Faster BGV Bootstrapping for Power-of-two
Cyclotomics through Homomorphic NTT

Shihe Ma!, Tairong Huang?, Anyu Wang?-3-4[0000-0002—1086-0288] (=) " 5y
Xiaoyun Wang2’3’475’6

! Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing,
China, msh24@mails.tsinghua.edu.cn
2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,
htr19@mails.tsinghua.edu.cn, anyuwang,xiaoyunwang@tsinghua.edu.cn
3 Zhongguancun Laboratory, Beijing, China
4 National Financial Cryptography Research Center, Beijing, China
5 Shandong Institute of Blockchain, Shandong, China
6 Key Laboratory of Cryptologic Technology and Information Security (Ministry of
Education), School of Cyber Science and Technology, Shandong University,
Shandong, China

Abstract. Power-of-two cyclotomics is a popular choice when instan-
tiating the BGV scheme because of its efficiency and compliance with
the FHE standard. However, in power-of-two cyclotomics, the linear
transformations in BGV bootstrapping cannot be decomposed into sub-
transformations for acceleration with existing techniques. Thus, they can
be highly time-consuming when the number of slots is large, degrading
the advantage brought by the SIMD property of the plaintext space. By
exploiting the algebraic structure of power-of-two cyclotomics, this pa-
per derives explicit decomposition of the linear transformations in BGV
bootstrapping into NTT-like sub-transformations, which are highly effi-
cient to compute homomorphically. Moreover, multiple optimizations are
made to evaluate homomorphic linear transformations, including mod-
ified BSGS algorithms, trade-offs between level and time, and specific
simplifications for thin and general bootstrapping. We implement our
method on HElib. With the number of slots ranging from 4096 to 32768,
we obtain a 2.4x~55.1x improvement in bootstrapping throughput, com-
pared to previous works or the naive approach.

Keywords: Fully Homomorphic Encryption - BGV - Bootstrapping -
NTT.

1 Introduction

Fully homomorphic encryption (FHE) allows anyone to compute over encrypted
data without access to the decryption key or the underlying plaintext. Thus,
FHE is useful in privacy-preserving computing like outsourced computation and
privacy-preserving machine learning [28,5]. Among the various FHE schemes,
when the data to be computed homomorphically are represented as integers,

2 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

the common choice of the underlying FHE scheme is BGV [7] or BFV [14].
BGV/BFV offers the single instruction multiple data (SIMD) functionality, in
which a plaintext encodes an array of elements and homomorphic operations are
performed simultaneously on each slot of the array.

The bootstrapping technique first proposed by Gentry [18] plays an impor-
tant role in FHE. By homomorphically decrypting the ciphertext, it refreshes the
noise in the ciphertext before the validity of the ciphertext is corrupted, thus
allowing for an unlimited number of homomorphic operations. The bootstrap-
ping of BGV has been studied extensively in the past years [19,11,22,16,17,30],
leading to significant improvements in its performance.

From an implementation standpoint, power-of-two cyclotomics are frequently
employed to instantiate BGV. A majority of FHE libraries, including SEAL [34],
OpenFHE [4], and lattigo [26], exclusively use power-of-two cyclotomics, which is
also the only cyclotomics recommended in the FHE standard [1]. However, in the
context of power-of-two cyclotomics, the existing techniques [22,11,17] for com-
puting the linear transformations in BGV bootstrapping are highly inefficient
when dealing with a large number of slots.

Let M denote the cyclotomic order and p the prime of the plaintext modu-
lus in the BGV scheme. Halevi and Shoup [22]| propose a method for enabling
fast linear transformations in bootstrapping, which requires M to have multiple
distinct prime factors so that the linear transformations can be decomposed into
multiple sub-transformations by leveraging the structure of the powerful basis.
Each sub-transformation has a dimension much smaller than the entire transfor-
mation, making it more computationally efficient. However, this decomposition
is impossible when M is a power of two, as M only has a single prime factor 2
and a trivial powerful basis structure. Furthermore, Halevi and Shoup’s method
requires that Z3},/(p) is a cyclic group, which is not the case when M is a power
of two and p = 1 mod 4.

To circumvent the cyclicity constraint on Z},/(p) when M is a power of two,
Chen and Han [11] design a linear transformation tailored for thin bootstrapping
where each slot stores only an integer. The algorithm is later revised by Geelen
and Vercauteren [17]. However, this method still computes the linear transfor-
mations as a whole, which means it still suffers from long running time when
the number of slots is large.

FHE applications over integers typically seek a large number of slots to fully
exploit the SIMD property [32,12]. Given that the dimension of the linear trans-
formations is equal to the number of slots, the poor performance of linear trans-
formations with a large dimension in power-of-two cyclotomics greatly limits
the flexibility of BGV bootstrapping, resulting in diminished compatibility with
the SIMD feature. This may account for why previous works opt for parame-
ters supporting at most 128 slots for BGV bootstrapping in power-of-two cy-
clotomics [11,33] and why most FHE libraries (except HElib) do not support
BGV/BFV bootstrapping. Therefore, accelerating the linear transformations in
BGYV bootstrapping is crucial if we want to exploit both the NTT efficiency of
power-of-two cyclotomics and the SIMD property of BGV.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 3

1.1 Our Techniques and Results

Our basic observation is that the primary component of the linear transfor-
mation in BGV bootstrapping can be interpreted as an NTT, and thus can
be decomposed into linear sub-transformations based on fast-NTT algorithms
(such as the Cooley-Tukey algorithm [13]). This opens up the potential for an
accelerated linear transformation in BGV bootstrapping by considering the ho-
momorphic evaluation of these sub-transformations. Although NTT in plaintext
has been extensively studied and various fast-NTT algorithms are known, the
scope of homomorphic evaluation presents unique challenges. General BGV lin-
ear transformations are typically implemented using a combination of funda-
mental transformations (i.e., one-dimensional linear transformations [20]). The
evaluation complexity of a general linear transformation is determined by its
specific form. Therefore, to achieve an efficient linear transformation in BGV
bootstrapping, it is essential to first ascertain the feasibility of decomposing the
NTT into multiple linear sub-transformations that can be evaluated efficiently.
This paper addresses this problem by proposing a concrete construction for such
a decomposition. Furthermore, we introduce several novel optimizations to both
the decomposition and the evaluation of sub-transformations. Our contributions
can be summarized as follows.

(1) We provide an explicit framework for homomorphic NTT in BGV boot-
strapping by leveraging the algebraic properties of power-of-two cyclotomics.
Specifically, we demonstrate that for any power-of-two M and prime p > 2, both
the NTT and its inverse can be decomposed into one-dimensional linear sub-
transformations. These sub-transformations exhibit different forms for different
p, as p affects the hypercube structure and the number of non-zero coefficients
in each factor of X™/2 4 1. For p = 1 mod 4, these one-dimensional linear trans-
formations all fall within the MatMullD type as defined in [20]. Furthermore, we
show that, based on the specific vector representation of each slot, the matrix
for each one-dimensional linear transformation is tridiagonal, which allows for
highly efficient homomorphic evaluation. For p = 3 mod 4, we demonstrate that
all but the first one of these one-dimensional linear transformations are of the
MatMullD type, which can be represented as matrices with six or seven diago-
nals. For further optimization, we illustrate how we can ‘fold’ multiple non-zero
diagonals of the matrices inside a single slot, thereby producing new tridiago-
nal matrices that correspond to one-dimensional linear transformations of the
BlockMatMullD type. This leads to reduced running time in most cases.

(2) We propose several further optimizations for the homomorphic evalua-
tion of linear transformations. Firstly, we show that the level-collapsing method
used in CKKS bootstrapping [10,23] can be adapted to our framework, which
allows for a trade-off between the time and depth consumption of homomorphic
linear transformations. Secondly, we introduce a modified Baby-Step Giant-Step
(BSGS) technique, which accelerates the homomorphic linear transformations
under certain conditions. Lastly, we demonstrate that our framework is applica-
ble to both thin and general bootstrapping, each with different optimizations.
For thin bootstrapping, where each slot stores an integer, we observe that some

4 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

sub-transformations can either be omitted or computed on a subfield (or sub-
ring) of each slot, thereby reducing the running time. For general bootstrapping,
where each slot stores a Galois field /ring element, we reorder the final transfor-
mation that moves slot coefficients from the power basis to the normal basis,
resulting in improved performance.

(3) We implement our approach for both general and thin bootstrapping
based on HEIlib with the optimization in [30]. The parameters have slot numbers
ranging from 4096 to 32768. The performance indicator is the bootstrapping
throughput, the ratio between the after-bootstrap capacity and the bootstrap-
ping time. The capacity of a ciphertext is defined as log,(ciphertext modulus/
bound of ciphertext noise). For thin bootstrapping, we obtain a bootstrapping
throughput 2.4x~13.4x that of prior works or the naive approach. For general
bootstrapping, the improvement in throughput is 15.2x~55.1x.

1.2 Related Works

FFT Based Linear Transformations in CKKS Bootstrapping. In [10,23],
it was shown that the homomorphic linear transformations in CKKS bootstrap-
ping can be decomposed into FFT-like matrices for acceleration. Our idea can
be viewed as an analogue of this approach for BGV bootstrapping. However, the
decomposition of linear transformations in BGV bootstrapping into NTT-like
matrices is significantly more complex than in CKKS. Firstly, as the cyclotomic
polynomial X™/2 + 1 splits in C, the linear transformations evaluated during
CKKS bootstrapping closely resemble the standard FFT. Conversely, in BGV,
XM/2 11 can be factorized into binomials or trinomials of degrees greater than
one, which correspond to incomplete Cooley-Tukey NTT or incomplete Bruun-
like NTT [8]. Secondly, each slot in a CKKS ciphertext stores a scalar value in C,
while a slot in BGV may store an element in a Galois field or Galois ring, which
can be interpreted as a vector of integers modulo the plaintext modulus. Conse-
quently, the linear transformations are purely inter-slot in CKKS bootstrapping,
while they are both inter-slot and intra-slot in BGV bootstrapping. This fact
complicates the form of the linear transformations and provides multiple design
possibilities. Thirdly, the slots in CKKS always form a one-dimensional vector,
while slots in BGV can form a hypercube with multiple dimensions. This further
complicates the linear transformations in BGV compared to those in CKKS. Fi-
nally, when the plaintext modulus of BGV is a prime power p” and each slot
stores an element in a Galois ring, it remains unexplored whether the factoriza-
tion of X™/2 41 modulo p” still enables efficient homomorphic NTT. Although
NTT in arbitrary algebras has been investigated by Cantor and Kaltofen, it is
realized through root adjoining [9], which is infeasible in the FHE setting.

Optimized Digit Removal for Large Plaintext Prime. In BGV bootstrap-
ping, the digit removal procedure is also a computationally expensive component.
This is particularly true when facilitating SIMD for power-of-two cyclotomics,
where the plaintext prime p scales with the number of slots. For instance, to

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 5

achieve 24 slots, p should be at least 2411 4+1 if p = 1 mod 4, or at least 2411 —1
if p =3 mod 4 [31]. As a result, it is necessary to leverage the technique intro-
duced in [30] to expedite the digit removal procedure in BGV bootstrapping
with a large p. However, in [30], the powerful basis decomposition method of
HElib [22] is employed to compute linear transformations, implying that the
linear transformations will dominate the running time of BGV bootstrapping
when the slot number is large. Therefore, our approach to accelerate the linear
transformations contributes to completing the final piece for efficient BGV boot-
strapping for highly-SIMD integer arithmetic in power-of-two cylotomics (e.g.,
p = 65537 with 215 slots for M = 216 cyclotomics).

1.3 Concurrent Works

Since there is an easy and efficient conversion between BGV and BFV cipher-
texts [3], advances in BGV bootstrapping directly apply to BFV bootstrapping,
and vice versa. Thus, a comparison between concurrent works on BGV/BFV
bootstrapping and this work is necessary.

Comparison with functional BFV bootstrapping. Both the works by Lee
et al. [27] and by Liu and Wang [29] focus on performing functional bootstrap-
ping on BFV ciphertext. The former work achieves functional bootstrapping
by decomposing a lookup table as the sum of step functions and computing
each step function separately. The latter work achieves functional bootstrapping
through Lagrange interpolation. It requires that only a small subset of the plain-
text space is used, and exploits such sparsity of plaintext for better efficiency.
In contrast, our work focuses on general (non-functional) BGV bootstrapping
without imposing any constraints on the plaintext. Since these works have dif-
ferent purposes and constraints from our work, we do not conduct experimental
comparisons between them.

Comparison with CKKS-based BFV bootstrapping. Kim et al. propose
to bootstrap BFV ciphertexts using CKKS bootstrapping [25]. Their method
has two main advantages. First, a CKKS plaintext always has M /4 slots, which
can be larger than that of a BGV/BFV ciphertext if each slot has an extension
degree greater than two. This means fewer digit-removal-like operations during
bootstrapping and better efficiency. Second, their bootstrapping time and us-
able levels after bootstrapping are independent of the size or number-theoretic
properties of the BGV/BFV plaintext modulus.

The major drawback of their method is that the bootstrapping time is pro-
portional to the ‘denoising factor’, which is the capacity gained through boot-
strapping. In contrast, the running time of our method is only determined by
the number-theoretic properties (not the size) of the plaintext modulus. More-
over, in traditional BGV/BFV bootstrapping (including ours), a decrease in
the plaintext modulus results in an increase in the denoising factor. Therefore,
when comparing the two methods, a decrease in the plaintext modulus implies

6 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

a larger denoising factor for our method, leading to a longer running time for
their method to achieve the same denoising factor.

