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Abstract. In this work, we introduce a more efficient post-quantum oblivious PRF (OPRF) design,
called LeOPaRd. Our proposal is round-optimal and supports verifiability and partial obliviousness, all
of which are important for practical applications. The main technical novelty of our work is a new
method for computing samples of MLWE (module learning with errors) in a two-party setting. To do
this, we introduce a new family of interactive lattice problems, called interactive MLWE and rounding
with re-use (iMLWER-RU). We rigorously study the hardness of iMLWER-RU and reduce it (under some
natural “idealized” setting) to a more standard MLWE-like problem where the adversary is additionally
given access to a randomized MLWE PRF oracle. We believe iMLWER-RU can be of independent interest
for other interactive protocols.
LeOPaRd exploits this new iMLWER-RU assumption to realize a lattice-based OPRF design without
relying on heavy machinery such as noise flooding and fully homomorphic encryption used in earlier
works. LeOPaRd can feature around 136 KB total communication, compared to 300+ KB in earlier
works. We also identify gaps in some existing constructions and models, and propose appropriate fixes.
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1 Introduction

An oblivious pseudorandom function (OPRF) extends a standard PRF in the following manner. In a standard
PRF, a party in possession of a secret key k, can evaluate the PRF F , on any given input x to obtain the
output y = F (k, x). The pseudorandomness property of a PRF states that it is infeasible to distinguish
the outputs of this function from those of a random function. Now, in OPRF, the goal is to compute the
PRF output y in a two-party server-client model, where the server holds the secret key k and the client
has the input x. After the client and the server run the two-party OPRF protocol, we want the client to
learn the PRF output y without learning anything about the secret key k, and the server does not learn
any information on the input x or the output y. We say that an OPRF is verifiable OPRF (VOPRF) if the
client is guaranteed that the output received is indeed evaluated under the committed key. As discussed in
[CHL22,TCR+22], many applications of OPRFs such as for password-authenticated key exchange, checking
compromised credentials and spam detection require a part of the client’s input to be public to allow for
domain separation for the PRF computation. In this case, we divide the client’s input into a private part,
x, and a public part, t, called the tag, and we call the resulting primitive a partial OPRF (POPRF).

(VP)OPRFs have become an important tool for privacy-preserving protocols and have numerous appli-
cations, including but not limited to private lightweight authentication mechanisms [DGS+18], private set
intersection for checking compromised credentials [LPA+19,TPY+19], secure data de-duplication [KBR13],
password-protected secret sharing [JKK14,JKKX16] and password-authenticated key exchange [JKX18].

Despite the widespread use of (VP)OPRFs, the existing constructions are either efficient but based
on classical assumptions [FIPR05, JL09, JKK14, TCR+22], or based on (plausibly) post-quantum assump-
tions [ADDS21,ADDG24,BDFH24,AG24] but practically inefficient. Given the recent standardization efforts
by the IETF3 for the DH-based OPRFs of [JKK14,TCR+22] and by NIST for other post-quantum primi-

3 https://datatracker.ietf.org/doc/rfc9497/
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Scheme Assumption Rounds Communication Model

[ADDS21] RLWE + SIS 2 >128GB strong, QROM

[ADDG24] heuristic 2 15MB + 633KB strong, ROM

[BDFH24] Legendre PRF 9 2.8MB + 110KB strong, ROM

[AG24], Q = 216 RLWE 2 108KB + 189KB weak, ROM

[AG24], Q = 232 RLWE 2 114KB + 198KB weak, ROM

LeOPaRd, Qx = 216 iMLWER-RU +
MLWE + MSIS

2 10KB + 126KB strong, ROM

LeOPaRd, Qx = 232

(Section 4)
2 20KB + 159KB strong, ROM

Table 1: Comparison of post-quantum verifiable (P)OPRF constructions. When bandwidth is reported as a
sum, this is for a one-time offline cost and online costs per query, respectively. We do not consider amortization
over batched queries in this table. The server-to-client communication in LeOPaRd, in particular, reduces to
just 2-3 KB per query for a batch of 64 queries (see Table 3). Q denotes a global upperbound on the number
of OPRF queries; while Qx denotes the maximum number of OPRF queries per fixed PRF tag/input pair
(t, x).

tives4, it is imperative to find efficient post-quantum OPRF constructions, which can pave the way for future
post-quantum OPRF standards. We summarize the state of the art in post-quantum verifiable (P)OPRFs
in Table 1 (extending a table from [AG24]). All schemes here provide security against malicious clients
and servers (as needed in many applications). We also distinguish between the security models used in the
schemes as “strong” if a stronger model as in [TCR+22] or UC framework is used5, and as “weak” for
otherwise weaker models.

1.1 Our Contributions

Novel post-quantum VPOPRF construction. Our first contribution in this work is a construction
of a lattice-based VPOPRF, called LeOPaRd, that is more efficient than the current state-of-the-art. The
comparison of our construction with the existing post-quantum VPOPRFs is given in Table 1, and a more
thorough performance analysis is provided in Section 6. The efficiency gains of our construction come not
only from utilizing the state-of-the-art lattice-based NIZK proof systems, such as LaBRADOR6 [BS23],
but also by using a novel interactive assumption that we introduce, and cleverly combining this with some
additional lattice-based techniques that we explain in Section 1.3. We prove our construction secure in
the random oracle model in Section 4.2. Specifically, we show that our construction achieves the strong
security definitions from [TCR+22]: pseudorandomness, which provides security in the presence of malicious
clients (POPRF security), and request privacy against malicious servers (POPRIV2 security). Moreover,
in Appendix C.2 we show that our construction also achieves uniqueness, which in the verifiable setting
ensures to the clients that the server honestly and consistently performs the blind evaluations.

Interactive MLWE assumption. We introduce a novel interactive assumption, called interactive Module
Learning with Errors and Rounding with Re-Use (iMLWER-RU), which we use to prove the security of our
construction (against malicious clients). We believe introduction of such an interactive MLWE-like assump-
tion is a natural next step given the interactive nature of protocols we deal with. This assumption not only
allows us to prove the security of our OPRF construction, but also allows us to circumvent the shortcomings
of the prior lattice-based OPRF constructions [ADDS21, ADDG24], such as removing the need for noise

4 https://csrc.nist.gov/projects/post-quantum-cryptography, https://csrc.nist.gov/projects/

pqc-dig-sig
5 We note that the UC model of OPRF is even stronger than the one given in [TCR+22].
6 At the time of writing, there is no general-purpose implementation of LaBRADOR [BS23] available publicly. We
are aware of the LaZer library [SS24] (that includes LaBRADOR) for such purpose, but it is not yet publicly
available. We plan to use this library, when available in future, to implement our OPRF proposal in full.

2

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig


flooding or fully homomorphic encryption. The interactive MLWE assumption can be seen as a family of
assumptions, and in Section 3, we show that for some “idealized” version of iMLWER-RU, defined under
appropriately chosen parameters, we can provide a reduction to (a mild variant of) the MLWE problem.
Our ‘idealized’ variant of iMLWER-RU makes two natural idealized assumptions, which we believe still cap-
ture the hardness of iMLWER-RU. The first assumption is to model the deterministic rounding error in the
underlying lattice–based PRF by a random discrete Gaussian error of the same standard deviation. The
second assumption is that the two interactive oracles available to the attacker in iMLWER-RU are merged
into one oracle that runs both of the original oracles. Our reduction provides an initial evidence regarding
the conjectured hardness of the iMLWER-RU assumption, and we encourage more research into investigating
its hardness. We note that the iMLWER-RU assumption might be of independent interest and find use in
proving the security of other types of interactive protocols, such as blind signatures, as an alternative to
one-more type assumptions.

Issues with existing constructions and models. As an additional contribution, we uncover flaws in
the security proofs of two existing lattice-based OPRF constructions, [ADDS21] and [ADDG24]. We refer
to Appendix C.1 for a more detailed exposition of these flaws and their potential fixes. We also observe
that a reduction made in [TCR+22], that correctness and POPRIV2 security together imply uniqueness,
does not necessary hold unless we have a one-to-one correspondence between the OPRF secret and public
keys. In Appendix C.2, we patch this reduction by introducing a new property, called key binding , and show
that correctness, key binding and POPRIV2 are sufficient for uniqueness. Along the way we also prove that
LeOPaRd achieves key binding.

1.2 Related Work

The first post-quantum, and also lattice-based, VOPRF construction was given in [ADDS21], which although
relied on a standard RLWE and SIS assumptions, was totally impractical as it required communication costs
in the order of GBs. This was improved in [ADDG24] by combining fully homomorphic encryption with the
weak PRF given in [BIP+18], but the reported bandwidth per query was in the order of MBs. Moreover, in
order to achieve verifiability they needed to rely on a heuristic assumption about the hardness of evaluating
deep circuits in an FHE scheme supporting only shallow circuits. Recently, Beullens et al. [BDFH24] provided
a VOPRF construction that is based on the Legendre PRF and which makes use of oblivious transfer (OT)
and ZK proofs that can be instantiated from lattice assumptions, resulting also in a plausibly post-quantum
secure VOPRF. However, this construction also has communication costs in the order of MBs. Apart from
these constructions, Basso [Bas24] provided the first isogeny-based VOPRF construction based on a new ad-
hoc assumption called uniSIDH, which was later discovered to be insecure as stated in the author’s revised
draft at the time of the writing [Bas24].

Comparison with concurrent work [AG24]. In a concurrent and independent work published on IACR’s
ePrint just a few days before we uploaded this paper to ePrint, Albrecht and Gur [AG24] provided a new
lattice-based (threshold) VOPRF construction. Their construction significantly improves, both assumption
and performance wise, the state-of-the-art lattice-based VOPRF given in [ADDG24] as shown in Table 1.
Similar to ours, their starting point is the OPRF construction given in [ADDS21], however, unlike us,
they take a different technical route. They improve the construction given in [ADDS21] by first removing
the reliance on the 1D-SIS assumption by borrowing a trick from [GdKQ+23] and making use of Rényi
divergence to avoid noise flooding, which together remove a superpolynomial factor from their modulus
q. However, switching to Rényi divergence forbids them from using an indistinguishability-based security
model, and in turn forces them to use a weaker security model than the one we use, which is the well-
established OPRF security model given by Tyagi et al. [TCR+22]. Specifically, the model given in [TCR+22]
is a simulation-based indistinguishability model that provides a careful and granular tracking of the oracle
calls and comes close to the UC security model for blind protocols given in [JKK14]. On the other hand,
the security model used by Albrecht and Gur [AG24] is akin to the one-more unforgeability definition used
in the context of blind signatures, and is comparatively weaker than the model of Tyagi et al. [TCR+22].
Moreover, the use of Rényi divergence forces them to use a global bound on number of OPRF queries, which
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can potentially hinder the practicality. Our proposal, on the other hand, relies on a bound on the number
of queries per input/tag pair (x, t).

Apart from the aforementioned improvements over the prior work [ADDS21], Albrecht and Gur [AG24]
also make use of the newer lattice-based proof systems, specifically LNP22 [LNP22] and LaBRADOR [BS23],
analogous to us. However, in order for their security proof to go through they require the underlying proof sys-
tem to be straight-line extractable. While this can be done for LNP22 using the Katsumata transform [Kat21]
(albeit by incurring a significant performance penalty), it is an open problem how to obtain straight-line ex-
tractability for LaBRADOR. We note that we do not require straight-line extractability from the underlying
NIZK proof systems for our security proofs. Lastly, the additional overhead that comes from the straight-line
extractability, along with the fact that they aim only for 90-100 bit security level, are not properly reflected
in their reported numbers, which are also shown in Table 1. Given that they [AG24] rely on (fully structured)
Ring LWE problem, they have less flexibility in choosing their parameters, and would need to incur almost
2× performance penalty if their parameters aimed at 128-bit or higher security level. To match the security
level of [AG24], our reported results in Table 1 also aim at 90-95 bits of security, and we provide parameters
and performance results at 128-bit security level in Table 3.

1.3 Technical Overview

VPOPRF construction. The 2HashDH OPRF paradigm [JKK14] (and its extension to partially oblivious
setting in [TCR+22]) has been shown to be highly effective in the discrete-log setting. Therefore, our goal
is to efficiently realize this high-level paradigm in the lattice setting. An initial attempt was already done in
[ADDS21], which serves as a starting point for our scheme. For simplicity, our discussion here focuses on the
regular OPRF setting (without partial obliviousness).

The high-level idea of the 2HashDH paradigm is to first hash the PRF input x to some group element
bx = G1(x). This term is then blinded via a randomness r and the resulting value cx = G1(x)r is sent to the
server. The server then blindly performs PRF evaluation using its key k as ux = ckx. The blinded evaluation
result ux is sent to the client, who unblinds the value using their randomness r to obtain a PRF value
z = G1(x)k. The final PRF output is computed via a second hashing as y = G2(x, z). The blind/unblind
operations rely on the homomorphic properties of the computations performed in the protocol.

To realize this idea in the lattice setting over a ring Rq with modulus q, we want to encrypt the matrix
Bx = G(x) using homomorphic encryption. We can do this as follows.

1. The client computes Cx = RAr +Bx for randomness R and public matrix Ar.
2. Upon receiving Cx, the server can compute ux = Cxk + e′s using its key k with some error vector e′s.

Observe that ux = RArk+Bxk+ e′s.
3. Given ux and additionally vk = Ark+ es, the client can compute ux −Rvk = Bxk+ ef for some final

error term ef .

Provided the final error is small enough, the client can round it off to arrive at ⌊Bxk⌉p where ⌊·⌉p denotes
dividing each coefficient by p/q and rounding to the nearest integer. Both parties additionally use NIZK
proofs to show the correctness of their computations to provide security and verifiability. What we have
discussed so far is effectively the high-level blueprint in [ADDS21].

The main technical difficulty in realizing this idea efficiently is that we need to argue that ux does not
leak information about the server’s key k. Observe that even though ux looks like an MLWE sample, the
matrix Cx is controlled by the (malicious) client, and therefore, is not guaranteed to be uniformly random.
To get around this problem, [ADDS21] relies on noise flooding (a.k.a. smudging) with an exponentially large
error e′s with coefficients of size O(2λ) to make sure that no secret information is leaked. However, then the
final error term that we need to get rid of is also of size O(2λ), meaning that we need q = O(22λ) to arrive
at the correct PRF output with overwhelming probability. Noting that the overall communication size is
quadratic in log q, such a large modulus leads to an inefficient construction7.

7 We note here that [ADDS21] also used earlier NIZK proof systems, which are very inefficient compared to more
state-of-the-art proofs of today. However, even without considering NIZKs, [ADDS21] incurs communication in the
order of MBs.
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Beyond using state-of-the-art NIZK proofs in our scheme, the main technical novelty of our LeOPaRd
proposal is that we introduce a new method to argue server security without relying on noise flooding. In
particular, we want to force the client into committing to its input x and randomness R before seeing the
public matrix Ar. To this end, the client first commits to (R, x), resulting in cr, and uses a hash function
(modeled as a random oracle) to derive the matrix Ar. One can immediately observe that the client’s
control in Cx is now significantly limited and intuitively revealing ux as above should be secure based on
the randomness of Ar and the fact that the client in any case obtains a noisy vector close to Bxk in their
final step.

Formal security analysis via an interactive MLWE assumption. We go beyond intuitive thinking
and analyze the security of the construction rigorously. The client’s commitment cr to (R, x) can be seen
as the client submitting an oracle query with input (R, x) to obtain back a random matrix Ar. To realize
this in the security reduction while adhering to client security, we use an extractable commitment scheme
that enables extraction/decryption of the committed message using a trapdoor (that the reduction knows
in the security analysis). We then use our new interactive MLWE-like assumption, iMLWER-RU, where the
adversary is given access to a SampMLWE-RU oracle that, on input (R, x) returns a random matrix Ar, an
MLWE sample c under Ar, and an MLWE-like sample u under Cx akin to the OPRF paradigm as above.
Note that Ar is re-used in both c and u, and hence the naming of the assumption. To enable simulation
in the pseudorandomness analysis, the adversary is also given access to a SampPRF oracle that outputs a
rounding sample ⌊Bxk⌉p for a given x.

Security reduction for iMLWE-RU-id from MLWE-PRF. We define an “idealized” version of iMLWER-RU,
denoted as iMLWE-RU-id, which is derived from iMLWER-RU by applying two idealized assumptions (see
Section 3), and then give a hardness reduction for iMLWE-RU-id from a mild variant of MLWE that we
call MLWE-PRF. The MLWE-PRF assumption is that the randomized function x 7→ G(x) · k + e, where
e is a small error following a Gaussian distribution is pseudorandom even when given additional MLWE
samples for k with respect to uniformly random matrices Ar. Therefore, the MLWE-PRF asssumption is a
mild (randomized) variant of the pseudorandomness of the MLWR-based PRF x 7→ G(x) ·k, which has been
proved based on the MLWE assumption when G is implemented appropriately as in [BLMR13] and [BP14].

In the iMLWE-RU-id problem, each of the attacker’s oracle queries (x, {Rj}j) is answered with MLWE
samples (Bx,yB = Bxk + eB) and (Ar,j , cj = Ar,jk + ej) where Bx := G(x), with respect to “fresh”
matrices along with a “re-used” matrix MLWE samples of the form (Cx,j := RjAr,j +Bx,uj = Cx,jk+e′j),
reminiscent of the “Re-Used A LWE” [MS23] and Hint-MLWE problem [KLSS23]. Accordingly, our security
reduction from iMLWE-RU-id to MLWE-PRF proceeds in two steps. In the first step, we reduce a variant of
the Hint-MLWE problem called HintMLWE-PRF to iMLWE-RU-id. In the HintMLWE-PRF problem, besides
the MLWE samples w.r.t. Bx and Ar,j matrices, the adversary is also provided with appropriate linear
combinations of the error vectors as hints of the form hj := Rjej + eB − e′j . Note that in HintMLWE-PRF
each hint contains a linear combination of several error vectors (rather than hints containing only scalar
multiples of the error vector as in [KLSS23]). Hence HintMLWE-PRF can be viewed as a special case of the
Extended Hint-MLWE [WSE24] that generalizes Hint-MLWE [KLSS23] to the case of general hint matrices.
In the second step, we present a reduction from MLWE-PRF to HintMLWE-PRF by optimizing the reduction
from MLWE to Extended Hint-MLWE [WSE24] to the special form of hint matrices in HintMLWE-PRF. This
reduces to (see Section 3.2) finding an optimized upper bound on the matrix norm Br of our HintMLWE-PRF
hint matrix.

Overall, we achieve a reduction from MLWE-PRF to iMLWE-RU-id, provided that the necessary parameter
constraints are satisfied. Our reduction is essentially tight in the sense that our reduction’s parameter con-
dition on the underlying error width parameter is necessary to prevent an existing attack on iMLWE-RU-id.
In particular, our reduction requires the “masking ratio” lower bound σ1/σ ≥

√
Br ≈

√
Q∞x for large Q∞x ,

where σ1 and σ denote the width (std dev) of the masking errors e′j and MLWE errors ej , respectively, and
Q∞x denotes an upper bound on the oracle samples queried by the adversary per input x (corresponding to
input/tag pair (x, t) in our OPRF protocol). On the other hand, this lower bound is necessary to protect
against the following simple error ‘averaging’ attack on iMLWE-RU-id (and our OPRF protocol as well as
those using the same blueprint [ADDS21, AG24]). In this attack, the adversary uses the Q∞x samples on
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same x queried to the oracle to compute z′j := uj −Rjcj = Bxk + e′j −Rjej for j ∈ [Q∞x ]. The attacker

then computes the average (over the rationals) of these noisy secrets to get z̄ := 1
Q∞

x

∑
j∈[Q∞

x ] z
′
j = Bxk+ ē

in which the error ē := 1
Q∞

x

∑
j∈[Q∞

x ](e
′
j − Rjej) has a reduced standard deviation σ̄ ≈ σ1/

√
Q∞x . If σ̄ is

a constant factor smaller than 1/2, all the ē error coordinates will likely be < 1/2 and rounding z̄ to the
nearest integers will give the attacker the secret Bxk (and hence k) with high probability. Consequently, to
prevent the averaging attack, a necessary condition is σ1 ≥

√
Q∞x /c for a small constant c > 1, and more

generally, a necessary condition to prevent the averageing attack from reducing the error standard deviation
(and MLWE security) below the σ standard deviation used to set MLWE security in the samples cj , is that
σ1/σ ≥

√
Q∞x /c. This lower bound matches (up to the small factor c) our iMLWE-RU-id security reduction

parameter lower bound discussed above (for large Q∞x ), showing the optimality of our reduction condition
up to a small factor. Note that the attack and our security reduction bounds only depend on the maximum
no. of samples queried per x value. This is in contrast to the suboptimal Rényi-divergence-based security
analysis in [AG24], which seems to inherently lose a factor proportional to

√
Q, where Q is the total number

of oracle queries over all x values.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N, and κ ∈ N denotes the statistical correctness
parameter. We will aim to obtain the correct PRF value except with probability at most 2−κ. For n ∈ N,
set [n] = {1, 2, . . . , n}. We denote by x

$← X the uniform sampling of the variable x from the set X, and
we denote the uniform distributions on a set X by U(X). We write x← A(y) to denote that a probabilistic
polynomial time (PPT) algorithm A on input y, outputs x. If A is a deterministic polynomial time (DPT)
algorithm, we use the notation x := A(y). We use the same notation for the projection of tuples, e.g., we
write σ := (σ1, σ2) for a tuple σ composed of two elements σ1 and σ2. We define polynomial functions as
poly(λ) =

⋃
d∈N O(λd) and negligible functions as negl(λ) =

⋂
d∈N o(λ−d).

We denote by Rq = Zq[X]/(Xd+1). We write Rbin to denote the set of polynomials in Rq that has binary
coefficients. For a ∈ Z+, we use Sa to denote the set of polynomials in Rq with infinity norm at most a. The
rounding operation ⌊a⌉p : Rq → Rp is defined as multiplying a by p/q and rounding the result to the nearest
integer. When a is a vector, then by ⌊a⌉p we consider coordinate-wise rounding. For a matrix R, we denote
by ∥R∥, ∥R∥1 and ∥R∥∞,M its matrix 2-norm (largest singular value), matrix 1-norm and matrix ∞-norm,
respectively and by σmin(R) and σmax(R) the smallest (resp. largest) singular values of R. We denote by
∥R∥∞ the entry-wise maximum absolute value of R.

As the NIZK relations to be proven get more complex for various protocols, we believe it is imperative
to have a more explicit and concise notation. We introduce the notation “ G(x); K(w)” to describe a NIZK
relation to mean “given a statement x and knowledge of witness w”.

Next, we provide some of the preliminaries needed for the rest of the paper, and refer the reader to Ap-
pendix A for additional preliminaries.

