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Abstract. Compressing primitives such as accumulators and vector commitments, allow to rep-
resent large data sets with some compact, ideally constant-sized value. Moreover, they support
operations like proving membership or non-membership with minimal, ideally also constant-
sized, storage and communication overhead. In recent years, these primitives have found nu-
merous practical applications, with many constructions based on various hardness assumptions.
So far, however, it has been elusive to construct these primitives in a strictly structure-preserving
setting, i.e., in a bilinear group in a way that messages, commitments and openings are all ele-
ments of the two source groups. Interestingly, backed by existing impossibility results, not even
conventional commitments with such constraints are known in this setting. However, in many
practical applications it would be convenient or even required to be structure-preserving, e.g.,
to commit or accumulate group elements.
In this paper we investigate whether strictly structure-preserving compressing primitives can
be realized. We close this gap by presenting the first strictly structure-preserving commitment
that is shrinking (and in particular constant-size). We circumvent existing impossibility results
by employing a more structured message space, i.e., a variant of the Diffie-Hellman message
space. Our main results are constructions of structure-preserving vector commitments as well
as structure-preserving accumulators. We first discuss generic constructions and then present
concrete constructions under the Diffie-Hellman Exponent assumption. To demonstrate the
usefulness of our constructions, we discuss various applications.

1 Introduction

Compressing primitives like accumulators, vector commitments or key-value commitments (key-value
maps) are cryptographic techniques to efficiently represent and manage large datasets in a space-
efficient form. They allow to represent large datasets with a compact, ideally constant-sized, value
and support operations like proving membership or non-membership with minimal storage and com-
munication overhead (ideally constant-size witnesses). These primitives have many interesting appli-
cations for blockchain privacy, e.g., Zcash3, and scalability, e.g., use of Verkle trees4, stateless clients
for blockchains5, data availability sampling [45] or batching [21]. Moreover, they are extensively used
in privacy-preserving systems, such as anonymous authentication primitives, e.g., ring signatures [33]
or revocation in anonymous credentials [8, 11, 30], or data outsourcing [16, 23, 66]. In this paper, we
focus mainly on vector commitments [23] and accumulators [13,17].

Vector Commitments. We recall that a vector commitment (VC) scheme enables a user to commit
to a vector m, with the ability to later open the commitment at specific positions without being
able to cheat (position binding). Moreover, they might also support to update values committed at
certain position. Crucially, both the commitment size and the size of the opening must remain suc-
cinct, ideally of constant size. In recent years we have seen significant advancements and growing
interest in the development and applications of vector commitments. Beginning with the founda-
tional Merkle tree [56], which leverages collision-resistant hash functions, the field has expanded to
include a diverse array of algebraic constructions. These include schemes based on pairing-based as-
sumptions [23, 41, 47, 48, 53, 54, 67] as well as those relying on assumptions over groups of unknown

3 https://z.cash
4 https://vitalik.eth.limo/general/2021/06/18/verkle.html
5 https://ethresear.ch/t/the-stateless-client-concept/172
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order, such as RSA groups or class groups [20, 23, 48] and post-quantum constructions based on lat-
tices [10, 50, 64, 68]. For an extensive overview of schemes, see [62]. As we have already mentioned
above, vector commitments have been widely utilized across various applications. Moreover, gen-
eralizations of vector commitments and in particular polynomial commitments [47] and functional
commitments [53], have become foundational components in many recent constructions of succinct
non-interactive arguments of knowledge (SNARKs).

Accumulators. We also recall that a (static) accumulator [13, 17] is another type of compressing
primitive, which allows to represent a set of elements X = {x1, . . . , xq} in the form of a succinct
accumulator value accX . For each element xi ∈ X, a witness witxi can be efficiently computed to
certify its membership in the set, while ensuring that it is computationally infeasible to forge wit-
nesses for non-members y /∈ X (collision resistance). Universal accumulators in addition provide the
functionality of non-membership witnesses for values y /∈ X and dynamic accumulators supporting
efficient additions and deletions from the accumulated set. It is worth remarking that Catalano and
Fiore have shown that any vector commitment can be used to construct universal dynamic accu-
mulators [23]. Unfortunately, it is unclear whether this approach can be immediately applied to the
SP setting or effectively hide the index, a property often required in privacy-preserving applications.
Like vector commitments, accumulators have found wide-ranging applications and actually evolved
into a foundational component in various advanced cryptographic constructs. They are integral to
revocation in anonymous credentials [8, 11, 30], membership revocation for group signatures [19] and
the construction of ring signatures [32,33,49].

Over time, cryptographic accumulators have evolved through various instantiations. Initially based
on the RSA assumption [13], early schemes were later expanded upon [19, 33]. Nguyen introduced
pairing-based accumulators [60], sparking further advancements in this area [11, 12, 18, 29, 40]. More
recent developments include lattice-based accumulators [46,50,63].

Structure-Preserving Compressing Primitives. While, as outlined above, numerous construc-
tions exist for both vector commitments and accumulators, a significant challenge remains in develop-
ing such schemes that are structure-preserving (SP). We recall that a cryptographic scheme is called
structure preserving [3] if all public inputs and outputs consist of elements of the source groups G1

and G2 of a bilinear group (p,G1,G2,GT , e, P, P̂ ) and functional correctness can be verified only by
testing group membership, computing group operations, and evaluating pairing product equations
(PPEs) [1] of the form

∏
i

∏
j e(Ai, B̂j)

ci,j = 1, where Ai ∈ G1 and B̂j ∈ G2 are group elements and
ci,j ∈ Zp are constants. This domain is very rich in its constructions and allows for a modular design
of (advanced) cryptographic primitives, e.g., structure-preserving signatures (SPS) [3] (cf. [39] for a
recent overview on the large body of works), threshold SPS [27, 59], blind signatures [3, 36], group
signatures [3, 52], traceable signatures [2], homomorphic signatures [51] or delegatable anonymous
credentials [28, 35, 58]. Such constructions are highly desirable because they maintain the algebraic
structure of the committed values and proofs, ensuring compatibility with a broader range of cryp-
tographic protocols and in particular the Groth-Sahai [44] and related proof systems. Moreover,
especially for compressing primitives they are of concrete practical interest beyond modular protocol
design, as we will discuss in this paper.

Unfortunately, there are known impossibility results of Abe et al. [6] establishing that strictly
structure-preserving commitments to source-group elements cannot be smaller than the input message
size and thus scale linearly with the number of group elements. In order to be compressing though,
for conventional commitments, there are some approaches that relax the SP setting by allowing
elements from the target group GT in the commitment [5,6] (see Sec.2.1). Another approach by Abe
et al. [7] is to construct SP commitments that have a relaxed notion of binding, where the message
space and the verification space differ (e.g., being Zp and G1 respectively). Nevertheless, these are not
strictly structure-preserving commitments and in particular do not allow to commit to commitments, a
features that is interesting for practical applications. When it comes to accumulators, to the best of our
knowledge, the approach that conceptually comes closest is that of determinantal accumulators [55].
While they are in spirit of SP primitives and their combination with Groth-Sahai proofs [44], the
focus of determinantal primitives is on designing primitives that can be modularity combined with
algebraic NIZKs in the vein of Couteau and Hartmann [25] and Couteau et al. [26]. Consequently, they
are not structure-preserving. For vector commitments, there is an impossibility result for algebraic
vector commitments in pairing-free groups [24], but this does not rule out the existence of structure-
preserving ones. While [24] notes that the impossibility of strictly SP commitments [5, 6] rules out
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constructing succinct vector commitments in this structure-preserving setting, we are not aware of
any work trying to bypass such an impossibility and thus this state of affairs is not satisfactory. This
leads us to the following question:

Can we design (vector) commitments and accumulators that retains algebraic structure, i.e., being
strictly structure-preserving, while being succinct?

Addressing this gap is crucial for advancing the field and our aim is to close it.

1.1 Our Results

Our contributions can be summarized as follows:

– We present the first construction of group-to-group commitments that are shrinking and strictly
structure-preserving, i.e., messages, commitments and openings are all elements in the source
groups G1 and G2. We obtain this by bypassing known impossibility results due to Abe et al. [5,6]
as we require a more structured message space and in particular a Diffie-Hellman (DH) message
space [3, 34]. Such a message space has recently shown to be relevant for various applications
[27,57].

– We present the first structure-preserving vector commitments (SPVC’s). As a warm up, we show a
(probably folklore) construction of weak-binding WSPVC from any EUF-CMA secure SPS scheme.
However as our main result, we turn to SPVC’s providing the conventional notion of position-
binding and present a construction of SPVC under the Diffie-Hellman Exponent (q-DHE) assump-
tion with a message space that is defined with respect to some global parameters (inspired by the
recent work by Griffy et al. [42] and q-DHE VC schemes [41,54]).

– We present the first structure-preserving accumulators (SPAs). We first discuss how a weak-
binding vector commitment WSPVC naturally yields an accumulator. Second, and more impor-
tantly, we introduce a generic construction that allows any SPVC to be applied in a black-box
manner to build an SPA in a strong model. In this setting, accumulators can be adversarially gen-
erated, leading us to define a SPA based on q-DHE in the strong collision resistance model. Third,
we extend q-DHE based SPA and construct a perfect randomizable SP accumulator starting for
another and in particular DH-type message space. Here we aim to hide the index (or position),
i.e., it should be possible to give out a witness and accumulated value such that they cannot be
linked back to the accumulated value. This is accomplished through a randomization technique
that ensures the randomized accumulated values do not reveal anything about the position of the
original accumulated value and DH-type messages.

1.2 Technical Overview

Strictly Structure-Preserving Commitments: Firstly, we present shrinking and strictly structure-
preserving group-to-group commitments, thereby bypassing aforementioned impossibility results by
using a structured message space. Considere therefore an asymmetric Type-3 pairing group: BG =
(p,G1,G2,GT , e, P, P̂ )← BGSetup(1λ) .