This is demonstrated by our experiments under plaintext moduli of vari-
ous sizes. We observe that: their method performs best for very large plaintext
modulus, while our method is faster for medium-sized plaintext modulus (e.g., <
54bits). We believe these medium-sized moduli are adequate for most BGV/BFV
applications. Specifically, our experiments adopt the same ring dimension and
security level as Table 4 and 5 in their paper, with a plaintext modulus ranging
from 22 bits to 54 bits. The results confirm that our method has a bootstrap-
ping throughput 6.00 times (1.32 times) that of theirs under a plaintext modulus
of 22 bits (54 bits). The benchmarking results are available in Supplementary
Material A.

1.4 Comparison with another NTT-based BGV/BFV
bootstrapping.

A recent parallel work by Geelen [15] also accelerates the linear transforma-
tions in BGV/BFV bootstrapping in power-of-two cyclotomics by decomposing
them into NTT-like matrices. Their and our methods have some slight technical
differences, and thus are suitable for different scenarios.

For p = 1 mod 4, as the only difference between the two methods, the last
2D transformation in CoeffToSlot is a MatMul in our method while it is a Block-
MatMul in their method, meaning our method is faster.

For p = 3 mod 4, their method is faster than our Radix-2 method since their
middle matrices are MatMullD while ours are BlockMatMullD. Compared with
our Bruun method, matrices in their method also have fewer nonzero diagonals,
but their final matrix is a BlockMatMullD while it is a MatMullD in our Bruun
method. Thus, in the case of p = 3 mod 4, it can be difficult to predict if their
method or our Bruun method is faster.

2 Preliminary

2.1 Notations

— Let @p(X) represent the M-th cyclotomic polynomial, and let R, be the
quotient ring Z4[X]/(Pn (X)), where ¢ > 2 is an integer. The Euler function
is denoted by ¢(+), and thus deg(®ys) = ¢(M). This paper primarily focuses
on the case where M is a power of two, i.e., ®y(X) = XM/2 41,

— Let G be a finite group. The order of any g € G is denoted by ordg(g), and
the subgroup generated by ¢1,...,9 € G is represented as (gi1,...,q)-

— For positive integers a and b, we denote the set {0,1,...,a—1} as [a] and the
remainder of ¢ modulo b as [a], € [b]. For a set S and an integer a, we denote
axSfor{a-s|seS}, a+Sfor{a+s|seS}and[S], for {[s]ls|s € S}
We use [a, b] to denote the integer interval [a,b] () Z for simplicity.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 7

— Let a = i:ol a;2" be the bit decomposition of a k-bit nonnegative integer

a, we define BitRevy(a) = [a]or + Zf:_tl ap—1-i+¢2° for 0 < t < k, and
BitRev}, ,(a) = [a]g: +ak,12k’1+22:t2 ap—o—i+¢2" for t € [k]. In other words,
BitRevy,; reverses all but the lowest ¢ bits in a, while BitRev) , preserves
the highest bit and the lowest ¢ bits in a, reversing all other bits.

— Given an array of size 2% with elements a;,i € [2¥], we define BRy.+(a;) =
UBitRevy (i) and BRﬁﬁ’t(ai) = GBitRev] ,(i)- Both BRy; and BR?H are order-
two permutations on the array.

— All vectors are assumed to be column vectors, and all linear transformations
correspond to left-multiplying a column vector by a matrix. For a vector v
of length n, its i-th entry is denoted as v[i] for ¢ € [n], and the notation
v[i +: A] stands for the A-sized subvector (v[i],v[i + 1],...,v[i + A —1]).
For a polynomial m(z) = Z?:_Ol m;z’, the notation m[i +: A] stands for the
coefficient vector (mg, miq1,...,MitA—1).

— For an n x n matrix N, the entry at the i-th row and j-th column is denoted
by N[i,j], with ¢,5 € [n]. The i-th diagonal of N is the vector whose j-
th entry is N[j, [¢ + j]n]. Note that the i-th and j-th diagonals coincide if
i = j mod n. Let I, be the identity matrix of size n.

— The power (standard) basis of R, consists of X* for i € [p(M)]. Let M =
Mi M, ... M; be the factorization of M into prime powers. The powerful
basis of R, consists of Hle X, where X; = XM/Mi and e; € [p(M;)]. We
note that the powerful basis is identical to the standard basis when M is a
power of 2.

2.2 Galois Fields and Rings

Let p be a prime number. The Galois field with characteristic p and cardinality p?
is denoted by GF(p?), and the Galois ring with characteristic p” and cardinality
p"® is denoted by GR(p";d). In the special case where r = 1, it has GR(p;d) =
GF(p?). We introduce some conclusions about Galois rings that will be used in
subsequent proofs. Refer to [35] for the details of the following conclusions.

Hensel’s Lemma. Let f be a monic polynomial in Z,[X], and denote f =
fmodp € Zy[X]. Assume that f = gi1g2...gn, where g1,02,...,9n € Zp[X]
are pairwise coprime monic polynomials. Then Hensel’s lemma guarantees that
there exist pairwise coprime monic polynomials f1, fa, ..., fn € Zyr[z] such that
fzflfg..-fn and fz:gl for 1 <1< n.

Hensel’s Lemma can be generalized to extension rings. Let f be a monic
polynomial in GR(p"; d)[X], and denote f = f mod p € GF(p?)[X]. Assume that
f=g192---9n € GF(p?)[X], where g1,92,...,9, € GF(p?)[X] be pairwise co-
prime monic polynomials. Then there exist pairwise coprime monic polynomials

fi,f2y -y fn € GR(p";d)[X] such that f = fifa... fn and f; = g; for 1 <i < n.

The Group of Units. Assume p is an odd prime number. Let R = GR(p"; d)
and let R* denote the group of multiplicative units in R. Then it has R* =

8 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

G x Go, where G is a cyclic group of order p¢ — 1 and Gy is a direct product
of d cyclic groups each of order p™—!.

Primitive Element. There exists a nonzero element v € GR(p"; ml) such that

a) 7 has multiplicative order p™ — 1;

b) 7 is a root of a basic primitive polynomial” h(X) of degree I over GR(p"; m),
where h(X) divides XP"™ =1 1 over GR(p";m);

¢) GR(p";ml) = GR(p";m)[y] = {ao + a1y + ... + ai_1¥' "' 1 a; € GR(p";m)}.

Frobenius Automorphism. Let R = GR(p";m) and R’ = GR(p"; ml) = R[v],
where v € R’ is a primitive element. Define a map 7 : R’ — R’ by

m(ag+ a1y + ...+ a1y) =ao+ay? +.. 4+ ayTP"

for all ag,a1,...,a;_1 € R. Then 7 is an automorphism of R’ leaving R fixed
elementwise. Moreover, for o € R', m(«) = o if and only if o € R.

Throughout the remainder of this paper, the symbol £ will always denote
the Galois ring GR(p";d). If GF(p?) is represented as Z,[X]/f(X) for some ir-
reducible polynomial f(X), its power basis is defined as X* for i € [d]. The
power basis of a Galois ring is defined similarly. The normal basis of GF(p?) is
{BP" | i € [d]} for some B € GF(p?) where {8?" | i € [d]} is F,-linear indepen-
dent. The notion of normal basis can also be generalized to Galois rings using
the Frobenius automorphism.

2.3 BGYV Plaintext Space

The BGV plaintext space is Ryr = Zpr[X]/(Pa (X)), where p is a prime num-
ber, M is coprime to p, and r is a positive integer (known as the Hensel lift-
ing parameter). Let d = ordz: (p). It is known that @5/(X) factorizes into
L = p(M)/d irreducible and pairewise coprime monic polynomials of degree
d over Zyr, ie., Py (X) = Hf;ol F;(X). The Chinese Reminder Theorem pro-
vides an isomorphism between R, and [],, ., Zpr[X]/(Fi(X)). Specifically, let
n = X mod Fy(X) and let S C Z}, be a set of representatives of Z%,/(p), then
for any m(X) € R,r the isomorphism can be explicitly expressed as

Decode(m(X)) = (m(n*°),... 7m(778L71))s7;eS :

Note that Z,[X]/(Fi(X)) = GR(p";d). By denoting £ = GR(p";d), Decode
eventually induces an isomorphism between R, and £ L and the L coordinates
of £ are referred to as slots in the plaintext.

In the context of rotation operations in BGV, S is typically expressed as the

products of several generators, i.e., S = {[[;—, 97" | e; € [L;]}, where L; is the

TA non-constant monic polynomial A(X) over GR(p";m) is a monic basic primitive
polynomial if h(X) is a primitive polynomial over GF(p™).

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 9

order of g; in Z3;/(p,91,- - ,gi—1). By assigning the index (eq,...,e,) to the
slot [T, g5, the L slots can be organized into an n-dimensional hypercube. A
hypercolumn along the s-th dimension is composed of L, slots, where e; remains
constant for j # s and eg varies from 0 to Ly, — 1. It is evident that there are
L/Ls hypercolumns in the s-th dimension.

A dimension s is referred to as a good dimension if ordz: (gs) = Ls, other-
wise, it is termed a bad dimension. It is known that we can rotate all the L/L,
hypercolumns along the s-th dimension simultaneously with one Galois automor-
phism in a good dimension, or two in a bad dimension. Specifically, let ps; be the
rotation-up-by-one-slot operation along the s-th dimension that moves the slot
at index (eq,...,e,) to (e1,...,€s-1,[€s — 1., €s41,---,€n). Let 05 be the Ga-
lois automorphism that sends m(X) to m(X9¢). If this dimension is good, it has
ps = 05. Otherwise, for i € [Lg], it has pi(m) = 0% (m)-us(i)+0 L= (m)- s (i)’ for
some constants u(7) and pg(é)’ [20,21]. This rotation operation plays a pivotal
role in executing homomorphic linear transformations on the slots.

2.4 Homomorphic Linear transformations

Let T be a linear transformation from £F to £F. We say that T is a one-
dimensional linear transformation along the s-th dimension if the value in any
slot of T(«) only depends on the slots of the same hypercolumn along the s-
th dimension of a. One-dimensional linear transformations have been studied
extensively due to their role as fundamental building blocks of arbitrary linear
transformations on slots [20].

The one-dimensional transformations fall into two categories. The first type,
called MatMullD in HElib, is the one-dimensional &-linear transformation. A
MatMullD transformation T along the s-th dimension can be expressed as

T(m) = Z k(i)pL(m), for m € Ryr, (1)

i€[Ls]

where k(i) € Ryr are constants determined by T. When considering the restric-
tion of T on a hypercolumn k along the s-th dimension, it can be represented
as a matrix Ty, € EL=*L: Decode(k(i)) is composed of the i-th diagonals of all
Tk S.

The other type, called BlockMatMullD, is the one-dimensional Z,--linear
transformation. Specifically, a BlockMatMul1lD transformation T’ along the s-th
dimension can be expressed as

=3 S K0,5)07 (pim)). for m € Ry, (2)

jeld] ie[Ls]

where k(i,j) € Ry, are constants determined by T, and o is the Frobenius
automorphism. When considering the restriction of T’ on a hypercolumn k along
the s-th dimension, it can be represented as an Lg x Ls matrix T}€ such that each
of its entries is a Z,--linear transformation on £. Such an entry can be represented

10 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

as either a matrix in ngd or a linearized polynomial f(v) = 3.4 ajol (v),
where a; € £. Again, Decode(k(4,j)) is composed of the j-th coefficients of the
i-th diagonals in all T}’s (in the linearized polynomial form).

For a MatMullD or BlockMatMullD type one-dimensional linear transfor-
mation T along the s-th dimension, define DiagSet (T) C [L;] as the union of
the sets of the indices of nonzero diagonals in Ty, for k € [L/L,], where T} is
the restriction of T on a hypercolumn k. Since (i) in Equation 1 and (4, j)
in Equation 2 are composed of the i-th diagonals in all Ty, we can replace
‘4 € [Ls]” with ‘¢ € DiagSet (T)’ by omitting the zero diagonals. Moreover, for
two one-dimensional linear transformations T and T’ on the s-th dimension, their
composition satisfies

DiagSet (T’ o T)C{[a + b]L. | a € DiagSet,(T), b € DiagSet,(T')}

due to Equation 1 and Equation 2.

Hoisting. When computing multiple automorphisms on the same ciphertext,
the hoisting technique could be used to significantly speed up the computa-
tion [11,20]. In an ordinary automorphism, the decomposition of the ciphertext
before re-linearization is the most expensive part because it requires NTTs. When
hoisting is applied, the ciphertext is decomposed and moved into the NTT do-
main in the first step. Then, we can perform multiple automorphisms on this
ciphertext without further decomposition or NTTs.

2.5 BGYV Bootstrapping

BGV bootstrapping is categorized into two types, general bootstrapping [19,22]
and thin bootstrapping [11]. The general bootstrapping consists of four steps:
(1) decryption formula simplification; (2) CoeffToSlot transformation; (3) digit
removal; (4) SlotToCoeff. Given m € R,-, the CoeffToSlot moves the powerful
basis coefficients of m into the slots, where each slot is identified as a d-dimension
vector space w.r.t. the normal basis of £. In contrast, the SlotToCoeff is almost
the inverse of CoeffToSlot, moving the coefficients in slots (w.r.t. the power basis
of £) into the powerful basis in R,~. We omit the descriptions of (1) and (3)
because they are not the focus of this work. We can consider a simplified version
of CoeffToSlot that homomorphically computes the encoding map Encode(:) =
Decode~!(+), which is the most complicated part of CoeffToSlot and only needs
to be composed with lightweight transformations to be converted to the actual
CoeffToSlot. SlotToCoeff is also simplified as the decoding map Decode(-).

If each slot stores only an integer instead of a Galois ring/field element, the
bootstrapping is called a thin bootstrapping. In thin bootstrapping, the steps
come in a different order, namely (4)(1)(2)(3). The input ciphertext to SlotTo-
Coeff now encrypts a plaintext whose slots store integers instead of Galois ring
elements, which reduces the cost of SlotToCoeff. Since step (1) adds undesired
coefficients into the plaintext polynomial, an extra linear map is needed to clear
these extra coefficients. This map can be performed after CoeffToSlot in general
cyclotomics [22] or before CoeffToSlot in power-of-two cyclotomics [11].

