
Towards Practical Oblivious Map
Xinle Cao

∗

Zhejiang University

xinle@zju.edu.cn

Weiqi Feng
∗

University of Massachusetts Amherst

weiqifeng@umass.edu

Jian Liu

Zhejiang University

liujian2411@zju.edu.cn

Jinjin Zhou

Ant Group

zhoujinjin.zjj@antgroup.com

Wenjing Fang

Ant Group

bean.fwj@antgroup.com

Lei Wang

Ant Group

shensi.wl@antgroup.com

Quanqing Xu

OceanBase, Ant Group

xuquanqing.xqq@oceanbase.com

Chuanhui Yang

OceanBase, Ant Group

rizhao.ych@oceanbase.com

Kui Ren

Zhejiang University

kuiren@zju.edu.cn

ABSTRACT
Oblivious map (OMAP) is an important component in encrypted

databases, utilized to safeguard against the server inferring sensi-

tive information about client’s encrypted key-value stores based on

access patterns. Despite its widespread usage and importance, exist-

ing OMAP solutions face practical challenges, including the need

for a large number of interaction rounds between the client and

server, as well as the substantial communication bandwidth require-

ments. For example, the state-of-the-art protocol named OMIX++ in

VLDB 2024 still requires𝑂 (log𝑛) interaction rounds and𝑂 (log2 𝑛)
communication bandwidth per access, where 𝑛 denotes the total

number of key-value pairs stored.

In this work, we introduce more practical and efficient OMAP

constructions. Consistent with all prior OMAPs, our constructions

also adapt only the tree-based Oblivious RAM (ORAM) and oblivious
data structures (ODS) to achieve OMAP for enhanced practicality.

In complexity, our approach needs 𝑂 (log𝑛/log log𝑛) + 𝑂 (log 𝜆)
interaction rounds and𝑂 (log2 𝑛/log log𝑛) +𝑂 (log 𝜆 log𝑛) commu-

nication bandwidth per data access where 𝜆 is the security parame-

ter. This new complexity results from our two main contributions.

First, unlike prior works that rely solely on search trees, we design
a novel framework for OMAP that combines hash table with search

trees. Second, we propose a more efficient tree-based ORAM named

DAORAM, which is of significant independent interest. This newly

developed ORAM noticeably accelerates our constructions as it

supports obliviously accessing hash tables much more efficiently.

We implement both our proposed constructions and prior methods

to experimentally demonstrate that our constructions substantially

outperform prior methods in terms of efficiency.

1 INTRODUCTION
Oblivious algorithms [10, 16, 38, 70, 79] serve as a critical mecha-

nism frequently employed alongside encrypted databases (EDBs) [23,

30, 59] to uphold users’ data privacy. They ensure that the access pat-

terns remain independent of the database contents [37]. Therefore,

during query processing, an untrusted server gains no information

beyond query types, database size, and the size of query results [15].

Recently, there has been a surge in the usage of oblivious algorithms

with EDBs [20, 44, 53, 83], which is driven by concerns regarding the

security implications of query access pattern leakages [51, 55, 62].

∗
These authors contributed equally to this work.

The oblivious map (OMAP) [67, 79] is a specific type of oblivious

algorithm designed to facilitate oblivious access to key-value (KV)

stores [67], one of the most used database formats in real-world

applications [29, 42]. OMAP offers clients the security guarantee

that an untrusted server, holding the encrypted KV pairs, cannot

obtain information regarding which data pair was accessed during

query processing, nor its content. Furthermore, OMAP is often

used to construct oblivious algorithms for executing more complex

queries such as join [20], aggregate [30], and range query [19] in

other types of databases. However, designing efficient and practi-

cal OMAPs presents a significant challenge. Predominantly, most

existing oblivious algorithms rely on the established cryptographic

primitive called oblivious RAM (ORAM) [37]. This primitive is a

generic tool for achieving obliviousness as it was originally pro-

posed to access memory obliviously in random access machine.

Specifically, given KV pairs {(𝑘𝑖 , 𝑣𝑖)}𝑛−1𝑖=0
where keys are consecu-

tive integers (which is used to simulate memory), ORAM supports

obliviously accessing one pair from them in functionality. While

sharing similarities with ORAM, OMAP is more general and pow-

erful since OMAP supports KV stores, even when the keys are

non-consecutive and arbitrary strings. This difference incurs
a huge gap in their designs such that OMAP cannot be naively

constructed from ORAMs with practicality. It raises the following

important question and motivated a series of works [15, 30, 67, 79]:

How can we design an efficient OMAP based on practical ORAMs,
requiring only small client-side storage like 𝑂 (log𝑛)?

Oblivious data structure. Some prior works [15, 30, 67, 79] also

attempt to address OMAP through another way, i.e., the use of

oblivious data structure (ODS). In short, ODS refers to oblivious

algorithms designed specially for some data structures such as trees

and stacks in order to support obliviously accessing these structures

more efficiently than using the generic ORAM. Wang et al. [79] are

the first to define ODS and non-trivially adapt tree-based ORAM

to achieve this goal. They introduced an OMAP construction em-

ploying ODS for an AVL tree, ensuring that client-side storage does

not exceed 𝑂 (log𝑛). Since then, this construction has been widely

implemented in plenty of works [12, 28, 36] due to its simplicity.

The state-of-the-art work on OMAP [15, 75] continues to use this

approach as a foundation, incorporating several new optimizations.

While the AVL tree makes the OMAP have a good theoretical com-

munication bandwidth, it may not be the optimal choice among

1

ODS Method Interaction Round Communication Bandwidth Note

ODS+AVL [15, 79] 𝑂 (log𝑛) 𝑂 (log2 𝑛) Many interaction rounds

ODS+B/B+ [20, 30, 67] 𝑂 (log𝑛/log 𝛽) 𝑂 (𝛽 log2 𝑛/log 𝛽) Larger bandwidth blowup

Ours 𝑂 (log𝑛/log log𝑛) +𝑂 (log 𝜆) 𝑂 (log2 𝑛/log log𝑛) +𝑂 (log𝑛 log 𝜆) Better rounds and bandwidth in practice

Table 1: Comparison of approaches for oblivious map. 𝑛 is the number of KV pairs stored, 𝜆 is the security parameter. 𝛽 is a constant set for
branching factor in B/B+ tree [30, 67], thus ObliDB [30] still expresses its interaction and bandwidth as 𝑂 (log𝑛) and 𝑂 (log2 𝑛), respectively.
search trees in practice, as noted in [67, 79]. For instance, it requires

3 · 1.44 log𝑛 interaction rounds.

Consequently, some works introduce OMAPs based on other

types of search trees, including B/B+ trees [20, 30] and a variant

similar to B-trees [67], to reduce interaction rounds and improve

efficiency. However, these new OMAPs reduce interaction rounds

at the expense of increased theoretical communication bandwidth.

We summarize the complexity of all existing OMAPs that adapt

only the practical tree-based ORAMs in Table 1. The table demon-

strates that, to achieve 𝑂 (log𝑛/log 𝛽) interaction rounds per ac-

cess, prior works require a larger communication bandwidth of

𝑂 (log2 𝑛/log 𝛽), where 𝛽 is a constant integer predefined by the

client. The value of 𝛽 implies a trade-off between interaction rounds

and communication bandwidth. It cannot be too large, as this would

result in prohibitively high bandwidth costs. For instance, with

𝛽 = 𝑛, the communication bandwidth reaches 𝑂 (𝑛), equivalent to
downloading the entire database. Therefore, the value of 𝛽 must be

chosen carefully to adapt to specific applications. Additionally, the

communication bandwidth remains still 𝑂 (log2 𝑛) regardless of 𝛽 ,
which can be a bottleneck for OMAP when implemented in secure

enclaves [75]. Therefore, we ask the following question:

Can we propose new ODS that achieve both fewer interaction rounds
and reduced communication bandwidth for more efficient OMAPs?

In this work, we revisit the two questions above and provide

a positive answer. Specifically, we propose several new construc-

tions which are the first to build OMAPs via combining both
new novel tree-based ORAMs and ODSs. These constructions
are the first to overcome the 𝑂 (log2 𝑛) communication bandwidth

barrier, marking a significant theoretical improvement in OMAP

bandwidth [75]. Furthermore, they require only𝑂 (log𝑛/log log𝑛)+
𝑂 (log 𝜆) interaction rounds per operation. Based on these merits,

the proposed methods are far more efficient than prior approaches.

1.1 Overview
Framework. We first introduce a new simple but effective frame-

work for designing more efficient OMAPs. Prior methods organize

KV pairs as a search tree and then construct an ODS for the search

tree. To improve this approach, we explore the use of hash tables,

which are well-known for their efficiency in mapping [24]. How-

ever, oblivious hash tables are not ideal in this context due to their

expensive costs for achieving obliviousness. As discussed in [79],

oblivious hash tales can be achieved via a tree-based ORAM [73]

with only 𝑂 (log𝑛) client-side storage, but one access to the table
requires three accesses to the ORAM for addressing collision in

the table. As accessing the tree-based ORAMs with the 𝑂 (log𝑛)
client-side storage is often costly, i.e., 𝑂 (log𝑛) interaction rounds

and𝑂 (log2 𝑛) communication bandwidth per access, oblivious hash

tables via ORAMs are considered to have the same complexity and

impracticality as OMAPs constructed from ODS for the search tree.

Surprisingly, recent works over the last decade [32, 47] demon-

strate that accessing the tree-based ORAMs with limited client-side

storage can be done more efficiently. Nevertheless, they still en-

counter some non-trivial practical problems, which prevent their

easy adaption in real-world implementations. In this paper, we

will show how to address these problems elegantly and propose a

much more practical and efficient ORAM protocol called DAO-
RAM (de-amortized ORAM), which is a contribution of substantial

independent interest. DAORAM can complete each access with

only 𝑂 (log𝑛/log log𝑛) interaction rounds and 𝑂 (log2 𝑛/log log𝑛)
bandwidth. With the new advanced ORAM, now we can follow the

approach in [79] to naively achieve an oblivious hash table with-

out collision and an OMAP with better complexity. To obtain even

more optimized OMAP constructions, we propose a new framework

consisting of two components, as outlined below:

• ORAM for hash table.We initialize an ORAM to store a hash ta-

ble of size𝑛 which allows collisions. For each integer 𝑖 ∈ {0, . . . , 𝑛−
1}, we map 𝑖 to 𝑔𝑖 and store this mapping in the ORAM, where

𝑔𝑖 is used to record the group of collided KV pairs, i.e., any (𝑘, 𝑣)
such that Hash(𝑘) = 𝑖 , where Hash(·) is a hash function ran-

domly mapping a string to an integer in {0, . . . , 𝑛 − 1}.
• Group OMAP. The length of 𝑔𝑖 is limited and cannot store all

KV pairs mapped to 𝑖 . To address this, we establish an OMAP

for all collided pairs at position 𝑖 . Thus, 𝑔𝑖 only needs to store

metadata about the OMAP, requiring only 𝑂 (log𝑛) bits. There
are 𝑛 distinct OMAPs, as we build an OMAP for each 𝑔𝑖 where

𝑖 ∈ {0, . . . , 𝑛 − 1}. We store them in the same ORAM to prevent

the server from observing which group OMAP is accessed during

query processing.

To summarize, we handle the collisions in hash tables by utilizing
smaller OMAPs for collided KV pairs. When the client accesses a

KV pair (𝑘, 𝑣) where Hash(𝑘) = 𝑗 , it retrieves the corresponding

𝑔 𝑗 from the hash table ORAM. Then, it uses 𝑔 𝑗 to find (𝑘, 𝑣) from
the OMAP storing the collided pairs. The overhead of our OMAP

is equal to the sum of the overhead in accessing the ORAM and

the group OMAP. Importantly, accessing the group OMAP can be

much more efficient than accessing the ORAM as each group has

at most 𝑂 (𝜆) collided pairs [27, 65]. Hence, our framework allows

us to use only one access to the ORAM and a much cheaper access to
the group OMAP to replace the three accesses to the ORAM in the

general construction of an oblivious hash table without collision

proposed by [79], significantly improving practicality.

Contributions. We summarize our contributions below.

(1) A new OMAP framework. We propose a new OMAP frame-

work that combines both ORAM for hash tables and ODS for

search trees. Within this framework, we can apply a prior the-

oretically elegant tree-based ORAM scheme [47] and existing

OMAPs[15, 30, 67, 79] to present several new OMAP construc-

tions. Compared with prior OMAPs, they are asymptotically
better and do not require any additional expensive techniques.

2

(2) A faster ORAM. We identify the infeasible worst-case perfor-

mance and impracticality of the ORAM protocol [47] used in

our constructions, which makes them unacceptable in produc-

tion. To this end, we introduce a new de-armotized ORAM

protocol named DAORAM. It offers substantially better per-

formance and greater practicality compared to [47], making

our constructions indeed outperform all prior OMAPs both
theoretically and practically.

(3) Full-fledged Implementation. We implement three typical prior

OMAPs including the widely used baseline [79] and SOTA

works [15, 30] and our three new OMAP constructions based

on them. We provide a comprehensive evaluation of our DAO-
RAM and OMAPs, demonstrating the significant speedup of

our framework to prior OMAPs. The experimental results show

that our OMAPs improve processing time by up to 72.0%
and communication bandwidth by up to 92.6% compared

to the SOTA work [15].

2 PRELIMINARIES
In this section, we introduce some basic and important notions

used in this work. All notations in this work are introduced as

needed, a summary table of notations is provided in Appendix A. All

algorithms including the adversary are assumed to be probabilistic

polynomial-time (PPT).

Pseudorandom function. Following [50], we call a function 𝐹 :

{0, 1}𝑘1 × {0, 1}𝑘2 → {0, 1}𝑘3 a pseudorandom function (PRF) if:

• There is a polynomial-time algorithm: given a key 𝐾 ∈ {0, 1}𝑘1
and an input 𝑥 ∈ {0, 1}𝑘2 , it computes 𝐹𝐾 (𝑥) = 𝐹 (𝐾, 𝑥).

• For any PPT adversary A, its advantage

Advprf
𝐹
(A) = | Pr

𝐾←${0,1}𝑘1
[A𝐹𝑘 (·) = 1] − Pr[A$ = 1] |

is negligible in 𝜆, where $ above denotes the oracle that imple-

ments a random function from {0, 1}𝑘2 to {0, 1}𝑘3 , A𝐹𝑘 (·) and
A$

denote that the adversary has access to the oracle of function

𝐹𝐾 (·) and random function, respectively.

ORAM and OMAP. Oblivious RAM (ORAM) and oblivious map

(OMAP) are very similar in both definition and functionality. Gen-

erally speaking, both of them allow the client C to store a database

DB := {(𝑘𝑖 , 𝑣𝑖)}𝑛𝑖=1 encrypted on the untrusted server S and then

operate each pair of data obliviously, i.e., S cannot infer which

pair is operated by C via observing access patterns during opera-

tions (refer to Section 4.1 for the formal definition). However, they

are very different in key-value (KV) stores supported: ORAM is

originally proposed to access memory obliviously. So it always

assumes keys in KV store are consecutive integers to simulate mem-

ory.OMAP is more general and powerful as it is designed for all KV

stores where keys can be arbitrary and non-consecutive strings. To

this end, there is a huge gap between existing ORAMs and OMAPs

expected in deployment:

• Feasible but impractical: Actually, there are indeed some exist-

ing ORAMs (e.g., hierarchy ORAMs [5, 63, 64]) which naturally

support non-consecutive keys. Nevertheless, they are highly in-

efficient due to the large constant factors in overhead complexity,

even though some of them [5, 7] achieve the 𝑂 (log𝑛) optimal

theoretical communication bandwidth of ORAM [56].

• Practical but infeasible: When we try more practical ORAMs,

only tree-based ORAMs [73, 78] demonstrate relative efficiency

and are widely used in EDBs [11, 12, 20, 81]. But tree-based

ORAMs, when constrained by limited client-side storage, typ-
ically 𝑂 (log𝑛) for practical applications, are capable of sup-

porting only consecutive keys as the ORAM functionality re-

quires. They cannot be naively applied to process a KV store

with unpredictable and non-consecutive keys, e.g., the database

DB := {((Alice, Boston), (Bob, London), · · ·)}.
These limitations above leave building practical OMAPs via ORAM

still unsolved. As OMAP is a fundamental primitive for oblivious

algorithms and secure EDBs, building practical OMAPs becomes

an imperative task in encrypted databases (EDBs).

In algorithms, both ORAM andOMAP consist of two subroutines:

• Initialization: Init(𝑛, 𝜆) → (stC, stS). On input the (estimated)

maximal number of pairs in the database 𝑛 and security parame-

ter 𝜆. C and S interact with each other to run this subroutine,

and produce client state stC in C and server state stS in S.
• Access: Access(stC, stS, 𝑘, 𝑣) → (st′C, st

′
S, 𝑣
′). On input the

states (stC, stS) and a pair (𝑘, 𝑣), C and S interact with each

other to run this subroutine, and produce the updated states

(st′C, st
′
S). If 𝑣 is ⊥, then this is an read operation; 𝑣 ′ is set to the

value stored in stS corresponding to 𝑘 . Otherwise, this is a write
operation, and (𝑘, 𝑣) is written in st′S , where 𝑣

′ = 𝑣 .ODS. Differing from the ORAM and OMAP primitives that aim

to operate a single KV pair, oblivious data structure (ODS) [79] tries

to design oblivious algorithms specialized to some data structures,

e.g., trees [67], heaps [71], and graphs [15]. This enables operat-

ing these data structure more efficiently than using the generic

ORAM/OMAP [48]. In otherwords, while ORAM/OMAP is a generic

primitive to build various oblivious algorithms, ODS is the spe-

cialized data structure for optimizing some important oblivious

algorithms in applications, e.g., ObliDB [30] builds oblivious B+

tree to complete range queries obliviously instead of ORAM/OMAP.

Additionally, we remark that, although OMAP is conceptually simi-

lar to ORAM, compared with extending ORAM to achieve OMAP,

most existing works often achieve OMAP via the ODS for search

trees [15, 30, 79] to enhance practicality.

3 REVISIT
In this section, we introduce some intuition and specific construc-

tions of prior ORAM/OMAP. They are necessary components this

work is based on. Especially, we revisit them to point out their short-

ages, explaining why more advanced constructions are needed.