We start from the structure-preserving (bilinear pairing-based) Pedersen commitment scheme
proposed by Abe et al. [4], where the commitment public key consists of q group elements (X1, . . . , Xq)

from G1. To commit to (M̂1, . . . , M̂q) ∈ G2, a random element R̂ ∈ G2 is selected, and the commitment
takes the form:

C = e(H, R̂) ·
q∏

i=1

e(Xi, M̂i).

This commitment scheme can be shown to be binding under the Double Pairing Problem (DBP)
assumption.

Now, to shrink commitments into a single element in the source group G1, we leverage a variant
of the Diffie-Hellman (DH) message space [3,4,34]. Specifically, we consider messages of the following
form:

(M, N̂) = (M1, . . . ,Mq, N̂1, . . . , N̂q),

such that there exist mi ∈ Zp for 1 ≤ i ≤ q, satisfying:

Mi = Xi
mi , N̂i = P̂mi , ∀i ∈ [q].
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In other words, the commitment public keys are embedded in M, providing flexibility to generate
commitments in G1 as:

com := P r ·
q∏

i=1

Mi and Open := P̂ r .

Meanwhile, N̂ is used for verification. This still allows us to prove security under the DBP assumption
as the second group elements N̂ along with R̂ can be used to break the assumption, similar to
the security proof in [4]. Thus, a DH message space circumvents certain constraints by enabling
commitments in one group while verification occurs in another. At the same time, the random group
elements or commitment keys remain/encode in the same group as the committed messages.

Vector Commitments. Then we shift our attention to vector commitments. As a preliminary step,
we present a weakly binding structure-preserving vector commitment (WSPVC), where commitments
are generated honestly. We demonstrate that this can be realized through a generic construction
based on any compact structure-preserving signature (SPS) scheme, effectively yielding a structure-
preserving accumulator. We defer this construction to Appendix A. This construction directly yields a
first SP accumulator, though only in a weak setting and in particular a setting where the accumulator
has been computed honestly.

We then construct a SP vector commitment from the q-DHE assumption. Our construction is
inspired by the q-DHE based mercurial commitment scheme from Libert and Yung [54], which however
is not SP and just commits to scalars. To turn the underlying idea into a full-blown SPVC we use
two essential ideas. We again rely on a type of DH message space, but this time the messages to be
committed are generated with respect to a common reference string (CRS) i.e., instead of using X
we use q-DHE parameters to build messages. Latter idea is inspired by the recent construction of
strongly private mercurial signatures by Griffy et al. [42].

More precisely, each message is represented as a vector over G1 and consists of two main compo-
nents: i) the main message component M and ii) a tag vector T. Latter is derived from the CRS, and
helps to encode the position of the message in the vector (i.e., the commitments and the witnesses).
This structure is leveraged alongside mercurial commitments of Libert and Yung [41,54] to construct
our SPVC. A mercurial commitment takes the form:

C = P
∑

αi·mi ,

where (Pαi

)i∈[q] is the CRS (i.e., q-DHE elements). A key challenge in the structure-preserving setting
is the lack of direct access to discrete logarithms. To address this, we introduce a new messages
structure such that we encode messages implicitly in a mercurial vector commitment using Mi,0 =

Pmi ∈ G1 and Mi,1 = Mαi

i,0 = Bmi
i ∈ G1, where the αi are now available in encoded messages and

Bi = Pαi

are the CRS elements. This allows us to build a vector commitment over Mi,1 for all i ∈ [q].
To compute an opening for a committed message at some index i, mercurial commitments employ

a shifting technique to create a prof for a message mi as:

P
∑

j ̸=i mjα
q+1−i+j

.

This transformation ensures that the message for which we want to generate a proof is always posi-
tioned at q+1. Since we do not have Pαq+1

, it is naturally the missing element in the proof. However,
during verification, it can still be checked using gmi

t and this element can actually be explicitly in-
cluded in the proof π – indeed, the security follows from the fact that the adversary does not know
αq+1, so it is not able to prove a message at this position – while other messages are shifted to
positions within the range [q+1, 2q]. The commitments are also shifted accordingly in the same way,
i.e., e(C, P̂αq−i+1

). Clearly, when mi is known and one has access to q-DHE parameters, this proof
can be computed efficiently.

In our case, since mi is unknown, it is pre-encoded with α using our message space and q-DHE
elements. This ensures that when messages are shifted (as required for mercurial VC proofs), the
necessary elements remain available for proof generation. We assign these elements as tag components
and as part of our messages e.g., T = (Pαj ·mi) for i ∈ [q] and j ∈ [i+1, q+i]\{i} (note that the details
of how j is defined will be clarified and further explained in the construction section), playing a crucial
role in encoding the missing terms during proof construction. We note that verifying messages of the
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form M = Pαi·mi requires a slight modification of the verification equations. Instead of checking

e(C, P̂αq−i+1

) = e(π, P̂ ) · gmi
t or e(π, P̂ ) · e(Pα, P̂αq

)mi ,

we set it to
e(C, P̂αq−i+1

) = e(π, P̂ ) · e(Pαi·mi , P̂αq+1−i

).

This approach enables verification while still allowing the binding proof to be performed.
We can view this message structure as a generalized DH message space built on q-DHE parameters.

Finally, we structure the messages based on the q-DHE assumption in such a way that verifying the
correctness of the message structure enables the extraction of discrete logarithms in security proofs
and ultimately reduces binding to the q-DHE assumption. The message verification has the form
e(Mi1, B̂j−i) = e(Tij , P̂ ) and e(Mi1, P̂ ) = e(Mi0, B̂i), where one uses the public elements B̂j−i from
the CRS.

q-DHE SP Accumulators (SPA). We then turn to the construction of SP accumulators with
stronger guarantees as the ones obtained from WSPVC. While there are results due to Catalano and
Fiore [23] which show how to construct accumulators from vector commitments in a generic way, this
idea does not immediately apply to the structure-preserving setting.

Thus, we present a compiler (or generic construction) from vector commitments to accumulators,
demonstrating how any SPVC can be used to construct an SPA. Although our generic construction
is applicable to all types of vector commitments and can be extended to accumulators we focus
here on SP setting. An interesting observation when building accumulators from VCs is that we
achieve a somewhat stronger notion of collision resistance, where the accumulator is fully controlled
by the adversary. In contrast, in standard collision resistance definitions, accumulators are typically
generated by honest parties. Therefore, we introduce our generic constructions (i.e., the first structure-
preserving accumulators based on the q-DHE assumption in the strong model) along with a strong
collision resistance notion specifically tailored for black-box accumulator constructions derived from
VCs.

Perfect Randomizable Accumulators: It is clear that our generic construction—and consequently,
our q-DHE SP accumulators—utilizes SPVC, which inherently reveals the positions of elements within
the set. This can potentially compromise sensitive information, for example, in privacy-preserving
primitives such as ring signatures, where the accumulator is used to accumulate public keys, thereby
exposing indices, linking users, and breaking anonymity. To enhance privacy in such applications, we
aim for an approach where witnesses do not disclose any information about the elements. Thus, we
modify the q-DHE accumulator construction and introduce this as a q-DHE type Perfect Randomizable
accumulator.

The idea is to leverage the q-DHE SPVC but through the relations that are required to verify the
correctness of message/tag pairs:

e(Mi1, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi1, P̂ ) = e(Mi0, B̂i),

where B̂j−i are public elements from the CRS, thereby revealing the positions of elements in the
vector. To address this, we use a randomization technique to break this connection. Specifically we
pick a random value y ∈ Z∗

p and modify the verification equations as follows:

e(Mi1, Ŷ ) = e(T y
ij , P̂ ) ∧ e(Mi1, P̂

y) = e(Mi0, B̂
y
i ),

where B̂y
j−i is applied for all j, and Ŷ = (P̂ y, B̂y

i )i∈[q] is included as part of the tag. Moreover, the
verification of proof also checks the index as follows:

e
(
C, B̂q+1−i

)
= e

(
πi, P̂

)
· e
(
Mi1, B̂q+1−i

)
.

In a similar technique, we randomize the witness using a random ρ ∈ Z∗
p and include (B̂q+1−i)

ρ as
part of the witness. Assume that W1 = πρ

i and Ŵ2 = (B̂q+1−i)
ρ, then the verification equation takes

the form:
e
(
C, Ŵ2

)
= e

(
W1, P̂

)
· e
(
Mi1, Ŵ2

)
.
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Note that the verification prevents any leakage of the initial witnesses.
We show that the collision resistance of this construction can be reduced to the binding prop-

erty of SPVC in a strong model, i.e., where the accumulators can be adversarially generated. This
follows straightforwardly from SPVC, as commitments are generated by the adversary, and we use
the randomizers (ρ, y) to de-anonymize the witnesses and return the proofs for commitments in the
reduction.

Applications: Finally, in addition to the natural applications of VC and accumulators—such as
anonymous authentication, ring signatures, revocation in anonymous credentials, and data outsourc-
ing—we discuss their applications in the blockchain space in Sec. 6. Firstly, data availability sampling
[9, 45] which is a technique to achieve blockchain scaleability by reducing the amount of data clients
have to download. Roughly speaking clients with limited resources store a tuple com = (C1, . . . , Cq),
where each Ci is a KZG commitment [47]. With an SPVC, such a vector of KZG commitments can
be compressed into a compact commitment instead. Secondly, we Verkle Trees, which improve upon
Merkle Trees by using vector commitments at the leaf nodes to enable smaller witness sizes and more
efficient verification. But still it uses hash functions for all upper layers in the tree. Realizing alge-
braic Verkle Trees (AVTs) based on an SPVC enables seamless commitment to commitments without
switching between cryptographic primitives like VCs and hash functions.