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 11

2.6 Number Theoretic Transform (NTT)

In this paper, we focus on the NTT mapping which maps m € R, to (m mod
Fy(X),...,mmod F,_1(X)) € Hie[L] Zyr[X]/F;(X), where F;(X)’s are the ir-
reducible factors of @,;(X) defined in Section 2.3. The inverse NTT (iNTT) is
defined as the inverse of this map. There has been plenty of research about the
NTT/iNTT on the plaintext [24], and various fast NTT algorithms have been
proposed, such as Cooley-Tukey [13] and Bruun [8]. These algorithms typically
decompose NTT/iNTT into multiple layers to speed up the computation. We
do not delve into their details here, as we will present explicit decompositions of
NTT/iNTT within the framework of BGV linear transformations.

3 The Decomposition of Linear Transformations

As discussed previously, this section focuses on the decomposition of Decode and
Encode. Let @), (X) = HiL:_Ol F;(X), where F;(X) is the minimal polynomial of
n® and {s;}ie[z) € Z}y is a set of representatives of Zj,/(p). Then Decode can
be decomposed into two sub-maps Red and Eval, i.e., Decode = Eval o Red,
where Red is an NTT map from R, to [];c(z) Zpr [X]/F;(X) such that

Red(m) = (m mod Fy,m mod Fi,...,m mod Fr_1), for m € Ry,

and Eval is a map from [];c 7, Zp [X]/F;(X) to EL such that

Eval(mo(X),...,mr-1(X)) = (mo(n™),...,mr_1(n°*7")).

Both Red and Eval are Z,--linear transformations, and they can be represented
as matrices in (Z&*%) %L by identifying the input and output as vectors in (Z,)%
via coefficient embedding. Specifically, for m(X) € R,-, the i-th entry is the
vector mfid +: d] for i € [L]. For (mi(X))ie(r) € [1;e(r) Zpr [X]/Fi(X), the i-th
entry is the coefficient vector of m;(X). For £L, the i-th entry is the coefficient
vector of the i-th slot with respect to the power basis of £ = Z,-[X]/Fo(X).
When we represent a homomorphic linear transformation as a matrix, each of
its entries is an element in Zg?d.

Clearly Eval is a BlockMatMullD type one-dimensional linear transformation
such that its main diagonal is the only nonzero diagonal (in terms of an L x L
block matrix). Thus Eval and Eval~! can be computed by evaluating a linearized
polynomial in Equation 2 with ¢ = 0. In the remainder of this section, we focus
on the decomposition of Red (and Red™!) into linear sub-transformations for
power-of-two cyclotomics.

In the case when M is a power of two, it is known that Z}, = (—1,5) =
Lo X ZM/4 pr = 1 mod 4, ZR[/<;D> = <—1,5> = 7o X ZM/(4d)7 implying a 2-
by—% sized hypercube generated by g1 = —1,g2 = 5. The slots are indexed
into a 1D array by concatenating the second D-sized hypercolumn to the end
of the first one. If p = 3mod 4, Z},/(p) = (5) = Zps/(24)- The hypercube has

a single generator g; = 5 and collapses into a single dimension of size %. We

12 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

call the dimension generated by 5 (in both cases of p) the major dimension and
denote its size as D, i.e., D = L/2 = M/(4d) for p = 1mod 4 and D = L =
M/(2d) for p = 3 mod 4. We call the dimension generated by —1 (in case of
p = 1 mod 4) the minor dimension, which has a size of 2. We omit the subscript
s in ps, 05, s, pl, DiagSet, when they are related to the one-dimensional linear
transformations on the major dimension. The main result of this section can be
summarized as follows.

Theorem 1. (1) If p =1 mod 4, we have the decomposition

—1 -1
Red™ " = BRioy_ (2aD) log, () © Redpgr and

Redpy = Niog, (D)+1 9 - .. 0 N1,

where BR' is interpreted as a permutation on (Zg,,v)zD in the natural manner. For
J € [1,logy(D)], both N; and N;l are MatMullD transformations on the magjor
dimension with nonzero diagonals indexed by 277D x {—1,0,1}. Nigg, (p)4+1 and
its inverse are MatMullD transformations on the minor dimension.

(2) If p=3 mod 4, we have the Bruun-style decomposition

Red ™" = BRiog, (4D) log, (d) © Redpy and

—1
RedBR = NlogQ(D) 0...0 Nl7

where N1 and Nfl are BlockMatMullD transformations with nonzero diagonals
indexed by D/2x {—1,0,1}. For j € [2,logy(D)], N; is a MatMullD transforma-
tion with nonzero diagonals indexed by 279D x [—3,3], and N]-_1 is a MatMul1D
transformation with nonzero diagonals indezed by 277D x [—3,2]. Alternatively,
Red™! can also be decomposed in Radiz-2 style into

Red ™" = BRiog, (D) log, (d)—1 © Redpy and

Redpg = Niog (py ©--- 0 N,
where both N and N;71 are BlockMatMullD transformations with nonzero diag-
onals indexed by 279D x {—1,0,1} for j € [1,logy(D)].

Recall that for a one-dimensional linear transformation N along the s-th di-
mension, the number of rotations required to evaluate it equals |DiagSet(N)|. Ac-
cording to Theorem 1, both |DiagSet(N;)| and |DiagSet(Nj_l)| are small (usually
two to three) because they have only a few diagonals. Therefore, the compu-
tation time for the linear transformations in bootstrapping can be significantly
reduced by utilizing the decomposition presented in Theorem 1. In the subse-
quent discussion, we provide the derivation of Theorem 1 for two cases of p.
Moreover, in Section 3.1 and Section 3.2 we make the assumption that » =1 in
the plaintext modulus, implying that each slot corresponds to the Galois field
GF(p?). The general case where r > 1 (corresponding to the Galois ring case)
will be addressed in Section 3.3.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 13

3.1 The Case of p =1 mod 4

The set of representatives {s;}c(z) is chosen to be s¢,pie, = (—1)%5% for
e1 € [2],e2 € [D]. We note that the minor dimension is always good, while the
major dimension is good whenever p = 1 mod M. By [31], it has &y,(X) =
HieZZD (X4 — (%) over Z,, where ¢ € Z,, is a primitive 4D-th root of unity and
each factor is irreducible over Z,. Without loss of generality, we can assume that
Fy(X) = X4 — ¢, which leads to F;(X) = X9 — (% for i € [L]. To begin with,

we prove the following lemma.

Lemma 1. Let Fi(o) = FiA(X) for i € [L], and F(J = F(j I)Fz(i2 1J)D for1 <
j <logy(D) and i € [0,277D)U[D, D +279D), then it has

F9 = X% _ 52 for j € [0,logy(D)],i € 0,277 D) U[D,D +279D).

Proof. Clearly, the statement is true for j = 0. Now let 1 < j < log,(D) and
suppose the statement holds for j — 1 and i € [0, 2-U-DD)u [D +2-6G-D D).

By the definition of Fi(j) it has
1 1 1 5i- i—1 oj—1 5. — oJi—1
Fi(J) F(J)Fz(erZ BD (Xdzf ¢ 27)(XdzJ _ (Sisamin?)
for i € [0,277D) U [D,D + 277/D). Denote i = e;D + ey for 0 < e; < 1 and
0 < ey <279D, then s; = (—1)“15° and $;49-ip = (—1)e15°2+27' D Since ¢ is
a primitive 4D-th root of unity and 5% 'P.2/~1 = 2D 4 2/-1 mod 4D, we have
¢Piv2=i " = 5027 Then it follows directly that F7) = X4% —¢s:2 ¢

In addition, we denote Félogz(D)H) = [Liepn Fi(o) =Py (X).

The Definition of N;. Suppose m € R,-, then N; can be roughly viewed as
the linear transformation that maps (m mod Fi(j_l))ieljfl to (m mod Fi(J))ielj,
where I; is the range of 7 defined in Lemma 1. For the specific definition of Ny,
we need to handle the bit-reversal phenomenon to design matrices that can be
homomorphic evaluated efficiently. In our case, the bit-reversal primarily arises
due to the slots occupied by the two factors that combine into Fi(J) are in an
interleaving order. As an example, we illustrate the bit-reversal phenomenon in

the computation of m mod F() from m mod F() and m mod F(+)D/4

ure 1. Taking this into consideration, we first define vectors o; € (Zg)b for
0 < j <logy(D) + 1 as follows. The vector ay corresponds to a = Red(m) € £L.
For 1 < j <logy(D), we define a; such that

in Fig-

a;jli +k-277D] = (m mod Fi(j))[BitRevjvo(k) -d +: d
for i € [0,279D)U[D, D +277D), k € [27]. For j = logy(D) + 1, we define

Qog, (D)1 k] = m[BitReViogz(D)+1,0(k) ~d +: d]

14 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

Linear Combination as ZZ vectors Index of slot

Coo Zao 7
coo + co1 X+ 10X + e X3 ey bo\ Yag + a1 X = m mod Fi(l) i+D/8
=mmod F? cot Zal by + by X = m mod Fi(-%l—)D/4 i+D/4
C11 b1 7+ 3D/8
Fig. 1. An example of the butterfly structures in Redgé that leads to bit-reversal. a;,b;
and c¢;; are degree d — 1 polynomials in Z,[X].

for k € [2D].

For 1 < j <log,(D)+1, we define N; as the linear transformation that maps
o1 to o, where the coefficients of m are regarded as independent variables.
Denote Redgll% = Niog,(D)41 © - - - © N1, then it can be readily checked that

BR‘{ogf‘,(?dD),log2 (d) (Redgfl{(a))) =m.

Notably, the output of Redglli(a) is a permutated version of m’s coeflicients,
which is a common phenomenon in fast NTT algorithms. As in [10,23], we will not
reorder the slots into their ordinary order by computing the inverse permutation
homomorphically. Instead, we directly pass the output of Redgr and Redgrli to the
next stage of bootstrapping. This will not affect the correctness of bootstrapping,
similar to the observations in previous works on CKKS bootstrapping. This
is because: (1) the digit removal step is performed in a SIMD manner and is
insensitive to the order of the values in the slots; (2) the coefficients in each slot
remain as a whole group during the permutation, which makes it possible to
repack the output ciphertexts of digit removal.

Let N; € (Zﬁfd)LXL denote the matrix corresponding to N;. In Lemma 2,
we discuss the structure of the Njs. The proof can be found in Supplementary
Material B. An example illustrating the N;’s for D = 4 is provided in Figure 2
for a better understanding.

Lemma 2. (1) For j € [1,logy(D)], N; can be viewed as a 29 x 27 diagonal block
matriz. Fach block has a size of 2791'D x 27311 D, which has three non-zero
diagonals indexed by 279D x {—1,0,1}.

(2) When viewed as an L x L block matriz, Niog,(D)+1 has three non-zero
diagonals indexed by D x {—1,0,1}.

For j € [1,logy(D) + 1], all non-zero entries of N; in Zg?d are multiples of
14. All the above properties also hold for Nj_l.

Proof of (1) in Theorem 1. According to Lemma 2, for j € [1,log,(D)], N;
and Nj_1 can be viewed as

Ay 0

0 Ay’

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 15

[+ % TFO fox, FEO] [+ * i 1 fox, 9] [o0x, 52
* xl S FO o, FO| |+ * 0+, FV| | 105 F?
ok «FO| |1x5,FY " 15, | o1, F®
ST SO | 9 2'd D U 5l I RO LT S LYt I EE LY
Ve * *,F4(0) B O*,Ffj ’ Tx % 0*,F4m B 00*,FZ®
x| FO| |ox, Y * * 0%, FV| 105, F?
* * *,Fﬁ(o) 1*,F4(1) 1*,F4<1) 01*,Fi2)
i box o x5 FO [FP] | ; | |1, FY| |11, FP

E b 100, F®7 [000%, £

* * 10, F? | |010%, £

* * |lo1, 7P| |00k, B

___________ SN | EEENY ol B (£

* D 00%, FD| 100*,Fz®

* * 106, F? | 1204, F®

* * ||o,F?| |101%,F®

i * « |11, 7P | 1114, FP

Fig. 2. An illustration of Redgp for D =4 and p = 1 mod 4. A ‘+’ in matrices stands
for a nonzero entry that is a multiple of I, while a ‘*’ in the vectors means log,(d) bits
ranging from all zeros to all ones. Each slot stores part of the coefficients of m mod
Fi“). The (binary format of) indices of the coefficients are displayed along with the

corresponding F;j). E.g., ‘01, FéQ)’ means that this slot stores (m mod FéQ))[d +: d].

where Ag and Ay are D x D matrices, and A; is a linear transformation on the
t-th hypercolumn of the major dimension for 0 < ¢ < 1. Thus N; and Nj_1 are
linear transformations on the major dimension.

For Niog,(p)+1 and its inverse, the ¢-th hypercolumn of the minor dimension
consists of the ¢-th and (¢ + D)-th slot, where ¢ € [D]. The 2 x 2 submatrix

Niog, (D)+1[t:] Niog, (D)+1[t,t + D]
Niog,(D)+1[t:t + D] Nigg,(py41[t + Dt + D]

is a linear transformation on the ¢-th hypercolumn of the minor dimension.
Thus both Ny, (p)41 and its inverse are linear transformations on the minor
dimension.

For j € [1,logy(D)+1], N, is a MatMul1D transformation because each entry
of Nj; is a multiple of I;. The indices of nonzero diagonals in IN; and Nj_1 follow
directly from Lemma 2.

3.2 The Case of p =3 mod 4

In this case, we have s, = 5°! for e; € [D], and the only dimension in the hyper-
cube is good only if D = 2L According to [31], ¢as(X) factors into trinomials
ford > 2, i.e.,

Sy(X)= J[(X*= (" +)XY 4 @),
1E€LG 1 /(P)

16 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

where ¢ € GF(p?) is a primitive 4D-th root of unity, and each factor is an
irreducible polynomial in Z,[X]. Without loss of generality, we can assume that
Fo(X) = X94—(C+¢P)X Y2 4¢P+ which leads to F(X) = X9—(¢54-¢5P) X 4/2+
¢*(P+1) for 4 € [D]. Similarly, we have the following lemma.