3.1 Prior Recursive ORAM
3.1.1 Basic Intuition. We first provide some background on how

tree-based ORAMs work. As illustrated in Figure 1, a KV pair (𝑘, 𝑣)
is assigned a random label, denoted by 𝑝𝑡 ∈ [𝑛], indicating the

path this pair is stored on. S stores a tree where the ciphertext of

(𝑘, 𝑣, 𝑝𝑡) is guaranteed to be on the path from the root node to the

𝑝𝑡-th leaf node. The position map in C records the corresponding

𝑝𝑡 for each key, resulting in a size of𝑂 (𝑛). Each time C searches for

(𝑘, 𝑣), it first retrieves the corresponding 𝑝𝑡 from the position map

using 𝑘 and then accesses the path indicated by 𝑝𝑡 (the green path

in Figure 1). After C retrieves the pair from the path, its label will

be replaced by a new random value, denoted by 𝑝𝑡 ′. This means the

pair will be placed in the path of 𝑝𝑡 ′. To achieve this, C can adopt

3

Figure 1: The illustration of tree-based ORAMs.

different eviction strategies [21, 73, 78] to balance various trade-offs.

If the eviction process fails, the pair is temporarily placed in the

stash and will be retried to evict during the next ORAM access. It

has been proven that with some existing strategies [73, 78], the

stash size exceeds 𝑂 (log𝑛) with a negligible probability.

While tree-based ORAM looks perfect, the 𝑂 (𝑛) position map

storage actually makes tree-based ORAM impractical. To address

this, prior works [72, 74] introduce a technique named recursion:
it uses a series of smaller ORAMs to store the position map but

requires thekeysmust be consecutive integers. For example, sup-

pose the positionmap records {(𝑐𝑘𝑖 , 𝑝𝑡𝑖)}𝑛−1𝑖=0
where 𝑐𝑘 denotes con-

secutive integers, then C can use ⌈𝑛/2⌉ blocks in another ORAM to

store them,where the 𝑖th block records {(𝑐𝑘2𝑖 , 𝑝𝑡2𝑖), (𝑐𝑘2𝑖+1, 𝑝𝑡2𝑖+1)}.
Such an ORAM and block are called PosMap ORAM and block, re-

spectively. To distinguish them from the original ORAM and block

holding KV pairs, we call the original ORAM and block as data
ORAM and block, respectively. Besides the number 2, the recur-

sion can be deeper with a larger number here. We call this number

recursion degree and denote it as 𝑋 .

In the most common setting [73], the size of both data blocks and

PosMap blocks are set to be𝑂 (log𝑛) [32, 73], the path label 𝑝𝑡 also

needs log𝑛 bits to record the corresponding path. In this way,𝑋 can

be only a constant. The above example shows that we can apply a

PosMap ORAMwith ⌈𝑛/𝑋 ⌉ blocks to store the position map for the

data ORAM. As 𝑋 is a constant, this recursion process needs to be

repeated for𝑂 (log𝑛) times such that C can ultimately use constant

storage to access the data ORAM. Unfortunately, the recursion pro-

cess requires C to sequentially access PosMap ORAMs from small

to large and finally access the data ORAM, incurring𝑂 (log𝑛) inter-
action rounds and 𝑂 (log2 𝑛) communication bandwidth between

C and S. Such expensive costs makes recursive ORAM impractical

and motivate some works [32, 47] to improve the recursion process.

3.1.2 Review. Here we review some works that try to enlarge 𝑋 to

be 𝑂 (log𝑛/log log𝑛) in recursive ORAMs to enhance practicality.

Fletcher et al. are the first to enlarge 𝑋 but in an insecure way,

which was fixed by Chan et al. [47] later. For ease of understanding,

throughout this paper, we treat the recursion process as traversing

a complete 𝑋 -ary tree and here call each pair as a node in the tree.

A KV pair in the PosMap ORAM preserving the index (i.e., 𝑝𝑡) of

𝑋 pairs in the next larger ORAM is described as one internal node

recording the index of its 𝑋 children.

The main idea of Fletcher et al. [32] is using PRF to generate the

index instead of recording the index. In detail, each internal node

in [32] consists of three parts: (1) a log𝑛-bit key and log𝑛-bit path;

(2) a 𝛼-bit group counter (GC); (3) 𝑋 𝛾-bit individual counters (ICs):

id| |𝑝𝑡 | |GC| |IC0 | | · · · | |IC𝑋−1 .
where id is the key of this node and 𝑝𝑡 is the index (the path where

this node is within the ORAM). The values of GC and ICs are
initialized as 0. To keep the 𝑂 (log𝑛) node size, it is required that

𝛼 + 𝛾 · 𝑋 ∼ 𝑂 (log𝑛). For this internal node, the recursion process

guarantees that the keys of its children are {𝑎, 𝑎 + 1, ..., 𝑎 + 𝑋 − 1}
where 𝑎 = 𝑋 · id. That’s why this node does not need to store these
keys, leaving the potential to enlarge 𝑋 . To determine the path of

the child with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]), C calculates this path based on

PRF function, GC, and IC𝑗 . Specifically, C maintains a secret key K
for a PRF function PRF and generates:

𝑝𝑡𝑎+𝑗 := PRFsk (𝑎 + 𝑗 ∥GC∥IC𝑗)1 . (1)

In the Initialization procedure, C assigns 𝑝𝑡𝑎+𝑗 to the child with

key 𝑎 + 𝑗 as its index and this child will be guaranteed to be in

the path corresponding to 𝑝𝑡𝑎+𝑗 . For Access procedure, when C
wants to retrieve this child, it gets GC and IC𝑎+𝑗 during recursion,

calculates 𝑝𝑡𝑎+𝑗 , and retrieves this path to get this child. After the

retrieval, C executes increment:

IC𝑗 := IC𝑗 + 1 mod 2
𝛾

and reassigns a new path to this child with Equation 1 for eviction

placing this child back to theORAM. In this way, the length of IC can

be𝑜 (log𝑛) to allow a larger𝑋 . For example, setting𝛾 ∼ 𝑂 (log log𝑛)
and 𝛼 ∼ 𝑂 (log𝑛), then they enable 𝑋 ∼ 𝑂 (log𝑛/log log𝑛).

Security and Fix. There is a vulnerability in the original con-

struction of Fletcher et al. [32]: the value of GC| |IC𝑗 should not be

repeated for any 𝑗 ∈ [𝑋] for satisfying computational security. So

after C accesses the node with index 𝑎 + 𝑗 for 2𝛾 − 1 times, i.e., the

value of IC𝑗 is going to be repeated in the next access towards this

node, C is required to change the value of GC and update the path

of all the 𝑋 nodes with the updated GC. This process is called reset:
(1) Before updating GC, C retrieves all the nodes with key {𝑎, 𝑎 +

1, ..., 𝑎 + 𝑋 − 1} according to GC and ICs.
(2) C updates GC := GC + 1, then sets ∀𝑗 ∈ [𝑋], IC𝑗 := 0. Finally,

C assigns each node with the new path calculated based on the

updated GC and ICs and places them back using eviction.

In the above process, C is required to retrieve and return all𝑋 nodes

above, making it much expensive. Worse more, the reset happens

only when one IC is going to be repeated. As pointed out by Chan et

al. [47], now the adversary can infer sensitive information according

to the reset frequency. For example, if C is always accessing the

same node, then the reset happens very frequently because the

same IC is always incremented. However, if C accesses all distinct

nodes, no IC is repeated, C will never do reset. So the adversary can

infer the pair access distributions according to the reset frequency.

Chan et al. [47] propose a theoretically elegant fix where the

reset is done randomly. In each access to a child, they do the re-

set with a probability of 1/𝑋 . So the reset is done independent of

the access distribution. In this case, Chan et al. need to guaran-

tee that before any IC is repeated, the reset must have been done

to this node. Therefore, they require 𝛾 = 3 log log𝑛 when 𝑋 is

1
The level of current node is also taken as an input of PRF, we follow [32] to omit it

throughout this paper for ease of presentation.

4

log𝑛/log log𝑛. This promises that repeated GC| |IC happens with

a probability of (1 − 1/𝑋)2𝛾 which is negligible in 𝑛 [47]. Now the

cost of reset is still 𝑂 (𝑋 log𝑛) and the reset is expected to happen

once every 𝑋 accesses. So under this fixed solution, the interac-

tion round and communication bandwidth are 𝑂 (log𝑛/log𝑋) and
𝑂 (log2 𝑛/log log𝑋), respectively.
3.1.3 Observations. The fixed approach by Chan et al. [47] is theo-

retically elegant but leaves some drawbacks in practicality. Here

we point out these shortages and we will address all of them with
our new construction in Section 5.

Observation 1 (amortized). The fixed approach guarantees
only amortized interaction rounds of 𝑂 (log𝑛/log log𝑛) and com-
munication bandwidth of 𝑂 (log2 𝑛/log log𝑛).

This observation is due to the probabilistic reset operations.

Suppose the client can store and retrieve at most 𝜇 (𝜇 should be a

constant) paths once, then the interaction rounds per query are⌈
log𝑛

log𝑋

⌉
+ 𝑋 · 𝑢

𝜇

where 𝑢 is the number of reset operations triggered in the query

processing. Also, the communication bandwidth is

log𝑛 · log𝑛
log𝑋

+ 𝑋 · 𝑢 · log𝑛.

Note 𝑢 follows the binomial distribution, i.e., 𝑢 ∼ Bin(⌈ log𝑛
log𝑋
⌉, 1
𝑋
).

So the query performance actually fluctuates, in the worst case

where 𝑢 = ⌈ log𝑛
log𝑋
⌉, if we assume C can only store one path in

local once, the interaction rounds required are as (𝑋 + 1) times as

that in the best case where 𝑢 = 0. And obviously, the theoretical

complexity in the worst case is also much larger than the amortized

complexity. To this end, it is essential to study if we can do de-

amortization [7, 17, 54, 61] here, i.e., improving the worst-case

performance while preserving efficiency. Note performing stably is

an important property in production [39] and all prior OMAPs and

tree-based ORAMs satisfy it, thus without this property, ORAMs

and OMAPs may be not competitive to prior works.

Observation 2 (Strict Parameters). The fix requires 𝛾 must be
no smaller than 3 log log𝑛 and 𝑛 to be large to guarantee negligible
probability (1 − 1/𝑋)2𝛾 .

These strict parameter values affect the actual performance of

the fixed solution. The value of 𝛾 implies that if the block size

is fixed (like memory blocks), then the upper bound of 𝑋 is also

fixed because we cannot change 𝛾 to smaller values than 3 log log𝑛.

However, with a small 𝑋 , there can be still too many expensive

interaction rounds, making the ORAM inefficient. So we wonder

if the value of 𝛾 can be smaller for better efficiency. While the

smaller values do not imply the improvement on complexity, they

are important for actual performance. Besides, another important

issue is if we can achieve the security on resets perfectly: whatever
𝑛 is, it is guaranteed that reset must happen beforeGC| |IC in a block

is repeated without the sacrifice of obliviousness and efficiency.

3.2 Prior OMAPs
The prior OMAPs [15, 30, 67, 79] organize KV pairs as a search

tree according to key orders. To access a pair, C traverses the

search tree to find it. Typically, these works apply some classic

data-dependent search tree such as an AVL tree or a B+ tree. These

Figure 2: The ODS for AVL. For an AVL node (Bob, London), the
ODS block stores not only the KV pair and corresponding path

(Bob, London, 3) but also the children keys and paths (Alice, 2)
and (Carol, 4).

structures are determined by both database sizes and contents.

Traversing the tree requires 𝑂 (log𝛽 𝑛) interaction rounds where

𝛽 is the branching degree of a node. Achieving OMAPs naturally

involves enabling C to traverse the search tree obliviously, which

can be done with a pointer-based technique [79] in ODS. In Fig-

ure 2, we provide a minimal AVL tree example with data pairs

{(Alice, Boston), (Bob, London), (Carol, Paris)}. To preserve the

node of an AVL tree, the ORAM tree stores 1) the keys of this

node and its children and 2) the paths this node and its children are

in. Each time it traverses a node, it finds paths its children located

on. Finally, C stores only the root node of the AVL tree.

The ODS of data-dependent search trees can achieve the OMAP

with only𝑂 (log𝑛) client-side storage where 𝑛 is the number of KV

pairs in the database. However, they incur in-compressible blocks

because the client cannot predict the keys and paths of its children,

necessitating these values to be recorded in the block. Recall that

the block size in ORAMs is assumed to be 𝑂 (log𝑛), given that the

key length is also at least𝑂 (log𝑛) [79], each block can store only a

constant number of keys, i.e., the branching factor of a node in the

search tree can be only a constant. In otherwords, the design of prior

works inherently implies the expensive𝑂 (log𝑛) interaction rounds

where the complexity constant factor is determined by the block size

and 𝑛 in production. So up to now, the prior OMAPs [15, 30, 67, 79]

cannot overcome either the 𝑂 (log2 𝑛) communication bandwidth
or the 𝑂 (log𝑛) interaction rounds while not exceeding 𝑂 (log2 𝑛)
communication bandwidth. To this end, this work tries to design

OMAPs under a new novel framework escaping from the above

inherent shortages of data-dependent search trees.

4 OMAP FRAMEWORK
In this section, we define the security model for ORAM/OMAP, then

we propose our new novel framework for designing OMAPs. This

framework allows us to combine the recursive ORAM introduced

in Section 3.1 and (modified) ODS for search trees to instantiate

new OMAPs which are asymptotically better than prior OMAPs.

4.1 Security Model
Consistent with most ORAMs [63, 73, 78] and EDBs [12, 27, 30],

we consider a client C that stores its encrypted database (EDB)

on a remote, untrusted server S. Typically, C is assumed to have

limited storage [32, 47, 73, 79] to accommodate most devices, in-

cluding those with very limited resources, such as mobile phones,

smartwatches, and secure enclaves [75]. The adversary A is as-

sumed to be honest-but-curious adversary A to capture S. This
adversary does not deviate from the predefined protocols or invade

the client C, but it observes everything available on S in the entire

5

process. Specifically, while C issues read and write operations, A
continuously observes the server state to glean as much sensitive

information about C as possible. Below, we provide the formal

security notion of ORAM/OMAP:

Definition 4.1 (Security definition). Let ®𝑦0 := {(op𝑖 , 𝑒𝑘0𝑖 , 𝑒𝑣
0

𝑖
)}𝑚−1
𝑖=0

and ®𝑦1 := {(op𝑖 , 𝑒𝑘1𝑖 , 𝑒𝑣
1

𝑖
)}𝑚−1
𝑖=0

denote two operation sequences

with the same length𝑚. The operation type op is either read orwrite.
Let 𝐴(®𝑦𝑖) denote the access sequence of blocks in S by executing

®𝑦𝑖 via the Access interface of ORAM/OMAP after Initialization2.
Then an ORAM/OMAP is secure if (1) 𝐴(®𝑦0) and 𝐴(®𝑦1) are com-

putationally indistinguishable by A, i.e., they can be distinguished

with an advantage of negl(𝜆) where 𝜆 is the security parameter,

and (2) it is correct, i.e., the results returned by executing ®𝑦𝑖 via
ORAM/OMAP is consistent with that returned by executing ®𝑦𝑖 on
unencrypted database directly with a probability of 1 − negl(𝜆),
which implies the ORAM/OMAP may fail with probability negl(𝜆).

The definition of OMAP and ORAM differs only in the KV pairs

allowed. While OMAP can process operation sequences with arbi-

trary keys in the KV store, ORAM assumes all the keys in the KV

store can be included by an integer interval with the length set by

the initialization (which is because ORAM is simulating the mem-

ory). The security definition guarantees that the access patterns

do not leak information about the operations besides the opera-

tion length. The adversary cannot obtain any knowledge about the

operation type or content. Similar to prior works [12, 20, 73], we

consider the leakage from side-channel attacks, such as when or

how frequently C issues requests, to be out of the scope of this

paper. More details and effective defenses to these attacks can be

found in [22, 33, 43]. While the initial OMAPs treat both search

and insertion as write operations and hence, indistinguishable. The

recent work [15] allows them to be distinguishable for better search

efficiency. Our OMAPs can adaptively allow or disallow these two

operations to be distinguished as needed. We discuss this and pro-

vide formal security proofs of our OMAPs in Appendix D.

4.2 OMAP Framework
In this section, we propose a new framework for designing OMAPs.

Compared with prior OMAPs [15, 30, 67, 79], this framework is the

first to combine both tree-based ORAMs and ODS of search trees to

achieve OMAP. Moreover, using this framework, we propose new

OMAPs with the best-known complexity on interaction rounds and

communication bandwidths under tree-based structures.

Framework. For better efficiency, we redesign the framework

to construct OMAP. Specifically, instead of organizing all the KV

pairs as a search tree, we follow the design of the hash table in

computer science [24] and recent ORAM works [6, 63]. We divide

the data pairs into different groups via a hash function and then

adopt efficient methods to access each group and the required pair

within it, obliviously. In detail, given a database DB := {𝑘𝑖 , 𝑣𝑖 }𝑛−1𝑖=0
,

we perform the following steps:

(1) Hash: We randomly map each pair to a group with a hash

function Hash : {0, 1}∗ → [𝑛]:
∀𝑖 ∈ [𝑛], (𝑘𝑖 , 𝑣𝑖) ∈ G𝑗 where 𝑗 = Hash(𝑘𝑖).

It is guaranteed that there are at most 𝑂 (𝜆) pairs mapped to

the same group [35, 72].

2
The initialization uses the same value for parameter 𝑛 which is no smaller than𝑚.

Figure 3: Our constructions under the new framework.

(2) ORAM for consecutive keys: We apply an ORAM to help ac-

cess these groups, i.e., we prepare KV pairs {(𝑖, 𝑝𝑡𝑖)}𝑛−1𝑖=0
where

𝑝𝑡𝑖 implies the path to access group G𝑖 . Remark the keys are

consecutive so the prior recursive ORAMs [32, 47, 73] (cf. Sec-

tion 3.1) can be applied here.

(3) Smaller OMAP for groups: For each group G𝑖 , we organize
pairs within it as a search tree. Then we construct an ODS

for the 𝑛 search trees such that we can access one of them

while avoiding C to know which tree is accessed. We can this

ODS as group OMAPs and it can be achieved by modifying the

existing OMAPs [15, 30, 79]. As each group has at most 𝑂 (𝜆)
pairs [27, 65], the interaction rounds are reduced to 𝑂 (log 𝜆).
The ORAM in step (2) uses 𝑝𝑡𝑖 to record how to access the

search tree here for G𝑖 and thus we can use it to access any pair

in G𝑖 .
To search a pair, C first calculates its group G𝑗 via the hash func-

tion, then obliviously accesses G𝑗 with ORAM to get 𝑝𝑡 𝑗 , and finally

uses 𝑝 𝑗 to find the pair via the group OMAP for G𝑗 . Under this
new framework, we can apply any ORAM in step (2) and any exist-

ing OMAP in step (3) to instantiate OMAP construction. Now we

explain how this framework enables more practical OMAPs.

