linear CDS protocols in [53, 54, 14] and PIR protocol in [35, 34]. Here, we
present a definition of matching vectors that generalizes the known definition from [53, 54, 35, 34].
In our definition, the matching vector family is defined by two disjoint sets S and T in which the
inner products of the vectors lies, whereas in the former definitions the family only defined by one
set S and the inner products lies in S ∪ {0}.

Afterwards, we specify the type of matching vector which we are going to use in our CDS
construction, and show the equivalence to the previous definitions, and henceforth deriving an
efficient construction for our definition.

Definition 3.11 (Matching vectors). Let N, m, h > 0 be positive integers, and let S, T ⊆ Zm

be subsets such that S ∩ T = ∅. The vectors family ((ui, vi))N
i=1, where ui, vi ∈ Zh

m, is called
(S, T )-matching vectors if the following hold.

1. ⟨ui, vi⟩m ∈ T for every i ∈ [N ].

2. ⟨ui, vj⟩m ∈ S for every i ̸= j ∈ [N ].

If T = {1} then we call the vector family S-matching vectors.

Let m = p1p2 where p1 and p2 are distinct prime numbers. In previous constructions of CDS
and PIR protocols based on matching vector families [35, 34, 53, 14] (Scan, 0)-matching vectors and
(Sone, 0)-matching vectors were used, where

Scan = {a ∈ Zm : a mod p1, a mod p2 ∈ {0, 1}} \ {0} , and
Sone = {a ∈ Zm : a ≡ 1 (mod p1) ∨ a ≡ 1 (mod p2)} .

To simplify the construction of 2-server CDS and PIR protocols, we use a slightly different matching
vectors,

Szero = Zm \ Z∗
m = {a ∈ Zm : a ≡ 0 (mod p1) ∨ a ≡ 0 (mod p2)} .

We next prove the length of (Sone, 0)-matching vectors and Szero-matching vectors are equivalent
up to an addition of one entry.
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Claim 3.12. If there is an (Sone, 0)-matching vector family over Zm of length h, then there is an
Szero-matching vector family over Zm of length h + 1. If there is an Szero-matching vector family
over Zm of length h, then there is an (Sone, 0)-matching vector family over Zm of length h + 1.

Proof. Given ((ui, vi))i∈[N ], define u′
i = (1,−ui), v′

i = (1, v1). Then, if ((ui, vi))i∈[N ] is an (Sone, 0)-
matching vector family over Zm of length h, then, ((u′

i, v′
i))i∈[N ] is an Szero-matching vector family

over Zm of length h + 1, and if ((ui, vi))i∈[N ] is an Szero-matching vector family over Zm of length
h, then ((u′

i, v′
i))i∈[N ] is an (Sone, 0)-matching vector family over Zm of length h + 1. This follows

since, for every i, j, ⟨u′
i, v′

j⟩ = 1− ⟨ui, vj⟩ therefore

⟨ui, vj⟩m = 0⇒ ⟨u′
i, v′

j⟩m = 1,

⟨ui, vj⟩m = 1⇒ ⟨u′
i, v′

j⟩m = 0,

⟨ui, vj⟩m ∈ Sone ⇒ ⟨u′
i, v′

j⟩m ∈ Szero, and
⟨ui, vj⟩m ∈ Szero ⇒ ⟨u′

i, v′
j⟩m ∈ Sone.

□

Since Scan ⊂ Sone, a family of (Scan, 0)-matching vectors is a family of (Sone, 0)-matching vectors;
Claim 3.12 and the known results for Scan matching vectors [41, 51] imply the following corollary

Corollary 3.13. For every distinct primes p1, p2, there is an Szero matching vector family over Zm

for m = p1 · p2, of size N and length 2O(
√

log N log log N).

As we have seen, (Scan, 1)-matching vectors imply Szero-matching vectors of the same length. We
do not know whether such implication exists in the other direction or there is a better construction
for Szero-matching vectors, which would improve the communication complexity of 2-server PIRa
and CDS protocols.

4 Simplified PIR and CDS Protocols using Share Conversions
In this section we will show a 2-server PIR, 2-server CDS and multi-server CDS protocols for
INDEXN ; these protocol are simplifications and generalizations of the protocols of Dvir and
Gopi [33], Liu et al. [54], and Beimel et al. [14]. Our protocol modifies the previous protocols in two
ways. First, we use an Szero-matching vector family over Zm for a general composite m = p1 · p2,
where [53] uses (Scan, 0)-matching vector family over Z6 and [14] uses (Sone, 0)-matching vector
family for m = p1 · p2 s.t. p1|p2 − 1. The second generalization is the use of a general share
conversion as defined below in Section 4.1 and constructed in Section 4.5.

4.1 Share Conversion
We start by giving the definition of share conversion.

Definition 4.1 (Share conversion). Let p1 and p2 be two prime numbers. We say that C : Fp1 → Fp2

is a share conversion if for all s1, s2 ∈ Fp2 such that s1 − s2 ≡ 1 (mod p1) then C(s1)− C(s2) ̸≡ 0
(mod p2).

17



The definition is a special case of share conversion for 2-servers as defined in [19].
In our PIR protocol the queries to Alice and Bob are ui + r and r respectively; these queries

are used to compute to following expression

C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1).

We observe the following about that expression which was the motivation for the definition of share
conversion.

Observation 4.2. Let ((ui, vi))N
i=1 be an Szero-matching vector family over Zh

m for m = p1p2, and
let C : Fp1 → Fp2 be a share conversion. Then, for every i, j ∈ [N ],

• If i ̸= j and ⟨ui, vi⟩p1 = 0 then

C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1) ≡ 0 (mod p2).

• If i = j, then
C(⟨ui + r, vi⟩p1)− C(⟨r, vi⟩p1) ̸≡ 0 (mod p2).

Proof. Let i, j ∈ [N ].

• If i ̸= j and ⟨ui, vi⟩p1 = 0 then

C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1) ≡ C(⟨ui, vj⟩p1 + ⟨r, vj⟩p1)− C(⟨r, vj⟩p1)
≡ C(⟨r, vj⟩p1)− C(⟨r, vj⟩p1)
≡ 0 (mod p2).

• If i = j, then ⟨ui, vi⟩m = 1, in particular ⟨ui, vi⟩p1 = 1, thus

C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1) ≡ C(⟨ui, vj⟩p1 + ⟨r, vj⟩p1)− C(⟨r, vj⟩p1)
≡ C(1 + ⟨r, vj⟩p1)− C(⟨r, vj⟩p1)
̸≡ 0 (mod p2).

□

4.2 The 2-Server PIR Protocol
In this section we present the simplified 2-server PIR protocol using share conversion. A concrete
implementation given in Protocol 2.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.3.
Public parameters: An Szero-matching vector family ((ui, vi))N

i=1 over Zh
m for m = p1p2.

Alice and Bob’s input: D ∈ {0, 1}N .
Charlie’s input: i ∈ [N ].
Charlie’s randomness: r ∈ Fh

p1.
Notations: Let C : Fp1 → Fp2 be a share conversion, and let V : Fh

p1 → Fh
p2 where V (w) =∑N

j=1 C(⟨w, vj⟩p1) ·Djvj mod p2..

• Charlie sends queries qA ← ui + r mod p1 and qB ← r to Alice and Bob respectively.
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• Alice and Bob send answers aA ← V (qA) and aB ← V (qB) respectively to Charlie.