2.1 (Partially) Oblivious PRF

We use the game-based definitions given in [TCR+22] and [ADDG24]. An OPRF is a protocol between a
server S that has a private key k and a client C that wants to obtain an evaluation of PRF Fk on inputs of
its choice. We say that an OPRF is a partial OPRF (POPRF) if part of the client’s input is given to the
server, i.e., y = Fk(t, x), where t is in the public part and x is the private part hidden from S. When the
client can verify the correctness and consistency of the PRF evaluations, then we consider verifiable OPRF
(VOPRF).

Definition 1 (Partial Oblivious PRF [TCR+22]). A partial oblivious PRF (POPRF) F is a tuple of
PPT algorithms

(Setup,KeyGen,Request,BlindEval,Finalize,Eval).
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The Setup algorithm and the KeyGen algorithm generate public parameters pp and a public/secret key pair
(pk, sk), respectively. Oblivious evaluation is carried out as an interactive protocol between C and S, presented
as algorithms F.Request,F.BlindEval,F.Finalize, which work as follows (where the random oracles are denoted
by RO):

1. First, C runs the algorithm F.RequestROpp (pk, t, x) taking as input a public key pk, a (public) tag t and a
private input x. It outputs a local state st and a request message req, which is sent to S.

2. S runs F.BlindEvalROpp (sk, t, req) taking as input a secret key sk, a (public) tag t and the request message
req. It produces a response message rep, which is sent to C.

3. Finally, C runs F.FinalizeROpp (rep, st) taking as input the response message rep and its previously con-
structed state st. It outputs either a PRF evaluation y or ⊥ if rep is rejected.

The unblinded evaluation algorithm F.Eval is deterministic and takes as input a secret key sk, an input
pair (t, x), and outputs a PRF evaluation y.

We also define sets SK,PK, T ,X ,Z, representing the secret key, public key, (public) tag, private input,
and output spaces, respectively. We define the input space as T ×X . We assume there exist efficient algorithms
for sampling and membership queries on these sets.

We remark that fixing t = ⊥, gives us the definition of (plain) OPRF. We use the correctness definition
from [ADDG24], which allows for a small failure probability, and then define pseudorandomness against
malicious clients as in [TCR+22].

Definition 2 (Correctness [ADDG24]). A partial oblivious PRF (POPRF) F is correct, if the following
holds for pp← F.Setup(1λ) and (pk, sk)← F.KeyGenROpp (1

λ)

Pr

y = F.EvalROpp (sk, t, x)

∣∣∣∣∣∣∣∣
(st, req)← F.RequestROpp (pk, t, x)

rep← F.BlindEvalROpp (sk, t, req)

y ← F.FinalizeROpp (rep, st)

 = 1− negl(λ).

Definition 3 (Pseudorandomness [TCR+22]). We say that a partial oblivious PRF (POPRF) F is
pseudorandom if for all PPT adversaries A, there exists a PPT simulator S and a negligible function negl(·),
such that the following holds,

Advpo-prfF,A,S,RO (λ) =
∣∣Pr [POPRF1

F,A,S,RO(λ) = 1
]
− Pr

[
POPRF0

F,A,S,RO(λ) = 1
]∣∣ ≤ negl(λ),

where the experiment POPRF is defined in Figure 1.

The oracle Prim captures access to the random oracle(s) used in the POPRF construction. For b = 0 (i.e.,
when the adversary interacts with a simulator and a truly random function), the simulator may only use a
limited number of random function queries to simulate the random oracle accessed via Prim.

Lastly, we define the request privacy , which provides security against malicious servers. We present the
stronger POPRIV2 definition satisfied by our proposal, and refer the reader to [TCR+22] for the weaker
POPRIV1 definition.

Definition 4 (Request Privacy [TCR+22]). We say that a partial oblivious PRF (POPRF) F has
request privacy against malicious servers if for all PPT adversaries, there exists a negligible function negl(·),
such that the following holds,

Advpo-priv-kF,A,RO (λ) =
∣∣Pr [POPRIV[k]1F,A,RO(λ) = 1

]
− Pr

[
POPRIV[k]0F,A,RO(λ) = 1

]∣∣ ≤ negl(λ),

where the experiment POPRIV[k] is defined in Figure 1.
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POPRFb
F,A,S,RO(λ)

1 : qt,s := 0, qt := 0

2 : stF ← ROF.Init(1
λ) // T × X → Z

3 : stRO ← RO.Init(1λ)

4 : pp1 ← F.Setup(1λ)

5 : (stS , pk0, pp0)← S.Init(pp1)
6 : (sk, pk1)← F.KeyGenROpp1(1

λ)

7 : b′ ← AEval,BlindEval,Prim(ppb, pkb)

8 : return b′

BlindEval(t, req)

1 : qt := qt + 1

2 : (rep0, stS)← S.BlindEval
LimitEval(t, req, stS)

3 : rep1 ← F.BlindEvalROpp1(sk, t, req)

4 : return repb

Eval(t, x)

1 : z0 ← ROF.Eval((t, x), stF)

2 : z1 ← F.EvalROpp1(sk, t, x)

3 : return zb

LimitEval(t, x)

1 : qt,s := qt,s + 1

2 : if qt,s ≤ qt then

3 : return Eval(t, x)

4 : return ⊥
Prim(x)

1 : (h0, stS)← S.EvalLimitEval(x, stS)

2 : h1 ← RO.Eval(x, stRO)

3 : return hb

POPRIV2bF,A,RO(λ)

1 : pp← F.Setup(1λ)

2 : i := 0

3 : b′ ← ARequest,Finalize,RO(pp)

4 : return b′

Request(pk, t, x0, x1)

1 : i := i+ 1

2 : (sti,0, req0)← F.RequestROpp (pk, t, x0)

3 : (sti,1, req1)← F.RequestROpp (pk, t, x1)

4 : return (reqb, req1−b)

Finalize(j, rep0, rep1)

1 : if j > i then

2 : return ⊥

3 : yb ← F.FinalizeROpp (rep0, stj,b)

4 : y1−b ← F.FinalizeROpp (rep1, stj,1−b)

5 : if y0 = ⊥ ∨ y1 = ⊥ then

6 : return ⊥
7 : return (y0, y1)

Fig. 1: POPRF and POPRIV2 Experiments.

2.2 Lattice Preliminaries

We start with the definitions of standard problems in lattice-based cryptography.

Definition 5 (MSISn,m,β). Let A
$← Rn×m

q , where n, m > 0 and let 0 < β < q. We say z ∈ Rm
q is a

solution for MSISn,m,B problem if Az = 0 over Rq and 0 < ∥z∥ < β. If the following inequality holds for an
adversary A

Pr
[
0 < ∥z∥ < β ∧Az = 0 | A $← Rn×m

q , z← A(A)
]
≥ ϵ,

then we say A has advantage ϵ in solving MSISn,m,B.

Definition 6 (MLWEn,m,χ). Let χ be an error distribution over R, A
$← Rm×n

q , where m, n > 0, let

s
$← χn be a secret vector and e

$← χm be an error vector. The MLWEn,m,χ problem asks an adversary A to

distinguish between (A,As+e) and (A,b), for b
$← Rm

q . We say A has advantage ϵ against the MLWEn,m,χ
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problem if

Pr
[
b = 1 | A $← Rm×n

q , s
$← χn, e

$← χm, b← A(A,As+ e)
]

− Pr
[
b = 1 | A $← Rm×n

q ,b
$← Rm

q , b← A(A,b)
]
≥ ϵ.

Definition 7 (knMLWEn,m,h,χ). Let χ be an error distribution over R, A
$← Rn×m

q , where n > m > 0,

and let S
$← χh×n. The knMLWEn,m,h,χ problem asks an adversary A to distinguish between (A,SA) and

(A,U), for U
$← Rh×m

q . We say A has advantage ϵ against the knMLWEn,m,h,χ problem if

Pr
[
b = 1 | A $← Rn×m

q ,S
$← χh×n, b← A(A,SA)

]
− Pr

[
b = 1 | A $← Rn×m

q ,U
$← Rh×m

q , b← A(A,U)
]
≥ ϵ.

The duality between the above Knapsack form of MLWE and regular MLWE has been established already.
That is, from a practical security perspective, knMLWEn,m,h,χ is as hard as MLWEn−m,m,χ, which we will
use to estimate the practical hardness of knMLWEn,m,h,χ. We refer to [EZS+19, Appendix C] for a summary
discussion (and references therein for more details). Also, note that our knMLWE definition is in the “multi-
secret” setting where multiple vectors are multiplied by the matrix A. A standard hybrid argument of
replacing each s⊤i A with a uniformly random u⊤i reduces its hardness to standard Knapsack form of MLWE.

The second parameter m in the definitions of MSIS, MLWE, and knMLWE does not play a critical role
in our practical hardness estimations of these problems against state-of-the-art attacks (i.e., we assume that
the adversary has the optimal choice of m). Therefore, we sometimes simply omit this parameter.

Definition 8 (Discrete Gaussian Distribution). For any s > 0 and dimension n ∈ Z+, the spherical
n-dimensional Gaussian function with parameter s8 is defined as ρs(x) := exp (−π∥x∥2/s2) for x ∈ Rn.
More generally, given a positive definite symmetric covariance parameter matrix Σ ∈ Rn×n and center c,
the n-dimensional Gaussian function with covariance parameter Σ and center c is defined as ρΣ,c(x) :=
exp(−π(x− c)⊤Σ−1(x− c)) for x ∈ Rn. The discrete Gaussian distribution DΛ,Σ,c over an n-dimensional

lattice Λ ⊆ Rn with covariance parameter Σ, centre c and support Λ is defined as DΛ,Σ,c(x) :=
ρΣ,c(x)∑

y∈Λ ρΣ,c(y)

for x ∈ Λ. In the spherical case, where Σ = s2In, we write DΛ,s,c, and we omit c if it is 0.

Lemma 1 ([DPS23],[BLP+13, Le. 2.3]). There exists a ppt algorithm that, given a basis B = (b1, . . . ,
bn) of a full rank n-dimensional lattice Λ, a positive definite symmetric matrix Σ and a center c ∈ Rn,
returns a sample from DΛ,Σ,c, assuming the condition

√
ln(2n+ 4)/π ·maxi ∥Σ−1/2bi∥ ≤ 1.

Lemma 2 ([KLSS23],[Pei10]). For n ∈ Z+, ϵ ∈ R+, let Σ1,Σ2 be positive definite symmetric matrices
such that Σ−13 := Σ−11 +Σ−12 satisfies

√
Σ3 ≥ ηϵ(Zn) for 0 < ϵ < 1/2. Then for an arbitrary center c ∈ Zn,

the distribution
{x1 + x2 : x1

$← DZn,Σ1
, x2

$← DZn,Σ2,c}
is within statistical distance ≤ 2ϵ of DZn,Σ1+Σ2,c.

Definition 9 (Smoothing Parameter [MR04,Pei10]). For an n-dimensional lattice Λ and ϵ > 0, the
smoothing parameter ηϵ(Λ) is the smallest s such that ρ1/s(Λ

∗ \ 0) ≤ ϵ, where Λ∗ denotes the dual lattice of

Λ. More generally, for a positive definite symmetric matrix Σ, we say that
√
Σ ≥ ηϵ(Λ) if ηϵ(

√
Σ
−1 ·Λ) ≤ 1.

Lemma 3 ([MR04]). For n ∈ Z+, ϵ ∈ R+, and n dimensional lattice Λ, we have

ηϵ(Λ) ≤
√

ln(2n(1 + 1/ϵ))

π
· λn(Λ), (1)

where λn(Λ) is the smallest radius of an n-dimensional ball that contains n linearly independent vectors in
Λ.
8 Note that the parameter s is related to the standard deviation σ by s =

√
2π · σ.
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Lemma 4 ([KLSS23]). For n ∈ Z+, ϵ ∈ R+, n dimensional lattice Λ, and a positive definite symmetric
matrix Σ, we have

√
Σ ≥ ηϵ(Λ) if ∥Σ−1∥ ≤ ηϵ(Λ)

−2.

Lemma 5 ([WSE24], Generalization of [KLSS23, Le. 7]). Fix s1 ∈ R+, n, ℓ ∈ Z+, a positive definite

symmetric matrix Σ1, and a matrix R̄ ∈ Zℓ×n. Furthermore, let Σ0 :=
(
Σ−11 + 1

s21
R̄⊤R̄

)−1
. Then, the

following two probability distributions over Zn+ℓ are equal:

D1 :=

{
(e,h) : e

$← DZn,Σ1
, e′

$← DZn,s1 , h = R̄e+ e′
}

D2 :=

{
(ẽ,h) : e

$← DZn,Σ1
, e′

$← DZn,s1 , h = R̄e+ e′
}

c :=
1

s21
Σ0R̄h, ẽ

$← DZn,Σ0,c.

Proof. Fix any (v,w) ∈ Zn × Zℓ. For the first distribution we have:

D1(v,w) = DZn,Σ1
(v) · DZn,s1(w − R̄v)

∝ exp

[
−π

(
v⊤Σ−11 v − 1

s21
(w − R̄v)⊤(w − R̄v)

)]
= exp

[
−π

(
(v − c)⊤Σ−10 (v − c) +

1

s21
w⊤w − c⊤Σ−10 c

)]
,

where c := 1
s21
Σ0R̄

⊤w. Since 1
s21
w⊤w− c⊤Σ−10 c is a constant that does not depend on v, it follows that the

conditional distribution Pr
(e,h)

$←D1

[e = v|h = w] = DZn,Σ0,c(v), which is (by construction of D2) exactly

equal to the conditional distribution Pr
(ẽ,h)

$←D2

[ẽ = v|h = w] in D2. Since the marginal distribution of h is

also exactly the same in D1 and D2, we conclude that D1 = D2. ⊓⊔

3 iMLWER-RU: New Interactive Lattice Problem

We introduce the following new interactive variant of the MLWE assumption, called Interactive MLWE
(iMLWER-RU).

Definition 10 (Interactive MLWE - iMLWER-RUG,QM,QP,Q∞
x ,q,m,N,h,L,βr,p,χ̄). Let χ̄ = (χ, χ1, χk

) be
a discrete distribution over R, G be a hash family, and Q,Q∞x , q,m,N, h, L, βr, p ∈ Z+. We say that the
interactive MLWE assumption iMLWER-RUparam holds, for param := (G, QM, QP, Q

∞
x , q,m,N, h, L, βr, p, χ̄),

if for all PPT adversaries A, there exists a negligible function negl(·), such that the following holds,

AdviMLWER-RU
param (λ) =

∣∣Pr [iMLWER-RU1(λ) = 1
]
− Pr

[
iMLWER-RU0(λ) = 1

]∣∣ ≤ negl(λ),

where the experiment iMLWER-RUb is defined below, QM, QP denote the total number of queries to SampPRF,
and SampMLWE-RU, respectively, made by A during the experiment, and Q∞x is the maximum allowed upper
bound on the number of SampMLWE-RU queries per queried x.
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iMLWER-RUb
G,QM,QP,Q∞

x ,q,m,N,h,L,βr,p,χ̄(λ)

1 : k
$← χm

k

2 : b′ ← ASampPRFb(·),SampMLWE-RUb(·,·,·)(1λ)

3 : return b = b′

SampMLWE-RUb(R ∈ Rh×N , x ∈ {0, 1}L)
1 : if ∥R∥∞ > βr then return ⊥

2 : Ar
$← RN×m

q , e
$← χN

3 : Bx = G(x) ∈ Rh×m
q

4 : Cx = RAr +Bx ∈ Rh×m
q , e′ $← χh

1

5 : if Z[x] = ⊥ then SampPRF0(x)

6 : z′ := Z[x]

7 : ẽ′ $← χh
1 , ẽ

$← χN // simulated errors

8 : esim = ẽ′ −Rẽ ∈ Rh

9 : if b = 0 then

10 : c
$← RN

q , u = Rc+ z′ + esim ∈ Rh
q

11 : if b = 1 then

12 : c = Ark+ e ∈ RN
q , u = Cxk+ e′ ∈ Rh

q

13 : return (Ar, c,u)

SampPRFb(x)

1 : if b = 0 then

2 : if Z[x] = ⊥ then

3 : z′
$← Rh

q ,Z[x] := z′

4 : z = ⌊Z[x]⌉p
5 : if b = 1 then

6 : Bx = G(x) ∈ Rh×m
q

7 : z = ⌊Bxk⌉p ∈ Rh
p

8 : return z

Note that the iMLWER-RU security game uses a table Z to store previous answers to SampPRF0 queries,
to ensure that the same random answer is returned if the oracle is queried again at the same point x.
We are currently unable to give a security hardness reduction from existing variants of MLWE to our
iMLWER-RU problem, and obtaining such a reduction is an interesting open problem. However, as initial
evidence for the conjectured hardness of iMLWER-RU, we now define an “idealized” version of iMLWER-RU
called iMLWE-RU-id, for which we prove, under appropriate parameter settings, a hardness security reduction
from (a mild variant of) the MLWE problem we call MLWE-PRF.

The “idealized” problem iMLWE-RU-id is obtained from iMLWER-RU by making the following two ideal-
ized assumptions:

– Idealized Assumption 1 (Rounding error to Random error): The deterministic rounding error
eB in yB := q

pz = q
p ⌊Bxk⌉p := Bxk + eB ∈ Rh

q in the SampPRFb oracle of iMLWER-RU is replaced

in iMLWE-RU-id by an independent random error eB
$← χh

B from a distribution χh
B . In our security

reduction from MLWE-PRF to iMLWE-RU-id, we instantiate χh
B by a discrete Gaussian DZhd,sB with

standard deviation σB = sB/
√
2π := q√

12p
matching the standard deviation of a uniformly random

rounding error in the interval [− q
2p ,

q
2p ]. Our security reduction also assumes that χ and χ1 are discrete

Gaussian distributions.
– Idealized Assumption 2 (Merged SampPRFb and SampMLWE-RUb Oracles): The SampPRFb and

SampMLWE-RUb oracles of iMLWER-RU are merged into a single SampPRF-MLWE-RUb oracle that can
be queried only once for each x with any number Qx of matrices R1, . . . ,RQx , and responds by running

SampPRFb(x) once and calling SampMLWE-RUb(N,Rj , x) for j ∈ [Qx], and returns the results returned

by these oracle calls. Similar to iMLWER-RUb, we allow the adversary a total of Q :=
∑

x Qx underlying

queries to SampMLWE-RUb.

For clarity, we give the precise definition of iMLWE-RU-id in Definition 11.
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iMLWE-RU-idbG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄(λ)

1 : k
$← χm

k

2 : b′ ← ASampPRF-MLWE-RUb(·,·,·)(1λ)

3 : return b = b′

SampPRF-MLWE-RUb(Qx ∈ Z+, (Rj ∈ Rh×N )j∈[Qx], x ∈ {0, 1}L)

1 : if ∃j ∈ [Qx] s.t. ∥Rj∥∞ > βr or Z[x] ̸= ⊥ or Qx > Q∞
x

2 : then return ⊥
3 : Bx = G(x) ∈ Rh×m

q

4 : yB := SampPRFb(x)

5 : ẽB
$← χh

B // simulated error for b = 0

6 : for j ∈ [Qx] do

7 : Ar,j
$← RN×m

q , ej
$← χN

8 : Cx,j = RjAr,j +Bx ∈ Rh×m
q , e′

j
$← χh

1

9 : ẽ′
j

$← χh
1 , ẽj

$← χN // simulated errors for b = 0

10 : esim,j = ẽ′
j −Rj ẽj ∈ Rh

11 : if b = 0 then

12 : cj
$← RN

q , uj = Rjcj + yB − ẽB + esim,j ∈ Rh
q

13 : // uj = Rcj + yB − (Rj ẽj + ẽB) + ẽ′
j

14 : if b = 1 then

15 : cj = Ar,jk+ ej ∈ RN
q , uj = Cx,jk+ e′

j ∈ Rh
q

16 : // uj = Rjcj + yB − (Rjej + eB) + e
′
j

17 : endfor

18 : return (yB , (Ar,j , cj ,uj)j∈[Qx])

SampPRFb(x)

1 : if b = 0 then

2 : if Z[x] = ⊥ then

3 : z′
$← Rh

q ,Z[x] := z′

4 : if b = 1 then

5 : if Z[x] = ⊥ then

6 : Bx = G(x) ∈ Rh×m
q

7 : eB
$← χh

B

8 : yB = Bxk+ eB ∈ Rh
q

9 : Z[x] := yB

10 : yB = Z[x]
11 : return yB

Fig. 2: iMLWE-RU-id security game

Definition 11 (Idealized Interactive MLWE iMLWE-RU-idG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄). Let χ̄ = (χ, χB , χ1,

χ
k
) be discrete distributions over R , let G be a hash family, and let Q,Q∞x , q,m,N, h, L, βr ∈ Z+. We say

that the idealized interactive MLWE assumption iMLWE-RU-idparam holds, for param := (G, Q,Q∞x , q,m,N,
h, L, βr, χ̄), if for all PPT adversaries A, there exists a negligible function negl(·), such that the following
holds,

AdviMLWE-RU-id
param (λ) =

∣∣Pr [iMLWE-RU-id1(λ) = 1
]
− Pr

[
iMLWE-RU-id0(λ) = 1

]∣∣ ≤ negl(λ),

where the experiment iMLWE-RU-idb is defined below, Qx denotes the number of MLWE sample matrix pairs
(Ar,j ,Cx,j)j∈[Qx] requested from the oracle for a queried x, Q :=

∑
x Qx denotes the total number of requested

matrix pairs in the experiment, and Q∞x is the maximum allowed upper bound on maxx Qx. Each x is only
allowed to be queried at most once to SampPRF-MLWE-RUb.

The MLWE-PRF problem is the assumption that the randomized function x 7→ G(x) · k+ e (for “small”
Gaussian distributed error e) is pseudorandom, even given some additional MLWE samples (Ar,Ark+eA,r)
with Ar having uniformly random entries in Rq and eA,r are “small” Gaussian errors. Thus, MLWE-PRF is a
variant of the standard pseudorandomness assumption for the PRF using the function G, i.e. x 7→ ⌊G(x) ·k⌉,
which has a security reduction from MLWR when G is instantiated as in [BLMR13] or [BP14], respectively.
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Definition 12 (MLWE-PRFG,QP,QM,q,m,h,L,χ̄). Let χ̄ = (χ, χB , χk
) be discrete distributions over R, let G

be a hash family, and let QP, QM, q,m, h, L ∈ Z+. We say that the MLWE-PRF assumption MLWE-PRFparam

holds, for param := (G, QP, QM, q,m, h, L, χ̄), if for all PPT adversaries A, there exists a negligible function
negl(·), such that the following holds,

AdvMLWE-PRF
param (λ) =

∣∣Pr [MLWE-PRF1(λ) = 1
]
− Pr

[
MLWE-PRF0(λ) = 1

]∣∣ ≤ negl(λ),

where the experiment MLWE-PRFb is defined below, QP denotes the number of queries to the MLWE PRF
oracle SampMLWE-PRFb, while QM denotes the number of queries to the MLWE oracle SampMLWEb. Each
x is only allowed to be queried at most once to SampMLWE-PRFb.