-1

Lemma 3. Let F*) = F; fori € [D], and F¥) = F9"VFY D " for1 < j <

J
4 it
log,(D), i € [277 D). Then it has
F(]) — X2jd _ (<2j‘si + <2j'81p)X2j71d + C2j~Si(P+1)7

2

for 0 < j < logy(D) and i € [279D]. Moreover, the middle term is nonzero
except for j = logy(D).

Proof. The proof of the expression of Fl-(j) is similar to Lemma 1.
For the middle term, (2% + (¥ = 0 «— (&=l = 1 —
27 .5¢(p — 1) = 2D mod 4D. The remaining is easy to verify. a

The Definition of N;. Suppose m € R,-, we first define vectors a;; € (Zgr)L
for 0 < j < log,(D) as follows. The vector a corresponds to a = Red(m) € £L.
For 1 < j <logy(D), we define cr; such that

a;li +k-277D] = (m mod FV)[BitRev; (k) - d +: d]

for i € [279 D], k € [27].
For 1 < j < logy(D), we define N; as the linear transformation that maps
aj_1 to a;. Denote Redgfl{ = Niog, (D) © - -- © N1, then it can be checked that

BRiog, (24D) log, (d) (Redpg (@) = m.

In contrast to the case of p = 1 mod 4, the fact the Fi(j)s are trinomials com-
plicates the butterfly structure, turning its outputs from linear combinations of
two terms into linear combinations of four terms. For example, given two poly-
nomials fo(X) = X2 + sX* + ¢ and f1(X) = X?! — sX* + ¢ of degree 2k,
let [+ hX* € Z,[X]/fo(X) and I' + W XE € Z,[X]/f1(X), where s,t € Z,
and I, h,l', ' € Z,[X] with degrees less than k. Denote the polynomial recon-
structed from | + hX* and I’ + K’ X* as agg + ag1 X* + a10X?* + a1 X3F €
Zp[X1/(f1(X) f2(X)), where ago, ..., a11 are polynomials with degree less than
k. Then we have the following Bruun butterfly structure, where ‘*x’ represents a
non-zero entry in Z,.

ago * ok ok ok l l * ok ok ago
ag1 %k % h h * ok K ao1
= X AR 1| = X . (3)
aio * % l l * K % alo
a1l % % h h % % % a1

In the first layer of Red]gfll7 the i-th Bruun butterfly has two input slots ayli]
and agli + D/2], where the former stores I and h while the latter stores I’ and
h'. The output of this butterfly is stored in o [i] and oy [i + D/2].

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 17

The natural approach is to store the lower coefficients agp and agy in ay[i],
while the higher ones a1 and a;; are stored in a1 [i+D], i.e., in a non-bit-reversed
order. In this case, for j > 2, the four inputs to each Bruun butterfly in N; lie
in four distinct slots, which means each entry in o are Z,-linear combinations
of entries in a;_; and each entry of N; is a multiple of I;. We call this way of
constructing N; as the Bruun style. An example of N;’s for D = 8 is given in
Figure 3 for better illustration, while the formal statements about the structure
of N; are given in Lemma 4 and proved in Supplementary Material B.

S FO1 Jos, BV [+ v i e o BT [oos, B2
“FO o, PO | i it wn xfow, Y 00%, F?
x, F{% 0%, BV L* * 0%, FV 104, F®
,FS(D) -~ 0,Fél) I T T 0*,F3(1) _ 1(]*,F1(2)
S FO T BV |5 T T e ([, FY || o1, B®
o FO| |1, BV 1wt x| |, FY | | o1k, FP
,FG(O) 1,F2<1) PR 1*,F2(1) 11*,Fé2)
i # #| 6 FO) (1B | | xi o wd Tl EP] 115, F®
[+ % % « 1T00x, 5] [000x, 7
* % 00, F,?) 100%, F,?)
* ok ok 10%, F? 010, F¥
R 106, F2| | 1105, F®
v o+ |01, FEP| | 001, B
* || 01x, P 101, F®
* ok & k|| 11x, F? 011%, F®
i x |1 7?1114, P
Fig. 3. An illustration of Redgrl{ in Bruun-style for D = 8 and p = 3 mod 4. A ‘4’ in
matrices stands for a nonzero entry with the form of aolasz a1la/z for a; € Zp. Other
la2la/2 asly)o

symbols have the same meaning as in Figure 2.

Lemma 4. (1) In the Bruun-style decomposition, when viewed as D x D matri-
ces, N1 and its inverse have only three non-zero diagonals indexed by D/2 x
{~1,0,1}. Each entry in Ny and N{* has the form of [aOId/Q alId/Q} for

asly/2 asly/o
a; € Zy that may vary for each entry.

(2) For j € [2,logy(D)], N; can be viewed as a 2972 x 2972 diagonal block
matriz. Each block has a size of 2279 D x 2277 D, which has 7 non-zero diagonals
indexed by 279D x [—3,3]. Each entry in N; is a multiple of 15. These properties
also hold for Nj_l, except that the monzero diagonals of Nj_1 are indexed by
279D x [-3,2].

Reducing the Number of Nonzero Diagonals. As an optimization, we can
reduce the number of nonzero diagonals in the Bruun-style decomposition from

18 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

six or seven to only three by folding some nonzero diagonals inside each entry
of Nj.

To achieve this effect, we need to modify the output of the i-th Bruun butter-
fly in the first layer by storing agg and a1¢ in o [i] with ag; and aq1 in a4 [i+D/2],
i.e., in a bit-reversed order.

Suppose m € Ry, we first define vectors oy € (Z4,)" and o € (ZZP)M for
0 < j < logy(D) as follows. The vector ag corresponds to a = Red(m) € £L.
«y is defined by ay[2i] = a[i][0 +: d/2] and a([2i + 1] = aw[i][d/2 +: d/2] for
i € [D]. For 1 < j <logy(D), we define ; such that

o [2(i + k- 277 D) + ko] = (m mod F.7)[BitRev;1,0(2k + ko)d/2 +: d/2]

for i € [279D], k € [27] and k¢ € [2]. Moreover, a; is defined by a;[i][0 +: d/2] =
o [2i] and a;li][d/2 +: d/2] = aj[2i + 1] for i € [D].

For 1 < j < logy(D), we define N’ as the linear transformation that maps
;1 to a;. Denote Redyy = Niog,(py © - O N, then

Rediy = BRiog, (aD).log, (d)—1 © Red .

We call this kind of Redy as a Radiz-2-style one. An example of N;-’s for D=8
is shown in Figure 4 while the formal statements about the structure of N’; are
given in Lemma 5 and its proof is provided in Supplementary Material B.

(4 # 1xeF [xox, 7V] [# # 1Tx0s, £V [x00%, 7]
X+, FO| | X0+, FY # o # x0x, 7V | |x00%, F?
X5, FO| | Xx05, FO| |# # Xo0x, F | |X104, F”
#| 1% FO| | xow, B | # # x0x, FV | |x10%, F?
X, FO| | X16,FD |’ % # | |x1ED| T [xo1x, F?
X6, FO| | X1k, BV bo# #||x1FV| |x01x, F®
| |x6FO [x1, FY # o # || X1 FP | |x11x, B
i # #||xn, FO| |x1,F0 | | b # xR [x11s, FP)
Ex: 1l x00s, 7®7] [x000+, F*]
; X00%, F2 | |X100%, F®)
#! X10%, F? X010, Y
_______ # A4 xX0e P | X108, FY
X01x, F? |~ |x001%, F®)
X01x, F? X101, FY
: # #|| X115, F? X011, Y
i ' # #| | X1, FP | |x1115, F)

Fig. 4. An illustration of Redy in Radix-2 style for D = 8 and p = 1 mod 4. A
‘“«’ in vectors means log,(d) — 1 bits ranging from all zeros to all ones while a ‘X’
means a single bit running from 0 to 1. For example, when d = 8, ‘X0%’ stands for
(0000, 0001, 0010,0011, 1000, 1001,1010, 1011). Other symbols have the same meaning
as in Figure 2 and Figure 3.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 19

Lemma 5. In the Radiz-2-style Redggy , for j € [1,logy(D)], N’ can be viewed as

a 2971 x 2071 diagonal block matriz. Each block has a size of 273t D x 273+ D,

which has three non-zero diagonals indezed by 279D x {—1,0,1}. Each entry in

N’ has the form of [aOId/Q alId/Z] for a; € Z, that may vary for each entry.
J aslyz azly)s P

These properties also hold for N;_l.

Proof of (2) in Theorem 1. Clearly, all N;, N’ and their inverses are linear
transformations on the major dimension because it is the only dimension. The
indices of the nonzero diagonals stated in Theorem 1 can be directly derived
from Lemma 4 and Lemma 5.

According to Lemma 4, the entries of N; and N;l are multiples of Iy if
J € [2,logy(D)]. Consequently, these linear transformations are in MatMullD

type. The entries of N; and N;* have the form

|:a01d/2 alId/2:|
azly/ azly)o

for a; € Z,. These entries generally cannot be represented as a £-linear map.
Therefore, these matrices should be implemented as BlockMatMullD type trans-
formations.

On the other hand, according to Lemma 5, the entries of N;- and N;‘l have
the same form as N; in the Bruun-style decomposition. Thus, they should be
implemented as BlockMatMullD as well.

3.3 The Galois Ring Case

In this subsection, we give the proof of Theorem 1 for the case r > 1. Again, the
derivation is different for the two cases of p.

The Case of p = 1 mod 4. To begin with, we provide the factorization of
P (X) over Zy- using Hensel’s lifting.

Lemma 6. For p=1mod 4, it has &y (X) = HiEZZD (XT— (), where ¢ € Zyr
18 a 4D-th primitive root of unity.

Proof. Let p(X) = HiEZZD (X? —¢}) be the factorization into irreduible poly-
nomials over Z,, where (y € Z,, is a primitive 4D-th root of unity. By substituting
Y = X% we obtain ®y/4(Y) = HieZ;D (Y —¢{). This factorization can be lifted
to Z,- using Hensel’s lemma, giving

Dpa(Y) = H (Y — w;) for some distinct u; € GR(p").

€LY,

Note that u;w —1= @M/d(ui) = 0. Furthermore, the u;’s are primitive 4D-th
root of unity due to u; = () mod p and {; € Z, is a primitive 4D-th root of

20 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

unity. Since Zy, is a cyclic group, we can assume that u; = ¢ ‘for i € Z}p, where
¢ € Zyr is a 4D-th primitive root of unity. The lemma then follows directly by
replacing Y with X2, a

Note that the hypercube structure for the Galois ring case is identical to that
of r = 1. Based on the factorization presented in Lemma 6, we can define FZ-(])
and prove properties that are analogous to those stated in Lemma 1. Then by
defining the linear transformation N; in the same manner as in Section 3.1, we
can prove statement (1) of Theorem 1 using the method outlined in Lemma 2.

The Case of p = 3 mod 4. Again, we first provide the factorization of @, (X)
over Z, using Hensel’s lifting.

Lemma 7. Forp =3 mod 4, it has Prr(X) = [Licz: /1) (X (4¢P X2

P where ¢ € GR(p?;2) is a 4D-th primitive root of unity and each factor
is a polynomial in Z, [X].

Proof. Let ®&p(X) = HiGZZD (X%2 — (}) be the factorization into irreduible
polynomials over GF(p?), where (o € GF(p?) is a primitive 4D-th root of unity.
By substituting Y = X%2, we get ®pr/a(Y) = HieZZD(Y — () over GF(p?).
This factorization can be lifted from GF(p?) to GR(p";2) using Hensel’s lemma,
ie.,

Bongza(Y) = [(¥ —w),ws € GR(";2).

i€Zip

Similarly, the w;’s form the complete set of 4D-th primitive roots of unity in
GR(p";2), and we can assume that u; = ¢ for a primitive 4D-th root of unity
¢ € GF(p?). It only remains to prove that (Y —¢)(Y? — (") € Z,-[X], which is
equivalent to proving both —(¢? + ¢*P) and ¢!®*+Y) are in Z,.

Let 7 be a primitive element such that GR(p";2) = Z,-[y]. According to
Section 2.2, the unit group GR(p";2)* is isomorphic to Cpa_1 x Cpr-1 X Cpr-1,
where C; denotes a cyclic group of order i. Given that ordgryr;2)+(7) = p? -1
and ordgr(pr;2)+(¢) = 4D are both coprime to p, it follows that ¢ is a power of 7.
Furthermore, as 4D divides p? — 1, we can deduce that ¢ = v* for some integer k
that is divisible by (p? — 1)/4D. Let 7 be the Frobenius automorphism, we have

W(Cl + Czp) _ 71'(’7]” _i_,ykzp) — ,_ykzp + ,ykzp _ ,.Ykzp +’Y’“ _ Cz + Czp7
W(Ci(pﬂ)) - 7T(W,ki(pﬂ)) — 7kz‘(z)2+1>) - 7ki(zﬂrl) - Ci(p+1).
Thus, (¢* 4+ ¢?) and ¢*P*Y are in Z,, and the lemma follows directly. a

Drawing upon the factorization presented in Lemma 7, we are able to define
Fi(J) and establish properties that are same to those stated in Lemma 3. Sub-
sequently, we can construct the linear transformation N; in a manner consistent
with Section 3.2, and validate properties that are same to those in Lemma 4. In
addition, it can be verified that the methodology presented in Lemma 5 is still
applicable, thereby enabling us to prove statement (2) of Theorem 1.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 21

4 Algorithmic Optimizations of Homomorphic NTT

In this section, we introduce multiple optimizations based on the decomposition
in Theorem 1. In Section 4.1, we combine consecutive N;s to realize a tradeoff
between level consumption and running time. In Section 4.2, we modify the
logic of the BSGS-style linear transformation to reduce the number of unhoisted
automorphisms for better efficiency. In Section 4.3, we discuss the interaction of
our decomposed CoeffToSlot/Slot ToCoeff with general and thin bootstrapping.
Finally, we analyze and compare the asymptotic complexity of the previous and
our method in Section 4.4.