Data-independent Tree. We first discuss the ORAM for consecu-

tive keys, especially the recursive ORAMs introduced in Section 3.1.

The recursive access in prior ORAMs can be regarded as obliviously

traversing a complete 𝑋 -ary tree from root to leaf where 𝑋 is the

recursion degree, i.e., the recursive ORAMs actually establish
the ODS for a complete 𝑋 -ary tree. Interestingly, the complete

tree is a data-independent tree [31], meaning its structure depends

on only the database size 𝑛. So C can exactly predict the next child

node accessed when traversing. It does not need to store the keys

of children nodes in each traversed node. While it still has to record

the paths of children, this information can be compressed because

they are only required to be nearly random instead of specified by
application, as introduced in Section 3.1. Therefore, if we use the

same block size, the node of a data-independent tree can include

more children than that of the data-dependent tree in prior OMAPs.

Conceptually, our framework needs only an ORAM here for stor-

ing data hash information. It is not necessary to use the recursive

ORAM and establish the data-independent tree. Applying some

more advanced (but impractical) hierarchy ORAMs [5, 63] with

optimal complexity, our framework can achieve better complexity

than the constructions in this paper, e.g., with the ORAM in [5]

and group OMAPs in Section 6, the communication bandwidth can

be as low as𝑂 (log𝑛 log log𝑛) instead of𝑂 (log2 𝑛/log log𝑛) in our

constructions. However, we focus on the practicality of OMAPs

6

in realistic scenarios instead of only the theoretical complexity,

and up to now, only the recursive tree-based ORAMs [32, 47, 72]

have been demonstrated the practicality under 𝑂 (log𝑛) client-side
storage. To this end, we adopt the recursive ORAM and compress

the data-independent tree to improve the ORAM performance.

Group OMAPs. The data-independent tree seems nice but is theo-

retically equivalent to a simple hash table allowing collisions. There

can be a group of KV pairs mapped to the same leaf node in the

tree. To this end, after we find the leaf node in the ORAM, we

still need to access the required pair within this group via existing

OMAPs. Take the OMAP based on ODS+AVL [79] as an example,

we establish a new ODS and then organize each non-empty group

as an AVL tree stored in this ODS. The height of each AVL tree is

𝑂 (log 𝜆) as each group has at most 𝑂 (𝜆) pairs [27, 65]. To access a

pair in a group, we traverse only 𝑂 (log 𝜆) nodes of the AVL tree,

and corresponding interaction rounds are also 𝑂 (log 𝜆).
We still need to clarify how we combine the data-independent

tree and group OMAPs. There are two ODSs separately for the two

components. Recall we need to know the path of the root node of

an AVL tree for traversing the tree. So before we look up the pair

required within the ODS for the corresponding group, we first find

the path of the root from the ODS for the data-independent tree,

i.e., the variable 𝑝𝑡 𝑗 for group G𝑗 . Until now, we smoothly integrate

the two components together for constructing new more efficient

OMAPs. We sum the two components for calculation. We conclude

the interaction rounds as𝑂 (log𝑛/log log𝑛) +𝑂 (log 𝜆) and the com-

munication bandwidth as𝑂 (log2 𝑛/log log𝑛) +𝑂 (log𝑛 log 𝜆). Note
that the ODS for the data-independent tree can be built by the ex-

isting recursive ORAM where 𝑋 ∼ 𝑂 (log𝑛/log log𝑛) [47] and the

OMAP for groups can be constructed by any existing OMAP con-

structions [15, 20, 30, 67, 79]. So up to now, we can design five OMAP
constructions which are asymptotically better than prior works.

5 DATA-INDEPENDENT TREE
In this section, we propose a new ORAM protocol named De-
amortized ORAM (DAORAM). It is motivated by addressing the

impracticality of the prior recursive ORAMs [32, 47]. As we pointed

out in Section 3.1.3, while the recursive ORAM in [47] can be used

to instantiate new OMAPs with better complexity under our frame-

work, it is impractical in production. This makes the OMAPs based

on it noncompetitive to prior OMAPs for real-world applications.

To this end, we propose DAORAM to address all the shortages

of [47] presented in Section 3.1.3 and make our OMAPs indeed

practical. For brevity, we still treat the recursion process as travers-

ing a complete 𝑋 -ary tree and call each KV pair as a node in the

tree.

5.1 Construction
In this section, we propose a new recursive ORAM protocol named

De-amortized ORAM (DAORAM) for achieving the ODS of the

data-independent tree efficiently. Motivated by our observations in

Section 3.1.3, there are three design goals for our new protocol:

(1) De-amortization: It should perform stably, even the worst-

case performance is still efficient.

(2) Larger 𝑋 : It should enables a large 𝑋 to reduce interaction

rounds as much as possible.

(3) Perfect reset: There is no repeated GC||IC with probability 1
whatever the database size is.

Overall, compared with the fixed approach [47], our new protocol

is expected to be more practical and efficient.

Reset analysis. Here we explain why the reset operation is expen-

sive and should be “removed”. First of all, lots of works [9, 34, 60,

66, 80] have demonstrated that the main cost overhead of ORAMs

is communication including the interaction rounds and commu-

nication bandwidth. That’s why a line of work [6, 21, 34, 63, 66]

are trying to pursue better interaction rounds and communication

bandwidth. The reset operation becomes costly as it needs C to

download 𝑋 paths and then place them back. Although C can re-

trieve 𝜇 paths in parallel (within the same interaction round) to

reduce interaction rounds, it needs to provide 𝑂 (𝜇 log𝑛) storage
and still interacts with S for 𝑋/𝜇 rounds. Recall we always assume

C owns only 𝑂 (log𝑛) storage to cover a wide range of devices

like smartwatches, which implies 𝜇 should be a constant. So the

reset cannot avoid 𝑂 (𝑋) interaction rounds and transferring 𝑋

paths between C and S. Worse more, C is often assumed to interact

with S under WAN [12, 20, 45, 67] where the latency can be high.

This makes the multiple interaction rounds in the reset further

unacceptably expensive, becoming one bottleneck for real-world

applications where low latency is important [34].

Intuition. Nowwe can introduce the intuition of our construction.

The main challenge is how to remove the reset while preserving

the efficiency of each query, i.e., each query processing should be

as nearly fast as the baseline in the fix, i.e., no reset happens during

the query processing. As we have analyzed that the expensive

costs in ORAM come from interaction rounds and communication

bandwidth, we address them with the following guideline:

(1) Removing the 𝑂 (𝑋) interaction rounds for the reset;

(2) Transferring the 𝑋 paths partially in each query, e.g., transfer-

ring only one of the 𝑋 paths in each query.

In this way, C will feel only a little sacrifice on efficiency because

the overhead brought by (2) is very cheap relative to the total time

usage. But the practicality is improved much as lots of interaction

rounds incurred by resets are not needed any more. To achieve

the guideline above, we resort to the de-amortization algorithm

to “spread” the reset operation over many queries. Specifically, in
this paper, we make use of the interaction rounds in usual query

processing to partially transfer reset paths and process the reset.

De-amortization philosophy. De-amortization is a classic topic

about ORAM and has been studied a lot [7, 17, 54, 61]. However,

all prior works aim to hierarchy ORAMs [5, 64] and cannot be non-

trivally applied in tree-based ORAMs. This is because among tree-

based ORAMs, only the works above [32, 47] which try to compress

children within a node suffer from the worst-case performance.

However, such ORAM protocols are important for our framework.

As far as we know, this work is the first to introduce de-amortization

in tree-based ORAMs and adopt a philosophy different from prior

works, which can be helpful for understanding the recursive ORAM

and OMAPs based on it.

Whenwe try to follow the philosophy of prior de-zmortizations [7,

17, 54, 61], we found that can be much expensive in tree-based

ORAMs, which motivates us to present a new and more useful

strategy for that in tree-based ORAMs. The prior works hope to

prepare a backup for the expensive operation (like the reset) dur-

ing usual queries. So if C needs reset, it directly starts with the

7

Figure 4: The prior strategy with a query “𝐶𝑎𝑟𝑜𝑙 → 𝐶ℎ𝑎𝑟𝑙𝑖𝑒".

backup and then prepares the next backup. However, this always

brings copies of data such that in the end we have to execute de-

duplication to delete data copies, which is the main bottleneck in

prior works. Moreover, to guarantee data consistency, C has to

execute each update query in both the currently used data and

backup data which we call as the current group and backup group,
respectively. As shown in Figure 4, C separately completes the up-

date query: “𝐶𝑎𝑟𝑜𝑙 → 𝐶ℎ𝑎𝑟𝑙𝑖𝑒" within the two groups, multiplying

the query costs by 2. In this paper, we propose a new lazy strat-

egy for tree-based ORAMs: pursue the expensive operation instead
of preparing it in advance. In short, if C needs to reset the block

when accessing a pair, it just directly resets this pair alone and
resets all other pairs in this node during the next usual queries. This

avoids data copies and also de-duplication, enabling more efficient

ORAM construction. The data consistency under our strategy is

also guaranteed in a more efficient way. We always preserve each

item in only one group. When the reset is triggered by the update

query: “𝐶𝑎𝑟𝑜𝑙 → 𝐶ℎ𝑎𝑟𝑙𝑖𝑒 , we remove this item from the current

group and put the updated item in the backup group, which requires

only one usual query cost in tree-based ORAM. We remark that

this is because although we depict two trees in figures for ease of

understanding, the two trees can be integrated into one in storage,

allowing the removal and placement to be completed in the same

query process. The challenge is to let C always know which group

to find for each data, e.g., if the next query is to search𝐶ℎ𝑎𝑟𝑙𝑖𝑒 , then

C should find it in the backup group instead of the current group for

correctness. Besides, C needs to remove all items from the current

data group to the backup group before the next reset is triggered

for continuous de-amortization. Our construction proposed below

will address the two challenges with practicality.

Data structures. We first define the data structure in an internal

node of the data-independent tree. Suppose this node containing

the paths of children with key {𝑎, 𝑎 + 1, ..., 𝑎 +𝑋 − 1}, we store two
groups of counters: they are the compression for reset and pursuing

reset denoted by G𝑟 and G𝑝 :

G𝑟 : GC𝑟 | |IC𝑟
0
| |IC𝑟

1
| |IC𝑟

2
| | · · · | |IC𝑟𝑋−1,

G𝑝 : GC𝑝 | |IC𝑝
0
| |IC𝑝

1
| |IC𝑝

2
| | · · · | |IC𝑝

𝑋−1 .

Consistent to prior works [32, 47], we let GC occupies 𝛼 bits and

IC occupies 𝛾 bits such that 𝛼 + 𝑋 · 𝛾 ∼ 𝑂 (log𝑛). Besides, we
additionally add one bit b ∈ {0, 1} as the indicator variable. The
path calculation for the child with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]) based on the

two groups are as below:

𝑝𝑡𝑟𝑗 = PRFKb (𝑎 + 𝑗 | |GC𝑟 | |IC𝑟𝑗), (2)

Figure 5: Our new strategy with a query “𝐶𝑎𝑟𝑜𝑙 → 𝐶ℎ𝑎𝑟𝑙𝑖𝑒".

𝑝𝑡
𝑝

𝑗
= PRFK1−b (𝑎 + 𝑗 | |GC𝑝 | |IC𝑝𝑗) (3)

where (K0,K1) are two secret keys for PRF. That means we define

two different calculations for the two groups and we will show how

they are useful in query processing.

Query Processing. Nowwe describe the specific query processing

with three phases as below.

(1) The initialization phase happens only once in the beginning.

Similar to prior works [32, 47], it initializes (G𝑟 ,G𝑝) in an in-

ternal node of the data-independent tree to include paths for

the children with keys {𝑎, 𝑎 + 1, ..., 𝑎 +𝑋 − 1}. The initial values
are set as below:

∀𝑗 ∈ [𝑋], IC𝑟𝑗 := 1, IC𝑝
𝑗
:= 0.

Also (GC𝑟 ,GC𝑝) and b are set as 0. The child with keys 𝑎 + 𝑗 is
guaranteed to be placed in the path calculated by Equation 2.

(2) The query phase is for processing a query from C. Here we

describe how the access is done between an internal node and

its children. C repeats this process for 𝑂 (log𝑛/log𝑋) internal
nodes to traverse the data-independent tree. Suppose C wants

to access the node with key 𝑎 + 𝑗 (𝑗 ∈ [𝑋]) in level 𝑖 , and it

has got the internal node in level 𝑖 − 1 whose children own

keys {𝑎, 𝑎+1, ..., 𝑎+𝑋 −1}. Then C calculates (𝑝𝑡𝑟 , 𝑝𝑡𝑝) accord-
ing to Equation 2 and Equation 3. Now C execute procedures

according to the value of IC𝑟
𝑗
:

(a) If 0 < IC𝑟
𝑗
< 2

𝛾 − 1, C directly retrieves the child node

using 𝑝𝑡𝑟 . Then C increments IC𝑟
𝑗
:= IC𝑟

𝑗
+ 1 to calculate

the new assigned path to this child node with Equation 2.

(b) If IC𝑟
𝑗
= 2

𝛾 − 1, i.e., it cannot be incremented more for

obliviousness. Next C sets GC𝑝 = GC𝑝 + 1, IC𝑝
𝑗
= 1. Then

C retrieves the child node using 𝑝𝑡𝑟 and assigns the node

with the new path 𝑝𝑡𝑝 to place it back. Finally, C sets

b = 1 − b, IC𝑟
𝑗
= 0, and then swaps (G𝑟 , G𝑝), i.e., the

original reset group now needs to be the one for pursing

reset because one value in it reached the upper bound.

(c) If IC𝑟
𝑗
= 0, then C uses 𝑝𝑡

𝑝

𝑗
to retrieve the node. Next it

increments IC𝑟
𝑗
:= IC𝑟

𝑗
+ 1 to calculate the new assigned

path to the node with Equation 2. After that, it sets IC𝑝
𝑗
= 0.

With steps above, C identify the retrieved path and new as-

signed path so it can write back the child node.

(3) The reset phase is executed in parallel with the query phase to

reuse the interactions in the query phase. There are two cases:

8

(a) If all IC
𝑟
s except IC

𝑟
𝑗
are non-zeo, then C just retrieves a

random path, evicts it and wirtes it back.

(b) If there exists 𝑗1 ≠ 𝑗 such that IC
𝑟
𝑗1
= 0, then C accesses

the child node with key 𝑎 + 𝑗1 identically to case (c) in the

query phase.

During the execution, every time C issues a query, it interacts with

S to execute the query phase and reset phase in parallel. In total,

C will retrieve 2 paths, process them, and return them. The two

path are retrieved within the same one interaction round. This

guarantees that GC| |IC strictly increases if 2
𝛾 > 𝑋 , the correctness

proof is provided in Appendix B.1.

Remark. The readers may notice that it is not easy for C to

always distinguish G𝑟 and G𝑝 correctly because they have the

same format and value range. So we will always place G𝑝 behind

G𝑟 . The indicator bit b is exactly used to mark which secret key

corresponds to the first group.

Reducing groups. Now we have achieved the de-amortization

with two compressed groups within an internal node but there

is only one group in prior works [32, 47]. Next, we show how to

optimize our construction for reducing group numbers. The setting

of two-group parameters helps understand how the reset is partially

done per access. But the two groups can be integrated based on

a non-trivial observation: for any 𝑗 ∈ [𝑋], it holds that one of

(IC𝑟
𝑗
, IC𝑝

𝑗
) must be zero and the other is non-zero. So we can record

only the non-zero value and use only a bit to imply which groups

it belongs to. Besides, as GC𝑟 and GC𝑝 can be repeated without

sacrificing security, we replaced them with only one variable GC.
Now we do the increment GC := GC+ 1 every two swaps, i.e., both
the logic GC𝑟 and GC𝑝 have been used for recursion. We use the

variable b to do this: each time swap happens and also b = 1, we

increment GC. Finally, the data structure within a node is:

GC| |IC0 | |IC1 | | · · · | |IC𝑋−1 and g
0
| |g

1
| | · · · | |g𝑋−1 | |b

where g𝑗 ∈ {0, 1} implies if IC𝑗 belongs to G𝑟 and b ∈ {0, 1}.
5.2 Analysis
In this section, we mainly give the analysis of performance to show

DAORAM indeed achieves all three design goals in Section 5.1. The

proof of correctness and security is formally given in Appendix B.1.

For the performance, we analyze three metrics including interaction
round, interaction bandwidth, and computational complexity per

query. In DAORAM, the interaction round is 𝑂 (log𝑛/log log𝑛) as
we still enable 𝑋 ∼ 𝑂 (log𝑛/log log𝑛) and assume 𝑂 (log𝑛) client-
side storage. The communication bandwidth is calculated as:

𝑂 (log𝑋 + log𝑋 2 + · · · + log𝑛) = 𝑂 (log2 𝑛/log𝑋).

where log𝑋 𝑖 denotes the communication bandwidth in the 𝑖th in-

teraction round. So when 𝑋 is 𝑂 (log𝑛/log log𝑛), the communica-

tion bandwidth is 𝑂 (log2 𝑛/log log𝑛). To complete the calculation

about retrieving a node in 𝑖th level, the main computation is sorting

the union of 𝑂 (log𝑋 𝑖) retrieved nodes and 𝑂 (log𝑋 𝑖) nodes in the

stash, which requires𝑂 (log𝑋 𝑖 log log𝑋 𝑖) computation. So the total

complexity is

𝑂 (log𝑋 log log𝑋 + log𝑋 2
log log𝑋 2 + · · · + log𝑛 log log𝑛)

which can be bounded by 𝑂 (log2 𝑛 log log𝑛/log𝑋). When 𝑋 is

𝑂 (log𝑛/log log𝑛), the total complexity is 𝑂 (log2 𝑛).