2 Preliminaries

Notations. The main security parameter will be denoted by λ. We use BG = (p,G1,G2,GT ,
e, P, P̂ ) ← BGSetup(1λ) to denote a bilinear group generator for asymmetric type-3 bilinear groups,
where p is a prime of bit length λ. We use [q] to denote the set {1, 2, . . . , q}. When drawing mul-
tiple values from a set, we may omit notation for products of sets, e.g. (x, y) ∈ Zp is the same as
(x, y) ∈ (Zp)

2. For a map from the set Z to the set S, m : Z → S, we will denote m[i] ∈ S as the
output of the map in S with input i ∈ Z. We use bold font to denote a vector (e.g. V). For brevity,
we will sometimes denote the elements in a vector as V = (Vi)i∈[q] = (V1, . . . , Vq). Given a finite set
S, we denote by x ← S or x ←$ S the sampling of an element uniformly at random from S. For an
algorithm A, let y ← A(x) be the process of running A on input x with access to uniformly random
coins and assigning the result to y. With AB we denote that A has oracle access to B. We assume
all algorithms are polynomial-time (PPT) unless otherwise specified and public parameters are an
implicit input to all algorithms in a scheme. We use [a, b] to denote the range {a, a + 1, . . . , b}. Ad-
ditionally, |N | represents the length of N . By the symbol ≈, we denote indistinguishability between
two distributions D1 ≈ D2.

Diffie-Hellman Message Space. Over an asymmetric bilinear group, a pair (M, N̂) ∈ G1 × G2

is called a Diffie-Hellman (DH) message MDH [4, 34] if there exists m ∈ Zp s.t. M = Pm and
N̂ = P̂m. One can efficiently verify whether (M, N̂) ∈ MDH by checking e(M, P̂ ) = e(P, N̂). More
formally, the message space are elements of the subgroup of G1×G2 defined as the image of the map
ψ′ : Zp → G1 × G2 : x 7→ (P x, P̂ x). One can easily extend the message space to a vector of Diffie-
Hellman pairs (M, N̂) = (M1, . . . ,Mq, N̂1, . . . , N̂q) s.t. for all i ∈ [q], (Mi, N̂i) = (Pmi , P̂mi) ∈ MDH

for mi ∈ Zp.
We note that related notations exist, such as equivalence classes [37]. Given the vector M, the

message M represents an equivalence class of all scaled messages Mµ. This allows for randomizing
the message vector by switching between M and Mµ for any non-zero µ. This concept extends to
Diffie-Hellman message spaces, including Indexed DH [27] and tag-based DH message spaces [57],
where randomized DH message vectors retain their validity with respect to their tags. Although
latter variants are not directly related to our primitives, it provides useful context.

2.1 Structure-Preserving Commitments

A structure-preserving commitment scheme was proposed by Abe et al. [4]. The public key consists of
q+1 group elements (H,U1, . . . , Uq) from G1. To commit to (M̂1, . . . , M̂q) ∈ G2, a random element R̂ ∈
G2 is selected, and the commitment is computed as C = e(H, R̂)

∏q
i=1 e(Ui, M̂i). This commitment

scheme is computationally binding under the DBP assumption. Moreover, it is both a length-reducing
(constant-size) scheme and a homomorphic trapdoor commitment.
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2.2 Assumptions

Definition 1 (The Diffie-Hellman Assumption (q-DHE) [18]). Let G be a finite cyclic group of
order p, P be a generator of G. The q-DHE problem is, given a tuple of elements (P,B1, . . . , Bq, Bq+2, . . . ,

B2q) such that Bi = Pαi

for i = 1, . . . , q, q + 2, . . . , 2q and where α ←$ Z∗
p, to compute the missing

group element Bq+1 = Pαq+1

in the sequence. The q-DHE assumption now states that no PPT ad-
versary has more than negligible advantage in solving the q-DHE problem.

As shown in [41, 54], q-DHE can be modified so as to work in asymmetric pairing configurations
i.e., given {B1 = Pα1

, . . . , Bq = Pαq

, Bq+2 = Pαq+2

, . . . , B2q = Pα2q

; B̂1 = P̂α1

, . . . , B̂q = P̂αq

;

e(P, P̂ )α
q+1} it is hard to find Bq+1 = Pαq+1

.

Definition 2 ((Double Pairing Problem (DBP)) [4]). We say the double pairing problem holds
relative to BG if for any probabilistic polynomial-time algorithm A

Pr

[
BG← BGSetup(1λ);hz ←$ G∗

1

(Ẑ, R̂)← A(BG, hz) : (Ẑ, R̂) ∈ G∗
2 and 1 = e(hz, Ẑ)e(P, R̂)

]
≤ ϵ(λ)

This assumption follows from the decisional Diffie-Hellman (DDH) assumption in G1. By swapping
G1 and G2 (assuming DDH in G2), we obtain a dual assumption. Hence, if DDH holds in both G1

and G2, DBP holds in both groups.

2.3 Vector Commitments

Definition 3 (Vector Commitment [23]). A vector commitment is a tuple of algorithms defined
as follows:

KeyGen(1λ, q): Given the security parameter λ and the size q of the committed vector, the key
generation outputs some public parameters pp (which implicitly define the message spaceM and
are input to all algorithms).

Commit(m1, . . . ,mq): On input a vector of q messages (m1, . . . ,mq) ∈M and the public parameters
pp, the committing algorithm outputs a commitment com and auxiliary information aux.

Open(m, i, aux): This algorithm is run by the committer to produce a proof πi that m is the i-th
committed message.

Verify(com,m, i, πi): The verification algorithm accepts (i.e., it outputs 1) if and only if πi is a valid
proof that com was created for a vector (m1, . . . ,mq) such that m = mi.

In addition, some applications require an update property (to update the commitment and the cor-
responding openings), which is defined using two additional (and optional) algorithms:

Update(com,m,m′, i): This algorithm is run by the committer who produced com and wants to
update it by changing the i-th message to m′. It takes as input the old message m, the new
message m′, and the position i. The algorithm outputs a new commitment com′ together with
update information U . In particular, notice that in the case when some updates have occurred,
the auxiliary information aux can include the update information produced by these updates.

ProofUpdate(com, πj ,m
′, i, U): This algorithm is run by any user who holds a proof πj for the message

at position j with respect to com. It allows the user to compute an updated proof π′
j (and an

updated commitment com′), such that π′
j will be valid with respect to com′, where m′ is the new

message at position i. The value U contains the update information needed to compute these
updated values.

VC should satisfy the property of position binding as follows:

Position Binding: This property ensures that a PPT adversary (with knowledge of pp) cannot
produce two proofs for the same position in a fixed commitment com that open to different values.
There are two flavors of this property:

– Weak Position Binding: Holds only for honestly generated commitments.
– Position Binding: Holds even for adversarially generated commitments.
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Weak binding suffices for stateless validation (e.g., in Byzantine agreement on updates [62]) and
can be easily achieved using accumulators. Position binding is essential in adversarial scenarios, like
transparency logs, where commitments are generated by log servers.

Definition 4 (Position Binding [23]). A VC satisfies position binding if, ∀i = 1, . . . , q, and for
every PPT adversary A, the following probability (taken over all honestly generated pp) is at most
negligible:

Pr

 Verify(com,m, i, π) = 1∧
Verify(com,m′, i, π′) = 1∧

m ̸= m′

∣∣∣∣∣∣((com, aux),m,m′, i, π, π′)← A(pp)

 ≤ ϵ(λ)
If we relax the above definition to hold only for honestly generated commitments com, we obtain the
weak position binding notion.

Definition 5 (Weak Position Binding [22, 41]). A VC satisfies weak position binding if ∀i =
1, . . . , q and for every PPT adversary A, the following probability (which is taken over all honestly
generated parameters) is at most negligible:

Pr

Verify(com,m, i, π) = 1 ∧ Verify(com,m′, i, π′) = 1 ∧m ̸= m′ st :
(pp)← KeyGen(1λ), (m, state)← A(pp),

(com, aux)← Commit(m), (i,m, π,m′, π′)← A(com, state)

 ≤ ϵ(λ).
Indeed, our constructions will satisfy a slightly stronger variant of this notion, where the adversary
is also given aux in the second phase.

Conciseness: This property requires that both the commitment and the opening for a position i are
of constant size, independent of the vectors length.

Hiding. VC can also be required to be hiding, meaning that one should not be able to distinguish
whether a commitment was created to (m1, . . . ,mq) or to (m′

1, . . . ,m
′
q) (both chosen by the adver-

sary), even after seeing some proofs for positions where mi = m′
i. However, hiding is not a crucial

property in the realization of VC and typically not considered.

2.4 Accumulators

We provide a formal a definition of static accumulators based on the definition given by Derler et al.
in [31].

Definition 6 (Static Accumulator). A static accumulator is a tuple of algorithms defined as
follows:

Setup(1λ, q): Take a security parameter λ and a parameter q. If q ̸= ∞, then q is an upper bound
on the number of elements to be accumulated. Return a key pair (skacc, pkacc), where skacc = ∅ if
no trapdoor exists.

Eval((skacc, pkacc),X ): This (probabilistic) algorithm takes a key pair (skacc, pkacc) and a set X to
be accumulated and returns an accumulator AccX together with some auxiliary information aux.

WitCreate((skacc, pkacc),AccX , aux, xi): This algorithm takes a key pair (skacc, pkacc), an accumulator
AccX , auxiliary information aux, and a value xi. It returns ⊥, if xi /∈ X , and a witness witxi

for
xi otherwise.

Verify(pkacc,AccX , witxi , xi): This algorithm takes a public key pkacc, an accumulator AccX , a witness
witxi , and a value xi. It returns true if witxi is a witness for xi ∈ X and false otherwise.

The above definition focuses on static accumulators. In contrast, dynamic accumulators enable the ac-
cumulated value and witnesses to be publicly updated whenever an element is added or removed from
the set. Various properties, such as being trapdoorless, universal, or supporting subset queries, are
associated with this primitive. For a comprehensive list of definitions, functionalities, and properties,
we refer to [14,31]. Here, we only consider the basic properties.