4.1 Combining Consecutive N;s

Note that the evaluation of each MatMullD or BlockMatMullD consumes a
multiply-by-constant depth. Thus evaluating all the N;s one by one will con-
sume a depth of logy(L), which can significantly diminish the remaining depth
after bootstrapping when L is large. This issue can be mitigated by combining
several consecutive N;s and evaluating the resulting composite linear transfor-
mations as a whole. We note that a similar technique, known as level-collapsing,
has been proposed for FFT-based CKKS bootstrapping in [10,23].

The properties of the composite linear transformations can be stated as fol-
lows.

Lemma 8. Let k € [1,1log5(D)] and 1 < j < k.
If p=1mod 4, then it has

DiagSet(Ny, .. .N;), DiagSet(N; ' .. N, 1)C27F D x [-2FF77 41, 21077 — 1],
If p =3 mod 4, then it has
DiagSet(Ny, ... N;)C27%D x [=3(2"TF=7 — 1), 3(2'TF 7 — 1)),
DiagSet(N; " .. N ')C277D x [-3(2"F 7 — 1), 2(2"F 7 — 1),
DiagSet(N;, ... N}), DiagSet(N; "' .. N~ 1)C27* D x [-2"FF77 — 1,216 — 1],
Specifically, if j = 1, all the RHS become 277D x [2F].

Proof. We prove the conclusions about DiagSet(Nj...N;) by induction on k.
When k = j, the conclusions are true due to Theorem 1. Suppose they hold for
some ko with j < k = ko < log,(D), we prove they still hold for k + 1. Since

DiagSet(Nj41...N;)C U [a + DiagSet (N ...N;)|p,
a€DiagSet(Ny11)

substituting DiagSet(Ny1) and DiagSet(Nj ... N;) with the corresponding values
in each case will lead to the desired results.
For the inverse transformations, the conclusions can be obtained similarly.
O

22 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

In the case of p = 1 mod 4, the composition of multiple N; may not be a
one-dimensional linear transformation if Njog, (py41 is included. Let p; be the ro-
tation operation along the minor dimension. According to Theorem 1, Niog_ (p)41
represents a MatMullD in the minor dimension, which can be implemented as
Niog,(D)+1(m) = ko(0)m + ko(1)p1(m) for some ro(0), xo(1) € Ryr. Thus, for
N=DNpo---oN; withl <k < log, (D) as in Lemma 8, which is a one-dimensional
linear transformation along the major dimension, the cross-dimensional trans-
formation Ny,g,(py41 © N can be computed in the form of

Niog, (D)+1 0 N(m) = Z k1(i)p'(m) + pr Z Ko (1)p'(m)

i€DiagSet(N) i€DiagSet(N)

for some k1 (¢) and ko(i) € Rp-. This is called a MatMulFull transformation [20].

4.2 Modified BSGS Style Linear Transformations

We note that a large number of slots L implies that the size D of the main
dimension is large. Thus the rotation keys for the main dimension should be
generated in a baby-step-giant-step (BSGS) way, which can reduce the number
of rotation keys from D to about 2v/D. As stated in [20], the BSGS method
chooses g = [v/D] as the ‘giant step’. Denote h = [D/g], it generates the
rotation keys for Galois rotations 6%, where either i € [g] (i.e., the baby steps)
or i € g-[h] (ie., the giant steps). Then for a good dimension, it has p = 6 and
MatMullD is implemented as

Tn(m) = Z " Z &' (5 + gk)p’(m) | , for m € Ryr, (4)
kelh] J€lgl

where x/(j4+gk) = p~9%(k(j+gk)). The p’ (m)’s are computed using the hoisting
technique, while the p9*s cannot be computed with hoisting because they have
different inputs. For a bad dimension, MatMullD is implemented as

Tn(m) =Y 0% [> K+ gk)0’ (m) + K" (j + gk)6? " (m) (5)
kelh] J€lg]

for m € R,r, where &/'(j + gk) = 079%(u(j + gk)x(j + gk)) and k" (j + gk) =
0=9% (1’ (j+gk)r(j+gk)). Again, 67 (m) and 7~ (m) are computed with hoisting
on m and 6~ (m) while #9* are computed without hoisting.

Modified BSGS Method for MatMullD. For a MatMullD map N along
the major dimension, define GiantSet(N) = {L%J | i € DiagSet(N)} and
BabySet(N) = {[i]p mod ¢ | ¢ € DiagSet(N)}. Then, we can replace ‘[h]’ with
‘GiantSet(N)” and ‘[g]” with ‘BabySet(N)’ in Equation 4 and Equation 5.

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 23

Our key observation is that the matrices that Redg%{ splits into usually
have either a small GiantSet or a small BabySet. For example, consider the
case of p = 1 mod4 and D = 2% for some integer k. Using Theorem 1 and
Lemma 8, consider two composite linear transformations N(U) = Ny ...N; and
N®) = Ngj ... Nj4 1. We have DiagSet(N(?)) = [~2¥F+1, 2% —1] and DiagSet(NV)) =
2k x [2¥]. Since g = h = 2*, we have GiantSet(N(®)) = {—1,0, 1}, BabySet(N(?)) =
[2F] and GiantSet(N() = [2¥], BabySet(N(1)) = {0}. If |GiantSet(N)| is small for
a linear transformation N, the number of unhoisted automorphisms (i.e., p9* and
69%) in Equation 4 and Equation 5 is greatly reduced.

In the other case where BabySet(N) is small, we exchange the role of j, k to
obtain the revised MatMullD in a good dimension

Nm)= > S K+ gk (m) |, (6)

jE€BabySet(N) keGiantSet(N)

where (5 + gk) = p~/k(j + gk), and the revised MatMul1D in a bad dimension

Nm)= > " 0’ (> K+ gk (m) + k(5 + gk)Hg’“D(m)> ;

jEBabySet keGiantSet(N)

where #'(j+gk) = 077 (u(j+gk)k(j+gk)), K" (j+gk) = 077 (4’ (j +gk)K(j +gk)).

Swapping the roles of j and k whenever |GiantSet(N)| > |BabySet(N)| en-
sures that the number of unhoisted automorphisms is minimized while the total
number of automorphisms is fixed. This reduces the running time since hoisted
automorphisms are cheaper than unhoisted ones.

In our example above, the sparsity of BabySet(N(!)) relies on the fact that
g = /D is a power of 2. However, this is not true if D = 225! for some integer
k. Thus, in this case, we choose g = 2**! and h = 2* so that the previous
optimizations are still valid. Compared to the original choice of g, such choice
of g will slightly increase the number of rotation keys from 2 - 2% to 3 - 2% by
about 6%.

Modified BSGS Method for BlockMatMullD. The tricks for MatMullD
can be applied to the computation of BlockMatMullD in either good or bad
dimensions.

When HElib computes a BlockMatMul1D transformation, p’(m)’s in Equa-
tion 2 are computed for all ¢ € [D] if the dimension is good. In a bad dimension,
0(m)’s are computed for all i € [D]. Let j = [i], and k = ng, these ciphertexts
are generated in two steps, (1) #9%(m) are generated from m with hoisting for
k € [h], (2) 0°(m) = 69(09%(m)) are generated from §9%(m) with hoisting for
J € [g]. Thus, we can still replace [g] with BabySet(N) and [h] with GiantSet(N)
for faster computation. The role of giant and baby steps can also be swapped if
|BabySet(N)| < |GiantSet(N)|, which reduces the number of hoisting precompu-
tations from |GiantSet(N)| + 1 to |BabySet(N)| + 1. If they are swapped, 67 (m)
will be generated from m and 6779%(m) will be computed from 67 (m).

24 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

4.3 Applying the Decomposition to BGV Bootstrapping

In this subsection, we describe how the decomposition of linear transformations
can be deployed into general or thin bootstrapping, including some modifications
to them for better efficiency.

Recall that Decode = Eval o Red and Red™! = BR o Redgﬁ, where BR is an
order-two permutation of the L - d slot coeflicients induced by some bit-reversal
map. Then the polynomial m € R, and its slot values « are related as

o = Decode(m) = Eval o Red(m) = Eval o Redggr o BR™'(m).

Decryption
Formula
Simplification CoeffToSlot Digit Removal SlotToCoeff

Coefficients myg ———> m \ / mo
Slots e! BR(m) —> BR(mg)

(s 7)) o
Il Il
Redgp o Eval™!(a) Eval o Redgg(BR(m))

Fig. 5. Workflow of general BGV bootstrapping. The slot values in BR(m) after Co-
effToSlot are identified with er with respect to the normal basis of £. Other slot values
are represented with respect to the power basis of £.

Applying to General Bootstrapping. The workflow of general bootstrap-
ping is illustrated in Figure 5. Note that the output of CoeffToSlot and the
input of SlotToCoeff is a permutated version of m or mg. This helps to avoid
computing BR and its inverse homomorphically, which will be rather expensive.

The CoeffToSlot transformation (corresponding to the Redgé oEval™!) is
followed by a BlockMatMullD transformation that moves the power basis coef-
ficients of each slot into the normal basis [22]. Denoting this transformation as
PtoN, the overall transformation applied is PtoN o RedgllDL o Eval~!, where PtoN
and Eval~! are slot-wise BlockMatMul1D. Denote the split Redgf{ as Redgé =
NG N As the first optimization, we merge Eval~! with N(!) to save a
multiply-by-constant level, which is a tradeoff between level and time. More-
over, this is free if N(!) is already a BlockMatMul1D. This trick is applied to both
SlotToCoeff and CoeffToSlot transformations, whether the bootstrapping is a
general one or a thin one.

As the second optimization, we merge PtoN with the N*) to save a multiply-
by-constant level, again increasing its running time if it is not a BlockMatMul1D.
However, we can avoid the extra cost by reordering N*). If p = 1 mod 4, all
N@s are either MatMul1D or MatMulFull. For p = 3 mod 4, N() is a BlockMat-
Mul1D and other N(¥)s are either MatMul1D (for Bruun-style decomposition) or
BlockMatMul1D (for Radix-2-style decomposition). Each entry of a MatMullD

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 25

or MatMulFull used here is a multiple of I, which is a linear transformation that
multiplies the input v € £ by some constant in Z,-. Note that such a multiply-
by-integer map remains the same regardless of the basis we use for £ (i.e., the
power basis or the normal basis). Thus, PtoN commutes with all N(V)s that are
MatMullD or MatMulFull. It is easy to see that there exists some integer j such
that N is a BlockMatMullD <= i < j. Then we can rewrite the overall linear
transformation as

NF) o, onUTD 6 (PtoNo N(j)) oNU=D o . on® o (N(l) o Eval_l).

In this way, we ensure that the number of BlockMatMullD transformations dur-
ing SlotToCoeff is minimized to max(j, 1). Since BlockMatMul1D is usually more
time-consuming than MatMullD, running time is saved by the reordering of
transformations.

Decryption
Formula
SlotToCoeff Simplification = CoeffToSlot Digit Removal
Coefficients myg / BR(ag) —> BR(a%) \
Slots ag Bo B a —> o
Il Il
p=1mod 4 Redpgr () Redgrl{ o Rm(f)
p = 3 mod 4, Bruun style Eval o Redpg () Rengl{ oEval™' o Rm(p)
p = 3 mod 4, Radix-2 style Eval o Redpg(cy) Rm' o Redgy o Eval ™' o Rm(f)

Fig. 6. Workflow of thin BGV bootstrapping. The SlotToCoeff and CoeffToSlot trans-
formations are compositions of different sub-transformations for different parameters.
All slot values are represented with respect to the power basis of £.

Applying to Thin Bootsgrapping. The workflow of thin bootstrapping is
illustrated in Figure 6. The permutation BR is also not computed homomorphi-
cally, similar to that in general bootstrapping.

SlotToCoeff (corresponding to Eval o Redpgr) is performed first on a thin
ciphertext, where each slot contains an integer instead of a Galois ring element.
Let the slot values of the input to SlotToCoeff be o € £F. If p = 1 mod 4, each
slot in Redpg () still stores an integer because the entry in Redpg is a multiple
of I;. This means the restriction of Eval on Redpgr () is an identity map and
can be omitted. For p = 3 mod 4, the value in each slot during the computation
of Redpp lies in the subring F' C € satisfying [F' : GR(p")] = 2 because each entry
of N; has the form of [aOId/Q @112 for a; € Zp. This means the linearized

az2ly/z azly/s
polynomials in the BlockMatMullD maps of Redgr and in Eval can be built on
F instead of on &, reducing the highest power of ¢ in the linearized polynomials
fromd—1 to 1.

26 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

Another feature of thin bootstrapping is that a trace-like map needs to be
applied to the ciphertext to clear the extra coefficients introduced by the decryp-
tion formula simplification. For a power-of-2 M, Chen and Han found that such
a map can be computed efficiently before CoeffToSlot [11]. As their core obser-
vation, for m € R, and 0 < k < log,(M/2), there is a map RMy : Ryr — Ryr,
satisfying RMy(m)[i] = 0 for [i]or # 0 and RM(m)[é] = m[é] otherwise. The cost
of RMy, is dominated by k& homomorphic automorphisms.