• Charlie outputs 1 if
⟨ui, aA − aB⟩p2 ̸= 0, (6)

and 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We next show two lemmas about the inner products and share conversion that are used in the
proof of correctness and security of our PIR and CDS protocols.
Lemma 4.4. Let ((ui, vi))N

i=1 be an Szero-matching vector family over Zh
m for m = p1p2, and let

C : Fp1 → Fp2 be a share conversion. Then for every r ∈ Fh
p1, and i, j ∈ [N ]

(C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1)) · ⟨ui, vj⟩p2 ≡ 0 (mod p2)

if and only if i ̸= j.
Proof. Let i, j ∈ [N ], and r ∈ Fh

p1 . Observe that
• If i ̸= j, then ⟨ui, vj⟩m ∈ Szero. If ⟨ui, vj⟩p2 = 0, the claim holds. Otherwise, ⟨ui, vj⟩p1 = 0,

thus from Observation 4.2 C(⟨ui + r, vj⟩p1)−C(⟨r, vj⟩p1) ≡ 0 (mod p2) and the claim holds.

• If i = j, then, ⟨ui, vj⟩m = 1, therefore, ⟨ui, vj⟩p2 = 1 and ⟨ui, vi⟩p2 = 1, thus, from Observa-
tion 4.2

C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1) ̸≡ 0 (mod p2)
and the claim holds.

□

Lemma 4.5. Let ((ui, vi))N
i=1 be an Szero-matching vector family over Zh

m for m = p1p2, C : Fp1 →
Fp2 be a conversion and let

V (w) =
N∑

j=1
vjC(⟨w, vj⟩p1) ·Dj mod p2.

Then, for every i ∈ [N ], and r1 ∈ Fh
p1

⟨ui, V (ui + r)− V (r)⟩p2 = Di · α,

for some α ̸≡ 0 (mod p2).
Proof. Observe that

⟨ui, V (ui + r)− V (r)⟩p2 ≡ ⟨ui,
N∑

j=1
vjC(⟨ui + r, vj⟩p1) ·Dj

−
N∑

j=1
vjC(⟨r, vj⟩p1) ·Dj⟩p2

≡ ⟨ui,
N∑

j=1
vj (C(⟨ui + r, vj⟩p1)− C(⟨r, vj⟩p1)) ·Dj⟩p2

≡
N∑

j=1
(C(⟨ui, vj⟩p1 + ⟨r, vj⟩p1)

−C(⟨r, vj⟩p1)) · ⟨ui, vj⟩p2 ·Dj (mod p2).
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Then, from Lemma 4.4, the coefficient of Dj in the sum modulo p2 is 0 if and only if i ̸= j, thus
we get that ⟨ui, V (ui + r)− V (r)⟩p2 = Di · α where α ̸≡ 0 (mod p2). □

Finally, we can prove that Protocol 4.3 is a 2-server PIR protocol.

Theorem 4.6. Let p1, p2 two distinct primes and let m = p1p2. Protocol 4.3 is a 2-server PIR
protocol over Fp2 with message size h, where h is the length of the matching vectors used in the
protocol.

Proof. In order to prove the theorem, we need to show that Protocol 4.3 satisfies correctness and
security.

Correctness. The correctness follows directly from Lemma 4.5, since Charlie returns 1 iff
⟨ui, aA − aB⟩p2 ̸≡ 0 (mod p2) and

⟨ui, aA − aB⟩p2 = ⟨ui, V (qA)− V (qB)⟩p2

= ⟨ui, V (ui + r)− V (r)⟩p2

= Di · α

for α ̸≡ 0 (mod p2) and Charlie outputs the correct Di.

Security. For a uniformly distributed random r, the query qB ← r is uniformly distributed, and
so is the query qA ← ui +r since it is masked with r. Thus, each query is are identically distributed
for every index i. □

4.3 The 2-Server CDS Protocol
In Protocol 4.7, we next present our simplified 2-server CDS protocol using share conversion. A
concrete implementation given in Protocol 2.2. Protocol 4.7 is obtained by exchanging the roles of
the parties compared to the PIR protocol (Protocol 4.3). That is, the randomness of the user is now
that shared random string of the servers; Alice computes the same message as her answer in the
PIR protocol and Bob computes the query qB and send it to Charlie, which computes the answer
of Bob in the PIR protocol (Charlie holds the database, while Bob does not hold it). Furthermore,
some masking is added to prevent Charlie from learning information on the common random string.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.7.
Public parameters: An Szero-matching vector family ((ui, vi))N

i=1 over Zh
m for m = p1p2.

Alice’s input: D ∈ {0, 1}N .
Bob’s input: i ∈ [N ].
The secret: s ∈ {0, 1}.
Shared randomness: r1 ∈ Fh

p1, r2 ∈ Fh
p2.

Notations: Let C : Fp1 → Fp2 be a share conversion, and let V : Fh
p1 → Fh

p2 where V (w) =∑N
j=1 C(⟨w, vj⟩p1) ·Djvj mod p2..

• Alice sends mA ← V (r1) + r2 mod p2.

• Bob sends m1
B ← (sui + r1 mod p1) , m2

B ← ⟨ui, r2⟩p2.
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• Charlie outputs 1 if
⟨ui, V (m1

B)−mA⟩p2 + m2
B ̸≡ 0 (mod p2), (7)

and 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.8. Let p1, p2 be two distinct primes and let m = p1p2. Protocol 4.7 is a 2-server CDS
protocol over Fp2 for INDEX2

N with message size h · log m, where h is the length of the matching
vectors used in the protocol.

Proof. Before proving the correctness and security we will show that for some α ̸≡ 0 (mod p2)

⟨ui, V (m1
B)−mA⟩p2 + m2

B = s ·Di · α. (8)

This follows from the following analysis.

⟨ui, V (m1
B)−mA⟩p2 + m2

B = ⟨ui, V (sui + r1)− V (r1)− r2⟩p2 + ⟨ui, r2⟩p2

= ⟨ui, V (sui + r1)− V (r1)⟩p2 .

• If s = 0, then Charlie compute ⟨ui, V (r1)− V (r1)⟩p2 = 0.

• Otherwise, if s = 1, then from Lemma 4.5, Charlie computes

⟨ui, V (ui + r1)− V (r1)⟩p2 = Di · α

where α ̸≡ 0 (mod p2).

Charlie computes s ·Di · α mod p2 for α ̸≡ 0 (mod p2) and return 1 iff it is not equal to 0.
Now, we can continue to prove the correctness and security.

Correctness. Correctness should hold when Di = 1. In this case by (8), Charlie outputs 1 if
s · α mod p2 is not equal to 0 for some α ̸≡ 0 (mod p2), thus Charlie returns s.

Security. We prove that when Di = 0, Charlie learns no information on the secret.

• The joint distribution of mA, m1
B is uniformly distributed since they are masked by r2, r1

respectively.

• By (8),
⟨ui, V (m1

B)−mA⟩p2 −m2
B = s ·Di · α = 0.

Therefore, m2
B is independent of s and can be computed from mA, m2

B, i, D.

From the observations, when Di = 0, Charlie can simulate mA, m1
B, m2

B given i, D. □
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4.4 The Multi-Server CDS Protocol
In this section we generalize the 2-server CDS protocol in Protocol 4.7 to a (k + 1)-server CDS
protocol (for k ≥ 2), similarly to the generalization done by Liu et al. in [54] using decomposable
matching vectors. We start with the definitions of point-wise product of vectors and decomposable
matching vectors.

Definition 4.9 (Pointwise product). Let m, h > 0 be two positive integers and let x, y ∈ Zh
m. The

point-wise product (or Hadamard product) of x, y, denoted by x ⊙ y, is a vector in Zh
m whose ℓ-th

element is the product of the ℓ-th elements of x, y, i.e. (x ⊙ y)[ℓ] = x[ℓ] · y[ℓ] mod m.