MLWE-PRFG,QP,QM,q,m,h,L,χ̄(λ)

1 : k
$← χm

k

2 : b′ ← ASampMLWE-PRFb(·),SampMLWEb(·)(1λ)

3 : return b = b′

SampMLWEb()

1 : a
$← Rm

q , e
$← χ

2 : if b = 0 then

3 : c
$← Rq

4 : if b = 1 then

5 : c = a⊤k+ e ∈ Rq

6 : return (a, c)

SampMLWE-PRFb(x)

1 : if b = 0 then

2 : if Z[x] = ⊥ then

3 : z′
$← Rh

q ,Z[x] := z′

4 : if b = 1 then

5 : if Z[x] = ⊥ then

6 : Bx = G(x) ∈ Rh×m
q

7 : eB
$← χh

B

8 : yB = Bxk+ eB ∈ Rh
q

9 : Z[x] := yB

10 : yB = Z[x]
11 : return yB

We present our reduction from MLWE-PRF to iMLWE-RU-id via an intermediate problem, which is a
“hint” variant of the iMLWE-RU-id problem, where instead of the re-used MLWE samples we provide the
adversary with MLWE hints of the form hi := Riei + eB + e′i for i ∈ [Qx]. We call the latter variant of
iMLWE-RU-id the HintMLWE-PRF problem. Our HintMLWE-PRF problem can be viewed as a special case of
the “Extended Hint-MLWE” problem introduced in [WSE24] (with a reduction from MLWE), which in turn
generalizes the Hint-MLWE problem introduced in [KLSS23], to allow for general hint matrices, rather than
block diagonal hint matrices used in [KLSS23].

Definition 13 (HintMLWE-PRFG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄). Let χ̄ = (χ, χB , χ1, χk

) be discrete distributions over
R, let G be a hash family, and let Q,Q∞x , q,m,N, h, L, βr ∈ Z+. We say that the HintMLWE-PRFparam holds,
for param := (G, Q,Q∞x , q,m,N, h, L, βr, χ̄), if for all PPT adversaries A,there exists a negligible function
negl(·), such that the following holds,∣∣Pr [HintMLWE-PRF1(λ) = 1

]
− Pr

[
HintMLWE-PRF0(λ) = 1

]∣∣ ≤ negl(λ),

where the experiment HintMLWE-PRFb is defined below, Qx denotes the number of MLWE sample matrix/hint
pairs (Ar,j ,hj)j∈[Qx] requested from the oracle for a queried x, Q :=

∑
x Qx denotes the total number of

requested hint vectors during the experiment, and Q∞x is the maximum allowed upper bound on maxx Qx.
Each x is only allowed to be queried at most once to SampHMLWEPb.

3.1 Hardness Reduction from HintMLWE-PRF to iMLWE-RU-id

As an intermediate conceptual step in our reduction from MLWE-PRF to iMLWE-RU-id, we observe that we
can reduce a “hint” variant HintMLWE-PRF of MLWE-PRF (inspired by the Hint-MLWE problem [KLSS23])
to iMLWE-RU-id. The idea is that in the HintMLWE-PRF problem, in addition to the MLWE-PRF samples
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HintMLWE-PRFb
G,Q,Q∞

x ,q,m,N,h,L,βr,χ̄(λ)

1 : k
$← χm

k

2 : b′ ← ASampHMLWEPb(·,·,·)(1λ)

3 : return b = b′

SampHMLWEPb(Qx ∈ Z+, (Rj ∈ Rh×N )j∈[Qx], x ∈ {0, 1}L)

1 : if ∃j ∈ [Qx] s.t. ∥Rj∥∞ > βr or Z[x] ̸= ⊥ or Qx > Q∞
x

2 : then return ⊥
3 : Bx = G(x) ∈ Rh×m

q

4 : yB := SampPRFb(x)

5 : if b = 0 then ẽB
$← χh

B // simulated error for b = 0

6 : if b = 1 then eB = E [x] // real error for b = 1

7 : for j ∈ [Qx] do

8 : Ar,j
$← RN×m

q

9 : e′
j

$← χh
1 , ej

$← χN // real errors for b = 1

10 : ẽ′
j

$← χh
1 , ẽj

$← χN // simulated errors for b = 0

11 : if b = 0 then

12 : cj
$← RN

q ,hj = (Rj ẽj + ẽB) + ẽ′
j

13 : if b = 1 then

14 : cj = Ar,jk+ ej ∈ RN
q ,hj = (Rjej + eB) + e′

j

15 : return (yB , (Ar,j , cj ,hj)j∈[Qx])

SampPRFb(x)

1 : if b = 0 then

2 : if Z[x] = ⊥ then

3 : z′
$← Rh

q ,Z[x] := z′

4 : if b = 1 then

5 : if Z[x] = ⊥ then

6 : Bx = G(x) ∈ Rh×m
q

7 : eB
$← χh

B , E [x] := eB

8 : yB = Bxk+ eB ∈ Rh
q

9 : Z[x] := yB

10 : yB = Z[x]
11 : return yB

Fig. 3: HintMLWE-PRF security game

(Bx,yB = Bxk + eB) and (Ar, c = Ark + e), the adversary is also provided with appropriate linear
combinations of the error vectors as “hints” with respect to the R matrix provided by the adversary, i.e.
h := Re+ eB − e′. The hints h then allow the adversary to simulate the “re-used” iMLWE-RU-id samples of
the form (Cx := RAr+Bx,u = Cxk+e′) from the given MLWE-PRF samples, since Rc+yB−h = Cxk+e′.

Lemma 6. Let χ̄ := (χ, χB , χ1, χk
) be discrete distributions over R, let G be a hash family, and let Q,Q∞x ,

q,m,N, h, L, βr ∈ Z+. Moreover, let χ̄h = (χ, χB ,−χ1, χk
), where −χ1 denotes the distribution obtained

by sampling e′ from χ1 and outputting −e′. The iMLWE-RU-idG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄ assumption holds if the

HintMLWE-PRFG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄h

assumption holds. More precisely, for any PPT adversary A against
the iMLWE-RU-id problem, there exists a PPT adversary B against the HintMLWE-PRF problem, such that

AdviMLWE-RU-id
A (λ) ≤ AdvHintMLWE-PRF

B (λ) .

Proof. Given an adversary A against iMLWE-RU-id, we construct an adversary B against HintMLWE-PRF
that runs as shown in Figure 4.

Next, to analyze the advantage of B against HintMLWE-PRF, we consider first the case that b = 1. In this
case, the response (yB , (Ar,j , cj ,hj)j∈[Qx]) returned by the SampHMLWEPb oracle has yB = Bxk+ eB with
Bx = G(x), cj = Ar,jk+ ej ∈ RN

q and hints hj = (Rjej + eB)+ e′j , with e′j samples from −χ1, so it follows
that uj = Rjcj + yB − hj = Cxk − e′j with Cx := RjAr,j + Bx and −e′j sampled from the distribution

χ1, since e′j is sampled from the distribution −χ1. Therefore, in the HintMLWE-PRF1 game, the view of A
is simulated with the same distribution as in the real iMLWE-RU-id1 game.
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BSampPRF-MLWE-RUb(·,·,·
G,Q,Q∞

x ,q,m,N,h,L,βr,χ̄h
(1λ)

1 : b′ ← ASampPRF-MLWE-RUb(·,·,·)(1λ)

2 : return b = b′

SimSampPRF-MLWE-RUb(Qx ∈ Z+, (Rj ∈ Rh×N )j∈[Qx], x ∈ {0, 1}L)

1 : (yB , (Ar,j , cj ,hj)j∈[Qx]) := SampHMLWEPb(Qx ∈ Z+, (Rj ∈ Rh×N )j∈[Qx], x ∈ {0, 1}L)
2 : for j ∈ [Qx] do

3 : uj = Rjcj + yB − hj

4 : endfor

5 : return (yB , (Ar,j , cj ,uj)j∈[Qx])

Fig. 4: HintMLWE-PRF algorithm B in the security reduction.

In the other case that b = 0, the response (yB , (Ar,j , cj ,hj)j∈[Qx]) returned by the SampHMLWEPb oracle

has yB uniformly random in Rh
q and cj uniformly random and independent in RN

q , but hints are still given by
hj = (Rjej+eB)+e′j , with e′j samples from −χ1, so it follows that uj = Rjcj+yB−hj = −(Rjej+eB)−e′j ,
where −e′j is sampled from the distribution χ1, and ej , eB sampled from χ, χB respectively, which is exactly

the same as the distribution in the real iMLWE-RU-id0 game. We conclude that the advantage of B against
HintMLWE-PRF is equal to the advantage of A against iMLWE-RU-id, as claimed. ⊓⊔

3.2 Hardness Reduction from MLWE-PRF to HintMLWE-PRF

Our reduction from MLWE-PRF to HintMLWE-PRF can be viewed as a special case of the reduction for the
Extended Hint MLWE problem [WSE24] from the MLWE problem, which is a generalization of the reduction
from MLWE to Hint-MLWE in [KLSS23]. For completeness, since the manuscript [WSE24] is not currently
published, we provide below a complete proof of the reduction from MLWE-PRF to HintMLWE-PRF based on
an optimization of the general result in [WSE24] to the special form of hint matrices in our HintMLWE-PRF
problem. In particular, our “re-use” hints have the form hi := Riei+eB +e′i, for i ∈ [Qx], where Qx denotes
the number of oracle queries on the same x values, which re-use the same PRF output, and hence the same
eB PRF error term.

Theorem 1. Let χ̄h := (χ, χB , χ1, χk
) be discrete distributions over R, where χ := DZd,s, χB := DZd,sB and

χ1 := DZd,s1 for some s, sB , s1, η, δ, ϵ ∈ R+. Let G be a hash family, and let Q,Q∞x , q,m,N, h, L, βr ∈ Z+.
Moreover, let χ̄ = (χ0, χ0, χk

), where χ0 := DZd,s0 . The HintMLWE-PRFG,Q,Q∞
x ,q,m,N,h,L,βr,χ̄h

assumption
holds if the MLWE-PRFG,Q,Q,q,m,h,L,χ̄ assumption holds and the following conditions are satisfied:

s1/s ≥ η ·
√

Q∞x + (βrd)2hN, (2)

s0/s ≤

√
1− 1/(1 + η2)− ϵp

(1 + δ)
, (3)

s0 ≥
√

(1 + 1/δ) · ln(2(Q∞x N + h)d(1 + 1/ϵ))

π
, (4)

sB ≥ s, where (5)

ϵp ≤
1

(1 + 1/δ) · (1 + ln((1 + 1/ϵ)/2)/ ln(4(Q∞x N + h)d)
. (6)
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More precisely, for any PPT adversary A against the HintMLWE-PRF problem, there exists a PPT adver-
sary B against the MLWE-PRF problem, such that

AdvHintMLWE-PRF
A (λ) ≤ AdvMLWE-PRF

B (λ) + 2Q · ϵ,

where Q and Q∞x denote the total number of queries and maximum number of hints requested per x query,
respectively, that the adversary A makes.

The proof of the above theorem follows the approach of the MLWE to Hint-MLWE reduction in [KLSS23]
and in particular its generalization in [WSE24] to hints that contain linear combinations of error coordinates,
as is the case in our hint matrices. Namely, the security reduction simulates the hints with their correct
marginal distribution and then computes the conditional distribution of the concatenated error vector ē⊤ :=
(e⊤, e⊤B) given the concatenated hints vector h. The latter conditional distribution turns out to be a non-
zero centered skewed Gaussian with covariance matrix Σ0 that depends on the width parameter s1 of the
hint “masking” errors e′ and the width parameter s of the error vector e, as well as the norm of the
concatenated hint matrix R̄. The reduction then transforms its input MLWE samples spherical Gaussian
error distribution with width parameter s0 ≈ s to the required skewed Gaussian with covariance matrix
Σ0 by adding an independent Gaussian error with a compensating covariance matrix Σ0 − s20I. However,
sampling a Gaussian with the latter compensating covariance is only possible if the compensating covariance
matrix is positive definite, and satisfying the latter requirement requires the “masking” ratio s1/s to exceed
the largest singular value of the concatenated hint matrix R̄. Accordingly, we provide in Lemma 7 below an
optimized upper bound on the matrix norm of our form of hint matrix. It results in a lower bound on the
ratio s1/s ≈

√
Q∞x that is nearly optimal for large Qx, as it approximately matches the minimum value of

s1/s value required to thwart the known “averaging” attack (see Section 1).

Lemma 7. Fix Q,N, h, and βr ∈ Z+, matrices Ri ∈ Zh×N for i ∈ [Q] with entries in [−βr, . . . , βr], and let

R̄ :=


R1 0 . . . 0 I
0 R2 . . . 0 I
... 0

. . . 0 I
0 0 . . . RQ I

 ∈ ZQh×(QN+h).

Then we have
∥R̄∥ ≤

√
Q+B2

r , where Br := max
i
∥Ri∥ ≤ βr

√
Nh. (7)

Proof. Let u⊤ := (u⊤1 , . . . ,u
⊤
Q,u

⊤
B) ∈ RQN+h, with ui ∈ RN for i ∈ [Q] and uB ∈ Rh. We have ∥R̄∥ =

maxu:∥u∥=1 ∥R̄u∥. Take u such that ∥u∥ = 1. We have:

∥R̄u∥ =

∥∥∥∥∥∥∥
R1u1 + uB

...
RQuQ + uB


∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
R1u1

...
RQuQ


∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
uB

...
uB


∥∥∥∥∥∥∥

=

√∑
i∈[Q]

∥Riui∥2 +
√

Q∥uB∥

≤
√∑

i∈[Q]

∥Ri∥2∥ui∥2 +
√

Q∥uB∥

≤ Br

√∑
i∈[Q]

∥ui∥2 +
√
Q∥uB∥

= Br

√
1− ∥uB∥2 +

√
Q∥uB∥.

(8)
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The first inequality above is using the triangle inequality, the second inequality is by the definition of
∥Ri∥’s, the third inequality follows from the definition of Br := maxi ∥Ri∥, and the last equality is due
to ∥u∥ = 1. It follows that ∥R̄u∥ ≤ maxℓ∈[0,1] f(ℓ), where f(ℓ) := Br

√
1− ℓ2 +

√
Qℓ. It is easy to verify

by differentiation that the function f attains its maximum on [0, 1] at the point ℓmax :=
√

Q
Q+B2

r
and the

maximum is f(ℓmax) =
√
Q+B2

r . This proves the claimed upper bound on ∥R̄∥. The claimed upper bound

on Br follows from the inequality ∥Ri∥ ≤
√
∥Ri∥1 · ∥Ri∥∞,M , where ∥Ri∥1 (resp. ∥Ri∥∞,M ) is equal to the

maximum column 1-norm (resp. maximum row 1-norm) of Ri and upper bounded by βrh (resp. βrN). This
completes the proof. ⊓⊔

We are now ready to prove our security reduction from MLWE-PRF to HintMLWE-PRF.

Proof (of Theorem 1). Given an adversary A against HintMLWE-PRF, we construct an adversary B against
MLWE-PRF that runs as shown in Figure 5.

Note that for the discrete Gaussian sampling in line 15 to be PPT sampleable, it is sufficient by Lemma 1
that Σ is positive definite, i.e. σmin(Σ) > 0, where Σ := Σ0 − s20I, and that9 δp · MΣ ≤ 1, where

δp :=
√

ln(2(QxN+h)d)+4
π and MΣ denotes the max column norm of

√
Σ−1, which is bounded as MΣ ≤√

σmax(Σ−1) ≤ 1√
σmin(Σ)

= 1√
σmin(Σ0)−s0

2 . So the sufficient sampleability condition is

σmin(Σ0) ≥ (1 + δ) · s20 + δ2p, (9)

for some δ ≥ 0. On the other hand, we have: σmin(Σ0) =
1

∥Σ−1
0 ∥

and

∥Σ−10 ∥ = ∥Σ
−1
1 +

1

s21
R̄⊤R̄∥

≤ ∥Σ−11 ∥+
1

s21
∥R̄⊤R̄∥

≤ 1

s2
+

1

s21
∥R̄∥2

≤ 1

s2
+

1

s21
(Q∞x + (βrd)

2h(m+ ℓ))

≤ 1

s2
· (1 + 1/η2).

(10)

In the first inequality above we use the triangle inequality. The second inequality uses the identity ∥R̄⊤R̄∥ =
∥R̄∥2 and the assumed lower bound sB ≥ s in (4), which implies ∥Σ−11 ∥ = max( 1

s2 ,
1
s2B

) ≤ 1
s2 . The third

inequality uses the upper bound on R̄ from Lemma 7 and that Qx ≤ Q∞x , and the fourth inequality uses
the assumed lower bound (2) on s0/s. Therefore, using (10), we see that the sampleability condition (9) is
implied by the assumed upper bound (3) on s0/s, as required.

Next, to analyze the advantage of B against MLWE-PRF, we consider first the case that b = 1. In this
case, the response vector y′ consisting of the concatanation of the samples returned by the SampMLWE1 and
SampMLWE-PRF1 oracles has the form

y′ =

(
Ār

Bx

)
k+ e′, (11)

where Ā⊤r := [A⊤r,1, . . . ,A
⊤
r,Qx

] and e′ is sampled from the distribution DZ(QxN+h)d,s20I
and hence

y =

(
Ār

Bx

)
k+ e, (12)

9 We remark that there is a minor omission in the Hint-MLWE security reduction analysis in [KLSS23][Thm 1] which
omitted this extra PPT sampleability condition and only required positive definiteness; it leads to the extra term
ϵp in the bound.
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BSampMLWE-PRFb(·),SampMLWEb(·)
G,Q,Q∞

x ,q,m,N,h,L,βr,χ̄
(1λ)

1 : b′ ← ASimSampHMLWEPb(·,·,·)(1λ)

2 : return b′

SimSampHMLWEPb(Qx ∈ Z+, {Rj ∈ Rh×N}j∈[Qx], x ∈ {0, 1}L)

1 : if ∃j ∈ [Qx] s.t. ∥Rj∥∞ > βr or Z[x] ̸= ⊥ or Qx > Q∞
x then

2 : return ⊥

3 : y′
B := SampMLWE-PRFb(x),Z[x] := y′

B

4 : ẽB
$← χh

B // simulated error

5 : for j ∈ [Qx] do

6 : Call SampMLWEb(·) N times to get (Ar,j , c
′
j) ∈ RN×m

q ×RN
q

7 : ẽ′
j

$← χh
1 , ẽj

$← χN // simulated errors

8 : hj = (Rj ẽj + ẽB) + ẽ′
j

9 : endfor

10 : h⊤ := [h⊤
1 , . . . ,h

⊤
Qx

] ∈ ZQxhd, (y′)⊤ := [c′⊤1 , . . . , c′⊤Qx
,y′⊤

B ] ∈ Z(QxN+h)d

11 : R̄ :=


R1 0 . . . 0 I
0 R2 . . . 0 I
... 0

. . . 0 I
0 0 . . . RQx I

 ∈ ZQxhd×(QxN+h)d

12 : Σ1 :=


s2I 0 . . . 0 0
0 s2I . . . 0 0
... 0

. . . 0
...

0 0 . . . s2I 0
0 0 . . . 0 s2BI

 ∈ Z(QxN+h)d×(QxN+h)d

13 : Σ0 :=

(
Σ−1

1 +
1

s21
R̄⊤R̄

)−1

14 : c :=
1

s21
Σ0R̄

⊤h

15 : t
$← DZ(QxN+h)d,Σ0−s20I,c

16 : y := y′ + t ∈ RQxN+h
q

17 : Parse y⊤ = (c⊤1 , . . . , c
⊤
Qx

,yB)

18 : return (yB , (Ar,j , cj ,hj)j∈[Qx])

Fig. 5: MLWE-PRF algorithm B in the security reduction.
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where e := e′ + t is sampled from the distribution Dconv := DZ(QxN+h)d,s20I
+ DZ(QxN+h)d,Σ0−s20I,c. By the

convolution Lemma 2, the distribution Dconv is within statistical distance ≤ 2ϵ of DZ(QxN+h)d,Σ0,c, assuming
that the following smoothing condition holds:√

Σ3 ≥ ηϵ(Z(QxN+h)d), where Σ3 :=
1

s20
I+

(
Σ0 − s20I

)−1
. (13)

We show below that (13) is satisfied. Therefore, by Lemma 5, the output (yB , (Ar,j , cj ,hj)j∈[Qx]) returned

by the SimSampHMLWEP1 simulator for each queried x is within statistical distance ≤ 2ϵ of the distribution
of the output returned by the SampHMLWEP1 oracle in the real HintMLWE-PRF game. Adding up over all (at
most Q) x queries, we conclude that the distribution of the view of B simulated by A in the MLWE-PRF game
with b = 1 is within statistical distance ≤ 2Q · ϵ of the distribution of B’s view in the real HintMLWE-PRF
game with b = 1.

We now consider the second case that b = 0. In this case, the response vector y′ is sampled from

the uniform distribution on Z(QxN+h)d
q and hence y = y′ + t is also uniformly distributed on Z(QxN+h)d

q

independently of the hint vector h, while the marginal distribution of the h remains the same as in the b = 1
game. Therefore, the distribution of the view of B simulated by A in the MLWE-PRF game with b = 0 is
exactly equal to the distribution of B’s view in the real HintMLWE-PRF game with b = 0. From the above
analysis, we conclude that AdvMLWE-PRF

B (λ) ≥ AdvMLWE-PRF
B (λ) − 2Q · ϵ, which is the claimed advantage

bound.
It remains to show that condition (13) is satisfied. By Lemma 4, the condition (13) holds if

∥Σ−13 ∥ ≤ ηϵ(Z(QxN+h)d)−2. (14)

From (9), we have σmin(Σ0 − s20I) ≥ δ · s20. Therefore, the triangle inequality gives

∥Σ−13 ∥ ≤
1

s20
+ ∥(Σ0 − s20I)

−1∥ = 1

s20
+

1

σmin(Σ0 − s20I)
≤ 1 + 1/δ

s20
. (15)

Combining (15) and (14), we conclude that (13) is satisfied if s0 ≥
√
1 + 1/δ · ηϵ(Z(QxN+h)d), and the latter

condition is implied by the assumed lower bound (4) on s0, using Lemma 3, as required. ⊓⊔

4 LeOPaRd : Our Lattice-Based VPOPRF Proposal

At a very high-level, our goal is to realise the 2HashDH OPRF idea [JKK14] in the lattice setting as first
done by Albrecht et al. [ADDS21]. Our construction ensures that a client with a tag/input pair (t, x) can
recover the PRF value ⌊Bxk⌉p after interacting with the server, where Bx = G(t, x), for some message
mapping G, and k is the secret key of the server. We discuss potential instantiations of the function G
and its relation to the existing lattice-based PRF schemes in Section 5.2. As discussed before, our OPRF
construction, LeOPaRd, is round-optimal, and supports partial obliviousness and verifiability.