In Figure 6, Rm and Rm’ clear the extra coeflicients in BR(a*) introduced by
decryption formula simplification into BR(ayg). Using our FFT-like linear trans-
formations, the permutation BR satisfies

BRiog2(D)+l,log2(d)’ if p=1mod 4
BR = 4 BRiog,(D),log,(d)> if p = 3 mod 4, Bruun-style decomposition
BRiog, (D) log,(d)—15 if p =3 mod 4, Radix-2-style decomposition

For p = 1 mod 4, the indices of the coefficients of BR(«p) in Figure 6 form the set
d x [2D]. Le., BR(a*)[i] should be kept by RM if and only if the lowest log,(d) bits
of i are all zeros. Thus, we let RM = RMj,g, (4) and RM' be the identity map. Note
that we abuse the notation of RMy, : R, — Ry~ here to denote its corresponding
map on the slots, which is a €Y — &% map.

For p = 3 mod 4 and Bruun-style decomposition, the indices of coefficients
of BR(a) form d x [D] and RM = RMy,g, (4) suffices to clear the extra coefficients.
For Radix-2-style decomposition, the indices of the coeflicients of BR(cy) form
the set {BRiog, (D) log,(d)—1(7) | i € d x [D]} = d/2 x [D]. Thus, BR(a*)[i] should
be kept by RM if and only if the highest bit and the lowest logy(d) — 1 bits of
are all zeros. In this case, although we can clear BR(a*)[i] with [i] /2 # 0 using
RM = RMog, (d)—1, those undesired coefficients with indices in d/2 x [D/2, D — 1]
cannot be cleared. This means that the first D/2 slots in Redgy oEval ™! oRM(5)
will have the form of oy + bX %2, with b being the undesired coefficient. Thus,
an extra map Rm’ needs to be applied slot-wise to clear b in these slots. We note
that Rm’ can also be represented as a linearized polynomial in the subring F' C £
and can be incorporated into the last BlockMatMullD in Redgfl{ for free.

The optimizations for SlotToCoeff can also be applied to CoeffToSlot. For
p = 1 mod 4, Eval™! in CoeffToSlot can be omitted because Rm(j3) stores an
integer in each of its slots. For p = 3 mod 4, Rm(3) and the intermediate results
during the computation of Redgrli store an element in the subring F' in each
of their slots. Again, this means the linearized polynomials of Eval~! and the
BlockMatMul1D maps that Redgll{ splits into can be built on F instead of on &.

4.4 Asymptotic Complexity Analysis

In this subsection, we discuss the asymptotic complexity of linear transforma-
tions in BGV bootstrapping for both our method and the baseline approach. The
results are summarized in Table 1. For our method, the depth-time tradeoff of
combining Eval, N;, and PtoN can be ignored because the maximum number of

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 27

decompositions is logarithmic in L, rendering the depth consumption negligible
in the asymptotic analysis. For the baseline method, we assume that the rotation
keys are generated in the BSGS manner, and CoeffToSlot/SlotToCoef! is eval-
uated without decomposition. The complexity of both methods is estimated by
counting the number of unhoisted automorphisms and hoisting precomputation,
which are the most computationally expensive operations.

Table 1. Asymptotic complexity of linear transformations in BGV bootstrapping for
our method and the baseline method.

Complexity | Thin Bootstrapping General Bootstrapping

Baseline O(log,(d) + VL) O(d + L)

O(d - log, (L)) for Radix-2-style decomposition
Ours O(log,(d) + log, (L)) O(d + log, (L)) for other cases

For the baseline method, the whole CoeffToSlot/SlotToCoeff in thin boot-
strapping is a MatMullD [20,17], requiring a complexity of O(V/L). For both
methods, the complexity of RM and RM is O(log,(d)). In general bootstrapping,
CoeffToSlot and SlotToCoeff become BlockMatMul1D, thus having a complexity
of O(d + /L) according to [20]. Thus, the total complexity is O(logy(d) + VL)
for thin bootstrapping and O(d + v/L) for general bootstrapping.

For our method, the complexity of PtoN is O(d) for general bootstrapping,
while the complexity of Eval and its inverse is O(1) for thin bootstrapping and
O(d) for general bootstrapping. Each N; in our method has a computational com-
plexity of O(d) with the Radix-2-style decomposition in general bootstrapping,
and O(1) with other styles in general bootstrapping (as the only exception, Ny in
general bootstrapping with p = 3 mod 4 costs O(d)) and in thin bootstrapping.

5 Implementation

5.1 Experiment Setup

We implemented our approach in BGV bootstrapping based on HEIlib (com-
mit id 3e337a6) with the optimization in [30]. The code is available at https:
//github.com/msh086/bgv-bootstrapping-with-homomorphic-NTT. The se-
curity level of BGV parameter sets is estimated using the lattice estimator [2]
with commit id £d4a460. The experiments are conducted on a machine run-
ning Fedora 33 (Workstation Edition) equipped with a 3 GHz Intel Xeon Gold
6248R CPU and 1006 GB of RAM. The compiled program is executed in a single
thread, as in previous works on BGV bootstrapping [22,30].

Parameter selection. We set p to be of the form 2! & 1 for friendly integer
arithmetic, and choose it to correspond to a large number of slots L, ranging

https://github.com/msh086/bgv-bootstrapping-with-homomorphic-NTT
https://github.com/msh086/bgv-bootstrapping-with-homomorphic-NTT

28 Shihe Ma, Tairong Huang, Anyu Wang('&), and Xiaoyun Wang

from 4096 to 32768. The Hamming weight h of the main secret key is set to
120, aligning with the default value used in HElib. In accordance with previous
works [22,16,30], we choose the maximum ciphertext modulus @ to guarantee
a security level of at least 80 bits. The Hamming weight of the encapsulated
bootstrapping key [6] is chosen to have a security level of at least 128 bits to

defend against potential attacks on sparse secrets, which is consistent with the
choice in [30]. The selected parameter sets are displayed in Table 2.

Table 2. The parameter sets. h and A are the Hamming weight and the security level
of the main secret key, while h’ and A\’ are those for the encapsulated bootstrapping
key.

D[p |r] M | L | D |dllogy(@)] h | X |[K] X

T | 65537 | | 6553632768 | 16384 1 26| 134.4
11| 8191 |1(65536| 4096 | 4096 |8| 1332 [120[81.13|24| 129.8
IIT [131071 | | 65536 | 16384 [16384 |2 26| 133.81

The Decomposition of Redgrlt. Recall that we combine consecutive NTT
matrices N; to reduce the number of levels consumed by homomorphic NTT. We
use a list P to represent a partition of N;’s. The list stores nyqss+1 integers in an
increasing order with P[0] = 1 and N®) = [pi<j<ppisn Vi for 0 < i < numggs.
We use the same P for CoeffToSlot and SlotToCoeff, although we could use
different P for more fined-grained performance tuning.

The optimal partition for a fixed n,,4:s can be obtained using the dynamic
programming method of Chen et al. [10]. However, their method requires an ac-
curate estimation of the running time, which means one may have to benchmark
the running time of a series of basic operations, including hoisting precompu-
tation, hoisted automorphism, non-hoisted automorphism, plaintext-ciphertext
multiplication (with plaintext in both double-CRT and non-double-CRT form),
and ciphertext summation. Thus, considering the difficulty of obtaining an ac-
curate model of the running time, we choose to determine the partitions exper-
imentally through trial and error, which we believe suffices to demonstrate the
effectiveness of our method. The obtained partitions are listed in Table 3.

Table 3. The partitions for general and thin bootstrapping.

Bootstrapping Type I Style II 11
. Bruun | (1,6,10,13) | (1,7,12,15)
Partition Thin (L6.12,16) o 42T (1,5,9,13) [(1.6.10.15)
Gonoral (1.6.12.16) Bruun | (1,5,10,13) | (1,7,12,15)
2150 MRadix-2 | (1,5,9,13) | (1,6,10,15)

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 29

Table 4. Benchmark results for thin bootstrapping. Capacity refers to the capacity consumed
by each stage of bootstrapping. The speedup is computed as the ratio of throughput with
respect to the baseline case.

Parameter Set I 1I 111
. . Ours Ours . Ours Ours
Method Baseline Ours | Baseline Bruun Radix2 Baseline Bruun Radix?
Initial 941 941 947 947 947 939 939 939
Capacity | CoeffToSlot 62 134 56 119 118 64 144 143
(bits) | SlotToCoeff 39 79 33 70 69 39 85 85

Digit extract 265 265 232 231 232 277 276 277
Remaining 556 446 610 511 513 540 415 415
CoeffToSlot 320 12.8 53 15.1 11.8 170 16.4 14.0

g:cl)e SlotToCoeff | 58 4.4 | 112 39 3.2 33 50 39
Digit extract 6.0 5.9 5.9 6.1 6.0 6.1 5.7 5.7

Total 385 23.4 71 26 21.6 209 27 24.1
Throughput (bps) 1.45 19.0 8.6 20.0 23.8 2.6 15.1 17.2
Speedup 1x 13.2x 1x 2.32x 2.8x 1x 5.9x 6.7x
Memory Usage (GB) 398 31 52 9.7 8.8 201 24.1 23.6

5.2 Experimental Results

The benchmark results for thin bootstrapping are shown in Table 4 while those
for general bootstrapping are in Table 5. For thin bootstrapping, the algorithm
proposed in [11] and refined in [17] is chosen as the baseline of comparison.
Since the method in [11] only applies to thin bootstrapping, the HElib imple-
mentation [22] is taken as the baseline for general bootstrapping. For general
bootstrapping, the running time and capacity of the unpacking/repacking pro-
cedure before/after digit removal are no longer included in the CoeffToSlot and
SlotToCoeff stages as in the publication version of this paper, but are included as
part of the digit removal step. The capacity needed by the next bootstrapping is
subtracted from the remaining capacity, e.g., the capacity required by SlotToCo-
eff in thin bootstrapping or the decryption formula simplification process. The
throughput of the bootstrapping procedure is defined as the remaining capacity
divided by the running time, as in [16].

HELlib stores the ring constants of a linear transformation (e.g., x(¢) in Equa-
tion 1) in two ways, either as plain R~ elements or in the double-CRT form. The
former format has lower memory cost while the latter leads to faster homomor-
phic computation at the cost of memory overhead. All constants in baselines and
our methods are represented in the double-CRT format. With these constants
in double-CRT format, the baselines incur much heavier memory overhead than
our method due to the larger number of constants in the baselines. Benchmarks
with non-double-CRT constants are included in Section C.

As shown in the tables, the throughput of thin bootstrapping is improved
by 2.4x~13.4x and the throughput of general bootstrapping is improved by
15.2x~55.1x. Although the cases using our method consume more capacity than

30 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

Table 5. Benchmark results for general bootstrapping. Capacity refers to the capacity con-
sumed by each stage of bootstrapping. The speedup is computed as the ratio of throughput
with respect to the baseline case.

Parameter Set I 1I 111
. . Ours Ours . Ours Ours
Method Baseline Ours | Baseline Bruun Radix2 Baseline Bruun Radix?

Initial 941 941 947 947 947 939 939 939

Capacity | CoeffToSlot" 62 134 58 120 129 65 143 143
(bits) SlotToCoeff’ 38 78 36 72 80 39 84 84
Digit extract 265 264 297 293 295 326 327 326
Remaining 557 447 541 447 428 489 366 366

Time CoeffToSlot 316 12.7 1017 19.0 23.4 1624 16.1 14.1
(sec) SlotToCoeff 316 12.8 1015 18.8 20.9 1625 15.9 14.0
Digit extract 6.1 5.8 49 48 48 12.2 11.7 11.9

Total 639 32 2082 86 93 3261 44 40

Throughput (bps) 0.87 14.1 0.26 5.2 4.6 0.15 8.3 9.1
Speedup 1x 16.2x 1x 20.0x 17.8x 1x 55x 60x
Memory Usage (GB) 398 31 744 11.8 13.6 392 241 23.6

t Slot ToCoeff and CoeffToSlot are now correctly implemented with the optimization remarked
at the end of Section 4.3 in [30], as mentioned in the publication version of this paper.

* The workflow of general bootstrapping can be modified to be the same as thin bootstrap-
ping (and as CKKS bootstrapping), i.e., the SlotToCoeff is applied at the beginning of
bootstrapping. In this way, the running time of Slot ToCoeff can be greatly reduced because
the computation can be carried out with fewer RNS moduli. The benchmark results are
included in Section C.

the baseline cases, they have much shorter running times, outweighing the extra
capacity consumption and leading to a higher throughput.

For p = 3 mod 4, Bruun-style and Radix-2-style decompositions exhibit dif-
ferent running times. For general bootstrapping with a small d or thin bootstrap-
ping (i.e., except for the parameter set II in Table 5), the Radix-2-style decom-
position is faster than the Bruun-style decomposition because the NTT/INTT
matrices in Radix-2 style have fewer nonzero diagonals. In general bootstrap-
ping with a larger d (i.e., the parameter set II in Table 5), the Bruun-style
one is faster than the Radix-2-style one because the computational overhead of
BlockMatMul1D over MatMullD grows with d. Only one of the split NTT/INTT
matrices in Brunn style is BlockMatMul1lD, while all the NTT/INTT matrices in
Radix-2 style are BlockMatMullD. Thus, the disadvantage of having more Block-
MatMullD outweighs the advantage of having fewer diagonals in each matrix,
making the Radix-2-style transformation slower than the Bruun-style one.