Definition 4.10 (k-decomposability [54]). Let N ′ = k
√

N . A family of vectors (ui)N
i=1 over Zh

m

is k-decomposable if there exist vector families (u1,i)N ′
i=1, . . . , (uk,i)N ′

i=1 over Zh
m such that under the

natural mapping i 7→ (i1, . . . , ik) ∈ [N ′]k

ui = u1,i1 ⊙ · · · ⊙ uk,ik
mod m

for all i ∈ [N ]. That is, ui is the pointwise product of k vectors u1,i1 , . . . , uk,ik
, where each uj,ij

can be computed from ij.

Definition 4.11 (Decomposable matching vector families). For integers N, m, h, k > 0 and
S, T ⊆ Zm such that S ∩ T = ∅, a collection of vectors ((ui, vi))N

i=1 over Zh
m is a k-decomposable

(S, T )-matching vector family if it is an (S, T )-matching vector family, and (ui)N
i=1, (vi)N

i=1 are
k-decomposable.

Next, we present a claim similar to Claim 3.12 showing the equivalence between the length of
k-decomposable (Sone, 0)-matching vectors to the length k-decomposable Szero-matching vectors.

Claim 4.12. If there is a k-decomposable (Sone, 0)-matching vector family over Zm of length h,
then there is a k-decomposable Szero-matching vector family over Zm of length h + 1. If there is an
k-decomposable Szero-matching vector family over Zm of length h, then there is a k-decomposable
(Sone, 0)-matching vector family over Zm of length h + 1.

Proof. Given ((ui, vi))i∈[N ] define u′
i = (1,−ui), v′

i = (1, vi). We have seen in the proof
of Claim 3.12 that if ((ui, vi))i∈[N ] is an (Sone, 0)-matching vector family then ((u′

i, v′
i))i∈[N ] is

an Szero-matching vector family, and if ((ui, vi))i∈[N ] is an Szero-matching vector family then
((u′

i, v′
i))i∈[N ] is an (Sone, 0)-matching vector family. It is left to show that if ((ui, vi))i∈[N ] is

k-decomposable matching vector family then ((u′
i, v′

i))i∈[N ] is a k-decomposable matching vec-
tor family. Let (u1,i)N ′

i=1, . . . , (uk,i)N ′
i=1 be the decomposition of (ui)i∈[N ]. For every i1 ∈ [N1/k],

define u′
1,i1 = (1,−u1,i1), and for every 2 ≤ t ≤ k, it ∈ [N1/k], define u′

t,it
= (1, ut,ii), then

(u′
1,i)N ′

i=1, . . . , (u′
k,i)N ′

i=1 is a decomposition of (u′
i)i∈[N ]. Since, for every i ∈ [N ]

u′
i[1] = 1 = Πk

t=1u′
t,it

[1]

and for every 2 ≤ ℓ ≤ h + 1,

u′
i[ℓ] = −ui[ℓ− 1] = −Πk

t=1ut,it [ℓ− 1] = Πk
t=1u′

t,it
[ℓ].

□
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Since Scan ⊂ Sone, a k-decomposable family of (Scan, 0)-matching vectors is a k-decomposable
family of (Sone, 0)-matching vectors. Since Liu et al. [54] showed that the known results for Scan
matching vectors [41] are k-decomposable, combining those results with Claim 4.12 imply the
following corollary.

Corollary 4.13. For every distinct primes p1, p2, there is a k-decomposable Szero-matching vector
family over Zm for m = p1 · p2, of size N and length 2O(

√
log N log log N).

The multi-server CDS protocol that we present is a generalization of Protocol 4.7 to k + 1
servers. In the protocol, one server, we call Alice holds the database D ∈ {0, 1}Nk and sends the
exact same message as in Protocol 4.7. The other k server will jointly hold an index i ∈ [Nk] i.e.
the servers P1, . . . , Pk will hold i1, . . . , ik ∈ [

√
N ] respectively. The k parties will simulate Bob

from Protocol 4.7 using a PSM protocol whose functionality is Bob’s messages in the 2-server CDS
protocol (for a formal definition of PSM see [43]).

In a PSM protocol there are k parties each holding an input xi and a common randomness.
There is also a referee we call Charlie who wants to learn F (x1, . . . , xk) for a fixed functionality F .
Each server sends a message to Charlie based on their private input and the common randomness.
Given these messages Charlie should be able to learn F (x) without learning anything else about
x1, . . . , xk.

In the (k+1)-server CDS protocol each server P1, . . . , Pk will send a message to Charlie according
to the PSM, and Charlie would be able to reconstruct the messages of Bob from Protocol 4.7 as
if he was holding the full index i, without learning any information about the secret. That special
purpose PSM which is presented by Liu et al. [54] uses the k-decomposablity of the matching
vectors.

Next we generalize the special purpose PSM protocol from [54] to any two distinct primes p1, p2.

Theorem 4.14 ([54]). For integers N, h, k ≤ log N and m = p1 · p2 for distinct primes p1, p2, if
(ui)N

i=1 is k-decomposable, then there is a PSM for the functionality

Faux : [ k
√

N ]× · · · × [ k
√

N ]× {0, 1} × Fp1 × Fp2 → Fh
p1 × Fp2

where Faux(i1, . . . , ik; s, r1, r2) 7→ (sui + r1, ⟨ui, r2⟩p2)

with communication complexity O(h · k2 log m).

Finally, we present our (k + 1)-server CDS protocol.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol 4.15.
Public parameters: A decomposable Szero-matching vector family ((ui, vi))N

i=1 over Zh
m for m =

p1p2 and a PSM protocol (PSM.B1, . . . , PSM.Bk, PSM.C) for Faux.
Input of Pt (1 ≤ t ≤ k): it ∈ [N ].
Input of Pk+1 (Alice): D ∈ {0, 1}Nk .
The secret: s ∈ {0, 1}.
Shared randomness: r1 ∈ Fh

p1, r2 ∈ Fh
p2 and randomness rPSM of the PSM.

Notations: Let C : Fp1 → Fp2 be a share conversion, and let V : Fh
p1 → Fh

p2 where V (w) =∑N
j=1 C(⟨w, vj⟩p1) ·Djvj mod p2.

• For 1 ≤ t ≤ k, the t-th party sends mPSM,t ← PSM.Bt(it, s, r1, r2; rPSM)

• Alice sends mA ← V (r1) + r2 mod p2.
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• Charlie computes (m1
B, m2

B)← PSM.C(mPSM,1, . . . , mPSM,k).

• Charlie outputs 1 if
⟨ui, V (m1

B)−mA⟩p2 + m2
B ̸≡ 0 (mod p2), (9)

and 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.16. Let p1, p2 be two distinct primes and let m = p1p2. Protocol 4.15 is a (k+1)-server
CDS protocol over Fp2 for INDEXk+1

N with message size h · k2 log m, where h is the length of the
matching vectors used in the protocol.

Proof. The correctness and security follow from the correctness and security of Protocol 4.7 and
of the PSM protocol for Faux in Theorem 4.14. From the correctness of the PSM for Faux, given
mPSM,1, . . . , mPSM,k, Charlie computes correctly m1

B ← sui + r1, m2
B ← ⟨ui, r2⟩p2 . Thus, from the

proof of Theorem 4.8 the correctness follows. The security follows from the security of Protocol 4.7;
the joint distribution mA, m1

B, m2
B is equally distributed for s = 0 and s = 1. Finally, from the

security of the PSM protocol, the joint distribution of mPSM,1, . . . , mPSM,k can be simulated from
(m1

B, m2
B).

Communication. Alice sends a vector over Fh
p2 ( of length h log p2), while all the other k servers

send a PSM message, thus from Theorem 4.14 their message length is h·k2 log m. Thus the message
size of the protocol is h · k2 log m. □

4.5 Constructing Share Conversions
In this section, we show simple constructions of share conversion as used in Protocol 4.3 and Pro-
tocol 4.7 – the PIR and CDS protocols.