It is easy to notice that we successfully remove all interaction

rounds for resets by applying the interaction rounds in usual query

process. The cost is that we transfer two paths in each access while

prior works transfer only one, i.e., we increase one path commu-

nication, which is very cheap for the whole query processing. So

we achieve the de-amortization design goal as expected. Now

we explain our de-amortization naturally supports the second and

third design goals. For parameters, the correctness and security of

DAORAM require only 2
𝛾 > 𝑋 even when 𝑛 whatever 𝑛 is. This is

much more relaxed than that in [47] (cf. Observation 2). Therefore,

we can further enlarge 𝑋 as much as possible to minimize the in-

teraction round for actual performance by solving the following

equations to get values of (𝛾, 𝑋):{
2
𝛾 − 1 = 𝑋
𝛼 + 𝑋 · 𝛾 ∼ 𝑂 (log𝑛)

(4)

6 GROUP OMAP
In this section, we introduce the group OMAP under our framework.

Its design is creatively modified from existing OMAPs to fit our

framework. Under our framework, 𝑛 KV pairs are randomly divided

into 𝑛 groups. Prior works [35, 72] conclude that each group has at

most𝑂 (𝜆) items. However, the recent work [27] proposes a theorem

that shows this bound can be very low in practice, which makes

our method truly more practical than prior OMAPs. For example,

given 𝜆 = 128, 𝑛 = 2
24
, there exists a group consisting of more than

52 pairs with a probability no larger than 2
−128

. Here we introduce

the simplified theorem in [27] here for completeness:

Theorem 6.1. With 𝑛 items independently and uniformly ran-
domly mapped to one of 𝑛 groups, then for the following function
𝑓 (𝑛, 𝜆) that outputs the bound, the probability of there exists one
group consisting of more than 𝑓 (𝑛, 𝜆) is negligible in 𝜆.

𝑓 (𝑛, 𝜆) =𝑚𝑖𝑛(𝑛, 𝑒𝑥𝑝 [𝑊0 (𝑒−1 (log𝑛 + 𝜆 − 1)) + 1])
where𝑊0 (·) is branch 0 of the Lambert𝑊 function.
We list a table to identify the small value of 𝑓 (𝑛, 𝜆) under 𝜆 = 128 in

Appendix C. Although we continue using𝑂 (𝜆) to bound the group
size, the readers should realize this bound can be small enough to

be efficient. Now we describe the design and performance of the

group OMAP. Recall it is used to store the 𝑛 groups and access any

pair within a group obliviously. For obliviousness, it is required:

• Group obliviousness: S cannot infer which group among the 𝑛

groups is accessed during the query processing.

• Pair obliviousness: S cannot infer which pair among the 𝑂 (𝜆)
pairs within the group is accessed in the query processing.

OMAPs as a whole. To achieve the pair obliviousness, we can

apply any existing OMAP [15, 30, 67, 79] to process the𝑂 (𝜆) pairs in
the same group. The essence is to guarantee the group obliviousness:

we store all the 𝑛 groups within the same ODS tree for access. Take
the OMAP based on ODS for the AVL tree as an example, pairs in

the same group are organized as an AVL tree. Then the 𝑛 AVL trees

are stored in the same ODS tree. To access a pair in the AVL tree,

we just traverse the AVL tree obliviously via the ODS tree. Recall

to access the AVL-based OMAP, we need to know how to find the

root node of the AVL tree, which is provided by the DAORAM. In

the end, the root is updated and rewritten to the DAORAM. As

most existing OMAPs [15, 30, 67, 79] are based on a search tree,

9

we can in general apply such a process to all of them for different

trade-offs.

Here we introduce three OMAP approaches [15, 30, 79] we use
with DAORAM under our framework to instantiate three new specific
OMAP constructions. They adopt ODS for different search trees with
various trade-offs. We summarize them as below and refer their

complexity description to Table 1.

• ODS+AVL: This OMAP [79] is based on oblivious AVL tree. It is
the simplest and achieves the best bandwidth blowup. However,

it is the most expensive in reality as pointed out by [67]. Notably,

it guarantees the insertion and search are indistinguishable.

• ODS+AVL∗: This OMAP [15] is also based on oblivious AVL
tree and is the SOTA work in VLDB 2024. It allows search to be

distinguishable from insertion and further optimizes search for

better efficiency. It also contributes to the client-side oblivious

algorithm as it is implemented in Intel SGX. As our works focus

on the client-server setting [75] where the client-side algorithms

are not required for obliviousness, we just adopt more efficient

algorithms for this OMAP in C.
• ODS+B+: This OMAP [30] is based on oblivious B+ tree and

thus allows a lower tree height and fewer interaction rounds.

However, it achieves the reduced interaction rounds at the cost of

communication bandwidth: compared to prior methods [15, 79],

the block and bucket size here have to be extended for storing

more keys within one node of the B+ tree.

7 EVALUATION
Our proposed new framework for designing OMAP comprises two

important components: an ORAM for the data-independent tree
and an ODS for group OMAPs. We present a novel ORAM protocol

named DAORAM which not only surpasses the performance of

prior solutions [32, 47] suited for the data-independent tree, but

also achieves de-amortization for practicality. For the ODS, we

adapt existing OMAP schemes described in Section 6. To this end,

we combine DAORAM with the three aforementioned OMAPs to

build three new OMAP constructions. In this section, we conduct

experiments to study the following two questions:

Q1. What is the performance gain of DAORAM compared to prior

ORAMs [32, 47] for the data-independent trees? (Section 7.1)

Q2. What is the performance gain of our new OMAPs compared

to prior OMAPs [15, 30, 67, 79]? (Section 7.2)

Settings. Consistent with a line of prior works [15, 30, 67, 79]

on ORAM/OMAP, we implement our ORAM/OMAPs in a client-

server setting. S operates a powerful machine, featuring an Intel

Xeon Platinum 8160 CPU (96 cores, 2.10 GHz) and 376 GB memory,

located in Hangzhou, China. C operates on a relatively lightweight

Alibaba Cloud machine equipped with 4 vCPUs (from an Intel Xeon

Platinum 8269CY, 2.50GHz) and 16 GB memory and located in

Beijing, China. Importantly, C and S interact with each other over

the WAN to simulate reality, with a bandwidth of 100 Mbps and

an average latency of 38 ms. Our constructions are implemented

in Python 3.10, where the encryption (AES 128-bit) and PRF are

imported from the pycryptodome package [3]. To ensure a fair

comparison, we implement prior OMAPs following their open-

sourced repositories [1, 2] in Python. We follow the commonly used

parameters to set upORAMs: each bucket has 4 blocks, and the block

size of DAORAM is set to 512 bits, consistent with [32]. Following

Reset number 0 1 2 3

Proset
time (s) 0.29 1.72∼2.95 3.14∼4.75 4.55∼5.06

band (KB) 24 91.5∼392.3 234.2∼685.4 452.1∼903.3

Fixset
time (s) 0.37

band (KB) 39.7

Table 2: Comparison between Fixset and Probset on stability.

prior works [27, 30, 59], we primarily conduct experiments on

synthetic datasets, as the obliviousness property guarantees that

ORAMs/OMAPs perform independent of data distributions [12, 42].

We generate the synthetic datasets of varying sizes to evaluate the

scalability of our proposed constructions.

7.1 Practical ORAM with de-amortization
To demonstrate that DAORAM is the most practical and efficient,

we implement DAORAM and two other recursive ORAMs for com-

parison. We refer to the ORAM constructions by the names listed

below in the following discussions:

• Freeset: Freecursive [32] serves as the baseline, although it does

not achieve obliviousness. It represents the best possible average

processing time for queries, as it requires the fewest resets.

• Probset: Freecursive with the probabilistic reset [47] is the only

ORAM (before ours) that satisfies both the obliviousness and the

data-independent tree requirements. However, it is impractical

due to its inefficiency and unstable query performance.

• Fixset: OurDAORAMwith the fixed reset not only ensures stable

performance but also performs more efficiently than Probset.
De-amortization. We compare Fixset and Probset on their query

performance. We run both of them on a synthetic dataset with 2
24

(over 16,000,000) KV pairs, where both key and value are 4 bytes,

and perform 2
20

queries. Since Probset processes queries with ran-

dom resets, we categorize its queries based on the number of resets

that occur during the query. The corresponding bandwidth and

processing time per query are shown in Table 2. The results are

intervals when the reset number is non-zero because resets can

occur in ORAMs of different sizes, leading to varying costs. Clearly,

the costs noticeably increase even if the reset number is only 1. The

processing time can be 6 ∼ 17× slower than that in the best case,

where the reset number is 0. In contrast, Fixset always performs sta-

bly, and the results show that its performance is comparable to even

the best-case performance of Probset. Additionally, we evaluate the
stash size stored in C to demonstrate DAORAM also outperforms

prior works [32, 47] in stash size. We show the maximum stash

size used under different query numbers in Figure 6. While the

query distribution does not affect the reset operations, it possibly

impacts the stash sizes. To study this, we generate queries under

two typical query distributions: 1) all queries repeatedly access the

same pair, and 2) queries follow uniform distributions. It is shown

that Fixset has an impressively smaller clientside stash than the

other two protocols. The stash size in Fixset is only one-third of

that in Probset! This results from two advantages of DAORAM
brought by de-amortization. Firstly, there are dummy accesses in

DAORAM, which only evicts a random path. They help DAORAM
reduce the stash size but the other two works do not have such

dummy accesses. Secondly, while the other two protocols retrieve

only one path per access, DAORAM retrieves two paths per access

corresponding the query and reset phase, respectively. This allows

10

0 5 10 15 20

0

2

4

6

8

10

Query number𝑚 (2
𝑥
)

E
n
t
r
y

(a) Repeated

0 5 10 15 20

0

2

4

6

8

10

Query number𝑚 (2
𝑥
)

E
n
t
r
y

(b) Uniform

Freeset Probset Fixset

Figure 6:Maximal stash size.

more aggressive eviction strategies, reducing the stash size. All

these results demonstrate, benefited from de-amortization, Fixset

is the most practical among the protocols of interest.

Efficiency. We also compare the average processing time and

communication time of all queries to evaluate their performance.

With each of the three ORAM protocols, we run 2
10

queries on

databases with sizes ranging from 2
10

to 2
24

and present the re-

sults in Figure 7. The queries are generated without repetition to

ensure Fixset maintains its best-case performance by avoiding any

resets. Despite this, Fixset’s performance remains close to that of

Freeset and improves upon Probset by 21% ∼ 47%. Thus, Freeset
(i.e.,DAORAM) is highly suitable for production due to its efficiency

improvements and practicality.

7.2 Efficient OMAP with less communication
In Section 6, we list three existing OMAP constructions. Under

our framework, we construct three new OMAPs using DAORAM
with each of these OMAPs. We compare the efficiency of each new

OMAP with the corresponding existing OMAP it is based on to

demonstrate our framework accelerates OMAPs:

• DAORAM+AVL vs. ODS+AVL: ODS+AVL [79] is the baseline

and is included in the comparison as it is the first and most

widely-used OMAP [12, 46, 59].

• DAORAM+AVL∗ vs. ODS+AVL∗: ODS+AVL∗ [15] is the state-of-
the-art OMAP based on the AVL tree. It optimizes the search

algorithm of the baseline for better efficiency.

• DAORAM+B+ vs. ODS+B+: ODS+B+ [30], benefiting from its

large branching degree, is the most efficient OMAP to date.

As claimed in [75] and Section 5.1 of this work, the performance

bottleneck of OMAPs in a client/server setting is the bandwidth and

interaction rounds. Therefore, we use the following three metrics

to evaluate OMAPs: 1) the time usage of operations, 2) the number
of interaction rounds, and 3) the communication bandwidth.

Insertion. We run all six OMAPs mentioned above on databases

with sizes ranging from 2
10

to 2
24

and execute 100 queries, as in [30,

67]. Here we mainly focus on the insertion operation. Insertion

is essential to OMAPs because it captures the write operations

on databases and in the original and ideal OMAPs [79], even the

search operation should seem identical to insertion. So we present

the insertion comparison here and leave the search comparison in

Appendix E.1 for space. The time usage of insertion is depicted in

Table 3 and we decompose the time in detail to show the speedup in

different components further. Besides, to explain the speedup, we

list the improvement in communication of our OMAPs in Table 4.

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(a) Total time

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(b) Communication time

Freeset Probset Fixset

Figure 7: Amortized cost per query.

As shown in the tables, there is a substantial speedup of our

OMAPs to prior OMAPs. Firstly, in communication time (𝑇2 in Ta-

ble 3), our OMAPs achieve a speedup of 37.0% ∼ 72.0% compared

to the corresponding OMAPs they are based on. This results from

the reduced interaction rounds and bandwidth. We significantly

reduce the interaction rounds and bandwidth with a speedup from

35.6% ∼ 92.6%! The interaction round is the dominant factor in com-

munication as the OMAPs are run under WAN, hence the speedup

of 𝑇2 is closer to that of the interaction round. Also, communica-

tion occupies the most time usage during query processing, our

OMAP mainly improves communication to enhance efficiency. Sec-

ondly, our OMAPs also speed up the client-side calculation (𝑇1 in

Table 3) between 33.3% ∼ 71.1% although𝑇1 owns only a veryminor

proportion. This speedup comes from reduced bandwidth, which

implies we retrieve fewer items to calculate, thus 𝑇1 decreases. The

speedup of𝑇1 is lower than the reduction in bandwidth because the

client-side calculation in our OMAPs is more complex, lowering the

speedup. Finally, in the whole query processing time (𝑇3 in Table 3),

our OMAPs achieve a speedup of 40.1% ∼ 72.0%. The most efficient

of our OMAPs is DAORAM+B+, which is almost 6× faster than the

baseline ODS+AVL for insertions. We remark our speedup comes

from the lower asymptotic complexity, both the two tables show

with 𝑛 increasing, the speedup is more and more significant. So

it is predictable the speedup of our OMAPs on insertions will be

more pronounced as the database size increases due to the superior

complexity of our OMAPs, i.e., our OMAPs are expected to perform

even better in very large databases in production.

Extended experiments. There are more extensive experiments

conducted to evaluate our ORAM and OMAPs, which are shown

in the appendix for space. For DAORAM, we test the impact of

different accesses on its stash size, validate its obliviousness by

running it under multiple query distributions, and compare it with

prior tree-based ORAMs to provide further insights. The results are

presented in Appendix B.3. For OMAPs, we evaluate more of its

operations (e.g., search, delete, etc), validate its obliviousness with

six distinct query distributions with different skewness and two

different datasets, and finally evaluate it under network conditions

across a wide range of latencies. These results are provided in

Appendix E.

8 RELATEDWORK
The leakage from access patterns has been widely recognized as

dangerous in EDBs, prompting handful of works presented in the

communities of databases [20, 30, 52], security [59, 67, 79], and

cryptography [5, 7, 64] to achieve obliviousness in EDBs. Our work is
11

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Time components 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3

AVL

prior (s) 0.06 2.91 2.97 0.09 3.72 3.81 0.17 4.70 4.87 0.27 5.51 5.78 0.31 6.12 6.43 0.38 6.94 7.32

ours (s) 0.04 1.25 1.31 0.06 1.48 1.55 0.07 1.58 1.64 0.09 1.81 1.89 0.10 1.82 1.93 0.11 1.94 2.05

speedup (%) 33.3 57.0 55.9 33.3 60.2 59.3 58.8 66.4 66.3 66.7 67.2 67.3 67.7 70.3 70.0 71.1 72.0 72.0

B+

prior (s) 0.04 1.46 1.57 0.05 1.79 1.84 0.08 2.01 2.09 0.10 2.51 2.61 0.13 2.73 2.86 0.16 2.95 3.11

ours (s) 0.02 0.92 0.94 0.03 0.94 0.97 0.04 0.98 1.02 0.04 1.00 1.04 0.05 1.04 1.09 0.06 1.08 1.14

speedup (%) 50.0 37.0 40.1 40.0 47.5 47.3 50.0 51.2 51.2 60.0 60.2 60.2 61.5 61.9 61.9 62.5 63.4 63.3

Table 3: Time usage of insertion. 𝑇1 is calculation time, 𝑇2 is the communication time, and 𝑇3 is the total processing time.

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Communicate round band (KB) round band (KB) round band (KB) round band (KB) round band (KB) round band (KB)

AVL

prior (s) 90 345.6 114 554.49 144 884.74 168 1204.22 186 1476.10 210 1881.60

ours (s) 58 128.51 58 130.05 60 132.86 60 135.17 60 136.70 62 139.26

speedup (%) 35.6 62.8 49.1 76.5 58.3 85.0 64.3 88.8 67.7 90.7 70.5 92.6

B+

prior (s) 42 75.26 54 124.42 66 185.86 72 221.18 84 301.06 96 393.22

ours (s) 28 28.67 28 30.21 30 33.02 30 35.33 30 36.86 32 39.42

speedup (%) 33.3 61.9 48.1 75.7 54.5 82.2 58.3 84.0 64.3 87.8 66.7 90.0

Table 4: Interaction rounds and communication bandwidth of insertion.

closely aligned with two well-known areas: Oblivious RAM (ORAM)

and oblivious data structure (ODS).

ORAM. ORAM is an essential primitive that counters attacks

based on access pattern leakage, with extensive research in various

directions [5, 7, 47, 72, 73]. Our works follow a line of works [13, 32,

47, 66, 78] to improve the relatively practical tree-basedORAM. Tree-

based ORAMs can be divided into recursive ORAMs [32, 47, 73]

and non-recursive ORAMs [78, 81]. Non-recursive ORAMs use

𝑂 (𝑛) client-side storage to enhance their efficiency, but this stor-

age requirement may be infeasible in production [32, 75]. Recur-

sive ORAMs require small client-side storage, typically 𝑂 (log𝑛),
making them more practical. However, as discussed in Section 2,

one data access in recursive ORAMs involves 𝑂 (log𝑛) interaction
rounds, which can be expensive, especially over WAN. Our work

follow [32, 47] to significantly reduce the number of interaction

rounds to 𝑂 (log𝑛/log log𝑛). Notably, our proposed scheme DAO-
RAM elegantly avoid the costly worst-case performance in prior

works [32, 47]. To our knowledge,DAORAM is the most efficient

and practical recursive ORAM protocol to date.

ODS. Since Wang et al. [79] introduced the concept of ODS,

extensive research has focused on exploring and improving ODS

constructions. Wang et al. [79] propose techniques and construc-

tions for a variety of classic data structures, including trees, sets,

and graphs. In particular, they provide the first construction for

the oblivious map (OMAP), using an oblivious AVL tree, which

is broadly adopted by many EDBs [12, 28, 36] and serves as the

baseline for comparisons in this work. FollowingWang et al., Roche

et al. [67] propose a new tree structure named HIRB (similar to a

B tree) to establish a more efficient OMAP. Currently, the SOTA

works are [15, 30], which adopt an oblivious B+ tree and an opti-

mized AVL tree, achieving the best performance to date. However,

the design philosophy of search trees causes these constructions

to be limited by the 𝑂 (log1.5 𝑛) communication bandwidth lower

bound of oblivious search trees, as proven by [48]. Moreover, con-

structions of search tree based OMAPs have not yet overcome

the 𝑂 (log2 𝑛) bandwidth. As far as we know, we are the first to

adopt a framework other than the oblivious search tree and achieve

𝑂 (log2 𝑛/log log𝑛)+𝑂 (log 𝜆 log𝑛) communication bandwidthwith

OMAP constructions.