Acknowledgments.We thank Mr. Robin Geelen at KU Leuven for identifying the
issue with the capacity consumption in Table 5. We also thank the anonymous re-
viewers for their insightful comments that greatly improved this manuscript. The
study is supported by the National Key R&D Program of China (2018YFA0704701,
2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09),

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 31

the Major Scientific and Technological Innovation Project of Shandong, China (2019JZZY010133),
the Major Program of Guangdong Basic and Applied Research (2019B030302008), Ts-

inghua University Dushi Program, and the Key Laboratory of Data Protection and
Intelligent Management, Ministry of Education, Sichuan University.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic Encryption Security
Standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology 9(3), 169-203 (2015). https://doi.
org/10.1515/jmc-2015-0016

3. Alperin-Sheriff, J., Peikert, C.: Practical Bootstrapping in Quasilinear Time. In:
Canetti, R., Garay, J.A. (eds.) Advances in Cryptology — CRYPTO 2013. pp. 1-
20. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4_1

4. Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, I., Polyakov,
Y., R.V., S., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: OpenFHE: Open-Source Fully Homomorphic Encryption Library.
Cryptology ePrint Archive, Paper 2022/915 (2022), https://eprint.iacr.org/
2022/915

5. Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Opti-
mized homomorphic encryption solution for secure genome-wide association stud-
ies. BMC Medical Genomics 13(7), 83 (Jul 2020). https://doi.org/10.1186/
512920-020-0719-9

6. Bossuat, J.P., Troncoso-Pastoriza, J., Hubaux, J.P.: Bootstrapping for Approx-
imate Homomorphic Encryption with Negligible Failure-Probability by Using
Sparse-Secret Encapsulation. In: Ateniese, G., Venturi, D. (eds.) Applied Cryp-
tography and Network Security. pp. 521-541. Springer International Publishing,
Chanl(2022).https://doi.org/lo.1007/978—3—031—09234—3_26

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully Homomorphic En-
cryption without Bootstrapping. ACM Trans. Comput. Theory 6(3) (jul 2014).
https://doi.org/10.1145/2633600

8. Bruun, G.: z-transform DFT filters and FFT’s. IEEE Transactions on Acoustics,
Speech, and Signal Processing 26(1), 5663 (1978). https://doi.org/10.1109/
TASSP.1978.1163036

9. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28(7), 693-701 (Jul 1991). https://doi.org/10.1007/
BF01178683

10. Chen, H., Chillotti, I., Song, Y.: Improved Bootstrapping for Approximate Ho-
momorphic Encryption. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology —
EUROCRYPT 2019. pp. 34-54. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3_2

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1186/s12920-020-0719-9
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1007/978-3-031-09234-3_26
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1109/TASSP.1978.1163036
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2

32

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Shihe Ma, Tairong Huang, Anyu V\/ang(m)7 and Xiaoyun Wang

Chen, H., Han, K.: Homomorphic Lower Digits Removal and Improved FHE Boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology — EU-
ROCRYPT 2018. pp. 315-337. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9_12

Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled PSI from Homomorphic Encryption with Reduced Computation
and Communication. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. p. 1135-1150. CCS ’21, Association for
Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460120.3484760

Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation 19(90), 297-301 (1965), http: //wuw.
jstor.org/stable/2003354

Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic Encryption.
Cryptology ePrint Archive, Paper 2012/144 (2012), https://eprint.iacr.org/
2012/144

Geelen, R.: Revisiting the slot-to-coefficient transformation for BGV and BFV.
Cryptology ePrint Archive, Paper 2024/153 (2024), https://eprint.iacr.org/
2024/153

Geelen, R., Iliashenko, I., Kang, J., Vercauteren, F.: On Polynomial Functions
Modulo p® and Faster Bootstrapping for Homomorphic Encryption. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology — EUROCRYPT 2023. pp. 257—
286. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/
978-3-031-30620-4_9

Geelen, R., Vercauteren, F.. Bootstrapping for BGV and BFV Revisited.
Journal of Cryptology 36(2), 12 (Mar 2023). https://doi.org/10.1007/
s00145-023-09454-6

Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. p. 169-178.
STOC ’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1536414.1536440

Halevi, S., Shoup, V.: Bootstrapping for HEIlib. In: Oswald, E., Fischlin,
M. (eds.) Advances in Cryptology — EUROCRYPT 2015. pp. 641-670.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5_25

Halevi, S., Shoup, V.: Faster Homomorphic Linear Transformations in HEIib. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology — CRYPTO 2018. pp.
93-120. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_4

Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic en-
cryption library. Cryptology ePrint Archive, Paper 2020/1481 (2020), https:
//eprint.iacr.org/2020/1481

Halevi, S., Shoup, V.: Bootstrapping for HElib. Journal of Cryptology 34(1), 7
(Jan 2021). https://doi.org/10.1007/s00145-020-09368-7

Han, K., Hhan, M., Cheon, J.H.: Improved Homomorphic Discrete Fourier Trans-
forms and FHE Bootstrapping. IEEE Access 7, 57361-57370 (2019). https:
//doi.org/10.1109/ACCESS.2019.2913850

Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic Views of Vectorized Polynomial
Multipliers — NTRU Prime. In: Pépper, C., Batina, L. (eds.) Applied Cryptogra-
phy and Network Security. pp. 24-46. Springer Nature Switzerland, Cham (2024).
https://doi.org/10.1007/978-3-031-54773-7_2

https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
https://doi.org/10.1145/3460120.3484760
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2024/153
https://eprint.iacr.org/2024/153
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/978-3-031-30620-4_9
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1007/s00145-023-09454-6
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://doi.org/10.1007/978-3-319-96884-1_4
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1109/ACCESS.2019.2913850
https://doi.org/10.1007/978-3-031-54773-7_2
https://doi.org/10.1007/978-3-031-54773-7_2

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 33

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Kim, J., Seo, J., Song, Y.: Simpler and Faster BFV Bootstrapping for Arbi-
trary Plaintext Modulus from CKKS. Cryptology ePrint Archive, Paper 2024/109
(2024), https://eprint.iacr.org/2024/109

Lattigo v5. Online: https://github.com/tuneinsight/lattigo (Nov 2023),
ePFL-LDS, Tune Insight SA

Lee, D., Min, S., Song, Y.: Functional Bootstrapping for Packed Ciphertexts
via Homomorphic LUT Evaluation. Cryptology ePrint Archive, Paper 2024/181
(2024), https://eprint.iacr.org/2024/181

Lee, JJW., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee,
J., Yoo, D., Kim, Y.S., No, J.S.: Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption for Deep Neural Network. IEEE Access 10, 30039-30054
(2022). https://doi.org/10.1109/ACCESS.2022.3159694

Liu, Z., Wang, Y.: Relaxed Functional Bootstrapping: A New Perspective on
BGV/BFV Bootstrapping. Cryptology ePrint Archive, Paper 2024/172 (2024),
https://eprint.iacr.org/2024/172

Ma, S., Huang, T., Wang, A., Wang, X.: Accelerating BGV Bootstrapping for
Large p Using Null Polynomials over Zye. In: Joye, M., Leander, G. (eds.) Advances
in Cryptology — EUROCRYPT 2024. pp. 403—432. Springer Nature Switzerland,
Cham (2024). https://doi.org/10.1007/978-3-031-58723-8_14

Meyn, H.: Factorization of the Cyclotomic Polynomialx2n+ 1 over Finite Fields. Fi-
nite Fields and Their Applications 2(4), 439-442 (1996). https://doi.org/https:
//doi.org/10.1006/ffta.1996.0026

Ng, L.K.L., Chow, S.S.M.: GForce: GPU-Friendly Oblivious and Rapid Neural
Network Inference. In: 30th USENIX Security Symposium (USENIX Security
21). pp. 2147-2164. USENIX Association (Aug 2021), https://www.usenix.org/
conference/usenixsecurity2l/presentation/ng

Okada, H., Player, R., Pohmann, S.: Homomorphic Polynomial Evaluation Using
Galois Structure and Applications to BFV Bootstrapping. In: Guo, J., Steinfeld, R.
(eds.) Advances in Cryptology — ASTACRYPT 2023. pp. 69-100. Springer Nature
Singapore, Singapore (2023). https://doi.org/10.1007/978-981-99-8736-8_3
Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023),
microsoft Research, Redmond, WA.

Wan, Z.: Lectures on Finite Fields and Galois Rings. G - Reference,Information and
Interdisciplinary Subjects Series, World Scientific (2003), https://books.google.
com.hk/books?id=uCSVbYM1jNIC

https://eprint.iacr.org/2024/109
https://github.com/tuneinsight/lattigo
https://eprint.iacr.org/2024/181
https://doi.org/10.1109/ACCESS.2022.3159694
https://doi.org/10.1109/ACCESS.2022.3159694
https://eprint.iacr.org/2024/172
https://doi.org/10.1007/978-3-031-58723-8_14
https://doi.org/10.1007/978-3-031-58723-8_14
https://doi.org/https://doi.org/10.1006/ffta.1996.0026
https://doi.org/https://doi.org/10.1006/ffta.1996.0026
https://doi.org/https://doi.org/10.1006/ffta.1996.0026
https://doi.org/https://doi.org/10.1006/ffta.1996.0026
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://www.usenix.org/conference/usenixsecurity21/presentation/ng
https://doi.org/10.1007/978-981-99-8736-8_3
https://doi.org/10.1007/978-981-99-8736-8_3
https://github.com/Microsoft/SEAL
https://books.google.com.hk/books?id=uCSVbYMljNIC
https://books.google.com.hk/books?id=uCSVbYMljNIC

34 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang
Supplementary Material

A Experimental Comparison with CKKS-based BFV
Bootstrapping [25]

Table 6. Experimental comparison of KSS24 and our method with plaintext modulus ¢ of different sizes. ¢
is chosen to ensure a slot number of 217.

N |Security|log, (t)|Denoising factor (bits)|Time of ours (s)|Time of KSS24 (s)|Throughput (ours/KSS24)
~ 22 1765 355.88 ~ 2135.01 ~ 6.00

27| < 198 ~ 29 1600 354.85 ~ 1930.57 ~ 5.44
~ 42 1460 778.51 ~ 1757.11 ~ 2.26
~ 54 854 761.99 ~ 1006.28 ~ 1.32

! The running time of KSS24 is estimated using the fact that ‘the bootstrapping time is proportional to the
denoising factor’. According to Table 5 of KSS24, time =~ 1.239 x ‘denoising factor’ — 51.83.

2 For the cases of log, (t) ~ 42 and 54, we cannot use the ‘local null polynomial’ method from MHWW24
because the intermediate plaintext modulus will exceed 60 bits, which is not currently supported by
HElib. In turn, we have to use the much slower ‘global null polynomial’ method. Despite this fact, our
method is still faster than KSS24. If HElib supported multi-precision plaintext modulus, we expect the
running time to be close to the cases of log,(t) ~ 22 and 29.

3 Our experiment is conducted on an Intel Xeon Gold 6248R CPU @ 3GHz, while that of KSS24 is on an
Intel Xeon Gold 6242 @ 2.8GHz.

B Proofs of Lemmas and Examples of Redgg (Redzp

Proof (Lemma 3). Clearly, the statement is true for 7 = 0. Now let 1 < j <
log, (D) and suppose the statement holds for j — 1. Similar to Lemma 1, it can

be proved that Ffi;E-D = X¥ g (<2j71'81 +C2j71'5”7)X2j7171d+C2j71'5i(”+1).

Thus for i € [277 D] we have
(@) _ pl=1) pG-1)
F = F
_ (X2j—1d _ (C2j—1.si _|_<'2j_1'8ip)X2j_1_ld +Czj—l.si(p+1))
X (XP T (s g e TN k)

— x?d _ (C2j'si + <2-7-sip)X2-7_1d + <2'7~si(p+1).

For the middle term, ¢ + (¥ 5P = (0 «= (2@~ = _1. Since
s; = 5" and (is a primitive 4D-th root of unity, this condition is equivalent to
27 . 5%(p — 1) = 2D mod 4D. Thus for j < logy(D), the maximum power of two
that divides 27 - 5'(p — 1) is 2/*! < 2D, which implies that the middle term is
nonzero. For j = log,(D), it can be verified that D - 5'(p — 1) = 2D mod 4D,
which implies that the middle term is zero. O

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 35

Proof (Lemma 2). For a fixed j € [1,logy(D)], let i € [0,277D)J[D, D+277D).
For k € [2771], let

v = (mmod FY)[kd +: d] u = (mmod FY ™) [kd +: d]
v/ = (mmod F) 2 Yd+ kd +:d] v =(mmod F/;"))kd +: d].

By traversing k and ¢, u,v and u’, v’ cover all the inputs and outputs of N;.
According to Lemma 1, Fi(J) = F(] 1)F1(j-2 13D and Fi(]_l) = X277 _ a1,

F(] Vo — x¥7'd + a; j—1 for some a; j_1 € Zy, thus it can be deduced that

i+2—3D
u =(u+v)/2 u =u+a;; 1V
v =(u-v)/(2a;;-1) v =u - a; j—1v’ ’

Using the definition of a;; and a1, the index of u’ in a; and the index of u
in a;_1 are both [= i + BitRev; (k) - 277 D. v/ and v also have the identical
index of h =i+ 277D + BitRev; (k) - 277 D. Thus, the Z,-linear combinations
of u, v into u’, v/ correspond to the following 2 x 2 submatrix in N;

{Nj[l,l] N; [, h]]
N; [h, 1] N; [h, h]

where each entry is a multiple of I;. Let i = e1D + ey for e; € [2] and eg €
[277 D], traversing e5 for a fixed value of the pair (e1, k) will extend the submatrix
above into a 27771 D-sized diagonal block of N;. As indicated by the indices of
u,v,u’,v' in o; and a;_1, each diagonal block has three nonzero diagonals
indexed as {0,4(l — h)} = 277D x {—1,0,1}. The structure of Nj_1 can be
deduced similarly.

Concerning Niog, ()41, for k € [D],i = 0,7 = logy(D) + 1, we have

v = (mmod F)[kd +: d] u = (mmod F/) [kd +: d]
v/ = (mmod FY)[Dd+kd +:d] v =(mmod FS)[kd +: d,

where u’, u share the same index BitRev] o(k) while v/, v’ share the same index
BitRev) o (k) + D. The remaining proof is similar to the case of j € [1,1ogy(D)].