4.5.1 The First Share Conversion

The first share conversion is used in Section 2; it assumes that p2 ∤ p1 − 1, in particular it can be
applied when p1 < p2.

Claim 4.17. Let p1, p2 be primes such such that p2 ∤ p1 − 1, and let C1 : Fp1 → Fp2, where for
every x ∈ Fp1, C1(x) = x mod p2. Then, C1 is a share conversion.

Proof. We need that for every x ∈ Fp1 , C1(x + 1 mod p1)− C1(x) ̸≡ 0 (mod p2). Let x ∈ Fp1 ,

• If x ̸≡ p1 − 1 (mod p1), then

C1(x + 1 mod p1)− C1(x) ≡ C1(x + 1)− C1(x) ≡ x + 1− x ≡ 1 ̸≡ 0 (mod p2).

• Otherwise, if x = p1 − 1, then, since p2 ∤ p1 − 1

C1(p1 − 1 + 1 mod p1)− C1(p1 − 1) ≡ C1(0)− C1(p1 − 1)
≡ 0− (p1 − 1) ≡ 1− p1 ̸≡ 0 (mod p2).

□

In particular, if p1 < p2 then C1(x) = x is a share conversion. We note that when p2|p1 − 1,
C1(x) = x mod p2 is not a share conversion since

C1(p1 − 1 + 1)− C1(p1 − 1) ≡ 0− p1 + 1 ≡ 0 (mod p2).
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4.5.2 The Second Share Conversion

The second share conversion assumes that p1|p2− 1. This is the share conversion used in [14]. The
share conversion uses an element γ ∈ F∗

p2 whose order is p1, i.e., p1 is the smallest positive integer
s.t. γp1 ≡ 1 (mod p1). Such element exists if and only if p1|p2 − 1.
Claim 4.18. Let p1, p2 primes s.t. p1|p2 − 1, and let γ ∈ F∗

p2 be an element of order p1. Then the
following function, C2(x) = γx mod p2 is a share conversion.
Proof. Since the order of γ is p1, C2 is indeed a mapping from Fp1 to Fp2 For x ∈ Fp1 ,

C2(x + 1)− C2(x) ≡ γx+1 − γx ≡ γx(γ − 1) (mod p2).

Since γ ∈ F∗
p2 , we know that γ ̸= 0, also since its order is p1 > 1, we know that γ ̸= 1, therefore

C2(x + 1)− C2(x) ̸≡ 0 (mod p2). □

4.5.3 The Third Share Conversion

The third share conversion only assumes that p2 ̸= 2. The size of the range of this share conversion
is 3.
Claim 4.19. Let p1, p2 primes, such that p2 > 2 and define C3 as follows:

C3(x) =
{

x mod 2 0 ≤ x < p1 − 1
2 x = p1 − 1

.

Then, C3 is a share conversion.
Proof. Let x ∈ Fp1 ,

• 0 ≤ x < p1 − 1, then C3(x + 1)− C3(x) ∈ {−1, 1}, i.e., the difference is non-zero.

• Otherwise, if x = p1 − 1, then, since p2 > 2,

C3(x + 1 mod p1)− C3(x) ≡ C3(0)− C3(p1 − 1) ≡ 0− 2 ̸≡ 0 (mod p2).
□

5 Improved Linear Secret-Sharing Schemes for Arbitrary Access
Structures

In this section, we prove new upper bounds on the share size of linear secret-sharing schemes for
all access structures.
Theorem 5.1. Any n-party access structure can be realized with a linear secret-sharing scheme by
share size 20.7563n+o(n).

To simplify notations, if a scheme has share size 2S·n+o(n), we will say that it has exponent
S. As observed in [9], it is enough to prove the bound for all downslices. Recall that a downslice
is an access structure where all maximal authorized sets are of the same size. Applebaum and
Nir [9] constructed a scheme for a downslice by a bootstrapping algorithm, taking a linear secret-
sharing scheme for a downslice and constructing a better scheme. Our improvement is done by
constructing a better scheme for downslices than [9] before applying bootstrapping. The next result
states the share size for our basis scheme. In Section 5.3 we apply the bootstrapping, which proves
Theorem 5.1.
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Lemma 5.2. Let α0 > 0.5412 denote the unique solution to the equation (2x− 3)2 log(x) + 2x2 −
8x + 7 = 0 in the interval [0, 1]. Then for all β ∈ (0, 1) it holds that

Dℓ (β) ≤


1
2 + β

2 if β ≤ 1/2
2−β
3−2β if 1/2 < β ≤ α0

h(β)− 0.51079 · (1− β) otherwise
.

For example, for β = 0.54 we get Dℓ (0.54) ≤ 146/192 ≈ 0.7604. On the other hand, be-
fore applying the bootstrapping, Applebaum and Nir [9] proved the upper bound of Dℓ (0.54) ≤
h(0.54)− 0.5 · (1− 0.54) ≈ 0.7654.

The bound for β ≤ 1/2 was shown in [9]. The proof for the case where 1/2 < β ≤ α0 is given
in Section 5.1, and the proof for the case where α0 < β ≤ 1 is given in Section 5.2.

5.1 A Better Linear Secret-Sharing Scheme for Downslices With Low Density
We next show an improved linear secret-sharing scheme for all downslices with low density. That
is, we prove the following.

Lemma 5.3 (Low density). Every (b, n)-downslice access structure can be realized by a linear
secret-sharing scheme with share size of at most 2

n(2n−b)
3n−2b

+o(n). Consequently, Dℓ (β) ≤ 2−β
3−2β for

any β ∈ [0, 1].

Towards constructing such a scheme, we first construct a new linear secret-sharing scheme for
all multislices. For this, we use the following 2-server linear CDS for an arbitrary function; this
CDS protocol is already fully robust for Bob.

Theorem 5.4 ([38, 7]). Let f : [N1]× [N2]→ {0, 1}. Then there exists a linear (1, N2)-robust CDS
protocol for f , where the message size of Alice is N1 − 1, and the message of Bob is a single bit.

By the immunization theorem of [7] we obtain the following.

Corollary 5.5. Let f : [N1] × [N2] → {0, 1} and let t ≤ N1 and Z1 ⊆ 2[N1] such that |Z| ≤ t for
every Z ∈ Z1 and Z contains at most u maximal sets. Then there exists a linear (Z1, N2)-robust
CDS protocol for f , where the message size of Alice is O(N1

t log3 t log N1 log u) and the message
size of Bob is O(t log3 t log N2 log u).

Our construction of a linear secret-sharing scheme for multislice access structures follows a
similar approach to previous constructions [7, 9]. That is, we first reduce the construction to
realizing somewhat regular access structures. These are partial access structures where we partition
the parties into two sets and every authorized and every unauthorized set are partitioned “nicely”
between the two sets. Unlike previous constructions, the partition we consider does not split each
set into roughly equal sizes. This uneven partition is the main source for the improved share size
in our construction. We next formally define somewhat regular access structures.

Definition 5.6 ((I, a, b)-somewhat regular access structures). Let 1 ≤ a ≤ b ≤ n and let I ⊂ P of
size |I| = µn. A (partial) access structure Γ = (Γyes, Γno) over n parties is called (I, a, b)-somewhat
regular if for every A ∈ Γyes ∪ Γno it holds that

µa ≤ |A ∩ I| ≤ µb and (1− µ)a ≤ |A ∩ (P \ I)| ≤ (1− µ)b.
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Note that previous papers considered the case where µ = 1/2. We next construct a linear secret-
sharing scheme for any (I, a, b)-somewhat regular access structure using a robust CDS protocol.