We would like the OPRF evaluation to begin with the client linearly encrypting the matrix Bx such that
Cx := RAr + Bx, followed by the server computing ux := Cxk + e′s for some error vector e′s (so that ux

contains the term Bxk). However, to minimize the client’s control over Cx so that ux does not leak server’s
secret key, we ask the client to commit to the pair (R, x), and generate the matrix Ar via a random oracle
using the resulting commitment cr. This way, the client is forced to pick their randomness R and the input x
before seeing the random matrix Ar. This step is critical to ensuring that we can reduce pseudorandomness of
LeOPaRd to the new iMLWER-RU problem (without requiring smudging). The client sends the pair (cr,Cx)
(and their well-formedness NIZK proof) to the server.

Upon receiving the values from the client, the server recomputes Ar given the commitment cr, and
responds to the client with the pair (ux := Cxk + e′s,vk := Ark + es), where es and e′s denote some
appropriately distributed errors. At this point, the client can use its secret randomness R to recover the PRF
output ⌊ux −Rvk⌉p = ⌊Bxk+ ef⌉p = ⌊Bxk⌉p, where ef := e′s −Res is some final error term with small
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : ∀i ∈ [2], crsi ← NIZKi.Setup(1
λ)

3 : pp := (ck1, ck2, crs1, crs2)

4 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

11 : wit2 := (k, es, e
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, z, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 6: LeOPaRd : Our verifiable POPRF construction.
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The server proof πs proves the following,

πs :=


G(ux,Cx, ck,vk, ck2,Ar, βk, βe); K(k, es, e

′
s, ρk) | ∥k∥∞ ≤ βk ∧

∥es∥∞ ≤ β ∧ ∥e′
s∥∞ ≤ β1 ∧ ck = COM.Commit(ck2,k; ρk) ∧

vk = Ark+ es mod q ∧ ux = Cxk+ e′
s mod q

.

The client proof πc proves the following,

πc :=

{
G(cr,Cx, ck1,Ar,G, t, βr); K(R, x, ρr) | ∥R∥∞ ≤ βr ∧ Bx := G(t, x)∧

cr = COM.Commit(ck1, (R, x); ρr) ∧ Cx = RAr +Bx mod q

}
.

Fig. 7: Relations for NIZK proofs performed in LeOPaRd.

Notation Description

λ security parameter
κ correctness parameter
q system modulus
p rounding modulus

d ring dimension of R = Z[X]/(Xd + 1)
χ, χ1 server’s error distributions
β, β1 ℓ∞-norm bounds on server’s errors es, e

′
s

χk server’s key distribution
χr client’s randomness distribution
βr ℓ∞-norm bound on client’s randomness R
s0 error std. dev. in server’s MLWE security
m dimension of server key k (over Rq)
h # of rows of Bx

ℓ client MLWE dimension parameter
nc, ns dimensions of trapdoor keys used by client, server
γ base parameter for Gadget matrix

Table 2: Summary of main notations/parameters used for LeOPaRd.

coefficients (relative to q). To additionally achieve verifiability and protect against malicious adversaries, we
require the client and server to prove the well-formedness of their computations with NIZK proofs.

Our full POPRF construction is given in Figure 6, and the NIZK relations of client and server proofs
(πc, πs) are given in Figure 7. In the protocol description, NIZK1 and NIZK2 denote the NIZK argument
system of the client and server, respectively. We also summarize the main notations/parameters in Table 2.
We instantiate the commitment scheme in LeOPaRd using Regev-style encryption [Reg05], which can also
be seen as an extractable version of the BDLOP commitment [BDL+18]. Given such an encryption is quite
standard by now, we defer the details to Appendix E.

Remark 1. We note that certain NIZK proof systems such as LNP22 [LNP22] already constructs a commit-
ment to its witness inside the NIZK proof. In fact, as discussed in Appendix E, the trapdoor commitment
scheme we use is the trapdoor version of the BDLOP commitment [BDL+18] used in [LNP22]. Therefore, by
unboxing the NIZK proofs, it may be possible (in certain cases) to optimize our LeOPaRd design. However,
we forego such optimizations in this work as they would make the overall protocol significantly more complex.

Remark 2. In our iMLWER-RU security reduction from Section 3, it is important to know the maximum
number of OPRF evaluation queries the adversary makes with the same Bx = G(t, x). In the partially
oblivious setting, since the server already knows t, we can let the server keep track of queried tags; and
either never allow the same tag be queried twice or restrict the number of queries under the same tag, e.g.,
to 216. This way, the adversary would be restricted to seeing a limited number of OPRF evaluation results
for a particular Bx. In this case, the impact of the term Q∞x in Theorem 1 would effectively diminish.
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F.Request(pp, pk, t,x)

1 : parse t := (t1, . . . , tK)

2 : parse x := (x1, . . . , xK)

3 : parse pp := (ck1, ck2, crs1, crs2)

4 : R̂
$← χKh×(ℓ+m)

r

5 : ĉr ← COM.Commit(ck1, (R̂,x); ρr)

6 : Ar := ROr(t, ĉr) ∈ R(ℓ+m)×m
q

7 : ∀i ∈ [K], Bxi := G(xi, ti) ∈ Rh×m
q

8 : B̂x :=

 Bx1

...
BxK


9 : Ĉx := R̂Ar + B̂x ∈ RKh×m

q

10 : stmt1 := (ĉr, Ĉx, ck1,Ar,G, t)

11 : wit1 := (R̂,x, ρr)

12 : πc ← NIZK1.P(crs1, stmt1,wit1)

13 : st := (x, R̂, Ĉx, pk,Ar)

14 : req := (ĉr, Ĉx, πc)

15 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (ĉr, Ĉx, πc)

4 : Ar := ROr(t, ĉr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, ê′

s
$← χKh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ûx := Ĉxk+ ê′
s ∈ RKh

q

10 : stmt2 := (ûx, Ĉx, ck,vk, ck2,Ar)

11 : wit2 := (k, es, ê
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ûx,vk, πs)

Fig. 8: Batched LeOPaRd evaluation protocol.

4.1 Batched Queries

Some applications such as Privacy Pass [DGS+18] can benefit from batching multiple queries in one go. It is
not difficult to see that LeOPaRd can support this. Suppose the client wants to get evaluations on (x1, . . . ,
xK) =: x with tags (t1, . . . , tK) =: t for some K ≥ 1. Then, we can run Request and BlindEval procedures

as shown in Figure 8. Finalize would compute ẑ :=
⌊
ûx − R̂vk

⌉
p
and then output yi := ROz(xi, ti, zi) for

ẑ = (z1, . . . , zK) and i = 1, . . . ,K.
The batched LeOPaRd has two major advantages over running K independent evaluation queries:

1. Both the client and the server compute a single NIZK proof attesting to the validity of the whole batched
query. When using a succinct argument system like LaBRADOR [BS23], the proof size will increase by
a very small factor. For example, as discussed in [ADDG24, App. A.2], their LaBRADOR proof size
increases from 45KB (for one single query) to just 79KB for a batch of 64 queries (< 1.8× increase).

2. Observe that the term vk (on the server’s side) in our protocol is not affected by batching at all.
Therefore, its size remains constant for any K ≥ 1. When using the message mapping from BP14 PRF
(see Section 5.2), we have h = 1 and therefore, tx is a single ring element. The linear communication
cost by the server in the batched setting then boils down K ring elements.

The significant practical advantage in the batched setting can be observed from the results presented
in Table 3 and Table 4.

4.2 Correctness and Security Analyses

Correctness analysis. We upper bound the correctness error probability of our protocol in Lemma 8, in
terms of the protocol parameters. Due to space limitations, we only sketch the proofs and refer the reader
to Appendix B.1 for full proofs and details.
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Lemma 8. Fix κ, h, d. Let Bf (κ, d) denote an upper bound on a fixed coordinate of ef = e′s −Res (as in
(26)) that holds except with probability pe ≤ 2−(κ+2+log(hd)). Also, assume that the function family G satisfies
ϵu-uniformity (as per Definition 19) with

ϵu ≤ 2−(κ+2+log(hd)). (16)

Then, for any fixed x ∈ {0, 1}L, 2−κ-correctness holds (as per Definition 2) if

q/p ≥ 2κ+2 · hd · (2Bf (κ, d) + 1). (17)

Remarks:

– Assume that χ = U(Sβ), χr = U(Sβr
) and χ1 = U(Sβ1

). Using the central limit theorem Gaussian
approximation for the distribution of the coordinates of the term Res in (26), their standard deviation

is given by σσr

√
(m+ ℓ)d, where σ :=

√
1
12 ((2β + 1)2 − 1) and σr :=

√
1
12 ((2βr + 1)2 − 1) are the

standard deviations of the R and es coordinates, respectively. Using a Gaussian tail bound and the
upper bound β1 for the coordinates of e′s, we have the approximate upper bound

Bf (κ, d) ≤ β1 + σσr

√
(m+ ℓ)d · 2 ln(2)(κ+ 2 + log(hd)). (18)

Note that Bf (κ, d) is also upper bounded by the worst-case bound (pe = 0):

Bf (κ, d) ≤ (m+ ℓ)dββr + β1 (19)

– The existing correctness definition in Definition 2 assumes only 1 key generation run and 1 OPRF
protocol evaluation. For a modified correctness definition with Qeval total key generation and protocol
evaluation pairs, the bound in Equation (17) will be multiplied by Qeval.

In our evaluation protocol, the client obtains ux −Rvk = Bxk + ef ∈ Rh
q , where ef = Res + e′s is an

error term due to the server and client’s randomness, and then rounds the result to the nearest multiple
of q/p. The correctness proof bounds the probability of a PRF rounding error Pr[⌊Bxk+ ef⌉p ̸= ⌊Bxk⌉p],
which occurs only if Bxk falls “close” to (within distance Bf ), of an upper bound on the coordinates of error
term ef . For this, we exploit the uniformity, up to negligible statistical distance ϵu, of coordinates of Bxk
(a property of G which we call ϵu-uniformity) and choose q/p sufficiently large by a factor ≈ 2κ compared
to Bf to achieve 2−κ correctness error. We upper bound the ϵu-uniformity of the BLMR13 and BP14 PRF
instantiations of G for this purpose.

Security analysis. We first prove pseudorandomness against malicious clients with Theorem 2 and then
request privacy against malicious servers (POPRIV2) with Theorem 3. Due to space constraints, we give
only the sketch of the main proof steps, and refer the reader to Appendix B.2 and Appendix B.3 for the
full proofs, respectively. In Appendix C.2, we discuss an issue in a proof of [TCR+22], where they prove
that correctness and POPRIV2 together implies uniqueness (a stronger form of verifiability). We show that
this implication also requires a key binding property, and for completeness, we provide a full proof of the
statement that correctness, POPRIV2 and key binding implies uniqueness. Our LeOPaRd proposal satisfies
all these properties. Although our correctness error is not necessarily less than 2−128, the verifiability property
is not affected by the correctness error. We may only have a case where a different PRF output is computed
in Finalize with probability 2−κ.

Theorem 2. The POPRF construction F from Figure 6 satisfies pseudorandomness given in Definition 3,
with random oracles ROr and ROz, if:

– The client argument system NIZK1 is computationally sound and the server argument system NIZK2 is
computationally zero-knowledge (Definition 18),

– The commitment scheme COM is computationally hiding and extractable (Definitions 15 and 17), and
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– The iMLWER-RUparam assumption, for param := (G, QM, QP, Q
∞
x , q,m, ℓ+m,h, 2λ, βr, p, χ̄), holds (Defi-

nition 10).

More precisely, for any PPT adversary A, there exist PPT adversaries B1,B2,B3, B4 and B5 against the
computational zero-knowledge of NIZK2, computational soundness of NIZK1, hiding of COM, extractability
of COM and iMLWER-RUparam assumption, respectively, such that

Advpo-prfF,A,S,ROr,ROz
(λ) ≤ AdvCZKNIZK2,B1

(λ) +QB · AdvCSNIZK1,B2
(λ) + AdvCHCOM,B3

(λ)

+QROr
· AdvExtCOM,B4

(λ) + Adv
iMLWEparam

B5
(λ) +Qz

(
1

p
+

1

q

)dh

,

where QB and QROr
denote the number of BlindEval and ROr queries, respectively, that the adversary A

makes.

Our proof essentially revolves around the idea of removing traces of the server’s secret key sk from the
computation of the POPRF output, such that the simulator S of the pseudorandomness game does not need
any secret key dependent information. In order to do so, we first simulate the server proof πs, such that from
that point onwards we do not need sk for the generation of the proof. Next, we commit to an all zero vector
0m during the computation of the public key pk, which allows us to remove sk from the computation of pk.
Lastly, we rely on our iMLWER-RU assumption to remove all traces of sk from the computation of ux and
vk, and yet maintain the correctness of the scheme. After applying these changes, we end up in a position
where we do not require the secret key sk anymore, and hence, the simulator S can be constructed easily.
We note that to make these argument go through, we also need to extract the client’s randomness R and
carefully program the random oracles ROr and ROz throughout the proof.

Theorem 3. The POPRF construction F from Figure 6 satisfies the request privacy against malicious
servers (POPRIV2), given in Definition 4, with random oracles ROr and ROz, if:

– The client argument system NIZK1 is computationally zero-knowledge and the server argument system
NIZK2 is computationally sound (Definition 18),

– The commitment scheme COM is computationally hiding and extractable (Definitions 15 and 17), and
– The knMLWEℓ+m,m,h,χ assumption holds (Definition 7).

More precisely, for any PPT adversary A, there exist PPT adversaries B1,B2,B3, B4 and B5 against the
computational zero-knowledge of NIZK1, computational hiding of COM, computational soundness of NIZK2,
extractability of COM and knMLWEm,ℓ+m,h,χ assumption, respectively, such that

Advpo-priv-2F,A,ROr,ROz
(λ) ≤ AdvCZKNIZK1,B1

(λ) + 2QR · AdvCHCOM,B2
(λ) + 2QF · AdvCSNIZK2,B3

(λ)

+Qpk
R · Adv

Ext
COM,B4

(λ) + 2QR · Adv
knMLWEℓ+m,m,h,χ

B5
(λ) ,

where QR and QF denote the number of Request and Finalize oracle queries, respectively, and Qpk
R denotes

the number of queries to Request with different pk inputs that the adversary A makes.

In order to prove request privacy against malicious servers, we aim to remove traces of the input x, such
that at the end the transcript observed by the adversary is independent of the challenge bit b. To this end,
we first simulate the client proof πc, such that we do not require anymore the input x for computing the
proof. Next, we change the client commitment cr to a commitment of all zero vector 0h·(ℓ+m)+1 instead of
the pair (R, x), which removes another occurrence of the input x. Finally, we rely on the Knapsack MLWE
(knMLWE) assumption to replace computation of Cx with a uniformly random matrix. We note that in
order to maintain the correctness of the scheme, during this last change we rely on the extractability of the
commitment scheme. More precisely, we extract the secret key sk from the public key pk, and use sk to correct
the POPRF evaluation in Finalize. Importantly, we can use Regev-style [Reg05] lightweight commitments,
as opposed to requiring heavy full trapdoors to extract from a commitment of the form Ak + e used in
[ADDS21]. At this point we removed all occurrences of the input x, and hence, the adversary’s view is
independent of the input bit b.
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5 Instantiating the NIZK Proofs and Message Mapping G

In this section, we discuss possible ways to instantiate the message mapping G and the underlying non-
interactive zero-knowledge (NIZK) proofs performed by the server and the client.

5.1 Proof by the Server

The NIZK proof, πs, (see Figure 7) conducted by the server is the most typical proof needed in lattice-
based cryptography, and there are various proof systems that can be used to instantiate it. Some notable
ones are the LANES [ALS20,ENS20,LNS20], LANES+ [ESLR23], LNP22 [LNP22] and LaBRADOR [BS23]
proof systems. As discussed in Appendix E, we use a lattice-based commitment scheme, and thus, these
proof systems can natively support its well-formedness proof. Given we require a relatively large modulus q,
our experiments show that LaBRADOR offers the best communication performance among these options.
Thanks to its succinctness features, it also scales very efficiently in the batched setting. We report on the
performance results in Section 6.

5.2 Instantiating the Message Mapping G

In this section, we primarily focus on the secret-dependent part of the message mapping G and discuss our
main option on how the message mapping G : x 7→ Bx ∈ Rh×m

q can be instantiated. That is, we assume
the public input part t to be empty. When the tag t is present, the mapping would simply be computed on
x̂ := x∥t as G(x̂) and it is easy to verify the computation w.r.t. this input extended with public information
(which we discuss more in Section 5.3). More message mapping options are discussed in Appendix D. There
are mainly two considerations: (i) security of iMLWER-RU w.r.t. to G chosen, and (ii) efficiency of our OPRF
design, particularly the underlying NIZK proofs especially by the client (i.e., “ZK-friendliness”). The latter
is the primary consideration as we believe iMLWER-RU remains secure for all instantiations discussed in this
section.

We believe that a natural way to instantiate G is to use the mappings in existing lattice-based PRFs so
that the SampPRF oracle in iMLWER-RU becomes an oracle outputting PRF samples (in the case of b = 1).
Therefore, we discuss options based on existing lattice-based PRFs.

Using the mapping from BP14 PRF [BP14] for G. The option we see as the most suitable one is using
the message mapping employed in BP14 PRF [BP14]. Here, the PRF computation involves a gadget matrix
G and its (non-linear) inverse computation G−1 : R1×m

q → Rm×m
q . The G−1 mapping is the standard bit

decomposition operation. In this case, we have two vectors a0,a1
$← Rm

q published as public parameters, and
as a result, h = 1. Then, for k← χm

k
for some distribution χ

k
10 on Rq, we compute

F bp
k (x) =

⌊
b⊤x · k

⌉
p
, (20)

where the message mapping Gbp is defined as

Gbp : x 7→ b⊤x = a⊤x0
·G−1(ax1 · · ·G−1(a⊤xL−2

·G−1(axL−1
))). (21)

For the computation to correctly work, we need m = ⌈log q⌉. For the client’s NIZK proof in this case, we
will need to treat each Bi := G−1(a⊤xi

·Bi+1) ∈ Rm×m
q for i = L − 1, . . . , 0 (with BL := Im) as a variable.

Therefore, there are m2L variable polynomials, but with the correctness restriction that m = ⌈log q⌉.
We also consider a generalized version of this PRF proposal where the gadget matrix works with base

γ ≥ 2 (instead of γ = 2 as before), i.e., g = (1, γ, γ2, . . .), and G = g⊗ I. In this case, we would require that
m = ⌈logγ q⌉, and hence, a smaller m parameter may suffice.

10 Note that in this case we may have small secret key coefficients.
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5.3 Proof by the Client

In this section, we discuss how the client’s NIZK proof can be instantiated. One can observe from the NIZK
relation proven by the client (given in Figure 7) that the majority of the proof components are the most
common relations proven in lattice-based cryptography (when the commitment scheme is instantiated using
a suitable lattice-based extractable commitment scheme). There is perhaps one exception to this: (i) proving
Bx = G(t, x). Accordingly, we next discuss the proof of Bx = G(t, x). Depending on the instantiation of
the message mapping G, the client’s proof may vary significantly. We look more closely at the first two
instantiations of G discussed in Section 5.2.

NIZK for BP14 PRF mapping. Here, recall that we have h = 1. We first discuss the case when no tag t is
present, i.e., Bx = G(x). The case of Bx = G(t, x) is discussed at the end of this section. For a known Ar and
Cx, the prover wants to prove knowledge of short matrix R and a bit-string x = (x0, x1, . . . , xL−1) ∈ {0, 1}L
such that Cx = RAr +Bx mod q where Bx is defined in (21).

Using a similar strategy as in [ADDS21] (see “Proof system 1: Proofs of Masked Partial PRF
Computation”), define variables Bi ∈ Rm×m

q for i = L − 1, . . . , 0 as BL−1 := G−1(a⊤xL−1
) and Bi :=

G−1(a⊤xi
·Bi+1) for i = L− 2, . . . , 0. Using this, we have Bx = G ·B0. Then the statement being proven now

can be transformed to prove the following system with BL := I:

G ·Bi = axi
·Bi+1, i = 0, . . . , L− 1

Cx = RAr +G ·B0.

This system of equations above is not linear due to the xi and Bi+1 terms and the fact that G−1 is not a
linear operator. We can manipulate the system of equations above to obtain

G ·BL−1 = a0 · (1− xL−1) + a1 · xL−1,

G ·BL−2 = a0 · (1− xL−2) ·BL−1 + a1 · xL−2 ·BL−1,

...

G ·B0 = a0 · (1− x0) ·B1 + a1 · x0 ·B1,

Cx = RAr +G ·B0.

The required proof now boils down to proving that a sequence of quadratic equations holds, which can be
easily handled by LaBRADOR [BS23]. Observe that the witness dimension (over Rq) is in the order of m2L.
As discussed in Section 5.2, we consider a generalized version of the BP14 PRF with the gadget matrix
with base γ ≥ 2. Therefore, the witness dimension (over Rq) is in the order of m2L ≈ (logγ q)

2L. In our
parameter settings (see Section 6), the largest m is around 64; hence m2L ≈ 218 (or less) for L = 64. In
[NS24], the authors report a 53 KB LaBRADOR-based proof size for a polynomial evaluation proof of degree
230 with all running times around a couple of minutes or less. Therefore, we believe the proof we require will
be reasonably efficient.

Note that when a tag t is used in computing Bx = G(t, x) (i.e., Bx = G(x̂) for x̂ := x∥t), the above
system of equations will have a minor change in the first expression such that we will have G · BL−1 =
a0 · (1− xL−1) ·Bt + a1 · xL−1 ·Bt for some public matrix Bt dependent on the tag t. The NIZK proof can
equivalently prove this similar system of equations.

6 Practical Performance Analysis

Our performance analysis focuses on estimating the sizes of various components of LeOPaRd. Once proto-
col components are small enough, a practically-acceptable computational performance is often also achieved
given that lattice-based schemes involve quite simple operations like matrix-vector multiplications (see exam-
ples in [ESLL19,EZS+19,LNS20,NS24]). As discussed in the introduction, we aim to implement our scheme
once the LaZeR library [SS24] becomes available.
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One of the most important factors impacting the performance of LeOPaRd is the size of the modulus q.
Since the dimension parameters for suitable MLWE security grow linearly with log q, the overall communi-
cation is in fact quadratic in log q. Particularly, the sizes of commitments/encryptions (i.e, (cr,Cx) on the
client side and vk on the server side for LeOPaRd) quickly become large for very large q. This is not just
specific to our scheme, but true in general for lattice-based commitment/encryption schemes (as also used
e.g. in [ADDS21]). Therefore, our first goal is to minimize q as much as possible.