Our work on ORAM in this paper also suggests that oblivious

hash tables [79] can have a similar bandwidth complexity, but as

we discussed in Section 1, this approach is still more costly than

our constructions. Enigma [75] is another study on OMAP that

is independent of our research, as it focuses on optimizing the

performance when implementing OMAP in secure enclaves, e.g.,

the page swaps between inside and outside the enclave. In addition,

several other works address OMAP in secure enclaves, with a strong

emphasis on achieving obliviousness within the enclave (i.e., the

obliviousness in C). All of these works can benefit from our OMAP,

as it improves the performance of oblivious algorithms in S. We

leave it as future works to integrate our work with prior algorithms

in𝐶 to achieve obliviousness practically in both C and S, a concept
referred as double-obliviousness in Oblix [59].

9 CONCLUSION
In this paper, we propose a new framework for designing a funda-

mental oblivious data structure in encrypted databases: oblivious
map (OMAP). We are the first to combine the oblivious hash table
(which allows collisions) with an oblivious search tree to build more

efficient OMAPs. We propose a new ORAM protocol named DAO-
RAM, the most efficient and practical recursive tree-based ORAM

so far, for the oblivious hash table. By combining the oblivious hash

table with three prior OMAPs based on search trees [15, 30, 79], we

present three OMAP constructions and empirically demonstrate

that they significantly outperform prior OMAPs. Our work can

enhance the efficiency of all encrypted key-value databases and

more general encrypted databases.

12

REFERENCES
[1] [n.d.]. ObliDB open-sourced repository. ([n. d.]). https://github.com/

SabaEskandarian/ObliDB

[2] [n.d.]. An open-sourced repository for ODS+AVL. ([n. d.]). https://github.com/

obliviousram/oblivious-avl-tree

[3] [n.d.]. Python package pycryptodome. ([n. d.]). https://github.com/Legrandin/

pycryptodome

[4] Yuriy Arbitman, Moni Naor, and Gil Segev. 2009. De-amortized Cuckoo Hash-

ing: Provable Worst-Case Performance and Experimental Results. In Automata,
Languages and Programming, Susanne Albers, Alberto Marchetti-Spaccamela,

Yossi Matias, Sotiris Nikoletseas, and Wolfgang Thomas (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 107–118.

[5] Gilad Asharov, Ilan Komargodski,Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and

Elaine Shi. 2020. OptORAMa: optimal oblivious RAM. In Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part II 30. Springer, 403–432.

[6] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi.

2022. Optimal Oblivious Parallel RAM. In Proceedings of the 2022 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2459–2521.

[7] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. 2023. Oblivious

RAM with worst-case logarithmic overhead. Journal of Cryptology 36, 2 (2023),

7.

[8] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Near-

Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding

Multi-Maps. In 32nd USENIX Security Symposium, USENIX Security 2023, Ana-
heim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and Carmela Tron-

coso (Eds.). USENIX Association, 301–318. https://www.usenix.org/conference/

usenixsecurity23/presentation/bienstock

[9] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and

YanHuang. 2015. Practicing oblivious access on cloud storage: the gap, the fallacy,

and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 837–849.

[10] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. 2013. Data-oblivious

graph algorithms for secure computation and outsourcing. In Proceedings of
the 8th ACM SIGSAC symposium on Information, computer and communications
security. 207–218.

[11] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam

O’Neill. 2021. 𝜀psolute: Efficiently Querying Databases While Providing Differ-

ential Privacy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2262–2276.

[12] Xinle Cao, Yuhan Li, Dmytro Bogatov, Jian Liu, and Kui Ren. 2023. Secure and

Practical Functional Dependency Discovery in Outsourced Databases. Cryptology
ePrint Archive (2023).

[13] Anrin Chakraborti, Adam J Aviv, Seung Geol Choi, Travis Mayberry, Daniel S

Roche, and Radu Sion. 2019. rORAM: Efficient Range ORAM with O (log2 N)

Locality.. In NDSS.
[14] Anrin Chakraborti and Radu Sion. 2016. POSTER: ConcurORAM: High-

Throughput Parallel Multi-Client ORAM. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 1754–1756.

https://doi.org/10.1145/2976749.2989062

[15] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-

pos Papamanthou, and Rasool Jalili. 2023. GraphOS: Towards Oblivious Graph

Processing. Proc. VLDB Endow. 16 (2023), 4324–4338. https://api.semanticscholar.

org/CorpusID:265455667

[16] TH Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. 2018. Cache-oblivious

and data-oblivious sorting and applications. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2201–2220.

[17] T-H Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. 2017. Oblivious hashing

revisited, and applications to asymptotically efficient ORAM and OPRAM. In

Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. Springer, 660–690.

[18] Zhao Chang, Dong Xie, and Feifei Li. 2016. Oblivious RAM: A dissection and

experimental evaluation. Proceedings of the VLDB Endowment 9, 12 (2016), 1113–
1124.

[19] Zhao Chang, Dong Xie, Feifei Li, Jeff M. Phillips, and Rajeev Balasubramonian.

2022. Efficient Oblivious Query Processing for Range and kNN Queries. IEEE
Transactions on Knowledge and Data Engineering 34, 12 (2022), 5741–5754. https:

//doi.org/10.1109/TKDE.2021.3060757

[20] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. 2022. Towards Practical

Oblivious Join. In Proceedings of the 2022 International Conference on Management
of Data. 803–817.

[21] Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion ring ORAM: efficient

constant bandwidth oblivious RAM from (leveled) TFHE. In Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security. 345–
360.

[22] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.

Detecting Privileged Side-Channel Attacks in Shielded ExecutionwithDéjà Vu. In

Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17). Association for

Computing Machinery, New York, NY, USA, 7–18. https://doi.org/10.1145/

3052973.3053007

[23] Seung Geol Choi, Dana Dachman-Soled, S DovGordon, Linsheng Liu, and Arkady

Yerukhimovich. 2021. Compressed oblivious encoding for homomorphically

encrypted search. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2277–2291.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[25] Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer

Wagh. 2017. The pyramid scheme: Oblivious RAM for trusted processors. arXiv
preprint arXiv:1712.07882 (2017).

[26] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology

ePrint Archive, Paper 2016/086. https://eprint.iacr.org/2016/086 https://eprint.

iacr.org/2016/086.

[27] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha Crooks, and

Raluca Ada Popa. 2021. Snoopy: Surpassing the scalability bottleneck of oblivious

storage. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 655–671.

[28] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2019. Dynamic searchable encryption with small client

storage. Cryptology ePrint Archive (2019).
[29] Dirk Eddelbuettel. 2022. A Brief Introduction to Redis. arXiv:2203.06559 [stat.CO]

[30] Saba Eskandarian and Matei Zaharia. 2017. Oblidb: Oblivious query processing

for secure databases. arXiv preprint arXiv:1710.00458 (2017).
[31] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and Roberto

Tamassia. 2022. Range Search over Encrypted Multi-Attribute Data. Proc. VLDB
Endow. 16 (2022), 587–600. https://api.semanticscholar.org/CorpusID:252545892

[32] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk, and Srini-

vas Devadas. 2015. Freecursive ORAM: [Nearly] Free Recursion and Integrity

Verification for Position-based Oblivious RAM. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 103–116.

[33] Christopher W. Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,

and Srinivas Devadas. 2014. Suppressing the Oblivious RAM timing channel

while making information leakage and program efficiency trade-offs. In 2014
IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA). 213–224. https://doi.org/10.1109/HPCA.2014.6835932

[34] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: Efficient oblivious RAM in two rounds with applications to searchable

encryption. In Annual International Cryptology Conference. Springer, 563–592.
[35] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,

and Daniel Wichs. 2013. Optimizing ORAM and using it efficiently for secure

computation. In Privacy Enhancing Technologies: 13th International Symposium,
PETS 2013, Bloomington, IN, USA, July 10-12, 2013. Proceedings 13. Springer, 1–18.

[36] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New constructions for forward and backward private sym-

metric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1038–1055.

[37] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.
[38] Michael T Goodrich. 2011. Randomized shellsort: A simple data-oblivious sorting

algorithm. Journal of the ACM (JACM) 58, 6 (2011), 1–26.
[39] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto

Tamassia. 2011. Oblivious RAM simulation with efficient worst-case access

overhead. In Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop (Chicago, Illinois, USA) (CCSW ’11). Association for Computing Ma-

chinery, New York, NY, USA, 95–100. https://doi.org/10.1145/2046660.2046680

[40] S Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,

Mariana Raykova, and Yevgeniy Vahlis. 2012. Secure two-party computation

in sublinear (amortized) time. In Proceedings of the 2012 ACM conference on
Computer and communications security. 513–524.

[41] S. Dov Gordon, Jonathan Katz, and Xiao Wang. 2018. Simple and Efficient Two-

Server ORAM. In Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III (Lecture Notes
in Computer Science), Thomas Peyrin and Steven D. Galbraith (Eds.), Vol. 11274.

Springer, 141–157. https://doi.org/10.1007/978-3-030-03332-3_6

[42] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li,

Rachit Agarwal, and Thomas Ristenpart. 2020. Pancake: Frequency smoothing

for encrypted data stores. In 29th USENIX Security Symposium (USENIX Security
20). 2451–2468.

13

https://github.com/SabaEskandarian/ObliDB
https://github.com/SabaEskandarian/ObliDB
https://github.com/obliviousram/oblivious-avl-tree
https://github.com/obliviousram/oblivious-avl-tree
https://github.com/Legrandin/pycryptodome
https://github.com/Legrandin/pycryptodome
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://www.usenix.org/conference/usenixsecurity23/presentation/bienstock
https://doi.org/10.1145/2976749.2989062
https://api.semanticscholar.org/CorpusID:265455667
https://api.semanticscholar.org/CorpusID:265455667
https://doi.org/10.1109/TKDE.2021.3060757
https://doi.org/10.1109/TKDE.2021.3060757
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://arxiv.org/abs/2203.06559
https://api.semanticscholar.org/CorpusID:252545892
https://doi.org/10.1109/HPCA.2014.6835932
https://doi.org/10.1145/2046660.2046680
https://doi.org/10.1007/978-3-030-03332-3_6

[43] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and

Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using

Hardware Transactional Memory. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, 217–233. https://www.usenix.

org/conference/usenixsecurity17/technical-sessions/presentation/gruss

[44] Thang Hoang, Ceyhun D Ozkaptan, Gabriel Hackebeil, and Attila Altay Yavuz.

2018. Efficient oblivious data structures for database services on the cloud. IEEE
Transactions on Cloud Computing 9, 2 (2018), 598–609.

[45] Thang Hoang, Ceyhun D. Ozkaptan, Gabriel Hackebeil, and Attila Altay Yavuz.

2021. Efficient Oblivious Data Structures for Database Services on the Cloud.

IEEE Transactions on Cloud Computing 9, 2 (2021), 598–609. https://doi.org/10.

1109/TCC.2018.2879104

[46] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila Altay Yavuz.

2018. Hardware-Supported ORAM in Effect: Practical Oblivious Search and

Update on Very Large Dataset. Proceedings on Privacy Enhancing Technologies
2019 (2018), 172 – 191. https://api.semanticscholar.org/CorpusID:4007767

[47] T-H Hubert Chan and Elaine Shi. 2017. Circuit OPRAM: Unifying statistically

and computationally secure ORAMs and OPRAMs. In Theory of Cryptography
Conference. Springer, 72–107.

[48] Riko Jacob, Kasper Green Larsen, and Jesper Buus Nielsen. 2019. Lower bounds

for oblivious data structures. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2439–2447.

[49] Stanislaw Jarecki and Boyang Wei. 2018. 3PC ORAM with Low Latency, Low

Bandwidth, and Fast Batch Retrieval. Cryptology ePrint Archive, Paper 2018/347.

https://eprint.iacr.org/2018/347

[50] Jonathan Katz and Yehuda Lindell. 2014. Introduction to Modern Cryptography.

(No Title) (2014).
[51] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. 2016. Generic

attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 1329–1340.

[52] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC.

In Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, ROC, December 7-11, 2014, Proceedings, Part II 20. Springer, 506–525.

[53] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient

oblivious database joins. arXiv preprint arXiv:2003.09481 (2020).
[54] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security

of hash-based oblivious RAM and a new balancing scheme. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM,

143–156.

[55] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 297–314.

[56] Kasper Green Larsen and Jesper Buus Nielsen. 2018. Yes, there is an oblivious

RAM lower bound!. In Annual International Cryptology Conference. Springer,
523–542.

[57] Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan, Yubin Xia, Sebastian Angel,

and Haibo Chen. 2021. Bringing Decentralized Search to Decentralized Services.

In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, 331–347. https://www.usenix.org/conference/

osdi21/presentation/li

[58] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

Oblivm: A programming framework for secure computation. In 2015 IEEE Sym-
posium on Security and Privacy. IEEE, 359–376.

[59] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada

Popa. 2018. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 279–296.

[60] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. Cryptology ePrint Archive, Paper 2015/668. https:

//eprint.iacr.org/2015/668

[61] Rafail Ostrovsky and Victor Shoup. 1996. Private Information Storage. Cryp-

tology ePrint Archive, Paper 1996/005. https://eprint.iacr.org/1996/005 https:

//eprint.iacr.org/1996/005.

[62] Simon Oya and Florian Kerschbaum. 2021. Hiding the access pattern is not

enough: Exploiting search pattern leakage in searchable encryption. In 30th
USENIX security symposium (USENIX Security 21). 127–142.

[63] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.

PanORAMa: Oblivious RAMwith logarithmic overhead. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS). IEEE, 871–882.

[64] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances
in Cryptology–CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 15-19, 2010. Proceedings 30. Springer, 502–519.

[65] Martin Raab and Angelika Steger. 1998. "Balls into Bins" - A Simple and Tight

Analysis. In Proceedings of the Second International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM ’98). Springer-
Verlag, Berlin, Heidelberg, 159–170.

[66] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten

Van Dijk, and Srinivas Devadas. 2015. Constants count: Practical improvements

to oblivious {RAM}. In 24th USENIX Security Symposium (USENIX Security 15).
415–430.

[67] Daniel S Roche, Adam Aviv, and Seung Geol Choi. 2016. A practical oblivious

map data structure with secure deletion and history independence. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 178–197.

[68] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.

2016. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage. In 2016
IEEE Symposium on Security and Privacy (SP). 198–217. https://doi.org/10.1109/

SP.2016.20

[69] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. 2017. ZeroTrace:

Oblivious memory primitives from Intel SGX. Cryptology ePrint Archive (2017).
[70] Sajin Sasy and Olga Ohrimenko. 2019. Oblivious sampling algorithms for private

data analysis. Advances in Neural Information Processing Systems 32 (2019).
[71] Elaine Shi. 2020. Path oblivious heap: Optimal and practical oblivious priority

queue. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 842–858.
[72] Elaine Shi, T. H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious

RAM with O((logN)3) Worst-Case Cost. In Advances in Cryptology – ASIACRYPT
2011, Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 197–214.

[73] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an

extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[74] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).
[75] Afonso Tinoco, Sixiang Gao, and Elaine Shi. 2022. Enigmap : External-Memory

Oblivious Map for Secure Enclaves. Cryptology ePrint Archive, Paper 2022/1083.

https://eprint.iacr.org/2022/1083 https://eprint.iacr.org/2022/1083.

[76] Shruti Tople, Yaoqi Jia, and P. Saxena. 2018. PRO-ORAM: Constant Latency

Read-Only Oblivious RAM. IACR Cryptol. ePrint Arch. 2018 (2018), 220. https:

//api.semanticscholar.org/CorpusID:4009879

[77] Christopher J. Van Wyk and Jeffrey Scott Vitter. 1986. The complexity of hashing

with lazy deletion. Algorithmica 1, 1–4 (jan 1986), 17–29. https://doi.org/10.

1007/BF01840434

[78] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of

the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850–861.

[79] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil

Stefanov, and Yan Huang. 2014. Oblivious data structures. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
215–226.

[80] Peter Williams and Radu Sion. 2012. Single round access privacy on outsourced

storage. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security. 293–304.

[81] Zhiqiang Wu and Rui Li. 2023. OBI: a multi-path oblivious RAM for forward-

and-backward-secure searchable encryption.. In NDSS.
[82] Leqian Zheng, Zheng Zhang, Wentao Dong, Yao Zhang, Ye Wu, and Cong Wang.

2024. H2O2RAM: A High-Performance Hierarchical Doubly Oblivious RAM.

arXiv:2409.07167 [cs.CR] https://arxiv.org/abs/2409.07167

[83] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E

Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed

analytics platform. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 283–298.

[84] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda,

and Ion Stoica. 2021. Cerebro: A platform for {Multi-Party} cryptographic
collaborative learning. In 30th USENIX Security Symposium (USENIX Security 21).
2723–2740.

14

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1109/TCC.2018.2879104
https://doi.org/10.1109/TCC.2018.2879104
https://api.semanticscholar.org/CorpusID:4007767
https://eprint.iacr.org/2018/347
https://www.usenix.org/conference/osdi21/presentation/li
https://www.usenix.org/conference/osdi21/presentation/li
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/1996/005
https://eprint.iacr.org/1996/005
https://eprint.iacr.org/1996/005
https://doi.org/10.1109/SP.2016.20
https://doi.org/10.1109/SP.2016.20
https://eprint.iacr.org/2022/1083
https://eprint.iacr.org/2022/1083
https://api.semanticscholar.org/CorpusID:4009879
https://api.semanticscholar.org/CorpusID:4009879
https://doi.org/10.1007/BF01840434
https://doi.org/10.1007/BF01840434
https://arxiv.org/abs/2409.07167
https://arxiv.org/abs/2409.07167

A NOTATION TABLE

Notation Description

C the client

S the untrusted server

DB KV Database of client

𝑛 number of KV pairs in DB
𝑚 number of operations to DB
{ (𝑘𝑖 , 𝑣𝑖) }𝑛𝑖=1 KV pairs with arbitrary keys

{ (𝑜𝑝𝑖 , 𝑒𝑘𝑖 , 𝑒𝑣𝑖) }𝑚𝑖=1 operation sequence on DB
[𝑁] consecutive integer set {0, ..., 𝑁 − 1}
𝑥 ←$ 𝐼 uniformly sampling 𝑥 from 𝐼

𝜆 security parameter

𝑝𝑡 the path label for the KV pair

D distribution

G𝑖 the group of collided pairs mapped to 𝑖

𝑋 the recursion degree

GC the global counter

IC the individual counter

𝛼 the length of GC

𝛾 the length of IC

sk secret key for encryption

K secret key for PRF

≡ statistically indistinguishable

≡𝑐 computationally indistinguishable

Table 5: Summary of notations.