Lemma 5.7. Let Γ = (Γyes, Γno) be an (I, a, b)-somewhat regular access structure and let µ =
|I|/n, t1 =

∑µb
j=µa

(µb
j

)
, and t2 =

∑(1−µ)b
j=(1−µ)a

((1−µ)b
j

)
. Assume that for all functions f : {0, 1}µn ×

{0, 1}(1−µ)n → {0, 1} and every Z1 ⊆ {0, 1}µn,Z2{0, 1}(1−µ)n such that every set in Z1 and Z2 has
size at most t1 and t2 respectively and Z1 and Z2 contain at most

(µn
µb

)
and

((1−µ)n
((1−µ)b

)
maximal sets

respectively there exists a 2-server (Z1,Z2)-robust linear CDS protocol, such that the message sizes
of Alice and Bob are sA and sB respectively.

Then there exists a linear secret-sharing scheme realizing Γ such that the share size of every
party pi ∈ I is less than sA ·

∑µb
j=µa

(µn
j

)
and the share size of every party pi ∈ P \ I is less than

sB ·
∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
.

Proof. In the following, we let X = {0, 1}µn, let Y = {0, 1}(1−µ)n, and let I =
{
pi1 < · · · < piµn

}
and P \ I =

{
piµn+1 < · · · < pin

}
. For a string x ∈ X we denote A1

x =
{

pij : j ∈ [µn], xj = 1
}

,

and for a string y ∈ Y we denote A2
y =

{
pij+µn : j ∈ [(1− µ)n], yj = 1

}
. We next present the

construction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scheme 5.8.
Input: The dealer holds a secret s ∈ {0, 1}.

1. Let f : X × Y → {0, 1} be some monotone function that agrees with Γ, that is, for every
x ∈ X and y ∈ Y such that A1

x ∪ A2
y ∈ Γyes ∪ Γno, it holds that f(x, y) = 1 if and only if

A1
x ∪A2

y ∈ Γyes,3 and let

Z1 = {{x∗ ≤ x : wt(x∗) ≥ µa} : wt(x) ≤ µb}

and
Z2 = {{y∗ ≤ y : wt(∗) ≥ (1− µ)a} : wt(y) ≤ (1− µ)b} .

2. Sample a random string r for a 2-server (Z1,Z2)-robust linear CDS protocol P = (A, B) for
f .

3. For every x ∈ X whose Hamming weight w is in the interval [µa, µb], compute shA(x, s) =
A(x, s; r) and share it between the parties in A1

x (i.e., the parties that correspond to the string
x) using a w-out-of-w additive secret-sharing scheme. We denote the share of pi ∈ A1

x by
shA(x, s, i).

4. For every y ∈ Y whose Hamming weight w is in the interval [(1 − µ)a, (1 − µ)b], compute
shB(y, s) = B(y, s; r) and share it between the parties in A2

y using a w-out-of-w additive secret-
sharing scheme. We denote the share of pi ∈ A2

y by shB(y, s, i).

5. The share of pi ∈ I is (shA(x, s, i))x∈X,pi∈A1
x

and the share of pi ∈ P \ I is
(shB(y, s, i))y∈Y,pi∈A2

y
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3Since Γyes ∪ Γno is a partial access structure, such monotone f exists.
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We first show that Scheme 5.8 is correct. Fix A ∈ Γyes. Since Γ is (I, a, b)-somewhat regular,
µa ≤ |A ∩ I| ≤ µb and (1 − µ)a ≤ |A ∩ (P \ I)| ≤ (1 − µ)b. Therefore, for the strings x ∈ X and
y ∈ Y such that A1

x = A∩I and A2
y = A∩ (P \I), it holds that f(x, y) = 1 and that their Hamming

weights are in the intervals [µa, µb] and [(1− µ)a, (1− µ)b], respectively. Hence, the parties in A1
x

can reconstruct shA(x, s) and the parties in A2
y can reconstruct shB(y, s). By the correctness of the

(Z1,Z2)-robust CDS protocol, they can reconstruct the secret s.
We next show privacy. Fix A ∈ Γno, let x ∈ X denote the string such that A1

x = A ∩ I, and
let y ∈ Y denote the string such that A2

y = A ∩ (P \ I). Consider two secrets s0 and s1. To
show privacy, we prove that the corresponding shares of the parties in A, denoted D(s0) and D(s1)
respectively, are identically distributed. Since for every x′ ̸≤ x and every y′ ̸≤ y, the parties in
A1

x ∪ A2
y miss at least one share of shA(x′, s) and one share of shB(y′, s), by the security of the

additive secret-sharing scheme, the shares shA(x′, s) and shB(y′, s) held by A1
x ∪ A2

y are uniformly
distributed and independent of the secret and the other shares and can be ignored.

The remaining shares are{
shA(x∗, s, j) : x∗ ≤ x, pj ∈ A1

x∗

}
∪
{

shB(y∗, s, j) : y∗ ≤ y, pj ∈ A2
y∗

}
,

i.e., the shares of the messages corresponding to the inputs

Z1 = {x∗ ≤ x : wt(x∗) ≥ µa} and Z2 = {y∗ ≤ y : wt(y∗) ≥ (1− µ)a} .

Since f is monotone and f(x, y) = 0, the set Z1 × Z2 is a zero set. By the robustness of the
(Z1,Z2)-robust CDS scheme, it follows that D(s0) ≡ D(s1).

Finally, we analyze the share size. The set Z1 contains
(µn

µb

)
maximal sets (one such set for

each string of weight µb) and each Z ∈ Z1 contains at most t1 =
∑µb

j=µa

(µb
j

)
inputs (one input for

every string x∗ ≤ x such that wt(x∗) ≥ µa and wt(x) ≤ µb). Similarly, the set Z2 contains
((1−µ)n

(1−µ)b
)

maximal sets and each Z ∈ Z2 contains at most t2 =
∑(1−µ)b

j=(1−µ)a
((1−µ)b

j

)
inputs. Thus, the message

sizes of Alice and Bob in the (Z1,Z2)-robust CDS protocol are sA and sB respectively. Every party
pi ∈ I receives a share of Alice’s message in the (Z1,Z2)-robust CDS protocol for every x ∈ X

of Hamming weight in [µa, µb], where pi ∈ A1
x. Since there are

∑µb
j=µa

(µn−1
j−1

)
such strings x ∈ X

where pi ∈ A1
x, its share size is less than sA ·

∑µb
j=µa

(µn
j

)
. Similarly, the share size of every party

pi ∈ P \ I is less than sB ·
∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
. □

We next construct a linear secret-sharing scheme for a multislice access structure using linear
secret-sharing schemes for somewhat regular access structures. Fix a, b ∈ [n0.8, n− n0.8] such that
a < b (we deal with the general case below) and let ε = n−0.2 be a proximity parameter. Let I ⊆ P
and let µ = |I|/n and let A ⊆ P . We say that A is good for I if

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε.

If A is not good then we call it bad. We will use the following lemma.

Lemma 5.9. For all a, b ∈ [n0.8, n − n0.8] such that a < b and every constant µ ∈ (0, 1), there
exists a collection of λ = O(n) subsets I1, . . . , Iλ ⊆ P , each of size µn, such that for all A ⊆ P
satisfying a ≤ |A| ≤ b, the set A is good for at least 0.7λ of the subsets.
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Proof. We prove the lemma using the probabilistic method. We sample a collection of λ = O(n)
subsets, each of size µn, uniformly at random, and show that with positive probability all inputs
are good for at least 0.7λ of the subsets.

Let us first analyze this probability with respect to a single subset I sampled uniformly at
random from all subsets of P of size µn. Fix A ⊆ P such that a ≤ |A| ≤ b. We next show that

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε

with overwhelming probability. We only prove the former as the latter can be proved using an
analogous argument.