As shown in the correctness analysis (Lemma 8), the size of q itself is heavily dominated by the 2κ term.
Therefore, given this bound is statistical and for correctness (rather than a security property), we consider a
range of κ values between 16 and 64. One may wonder what if a (malicious) server wants to stop the client
from getting the correct OPRF result. There are two parts to consider here. First, as discussed in Remark 4,
our correctness analysis can be easily extended to cover such a malicious server setting as the NIZK proof
πs proves shortness of the server’s error terms, and also we can simply increase κ. Second, OPRFs are often
used in the server-client setting, and if clients do not receive the correct PRF output and therefore end up
not receiving the intended service from the system, then the server would harm its own reputation and lose
clients. Therefore, we believe a rational server would not intentionally try to stop the client from getting the
correct OPRF result.

For the performance analysis, we focus on the instantiation of the message mapping Gbp with the BP14
PRF since this choice leads to a better performance overall. As discussed in Section 5, we consider a general
base γ for the gadget matrix G, i.e., g = (1, γ, γ2, . . .), and G = g ⊗ I. As a result, we only require
m ≥ ⌈logγ q⌉11. We can first consider the size of q (i.e., log q), then determine m based on the other

requirements such as MLWE security and then simply set γ = ⌈2log q/m⌉.
As done in the correctness analysis, we set χ = U(Sβ), χr = U(Sβr

) and χ1 = U(Sβ1
) for parameters β, β1

and βr. Since the client’s randomness R is one-time, we simply fix βr = 1. Note that βr does not impact the
iMLWER-RU security reduction in Section 3. Since BP14 PRF allows for a small secret key, we sample the
server’s secret key k from the same χ distribution, i.e., χ

k
= χ = U(Sβ).

To estimate the practical hardness of iMLWER-RU problem, we rely on the reduction in Section 3, partic-
ularly Theorem 1. Based on this theorem, we require the hardness of MLWE with the same secret dimension
m as in iMLWER-RU and error Gaussian parameter s0. We also require the size of the rounding errors to be
greater than the s parameter given in Theorem 1, which is easily satisfied since q/p is very large in our case.

Our parameter setting then proceeds as follows. Fix a value for κ ∈ {16, 32, 64}. We iterate over different
values of d ∈ {64, 128, 256} that optimize the communication efficiency for both the server and the client.
Recall that for BP14 PRF, we have h = 1. Therefore, for a fixed d, we also set p as the smallest integer
satisfying (1/p+1/q)dh ≤ 2−128 (to satisfy a requirement from the pseudorandomness analysis in Theorem 2).
Here, the term 1/q is much smaller (since q is always larger than 232) and therefore does not really play an
important role. Then, based on Theorem 1, we first fix δ = η = 1, Q = 264 and ϵ = 2−128, and compute
the smallest (s0, s, s1) values. We then convert them to standard deviations (σ0, σ, σ1) (by dividing by

√
2π).

Here we set Q∞x = 2κ for the fully oblivious setting, and Q∞x = 216 for the partially oblivious setting. We
explain the reasoning behind this towards the end of this section. We then find the corresponding smallest β
(and β1) such that uniform distribution on {−β, . . . , β} (and {−β1, . . . , β1}) has standard deviation at least
σ (and σ1). In this procedure, we have N = m + ℓ and we estimate the values for m and ℓ initially, and
correct the estimate iteratively until the estimate is checked to be accurate.

Now we consider the size of q based on the correctness analysis (Lemma 8) and set log q as small as
possible. Then, we set the smallest value for m so that MLWE security with error standard deviation σ0 at
128 bits is achieved (server security). As discussed above, this comes from the security reduction in Section 3.
Similarly, we set the smallest value for ℓ so that MLWEℓ,χr

security at 128 bits is achieved (client security).
We measure the practical hardness of MLWE using the lattice estimator [APS15] and aim for a “root Hermite
factor” (RHF) of around 1.0045 as in earlier works [ESLR23,ESZ22b,LNP22,ESLL19]. RHF is a commonly
used measure to estimate the quality of lattice reduction to solve a particular lattice problem. Many earlier
works such as [ESLR23,ESZ22b,LNP22,ESLL19] considered the same RHF value for 128-bit security level.
The same MLWE dimension parameters wc = ℓ (by client) and ws = m (by server) can be used to establish

11 Note that if m > ⌈logγ q⌉, then we can simply pad the output vectors of G−1 decomposition mapping with zeros.
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the hiding property of commitment scheme used by the client and the server as they have the same log q and
their randomnesses are sampled from the same distributions as the earlier MLWE error terms. We also note
that given many MLWE and iMLWER-RU samples may be leaked due to many OPRF evaluation queries, we
also need to take into account combinatorial attacks (e.g., using Gröbner basis) against MLWE. We verified
using the lattice estimator [APS15] that the combinatorial attack complexity is always above 2128 for our
parameter settings.

Once the majority of the parameters are selected as above, what remains is to consider (i) the binding
property of the commitment scheme, (ii) the indistinguishability of a commitment key with a trapdoor from
a regular commitment key, and (iii) decryption/extraction correctness for the commitments. Given that we
are dealing with (relatively) large moduli, we see that the third requirement is easily met. Again due to
(relatively) large moduli and that the MSIS solution norm bounds are quite small (due to tight norm-bound
NIZK proofs), the second requirement turns out to be more dominant than the first one in setting the values
for (ns, nc) (the n parameters from Appendix E used by the server and client, respectively). As discussed
in Appendix E, we require the same MLWE assumptions over Rq with errors with standard deviation σ0 (for
server’s commitment) and errors sampled from χr (for client’s commitment). As a result, we get that ns = m
and nc = ℓ. Note that the dimensions of the randomnesses used inside the commitments by the server and
the client do not have a significant impact in our parameter setting and efficiency estimates since the well-
formedness of the commitments are proven by LaBRADOR, and therefore, this proof cost gets amortized
along with everything else (see below for more discussion on the proof costs). For the MSIS hardness of our
parameter settings, it turns out that module ranks (from both the client and the server’s side) as small as 1-2
is already sufficient. Therefore, we can comfortably use the standard low-order bit-dropping technique from
[DKL+18]. For simplicity, we assume D = 12 bits can be dropped in the ‘binding’ parts of the commitments
cr and ck (i.e., top nc and ns rows of cr and ck, respectively). A similar D parameter has been used in earlier
works with smaller moduli such as [ESLR23,LNP22]. We believe that a larger D can be used, but the saving
is not very significant, and therefore, we opt to not pursue further analysis here so as not to over-complicate
the discussions. This concludes the setting of all parameters for LeOPaRd except the underlying NIZK proofs.

To estimate the sizes of LaBRADOR [BS23], one can observe that its proof size is barely impacted by the
witness size (see, e.g., [BS23, Fig. 1]) thanks to its recursive nature. In [ADDG24], the authors report that
their well-formedness LaBRADOR-based NIZK proof under a 75-bit modulus for FHE ciphertexts is about
45 KB for a single query and 79 KB for a batch of 64 queries. We believe the proofs needed for LeOPaRd are
even simpler than those in [ADDG24], and therefore, we take a LaBRADOR-based proof cost to be 45 KB
for a single query and 79 KB for a batch of 64 queries when estimating sizes for LeOPaRd. We note that the
dimension of the polynomial ring used in the core LeOPaRd parts and that in the underlying NIZK proofs
do not necessarily need to be the same as discussed in [ADDG24,LNPS21]. However, our results turn out to
be optimal for d = 64, which is the dimension already used in LaBRADOR.

In Table 3, we present some example parameter settings and communication sizes aiming at 128-bit
security level. The offline communication simply involves communication of the server’s public key, while
online communication is those by the client and server. Here, we consider two cases: (i) fully oblivious setting
where Q∞x = 2κ (for Q∞x in Theorem 1); and (ii) partially oblivious setting where Q∞x = 216. In the former
case, we are restricting the total number of OPRF queries to 2κ, matching also the correctness error. In the
latter case, we consider that the server has the ability to see a part of the PRF input, i.e. tag t, and therefore,
can limit the number of OPRF queries under the same tag to be at most 216. If the tag corresponds to a
user identifier as in [ECS+15], then this would mean 216 queries per identifier, which we believe is quite
reasonable (for honest users) in practice. We also note that our parameter setting aiming at 90-95 bits of
security (to compare with [AG24] in Table 1) is provided in Table 4.
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Obliv.
mode

Query
batch
size

κ m = ns ℓ = nc σ0 β β1 log q
Server

commun.
(per query)

Server
PK
size

Client
commun.

(per query)

16 24 27 3.95 15 7782 42 62.06 13.5 76.27
1 32 33 37 3.95 15 8838 58 77.17 26.81 105.42

Partial 64 53 56 3.96 15 10691 91 123.20 70.39 195.45
16 24 27 3.95 15 7782 42 1.82 13.50 26.27

64 32 33 37 3.95 15 8838 58 2.18 26.81 48.57
64 53 56 3.96 15 10691 91 3.16 70.39 117.66

16 24 27 3.95 15 7782 42 62.06 13.50 76.27
1 32 37 41 4.09 16 1064838 65 85.12 34.11 120.88

Full 64 66 69 4.36 20 ≈ 236 113 165.06 110.34 277.77
16 24 27 3.95 15 7782 42 1.82 13.50 26.27

64 32 37 41 4.09 16 1064838 65 2.36 34.11 60.41
64 66 69 4.36 20 ≈ 236 113 3.98 110.34 180.41

Table 3: Summary of our parameters aiming around 128 bit security and communication cost results. All
communication and PK sizes are in KB. For all settings, we have d = 64, p = 8, h = 1, γ = 4, and βr = 1.

Obliv.
mode

Query
batch
size

κ m = ns ℓ = nc σ0 β β1 log q
Server

commun.
(per query)

Server
PK
size

Client
commun.

(per query)

16 18 20 3.94 15 6971 42 57.80 10.12 68.39
1 32 25 27 3.95 15 7841 58 69.02 20.31 90.05

Partial 64 39 41 3.95 15 9347 90 101.95 51.19 154.36
16 18 20 3.94 15 6971 42 1.76 10.12 20.01

64 32 25 27 3.95 15 7841 58 2.06 20.31 36.73
64 39 41 3.95 15 9347 90 2.82 51.19 86.00

16 18 20 3.94 15 6971 42 57.80 10.12 68.39
1 32 28 30 4.09 16 1062331 65 74.96 25.81 101.60

Full 64 49 52 4.36 20 ≈ 236 113 135.05 81.92 219.34
16 18 20 3.94 15 6971 42 1.76 10.12 20.01

64 32 28 30 4.09 16 1062331 65 2.20 25.81 45.61
64 49 52 4.36 20 ≈ 236 113 3.51 81.92 135.18

Table 4: Summary of our parameters aiming around 90-95 bit security and communication cost results. All
communication and PK sizes are in KB. For all settings, we have d = 64, p = 8, h = 1, γ ∈ {5, 6}, and
βr = 1.
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group signatures via “almost free” encryption and other optimizations. In ASIACRYPT (4), volume
13093 of LNCS, pages 218–248. Springer, 2021. 59

LNS20. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical lattice-based zero-knowledge
proofs for integer relations. In ACM CCS, pages 1051–1070. ACM, 2020.

LPA+19. Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas Ristenpart. Protocols
for checking compromised credentials. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 1387–1403. ACM Press, November 2019.

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures.
In FOCS, pages 372–381. IEEE Computer Society, 2004. 9

MS23. Daniele Micciancio and Adam Suhl. Simulation-secure threshold PKE from LWE with polynomial mod-
ulus. Cryptology ePrint Archive, Paper 2023/1728, 2023. 5

NS24. Ngoc Khanh Nguyen and Gregor Seiler. Greyhound: Fast polynomial commitments from lattices. In
CRYPTO (10), volume 14929 of LNCS, pages 243–275. Springer, 2024. 26

Pei10. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 80–97. Springer, 2010. 9

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages
84–93. ACM, 2005. 21, 24, 58

SS24. Gregor Seiler and Patrick Steuer. LaZer: a lattice library for zero-knowledge and succinct proofs. Pre-
sentation at Real-World Cryptography, 2024. https://www.youtube.com/watch?v=NlQNOPlxFOQ. 2, 26

SSS23. Shifeng Sun, Ron Steinfeld, and Amin Sakzad. Incremental symmetric puncturable encryption with
support for unbounded number of punctures. Des. Codes Cryptogr., 91(4):1401–1426, 2023. 36, 57

TCR+22. Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and Christopher A. Wood.
A fast and simple partially oblivious PRF, with applications. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 674–705. Springer, Cham, May / June
2022. 2, 3, 4, 6, 7, 23, 54, 55

TPY+19. Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kelley, Luca Invernizzi,
Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie Bursztein. Protecting accounts
from credential stuffing with password breach alerting. In Nadia Heninger and Patrick Traynor, editors,
USENIX Security 2019, pages 1556–1571. USENIX Association, August 2019.

WSE24. Hongxiao Wang, Ron Steinfeld, and Muhammed F. Esgin. Post-quantum multi-recipient multi-message
public key encryption from extended Hint-MLWE and its application. Private communication, 2024. 5,
10, 13, 15, 16

YAZ+19. Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient
lattice-based zero-knowledge arguments with standard soundness: Construction and applications. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 147–175. Springer, Cham, August 2019. 54

ZSE+24. Xinyu Zhang, Ron Steinfeld, Muhammed F. Esgin, Joseph K. Liu, Dongxi Liu, and Sushmita Ruj.
Loquat: A snark-friendly post-quantum signature based on the legendre PRF with applications in ring
and aggregate signatures. In CRYPTO (1), volume 14920 of LNCS, pages 3–38. Springer, 2024. 58

32

https://www.youtube.com/watch?v=NlQNOPlxFOQ


A Additional Preliminaries

A.1 Extractable Commitment Scheme

In this work, we consider an extractable commitment scheme [Di 03], which is formally defined as follows.

Definition 14 (Extractable Commitment Scheme). A (non-interactive) extractable commitment scheme
consists of a tuple of algorithms COM = (Setup,Commit,Verify) defined as follows:

Setup(1λ): is a PPT algorithm that on input a (unary encoded) security parameter λ, outputs a commit-
ment key ck.

Commit(ck,m): is a PPT algorithm that on input a commitment key ck and a message m ∈ {0, 1}λ,
outputs a commitment c and an opening information d.

Verify(ck, c, d,m): is a DPT algorithm that on input a commitment key ck, commitment c, an opening
information d and a message m ∈ {0, 1}λ, outputs a bit b ∈ {0, 1}.

In the above Commit definition, we leave the randomness part implicit and assume that it is generated
internally inside the Commit function. When proving well-formedness of commitments via a zero-knowledge
proof, the randomness will also be part of the prover’s witness. When we need to specify the randomness r
in such cases, we will write Commit(ck,m; r) to explicitly refer to the internally generated randomness of the
commitment.

We require the standard notion of correctness, which says that for every λ ∈ N, every ck ← Setup(1λ)
and every message m ∈ {0, 1}λ, it holds that

Pr [Verify(ck,Commit(ck,m),m) = 1] = 1.

In terms of security, we require the commitment scheme to satisfy computational hiding and perfect
binding properties, along with extractability.

Definition 15 (Computational Hiding). A commitment scheme COM is computationally hiding if for
every PPT adversary A, there exists a negligible function negl(λ), such that

Pr [CHCOM,A(λ) = 1] ≤ 1

2
+ negl(λ),

where the experiment CHCOM,A is defined as follows

CHCOM,A(λ)

1 : ck← Setup(1λ)

2 : (m0,m1)← A(ck)

3 : b
$← {0, 1}

4 : (c, d)← Commit(1λ,mb)

5 : b′ ← A(c)
6 : return b = b′

Definition 16 (Computational Binding). A commitment scheme COM is computationally binding if
for every PPT adversary A, there exists a negligible function negl(λ), such that

Pr [CBCOM,A(λ) = 1] ≤ negl(λ),

where the experiment CBCOM,A is defined as follows
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CBCOM,A(λ)

1 : ck← Setup(1λ)

2 : (c, d, d′,m,m′)← A(ck)
3 : assert m ̸= m′

4 : return Verify(ck, c, d,m) = 1 ∧ Verify(ck, c, d′,m′) = 1

Definition 17 (Extractability). A commitment scheme COM is extractable, if there exists a pair of PPT
algorithm E = (E1, E2), called the extractor, such that the for all m ∈ {0, 1}λ and for every PPT adversary
A, there exists a negligible function negl(λ), such that∣∣∣Pr [ck← Setup(1λ), (c, d)← A(ck,m) : Verify(ck, c, d,m) = 1

]
−Pr

[
(ck, td)← E1(1λ), (c, d)← A(ck),m← E2(ck, td, c) : Verify(ck, c, d,m) = 1

] ∣∣∣ ≤ negl(λ).

A.2 Non-Interactive Zero-Knowledge Arguments

Let R be a binary relation and L the language consisting of statements in R. We formally define it as follows
a non-interactive zero-knowledge (NIZK) argument system [BFM88] as follows.

Definition 18 (Non-Interactive Zero-Knowledge Argument System). A non-interactive zero-knowledge
(NIZK) argument system NIZK for a language L ∈ NP (with witness relation R) is a tuple of algorithms
NIZK = (PGen,P,V), such that:

PGen(1λ): is a PPT algorithm that on input a (unary encoded) security parameter λ, outputs a common
reference string crs.

P(crs, x, w): is a PPT algorithm that on input a common reference string crs, a statement x and a witness
w, outputs a proof π.

V(crs, x, π): is a DPT algorithm that on input a common reference string crs, a statement x and a proof
π, outputs a bit b.

We require NIZK to meet the following properties:

Perfect Completeness. For every (x,w) ∈ R we have that

Pr
[
crs← PGen(1λ), π ← P(crs, x, w) : V(crs, x, π) = 1

]
= 1.

Computational Soundness. For every x /∈ L, and every PPT adversary A, we have that

Pr
[
crs← PGen(1λ), π ← A(crs, x) : V(crs, x, π) = 1

]
≤ negl(λ).

Computational Zero-Knowledge. There exists a PPT algorithm S = (S1,S2) such that for every PPT
adversary A, ∣∣∣Pr [crs← PGen(1λ) : AP(crs,·,·)(crs) = 1

]
−Pr

[
(crss, τs)← S1(1λ) : AO(crss,τs,·,·)(crs) = 1

] ∣∣∣ ≤ negl(λ),

where O(crss, τs, ·, ·) is an oracle that outputs ⊥ on input (x,w) when (x,w) ̸∈ R and outputs π ← S2(crss,
τs, x) when (x,w) ∈ R.
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B Deferred Proofs

B.1 Correctness Analysis

Definition 19. We say that function family G satisfies ϵu-uniformity if, for each fixed x ∈ {0, 1}L, the
distribution of any fixed Zq coordinate of Bxk := G(x)k ∈ Rh

q over the choice of G (in F.Setup(1λ)) and

k
$← χm

k
is within statistical distance

ϵu ≤ 2−(κ+2+log(hd)) (22)

from the uniform distribution on Zq.

Lemma 8. Fix κ, h, d. Let Bf (κ, d) denote an upper bound on a fixed coordinate of ef = e′s −Res (as in
(26)) that holds except with probability pe ≤ 2−(κ+2+log(hd)). Also, assume that the function family G satisfies
ϵu-uniformity (as per Definition 19) with

ϵu ≤ 2−(κ+2+log(hd)). (16)

Then, for any fixed x ∈ {0, 1}L, 2−κ-correctness holds (as per Definition 2) if

q/p ≥ 2κ+2 · hd · (2Bf (κ, d) + 1). (17)

Proof. Fix (t, x), and let E and δ denote respectively the event that a correctness error occurs and the
correctness error probability. We have

δ := Pr[E] := Pr[⌊ux −Rvk⌉p ̸= ⌊Bxk⌉p] (23)

= Pr[⌊Bxk+ ef⌉p ̸= ⌊Bxk⌉p] (24)

(25)

where the final error ef satisfies

ef := ux −Rvk −Bxk = e′s −Res. (26)

For i ∈ [h] and j ∈ [d], let ef,i ∈ R denote the ith ring element of ef ∈ Rh and let ef,i,j ∈ Z denote the
j’th integer coefficient of ef,i in the coefficient embedding of R. Similarly, viewing Bx in its representation
over Z, we denote by b⊤x,i,j ∈ Zmd

q the j’th row the column rot (negacyclic) matrix corresponding to Bx.
Let Bp ⊂ [0, q − 1] denote the set of rounding mod p interval boundary points, i.e. Bp = { q

2p ,
q
2p + q

p , . . . ,
q
2p + (p − 1) · qo}. If event E occurs, then there must exist some i ∈ [h] and j ∈ [d] such b⊤x,i,jk ∈ Zq lands

within distance |ef,i,j | of a rounding interval boundary point in Bp. Therefore, we have

δ ≤ Pr[∃i ∈ [h], j ∈ [d] s.t. b⊤x,i,jk ∈ Bp ± |ef,i,j |]

≤
∑

i∈[h],j∈[d]

δi,j , where δi,j := Pr[b⊤x,i,jk ∈ Bp ± |ef,i,j |]. (27)

Now, for each fixed i ∈ [h] and j ∈ [d], we have

δi,j ≤ Pr
u

$←Zq

[u ∈ Bp ± |ef,i,j |] + ϵu

≤ Pr
u

$←Zq

[u ∈ Bp ±Bf (κ, d)] + pe + ϵu

=
|(Bp ±Bf (κ, d)) ∩ Zq|

|Zq|
+ pe + ϵu

≤ p · (2Bf (κ, d) + 1)

q
+ pe + ϵu

≤ 2−κ/(hd),
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where the first inequality above uses the assumed ϵu-uniformity of G, the second inequality uses the bound
|ef,i,j | ≤ Bf (κ, d) that holds except with probability ≤ pe, the third inequality uses |Bp| = p and the last
inequality uses the assumed upper bounds ≤ 2−κ/(3hd) on the three terms on the right-hand side of the
third inequality. It follows that δ ≤

∑
i∈[h],j∈[d] δi,j ≤ 2−κ, as claimed. ⊓⊔

Bounds for BLMR13 PRF Instantiation of G. For BLMR13 (see [SSS23] for the module instantiation),

we have h = m, χk := U(Rq), G(x) :=
∏L−1

i=0 Axi , where F.Setup(1λ) samples A0,A1
$← Rm×m

bin and restarts
if A0 or A1 are not invertible over Rq.

Lemma 9. For BLMR13, the function family G satisfies 0-uniformity. In particular, the distribution of

Bxk := G(x)k ∈ Rh×m
q over the choice of G (in F.Setup(1λ)) and k

$← χm
k

is the uniform distribution on

Rh×m
q .