B DAORAM ANALYSIS
In this section, we present the correctness and security proof of

DAORAM, analyze its stash size and efficiency, and highlight the

concrete improvements.

B.1 Correctness and Security
Correctness. We first prove DAORAM satisfy the correctness

defined in Definition 4.1 as below:

Theorem B.1. Given the KV store DB := {(𝑘𝑖 , 𝑣𝑖)}𝑛−1𝑖=0
, where

keys are consecutive integers, and a sequence of access operations
®𝑦 = {(𝑜𝑝𝑖 , 𝑒𝑘𝑖 , 𝑒𝑣𝑖)}𝑚−1𝑖=0

on the KV store, suppose C separately
(1) processes DB using DAORAM where the initialization takes 𝑛

as input, 2𝛾 > 𝑋 , and𝑚 ≤ 2
𝛼+1 (2𝛾 − 1) to get DB0;

(2) processes DB just in clear to get DB1.
Then DB0 and DB1 should preserve identical KV pairs with a prob-
ability of 1.

Before the proofs, we present two claims implied by the design of

recursive ORAMs:

• Recursive proof. DAORAM consists of𝑂 (log𝑛/log𝑋) ORAMs for

recursion (cf. Section 2): one is Data ORAM and the others are

PosMap ORAMs. Suppose we can prove the Data ORAM can

process operations correctly when all PosMapORAMs guarantee

correctness. In that case, we can recursively apply the proof to

prove that each PosMap ORAM can process operations correctly

because the recursion process is identically repeated except the

ORAM size is gradually decreased during the recursion.

• Limited operations. The operations on the ORAM consist of only

reading and updating the value component in KV pairs (resp.

read and write). After the initialization, there are 𝑛 KV pairs

stored in the ORAM no matter if they own values, e.g., a KV

pair without value is stored like (𝑘𝑖 ,⊥). Such limited operations

are common in ORAM since ORAM was originally proposed to

simulate RAM where there is a fixed number of entries to be

read and written in memory.

Then we can prove DAORAM indeed guarantee the correctness

of the Data ORAM on these operations to prove Theorem B.1.

For ease of presentation, we use the version of DAORAM without

optimizations on reducing groups. The optimized one is too complex

to understand but is equivalent to the unoptimized one in concept
as it only elegantly compresses the zeros in storage.

Proof. We prove Data ORAM processes each operation cor-

rectly by induction. After the initialization of DAORAM, the largest

PosMap stores the index of KV pairs in the Data ORAM with PRF

inputs: both GC𝑟 s and GC𝑝s are 0, IC𝑝s are also set as 0 while IC𝑟

are initialized as 1. Importantly, the following two properties are

guaranteed:

• Each pair (𝑘𝑖 , 𝑣𝑖) isnever duplicated and is exclusively placed
encrypted in a block of Data ORAM.

• The block of (𝑘𝑖 , 𝑣𝑖) is either stored in the stash or on the path of

DataORAM calculated by the PRF based on the corresponding

block in the (largest) PosMap ORAM. To be specific, the KV pair

in this block has the key ⌊𝑘𝑖/𝑋 ⌋.
First, we analyze the two phases in query processing towards the

first operation (𝑜𝑝0, 𝑒𝑘0, 𝑒𝑣0). For the query phase, we assume C can

get the block with the key of ⌊𝑘𝑖/𝑋 ⌋ in the largest PosMap ORAM,

then the above two properties guarantee it can correctly remove
the KV pair with key 𝑒𝑘0 from the Data ORAM and read/write it

as required. After that, C assigns

IC𝑟𝑗0 := IC𝑟𝑗0 + 1 = 2

where IC𝑟
𝑗0
denotes the PRF individual count used to find 𝑒𝑘0. Here

we suppose the reset is not triggered because we guarantee 2
𝛾 > 𝑋 .

As 𝑋 has to be no smaller than 2 for recursion and the maximal

value set for IC𝑟
𝑗0
is 2

𝛾 − 1, IC𝑟
𝑗0
must be at least 3 to trigger reset.

Thus, C can directly place this (possibly updated) pair back to the

ORAM correctly according to the incremented IC𝑟
𝑗0
. The removal

and placement promise this pair is always the latest and there are

no stale copies in the ORAM. For the reset phase, it just evicts a

random path as no reset is triggered. The eviction does not affect

the two properties because it just pushes KV pairs towards leaves

in the ORAM instead of changing their paths assigned. In this way,

we can conclude the first operation is completed correctly and the

two properties are still preserved.

Second, suppose the first 𝜂 operations can be done correctly and

the two properties still hold, now we prove the (𝜂 + 1)th operation

(𝑜𝑝𝜂+1, 𝑒𝑘𝜂+1, 𝑒𝑣𝜂+1) can be done correctly when 𝜂+1 ≤ 2
𝛼 (2𝛾 −1).

15

Similarly, the two properties guarantee that C still can correctly

remove the pair with key 𝑒𝑘𝜂+1 from the ORAM to read/write

it, now we need to analyze the placement, reset, and if the two

properties will be broken. There are several cases for IC𝑟
𝑗𝜂+1

and

the block with key ⌊𝑒𝑘𝜂+1/𝑋 ⌋ in the largest PosMap ORAM to be

discussed:

(1) When IC𝑟
𝑗𝜂+1

< 2
𝛾 − 1 and GC𝑟 = GC𝑏 = 0, there is never reset

happened on this block and the (𝜂+1)th operation also does not
trigger reset, then this operation is done identically to the first

operation: the (possibly updated) pair is stored according to the

PRF calculation based on incrementing IC𝑟
𝑗𝜂+1

= IC𝑟
𝑗𝜂+1
+ 1, the

reset phase only evicts a random path, the two properties still

preserves.

(2) When IC𝑟
𝑗𝜂+1

= 2
𝛾 − 1 and GC𝑟 = GC𝑏 = 0, there is no prior

reset on this block but the current operation triggers the reset.

C swaps G𝑟 and G𝑝 and sets

IC𝑝
𝑗𝜂+1

= 0, IC𝑟𝑗𝜂+1 = 1, b = 1 − b.

Then the (possibly updated) pair is placed by the new IC𝑟
𝑗𝜂+1

(under the PRF key Kb
). There is still no copy and stale data

for this pair in the ORAM. The remarkable change is that after

this reset, the other KV pairs tracked by this block can be

found correctly only by using IC𝑝s instead of IC𝑟 s. For the
reset phase here, it evicts a random path and does not affect

the two properties and correctness. Finally, the two properties

still hold but the calculation of PRF is somehow different.

(3) When IC𝑟
𝑗𝜂+1

< 2
𝛾 − 1 and GC𝑟 > 0, there is at least one prior

reset on this block but the current operation does not trigger a

reset. Then there are two cases:

• IC𝑟
𝑗𝜂+1

= 0 implies this pair is tracked by IC𝑝
𝑗𝜂+1

. So C will

use IC𝑝
𝑗𝜂+1

for removal and then completes partial reset via

setting:

IC𝑝
𝑗𝜂+1

= 0, IC𝑟𝑗𝜂+1 = 1.

• IC𝑟
𝑗𝜂+1

> 0 implies this individual counter has been reset

well. So C is going to remove the pair directly with IC𝑟
𝑗𝜂+1

and increment this individual counter.

In both two cases, C can remove the KV pair correctly from

the Data ORAM, then C uses the updated IC𝑟
𝑗𝜂+1

to place this

(possibly updated) pair back. So this pair is tracked well, the

two still properties hold. When we consider the reset phase

during this operation, recall it picks 𝑗 such IC𝑟
𝑗
= 0 to access,

then it is identical to the above process but with a different

key, affecting nothing on the two properties and tracking the

selected pair. If all IC𝑟 s are non-zero, the reset phase only evicts
a random path, also leaving no effect.

(4) When IC𝑟
𝑗𝜂+1

= 2
𝛾 − 1 and GC𝑟 > 0, there is at least one prior

reset on this block and the current operation triggers the reset.

This can be done identically to case (2) if all IC𝑝s are zero and

all IC𝑟 s track KV pairs correctly, which are guaranteed by
the two properties and 2

𝛾 > 𝑋 . Note that after one reset, one

block can complete at least 2
𝛾 − 2 operations before one of IC𝑟 s

within it reaches the maximal value to trigger the next reset.

That implies case (3) happens at least 2
𝛾 − 2 times and the reset

phase picks zero to reset for at least 2𝛾 − 2 times. Between two

resets, there is at least one pair accessed, leaving at most 𝑋 − 1
pairs whose IC𝑟 are zero, waiting for the reset phase in case (3)

to change the values. So once it holds that

2
𝛾 − 2 ≥ 𝑋 − 1

the conditions can be satisfied. Then C can process this case

identically to case (2) and preserve the two properties.

Finally, we conclude that the (𝛾 + 1)th operation is completed cor-

rectly and still preserves the two properties, which also concludes

our proof. Additionally, we require𝑚 ≤ 2
𝛼+𝛾

because we do not

allow GC to be repeated, it is independent of correctness but is

necessary for security.

□Security analysis. For the security, we first give the following
lemma and then present a formal theorem to prove the security of

DAORAM.

Lemma B.2. Given the number of operations denoted by𝑚, there
is no repeated input to PRF in DAORAM if𝑚 ≤ 2

𝛼+1 (2𝛾 − 1).

Proof. We recall there are four parameters as inputs to PRF

(either PRFK0 or PRFK1) in DAORAM and we prove there must be

a distinction between these inputs to calls of the PRF:

(1) Level implies which ORAM is accessed as there are 𝑂 (log𝑋 𝑛)
ORAMs inDAORAM for recursion. To access the 𝑖th ORAM, the

client uses 𝑖 as input for PRF calls in this ORAM. It guarantees

that any PRF calls on different ORAMs have no repeated inputs.

(2) Key indicates the key of the accessed pair in the current ORAM

(level), e.g., for the 𝑖th subORAM (level), the key of a pair can be

a value from {0, 1, ..., 2𝑖−1 − 1}. It guarantees that any PRF calls

on different pairs within one ORAM have no repeated inputs.

(3) GC and IC are two parameters for the same pair. The mecha-

nism of DAORAM promises that GC||IC strictly increases with

access to the same pair: 1) each time C retrieves this pair, IC
is incremented; 2) when 𝐼𝐶 reaches the maximal value or it is

reset, IC is set to 1 but GC is incremented.

In this way, as the client calculates PRF like

PRF(level| |key| |GC| |IC)
where each parameter is set to a fixed length, there is no repeated

inputs for PRF calls when𝐺𝐶 does not reach its maximal value, i.e.,

𝑚 ≤ 2
𝛼+𝛾

. The 2
𝛾
results from each GC is incremented only one of

IC within its block reaches the maximal value 2
𝛾 − 1, requiring at

least 2
𝛾 −1 operations to increment IC from 1 to 2

𝛾 −1. Recall there
are two PRF functions alternately applied, so the maximal allowed

operations can be multiplied by 2, concluding𝑚 ≤ 2
𝛼+1 (2𝛾−1). □

Theorem B.3. DAORAM satisfies the security defined in Defini-
tion 4.1, i.e., given two operation sequences ®𝑦0 and ®𝑦1 with the same
length and their access patterns in DAORAM denoted by 𝐴(®𝑦0) and
𝐴(®𝑦1), then 𝐴(®𝑦0) and 𝐴(®𝑦1) are computationally indistinguishable,
i.e., 𝐴(®𝑦0) ≡𝑐 𝐴(®𝑦1).

Proof. We adopt a series of transitions to formally prove the

security of DAORAM step by step. The basic security guarantee we

base on follows the security proof of Path ORAM [73]. For ease of

presentation, within this proof, we call the 𝑂 (log𝑛/log𝑋) ORAMs

in DAORAM as its subORAMs. WLOG, we assume the keys of KV

pairs stored by DAORAM are {0, 1, ..., 𝑛 − 1}.
16

(1) Simulate one subORAM in DAORAM with truly random
numbers.
we first establish a simple non-recursive Path ORAM which

stores KV pairs {(𝑘𝑖 , 𝑣𝑖)}𝑛−1𝑖=0
where keys are consecutive inte-

gers from 0 to 𝑛 − 1. We use it to simulate the Data subORAM
in DAORAM for security analysis. Recall DAORAM consists

of 𝑂 (log𝑛/log𝑋) subORAMs, we will show how to simulate

all of them for security analysis in step (3). For the current

non-recursive Path ORAM, we require:

• C stores a position map for assigning truly random paths to

each KV pair.

• C simulates the access in DAORAM. That means, for each in-

teger set 𝑆 := {𝑎, 𝑎+1, ..., 𝑎+𝑋−1}where 𝑎 ∈ {𝑋, 2𝑋, ..., (𝑛
𝑋
−

1)𝑋 }3, C preserves the same parameters and data structure

as DAORAM in local, e.g., GC and ICs. Then C increments

and resets them identically to DAORAM but now C accesses

pairs according to the truly random paths instead of PRF

outputs.

For query processing, when C follows a real query to access

one pair with a key from 𝑆 , it also selects another key from

𝑆 to access its pair for reset or performs a dummy access to

pretend reset, which depends on the values of GC and ICs.
Therefore, given a sequence of operations ®𝑦𝑏 = {𝑜𝑝𝑏

𝑖
, 𝑒𝑘𝑏

𝑖
, 𝑒𝑣𝑏

𝑖
}𝑚−1
𝑖=0

,

its access patterns can be concluded as

{(P(𝑒𝑘𝑏
0
),P(𝑒𝑑𝑏

0
)), ..., (P(𝑒𝑘𝑏𝑁−1),P(𝑒𝑑

𝑏
𝑁−1))}

where 𝑒𝑑𝑑
𝑖
denotes the key of the pair accessed for reset,P(𝑒𝑘𝑏

𝑖
)

and P(𝑒𝑑𝑏
𝑖
) denote the access pattern of retrieving the path as-

signed to 𝑒𝑘𝑏
𝑖
and 𝑒𝑑𝑏

𝑖
, respectively. While P(𝑒𝑘𝑏

𝑖
) corresponds

to the access of real query, P(𝑒𝑑𝑏
𝑖
) is used for simulating the

reset process. It is either a dummy path retrieve (when 𝑒𝑑𝑏
𝑖
= ⊥)

or the retrieve for another item 𝑒𝑑𝑏
𝑖
selected by the reset strat-

egy in DAORAM.

(2) Transition from statistical indistinguishability
Denote the access patterns via executing (®𝑦0, ®𝑦1) on the ORAM

above as (𝐴1 (®𝑦0), 𝐴1 (®𝑦1))), we conclude𝐴1 (®𝑦0) ≡ 𝐴1 (®𝑦1). This
is because we always assign a new truly independent random

path to a pair after it is accessed. In detail, we follow Path

ORAM to analyze this:

• ∀𝑖 ∈ [𝑚], (P(𝑒𝑘𝑏
𝑖
),P(𝑒𝑑𝑏

𝑖
)) selects two independent ran-

dom paths as the reset strategy guarantees 𝑒𝑘𝑏
𝑖
≠ 𝑒𝑑𝑏

𝑖
.

• ∀𝑖, 𝑗 ∈ [𝑚] and 𝑖 ≠ 𝑗 , (P(𝑒𝑘𝑏
𝑖
),P(𝑒𝑑𝑏

𝑖
)) and (P(𝑒𝑘𝑏

𝑗
),P(𝑒𝑑𝑏

𝑗
))

are statistically independent no matter if there are repeated

keys in (𝑒𝑘𝑏
𝑖
, 𝑒𝑑𝑏

𝑖
) and (𝑒𝑘𝑏

𝑗
, 𝑒𝑑𝑏

𝑗
). For distinct keys, they are

clearly assigned with independent random paths. For a re-

peated key, it is assigned with a completely new independent

random path after each access.

In total, given any access patterns

𝐴1 (®𝑦) := {(𝑝𝑡00 , 𝑝𝑡
1

0
), (𝑝𝑡0

1
, 𝑝𝑡1

1
) ..., (𝑝𝑡0

𝑁−1, 𝑝𝑡
1

𝑁−1)}

3
WLOG, we assume 𝑛 mod 𝑋 = 0. Generally, 𝑛 can be enlarged by adding at most

𝑋 − 1 to satisfy this condition.

where (𝑝𝑡0
𝑖
, 𝑝𝑡1

𝑖
) implies the access patterns of retrieving two

paths from the ORAM, it holds

∀𝑏 ∈ {0, 1}, Pr[𝐴1 (®𝑦𝑏) = 𝐴1 (®𝑦)] = (
1

𝑛3
+ 2

𝑛(𝑛 − 1))
𝑚 .

In each retrieve towards two paths, there is no distinction

between the order of them since we retrieve them in paral-

lel, e.g., (𝑝0
0
, 𝑝1

0
) is identical to (𝑝1

0
, 𝑝0

0
). Now we can conclude

𝐴1 (®𝑦0) ≡ 𝐴1 (®𝑦1).
(3) Establish recursive ORAM with truly random numbers.

We repeat step (1) and (2): for each subORAM in DAORAM, we

use a non-recursive Path ORAM to simulate it. This means, sup-

pose there are 𝑡 subORAMs inDAORAMwhere 𝑡 ∼ 𝑂 (log𝑛/log𝑋),
then it holds that:

• C stores the same content as DAORAM in the 𝑡 non-recursive

ORAMs. Thismeans the KV pairs stored in each non-recursive

ORAM are the same as those stored in the simulated subO-

RAM of DAORAM.

• In each non-recursive ORAM, C performs queries and reset

strategy identically to the simulated subORAM in DAORAM.

When selecting a pair from a group of pairs for reset, they

also select the same pair, which can be done by always pick-

ing up the pair with the smallest key. Then the correctness

guarantees that they always store the same KV pairs.

• C stores a position map for each non-recursive ORAM to

assign and record the truly independent random numbers

to KV pairs. It accesses the KV pairs based on the position

maps.