For every i ∈ A let Xi denote the indicator for the event i ∈ A∩I. Then these random variables
are negatively associated (see Claim A.4). We denote by X =

∑
i∈A Xi the random variable that

is equal to |A ∩ I|. By linearity of expectation, E [X] = µ|A|, hence µa ≤ E [X] ≤ µb. Now, since
ε = n−0.2 < µb, by Chernoff’s inequality (see Theorem A.2),

Pr [X > µb + ε] ≤ Pr [X > µ|A|+ ε] = Pr
[
X > µ|A| ·

(
1 + ε · 1

µ|A|

)]
≤ e−ε2· µ|A|

3 ≤ e−n−0.4· µn0.8
3 = e− µn0.4

3 .

Similarly,

Pr [X < µa− ε] ≤ e− µn0.4
3 .

Therefore, by the union bound,

µa− ε ≤ |A ∩ I| ≤ µb + ε and (1− µ)a− ε ≤ |A ∩ (P \ I)| ≤ (1− µ)b + ε

except with probability o(1).
Finally, if we independently sample λ subsets, the probability that A is bad for at least 0.3λ of

them is, by a Chernoff bound, at most 2−Ω(λ). By taking λ = Cn for sufficiently large constant C,
the latter probability is smaller than 2−n. Applying the union bound over all possible subsets A,
the probability that every A is good for at least 0.7λ of the sets is strictly greater than 0. Therefore,
there exists λ subsets such that A is good for at least 0.7λ of them. □

We can now realize (a : b, n)-multislice access structures. We first realize them for all n0.8n ≤
a < b ≤ n− n0.8.

Lemma 5.10. Let n0.8 ≤ a < b ≤ n − n0.8 and let Γ be an (a : b, n)-multislice access structure.
Let c = a− n−0.2, let d = b + n−0.2, and let µ ∈ (0, 1). Assume that for all I ⊂ P , where |I| = µn,
any (I, c, d)-somewhat regular access structure can be realized with a linear secret-sharing scheme
where the share size is at most m. Then Γ can be realized with a linear secret-sharing scheme with
share size at most O(mn log n).

Proof. We start by considering an (a : b, n) partial multislice access structure, namely, the access
structure is defined only over the inputs whose Hamming weight is in the interval [a, b]. The scheme
is as follows.

1. Let I1, . . . , Iλ be the collection of λ = O(n) subsets of P guaranteed by Lemma 5.9.
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2. Share the secret s using a λ/2-out-of-λ Shamir’s secret-sharing scheme. Let σ1, . . . , σλ denote
the shares.

3. For every j ∈ [λ], share σj with fresh randomness using the secret-sharing scheme realizing
the (Ij , c, d)-somewhat regular access structure ΓIj ,c,d that agrees with Γ.

We now analyze the construction. We start with showing correctness. Let A ∈ Γyes. By Lemma 5.9,
the set J = {j : A is good for Ij} is of size |J | ≥ 0.7λ. Therefore, at least 0.7λ of the shares σj can
be reconstructed by the parties in A. Thus, they can reconstruct s.

We next show privacy. Let A ∈ Γno. Since A is good for at least 0.7λ of the subsets, by
the privacy of each ΓIj ,c,d, it holds that at least 0.7λ of the shares σj remain perfectly hidden.
Therefore, the secret s remains perfectly hidden.

As for the share size, first, note that each σj is of size O(log λ). Therefore, the share size in the
above scheme is at most O(mλ log λ) = O(mn log n).

We now handle the fully defined access structure, that is, we need to consider the “big” and
“small” sets. Recall that for all A ⊆ P where |A| < a it holds that A /∈ Γ, and for all B ⊆ P where
|B| > b it holds that B ∈ Γ. The scheme is as follows.

1. Share s using a (b + 1)-out-of-n Shamir’s secret-sharing scheme, and give the ith share to pi.

2. Share s into s0 and s1 using a 2-out-of-2 secret-sharing scheme.

3. Share s0 using an a-out-of-n Shamir’s secret-sharing scheme and give the ith share to the pi.

4. Share s1 using the secret-sharing scheme for the partial access structure shown above, and
give the ith share to the pi.

For correctness, note that if A ∈ Γ is of size at least b + 1 then the parties can reconstruct s using
the Shamir shares of the first scheme. Otherwise, it must be the case where a ≤ |A| ≤ b, hence the
parties can reconstruct s0 and s1, and thus can reconstruct s.

For privacy, observe that if A /∈ Γ is of size |A| < a, the parties cannot reconstruct s0, hence s
is perfectly hidden. Otherwise, it must be the case where a ≤ |A| ≤ b, hence the Shamir shares of
Step 1 reveal no information to the parties, and they cannot reconstruct s1 due to the privacy of
the underlying scheme.

Finally, note that the share size is only O(log n) additively longer than the share size for the
partial access structure. Thus, the share is at most O(mn log n). □

We can now put everything together and construct a secret-sharing scheme for all multislice
access structures. As a corollary to this theorem, we obtain Lemma 5.3. Note that in the boot-
strapping step, we need to realize multislices (see Lemma 5.15). We note that the result is not
optimal for all parameters, and for some parameters better upper bounds can be obtained by either
using the cover lemma (see Lemma 5.14 below) or the results of [9]. We use the following results
due to Liu and Vaikuntanathan [52], which decomposes an access structure.

Proposition 5.11 ([52]). Let Γ be an access structure and let a < b ∈ [n]. Define three access
structures Γbot(a), Γmid(a, b), and Γtop(b) as follows

Γbot(a) : A ∈ Γbot(a) ⇐⇒ ∃A′ ∈ Γ s.t. A′ ⊆ A and |A′| < a

Γmid(a, b) : A ∈ Γmid(a, b) ⇐⇒ A ∈ Γ and a ≤ |A| ≤ b, or |A| > b

Γtop(b) : A /∈ Γtop(b) ⇐⇒ ∃A′ /∈ Γ s.t. A ⊆ A′ and |A′| > b.
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Then Γ = (Γbot(a) ∪ Γmid(a, b)) ∩ Γtop(b). Consequently, if Γbot(a), Γmid(a, b), and Γtop(b) can be
realized with linear secret-sharing schemes with exponent S, then so is Γ.

Theorem 5.12 (Multislice theorem). Let 1 ≤ a < b ≤ n. Then every (a : b, n)-multislice access
structure can be realized by a linear secret-sharing scheme with share size at most 2

n(2n−h(a/b)·b)
3n−2h(a/b)·b +o(n)

if a > b/2, and share size at most 2
n(2n−b)

3n−2b
+o(n) otherwise. Consequently, if a = αn and b = βn,

then the exponent Mℓ (α : β) satisfies.

Mℓ (α : β) ≤


2−h(α/β)·β
3−2h(α/β)·β if α > β/2
2−β
3−2β otherwise.