O
Proof (Lemma 4).
Concerning Ny, for ¢ € [D/2] and k € [2], define
1=][0 +: d/2] a00 = s [il[0 +: d/2)
h = apli|[d/2 +: d/2] apr = oy [i][d/2 +: d/2]
= agli + D/2][0 +: d/2] " aio =i+ D/2|[d/2 +: d/2]
W = aoli + D/2)ld/2 +: /2] an = auli+ D/2[d/2 +: df2)
By traversing 7 and k, 1, h, ', h’ and ag, ..., a;; cover all the inputs and outputs

of Ny. agg,...,a11 are Z,-linear combinations of 1, h,l’,h’ because they form a

36 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

Bruun butterfly with respect to fo(X) = F; and f1(X) = F;;p/s as in Equa-
tion 3, which can be deduced from the definition of a; and a;;_;. The linear
combinations correspond to a 2 x 2 submatrix in Ny
N, [4, 4] N, [i,i 4+ D/2]
N;[i + D/2,i] Ny[i+ D/2,i+ D/2]
aolgs2 aila)e
azly/o asly)o
1 will expand the submatrix into IN;. Thus, N; has three nonzero diagonals

indexed as D/2 x {—1,0,1}. The structure of N ' can be proved similarly.
Concerning N; with j € [2,log,(D)], for i € 27771 D] and ko € [2772],

Each entry is in the form of { } for some ay, . .., a3 € Z,. Traversing

agy = [Z + BitRerp(ko) . 27]'D]

aplr = o [l + BitRGVj70(k0 + 2j72) . 27]‘D]

[i + BitRev, (ko +2-2772) - 279 D]
[(

aj] = aj Z+ BitRerg k() + 3 . 2]‘72) . 27JD]

ajg = o

are Zp-linear combinations of

1= o 1[2 + BitRerfl,O(ko) . 2—j+1D]

= aj_1[i + BitRev;_1,0(ko + 272) . 277+ p]
_1[i + 279D + BitRev;_1 (ko) - 27771 D]
[i

= 1[i + 277D + BitRev;_1 (ko +2772) - 2791 D],

because they form a Bruun butterfly with respect to F(] D and F(j_Q 13D as

in Equation 3, which can be deduced from the deﬁmtlon of aj and aj_1. By
traversing 4 and kg, 1,1',h, h’ and agg, a1g,ag1, a1 cover all the inputs and out-
puts of N,. Observe that agg,aio,a01,a11 and 1,1’ h, h’ share the same index
S0, S1, 82, 83 in sequence, where s; = i + (BitRev; (ko) + t) - 27/ D. Thus, the
linear combinations between them correspond to a 4 x 4 submatrix in N

Nj[s0, so0] - - - Nj[so0, 53] KRR K

. . o k%

: - : BREEE I
N [s3, s0] - - - Nj[s3, s3] * %

where a ‘¢’ means a nonzero multiple of I;. Traversing i for a fixed value of
ko will expand the submatrix into a 2772 D-sized diagonal block in N, whose
nonzero diagonals are indexed by {s, — s, | u,v € [4]} = 277D x [-3,3]. The
structure of Nj_1 can be proved by expressing 1, h, 1, h’ as Z,-linear combinations
of agQ,.--,aA11-

O

Proof (Lemma 5).

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 37

Concerning a fixed j € [1,log,(D)], for i € 277 D], k € [2771],

agy = a[2(i + 2k - 277 D)]

ajo = o[2(i + 2k - 277 D) + 1]

ag = o[2(i + (2k + 1) - 277 D)]
aj1 = aj[2(i+ 2k +1)-277D) + 1]

are Z,-linear combinations of

12004 k- 2777 D)]

20+ k- 27T D) 4 1]

2G+279D + k-2771D)]
[2(

=
=
=
=a/ 4[2(i+277D+k-277T'D) + 1],

/
Jj—
/
Jj—
/
J—
/
Ji—

because they form a Bruun butterfly with respect to F(J Y and FYUZY

in as
in Equation 3, which can be deduced from the deﬁmtlon of o and aj 1D By
traversing 7 and k, 1, h,1’, h/ and agg, a;9, ag1, a1 cover all the inputs and outputs
of Nj. The index of agp,a10 in o; and the index of 1,h in «;_; are both s =
i+k-277t'D. ag, a;; and 1, h also share the same index t = i+2"7D+k-279+1D.

Thus, the linear combinations correspond to a 2 X 2 submatrix in N;

N N
jtb ith
aplygz a1lgs
aglyz azly)
i for a fixed value of k will expand the submatrix into a 277! D-sized diagonal
block in N, which has three nonzero diagonals indexed as {0,+(s — t)} =

279D x {—1,0,1}. The structure of N;fl can be proved similarly.

where each entry has the form of { } for ag, ...,as € Z,. Traversing

a

C Supplementary Benchmark Results

C.1 Benchmark results where linear transformation constants are
in non-double-CRT format

Table 7 and Table 8 display the benchmark results for thin and general bootstrap-
ping respectively, with linear transformation constants stored in non-double-
CRT format.

C.2 SlotToCoeff as the first step in general bootstrapping

Table 9 and Table 10 display the benchmark results of general bootstrapping
with SlotToCoeff-first optimization, where the linear transformation constants
are stored in double-CRT and non-double-CRT formats, respectively.

38

Shihe Ma, Tairong Huang, Anyu Wang<M), and Xiaoyun Wang

Table 7. Benchmark results for thin bootstrapping, where linear transformation constants are
stored in non-double-CRT format. Capacity refers to the capacity consumed by each stage of
bootstrapping. The speedup is computed as the ratio of throughput with respect to the baseline

case.

Parameter Set I 11 111
. . Ours Ours . Ours Ours
Method Baseline Ours | Baseline Bruun Radix? Baseline Bruun Radix?
Initial 941 941 947 947 947 939 939 939
Capacity | CoeffToSlot 62 134 56 119 118 64 144 143
(bits) SlotToCoeff 39 79 33 70 69 39 85 85
Digit extract 265 264 233 231 232 277 276 277
Remaining 556 446 610 511 513 539 415 415
Time CoeffToSlot 621 14.4 92 18.1 14.3 320 19.6 174
(sec) SlotToCoeff 118 4.7 18.8 5.0 4.1 63 5.9 5.1
Digit extract 6.1 5.8 6.0 6.2 6.0 6.2 5.7 5.8
Total 746 25 117 30 24.9 389 32 29
Throughput (bps) 0.75 17.6 5.2 17.2 20.6 1.39 13.1 14.4
Speedup 1x 23.5x 1x 3.3x 4.0x 1x 9.5x 10.4x
Memory Usage (GB) 46 29 7.6 7.4 6.8 24.7 226 209

Table 8. Benchmark results for general bootstrapping, where linear transformation constants
are stored in non-double-CRT format. Capacity refers to the capacity consumed by each stage
of bootstrapping. The speedup is computed as the ratio of throughput with respect to the

baseline case.

Parameter Set I 11 111

. . Ours Ours . Ours Ours

Method Baseline Ours | Baseline Bruun Radix? Baseline Bruun Radix2
Initial 941 941 947 947 947 939 939 939
Capacity | CoeffToSlot 62 134 58 120 129 65 143 143
(bits) SlotToCoeff 38 78 36 72 80 39 84 84
Digit extract 265 264 295 295 295 326 327 326
Remaining 557 447 543 445 428 489 367 367

Time CoeffToSlot 625 14.5 1878 24.3 32 2044 19.4 17.4
(sec) SlotToCoeff 625 14.6 1864 24.0 28 2048 19.2 17.4
Digit extract 6.2 5.9 51 48 48 13.0 11.7 11.8
Total 1257 35 3794 96 109 4105 51 47
Throughput (bps) 0.44 12.7 | 0.143 4.6 3.9 0.119 7.2 7.8
Speedup 1x 29x 1x 32x 28x 1x 61x 65x
Memory Usage (GB) 84 29 52 7.5 7.1 96 226 209

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT

39

Table 9. Benchmark results for general bootstrapping, where linear transformation constants
are stored in double-CRT format. The SlotToCoeff-first optimization is applied to all cases but
the baselines. Capacity refers to the capacity consumed by each stage of bootstrapping. The
speedup is computed as the ratio of throughput with respect to the baseline case.

Parameter Set I 11 111
. . Ours Ours . Ours Ours
Method Baseline Ours | Baseline Bruun Radix? Baseline Bruun Radix?

Initial 941 941 947 947 947 939 939 939

Capacity | CoeffToSlot 62 134 58 120 129 65 143 143
(bits) SlotToCoeff 38 79 36 73 81 39 85 85
Digit extract 265 264 297 294 294 326 327 326
Remaining 557 446 541 445 428 489 365 366

Time CoeffToSlot 316 12.7 1017 19.1 23.4 1624 16.2 14.0
(sec) SlotToCoeff 316 4.3 1015 5.6 6.5 1625 5.0 3.9
Digit extract 6.1 5.8 49 48 48 12.2 11.9 11.9

Total 639 23.3 2082 73 78 3261 34 30

Throughput (bps) 0.87 19.2 0.26 6.1 5.5 0.15 10.9 12.1
Speedup 1x 22.0x 1x 23.5x 21.1x 1x 72x 80x
Memory Usage (GB) 398 31 744 11.8 136 392 24.1 236

Table 10. Benchmark results for general bootstrapping, where linear transformation constants
are stored in non-double-CRT format. The SlotToCoeff-first optimization is applied to all cases
but the baselines. Capacity refers to the capacity consumed by each stage of bootstrapping.
The speedup is computed as the ratio of throughput with respect to the baseline case.

Parameter Set I 11 111

. . Ours Ours . Ours Ours

Method Baseline Ours | Baseline Bruun Radix? Baseline Bruun Radix2
Initial 941 941 947 947 947 939 939 939
Capacity | CoeffToSlot 62 134 58 120 129 65 143 143
(bits) SlotToCoeff 38 79 36 73 81 39 85 85
Digit extract 265 265 295 297 295 326 327 326
Remaining 557 446 543 443 427 489 366 366

Time CoeffToSlot 625 14.5 1878 24.2 32 2044 19.4 17.5
(sec) SlotToCoeff 625 4.7 1864 7.5 9.2 2048 5.9 5.1
Digit extract 6.2 5.9 51 48 48 13.0 11.7 11.9
Total 1257 25 3794 80 90 4105 37 35

Throughput (bps) 0.44 17.5 | 0.143 5.5 4.8 0.119 9.8 10.5
Speedup 1x 39x 1x 39x 33x 1x 82x 88x
Memory Usage (GB) 84 29 52 7.5 7.1 96 226 209

40 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang
D Explicit Expressions of N;s

Lemma 9. In the case of p=1mod 4, for j € [1,logy(D)], N; is explicitly given
by

D D 1
Njli+ 2k, i+ 2ks] = 5

. D 1
D 1

D
k —_— T . N
1+ 2]] 261(]_1)

) D

ikl + Dyl Dy 1
ili+ 5 tott §+§] Ry
where i € [0,279DYU[D, D +279D), k € [227] and V7V = —¢5 - 2971 s the
constant term of Fi(jfl).
Niog,(D)4+1 18 given by

1
Nlogz(D)+1[k7k] = _5
Nlogz(D)+1[k> k + D] =3
1
Niog,(p)+1[k + D, k] =)
0

1
Niog, (D)+1[k + D,k + D] = "oz, (D)
2¢5 7

, where k € [D].
In the case of p = 3 mod 4 and Bruun-style decomposition, for j € [2,1logy(D)],
N; is explicitly given by

[z+4kD H—4kD]

2
D D 1
4k: ks + 351 = 5
N;[i + i+ 2J] 5
D D D pu—h
Njli+ 4k s i+ ks +255] = — oy
Qaij
D, bV
N;[i +4k Ji —|—4k‘— +32 = 2o D

, D D . D D 1

Faster BGV Bootstrapping in Power-of-two Cyclotomics through Hom-NTT 41

. D D D D 1
N][Z+4k27+27,l+4]€27+327] —W

D D D b(-j_l) _ (j_l) 2
[z+4k—+2 z+4k] t (4_1)(a(1'_1))
Zai] bij

D (agjfl))Q _bl(_]'*l)

D D
Njli + 4k + 257, +k—

277 27} 2a(.j*”b(.j’”
D D, 1
[z+4k’f—|—22 z+4k’f—|—22j] 3
D D D D 1
[+4k—+2 z+4k—+3]—5
D 1

, D D
N[+ 4k +3—.7z+4k§] =

23 2a5j71)b§j71)

. D D D 1
where i € [£], k € [2772] and Fi(j_l) = x? 74 az(j_l)Xy_Qd + bl(j_l),
Ny is given by
b
o %Id/Q *2;(0) Id/2
Ni[i,i] = | o), (02 :
b e)Ty 1
QGEO)on) d/2 54d/2

(0)
1 b;
*Id/2 2% (0) Id/2

*]: (0)y2_;(0)
b
é (Zgwld/z 3Li/0

0 - 20(0) Id/2
71] = 1 I N
240 d/2 0

1
D .. D] 0 saoLa/2
, 2 e ’)
_Qagol)bgo) Id/2 0

Ny[é,7+

i)

where i € [2].
For the Radiz-2-style decomposition, for j € [1,1og,(D)], N; is explicitly given
by

(3—1)
%Id/Q b(; 1>Id/2
[z+2k z—|—2k } 2a
0 2a<J71>Id/2
b(J 1)

D %Id/2 (1 oy Lase
[z—|—2k z—|—2k— 2—]]— 0 1
20 <a 1) +d/2

42 Shihe Ma, Tairong Huang, Anyu Wang™, and Xiaoyun Wang

b=V _(ali =12 (@l~1y>_pl =D
2q0-DpG—D +d/2 T, G-DG-1 +d/2
0

. D D
Nj[z+2k§+§,z+2k§] =

S S
240~ DpG—D /2

1 1
3Las2 _2agj—1>b(j—1>1d/2
1 b
§Id/2 0

Wikl + 2yl Dy
i+ 2k + o5 it 2k + o5l = ;

where i € [£] and k € [2771].

	Faster BGV Bootstrapping for Power-of-two Cyclotomics through Homomorphic NTT