Security. One requires collision resistance which states that it should be computationally infeasible
to find a witness for any non-accumulated value x /∈ X .
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Definition 7 (Collision resistance [14, 31]). An accumulator scheme is said to satisfy collision
resistance if for all PPT adversaries A, the following advantage is negligible:

Pr

[
(skacc, pkacc)← Setup(1λ, q), (AccX , aux)← Eval((skacc, pkacc),X ),

(X , witxi
, xi)← AOW

(pkacc) : Verify(pkacc,AccX , witxi
, xi) = 1 ∧ xi /∈ X

]

where OW represent an oracle for the algorithm WitCreate. An adversary is allowed to query them
an arbitrary number of times. Note that if OW is queried for an element x /∈ X , the oracle outputs a
reject symbol ⊥.

2.5 Structure-Preserving Signatures

Structure-preserving signatures (SPSs) [4] are signatures where public keys and the signatures are
source group elements of a bilinear group, and verification will be done only using group-membership
tests and pairing-product equations. We recall the structure-preserving signature scheme FHS [37],
which also allows for the efficient and joint randomization of messages and signatures in public,
where the message space consists of group-element vectors. In this paper, message randomization is
not required; thus, we remove the randomization algorithms and the equivalence class relation concept
and to sign messages M of length ℓ− 1 one signs message (M, P ) and in verificaton checks whether
the ℓ’th element of the message equals P . For further details, see [37].

BGR(1λ): This algorithm on input of a security parameter λ outputs a bilinear group BG.
KeyGen(BG, ℓ): This algorithm on input of a bilinear group BG and a vector length ℓ > 1 outputs a

key pair (sk, vk) as sk← (xi)i∈[ℓ], and the public key vk← (X̂i)i∈[ℓ] = (P̂ xi)i∈[ℓ].
Sign(sk,M): This algorithm on input a M ∈ (G∗

i )
ℓ−1and a secret key sk, sets M′ = (M, P ) outputs

a signature σ as σ = (Z ← (
∏

i∈[ℓ]M
′xi

i )y, Y ← P
1
y , Ŷ ← P̂

1
y ).

Verify(M, σ, vk): This algorithm on input of a representative M ∈ (G∗
i )

ℓ, a signature σ and a public
key vk outputs a bit b ∈ {0, 1} if Mℓ = P and

∏
i∈[ℓ] e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ ).

3 Shrinking SP Commitments for DH Messages

We begin by constructing constant-size and strict structure-preserving commitments for group ele-
ments using a variant of Diffie-Hellman (DH) messages. By strict, we refer to the definition provided
in [6], which means that the messages, commitments, and openings are all confined to the source
groups G1 and G2.

Our construction is notable for bypassing the impossibility result of Abe et al. [6], which establishes
that strictly structure-preserving commitments to source-group elements cannot be smaller than the
input message size and scale linearly with the number of group elements.

In contrast, in a relaxed structure-preserving setting, constant-size commitments to group elements
can be achieved by allowing elements from the target group GT in the commitment [5,6] (see Sec. 2.1).
While including GT elements is acceptable when only witness indistinguishability is required for
accompanying Groth-Sahai (GS) proofs, it becomes problematic when zero-knowledge is necessary
(see [6]). Therefore, ensuring that group-to-group commitments remain entirely within the source
groups is crucial for achieving zero-knowledge, and it also allow one to commit to other commitments,
latter being very interesting for applications. Another way of bypassing this impossibility is done by
Abe et al. in [7], who construct SP commitments that are shrinking in a relaxed binding setting, e.g.,
where the message space for committing is Zp and the one for verification is G1.

Our approach is inspired by circumventing impossibility results and lower bounds in SPS [38,39],
achieved by switching from arbitrary group elements in the message space to a more structured mes-
sage space and in particular a Diffie-Hellman (DH) message space [3,34]. This has also recently been
used to construct the first threshold SPS in [27]. In doing so we obtain shrinking strictly structure-
preserving (group-to-group) commitments. The so obtained SP commitment scheme in nature is sim-
ilar to the γ-binding commitment scheme in [7], but is outputs not trapdoor and is strictly structure-
preserving, i.e., messages, commitments, and openings are all elements of the source groups G1 and
G2.

We first define a new DH message space MDH and then present a construction for shrinking
strictly structure-preserving (group-to-group) commitments based on this new DH message type.
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New DH Message Space MDH. We slightly adapt the DH message technique (cf. Sec. 2) to use a
distinct base element in G1 for each index i:

Definition 8 (DH Message Space (Mnew
DH )). Let the public parameters be a vector X of random

elements in G1 (e.g., X = (P xi)i∈[q]). We then define Mnew
DH as a DH message space, if the following

property hold: For the message vector (M, N̂) = (M1, . . . ,Mq, N̂1, . . . , N̂q) there exist mi ∈ Zp (1 ≤
i ≤ q) s.t. Mi = Xmi

i and N̂i = P̂mi for all i.

Note that membership in this message space can be efficiently checked by e(Mi, P̂ ) = e(Xi, N̂i). We
can obtain the plain messages P̂mi in G1 as well by simply switching the vector X to reside in G2

and keeping the vector M = Pmi in G1.

Construction. We introduce our group-to-group commitments, where the messages, commitments
are all restricted to the source groups G1 and G2. Despite this, the construction remains concise and
compact, achieving a compactness property.

Scheme 1 (Shrinking Strictly Structure-Preserving Commitment)Our commitment scheme
is composed of the following PPT algorithms:

KeyGen(1λ): Run BG = (p,G1,G2,GT , e, P, P̂ ) ← BGSetup(1λ). For i ∈ [q], choose Xi ←$ G1. Note
that X does not need to have structure, and therefore, we also can use a random oracle to generate
these elements.
Output the commitment key pk := (BG, X1, . . . , Xq).

Commit(pk,msg): Parse msg as ((M1, N̂1), . . . , (Mq, N̂q)) ∈ Mnew
DH (check if they are generated

correctly by e(Mi, P̂ ) = e(Xi, N̂i) for i ∈ [q]). Choose r ←$ Zp, and compute

com := P r ·
q∏

i=1

Mi ∧ Open := (R̂ = P̂ r).

Verify(pk, com,msg,Open): Parse msg as ((M1, N̂1), . . . , (Mq, N̂q)) ∈ Mnew
DH , and Open as R̂. Check

for well-formedness of the messages by e(Mi, P̂ ) = e(Xi, N̂i) for i ∈ [q], and abort otherwise.
Output 1 if and only if:

e(com, P̂ ) = e(P, R̂)

q∏
i=1

e(Xi, N̂i) .

Theorem 1. Scheme 1 is perfectly hiding. Furthermore, it is binding under the DBP assumption.

Proof. Hiding. This property is obvious as P r is a uniformly random element.

Binding. For an adversary A breaking the binding property of the commitment scheme, consider
the following adversary B: On input a DBP challenge (BG, hz), B sets Xi := hxi

z · P ξi for random
(xi, ξi)←$ Zp for i ∈ [q]. B aborts if Xi = 1 for any i, but this happens only with negligible probability.
B then runs A on pk = (BG, X1, . . . , Xq). If A returns a commitment com together with two different
valid messages and openings (N̂1, . . . , N̂q, R̂) and (N̂ ′

1, . . . , N̂
′
q, R̂

′), then B computes

Ẑ∗ :=

q∏
i=1

(
N̂i

N̂ ′
i

)xi

, R̂∗ :=
R̂

R̂′

q∏
i=1

(
N̂i

N̂ ′
i

)ξi

.

As it holds that e(com, P̂ ) = e(P, R̂)
∏q

i=1 e(Xi, N̂i) = e(P, R̂′)
∏q

i=1 e(Xi, N̂
′
i), and by the structure

of Xi, it follows that

1 = e

(
P,

R̂

R̂′

)
·

q∏
i=1

e

(
hxi
z · P ξi ,

N̂i

N̂ ′
i

)

= e

(
P,

R̂

R̂′

)
· e

P, q∏
i=1

(
N̂i

N̂ ′
i

)ξi
 · e(hz, q∏

i=1

(
N̂i

N̂ ′
i

)xi
)

= e

P, R̂
R̂′

q∏
i=1

(
N̂i

N̂ ′
i

)ξi
 ·(hz, q∏

i=1

(
N̂i

N̂ ′
i

)xi
)

= e
(
P, R̂∗

)
· e
(
hz, Ẑ

∗
)
.
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We first verify that the simulated inputs to A are correctly distributed. In KeyGen, each Xi distributes
uniformly over G1. Thus, the simulated parameters are statistically close to the real ones.

Moreover, note that since a valid output from A satisfies msg ̸= msg′, there exists an index
i∗ ∈ [q] such that N̂i∗ ̸= N̂ ′

i∗ . The view of A is independent of xi∗ as xi∗ is information theoretically

hidden in Xi∗ . Thus Ẑ∗ follows the distribution of
(

N̂i∗

N̂ ′
i∗

)x∗
i

. Since N̂i∗

N̂ ′
i∗
̸= 1 and xi∗ is uniform over

Z∗
p, we conclude that Ẑ∗ ̸= 1 with overwhelming probability.

Thus Ẑ∗, R̂∗ ∈ G∗
2 is a solution to the given DBP instance, and B succeeds with roughly the same

probability as A. ⊓⊔

4 Structure Preserving Vector Commitments

We next introduce our structure preserving vector commitment (SPVC) scheme over a message space
M ∈ G1 (or G2) within the standard position-binding model based on the q-DHE assumption, referred
to as q-DHE SPVC. Before diving into the construction, we define a structured message space built
on the q-DHE parameters, which can be viewed as a CRS. This design of a message structure on top
of a CRS is inspired by [42] (although their CRS and the way it is used differ from ours). Indeed,
this message space enables the construction of the SPVC based on the q-DHE VC schemes [41, 54]
in the strong model, i.e., transforming these constructions for m ∈ Zp into a structure-preserving
commitment. Furthermore, it allows us to extract the discrete logarithm of the messages in the proof
(see Lemma 1), reducing the construction to q-DHE.