Proof. Let Γ be an (a : b, n)-multislice access structure. Let a′ = max
{
a, n0.8} and let b′ =

min
{
b, n− n0.8}. Consider the three access structures Γbot(a′), Γmid(a′, b′), and Γtop(b′). Then by

Proposition 5.11 we can write Γ = (Γbot(a′) ∪ Γmid(a′, b′)) ∩ Γtop(b′). We realize Γbot(a′) using a
DNF scheme, and realize Γtop(b′) using a CNF scheme, respectively. The cost of these schemes is
at most n

( n
n0.8
)

= 2o(n).
It is left to realize Γmid(a′, b′). Observe that Γmid(a′, b′) is an (a′ : b′, n)-multislice access

structure where n0.8 ≤ a′ < b′ ≤ n− n0.8. We realize Γmid using the scheme given by Lemma 5.10,
and using the scheme from Lemma 5.7 to realize the somewhat regular access structures. The total
share size is s ·O(n log n), where

s = max

sA ·
µb∑

j=µa

(
µn

j

)
, sB ·

(1−µ)b∑
j=(1−µ)a

(
(1− µ)n

j

) ,

where sA and sB are the message sizes of Alice and Bob in the (Z1, 2(1−µ)n)-robust linear
CDS protocol guaranteed by Corollary 5.5, where t =

∑µb
j=µa

(µb
j

)
and u =

(µn
µb

)
. Then sA =

O(2µn

t log3 t · µn · log
(µn

µb

)
), and sB = O(t log3 t · (1 − µ)n · log

(µn
µb

)
). Since

∑µb
j=µa

(µn
j

)
< 2µn and∑(1−µ)b

j=(1−µ)a
((1−µ)n

j

)
< 2(1−µ)n, the share size is

s = max
{

O

(
2µn

t
log3 t · µn · log

(
µn

µb

))
· 2µn,

O

(
t log3 t · (1− µ)n · log

(
µn

µb

))
· 2(1−µ)n

}
,

In order to optimize the share complexity (up to polynomial factors in n), we choose µ such that

22µn

t
= t · 2(1−µ)n. (10)

Observe that

t =
{

O(2h(a/b)·µb) if a > b/2
O(2µb) otherwise.

Therefore, to ensure that (10) holds we take

µ =
{

n
3n−2h(a/b)·b if a > b/2

n
3n−2b otherwise.

31



Observe that in both cases it holds that µ ∈ (0, 1). Thus, if a > b/2 then, up to polynomial factors,
the share size is 22µn

t = 22µn−h(a/b)·µb = 2
n(2n−h(a/b)·b)

3n−2h(a/b)·b , and if a ≤ b/2 then, up to polynomial factors,
the share size is 22µn

t = 22µn−µb = 2
n(2n−b)

3n−2b . □

As a corollary, we obtain Lemma 5.3.

Proof of Lemma 5.3. Observe that for every b ∈ [n], every (0 : b, n)-multislice access structure is
also a (b, n)-downslice access structure. Therefore any (b, n)-downslice can be realized with a linear
secret-sharing scheme with share size at most 2

n(2n−b)
3n−2b

+o(n). □

5.2 Constructing a Linear Secret-Sharing for Downslices With High Density
Similarly to [9], for downslices with high density, we reduce this to the case of low density via the
covering lemma.
Lemma 5.13 (Cover reduction lemma [6, 9]). Let a < b ≤ n be positive integers. If (b− a, n− a)-
downslices can be linearly realized with share size z(b−a, n−a) then (b, n)-downslices can be linearly
realized with share size of[(

n

n− b

)
/

(
n− a

n− b

)]
·
[
1 + log

(
n− a

n− b

)]
· z(b− a, n− a).

Consequently, for all constants 0 ≤ α < β ≤ 1 it holds that if (αm, m)-downslices can be linearly
realized with exponent z̃(α), then (βn, n)-downslices can be linearly realized with exponent at most

h(β)− (1− β) · h(α)− z̃(α)
1− α

.

Combined with Lemma 5.3, we obtain the following result for downslices with high density. We
note that in [9], the reduction of a downlice with density β was to a downslice with density 1/2.
Since we improve the results for slices with low density, we reduce to a different value.
Lemma 5.14 (High density). Let α0 > 0.5412 denote the unique solution to the equation (2x −
3)2 log(x) + 2x2 − 8x + 7 = 0 in the interval [0, 1]. For every integers n and b ∈ (α0n, n], every
(b, n)-downslice can be linearly realized with share size at most[(

n

n− b

)
/

(
n−b

1−α0

n− b

)]
·
[
1 + log

(
n−b

1−α0

n− b

)]
· 2

2−α0
(3−2α0)(1−α0) ·(n−b)

.

Consequently, for all β ∈ (α0, 1],

Dℓ (β) ≤ h(β)− (1− β) ·
h(α0)− 2−α0

3−2α0

1− α0
< h(β)− 0.51079 · (1− β).

Proof. By Lemmas 5.3 and 5.13, for every a ∈ (0, b), every (b, n)-downslices can be linearly realized
with share size of [(

n

n− b

)
/

(
n− a

n− b

)]
·
[
1 + log

(
n− a

n− b

)]
· 2

2n−b−a
3n−2b−a

·(n−a)+o(n)

≤ 2h(b)·n−h( n−b
n−a )·(n−a)+ 2n−b−a

3n−2b−a
·(n−a)+o(n)

= 2h(b)·n−(h( n−b
n−a )− 2n−b−a

3n−2b−a )·(n−a)+o(n).
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Let a′ = b−a
n−a · n ∈ (0, b) and let α′ = a′/n. Then a = b−a′

n−a′ · n and n− a = n−b
n−a′ · n, hence the share

size is at most

2h(b)·n−(h( n−b
n−a )− 2n−b−a

3n−2b−a )·(n−a)+o(n) = 2
h(b)·n−

(
h(α′)−

n−b+ n−b
n−a′ ·n

2(n−b)+ n−b
n−a′ ·n

)
· n−b

n−a′ ·n+o(n)

= 2

(
h(b)−(n−b)·

h(α′)− 2n−a′
3n−2a′

n−a′

)
·n+o(n)

= 2

(
h(b)−(n−b)·

h(α′)− 2−α′
3−2α′

(1−α′)n

)
·n+o(n)

.

The share size is minimized when
h(α′)− 2−α′

3−2α′
1−α′ is maximized. Taking the derivative, we obtain that

the maximum occurs when (2α′ − 3)2 log(α′) + 2(α′)2 − 8α′ + 7 = 0. By definition, this holds for
α′ = α0. Thus, the claim follows. □

5.3 Applying the Bootstrapping of Applebaum and Nir
Applebaum and Nir [9] showed a bootstrapping algorithm for linear secret-sharing schemes by
exploiting duality. They proved the following.

Lemma 5.15 (Bootstrapping). Given an integer n and a target slice b ∈ [n] let Dℓ (b, n) [0] denote
the share size given by Lemma 5.2. For every i ≥ 0 define

Dℓ (b, n) [i + 1] = min
a≤b

(max (Mℓ (a : b, n) ,

max
c≤a

(
h(c/n)− (c/n) · h(b/n)−Dℓ (b, n) [i]

1− b/n

)))
Then for every i ≥ 0, every (b, n)-downslice can be realized with a linear secret-sharing scheme with
share size at most Dℓ (b, n) [i].

We next define the function that captures the exponent of the construction. For every i ≥ 0 we
define a sequence of functions di : [0, 1]→ [0, 1] as follows. Let

d1(β) =


1
2 + β

2 if β ≤ 1/2
2−β
3−2β if 1/2 < β ≤ 0.5412
h(β)− 0.51079 · (1− β) otherwise

be the exponent given by Lemma 5.2. Next, for every i ≥ 0 let

di+1(β) = min
α≤β

(
max

(
m(α, β), max

γ≤α
(ui(γ, β))

))
, (11)

where ui, m : [0, 1]2 → [0, 1] are defined as

ui(γ, β) = h(γ)− γ · h(β)− di(β)
1− β
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and

m(α, β) =


2−h(α/β)·β
3−2h(α/β)·β if α > β/2
2−β
3−2β otherwise

is the exponent given by Theorem 5.12. By Lemma 5.15, we obtain the following.

Lemma 5.16. For every i ≥ 0 and every β ∈ [0, 1], it holds that Dℓ (β) ≤ di(β).

We next show how to simplify Equation (11). Since

∂ui(γ, β)
∂γ

= log
(1

γ
− 1

)
− h(β)− di(β)

1− β
,

it follows that for every β, the function ui(γ, β) is maximized at

γi :=
(

1 + 2
h(β)−di(β)

1−β

)−1
.