Proof. Follows immediately from the uniformly random distribution χk and the invertibility of the matrix
Bx = G(x) =

∏L−1
i=0 Axi

over Rq, thanks to the invertibility of A0 and A1 over Rq. ⊓⊔

Bounds for BP14 PRF Instantiation of G. For BP14 with χk := U(Rq), G(x) := (Ax0
B′1)

⊤ ∈ Rh×m
q ,

where BL−1 := G−1(AxL−1
) ∈ Rmℓ×mℓ

q , Bi := G−1(AxiBi+1) ∈ Rmℓ×mℓ
q for i = L− 2, . . . , 1, B′1 consists of

the leftmost h columns of B1, and F.Setup(1λ) samples A0,A1
$← Rm×mℓ

q .

Lemma 10. Assume that q is prime. If the BP14 function family G does not satisfy ϵu-uniformity for some
non-negligible ϵu, then there exists a poly-time 1-query adversary against the pseudorandomness of the BP14
PRF with non-negligible advantage ≥ (1− 1/p) · ϵu.

Proof. By hypothesis, there exists x ∈ {0, 1}L, i ∈ [h] and j ∈ [d] such that the statistical distance ϵ between
the distribution of b⊤x,i,jk ∈ Zq and U(Zq) is ≥ ϵu, where b⊤x,i,j denotes the j’th row of the column rot

(negacyclic) matrix representation of Bx over Z of the i’th row of Bx ∈ Rh×m
q , and similarly k is viewed

over Z as the concatanation of ring element coefficient vectors. Let Z denote the event that b⊤x,i,j = 0.
Then we have ϵ = ϵnz · (1− Pr[Z]) + ϵz · Pr[Z], where ϵnz (resp. ϵz) denotes the statistical distance between
the distribution of b⊤i,jk ∈ Zq and U(Zq) conditioned on the event that Z does not occur (resp. Z occurs).

Conditioned on Z not occuring, we have b⊤x,i,j ̸= 0, and hence b⊤x,i,j has a non-zero and hence (by primality
of q) invertible component in Zq. Thanks to the independence and uniformity of k’s components in Zq, it
follows that in this case b⊤x,i,jk is uniformly distributed in Zq, so ϵnz = 0. Therefore ϵ = ϵz · Pr[Z] ≤ Pr[Z].
It follows that Pr[Z] ≥ ϵ ≥ ϵu is non-negligible. Then there exists a pseudornadomness adversary A against
the BP14 PRF that works as follows: it queries x to its oracle to get z ∈ Rh

q . If Z occurs then A outputs 1 if
zi,j = 0 and output 0 else. If Z does not occur, A outputs a random coin. In the case that A’s oracle is the
BP14 PRF, if the event Z occurs, the oracle will output 0 with probability 1 and hence A will output 1 with
probability pP = Pr[Z]+1/2(1−Pr[Z]. In the other case that A’s oracle is a uniformly random function with
range Zp, the event zi,j = 0 will occur with probability 1/p independently of event Z, and hence in this case
A will output 1 with probability pU = Pr[Z] ·1/p+1/2(1−Pr[Z]). It follows that the distinguishing advantage
of A against the BP14 PRF security is lower bounded as |pP − pU | ≥ (1 − 1/p) · Pr[Z] > (1 − 1/p) · ϵu, as
claimed. ⊓⊔

Remark 3. We note that the ϵu-uniformity Lemma above assumes χk has uniformly random coordinates in
Zq, but the BP14 PRF could also be instantiated with χk restricted to small coefficients. In the latter case,
the ϵu-uniformity seems more difficult to prove but we heuristically expect it to still be satisfied.

Remark 4. We note that our correctness analysis extends to a malicious server setting by relying on the
fact that the NIZK proof πs by the server ensures that the error terms (es, e

′
s) have small coefficients

(say bounded by β and β1, respectively). Particularly, using the worst-case bound in (19) for Bf gives the
correctness analysis requirement against a malicious server.
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B.2 Pseudorandomness Analysis

Theorem 2. The POPRF construction F from Figure 6 satisfies pseudorandomness given in Definition 3,
with random oracles ROr and ROz, if:

– The client argument system NIZK1 is computationally sound and the server argument system NIZK2 is
computationally zero-knowledge (Definition 18),

– The commitment scheme COM is computationally hiding and extractable (Definitions 15 and 17), and
– The iMLWER-RUparam assumption, for param := (G, QM, QP, Q

∞
x , q,m, ℓ+m,h, 2λ, βr, p, χ̄), holds (Defi-

nition 10).

More precisely, for any PPT adversary A, there exist PPT adversaries B1,B2,B3, B4 and B5 against the
computational zero-knowledge of NIZK2, computational soundness of NIZK1, hiding of COM, extractability
of COM and iMLWER-RUparam assumption, respectively, such that

Advpo-prfF,A,S,ROr,ROz
(λ) ≤ AdvCZKNIZK2,B1

(λ) +QB · AdvCSNIZK1,B2
(λ) + AdvCHCOM,B3

(λ)

+QROr
· AdvExtCOM,B4

(λ) + Adv
iMLWEparam

B5
(λ) +Qz

(
1

p
+

1

q

)dh

,

where QB and QROr denote the number of BlindEval and ROr queries, respectively, that the adversary A
makes.

Proof. We consider the POPRF pseudorandomness game given in Definition 3.
We note that the adversary A has access to oracles Eval,BlindEval and Prim, where Prim denotes

the random oracles ROr and ROz, and the security proof follows in a series of hybrids, where we start
with the pseudorandomness game POPRF1

F,A,S,ROr,ROz
, i.e., b = 1, and we gradually apply changes un-

til we end up with the game POPRF0
F,A,S,ROr,ROz

, i.e., b = 0 and the oracle calls are answered by the
simulator S. Let AdvA,i (λ) denote the advantage of A in Hybridi and Hybridi ≈ Hybridi+1 denote
|Pr [Hybridi = 1]− Pr [Hybridi+1 = 1]| ≤ negl(λ). We consider the following hybrids.

Hybrid0: This corresponds to the pseudorandomness game POPRF1
F,A,S,ROr,ROz

(Definition 3), and the
interaction follows as in Figure 6. Hence, it follows that

Advpo-prfF,A,S,ROr,ROz
(λ) = AdvA,0 (λ) .

Hybrid1: In this hybrid, we replace crs2 and proof πs with a simulated CRS and proof (crs∗2, π
∗
s ), as

shown in Figure 9.
In order to show that Hybrid0 ≈ Hybrid1, we construct a reduction B1 to the computational zero-

knowledge property of NIZK2. We note that all queries are answered as in Hybrid0 with the exception of
BlindEval queries. The only difference here is that B1 receives a CRS crs∗2 from its zero-knowledge challenger,
and sets crs2 := crs∗2, instead of generating crs2 via the NIZK2.Setup algorithm. When A makes a BlindEval
query, B1 proceeds as in Hybrid0 to compute vk and ux, but it makes an oracle call to its zero-knowledge
challenger with the input ((ux,Cx, ck,vk, ck2,Ar), (k, e, es, e

′
s)) to obtain the proof π∗s .

If the zero-knowledge challenger of NIZK2 used the honest setup and prover algorithms to generate crs∗2
and π∗s , then we are exactly in Hybrid0, and if it used the simulator, then we are in Hybrid1. Therefore, if A
can distinguish between the two hybrids with non-negligible advantage, then B1 can break the computational
zero-knowledge property of NIZK2. Hence, it follows that∣∣AdvA,0 (λ)− AdvA,1 (λ)

∣∣ ≤ AdvCZKNIZK2,B1
(λ) ,

and in particular Hybrid0 ≈ Hybrid1.

Hybrid2: Let BAD1 be the event that for a blind evaluation query (t, req := (cr,Cx, πc)), it holds that
NIZK1.V(crs1, πc, (cr,Cx, ck1,Ar,G, t)) = 1, but (Cx ̸= RAr+G(x) ∨ cr ̸= COM.Commit(ck1, (r0, . . . , rh−1,
x); ρr). If BAD1 happens, then the challenger aborts, as depicted in Figure 10.
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : crs1 ← NIZK1.Setup(1
λ)

3 : crs∗2, τ2 ← NIZK2.S1(1λ)
4 : pp := (ck1, ck2, crs1, crs

∗
2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse pk := ck, sk := k

3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

11 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

12 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 9: Hybrid1 of pseudorandomness proof.
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : crs1 ← NIZK1.Setup(1
λ)

3 : crs∗2, τ2 ← NIZK2.S1(1λ)
4 : pp := (ck1, ck2, crs1, crs

∗
2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse pk := ck, sk := k

3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) = 1

6 : ∧ (Cx ̸= RAr + G(x)
7 : ∨ cr ̸= COM.Commit(ck1, (R, x); ρr))

8 : then abort

9 : es
$← χℓ+m, e′

s
$← χh

1

10 : vk := Ark+ es ∈ Rℓ+m
q

11 : ux := Cxk+ e′
s ∈ Rh

q

12 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

13 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

14 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 10: Hybrid2 of pseudorandomness proof.
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Clearly, we have that Hybrid1 and Hybrid2 are identical until the event BAD1 happens. Hence, we
show that we can bound the probability Pr[BAD1] by constructing a reduction B2 to the computational
soundness of NIZK1 argument system. We note that all queries are answered as in Hybrid1. Let QB denote
the maximum number of BlindEval queries that A performs. B2 randomly chooses a q∗ ∈ [QB] to serve as
its guess for the query where the proof πc will be forged by the adversary A. For req := (cr,Cx, πc) that
corresponds to the q∗-th blind evaluation query, B2 simply outputs πc and aborts. We note that B2 avoids
recovering R and x (which are computationally infeasible to compute), and instead just guesses which of the
proofs would have caused the event BAD1 to happen. Hence, we have that∣∣AdvA,1 (λ)− AdvA,2 (λ)

∣∣ ≤ QB · AdvCSNIZK1,B2
(λ) ,

and in particular Hybrid1 ≈ Hybrid2.

Hybrid3: In this hybrid, during key generation we compute the commitment c∗k ← COM.Commit(ck2,
0m), where 0m is an all zero vector of lengthm, instead of computing the commitment ck ← COM.Commit(ck2,
k) as in the previous hybrid. This change is shown in Figure 11.

In order to show that Hybrid2 ≈ Hybrid3, we construct a reduction B3 to the computational hiding

property of COM. For computing the public key pk, B3 samples a random k
$← χm

k
, sets (m0 := k,m1 := 0m)

and submits the pair (m0,m1) to the computational hiding challenger of COM, which responds with c∗k. At
this point B3 sets pk := c∗k, and proceeds to answer the oracle queries as in the previous hybrid.

If the computational hiding challenger of COM provided a commitment to m0, then we are exactly in
Hybrid2, and if it provided a commitment to m1, then we are in Hybrid3. Therefore, if A can distinguish
between the two hybrids with non-negligible advantage, then B3 can break the computational hiding property
of COM. Hence, it follows that ∣∣AdvA,2 (λ)− AdvA,3 (λ)

∣∣ ≤ AdvCHCOM,B3
(λ) ,

and in particular Hybrid2 ≈ Hybrid3.

Hybrid4: In this hybrid, we replace the commitment key ck1 with a trapdoor variant (ck∗1, td) ←
COM.E1(1λ), and use the trapdoor td to extract the committed values queried to ROr oracle, i.e., run
(R, x) := COM.E2(ck∗1, td, cr), compute vk and ux inside ROr and store these values in a table for use during
the blind evaluation queries, as depicted in Figure 12.

In order to prove that Hybrid3 ≈ Hybrid4 we construct an adversary B4 to the extractability property
of COM. We note that all queries are answered as in Hybrid3 with the exception of BlindEval and ROr

queries. B4 samples a trapdoor commitment key (ck∗1, td) ← COM.E1(1λ), instead of generating ck1 via the
COM.Setup algorithm. Let QROr

denote the number of ROr queries that the adversary A makes. For each
such query (t, cr), B4 uses the trapdoor td to extract (R, x) ← COM.E2(ck∗1, td, cr) and compute the pair
(ux,vk) accordingly, which gets stored in the table T [t, cr] := (ux,vk). Upon receiving a BlindEval query
(t, req := (cr,Cx, πc)), B4 uses the already stored values in T [t, cr] := (ux,vk) in order to simulate the proof
π∗s and answer the query with the tuple (ux,vk, π

∗
s ).

Due to the soundness of the client proof πc we know that the adversarial inputs, and especially commit-
ments, are well-formed. Hence, if A can distinguish between the two hybrids with non-negligible advantage,
then B4 can break the extractability property of COM. Moreover, since the adversary A makes at most QROr

queries to ROr oracle, it follows that∣∣AdvA,3 (λ)− AdvA,4 (λ)
∣∣ ≤ QROr

· AdvExtCOM,B4
(λ) ,

and in particular Hybrid3 ≈ Hybrid4.

Hybrid5: In this hybrid, we change the way we respond to ROr and Eval queries. Concretely, for answering

Eval queries, instead of computing z := ⌊Bxk⌉p, we sample a uniform z′
$← Rh

q and return z := ⌊z′⌉p. For
answering ROr queries, instead of computing vk := Ark + es and ux := Cxk + e′s, we sample a uniform
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : crs1 ← NIZK1.Setup(1
λ)

3 : crs∗2, τ2 ← NIZK2.S1(1λ)
4 : pp := (ck1, ck2, crs1, crs

∗
2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : k
$← χm

k

3 : c∗k ← COM.Commit(ck2,0m; ρk)

4 : return (pk := c∗k, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse pk := c∗k, sk := k

3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) = 1

6 : ∧ (Cx ̸= RAr + G(x)
7 : ∨ cr ̸= COM.Commit(ck1, (R; ρr))

8 : then abort

9 : es
$← χℓ+m, e′

s
$← χh

1

10 : vk := Ark+ es ∈ Rℓ+m
q

11 : ux := Cxk+ e′
s ∈ Rh

q

12 : stmt2 := (ux,Cx, c
∗
k,vk, ck2,Ar)

13 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

14 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := c∗k,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 11: Hybrid3 of pseudorandomness proof.
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F.Setup(1λ)

1 : (ck∗1, td)← COM.E1(1λ)

2 : ck2 ← COM.Setup(1λ)

3 : crs1 ← NIZK1.Setup(1
λ)

4 : crs∗2, τ2 ← NIZK2.S1(1λ)
5 : pp := (ck∗1, ck2, crs1, crs

∗
2)

6 : return pp

F.KeyGen(pp)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : k
$← χm

k

3 : c∗k ← COM.Commit(ck2,0m; ρk)

4 : return (pk := c∗k, sk := k)

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

F.Request(pp, pk, t, x)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck∗1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse pk := c∗k, sk := k

3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) = 1

6 : ∧ (Cx ̸= RAr + G(x)
7 : ∨ cr ̸= COM.Commit(ck1, (R, x); ρr))

8 : then abort

9 : (ux,vk) := T [t, cr]
10 : stmt2 := (ux,Cx, c

∗
k,vk, ck2,Ar)

11 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

12 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := c∗k,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : Ar := H[t, cr]
$← R

(ℓ+m)×m
q

3 : (R, x)← COM.E2(ck∗1, td, cr)
4 : Bx := G(t, x) ∈ Rh×m

q

5 : es
$← χℓ+m, e′

s
$← χh

1

6 : vk := Ark+ es ∈ Rℓ+m
q

7 : Cx := RAr +Bx ∈ Rh×m
q

8 : ux := Cxk+ e′
s ∈ Rh

q

9 : T [t, cr] := (ux,vk)

10 : return H[t, cr]

Fig. 12: Hybrid4 of pseudorandomness proof.
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vk
$← Rℓ+m

q and set ux := Rvk + z′ + e∗, where e∗ is computed as e∗ = ẽ′ −Rẽ ∈ Rh, such that ẽ′
$← χh

1 ,

ẽ
$← χℓ+m. These changes are depicted in Figure 13.

In order to show that Hybrid4 ≈ Hybrid5 we construct an adversary B5 against the iMLWER-RUparam

assumption, for param := (G, QM, QP, Q
∞
x , q,m, ℓ + m,h, 2λ, βr, p, χ̄). For answering Eval queries (t, x), B5

makes an oracle query z ← SampPRF(t||x) to iMLWER-RU challenger, and returns y := ROz(t, x, z). For
answering ROr queries (t, cr), B5 uses the commitment trapdoor to extract (R, x) := COM.E2(ck∗1, td, cr) (as
in the previous hybrid), and makes an oracle call (Ar,vk,ux)← SampMLWE-RU(R, t||x) to the iMLWER-RU
challenger. Then, B5 sets H[t, cr] := Ar and stores T [t, cr] := (ux,vk). The rest of the queries are answered
as in the previous hybrid.

If the iMLWER-RU challenger used b = 1, then the view of A simulated by B5 is exactly as in Hybrid4,
and if it used b = 0, then the view of A is as in Hybrid5. Therefore, if A can distinguish between the
two hybrids with non-negligible advantage, then B5 can break the iMLWER-RUparam assumption, where QM

and QP in the iMLWER-RU assumption denote the number of Eval and ROr queries, and Q∞x denotes the
maximum number of identical (t||x) queries, respectively, that the adversary A makes. Hence, it follows that∣∣AdvA,4 (λ)− AdvA,5 (λ)

∣∣ ≤ Adv
iMLWEparam

B5
(λ) ,

and in particular Hybrid4 ≈ Hybrid5.

Hybrid6: In this hybrid we replace the Eval algorithm with a random oracle, which is depicted in Fig-
ure 14. This corresponds to the pseudorandomness game POPRF0

F,A,S,ROr,ROz
(Definition 3).

Let BAD2 be the event that the adversary A queries (t, x, z) to ROz oracle, for some z := ⌊Z[t, x]⌉p, before
ever making a query to the ROr oracle. Clearly, we have that Hybrid5 and Hybrid6 are identical until
the event BAD2 happens. We observe that the only distinguishing advantage the adversary A has between
Hybrid5 and Hybrid6 is if A queries ROz oracle with some input (t, x, z), where initially it holds that
z ̸= ⌊Z[t, x]⌉p, but after making a call to ROr oracle, we have that it is set to Z[t, x] := z′, where z := ⌊z′⌉p.
In this case, A will obtain two different outputs for the same (t, x, z) input to ROz oracle (before and after
making a call to ROr oracle), and it can trivially distinguish the hybrids. The probability of this happening
corresponds to the aforementioned BAD2 event happening, which we now argue that it can only happen with
a negligible probability.

Note that inside the ROr oracle, we sample vk and z′ uniformly from Rℓ+m
q and Rh

q , respectively. Then,

we compute ux := Rvk + z′ + e∗ ∈ Rh
q , for some e∗ random in Rh, and we set Z[t, x] := z′. Therefore,

the only value that is under the control of the adversary is R, and since the rest of the values are chosen
uniformly randomly, we have that ux is distributed uniformly over Rh

q .

Concretely, we have that the adversarially controlled term of Rvk will actually cancel out during the
computation of ⌊ux −Rvk⌉p (in the Finalize algorithm). Since z′ is sampled independently of e∗ and after
R is fixed by the adversary, the distribution of each coefficient of z′ + e∗ will be uniform mod q. Then, the
chance that the adversary can hit the correct value for a coefficient after rounding is at most 1/p+1/q (the
1/q terms appears when q is not a multiple of p). Since A is a PPT algorithm, it can only make polynomially
many queries to ROz oracle. Letting Qz denote the total number of queries that A makes to ROz oracle, we
have that

Pr [BAD2] ≤ Qz ·
(
1

p
+

1

q

)dh

=: ϵBAD.

Hence, it follows that ∣∣AdvA,5 (λ)− AdvA,6 (λ)
∣∣ ≤ ϵBAD,

and in particular Hybrid5 ≈ Hybrid6.
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F.Setup(1λ)

1 : (ck∗1, td)← COM.E1(1λ)

2 : ck2 ← COM.Setup(1λ)

3 : crs1 ← NIZK1.Setup(1
λ)

4 : crs∗2, τ2 ← NIZK2.S1(1λ)
5 : pp := (ck∗1, ck2, crs1, crs

∗
2)

6 : return pp

F.KeyGen(pp)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : c∗k ← COM.Commit(ck2,0m; ρk)

3 : return (pk := c∗k, sk := ⊥)

F.Eval(sk, t, x)

1 : if Z[t, x] = ⊥ then

2 : z′
$← Rh

q

3 : Z[t, x] := z′

4 : z := ⌊Z[t, x]⌉p
5 : y := ROz(t, x, z)

6 : return y

F.Request(pp, pk, t, x)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck∗1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse pk := c∗k, sk := ⊥
3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) = 1

6 : ∧ (Cx ̸= RAr + G(x)
7 : ∨ cr ̸= COM.Commit(ck1, (R, x); ρr))

8 : then abort

9 : (ux,vk) := T [t, cr]
10 : stmt2 := (ux,Cx, c

∗
k,vk, ck2,Ar)

11 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

12 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := c∗k,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : Ar := H[t, cr]
$← R(ℓ+m)×m

q

3 : (R, x)← COM.E2(ck∗1, td, cr)

4 : vk
$← Rℓ+m

q

5 : if Z[t, x] = ⊥ then

6 : z′
$← Rh

q

7 : Z[t, x] := z′

8 : ẽ′ $← χh
1 , ẽ

$← χℓ+m

9 : e∗ := ẽ′ −Rẽ ∈ Rh

10 : ux := Rvk + Z[t, x] + e∗ ∈ Rh
q

11 : T [t, cr] := (ux,vk)

12 : return H[t, cr]

Fig. 13: Hybrid5 of pseudorandomness proof.
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F.Setup(1λ)

1 : (ck∗1, td)← COM.E1(1λ)

2 : ck2 ← COM.Setup(1λ)

3 : crs1 ← NIZK1.Setup(1
λ)

4 : crs∗2, τ2 ← NIZK2.S1(1λ)
5 : pp := (ck∗1, ck2, crs1, crs

∗
2)

6 : return pp

F.KeyGen(pp)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : c∗k ← COM.Commit(ck2,0m; ρk)

3 : return (pk := c∗k, sk := ⊥)

F.Eval(sk, t, x)

1 : if Y[t, x] = ⊥ then

2 : Y[t, x] $← {0, 1}λ

3 : return Y[t, x]

F.Request(pp, pk, t, x)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck∗1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : wit1 := (R, x, ρr)

9 : πc ← NIZK1.P(crs1, stmt1,wit1)

10 : st := (t, x,R,Cx, pk,Ar)

11 : req := (cr,Cx, πc)

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse pk := c∗k, sk := ⊥
3 : parse req := (cr,Cx, πc)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs1, πc, stmt1) = 1

6 : ∧ (Cx ̸= RAr + G(x)
7 : ∨ cr ̸= COM.Commit(ck1, (R, x); ρr))

8 : then abort

9 : (ux,vk) := T [t, cr]
10 : stmt2 := (ux,Cx, c

∗
k,vk, ck2,Ar)

11 : π∗
s ← NIZK2.S2(crs∗2, τ2, stmt2)

12 : return rep := (ux,vk, π
∗
s )

F.Finalize(pp, rep, st)

1 : parse pp := (ck∗1, ck2, crs1, crs
∗
2)

2 : parse rep := (ux,vk, π
∗
s )

3 : parse st := (t, x,R,Cx, pk := c∗k,Ar)

4 : if NIZK2.V(crs
∗
2, π

∗
s , stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : if Z[t, x] ̸= ⊥ and z = ⌊Z[t, x]⌉p then

3 : if Y[t, x] = ⊥ then

4 : Y[t, x] $← {0, 1}λ

5 : F [t, x, z] := Y[t, x]
6 : else

7 : F [t, x, z] $← {0, 1}λ

8 : return F [t, x, z]

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : Ar := H[t, cr]
$← R(ℓ+m)×m

q

3 : (R, x)← COM.E2(ck∗1, td, cr)

4 : vk
$← Rℓ+m

q

5 : if Z[t, x] = ⊥ then

6 : z′
$← Rh

q

7 : Z[t, x] := z′

8 : ẽ′ $← χh
1 , ẽ

$← χℓ+m

9 : e∗ := ẽ′ −Rẽ ∈ Rh

10 : ux := Rvk + Z[t, x] + e∗ ∈ Rh
q

11 : T [t, cr] := (ux,vk)

12 : return H[t, cr]

Fig. 14: Hybrid6 of pseudorandomness proof.
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Finally, we note that the simulator S answers the oracle calls as in Hybrid6, and putting everything
together, we obtain

Advpo-prfF,A,S,ROr,ROz
(λ) ≤ AdvCZKNIZK2,B1

(λ) +QB · AdvCSNIZK1,B2
(λ) + AdvCHCOM,B3

(λ)

+QROr
· AdvExtCOM,B4

(λ) + Adv
iMLWEparam

B5
(λ) + ϵBAD,

as claimed. This completes the proof of Theorem 2. ⊓⊔

B.3 Request Privacy Analysis

Theorem 3. The POPRF construction F from Figure 6 satisfies the request privacy against malicious
servers (POPRIV2), given in Definition 4, with random oracles ROr and ROz, if:

– The client argument system NIZK1 is computationally zero-knowledge and the server argument system
NIZK2 is computationally sound (Definition 18),

– The commitment scheme COM is computationally hiding and extractable (Definitions 15 and 17), and
– The knMLWEℓ+m,m,h,χ assumption holds (Definition 7).