Message Structure. Each message consists of vectors with q+1 elements over G1, where each vector
includes a main message component M of length 2, as well as a tag vector T with q−1 elements. The
structure of the vector and the definition of the message space Mpp,q are determined by the q-DHE
parameters (see Def. 1). The message space Mpp,q is defined according to these parameters.

Mpp,q =


((M1,T1), . . . , (Mq,Tq)) | ∃m = (m1, . . . ,mq) ∈ Zq

p s.t.∀i ∈ [q],

msgi = (Mi0 = Pmi ,Mi1 = Bmi
i = Pαi·mi , Tij = Bmi

j = Pαj ·mi)

where j ∈ [i+ 1, i+ q] \ {q + 1}

 (1)

Note that pp does not include Bq+1 = Pαq+1

, meaning that no index j = q+1 exist. We use bases in
G2 meaning B̂ = {B̂1, . . . , B̂q} to verify whether a vector is in the message space. Specifically, given
a message msg, we can check whether the pairing satisfies the relationship with respect to i and j as
defined in (1):

e(Mi1, B̂j−i) = e(Tij , P̂ ) ∧ e(Mi1, P̂ ) = e(Mi0, B̂i) (2)

Example: To clarify this process, let’s consider an example with q = 3.

msg1 = ((M10,M11), (T12, T13)) = ((Pm1 , Pα1·m1)︸ ︷︷ ︸
main part

, (Bm1
2 , Bm1

3 )︸ ︷︷ ︸
tag

),

msg2 = ((M20,M21), (T23, T25)) = ((Pm2 , Pα2·m2), (Bm2
3 , Bm2

5 )), and

msg3 = ((M30,M31), (T35, T36)) = ((Pm3 , Pα3·m3), (Bm3
5 , Bm3

6 )) .

Note that j cannot be q+1 (which is 4 in this example). Considering that Tij = Bmi
j = Pmi·αj

,
we get:

msg1 = ((Pm1 , Pα1·m1), (Pα2·m1 , Pα3·m1)),

msg2 = ((Pm2 , Pα2·m2), (Pα3·m2 , Pα5·m2)), and

msg3 = ((Pm3 , Pα3·m3), (Pα5·m3 , Pα6·m3)) .
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One can verify each message as follows: For msg1, (1) corresponds to the following three equa-
tions:

i = 1, j = 2 : e(M11, B̂2−1) = e(T12, P̂ )⇒ e(Pm1·α1

, P̂α1

) = e(Pm2·α2

, P̂ )

i = 1, j = 3 : e(M11, B̂3−1) = e(T13, P̂ )⇒ e(Pm1·α1

, P̂α2

) = e(Pm1·α3

, P̂ )

e(M11, P̂ ) = e(M10, B̂1)⇒ e(Pm1·α1

, P̂ ) = e(Pm1 , P̂α1

)

Similarly, for msg2 we obtain:

i = 2, j = 3 : e(M21, B̂3−2) = e(T23, P̂ )⇒ e(Pm2·α2

, P̂α1

) = e(Pm2·α3

, P̂ )

i = 2, j = 5 : e(M21, B̂5−2) = e(T25, P̂ )⇒ e(Pm2·α2

, P̂α3

) = e(Pm2·α5

, P̂ )

e(M21, P̂ ) = e(M20, B̂2)⇒ e(Pm2·α2

, P̂ ) = e(Pm2 , P̂α2

)

This process holds also the same for msg3.

Construction. Based on the q-DHE assumption, we now present a SPVC in the standard model
which ensures that the commitment can be generated even in the presence of malicious behavior.
In this model, tags are used to generate the proof/witness, while the main messages are used for
verification and commitment.

In the definition, we introduce an auxiliary subroutine (VerifyMsg) to verify the correctness of mes-
sages with respect to the scheme parameters. This is only to ease presentation and avoid duplication
in the presentation.

Scheme 2 (q-DHE SPVC) Our q-DHE SPVC scheme is defined as follows:

KeyGen(1λ, q): Given the security parameter λ and the size q of the committed vector, the key
generation picks α←$ Zp and outputs some public parameters:

pp =

(
BG, B1 = Pα1

, . . . , Bq = Pαq

, Bq+2 = Pαq+2

, . . . , B2q = Pα2q

;

B̂1 = P̂α1

, . . . , B̂q = P̂αq

; gα
q+1

t

)

Commit(msg1, . . . ,msgq): On input a vector of q messages (msg1, . . . ,msgq) ∈ Mpp,q, check if
messages are correctly generated via 1 ← VerifyMsg(pp,msgi) for all i ∈ [q]. Pick r ←$ Z and
output a commitment com and auxiliary information aux:

com =

C = P r ·
∏
i∈[q]

Mi1

 ∧ aux = r

Open(msg, i, aux): This algorithm is run by the committer to produce a proof πi that msg is the
i-th committed message:

πi =

Br
q+1−i ·

∏
j∈[q]\{i}

Tj,q+1−i+j


Verify(com,msg, i, πi): The verification algorithm accepts (i.e., it outputs 1) if and only if the mes-

sages are well-formed (i.e., 1 ← VerifyMsg(pp,msgi) for all i ∈ [q]), and also πi is a valid proof
that com was created for msgi:

e
(
C, B̂q+1−i

)
= e

(
πi, P̂

)
· e
(
Mi1, B̂q+1−i

)
VerifyMsg(pp,msg): Takes a message msgi = (M = (Mi0,Mi1),T = (Tij)) and verifies whether it is

well-formed with respect to the pp. It returns 1 if the following equation holds, and 0 otherwise.

e
(
Mi1, B̂j−i

)
= e

(
Tij , P̂

)
∧ e
(
Mi1, P̂

)
= e

(
Mi0, B̂i

)
where j ∈ [i+ 1, i+ q] \ {q + 1}.
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Our commitment scheme also allows for updates (cf. Sec. 2.3). Moreover, since all elements of the
scheme are group elements, we can consistently randomize commitments and messages. To emphasize
this randomization property, we define a new algorithm, Rand, specifically for this purpose.

Update(com,msg,msg′, i): This algorithm is run by the committer who produced com and wants to
update it by changing the i-th message to msg′i = (M′,T′). Check if the new message is created
correctly via VerifyMsg then outputs a new commitment com′ as: C ′ = (C/Mi1) ·M ′

i1.
Rand(com, aux, πi,msgi) → (com′, aux′, π′

i,msg
′
i): Randomize the commitment and proof for a ran-

domized message msg′i as: Pick a random µ←$ Zp and compute:

com′ = C ′ = Cµ ∧ π′
i = πµ

i ,

which is valid for the randomized message msg′i = (Mµ,Tµ). Update aux with µ, i.e., set aux′ =
µ · aux.

Correctness: If commitments are properly generated, then proofs will always satisfy the verification,
which can be seen as follows:

e(C, B̂q+1−i) = e

P r ·
∏
j∈[q]

Mj , B̂q+1−i


= e

(
P r · P

∑
j∈[q] α

j ·mj , P̂αq+1−i
)

= e
(
P r·αq+1−i

· (P
∑

j∈[q] α
j ·mj )α

q+1−i

, P̂
)

= e
(
Br

q+1−i, P̂
)
· e
(
(P

∑
j∈[q] α

j ·mj )α
q+1−i

, P̂
)

= e
(
Br

q+1−i, P̂
)
· e
(
P

∑
j∈[q] mj ·αq+1−i+j

, P̂
)

= e
(
Br

q+1−i, P̂
)
· e
(
P

∑
j∈[q]\{i} mj ·αq+1−i+j

, P̂
)
· e
(
Pmiα

q+1

, P̂
)

= e

Br
q+1−i ·

∏
j∈[q]\{i}

Pmj ·αq+1−i+j

, P̂

 · e(Pαi·mi , P̂αq+1−i
)

= e

(Br
q+1−i ·

∏
j∈[q]\{i}

Tj,q+1−i+j), P̂

 · e(Mi1, B̂q+1−i

)
= e (πi, P ) · e

(
Mi1, B̂q+1−i

)
Our main technical result is to prove that our scheme satisfies binding in the generic group model

(GGM) [65] for asymmetric (type-3) bilinear groups, for which there are no efficiently computable
homomorphism between P and P̂ . In this model, the adversary is only given handles of group elements,
which are uniform random strings. To perform group operations, it uses an oracle to which it can
submit handles and receives back the handle of the sum, inversion, etc., of the group elements for
which it submitted handles.

Before proving the binding property of our scheme, we further need the following auxiliary lemma:

Lemma 1 (Extraction of Discrete Logarithms from Valid Messages). Let pp be a public
parameter. If the messages satisfy the following conditions for all i ∈ [q]:

e(Mi1, B̂j−i) = e(Tij , P̂ ) and e(Mi1, P̂ ) = e(Mi0, B̂i),

then the adversary is able to extract the discrete logarithms {mi}i∈[q] such that:

mi = dlogBi
(Mi1) = dlogBj

(Tij) for 1 ≤ i ≤ q,

where j ∈ [i+ 1, i+ q] \ {q + 1}.
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Proof. For a fixed i, consider the values Mi0,Mi1, {Tij}i+q
j=i+1,j ̸=q+1 output by an adversary. With P

and {Bu}2qu=1,u ̸=q+1 being the values specified in pp, these values must now have the form:

Mi0 = P b0 ·
2q∏
k=1

k ̸=q+1

Bbk
k , Mi1 = P c0 ·

2q∏
k=1

k ̸=q+1

Bck
k , and Tij = P aj0 ·

2q∏
k=1

k ̸=q+1

B
ajk

k ,

where all bu, cu, aju are known to the adversary. For the remainder of this proof, all sums and products
are over k = 1, . . . , 2q with k ̸= q + 1, which will be omitted for notational convenience.