Let ũi : [0, 1]2 → [0, 1] be defined as ũi(α, β) = maxγ≤α (u1(γ, β)). Then

ũi(α, β) =
{

ui(γi, β) if γi ≤ α ≤ β

ui(α, β) otherwise
.

Therefore,

di+1(β) = min
α≤β

(max (m(α, β), ũi(α, β))) .

Finally, observe that m(α, β) is a decreasing function of α, while ũi(α, β) is an increasing function
of α. Since both are continuous, they intersect at exactly one value α̃i. This value also minimizes
max (m(α, β), ũi(α, β)). Therefore,

di+1(β) = m(α̃i, β).

5.4 A Linear Secret-Sharing Scheme for All Access Structures
We can now show that every access structure can be realized with a linear secret-sharing scheme
with an exponent at most 0.7563, thus proving Theorem 5.1. The idea for the construction is roughly
as follows. First, as observed by [9] it suffices to consider downslice accesss structures. Similarly to
[9], we realize each (βn, n)-downslice, for β ∈ [0, 1], by partitioning [0, 1] into 3 segments and deal
with each segment using a different scheme. We partition [0, 1] differently than [9]. Specifically,
we consider the segments [0, 1/2], [1/2, 0.554], and [0.554, 1] ([9] used 0.535 instead of 0.554). Now,
for every β < 1/2, we use the scheme of Applebaum and Nir [9] as stated in Lemma 5.2, for every
β ∈ [1/2, 0.554] we reduce it to (n/2, n)-downslice, and for every β ∈ [0.554, 1] we reduce it to
(0.554 · n, n)-downslice. We then apply the bootstrapping construction (Lemma 5.15) for the two
values n/2 and 0.554 · n for 7 iterations. We stress that the choice of our parameters was done
using a computer to approximate the optimal choice.

We now formalize the proof. We use the following claim proved by [9], stating that every n-party
access structure is the conjunction of at most n downslices.

34



Claim 5.17. Let Γ be an n-party access structure. For every b ∈ [n] let Γb denote the b-downslice
of Γ. Then Γ =

⋂n
b=1 Γb. In particular, if every Γb can be realized with a linear secret-sharing

scheme with exponent S, then so can Γ.

Proof of Theorem 5.1. By Claim 5.17, it suffices to construct a scheme for every downslice. The
proof is done by applying Lemma 5.15 for b1 = n/2 and b2 = 0.554 ·n for 7 iterations, and then use
the cover reduction lemma (Lemma 5.13) to reduce every other downslice to one these two values.
Using a computer to compute the exponents, we get that Dℓ (0.5) < 0.736 and Dℓ (0.554) < 0.752.
Using the cover reduction lemma, we obtain the following bounds on the share size of linear secret-
sharing schemes for downslices, as explained below.

1. If 0 ≤ β < 1/2 then by Lemma 5.2 it holds that Dℓ (β) ≤ 1
2 + β

2 < 0.75.

2. If 1/2 ≤ β < 0.554 then we use the covering lemma with α = 1/2 to obtain

Dℓ (β) < h(β)− (1− β) · h(1/2)−Dℓ (0.5)
1− 0.5 < 0.7561.

3. If 0.554 ≤ β ≤ 1 then we use the covering lemma with α = 0.554 to obtain

Dℓ (β) < h(β)− (1− β) · h(0.554)−Dℓ (0.554)
1− 0.554 < 0.7563.

□
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A Negatively Associated Random Variables
Definition A.1 (Negative association [47]). Let X1, . . . , Xn be random variables. The random
variables are negatively associated if for every two disjoint index sets I, J ⊆ [n],

E [f((Xi)i∈I) · g((Xj)j∈J)] ≤ E [f((Xi)i∈I)] · E [g((Xj)j∈J)] ,

for all functions f : R|I| → R and g : R|I|→R that are both non-decreasing or both non-increasing.

It is known that the Chernoff-Hoeffding bounds are applicable to sums of variables that satisfy
the negative association [56] (see also [31, Proposition 5]).

Theorem A.2 (Chernoff-Hoeffding bounds). Let X1, . . . , Xn be negatively associated random vari-
ables taking values in {0, 1}, let X =

∑n
i=1 Xi, and let µ = E [X]. Then for every for every

δ ∈ (0, 1),
Pr [X > (1 + δ)µ] ≤ e−δ2µ/3 and that Pr [X < (1− δ)µ] ≤ e−δ2µ/3.

Finally, it is also known that when sampling a subset of [n] uniformly at random, the random
variables that correspond to the indicator of whether an element is in the sampled set, are negatively
correlated.

Claim A.3 ([30, Theorem 10]). Let X1, . . . , Xn be random variables that take values in {0, 1} and
are distributed uniformly over m-weight vectors where m ≤ n. That is, for every x ∈ {0, 1}n with
Hamming weight m,

Pr [X = x] =
(

n

m

)−1

,

and Pr [X = x] = 0 for any other x ∈ {0, 1}n. Then the random variables in X1, . . . , Xn are
negatively correlated.

Since any subset of negatively associated variables are also negatively associated [47, Property
4] we obtain the following.

Claim A.4. Let I be a random subset of [n] of size µn, sampled uniformly at random, and let
A ⊆ [n]. For every i ∈ A let Xi denote the indicator for the event i ∈ A ∩ I. Then (Xi)i∈A are
negatively correlated.

B The PIR Protocol of Dvir and Gopi [34]
To be able to compare the PIR/CDS protocols that we present in this paper to previous protocols,
we present the PIR protocol of Dvir and Gopi [34]. They use a matching vector family ((ui, vi))N

i=1
over Zh

6 such that for all i ̸= j it holds that

⟨ui, vi⟩ mod m = 0 and ⟨ui, vj⟩ mod 6 ∈ {1, 3, 4} .

(Note that in our construction over Z6, ⟨ui, vi⟩ mod m = 1 and ⟨ui, vj⟩ mod 6 ∈ {0, 2, 3, 4} .) Such
a matching vector family with h = 2O(

√
log N log log N) is constructed in [41, 51]. In the following, for

a prime p let ⟨u, v⟩p =
∑h

ℓ=1 u[ℓ]v[ℓ] mod p.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40



Protocol B.1.
Public parameters: A matching vector family ((ui, vi))N

i=1 over Zh
6 .

Alice’s and Bob’s input: D ∈ {0, 1}N .
The user’s input: i ∈ [N ].

• The user chooses r ← Zh
2 with uniform distribution and sends qa = r to Alice and qb =

ui + r mod 2 to Bob.

• Alice computes

m1
A =

N∑
j=1

(−1)⟨qA,vj⟩2 ·Dj mod 3, m2
A =

N∑
j=1

((−1)⟨qA,vj⟩2 ·Dj)vj mod 3

and Bob computes

m1
B =

N∑
j=1

(−1)⟨qB ,vj⟩2 ·Dj mod 3, m2
B =

N∑
j=1

((−1)⟨qB ,vj⟩2 ·Dj)vj mod 3.

Alice and Bob send m1
A, m2

A and m1
A, m2

A respectively to the user (each answer is a vector in
Zh

3 and an element in Z3).

• The user outputs Di = 1 if

⟨ui, m2
B −m2

A⟩ −m1
B + m1

A ̸≡ 0 (mod 3), (12)

and Di = 0 otherwise.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that in Protocol B.1 Alice and Bob need to send an additional element compared to
Protocol 4.3 and the reconstruction and the proof of correctness are more involved. Furthermore,
writing (−1)⟨qA,vj⟩2 instead of ⟨qA, vj⟩2 further complicated the protocol.
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