More precisely, for any PPT adversary A, there exist PPT adversaries B1,B2,B3, B4 and B5 against the
computational zero-knowledge of NIZK1, computational hiding of COM, computational soundness of NIZK2,
extractability of COM and knMLWEm,ℓ+m,h,χ assumption, respectively, such that

Advpo-priv-2F,A,ROr,ROz
(λ) ≤ AdvCZKNIZK1,B1

(λ) + 2QR · AdvCHCOM,B2
(λ) + 2QF · AdvCSNIZK2,B3

(λ)

+Qpk
R · Adv

Ext
COM,B4

(λ) + 2QR · Adv
knMLWEℓ+m,m,h,χ

B5
(λ) ,

where QR and QF denote the number of Request and Finalize oracle queries, respectively, and Qpk
R denotes

the number of queries to Request with different pk inputs that the adversary A makes.

Proof. We consider the POPRF request privacy against malicious servers game given in Definition 4. We
note that the adversary A has access to oracles Request,Finalize and the random oracles ROr and ROz. The
security proof follows in a series of hybrids, where we start with the request privacy against malicious servers
game POPRIV2bF,A,ROr,ROz

, for a random challenge bit b ∈ {0, 1}, and we gradually apply changes until we
end up with a game where the transcript observed by A is independent of the challenge bit b. Let AdvA,i (λ)
denote the advantage of A in Hybridi and Hybridi ≈ Hybridi+1 denote
|Pr [Hybridi = 1]− Pr [Hybridi+1 = 1]| ≤ negl(λ).

Hybrid0: This corresponds to the request privacy against malicious servers game POPRIV2bF,A,ROr,ROz

(Definition 4), for a random challenge bit b ∈ {0, 1}, and the interaction follows as in Figure 6. Hence, it
follows that

Advpo-priv-2F,A,ROr,ROz
(λ) = AdvA,0 (λ) .

Hybrid1: In this hybrid, we replace crs1 and proof πc with a simulated CRS and proof (crs∗1, π
∗
c ), as

shown in Figure 15.
In order to show that Hybrid0 ≈ Hybrid1, we construct a reduction B1 to the computational zero-

knowledge property of NIZK1. We note that all queries are answered as in Hybrid0 with the exception of
the Request queries. The only difference here is that B1 prior to passing the public parameters pp to A, it
receives a CRS crs∗1 from its zero-knowledge challenger, and sets crs1 := crs∗1, instead of generating crs1 via
the NIZK1.Setup algorithm. When A makes a Request query (pk, t, x0, x1), B1 proceeds as in Hybrid0 to
compute cr,i and Cxi , for i ∈ {0, 1}, but it makes two oracle calls to its zero-knowledge challenger with the
inputs ((cr,i,Cxi

,Ar,1,i,G, t), (Ri, xi)), for i ∈ {0, 1}, to obtain the proofs (π∗c,0, π
∗
c,1). Finally, B1 responds

to the Request query with (reqb := (cr,b,Cxb
, π∗c,b), req1−b := (cr,1−b,Cx1−b

, π∗c,1−b)).
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : (crs∗1, τ)← NIZK1.S1(1λ)

3 : crs2 ← NIZK2.Setup(1
λ)

4 : pp := (ck1, ck2, crs
∗
1, crs2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : cr ← COM.Commit(ck1, (R, x); ρr)

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (cr,Cx, ck1,Ar,G, t)
8 : π∗

c ← NIZK1.S2(crs∗1, τ, stmt1)

9 : st := (t, x,R,Cx, pk,Ar)

10 : req := (cr,Cx, π
∗
c )

11 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (cr,Cx, π
∗
c )

4 : Ar := ROr(t, cr) ∈ R(ℓ+m)×m
q

5 : if NIZK1.V(crs
∗
1, π

∗
c , stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

11 : wit2 := (k, e, es, e
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 15: Hybrid1 of request privacy proof.
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If the zero-knowledge challenger of NIZK1 used the honest setup and prover algorithms to generate crs∗1
and (π∗c,0, π

∗
c,1), then we are exactly in Hybrid0, and if it used the simulator, then we are in Hybrid1.

Therefore, if A can distinguish between the two hybrids with non-negligible advantage, then B1 can break
the zero-knowledge property of NIZK1. Hence, it follows that∣∣AdvA,0 (λ)− AdvA,1 (λ)

∣∣ ≤ AdvCZKNIZK1,B1
(λ) ,

and in particular Hybrid0 ≈ Hybrid1.

Hybrid2: In this hybrid, we commit to c∗r ← COM.Commit(ck1,0h·(ℓ+m)+1), where 0h·(ℓ+m)+1 is an all
zero vector of length h · (ℓ+m) + 1, instead of computing the commitment cr ← COM.Commit(ck1, (R, x))
as in the previous hybrid. This change is shown in Figure 16.

In order to show that Hybrid1 ≈ Hybrid2, we construct a reduction B2 to the computational hiding
property of COM. We note that the public parameters pp and the responses to all queries are computed
as in Hybrid1, with the exception of the Request queries. Let QR denote the number of Request queries

that the adversary A makes. Upon receiving a Request query (pk, t, x0, x1), B2 samples Ri
$← χ

h×(ℓ+m)
r , for

i ∈ {0, 1}, sets (mi,0 := (Ri, xi),mi,1 := 0h·(ℓ+m)+1), and submits the pairs (mi,0,mi,1) to the computational
hiding challenger of COM, which responds with c∗i . At this point B2 sets cr,i := c∗i , and proceeds to compute
Cx,i as in Hybrid1 and to simulates πc,i, for i ∈ {0, 1}. Finally, B2 responds to the Request query with
(reqb := (cr,b,Cxb

, πc,b), req1−b := (cr,1−b,Cx1−b
, πc,1−b)).

If the computational hiding challenger of COM responds with a commitment to mi,0, then we are exactly
in Hybrid1, and if it responds with a commitment to mi,1, then we are in Hybrid2. Therefore, if A can
distinguish between the two hybrids with non-negligible advantage, then B2 can break the computational
hiding of COM. Since we consider here a multi-challenge variant of the computational hiding property
(concretely, the 2-challenge variant) and the adversary A makes at most QR queries to the Request oracle, it
follows by a standard argument that∣∣AdvA,1 (λ)− AdvA,2 (λ)

∣∣ ≤ 2QR · AdvCHCOM,B2
(λ) ,

and in particular Hybrid1 ≈ Hybrid2.

Hybrid3: Let BAD be the event that for a Finalize query (j, rep0 := (ux,0,vk,0, πs,0), rep1 := (ux,1,vk,1,
πs,1)), it holds that either

– NIZK2.V(crs2, πs,0, (ux,0,Cx,j,b, ck,vk,0, ck2,Ar,j,b)) = 1, but
(ck ̸= COM.Commit(ck2,k; ρk) ∨ vk,0 ̸= Ar,j,bk+ es ∨ ux,0 ̸= Cx,j,bk+ e′s); or

– NIZK2.V(crs2, πs,1, (ux,1,Cx,j,1−b, ck,vk,1, ck2,Ar,j,1−b)) = 1, but
(ck ̸= COM.Commit(ck2,k; ρk) ∨ vk,1 ̸= Ar,j,1−bk+ es ∨ ux,1 ̸= Cx,j,1−bk+ e′s),

where Cx,j and Ar,j are values obtained from the j-th query to Request oracle. If BAD happens, then the
challenger aborts, as depicted in Figure 17.

Clearly, we have that Hybrid2 and Hybrid3 are identical until the event BAD happens. Hence, we show
that we can bound the probability Pr[BAD] by constructing a reduction B3 to the computational soundness
of NIZK2 argument system. We note that all queries are answered as in Hybrid2. Let QF denote the number
of Finalize queries that A performs. B3 randomly chooses a q∗ ∈ [2QF] to serve as its guess for the the proof
πs that will be forged by the adversary A (note that each Finalize query includes two proofs, hence the guess
from [2QF]). Let (j, rep0 := (ux,0,vk,0, πs,0), rep1 := (ux,1,vk,1, πs,1)) be the j-th query to Finalize, where
j = ⌈q∗/2⌉, then B3 outputs πs,0 if q∗ is odd and outputs πs,1 otherwise. We note that B3 avoids recovering
k, e, es or e′s (which are computationally infeasible to compute), and instead just guesses which of the proofs
would have caused the event BAD to happen. Hence, we have that∣∣AdvA,2 (λ)− AdvA,3 (λ)

∣∣ ≤ 2QF · AdvCSNIZK2,B3
(λ) ,
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : (crs∗1, τ)← NIZK1.S1(1λ)

3 : crs2 ← NIZK2.Setup(1
λ)

4 : pp := (ck1, ck2, crs
∗
1, crs2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : c∗r ← COM.Commit(ck1,0h·(ℓ+m)+1; ρr)

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (c∗r ,Cx, ck1,Ar,G, t)
8 : π∗

c ← NIZK1.S2(crs∗1, τ, stmt1)

9 : st := (t, x,R,Cx, pk,Ar)

10 : req := (c∗r ,Cx, π
∗
c )

11 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (c∗r ,Cx, π
∗
c )

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : if NIZK1.V(crs
∗
1, π

∗
c , stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

11 : wit2 := (k, e, es, e
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) ̸= 1 then

5 : return ⊥
6 : z := ⌊ux −Rvk⌉p ∈ Rh

p // = ⌊Bxk⌉p
7 : y := ROz(t, x, z)

8 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 16: Hybrid2 of request privacy proof.
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F.Setup(1λ)

1 : ∀i ∈ [2], cki ← COM.Setup(1λ)

2 : (crs∗1, τ)← NIZK1.S1(1λ)

3 : crs2 ← NIZK2.Setup(1
λ)

4 : pp := (ck1, ck2, crs
∗
1, crs2)

5 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : c∗r ← COM.Commit(ck1,0h·(ℓ+m)+1; ρr)

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (c∗r ,Cx, ck1,Ar,G, t)
8 : π∗

c ← NIZK1.S2(crs∗1, τ, stmt1)

9 : st := (t, x,R,Cx, pk,Ar)

10 : req := (c∗r ,Cx, π
∗
c )

11 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (c∗r ,Cx, π
∗
c )

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : if NIZK1.V(crs
∗
1, π

∗
c , stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck2,Ar)

11 : wit2 := (k, e, es, e
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck2, crs
∗
1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) = 1

5 : ∧ (ck ̸= COM.Commit(ck2,k; ρk)

6 : ∨ vk ̸= Ark+ es

7 : ∨ ux ̸= Cxk+ e′
s)) then abort

8 : z := ⌊ux −Rvk⌉p ∈ Rh
p // = ⌊Bxk⌉p

9 : y := ROz(t, x, z)

10 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 17: Hybrid3 of request privacy proof.
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and in particular Hybrid2 ≈ Hybrid3.

Hybrid4: In this hybrid, we replace the commitment key ck2 with a trapdoor variant (ck∗2, td) ←
COM.E1(1λ), and use the trapdoor td to extract the secret key sk := k from the public key pk := ck,
i.e., run k← COM.E2(ck∗2, td, ck), and store k for later use. These changes are depicted in Figure 18.

In order to prove that Hybrid3 ≈ Hybrid4 we construct an adversary B4 to the extractability property
of COM. We note that all queries are answered as in Hybrid3, and the only change here is that B4 samples a
trapdoor commitment key (ck∗2, td)← COM.E1(1λ), instead of generating ck2 via the COM.Setup algorithm.

Let Qpk
R denote the number of Request queries that the adversary A makes with different pk inputs. For each

such query (pk, t, x0, x1), upon B4 receiving a Finalize query (j, rep0, rep1), where j corresponds to one of the

Qpk
R queries made to the Request oracle, B4 computes sk := k ← COM.E2(ck∗2, td, pk := ck), and stores it in

the table K[pk] := k (for later use). The rest of the interaction is identical to Hybrid3.
Due to the soundness of the server proof πs we know that the adversarial inputs, and especially the

public keys pk := ck, are well-formed. Hence, if A can distinguish between the two hybrids with non-
negligible advantage, then B4 can break the extractability property of COM. Moreover, since the adversary
A makes at most Qpk

R queries to Request oracle, it follows that∣∣AdvA,3 (λ)− AdvA,4 (λ)
∣∣ ≤ Qpk

R · Adv
Ext
COM,B4

(λ) ,

and in particular Hybrid3 ≈ Hybrid4.

Hybrid5: In this hybrid, we replace Cx := RAr + Bx ∈ Rh×m
q with C∗x := U + Bx ∈ Rh×m

q for a

uniformly random matrix U
$← Rh×m

q , as shown in Figure 19.
In order to prove thatHybrid4 ≈ Hybrid5 we construct and adversary B5 against the knMLWEℓ+m,m,h,χ

assumption. We note that the public parameters pp and responses to all queries are computed as in Hybrid4

with the exception of the Request queries. For each Request query (pk, t, x0, x1), B5 receives from the
knMLWEℓ+m,m,h,χ challenger the pairs (Ai,Ui), which it uses to compute C∗xi

:= Ui+G(t, xi), for i ∈ {0, 1}.
Note that C∗xi

forms part of the request that B5 returns to A as output of the Request query. Moreover,
B5 programs the random oracle ROr, such that on input the pair (t, c∗r,i) it returns Ai provided by the
knMLWEℓ+m,m,h,χ challenger (we note that this change is not highlighted in Figure 18, because the Ai val-

ues returned by the knMLWEℓ+m,m,h,χ challenger are also uniformly random values from R
(ℓ+m)×m
q ). Upon

receiving a Finalize query (j, rep0, rep1) from A, B5 proceeds as in the previous hybrid, to obtain pk := ck
from the state stj , and then extract sk := k from pk using the commitment trapdoor. Additionally, B5 uses
the secret key k to compute the value z∗ := ⌊ux −Uk⌉p, which constitutes an alternative way of computing
the correct z∗ value with the help of the secret key.

If the knMLWEℓ+m,m,h,χ challenger provided a knapsack MLWE instance, i.e., Ui := RiAi, for some

Ri ∈ R
h×(ℓ+m)
q , then the view is as in Hybrid4, and if it provided a uniformly random matrix Ui ∈ Rh×m

q ,
then the view is as in Hybrid5. Therefore, if A can distinguish between the two hybrids with non-negligible
advantage, then B5 can break the knMLWEℓ+m,m,h,χ assumption. Since we consider here a multi-challenge
variant of the knMLWEℓ+m,m,h,χ problem (concretely, the 2-challenge variant) and the adversary A makes
at most QR queries to the Request oracle, it follows by a standard argument that∣∣AdvA,4 (λ)− AdvA,5 (λ)

∣∣ ≤ 2QR · Adv
knMLWEℓ+m,m,h,χ

B5
(λ) ,

and in particular Hybrid4 ≈ Hybrid5.

We note that at this point the transcript observed by the adversary A is independent of the challenge
bit b, and hence AdvA,5 (λ) = 1/2. Putting everything together, we obtain

Advpo-priv-2F,A,ROr,ROz
(λ) ≤ AdvCZKNIZK1,B1

(λ) + 2QR · AdvCHCOM,B2
(λ) + 2QF · AdvCSNIZK2,B3

(λ)

+Qpk
R · Adv

Ext
COM,B4

(λ) + 2QR · Adv
knMLWEℓ+m,m,h,χ

B5
(λ) ,

as claimed. This completes the proof of Theorem 3. ⊓⊔
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F.Setup(1λ)

1 : ck1 ← COM.Setup(1λ)

2 : (ck∗2, td)← COM.E1(1λ)

3 : (crs∗1, τ)← NIZK1.S1(1λ)

4 : crs2 ← NIZK2.Setup(1
λ)

5 : pp := (ck1, ck
∗
2, crs

∗
1, crs2)

6 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck∗2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : c∗r ← COM.Commit(ck1,0h·(ℓ+m)+1; ρr)

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : Cx := RAr +Bx ∈ Rh×m
q

7 : stmt1 := (c∗r ,Cx, ck1,Ar,G, t)
8 : π∗

c ← NIZK1.S2(crs∗1, τ, stmt1)

9 : st := (t, x,R,Cx, pk,Ar)

10 : req := (c∗r ,Cx, π
∗
c )

11 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (c∗r ,Cx, π
∗
c )

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : if NIZK1.V(crs
∗
1, π

∗
c , stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := Cxk+ e′
s ∈ Rh

q

10 : stmt2 := (ux,Cx, ck,vk, ck
∗
2,Ar)

11 : wit2 := (k, e, es, e
′
s.ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,Cx, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) = 1

5 : ∧ (ck ̸= COM.Commit(ck∗2,k; ρk)

6 : ∨ vk ̸= Ark+ es

7 : ∨ ux ̸= Cxk+ e′
s)) then abort

8 : if K[pk] = ⊥ then

9 : k← COM.E2(ck∗2, td, ck)
10 : K[pk] := k

11 : z := ⌊ux −Rvk⌉p ∈ Rh
p // = ⌊Bxk⌉p

12 : y := ROz(t, x, z)

13 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 18: Hybrid4 of request privacy proof.
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F.Setup(1λ)

1 : ck1 ← COM.Setup(1λ)

2 : (ck∗2, td)← COM.E1(1λ)

3 : (crs∗1, τ)← NIZK1.S1(1λ)

4 : crs2 ← NIZK2.Setup(1
λ)

5 : pp := (ck1, ck
∗
2, crs

∗
1, crs2)

6 : return pp

F.KeyGen(pp)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : k
$← χm

k

3 : ck ← COM.Commit(ck∗2,k; ρk)

4 : return (pk := ck, sk := k)

F.Request(pp, pk, t, x)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : R
$← χh×(ℓ+m)

r

3 : c∗r ← COM.Commit(ck1,0h·(ℓ+m)+1; ρr)

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : Bx := G(t, x) ∈ Rh×m
q

6 : U
$← Rh×m

q

7 : C∗
x := U+Bx ∈ Rh×m

q

8 : stmt1 := (c∗r ,Cx,
∗ck1,Ar,G, t)

9 : π∗
c ← NIZK1.S2(crs∗1, τ, stmt1)

10 : st := (t, x,R,C∗
x, pk,Ar)

11 : req := (c∗r ,C
∗
x, π

∗
c )

12 : return (st, req)

F.BlindEval(pp, pk, sk, t, req)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : parse pk := ck, sk := k

3 : parse req := (c∗r ,C
∗
x, π

∗
c )

4 : Ar := ROr(t, c
∗
r) ∈ R(ℓ+m)×m

q

5 : if NIZK1.V(crs
∗
1, π

∗
c , stmt1) ̸= 1 then

6 : return ⊥

7 : es
$← χℓ+m, e′

s
$← χh

1

8 : vk := Ark+ es ∈ Rℓ+m
q

9 : ux := C∗
xk+ e′

s ∈ Rh
q

10 : stmt2 := (ux,C
∗
x, ck,vk, ck

∗
2,Ar)

11 : wit2 := (k, e, es, e
′
s, ρk)

12 : πs ← NIZK2.P(crs2, stmt2,wit2)

13 : return rep := (ux,vk, πs)

F.Finalize(pp, rep, st)

1 : parse pp := (ck1, ck
∗
2, crs

∗
1, crs2)

2 : parse rep := (ux,vk, πs)

3 : parse st := (t, x,R,C∗
x, pk := ck,Ar)

4 : if NIZK2.V(crs2, πs, stmt2) = 1

5 : ∧ (ck ̸= COM.Commit(ck∗2,k; ρk)

6 : ∨ vk ̸= Ark+ es

7 : ∨ ux ̸= C∗
xk+ e′

s)) then abort

8 : if K[pk] = ⊥ then

9 : k← COM.E2(ck∗2, td, ck)
10 : K[pk] := k

11 : z∗ := ⌊ux −UK[pk]⌉p ∈ Rh
p // = ⌊Bxk⌉p

12 : y := ROz(x, z
∗)

13 : return y

F.Eval(sk, t, x)

1 : parse sk := k

2 : Bx := G(t, x) ∈ Rh×m
q

3 : z := ⌊Bxk⌉p ∈ Rh
p

4 : y := ROz(t, x, z)

5 : return y

ROr(t, cr)

1 : if H[t, cr] = ⊥ then

2 : H[t, cr]
$← R(ℓ+m)×m

q

3 : return H[t, cr]

ROz(t, x, z)

1 : if F [t, x, z] = ⊥ then

2 : F [t, x, z] $← {0, 1}λ

3 : return F [t, x, z]

Fig. 19: Hybrid5 of request privacy proof.
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C Issues in Prior Constructions and Models

C.1 Issues in [ADDS21] and [ADDG24]

We describe here two flaws present in the security proofs of the existing lattice-based OPRF constructions.
The first flaw is from the [ADDS21] paper, which aims to prove their construction secure in the simulation
based setting (we refer the reader to [ADDS21] for details regarding the security model). The flaw appears
during the Query phase of the malicious client security proof (given in [ADDS21, Lemma 8]), where for each
query (cx, π) from the malicious client, the simulator needs to extract the client’s secret input x from the
NIZK argument π in order to complete the reduction. However, the authors make use of a NIZK argument
system that is based on Fiat-Shamir transform [YAZ+19], and hence, is not straight-line extractable, i.e.,
cannot extract the witness without rewinding. This means that each query of the malicious client incurs
a loss in the soundness of the NIZK argument system, and since a malicious client can make Q = poly(λ)
distinct queries, it means we will end up with an exponential decay in soundness. We note that this issue
can be fixed by using the Katsumata transform [Kat21] to obtain a lattice-based straight-line extractable
NIZK argument system, albeit by incurring a performance penalty.