So denote the access patterns via executing (®𝑦0, ®𝑦1) in the 𝑡 non-
recursive ORAMs as (𝐴2 (®𝑦0), 𝐴2 (®𝑦1))), we can define them as

𝐴2 (®𝑦𝑏) := (𝐴1 (®𝑦𝑏)1, 𝐴1 (®𝑦𝑏)2, ..., 𝐴1 (®𝑦𝑏)𝑡)

where𝐴1 (®𝑦𝑏)𝑖 indicates the access patterns on the non-recursive
ORAM simulating the 𝑖th subORAM inDAORAM via executing

®𝑦𝑖 . It is easy to see that 𝐴1 (®𝑦𝑖)𝑡 is the 𝐴1 (®𝑦𝑖) in step (2).

(4) Transition from statistical indistinguishability on recur-
sive ORAM.
Now we first prove that 𝐴1 (®𝑦𝑏)𝑖 and 𝐴1 (®𝑦𝑏) 𝑗 are statistically
independent when 𝑖 ≠ 𝑗 and then prove 𝐴2 (®𝑦0) ≡ 𝐴2 (®𝑦1).
(a) ∀𝑖, 𝑗 ∈ [𝑡] and 𝑖 ≠ 𝑗 , 𝐴1 (®𝑦𝑏)𝑖 and 𝐴1 (®𝑦𝑏) 𝑗 are statistically

independent because C always separately and indepen-

dently assigns truly random numbers to pairs in different

non-recursive ORAMs.

(b) Now with independence between 𝐴1 (®𝑦𝑏)𝑖 and 𝐴1 (®𝑦𝑏) 𝑗 ,
we can conclude that given any access patterns

𝐴2 (®𝑦) := {𝐴1 (®𝑦)1, 𝐴1 (®𝑦)2, ..., 𝐴1 (®𝑦)𝑡 }

where𝐴1 (®𝑦)𝑖 denotes access patterns of retrieving random
paths on the 𝑖th ORAM, it holds that

Pr[𝐴2 (®𝑦𝑏) = 𝐴2 (®𝑦)] =
𝑡∏
𝑖=1

Pr[𝐴1 (®𝑦𝑏)𝑖 = 𝐴1 (®𝑦)𝑖] .

Note step (2) can be repeated to prove that Pr[𝐴1 (®𝑦0)𝑖 =
𝐴1 (®𝑦)𝑖] = Pr[𝐴1 (®𝑦1)𝑖 = 𝐴1 (®𝑦)𝑖], so we get Pr[𝐴2 (®𝑦0) =
𝐴2 (®𝑦)] = Pr[𝐴2 (®𝑦1) = 𝐴2 (®𝑦)], i.e., 𝐴2 (®𝑦0) ≡ 𝐴2 (®𝑦1).

(5) Replace truly random numbers with PRF.
This step is simple: we remove the position map in step (3). Let

17

C replace assigning truly random numbers with PRF calculation

which assigns paths identically to that inDAORAM. In this way,

we actually constructDAORAM. Please refer to Lemma 1 which

guarantees there are no repeated inputs in PRF assigning paths

to each item.

(6) Transition to computationally indistinguishability.
Denote the access patterns of executing (®𝑦0, ®𝑦1) on DAORAM
as (𝐴3 (®𝑦0), 𝐴3 (®𝑦1)), then it holds that 𝐴3 (®𝑦0) and 𝐴3 (®𝑦1) are
computationally indistinguishable, i.e., 𝐴3 (®𝑦0) ≡𝑐 𝐴3 (®𝑦1). This
is because 𝐴3 (®𝑦𝑏) and 𝐴2 (®𝑦𝑏) should be computationally indis-

tinguishable, otherwise, an adversary can distinguish PRF and

truly random number generator by using them in the ORAMs

above. The adversary separately adopts the numbers generated

by them to execute ®𝑦𝑏 on the ORAM above. If the access pat-

tern belongs to 𝐴3 (®𝑦𝑏), then the adversary knows the numbers

generated are from PRF. Contrarily, it knows they are from

the truly random number generator. Therefore, we give the

following induction:

𝐴3 (®𝑦0) ≡𝑐 𝐴2 (®𝑦0) ≡ 𝐴2 (®𝑦1) ≡𝑐 𝐴3 (®𝑦1)

which concludes our proof.

□

B.2 ORAM Discussion
B.2.1 Stash analysis. Besides the improvement on de-amortization

and query costs, DAORAM also outperforms the prior ORAM pro-

tocols [32, 47] on client-side stash size. As the client’s storage is
valuable and can be limited in reality, this property makes DAORAM
further more practical than the prior protocols. This property can be

nicely explained for two reasons.

The first reason is the dummy access in DAORAM. The fixed pro-

tocol [47] is expected to perform 2𝑋 path retrieval per 𝑋 accesses,

and each retrieval indeed changes the path of one pair in ORAM,

possibly incurring stash size increase. DAORAM is much better

in this aspect, while it also retrieves 2𝑋 paths per 𝑋 real accesses,

some of the paths are retrieved as dummy access: such access does

not push pairs into the stash, moreover, it evicts both pairs in the

stash and retrieved paths, reducing the stash size. The proportion

of dummy access depends on the specific scenario, but it can be at

most 50% in some cases, e.g., linear scan on the database.

The other reason is more subtle and is validated by our experi-

ments. During query processing,DAORAM retrieves two paths: one

is for the query phase and the other is for the reset phase. Retrieving

two paths together allows more aggressive evictions: some blocks

in the one path can be evicted deeper in the other path without

caching them in the stash, e.g., if C downloads the two paths and

evicts them one by one, then possibly after the target block being

assigned with a new path, it cannot be stored in the first path and

thus is placed in the stash temporarily, increasing the stash size

although it can be evicted into the second path. On the contrary,

DAORAM downloads the two paths and evicts them in parallel,

so this target block will be directly evicted into the second path

without being cached in the stash. This finding can be a potential

and general technique to reduce the stash size in C when executing

existing ORAM schemes [32, 47, 73] under client/server paradigm.

Differently, such technique is inherent by the de-amortization in our

DAORAM while it requires additional modifications and efficiency

sacrifice of other ORAM protocols when applying this technique

on them.

B.2.2 ORAM comparison. Here we further discuss DAORAM and

existing tree-based ORAMs to emphasize its contribution towards

more advanced ORAMs. First of all, there are three general compo-

nents in Path ORAM:

• The recursion is used to reduce the size of the position map

stored in C, enabling sublinear client-side storage.
• The path retrieval determines how C retrieves the required

pair from a path.

• The eviction proceduremeans how C selects a path and evicts

blocks in the path and stash, reducing the client-side stash.

While most existing tree-based ORAMs [21, 34, 66, 78] improve the

performance by optimizing the latter two components according to

different scenarios, DAORAM presents unique and important con-

tributions as it follows [32, 47] to achieve the best improvement of
recursion up to now, which can work in multiple scenarios espe-

cially under the client/server setting. Remarkably, the recursion

enhancement is relatively independent of the other two compo-

nents, allowing us to integrate DAORAM with existing different

tree-based ORAMs to propose more advanced ORAMs under differ-

ent applications. Here we study the integration with two typical

and well-known optimized tree-based ORAMs: circuit ORAM and

ring ORAM.

Circuit ORAM [78] is proposed for enhanced performance un-

der multi-party computation (MPC) [40]. It achieves the eviction

procedure with only linear scans instead of sorting in the famous

Path ORAM [73], which makes it very friendly to MPC and widely

used in this scenario [49, 58, 84]. Moreover, circuit ORAM is also

popular in trusted execution environments (TEE) [25, 57, 69] since
its eviction consumes only 𝑂 (1) CPU cache [47] instead of super-

logarithmic in Path ORAM. In other words, C in circuit ORAM

only costs 𝑂 (1) storage. Integrating DAORAM indeed can benefit

the circuit ORAM especially when implementing in TEE. This is

because DAORAM reduces the number of pairs to be accessed and

operated in TEE while preserving the simple eviction and constant

CPU cache of circuit ORAM. The effect of DAORAM is still an open

problem: the number of operated pairs is still reduced, but the PRF

implementations can highly increase the query costs under MPC.

We leave it as an open problem as this work does not aim at MPC.

Besides, we remark under the typical client/server setting, if C
deploys circuit ORAM to pursue the constant storage, DAORAM
can greatly accelerate the query processing.

Ring ORAM [66] addresses the huge communication bandwidth

of query processing on ORAM, it is the first to achieve the indepen-

dence between bandwidth and bucket size in tree-based ORAMs.

Specifically, it proposes a new novel path retrieval strategy and

also corresponding effective eviction mechanism under the new

retrieval strategies. However, compared with Path ORAM, it adds

more interaction rounds between C and S, making it comparable

under WAN in time usage only when the block size in ORAMs is

large enough. Ring ORAM also selects TEE where interaction round

is much cheaper to show its speedup in time usage. Fortunately,

as DAORAM generally reduces the number of total KV pairs, inte-

grating it into ring ORAM can gain new performance improvement

18

0 5 10 15 20

0

2

4

6

8

10

𝑛 (2
𝑥
)

E
n
t
r
y

(a) Repeated

0 5 10 15 20

0

2

4

6

8

10

𝑛 (2
𝑥
)

E
n
t
r
y

(b) Uniform

0 5 10 15 20

0

2

4

6

8

10

𝑛 (2
𝑥
)

E
n
t
r
y

(c) Liner scan

0 5 10 15 20

0

2

4

6

8

10

𝑛 (2
𝑥
)

E
n
t
r
y

(d) Normal

Freeset Probset s-Fixset p-Fixset

Figure 8:Maximal stash size under different query numbers and distributions. s-Fixset and p-Fixset denote that retrieving two paths in
DAORAM sequentially and in parallel, respectively.

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(a) Uniform

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(b) repeated

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(c) Linear scan

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(d) Normal

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(e) Weibull-(1, 1)

10 12 14 16 18 20 22 24

100

200

300

400

500

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(f) Weibull-(1, 1.5)

Freeset Probset Fixset

Figure 9: ORAM performance under different query distributions.

10 12 14 16 18 20 22 24

1,000

2,000

3,000

4,000

𝑛 (2
𝑥
)

(a) Interaction round

10 12 14 16 18 20 22 24

50

100

150

𝑛 (2
𝑥
)

B
a
n
d
w
i
d
t
h
(
K
B
)

(b) Communication Bandwidth

Circuit ORAM Circuit ORAM + DAORAM

Figure 10: Integration of Circuit ORAM and DAORAM

10 12 14 16 18 20 22 24

4

6

8

10

12

14

𝑛 (2
𝑥
)

(a) Interaction round

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

B
a
n
d
w
i
d
t
h
(
K
B
)

(b) Communication Bandwidth

Ring ORAM (𝐴 = 5, 𝑍 = 5) Ring ORAM + DAORAM

Figure 11: Integration of Ring ORAM and DAORAM

19

even under a small block size, further enhancing the practicality of

ring ORAM under both WAN and TEE.

There are also lots of other works [13, 14, 41, 67, 68, 76, 81] about

tree-based ORAM optimizations which enhance the practicality

under some other specific applications in production. For example,

rORAM [13] applies the locality to improve ORAM on performing

range queries. vORAM [67] extends ORAM by enabling variable

blocks within ORAM. And recently, a line of works [14, 68, 76] tried

to equip ORAM with parallelism under different backgrounds. We

remark the recursion optimization in DAORAM is feasible for all of

them when they implement recursion to reduce client-side storage.

B.3 Additional ORAM Experiments
B.3.1 Stash size. To validate the effectiveness of dummy access
and parallel access on reducing stash size in DAORAM, besides the

prior two ORAM protocols Freeset and Probset, we also separately

run DAORAM with

• dummy access and sequential access (denoted by s-Fixset).
• dummy access and parallel access (denoted by p-Fixset).

In this way, s-Fixset is affected by only the dummy access while

p-Fixset relies on both dummy and parallel access. To guarantee

fairness, we also pick up four typical query distributions to test the

stash size. The results are shown in Figure 8. It is shown the size of

s-Fixset is always larger than that of s-Fixset but still impressively

smaller than Freeset and Probset, demonstrating that the positive

impact of parallel access and dummy access.

B.3.2 Obliviousness. We verify the obliviousness of DAORAM by

conducting it with 2
10

queires under six typical query distributions

with different skewness. We also run Freeset and Probset to show

the consistent dominance of DAORAM. The experimental results

are shown in Figure 9. The time usage of Probset is a little unstable,
which is consistent with our analysis of the fixed protocol [47]: it

performs unstable due to the probabilistic reset operations. Even

though we run plenty of queries, its time usage still fluctuates. On

the contrary, Fixset is always relatively stable, and performs mostly

efficiently.

B.3.3 Integration. We integrate DAORAMwith circuit ORAM [78]

and ring ORAM [66] to show its speedup to existing tree-based

ORAMs. That means we run four protocols:

(1) circuit ORAM

(2) circuit ORAM + DAORAM
(3) ring ORAM

(4) ring ORAM + DAORAM

where “+” means the integration. We focus on the theoretical im-

provement by adapting DAORAM as the underlying position map

and demonstrate the potential speedup in Figure 10 and Figure 11.

The figures show that for both circuit ORAM and ring ORAM,

the integration reduces the number of interaction rounds required.

When 𝑛 is set as 2
24
, the integration achieves a 30% reduction in

interaction rounds for circuit ORAM and a 33.3% reduction for

ring ORAM. As we have observed in the previous experiments, the

interaction rounds dominate the total processing time in a WAN

setting. Hence the improvement on it can reflect the savings on

the total processing time. If these two ORAMs were run locally,

the reduction of interaction rounds would be less meaningful and

the bandwidth becomes more important. Although DAORAM is

at a slight disadvantage due to the need to acquire two paths per

access, its higher compression ratio compensates for this constant

overhead as the data size 𝑛 increases. In conclusion, the speedup

brought by integrating DAORAM is always meaningful under a

general client/server setting even if the client is played by TEE.

C GROUP OMAP ANALYSIS
Correctness and Security. We describe the ODS for the 𝑛 search

trees under our framework as group OMAP, but it also can be imag-

ined as a large tree whose root node has 𝑛 children and each child

corresponds to the root node of a search tree among the 𝑛 search

trees. In this way, the correctness and security naturally follow

from prior works [67, 79] that design ODS for search trees. The

challenge is that we want to access this large tree with as low in-

teraction rounds as possible. The prior works [35, 72] (e.g., Lemma

1 in [35]) have shown that here each group has at most 𝑂 (𝜆) pairs,
and thus the height of the tree is𝑂 (log 𝜆). Here we adopt the latest
work [27] to further reduce the bound for group size. Following

Theorem 6.1, we list the value of 𝑓 (𝑛, 𝜆) when 𝜆 = 128 in Table 6 to

show the bound can be very small and practical, e.g., 𝑓 (𝑛, 𝜆) = 52

even if 𝑛 = 2
25
. It is shown 𝑓 (𝑛, 𝜆) increases little with the increase

of 𝑛, making it especially friendly to very large databases. That
is one reason why our OMAPs can outperform prior OMAPs sig-

nificantly better than prior OMAPs as 𝑛 increases. The interaction

round of accessing the group OMAP is nearly unchanged within a

wide range of 𝑛, and 𝑓 (𝑛, 𝜆) is always no more than 5 · log𝑛 when

2
10 ≤ 𝑛 ≤ 2

25
under 𝜆 = 128. Actually, even when 𝑛 = 2

64
, 𝑓 (𝑛, 𝜆)

is only 62 under 𝜆 = 128, which is smaller than log𝑛.

𝑛 log𝑛 𝑓 (𝑛, 𝜆) 𝑛 log𝑛 𝑓 (𝑛, 𝜆)
2
10

10 48 2
18

18 50

2
11

11 49 2
19

19 51

2
12

12 49 2
20

20 51

2
13

13 49 2
21

21 51

2
14

14 49 2
22

22 51

2
15

15 50 2
23

23 52

2
16

16 50 2
24

24 52

2
17

17 50 2
25

25 52

Table 6: 𝑓 (𝑛, 𝜆) when 𝜆 = 128.

Discussion. We discuss if we can remove the group OMAP to

utilize only DAORAM to achieve OMAP as the group OMAP intro-

duces𝑂 (log 𝜆) interaction rounds. The answer is negative. Wang et

al. [79] points out that applying the hash scheme in [4], an oblivious

hash table can be constructed based on an ORAM. This oblivious

hash table can be used as an OMAP where each operation is done

via three accesses to the ORAM. However, this hash scheme has

a probability of 1/𝑝 (𝑛)4 failing to complete one operation within

only three accesses, and such failure makes it unknown if such an

OMAP can be computationally secure. Besides, with the low 𝑓 (𝑛, 𝑥)
in practice, the interaction rounds of our OMAPs can be smaller

than an OMAP based on this hash scheme as 𝑓 (𝑛, 𝜆) changes slowly

4𝑝 (𝑛) denotes a function polynomial in 𝑛.

20

with 𝑛 changed. Overall, our OMAPs are still the most practical

OMAP protocols up to now as far as we know.

D OMAP ANALYSIS
D.1 OMAP Correctness
We do not formally prove the correctness of our OMAPs because it

is naturally inherited from the correctness of DAORAM and group

OMAP. Imitating the correctness introduced in Appendix C, the

group OMAP actually preserves a large tree that has 𝑛 subtrees

and each subtree corresponds to a group under our framework.

DAORAM preserves all the information about the root node of

this large tree as 𝑛 KV pairs. Therefore, if DAORAM is correct and

the group OMAP (i.e., the ODS for the large tree) is correct with

a probability of 1 − negl(𝜆), our OMAPs are also correct with a

probability of 1−negl(𝜆). The challenge is to prove the correctness
of DAORAM, which has been formally proven in Appendix B.1.

D.2 OMAP Security
We summarize operations in OMAP as write and read in Section 2.

Given the server state stC and client state stS (after initialization),

now we describe them in detail for a further thorough discussion.

• Read: Read(stC, stS, 𝑘, 𝑣) → (st′C, st
′
S, 𝑣
′). On input the states

(stC, stS) and a pair (𝑘, 𝑣) where 𝑣 = ⊥, C and S interact with

each other to run this subroutine, and produce the updated states

(st′C, st
′
S). If 𝑘 exists in stS , 𝑣

′
is set to the value stored in stS

corresponding to 𝑘 . Otherwise, 𝑣 ′ = ⊥
• Write:Write(stC, stS, 𝑘, 𝑣) → (st′C, st

′
S, 𝑣
′) . On input the states

(stC, stS) and a pair (𝑘, 𝑣) where 𝑣 ≠ ⊥, C and S interact with

each other to run this subroutine, and produce the updated states

(st′C, st
′
S). If 𝑘 exists in stS , 𝑣

′
is set to the value stored in stS

corresponding to 𝑘 and the corresponding value in stS is set to

𝑣 . Otherwise, C inserts the pair (𝑘, 𝑣) in stS and 𝑣 ′ = ⊥. This
operation covers both insertion and updating the value component
of KV pairs in KV stores.