Using the structure of the Bj as defined in in Eq. 1 and taking the discrete logarithm in P we
obtain:

mi0 = b0 +
∑

bkα
k (3)

mi1 = c0 +
∑

ckα
k (4)

tij = aj0 +
∑

ajkα
k ∀j = i+ 1, . . . , i+ q, j ̸= q + 1 . (5)

Furthermore, by the verification equations e(Mi1, Bj−i) = e(Tij , P ) and e(Mi1, P ) = e(Mi0, Bi) we
obtain by a similar argument that:

mi1α
j−i = tij ∀j = i+ 1, . . . , i+ q, j ̸= q + 1 (6)

mi1 = mi0α
i . (7)

c0, . . . , ci−1 = 0: By combining Equations (3), (4) and (7) we obtain:

c0 +
∑

ckα
k = b0α

i +
∑

bkα
k+i .

Given that the lowest degree on the right hand side is i, we directly obtain that c0 = · · · = ci−1 = 0.

ci+1, . . . , cq = 0: By combining Equations (4) to (6) we obtain for all j:

c0 +
∑

ckα
k+j−i = aj0 +

∑
ajkα

k . (8)

As αq+1 does not occur on the right hand side, the term cq+1−j+iα
q+1 on the left hand side must be

0 for all j = i+1, . . . , i+ q satisfying j ̸= q+1. Thus, in particular for j = i+1, . . . , q, it follows that
ci+1 = · · · = cq = 0.

cq+2, . . . , cq+i−1, cq+i+1, . . . , c2q = 0: In (8), the highest degree on the right hand side equals 2q.
Thus, the coefficients of α2q+1 on the right hand side equals 0, i.e., c2q+1−j+i = 0 for all j =
i + 1, . . . , i + q satisfying j ̸= q + 1. This immediately yields cq+2 = · · · = c2q = 0 except for cq+i

corresponding to j = q + 1.

cq+i = 0: In the case that i = 1, there is nothing to prove as there is no cq+1 in (4). For i > 1,
consider the term cq+iα

q+j in (8) for j = q + 2. As α2q+2 does not exist on the right hand side, it
directly follows that cq+i = 0.

Combining the above observations we obtain that ck = 0 for all k ̸= i. Rewriting (8) now yields for
all j that:

ciα
j = aj0 +

∑
ajkα

k .

Comparing coefficients gives us that ajk = 0 for all k ̸= j and ajj = ci, such that tij = ciα
j .

Overall, this implies that Mi1 = P c0 ·
∏
Bck

k = Bci
i and Tij = P aj0 ·

∏
B

ajk

k = Bci
j , or equivalently

mi := ci = dlogBi
Mi = dlogBj

Tij for all j = i + 1, . . . , i + q with j ̸= q + 1. Thus, the adversary
must be able to extract the discrete log of the message, and thus by induction, must always know the
discrete logs of messages during the game. ⊓⊔

Theorem 2. Scheme 2 is binding in the Generic Group Model (GGM) assuming the q-DHE assump-
tion.
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Proof. Let A come up with a commitment (C, aux), an index i ∈ {1, . . . , q}, an valid openings πi
and π′

i to distinct messages (M,T), (M′,T′). By Lemma 1, we can now extract the corresponding
mi ̸= m′

i.
From the verification equations, it follows that:

e(πi, P̂ ) · e(Pαi

, P̂αq+1−i

)mi = e(π′
i, P̂ ) · e(Pαi

, P̂αq+1−i

)m
′
i

Simply rewriting yields e(πi/π′
i, P̂ ) = e(Pαi

, P̂αq+1−i

)m
′
i−mi , or equivalently e((πi/π′

i)
1/(m′

i−mi), P̂ ) =

e(Pαi

, P̂αq+1−i

).
Now, since mi ̸= m′

i, the latter relation implies that Pαq+1

= (πi/π
′
i)

1/(m′
i−mi) is revealed by the

collision, which contradicts the q-DHE assumption. ⊓⊔

Remark 1. We note that in the context of vector commitments (VC), the commitments do not need
to be hiding, which makes the inclusion of randomness r seem unnecessary. Moreover, the randomness
r is not required for the binding proof. Nevertheless, we retain it here as it might be useful for other
applications in the future or for achieving properties like hiding, which are not directly required in
our current setting.

Reducing Trust in CRS. The bilinear pairing-based construction typically requires either public
parameters generated in a trusted setup, which are linear in the number of elements added to the
Acc, or a trusted party with a trapdoor to compute it. Trust in parameter generation can be reduced
or removed using MPC protocols, such as [15]. Alternatively, Groth et al. [43] proposed updatable
reference strings, which allow any party to update them securely, as demonstrated in Ethereum’s
’powers of tau’ ceremony [61].

5 Structure-Preserving Accumulator

In this section, we introduce the concept of a structure-preserving accumulator (SPA) and demonstrate
how our vector commitment can be adapted into an accumulator, resulting in the first structure-
preserving accumulator of this kind.

SPA from (signature-based) Weakly Binding VC (Def. 4). A weakly binding vector com-
mitment can naturally be expressed as an accumulator, as both schemes are essentially equivalent
when the accumulator and the vector commitment are honestly generated. Consequently, the witness
becomes a signature for the element Mi, which is bound to specific public parameters

5.1 Blackbox Accumulators from SPVC

SPA from q-DHE VC: Catalano and Fiore [23] proposed a black-box construction of accumulators
based on vector commitments. Their approach involves creating a succinct commitment C to a vector
X = (x1, . . . , xq) through a vector commitment. The commitment C ensures that it is computationally
infeasible to open any position i to a value x′i different from the original xi. In their construction,
the accumulation domain is represented by the set D = {1, . . . , q}, and the accumulator is modeled
as a commitment to a binary vector of length t. Each bit i indicates whether the element i ∈ D is
included in the accumulator. Membership or non-membership of an element is verified by revealing
the corresponding position i of the commitment as either 1 or 0. However, it is not clear how to apply
this result to the SP setting as our SPVC is not suitable for committing to messages that are mapped
to integers i (i.e., messages index).

Compiler From Vector Commitments to Accumulators. We show in the following how any
SPVC can be used to construct a SPA. Actually, our generic construction achieves a somewhat stronger
notion of collision resistance, where the accumulator is fully controlled by the adversary. The adversary
is now considered to win if it is able to generate an accumulator and openings to more (i.e., at least
q + 1) distinct values than the upper bound of the accumulator allows for:

Definition 9 (Strong collision resistance). An accumulator scheme is said to satisfy strong
collision resistance if for all PPT adversaries A, the following advantage is negligible:

Pr

[
(skacc, pkacc)← Setup(1λ, q), (opt, {(xk, witxk

)}q+1
k=1,Acc)← A(pkacc) :

∀k ∈ [q + 1] : Verify(pkacc,Acc, witxk
, xk) = 1 ∧ ∀m ̸= n ∈ [q + 1] : xm ̸= xn

]
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Note that this definition is parametrized by the additional output opt requested from the adversary
A. Depending on how much information the adversary needs to provide, the model can be either
stronger or weaker. For our black-box accumulators from SPVC in the following, we set opt = ⊥,
meaning that A does not need to output anything here, which implies a stronger model.6 In the next
section, we will request the adversary to output some randomness.

Generic Construction: Indeed, the construction is very straightforward:

– Setup(1λ, q) first samples pp as the public parameters of the SPVC. Furthermore, it samples
pairwise distinct group elements (U1, . . . , Uq).7 The algorithm sets pkacc ← (pp, (U1, . . . , Uq)), as
well as skacc is set to ⊥.

– To compute the accumulator, Eval first pads X with random elements in the case that |X | ≤ q.
It then defines a mapping of the elements to the index set {1, . . . , q}, which is stored as aux. The
actual accumulator value Acc is then obtained by simply running the Commit algorithm.

– To create a witness for a value x, WitCreate first uses aux to re-identify the position ix cor-
responding to x, and then runs the Open algorithm on the corresponding inputs. It outputs
witx = (Uix , πx).

– The Verify now works canonically by outputting the result of the SPVC’s Verify algorithm.

The strong collision resistance of this construction can now be seen by a simple observation. If the
adversary can output q + 1 values and valid witnesses (corresponding to messages and openings of a
commitment) for a fixed accumulator value Acc (corresponding to a commitment value), at least two
witnesses witx, witx′ for x ̸= x′ must contain the same index ix = ix′ . Therefore, the corresponding
πx, πx′ are valid openings for the same position, immediately breaking the position binding property
of the SPVC.

5.2 (Perfect Randomizable) Accumulator based on the q-DHE VC

The above construction reveals the position of an element in the underlying vector commitment,
which unfortunately turns out to be insufficient for some privacy-enhancing primitives such as ring
signatures. In this case, revealing the index of public key which was used for signing would immediately
violate anonymity. Therefore, we are interested in an approach where the witness does not reveal
sensitive information (beyond the message), not even the index, which however turns out to be non-
trivial.

In the following, we now introduce such a (perfectly randomizable) q-DHE Structure-Preserving
Accumulator (q-DHE SPA) in which the witness does not disclose any information beyond the message
itself – not even its index. By making minor adjustments to the vector commitment scheme outlined
in Scheme 2, we achieve that the message is no longer tied to any specific position or element in pp.

To achieve this, we randomize the elements that reveal the positions. Specifically, the message
msgi and the associated tags can disclose the index through the relations e(Mi1, B̂j−i) = e(Tij , P̂ ) and
e(Mi1, P̂ ) = e(Mi0, B̂i) (i.e., the message/tag verification needs public elements B̂j−i). To address this,
we use a random value y ∈ Zp and replace the verification equation with the following: e(Mi1, Ŷ ) =

e(T y
ij , P̂ ) and e(Mi1, P̂

y) = e(Mi0, B̂
y
i ), where B̂y

j−i is applied for all j, and Ŷ = (P̂ y, B̂y
i )i∈[q] is

included as part of the tag. In the subsequent step, the verification equation e(C, B̂q+1−i) = e(πi, P̂ ) ·
e(Mi1, B̂q+1−i) is initially designed to confirm the positions of the messages with respect to B̂q+1−i. We
randomize this verification by picking a new random ρ ∈ Zp, modifying the equation to e(C, Ŵ2) =

e(πi, P̂ ) · e(Mi1, Ŵ2), where Ŵ2 = (B̂q+1−i)
ρ is part of the witness. By using the bilinear pairing

property, we can appropriately randomize πi with ρ, thereby ensuring that the verification remains
valid as intended.