The second flaw appears in the recent [ADDG24] paper. Specifically, during the security proof of request
privacy against malicious servers (POPRIV2) (given in [ADDG24, Theorem 4]), one of the reductions requires
access to the server’s secret key sk. The authors attempt to solve this dilemma by requiring the server to
give its sk to the reduction algorithm, however, this is in stark contrast to the request privacy game given
in Definition 4 (also used in [ADDG24]). Since their construction already includes NIZK proofs, one potential
way to patch this issue is to instead extract the sk from a NIZK proof. However, similar to the previously
explained issue, one needs to consider here a straight-line extractable proof system, which degrades the
performance of the scheme. An alternative solution is to use an extractable commitment scheme and include
a commitment to sk as part of the public key pk, which is exactly what we do in our construction given
in Section 2.1, and during our request privacy security proof given in Appendix B.3.

C.2 Uniqueness and Key Binding

In [TCR+22], the authors defined a property called uniqueness, which ensures that POPRF outputs are
unique even in the case of a malicious server.

Definition 20 (Uniqueness [TCR+22]). We say that a partial oblivious PRF (POPRF) F is unique
against malicious servers, if for all PPT adversaries A the following advantage is negl(λ),

Advpo-uniqF,A,RO (λ) = Pr
[
POUNIQF,A,RO(λ) = 1

]
,

where the experiment POUNIQ is defined as follows:

POUNIQF,A,RO(λ)

1 : R := [·], q := 0

2 : pp← F.Setup(1λ)

3 : stRO ← RO.Init(1λ)

4 : (i, j, repi, repj)← A
Request,RO(pp)

5 : assert 1 ≤ i ≤ j ≤ q

6 : (sti, pki, ti, xi) := R[i]

7 : (stj , pkj , tj , xj) := R[j]

8 : yi ← F.FinalizeROpp (repi, sti)

9 : yj ← F.FinalizeROpp (repj , stj)

10 : if yi = ⊥ ∨ yj = ⊥ then

11 : return 0

12 : return ((pki, ti, xi) = (pkj , tj , xj)) ∧ (yi ̸= yj)

Request(sk, aux,pk, t, x)

1 : assert F.Wellformed(sk, pk, aux)

2 : (st, req)← F.RequestROpp (pk, t, x)

3 : q := q + 1

4 : R[q] := (st, pk, t, x)

5 : return req
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The highlighted part is included to address rogue key attacks using the knowledge of secret key model [Bol03].
If the Wellformed predicate does not require any auxiliary information to verify the secret/public key pair
(sk, pk), then we consider that aux := ⊥.

Tyagi et al. [TCR+22] showed that uniqueness follows from the correctness and request privacy against
malicious servers (POPRIV2) of the POPRF. However, since correctness only holds against well-formed
public keys and uniqueness definition considers a malicious adversary, they proved this in the knowledge of
secret key (KOSK) model [Bol03]. In KOSK, the adversary reveals its secret key and this is used to check the
well-formedness of the secret/public key pair (e.g., by using the Wellformed predicate in Definition 20). We
note that such a model can be instantiating by including an extractable proof of knowledge or commitment,
from which the secret key can be extracted and the proof may proceed as in the KOSK model.

Nevertheless, the reduction from uniqueness to request privacy that was given by Tyagi et al. [TCR+22,
Appendix H], only works when there is a bijection between the secret and public keys, i.e., for each public
key pk there is a unique sk. This comes from the fact that during the reduction they consider that the output
of a valid uniqueness adversary would result in two tuples (pki, ski, ti, xi) = (pkj , skj , tj , xj). However, the
uniqueness definition (see Definition 20) only guarantees that (pki, ti, xi) = (pkj , tj , xj), i.e., we do not have
the guarantee that ski = skj . Although, this holds in group-based OPRF constructions, such as in [TCR+22],
this does not necessarily hold in lattice-based constructions. For example, in [ADDS21] the public key is of
the form c := a · k + e mod q, such that for a fixed (non-zero) a, there exist numerous pairs of secret keys
(k, e) that satisfy the public key equation.

In order to provide a more robust uniqueness guarantees, we define here an additional property for a
POPRF called key binding , which ensures that a public key is bound to a particular secret key.

Definition 21 (Key Binding). We say that a partial oblivious PRF (POPRF) F is key binding with
respect to a Wellformed predicate, if for all PPT adversaries A the following advantage is negl(λ),

Advpo-key-bindF,A,RO (λ) = Pr [POKBINDF,A,RO(λ) = 1] ,

where the experiment POKBIND is defined as follows:

POKBINDF,A,RO(λ)

1 : pp← F.Setup(1λ)

2 : stRO ← RO.Init(1λ)

3 : (pk, sk, sk′, aux, aux′)← ARO(pp)

4 : assert sk ̸= sk′

5 : return F.Wellformed(sk, pk, aux) ∧ F.Wellformed(sk′, pk, aux′)

Next, we show that our construction from Figure 6 satisfies key binding.

Theorem 4. If COM is computationally binding, then the OPRF construction F from Figure 6 is key binding.

Proof. First we define a Wellformed predicate for our key binding definition. In our construction the secret

key is of the form sk := k, for k
$← χm

k , and the public key is computed as pk := ck ← COM.Commit(ck2,k),
for some commitment key ck2 ← COM.Setup(1λ). Hence, our Wellformed predicate can be defined as the
verification algorithm of the commitment scheme COM, i.e., F.Wellformed(sk, pk, aux) = COM.Verify(ck2, ck,
ρk,k), where aux := ρk is the decommitment information.

In order to show that our construction satisfies key binding we construct a reduction B to the com-
putational binding property of COM. B receives the commitment key ck∗ from the computational binding
challenger of COM, sets ck2 := ck∗, generates the rest of the public parameters pp as in Figure 6, and sends
pp to A. Upon receiving the tuple (pk := ck, sk := k, sk′ := k′, aux := ρk, aux := ρ′k) from A, B forwards the
tuple (ck, ρk, ρ

′
k,k,k

′) to the computational binding challenger of COM.
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We note that the winning conditions for the key binding of F (Definition 21) and computational binding
of COM (Definition 16) are identical in this case. Hence, if A can win the key binding experiment with non-
negligible advantage, then B can win the computational binding experiment with non-negligible advantage.

⊓⊔

Theorem 5. For every PPT adversary A against the uniqueness of F, there exist PPT adversaries B1 and
B2 against the key binding and request privacy of F, respectively, such that

Advpo-uniqF,A,RO (λ) ≤ Advpo-key-bindF,B1,RO
(λ) + Advpo-priv-2F,B2,RO

(λ) .

Proof. We note that the adversary A has access to the oracles Request and RO. We consider a single interme-
diate hybrid before reducing the uniqueness to the request privacy against malicious servers (POPRIV2). Let
AdvA,i (λ) denote the advantage of A in Hybridi and let Hybridi ≈ Hybridi+1 denote |Pr [Hybridi = 1]−
Pr [Hybridi+1 = 1] | ≤ negl(λ).

Hybrid0: This corresponds to the uniqueness experiment POUNIQF,A,RO (Definition 20). Hence, we have
that

Advpo-uniqF,A,RO (λ) = AdvA,0 (λ) .

Hybrid1: Let BAD be the event that the adversary queries the Request oracle with two queries (sk,
aux, pk, t, x) and (sk′, aux′, pk′, t′, x′), such that pk = pk′ and sk ̸= sk′. If BAD happens, then the challenger
aborts.

Clearly, we have that Hybrid0 and Hybrid1 are identical until the event BAD happens. Hence, we
show that we can bound the probability Pr [BAD] by constructing a reduction B1 to the key binding of
F. B1 receives the public parameters pp from the key binding challenger, and forwards pp to A. When A
makes a RO query, then B1 forwards the same query to its own RO oracle and relays the answer back to
A. For answering the Request oracle queries, B1 proceeds exactly as in Hybrid0, but when A submits two
queries (sk, aux, pk, t, x) and (sk′, aux′, pk′, t′, x′) that satisfy pk = pk′ and sk ̸= sk′, then B submits the tuple
(pk, sk, sk′, aux, aux′) to the key binding challenger. Hence, we have that B1 wins the key binding experiment
with the same probability that the event BAD happens, and therefore, we have that∣∣AdvA,0 (λ)− AdvA,1 (λ)

∣∣ ≤ Advpo-key-bindF,B1,RO
(λ) ,

and in particular Hybrid0 ≈ Hybrid1.

All that remains is to bound the advantage of the adversary A against the uniqueness experiment in
Hybrid1, i.e., bound AdvA,1 (λ). We can do so by constructing a reduction B2 to the request privacy of
F. Analogous to the previous reduction, B2 receives the public parameters pp from the request privacy
challenger, and forwards pp to A. Moreover, RO queries of A are forwarded to the RO oracle of B2 and the
response relayed back to A. Upon receiving a Request query (sk, aux, pk, t, x) from A, B2 makes a Request
query to its oracle (provided by the request privacy challenger) with the input (pk, t, x, x), received back
a pair of request messages (req0, req1) and sends req0 to A. Moreover, B2 stores the tuple (pk, sk, t, x, req1)
associated with the Request query.

When A outputs the responses (i, j, repi,0, repj,0), then B2 retrieves the tuples (pki, ski, ti, xi, reqi,1) and
(pkj , skj , tj , xj , reqj,1) that it previously stored. We consider the case where A wins the uniqueness exper-
iment, and hence, in this case we can drop the subscripts as (pki, ski, ti, xi) = (pkj , skj , tj , xj) (note that
ski = skj is guaranteed by the key binding property of F that we previously proved). B2 calls its Finalize
oracle with (i, repi,0, repi,1), where repi,0 is provided by A and repi,1 is generated honestly by B2. By the
correctness of F, we have that the value returned from the honest flow with repi,1 is equal to y := F.Eval(sk,
t, x). If Finalize oracle returns two different values, then by matching which position y is returned reveals the
challenge bit and allows B2 to win the request privacy experiment. On the other hand, if Finalize returns two
identical values, then B2 repeats the above for the j-th query. If A wins the uniqueness experiment, then
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we know that Finalize will not return identical values for the j-th query, and hence, the challenge bit will be
revealed, allowing B2 to win the request privacy experiment. Therefore, B2 outputs the correct challenge bit
in the request privacy experiment, whenever A wins uniqueness. Hence, we have that

AdvA,1 (λ) ≤ Advpo-priv-2F,B2,RO
(λ) .

Putting everything together, we obtain

Advpo-uniqF,A,RO (λ) ≤ Advpo-key-bindF,B1,RO
(λ) + Advpo-priv-2F,B2,RO

(λ) ,

as claimed. This completes the proof of Theorem 5. ⊓⊔

D More on the Message Mapping and NIZKs

D.1 Further Options for Message Mapping G

Using the mapping from BLMR13 PRF [BLMR13] for G. An other option is the BLMR13 PRF
[BLMR13] (particularly its variant over module lattices as described in [SSS23]). In this setting, we have two
square matrices A0,A1 ∈ Rm×m

q (with binary entries) published as public parameters (where the dimension
parameter h = m to match the secret key dimension in OPRF). To compute the PRF for an input x = (x0,

. . . , xL−1) in binary and k
$← Rm

q , we compute

F blmr
k (x) =

⌊
L−1∏
i=0

Axi
· k

⌉
p

. (28)

As a result, the message mapping Gblmr is defined as

Gblmr : x 7→ Bx =

L−1∏
i=0

Axi
. (29)

For the client’s NIZK proof πc to be discussed in Section 5.3, we will need to treat each Axi
as a set of

different variables. It is easy to observe that there are m2L variable polynomials in that case. As discussed
in [SSS23], we require m ≥ 2 as otherwise this module variant of the PRF scheme is insecure.

Using a (symmetric) PRG for G. Another option one may consider is to use a (symmetric) PRG to
instantiate G. In this case, we may simply set h = 1 to minimize a dimension of certain matrices/vectors
involved in communication and NIZK proofs for improved performance. In this case, the SampPRF oracle in
iMLWER-RU would output samples (computationally) indistinguishable from MLWR samples (based on the
PRG pseudorandomness property). One may then employ a suitable zk-SNARK system to instantiate the
client’s proof πc. We do not see this option as competitive (in terms of efficiency) as the prior ones where
fully lattice-based tools can be employed for improved compatibility and performance. Therefore, we do not
discuss this option in further detail. However, as further progress is made in the development of more efficient
zk-SNARK solutions, this option (just like the others) may become more efficient over time.

Modelling G as a random oracle. We also note the option of modeling G as a random oracle. In this case,
we may again simply set h = 1 to minimize a dimension of certain matrices/vectors involved in communication
and NIZK proofs for improved performance. In this case, the SampPRF oracle in iMLWER-RU would simply
output MLWR samples. Assuming G to be a random oracle would also reduce the control of an iMLWER-RU
adversary on how Cx is computed.

There are two (related) caveats with this choice. Firstly, we would need a NIZK proof that proves pre-
image knowledge of a hash function (modelled as a random oracle). There are generic zk-SNARK systems
like [COS20] that can achieve this for standard hash function such as SHA3, but they are currently not as
efficient as we would like them to be. Alternatively, we may use a more algebraic hash function like Poseidon

57



[GKR+21] to help reduce the cost of the NIZK well-formedness proof. Overall, the first caveat is that the
associated message-mapping well-formedness proof is not going to be as efficient.

The second caveat is that we would assume G to be a random oracle, but then, as we need to prove
message-mapping well-formedness via a NIZK proof, we would also need to assume that G has a compact
circuit representation. This is the same issue that has already been encountered in earlier works such as the
recursive proof in [COS20], the blind signature in [BLNS23] and the aggregate signature in [ZSE+24]. Similar
to earlier works, we can (heuristically) assume that the construction remains secure when the random oracle
is instantiated with a hash function and then instantiate the NIZK accordingly.

Overall, while it does not currently appear as a very competitive option in terms of efficiency, we believe
that the main advantage of modelling G as a random oracle may arise in helping with the security reductions
and reducing an adversary’s winning chance in iMLWER-RU. We emphasize that modelling G as a random
oracle will not be our main choice in this paper, and we merely present it as a possible option.

D.2 NIZK for BLMR13 PRF mapping

Here, for a known Ar and Cx, the prover (client) wants to prove knowledge of short R and a bit-string
x = (x0, x1, . . . , xL−1) ∈ {0, 1}L such that Cx = RAr + Bx mod q where Bx is defined in (29). To be

more specific, Bx =
L−1∏
i=0

Axi
, where A0, A1 are two public matrices. Now, define variables Bi ∈ Rm×m

q for

i = L− 1, . . . , 0 as Bi :=
i∏

j=0

Axi . Then, the statement being proved can be expressed as follows.

B0 = Ax0
,

Bi+1 = Bi ·Axi+1
, i = 0, . . . , L− 2,

Cx = RAr +BL−1.

This system of equations above is not linear due to the xi and Bi+1 terms. We can represent the terms
Bi ·Axi+1

as Bi ·A0 · (1− xi+1) +Bi ·A1 · xi+1, then we obtain

B0 = A0 · (1− x0) +A1 · x0,

B1 = B0 ·A0 · (1− x1) +B0 ·A1 · x1,

...

BL−1 = BL−2 ·A0 · (1− xL−1) +BL−2 ·A1 · xL−1,

Cx = RAr +BL−1.

Now the required proof boils down to proving that a sequence of quadratic equations holds, which can
again be easily handled by LaBRADOR [BS23]. Observe that the witness dimension (over Rq) is again in
the order of m2L. Note also that when a tag is present, we will have a similar situation as described above
for the BP14 PRF, where some public matrix Bt will appear in the first expression describing B0.

E Instantiation of the Commitment Scheme

From our analyses in Section 4.2, we can observe that the main properties we need from the commitment
scheme are hiding the message (without trapdoor), binding, and enabling extraction of the message using
the trapdoor. This is effectively an encryption scheme, and we will employ a variant of Regev’s encryption
[Reg05] over module lattices for our purposes. Given this Regev-style instantiation is quite well-known by
now, we do not delve into too many technical details here and refer the reader to the references provided
below for more details.

For certain instantiations of the message mapping G (such as BMLR13 PRF [BLMR13]), we need the
server’s secret key k to have large coefficients (i.e., unbounded mod q). As a result, we need to be able
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to allow the decryption of large message inputs in the encryption scheme. For this, we can employ the
technique (implicit in [GSW13]) described more explicitly in [LNPS21]. Suppose we want to commit to
an N -dimensional vector over Rq, and define M := N if the committed message has small coefficients or
M := 2N if the committed message has large coefficients. For readability, we write

√
q to mean ⌈√q⌋ below.

– Setup samples A
$← R

n×(n+M+w)
q . In the case we want to generate the commitment key with a trapdoor,

then we set b⊤i,j = s⊤i,jA + e⊤i,j for j = 0, 1 and i = 1, . . . , N , where si,j ’s are MLWE secret keys and
ei,j ’s are short error vectors where each entry is sampled from an error distribution χe. If we don’t want
the trapdoor, then we simply sample bi,j ’s uniformly at random. The commitment key is then set as
ck = (A,b1,0,b1,1, . . . ,bN,0,bN,1).

– To Commit to a message m = (m1, . . . ,mN ) ∈ RN , we proceed as follows:

1. If m has small coefficients compared to q with ∥mi∥∞ ≤ qm, then we first sample a short randomness
vector r ← χn+N+w

e and set c = Ar. Then, we compute ci = qmb⊤i,0r + mi for i = 1, . . . , N . The

function outputs (c, c1, . . . , cN ) ∈ Rn+N
q .

2. If m has large coefficients compared to q (i.e., unbounded mod q), then we first sample a short
randomness vector r ∈ χn+2N+w

e and set c = Ar. Then, we compute ci,0 = b⊤i,0r + mi and ci,1 =

b⊤i,1r+
√
qmi. The function outputs (c, c1,0, c1,1, . . . , cN,0, cN,1) ∈ Rn+2N

q .

– To Extract a message mi from ci for i ∈ [N ] using the trapdoor si,j ’s,

1. If m has small coefficients12 compared to q, we will be given (c, c1, . . . , cN ) ∈ Rn+N
q . Then, we

compute ui := ci − qms⊤i,0c = qme⊤i,0r + mi mod q. Then, we round off the error term e⊤i,0r by
computing ui mod qm to recover each mi.

2. If m has large coefficients13 compared to q (i.e., unbounded mod q), we will be given (c, c1,0, c1,1,
. . . , cN,0, cN,1) ∈ Rn+2N

q . Then, we compute ui,0 = ci,0 − s⊤i,0c = e⊤i,0r+mi, and ui,1 = ci,1 − s⊤i,1c =

e⊤i,1r+
√
qmi. Now compute e′ := u1 −

√
qu0 mod

√
q and mi := (u1 + e′)/

√
q.

We note that the server’s commitment to the key k can have small-coefficient message input when BP14
PRF is used; while for BLMR13 PRF, large-coefficient message support is needed. On the other hand, the
client’s commitment to (R, x) has always small coefficients in the message (regardless of the PRF) when e.g.
the bits of the input message are represented as the coefficients of a polynomial(s).

As already observed in earlier work such as [LNPS21,ESZ22a], we note that the above encryption scheme
is effectively an extractable version of the BDLOP commitment scheme [BDL+18]. The (plain) BDLOP
commitment is employed for instance in LNP22 proof [LNP22]. Therefore, we can optimize the performance
by calculating a single BDLOP commitment (instead of multiple times) when both the underlying NIZK
and our OPRF protocol require such a commitment.

As shown in [BDL+18], the commitment scheme is

1. (computationally) hiding14 if MLWEw,n+M,χe
is hard, and

2. (computationally) binding if MSISn,n+M+w,2βr
is hard where βr denotes the bound on ∥r∥ proven by the

NIZK proof.

We note that in our case, we prove the commitment opening relations by the client (cr = COM.Commit(. . .))
and the server (ck = COM.Commit(. . .)) without a relaxation/approximation factor. Hence, the MSIS bound
βSIS is tighter (compared to what is provided in [BDL+18]) and does not involve terms depending on the
size of the relaxation factor. We also note that commitment to R is done by committing to the rows of R
(under one commitment).

12 Note that well-formedness of the commitment along with having small coefficients in error, randomness, and
message will be proven via a NIZK proof.

13 Note that well-formedness of the commitment along with “double-encryption” of (m,
√
qm) will be proven via a

NIZK proof. The double-encryption proof often comes for free in communication since it is a simple linear proof
over Rq (see, e.g., [LNP22, Section 3]).

14 In fact, the commitment outputs are (computationally) indistinguishable from uniformly random vectors over Rq.

59



Extraction/decryption correctness. In our NIZK proofs employed in LeOPaRd, we prove that all error,
randomness, and/or message (if small) coefficients are much smaller than the system modulus q. Therefore,
the error terms described above to be removed will have a quite small infinity norm compared to the modulus
sizes we need for our OPRF. Therefore, extraction/decryption correctness requirements are easily met for
well-formed commitments (with probability 1) under typical parameters. Nevertheless, we explicitly state
the required bounds below.

1. For small messages with ∥mi∥∞ ≤ qm, we need

∥qme⊤i,0r+mi∥∞ < q/2.

2. For large messages, we need
∥e⊤i,jr∥∞ <

√
q/4.

To argue that a commitment key with a trapdoor is indistinguishable from a regular commitment key, we
require the hardness of MLWEn,χe

so that b⊤i,j = s⊤i,jA+e⊤i,j is indistinguishable from random. For the client’s
commitment cr, we assume the error entries are sampled from the same distribution χr as the entries of R
in LeOPaRd as the client security already relies on MLWEℓ,χr

. Therefore, we get the dimension parameter
nc for the client’s commitment as nc = ℓ (provided the relevant MSISnc,2βc

r
problem is hard, which is easily

satisfied for our parameter settings). For the server’s commitment ck as its public key, we assume the error
coefficients are sampled from a uniform distribution with standard deviation σ0 as the server security already
relies on MLWE with such errors and secret key dimension m. Therefore, we get the dimension parameter ns

for the server’s commitment as ns = m (provided the relevant MSISns,2βs
r
problem is hard, which is easily

satisfied for our parameter settings).
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