We handle new and updated tags/messages values, and the randomization of witness ( or proofs in
SPVC) and commitments by defining two additional algorithms, UpTagMsg and Rand, which generate
tags for messages in the set and randomize the witness/accumulators, respectively. Since we now

6 Informally, e.g., setting opt to contain aux as well as the random coins used to generate the accumulator can
force the adversary to act semi-honestly. Alternatively, setting opt to contain only information for which
knowledge is typically proven in higher-level applications also offers additional flexibility in the design of
accumulator schemes.

7 E.g., one can set Ui = P i, it is only used for binding messages to specific public elements.

16



require some additional tag elements and their verification, we slightly adjust Def. 6 and Def. 7 to
reflect these properties.

Definition 10 (Extended Static Accumulator). A Extended static accumulator has the follow-
ing additional algorithms in addition to Static Accumulator Def. 6:

UpTagMsg(pkacc,X , y): Given a public key pkacc and a set X . For each msgi ∈ X , where msgi =
(Mi,Ti) ∈ Mpp,q, first check if the messages are correctly generated using SPVC.VerifyMsg then
output the updated messages/tags msg = (M,T, Ŷ) for all msg in X using a random y ∈ Z∗

p.
VerifyMsgTag(pp,msg): Takes a message and tag msg = (M,T, Ŷ), verifies whether it is well-formed

with respect to the pp.
Rand(AccX , witmsgi ,msgi, (µ, β, γ)): On input an accumulator AccX , witness witmsgi , message msgi

and randomness (µ, β, γ), compute a randomized accumulator and witness (Acc′X , wit
′
msgi) for a

randomized message msg′i with (β, µ, γ) ∈ Zp and output (Acc′X , wit
′
msgi ,msg

′
i).

We present the complete construction as follows:

Scheme 3 (q-DHE Accumulator) Let SPVC be the vector commitment in Scheme 2, our q-DHE
randomizable SPA is defined as follows:

Setup(1λ, q): Given a security parameter λ and a parameter q, run pp ← SPVC.KeyGen(1λ, q) and
set pkacc = pp and skacc =⊥.

UpTagMsg(pkacc,X , y): Given a public key pkacc and a set X , do the following:
– for each msgi ∈ X , where msgi = (Mi,Ti) ∈ Mpp,q, first check if for all i it holds that:

1← SPVC.VerifyMsg(pp,msgi) (i.e., the messages are correctly generated).
– for each msgi ∈ X check that Mi0 ̸= 1 (i.e., exclude m = 0).
– If it holds, update T = Ty.
– Compute Ŷ = (Ŷ0 = P̂ y, Ŷi = B̂y

i )i∈[q].
– Output the updated messages/tags (M,T, Ŷ) for all msg in X . We assume msg contains the

tags Ŷ.
VerifyMsgTag(pp,msg): Takes a message msg = (M,T) and tag Ŷ , verifies whether it is well-formed

with respect to the pp. Furthermore, check that Mi0 ̸= 1. It returns 1 if the following equation
holds, and 0 otherwise.

e(Mi1, Ŷj−i) = e(Tij , P̂ ) ∧ e(Mi1, Ŷ0) = e(Mi0, Ŷi)

where j ∈ [i+ 1, i+ q] \ {q + 1}.
Eval(pkacc,X ): Given a public key pkacc and set X it returns an accumulator accX together with the

aux as follows:
– Sample y ∈ Z∗

p, and run (M,T, Ŷ)← UpTagMsg(pkacc,X , y).
– Check for all if 1← VerifyMsgTag(pp,msgi) for all msgi = (M = (Mi0,Mi1),T, Ŷ) ∈ X .
– For a random r ∈ Zp set, compute:

AccX = C =

P r ·
∏
i∈[q]

Mi1

 ∧ aux = (r, y)

Note that AccX is similar to run SPVC.Commit(msg1, . . . ,msgq), where msgi = (M,T).
WitCreate(pkacc,AccX , aux,msgi): This algorithm takes a key pair pkacc, an accumulator AccX , aux-

iliary information aux, and a value msgi. It returns ⊥, if msgi /∈ X or 0 ← VerifyMsgTag(pp,
msgi), otherwise, compute a witness witmsgi for msgi: Pick ρ←$ Z∗

p, and compute witmsgiW1 =

Br
q+1−i ·

∏
j∈[q]\{i}

Tj,q+1−i+j

ρ

∧ Ŵ2 =
(
Ŷ ρ
q+1−i

)
=
(
P̂αq+1−i

)y·ρ
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Verify(pkacc,AccX , witmsgi ,msgi): This algorithm takes a public key pkacc, an accumulator AccX , a
witness witmsgi , and a value msgi = (M = (Mi0,Mi1),T, Ŷ). It returns true (i.e., it outputs 1)
if the message and tag are created correctly 1 ← VerifyMsgTag(pp,msgi) and check if witmsgi is
a valid witness for msgi ∈ X and false (i.e., it outputs 0) otherwise as:

e(C, Ŵ2) = e(W1, P̂ ) · e(Mi1, Ŵ2)

Rand(AccX , witmsgi ,msgi, (µ, β, γ)) → (Acc′X , wit
′
msgi ,msg

′
i): On input an accumulator AccX , wit-

ness witmsgi , message msgi and randomness (µ, β, γ), compute a randomized accumulator and
witness for a randomized message msg′i with (β, µ, γ) ∈ Zp as:

Acc′X = AccµX ∧ wit
′
msgi = (Wµγ

1 , Ŵ γ
2 ) ∧msg′i = (Mµ,Tµβ , Ŷβ).

This is valid accumulator-witness pair for the randomized message. Finally, aux is updated with
(µ, β, γ).

Note that one can also randomize only the witness without randomizing the messages or the accumu-
lator, i.e., by computing Wµ

1 , Ŵ
µ
2 as randomized witnesses. Moreover, the verification does not require

knowledge of message position (index), or public value that binds messages to specific positions.

Collision resistance: We take the strong collision resistance definition (cf. Def. 9), parametrized
with opt = (r, y, ρ). That is, we request the adversary to also output the randomness used to create
accumulators and the set X , i.e., to derive the messages msg = (M,T, Ŷ) as well as witness. The
challenger then checks whether the messages in the set are valid using VerifyMsgTag.

In higher-level protocols, this is equivalent to proving knowledge of (r, y, ρ) which in the formal
analysis allows a reduction to extract them. This is a meaningful assumption in many applications.
For instance, for ring signatures, one would need to prove that the key that was used for signing
corresponds to one of the public keys in the ring (i.e., before re-randomization).

Theorem 3. If the q-DHE Vector Commitment in Scheme 2 is position-binding, then the q-DHE
Accumulator in Scheme 3 is strongly collision resistant according to Def. 9 with opt = (r, y, ρ) as
explained above.

Proof. Let A be an adversary against the collision resistance property of Scheme 3. We show how to
build an equally efficient adversary B against the position-binding property of the vector commitment.
B receives as input the parameters pp, and sets pk = pp and sk =⊥ and send pk to A. At some point,
A hands to B a tuple (opt = (aux = (r, y), ρ), {(msgk, witmsgk)}

q+1
k=1,Acc). Notice that, in order to

break collision-resistance it must hold hat all messages are distinct and also:

∀k ∈ [q + 1] : Verify(pkacc,Acc, witmsgk ,msgk) = 1

Also all msg in X should be correctly generated as mentioned in UpTagMsg: msgi = (M,T, Ŷ)) for
all msgi ∈ X using VerifyMsgTag.

We note that both the accumulator C and π are the same as vector commitment and opening.
With the help of (y, ρ), now the reduction B can derandomize (Ŵ ′

2)
1/ρ·y, and this is equal to P̂αq+1−i

(from this, we can determine the required index i for msg′). Similarly, it derandomizes the tag as
well, T = T′1/y, to be able to check and pass VerifyMsg in the SPVC i.e., (M ′

i1, Bj−i) = (Tij , P̂ ). It is
clear that (W ′

1)
1/ρ·y and msg′i = (M′,T′) are now valid proofs for our vector commitment. Moreover,

B can compute locally πi = witi for a valid msg and index i, as all tags T for all messages in X are
available. This means the tuple ((accX = C, aux = r),msg,msg′, i, πi, π

′
i = (W ′

1)
1/ρ·y) will contradict

the position-binding property of the underlying vector commitment. ⊓⊔

Perfect Randomization We define a privacy property here inspired by signature adaptation in
SPSEQ signatures [37]. We want to guarantee that fresh and randomized accumulators, messages
and witnesses are indistinguishable, which is important to guarantee the unlinkability of witness
presentation. As fresh and randomized instances look identical and do not leak any information, the
messages are not associated with particular values or public parameters, thus making it infeasible to
identify their location in the set.
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Definition 11 (Perfect Randomization of Acc). An accumulator scheme provides perfect ran-
domization if for all λ, and for all pkacc ← Setup(1λ, q), and for honestly generated (pkacc,msgi,
AccX , aux, witmsgi), the following holds:
If Verify(pkacc,AccX , witmsgi ,msgi) = 1, then (Acc′X , wit

′
msgi ,msg

′
i)← Rand(Acc, witmsgi ,msgi) sat-

isfies that Verify(pkacc,Acc
′
X , wit

′
msgi ,msg

′
i) = 1 and the distributions satisfy (Acc′X , wit

′
msgi ,msg

′
i)

≈ (AccX , witmsgi ,msgi).

Theorem 4. The q-DHE Accumulator in Scheme 3 is perfectly randomizable.

Proof. Let (M,T, Ŷ) ∈ (G∗
1)

2×(G∗
1)

q×(G∗
2)

q, pkacc ∈ (G∗
1)

2q−1×(G∗
2)

q and α ∈ Z∗
p. An accumulator,

witness and messages/tags (msgi,AccX , witmsgi) satisfying Verify(pkacc,AccX , witmsgi ,msgi) = 1 are
of the form:

Acc =

P r ·
∏
i∈[q]

Mi1

 ,

wit =

W1 = (Br
q+1−i ·

∏
j∈[q]\{i}

Tj,q+1−i+j)
ρ, Ŵ2 = (P̂αq+1−i

)ρ·y


and msgi = (M,T, Ŷ)

On the other hand, for randomness (µ, β, γ) ∈ Z∗
p, the randomization algorithm Rand(Acc, witmsgi ,

msgi, (µ, β, γ)) outputs:

Acc′ =

P rµ ·
∏
i∈[q]

Mµ
i1

 ,

wit′ =

W ′
1 = (Brµ·γ

q+1−i ·
∏

j∈[q]\{i}

Tµγ
j,q+1−i+j)

ρ, Ŵ ′
2 = (P̂αq+1−i

)ρ·y·γ


and msg′i = (Mµ,T′µβ , Ŷβ)

which are uniformly random elements conditioned on Verify(pkacc,Acc
µ
X , wit

′
msgi , (M

µ,T′µβ , Ŷβ)) =
1. Indeed, each element is perfectly randomized with fresh randomness, so it is clear that Rand and
Eval are identically distributed for all (Acc′, wit′msgi ,msg

′
i). ⊓⊔

6 Applications

Compressing primitives such as accumulators and vector commitments are highly versatile tools and
can be used in many applications, as mentioned in the introduction. However, in this section, we
describe how our SPVC and SPA primitives can lead to new and interesting applications, in addition
to common ones.

6.1 Succinct Data Availability Sampling

Data availability sampling addresses a major blockchain challenge—scalability [9,45]. This approach
allows light clients to verify the availability and integrity of block data using multi-dimensional Reed-
Solomon codes within an erasure coding strategy. Ethereum has shifted from fraud proofs, as high-
lighted in [9], to validity proofs based on polynomial commitments, leveraging their homomorphic
properties. As a result, Ethereum aims to integrate this mechanism into its sharding protocol8. In
this setting, each blockchain validator, similar to light clients, only needs to store the commitment
instead of the full dataset and proof. However, within this multi-dimensional structure, clients with
limited resources must store a tuple com = (C1, . . . , Cq), where each Ci is a KZG commitment [47] to
a Reed-Solomon code (tensor code) [45]. We think this application can benefit from our SPVC schemes
8 https://notes.ethereum.org/@vbuterin/protodankshardingfaq
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by reducing the commitment size (and, consequently, the communication size) from 256 elements per
block to just one, allowing client storage to decrease from 256 KZG commitments per shard to a
single commitment. This is achieved by treating the commitment com of a block of data as a single
SPVC commitment.

In our approach, one can create a commitment to these KZG commitments for a more succinct
representation. Using our weakly binding SPVC, this can be achieved without significant modifications
to the KZG scheme or the SPVC itself. Also for q-DHE PSVC, we can easily extend the public
parameters of KZG with those received from the q-DHE PSVC to compute KZG commitments in
different bases. For example, assume we have (B1, B2, B̂1, B̂2) alongside (P xi

)i∈[q], where x is the
KZG trapdoor. We need to compute (Bxi

1 )i∈[q] and (Bxi

2 )i∈[q] to derive a KZG commitment with
respect to our SPVC message space.

6.2 Algebraic Verkle Trees

In a stateless blockchain client model, nodes do not store the entire state but rely on “witness”—compact
proofs that verify the necessary state for transaction validation. Verkle Trees9, which improve upon
Merkle Trees by using VCs at the leaf nodes, enable smaller witness sizes and more efficient verifica-
tion.

From a theoretical point of view, a key challenge has been the inability to commit to commitments
within the same algebraic structure due to the lack of structure-preserving VCs. Algebraic Verkle Trees
(AVTs) with the WSPVC resolve this issue, enabling seamless commitment to commitments without
switching between cryptographic primitives like hash functions. As already mentioned, WSPVC is
sufficient for stateless validation as commitments are always honestly produced through (Byzantine)
agreement on a sequence of updates. This can potentially simplify verification and reduce witness sizes.
AVTs also expand the Verkle Tree in both depth and width while maintaining constant-size proofs
by incrementally committing to VC commitments. Moreover, we can efficiently prove knowledge of a
message without needing to prove the pre-image of a hash in a SNARK.

We believe that the use of SPVC in AVTs can pave the way for future research, particularly in
optimizing scalability by integrating structure-preserving VCs into frameworks, which could lead to
more efficient techniques in stateless blockchain.

7 Conclusion and Future Work

In this paper, we show that strictly structure-preserving compressing primitives can be realized.
We present the first strictly structure-preserving commitment that is shrinking, and in particular,
constant-size. By employing a more structured message space—specifically, a variant of the DH mes-
sage space—we circumvent existing impossibility results. As our main contribution, we construct
structure-preserving vector commitments (SPVC) and accumulators (SPA). We begin by discussing
generic constructions and then provide concrete implementations under the Diffie-Hellman Exponent
assumption.

We view this work as the initial step toward building structure-preserving compressing primitives,
and the first stepping stone for further study in this direction. While our scheme gives good insight,
building a fully-featured, unrestricted solution remains an open problem for future research. One
interesting direction for future work is designing a vector commitment scheme that utilizes a more
natural message space—such as messages as simple as Pm —instead of relying on a CRS. Apart
from that, it would be interesting to explore methods of compressing and shrinking every message
msg, currently of size q, to constant or sublinear size as future work. Moreover, further exploration
of applications for our schemes appears to be a promising research direction.
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A Weakly Binding Vector Commitments

We present a simple compiler in which commitments are derived from signature public keys, with
auxiliary data including the corresponding secret keys and messages, while the opening/proof is simply
a signature. To bind a position to a message, we introduce public information (U1, . . . , Uq) ∈ M
into the public parameters, where random elements Ui are signed together with Mi as indices to
the messages. This approach is compatible with any compact SPS. We propose an instantiation of
WSPVC using the FHS signature [37], noting that message randomization is not required in this
context. This message randomization can be prevented by fixing the first element of the message
vector to a predetermined element U , which needs to be verified during the verification. We note that
WSPVC only applies in applications where the committer (or the party generating accumulators) is
honest, such as in algebraic verkle trees, where commitments are always honestly produced through
(Byzantine) agreement on a sequence of updates (see Sec 6.2 for more details).

In Sec. 4, we enhance our security model to present a structure-preserving vector commitment
with standard binding by incorporating message tags (identifiers). This ensures that messages will not
verify unless they are computed using a compatible setup with a Common Reference String (CRS).

We present our weakly binding vector commitment WSPVC, which, as mentioned above, can be
constructed from a structure-preserving (SP) signature, assuming the committer is honest and the
commitments are generated correctly.

Scheme 4 (Weakly Binding VC) A WSPVC is a tuple of the following algorithms:

KeyGen(1λ, q): Given the security parameter λ and the size q of the committed vector, the key
generation run BG = (p,G1,G2,GT , e, P, P̂ ) ← BGSetup(1λ), for i = 1, . . . , q, choose Ui ←$ G1

and outputs public parameters pp = (BG, U1, . . . , Uq).
Commit(M1, . . . ,Mq): On input a vector of q messages as (M1, . . . ,Mq) ∈ M ∈ Gq

1 and the public
parameters pp, output a commitment com and auxiliary information aux as follows: Run (sk, pk)←
SPS.KeyGen(1λ, 2) and then set

com = pk ∧ aux = (σ1, . . . , σq)

Where σi is a SPS signature on (Mi, Ui). For random y ←$ Zp, and using the FHS SPS as example:

pk = (X̂1 = P̂ x1 , X̂2 = P̂ x2) ∧ σi =
(
Z = (Ux1

i ·M
x2
i )1/y, Y = P y, Ŷ = P̂ y

)
Open(M, i, aux): This algorithm is run by the committer to produce a proof πi that M is the i-th

committed message. Pick the related signature σi ← aux and output a proof πi = σi for Mi.
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Verify(com,M, i, πi): The verification algorithm accepts (i.e., it outputs 1) only if πi is a valid proof
that com was created for Mi by verifying SPS.Verify(pk = com,Mi, σi = πi) = 1. For the FHS
signature scheme, this is defined as follows, parse the proof πi = (Z, Y, Ŷ ), the commitment
com = (X1, X2) and check:

SPS.Verify : e(Z, Ŷ ) = e(Mi, X̂2)e(Ui, X̂1) ∧ e(Y, P̂ ) = e(P, Ŷ )

Rand(com, πi): Randomize a proof for a message Mi as: Pick a random µ←$ Zp:

π′
i = (σ′

i = (Z1/µ.Y µ, Ŷ µ))

Theorem 5. If the SPS is unforgeable, then the WSPVC in Scheme 4 satisfies weak binding.

Proof (Sketch). The proof of binding is straightforward. If the signature is unforgeable, then the
commitment is position binding; specifically, a new proof requires a new signature on a different
message, which would violate the unforgeability of our signature scheme. ⊓⊔

Remark 2. Note that since the commitment serves as a public key and is independent of the message,
updating the commitments for a new message can be achieved simply by signing the new message.
Moreover, the message space for the commitment can be adapted by selecting a suitable SPS. Specif-
ically, we can configure the SPVC to handle unilateral messages, where messages are drawn solely
from either G1 or G2, or bilateral messages, which allow for a mix of elements from both G1 and G2.
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