The above two operations do not consider deletion and updating

the key component of KV pairs. And initially, OMAPs require the

two operations should be indistinguishable [30, 79] for the un-

trusted server S, which makes read operation expensive. Some

works [15, 30] present that the query types can be allowed to reveal

for more efficient read, i.e., S can know if C is reading or writing.

For example, in [15], 3 · 1.44 log𝑛 interaction rounds are needed

for write but only 1.44 log𝑛 interaction rounds are needed for read
(named Find in [15]). This is because C does not have to padding the

access sequences of read to that of write for hiding the query type.

In this paper, we thus divide OMAPs into two kinds: type-hiding
OMAP and type-revealing OMAP to indicate this difference.

Then for the security definition in Section 4.1, we require for any

two operation pairs (𝑜𝑝0
𝑖
, 𝑒𝑘0

𝑖
, 𝑒𝑣0

𝑖
) and (𝑜𝑝1

𝑖
, 𝑒𝑘1

𝑖
, 𝑒𝑣1

𝑖
), they should

belong to the same operation type (either read orwrite) if the OMAP

protocol is allowed to be type-revealing. And thus we propose the

following theorem for all our OMAPs.

Theorem D.1. Our construction combining DAORAM in Section 5
and any OMAP in Section 6 is type-hiding (type-revealing) OMAP if
the OMAP based on is type-hiding (type-revealing)

Proof. We first identify the security requirement. There are two

components in all our constructions: one is for the data-independent

tree using DAORAM and we denote the corresponding access pat-

terns as (𝐴0 (®𝑦0), 𝐴0 (®𝑦1)) when executing the sequences (®𝑦0, ®𝑦1).
The other is for the group OMAPs using an existing OMAP with

some modifications, the corresponding access patterns are denoted

by𝐴1 (®𝑦0) and𝐴1 (®𝑦1) for executing (®𝑦0, ®𝑦1). Now we need to prove

(𝐴0 (®𝑦0), 𝐴1 (®𝑦0)) ≡𝑐 (𝐴0 (®𝑦1), 𝐴1 (®𝑦1)) .We formally prove this with the following three parts

(1) DAORAM security: 𝐴0 (®𝑦0) ≡𝑐 𝐴0 (®𝑦1).
This directly comes from the security of DAORAM. To exe-

cute ®𝑦𝑏 , the client picks𝑚 (not necessarily distinct) items from

{(𝑘1, 𝑣𝑖)}𝑛𝑖=1 to access where 𝑘𝑖 are consecutive integers from 0

to𝑛−1. Therefore, we apply the security guarantee ofDAORAM,

which we have demonstrated in Section 5.2 (cf. Theorem B.3).

(2) Group OMAP security: 𝐴1 (®𝑦0) ≡ 𝐴1 (®𝑦1) with probability
1 − negl(𝜆).
The type-hiding OMAP and type-revealing OMAP differ only

in this component. For type-hiding OMAP, ®𝑦0 and ®𝑦1 are re-
quired to have only the same length, i.e., the same number of

operations. Each operation just accesses the same number of

independent random paths. However, type-revealing OMAP

needs different numbers of paths to retrieve for different oper-

ations. Therefore, when considering type-revealing OMAP, ®𝑦0
and ®𝑦1 are also required to have the same kind of operation in

the same position. We still note each operation only accesses a

fixed number of independent and random paths.

Then we can discuss two cases to analyze the group ORAM

security.

• Case 1. In the first case, there is overflow which implies

a group consisting of pairs over the upper bound set by

C. Please remark Definition 4.1 requires that the maximal

number of total pairs stored in the OMAP should be always

no larger than the estimated maximal item number 𝑛 in the

initialization. Then as we claimed in [35, 72] (e.g., Lemma

1 in [35]), C can set a bound of 𝑂 (𝜆) such that overflow
happens with a probability negligible in 𝜆. When this case

happens, C stops this protocol, the OMAP fails, incurring

the correctness error.

• Case 2. The second case is the main case where each group

has at most 𝑤 log𝑛 pairs. Then no matter which existing

OMAP we adopt (like oblivious AVL tree, B tree, and B+

tree), the access patterns of executing ®𝑦𝑏 in the group ORAM

can always be defined as

𝐴1 (®𝑦𝑏) := {P𝑏0 ,P
𝑏
1
, ..,P𝑏𝑚−1}

where P𝑖 represents retrieving a fixed number of (not nec-

essarily distinct) random paths from the group ORAM for

executing the 𝑖th operation in ®𝑦𝑏 . We remark 1) the fixed

number is deterministically determined by𝑤 log𝑛 and the

existing OMAP we adopt; 2) the paths retrieved are truly

random because the client assigns each pair a truly random

number for each access.

Besides, P𝑏
𝑖
and P𝑏

𝑗
are statistically independent because

each pair is always assigned a truly independent random

number for each access. They are independent no matter if

they have overlaps in pairs accessed. For example, even P𝑏
𝑖

21

and P𝑏
𝑗
are access patterns for retrieving the same pair, they

are guaranteed to be independent since they just retrieve

the same number of independent random paths. Therefore,

as both 𝐴1 (®𝑦0) and 𝐴1 (®𝑦1) are retrieving the same fixed

number of independent random paths, they are statistically

indistinguishable.

In total, with 𝐴1 (®𝑦0) ≡ 𝐴1 (®𝑦1) in case 2, we can conclude

𝐴1 (®𝑦0) ≡ 𝐴1 (®𝑦1) if the OMAP does not fail, which happens

with a probability of 1−negl(𝜆) since case 1 happens with only

a probability negligible in 𝜆.

(3) Independence between DAORAM and group OMAP.
This independence is more natural. The DAORAM preserves

only the truly random numbers C assigned to pairs in the

group OMAP. These random numbers are independent of the

DAORAM itself. With this independence, we proceed to the

following three steps:

(a) Given the specific access patterns on DAORAM and group

OMAP denoted by (𝐴0 (®𝑦), 𝐴1 (®𝑦)) via executing an oper-

ation sequence ®𝑦 with the same length to ®𝑦0 and ®𝑦1 (if

the OMAP is type-revealing, then they should also have

the same operation type in the same position), the group

OMAP security guarantees that

(𝐴0 (®𝑦0), 𝐴1 (®𝑦0)) ≡ (𝐴0 (®𝑦0), 𝐴1 (®𝑦)),
(𝐴0 (®𝑦1), 𝐴1 (®𝑦1)) ≡ (𝐴0 (®𝑦1), 𝐴1 (®𝑦)),

if the group OMAP does not happen overflow.
(b) Next, we can use theDAORAM security, if a PPT adversary

can distinguish (𝐴0 (®𝑦0), 𝐴1 (®𝑦)) and (𝐴0 (®𝑦1), 𝐴1 (®𝑦)), then
it can distinguish 𝐴0 (®𝑦0) and 𝐴0 (®𝑦1) by padding them

with the same access patterns on group OMAP, i.e., 𝐴1 (®𝑦).
RecallDAORAM guarantees𝐴1 (®𝑦0) ≡𝑐 𝐴1 (®𝑦1), so it holds:

(𝐴0 (®𝑦0), 𝐴1 (®𝑦)) ≡𝑐 (𝐴0 (®𝑦1), 𝐴1 (®𝑦))

(c) Replacing𝐴1 (®𝑦) according to independence and the group
OMAP security, we conclude

(𝐴0 (®𝑦0), 𝐴1 (®𝑦0)) ≡𝑐 (𝐴0 (®𝑦1), 𝐴1 (®𝑦1))
if the OMAP has no overflow on group OMAP.

Finally, to include overflow, we suppose there exists a PPT

adversary to distinguish the two access patterns with a prob-

ability of 1 in overflow, as it happens with only a probability

of negl(𝜆), we can conclude a PPT adversary can distinguish

(𝐴0 (®𝑦0), 𝐴1 (®𝑦0)) and (𝐴0 (®𝑦1), 𝐴1 (®𝑦1)) with an advantage of

negl(𝜆) + (1 − nege(𝜆)) · negl(𝜆)
which is clearly negligible in 𝜆 and thus concludes our proof.

□
Among works considered in this paper, the works [15] are type-

revealing OMAP and the baseline OMAP [79] is type-hiding OMAP,

our OMAPs can significantly accelerate all of them.

D.3 Delete and Updating Keys
Throughout this work, we do not consider deletion and updating

the key component of KV pairs in KV stores because they can be

decomposed into the two operations we defined in Appendix D.2,

namely read and write with some minor modifications. Following

the lazy deletion strategy [77], we can complete the deletion via

read: if this pair does not exist in the KV store, then C failed to read

it. Otherwise, C additionally sets the value component of this pair as

⊥ in read, marking it has been deleted. Here C does not adopt write
because write can be more expensive than read in type-revealing

OMAPs. Updating the key component is more complex, we first

lazily delete the old pair and then insert the new pair, i.e., one read
and onewrite operation. In the remainder of this section, we further

discuss the two operations in more aspects to understand them in

practice, including performing them with real deletion instead of

lazy deletion, and their impact on the data structure.

Deletion. The lazy deletion does not affect the data structure

under our framework as the data structure is determined by only
the key component of KV pairs. Setting the value component to be

⊥ only marks one node in the data structure as invalid but still

preserves it to keep the data structure unchanged. Instead, a real

deletion removes one node from the data structure, causing the

structure to be different. Recall our framework consists of two

oblivious components: the data-independent tree and search trees
for groups. The former is always fixed after the initialization of

OMAP and independent of any deletion and insertion, but the

search trees can be affected by the real deletion, e.g., if the deletion

removes one node from the search tree like AVL for a group, then

we have to rotate this tree to keep it balanced. We illustrate this in

Figure 12. Such differences also make the two deletion strategies

different in performance, in type-revealing OMAPs, the cost of lazy

deletion is much cheaper than that of real deletion. We remark the

real deletion cost is equivalent to write cost because they require

the same maximal number of rotations in the search tree [79]. A

possible shortage of lazy deletion is that the invalid nodes can result

in additional costs on query processing since the invalid nodes

potentially make the tree height larger. However, this happens only

when a large proportion (e.g., 50%) of pairs are lazily deleted.

Figure 12: The two deletion strategies for a query.

Updating keys. Updating the key component in KV pairs is the

most expensive operation among all operations discussed in this

work. This is because it requires both deletion of the old pair and

insertion of the new pair. Updating the key component does not

affect the data-independent tree but certainly changes the search

trees for groups, because of the newly inserted data. Hence an

update might change one or two search trees depending on whether

the lazy or the real deletion strategy is adopted. We illustrate this

with a simple example in Figure 13. Correspondingly, under the two

kinds of deletion strategies, the cost of update is equivalent to the

combination of one read plus one write and two write operations,
respectively. This makes the cost of updating keys with lazy deletion

still much cheaper than that of updating keys with real deletion in

type-revealing OMAPs. To this end, in type-revealing OMAPs, we

22

recommend using lazy deletion in practice and really deleting items

only when the computation and bandwidth resources are sufficient.

Figure 13: An example of updating key “Alice→ Allen" changes
at most two search trees for groups. The node of Alice is removed

from G1 and the node of Allen is inserted into G5.

E ADDITIONAL OMAP EXPERIMENTS
In this section, we show additional experimental results to further

evaluate our constructions and compare them with prior works.

E.1 Search, Delete and Update
In Section 7, we evaluated the insertion operation to test write in
OMAPs. Here we test more operations of OMAPs including the

search (to capture read), lazy delete, real delete, and updating the

key component of KV pairs based on the two types of deletions.

Search. We test the search operations only in type-revealing

OMAPs as type-hiding OMAPs execute search identically to inser-

tion to guarantee obliviousness and insertion has been well eval-

uated in Section 7.2. In type-revealing OMAPs, the cost of search

is significantly lower than that of insertion because it does not

require structural adjustments and, therefore, avoids the redun-

dant padding accesses needed during insertion. We run 100 search

operations on the prior type-revealing OMAPs [15, 30] and our

new OMAPs based on them with database size varying from 2
10

to

2
24
. The processing time and communication metrics are recorded

in Table 7 and Table 8. They show that the speedup on search is

smaller than that of insertion, but it can still be as high as 59.8%.

Given that OMAP has been extensively studied in the past decade

and the search operation has already been optimized much [15, 30],

such an improvement to SOTA works can be very valuable. Sim-

ilar to insertion, in the two tables, communication occupies over

90% time usage in query processing. For the search operation, our

OMAPs also mainly reduce the communication time to enhance

performance. As our lower complexity allows fewer interaction

rounds and less communication bandwidth with 𝑛 increasing, the

improvement is also more impressive under a larger 𝑛. Additionally,

we note that the client-side algorithms in our OMAPs are more

complex, thus when 𝑛 = 2
10
, our OMAP based on the AVL shows

a negative speedup on 𝑇1 although it has a lower bandwidth. As

𝑛 increases, 𝑇1 can be sped up positively by our OMAPs since the

bandwidth is much less, implying a much smaller number of KV

pairs to be calculated.

Delete and update. We test the other operations in type-revealing

OMAPs, but only in some specific properties as all of them can be

decomposed into the read and write. For deletions, we separately
evaluate the performance of lazy deletion and real deletion with

DAORAM+B+ and depict the results in Figure 14. As expected, lazy

10 12 14 16 18 20 22 24

0.7

0.8

0.9

1

1.1

1.2

𝑛(2𝑥)

T
i
m
e
u
s
a
g
e
(
s
)

Lazy Real

(a) Deletion strategy comparison

20 40 60 80

0.9

1

1.1

1.2

Deleted pairs (%)

T
i
m
e
u
s
a
g
e
(
s
)

Search Insertion

(b) Performance under real deletion

Figure 14: Performance of DAORAM+B+ under deletion.

10 12 14 16 18 20 22 24

2

2.5

3

3.5

4

𝑛(2𝑥)

T
i
m
e
u
s
a
g
e
(
s
)

Lazy Real

(a) DAORAM + AVL(∗)

10 12 14 16 18 20 22 24

1.8

2

2.2

2.4

𝑛(2𝑥)

T
i
m
e
u
s
a
g
e
(
s
)

Lazy Real

(b) DAORAM + B+

Figure 15: Performance of OMAPs for updating the key component

in KV pairs with different deletion strategies.

deletion is much cheaper than real deletion as they are done by the

cheap read and expensive write, respectively. To show the effect of

lazy deletion, we provide an empirical evaluation in Figure 15(b).

While lazy deletion does not affect query cost, real deletion can

potentially reduce the cost of other operations if enough data is

deleted, leading to a rebalancing of the underlying search tree and a

reduction in its height. This trend is evident in the graph. Since we

initially started with exactly 2
24

data items, we observe that when

half of the data is deleted, the query cost decreases for the first time.

This demonstrates that lazy deletion is more advantageous when

only a small proportion of items are removed. For updating the key

component of KV pairs, we compare the update on the four OMAPs

with different deletion strategies in Figure 15, which again shows

that the cost of update with lazy deletion is still much cheaper than

that of update with real deletion in these OMAPs. And these results

show this update is much more expensive than the deletion, i.e.,

around 2× slower than deletion with the same deletion strategy as

this update additionally executes an insertion.

E.2 Obliviousness
To validate the obliviousness of our OMAPs, we evaluate ourOMAPs

in two aspects: data obliviousness and query obliviousness. The for-
mer implies that the dataset distribution is different while the latter

means the distinct query distributions.

Data obliviousness. ORAM always preserves KV stores with con-

secutive keys, thus the dataset distribution is identical. But OMAP is

designed to support dataset with different distributions. For OMAP

data obliviousness, we run our constructions on both the real-world

dataset PTB and the synthetic dataset. The key length in both of

them is 19 bytes as the maximal key in PTB owns 19 bytes. We

set them with the same size and access via insertion and search

23

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Time components 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3

AVL

prior (s) 0.02 0.98 1.00 0.03 1.24 1.27 0.06 1.56 1.62 0.09 1.84 1.93 0.11 2.04 2.15 0.13 2.31 2.44

ours (s) 0.04 0.59 0.63 0.05 0.68 0.73 0.06 0.75 0.81 0.08 0.78 0.85 0.08 0.85 0.93 0.09 0.89 0.98

speedup (%) -100.0 39.8 37.0 -66.7 45.2 42.5 0.0 51.9 50.0 11.1 57.6 56.0 27.3 58.3 56.7 30.8 61.5 59.8

B+

prior (s) 0.03 1.02 1.05 0.05 1.16 1.21 0.08 1.33 1.41 0.10 1.64 1.74 0.13 1.78 1.91 0.16 1.91 2.07

ours (s) 0.01 0.69 0.70 0.01 0.71 0.72 0.02 0.78 0.80 0.03 0.79 0.82 0.03 0.80 0.83 0.04 0.82 0.86

speedup (%) 66.7 32.4 33.3 80.0 38.8 40.5 75.0 41.4 43.3 70.0 51.8 52.9 76.9 52.9 56.5 75.0 57.1 58.5

Table 7: Time usage of search. 𝑇1 is calculation time, 𝑇2 is the communication time, and 𝑇3 is the total processing time.

𝑛 2
10

2
13

2
16

2
19

2
21

2
24

Communicate round band (KB) round band (KB) round band (KB) round band (KB) round band (KB) round band (KB)

AVL

prior (s) 30 115.20 38 184.83 48 294.91 56 401.41 62 492.03 70 627.20

ours (s) 22 45.57 22 47.10 24 49.92 24 52.22 24 53.76 26 56.32

speedup (%) 26.7 60.4 42.1 74.5 50.0 83.1 57.1 87.0 61.3 89.1 62.9 91.0

B+

prior (s) 28 50.18 36 82.94 44 123.90 48 147.46 56 200.70 64 262.14

ours (s) 20 20.48 20 22.02 22 24.83 22 27.14 22 28.67 24 31.23

speedup (%) 28.6 59.2 44.4 73.5 50.0 80.0 54.2 81.6 60.7 85.7 62.5 88.1

Table 8: Interaction rounds and communication bandwidth of search.

queries. These queries are uniformly distributed and the experimen-

tal results are shown in Figure 16. It is shown under the same data

size, the processing time on PTB and synthetic dataset is nearly the

same. So the performance on the two datasets is nearly identical,

validating the obliviousness under different data distributions.

Query obliviousness. For query distributions, in Section 7, we

adopted queries under the uniform distribution to evaluate the

ORAMs andOMAPs. This follows a series of works [18, 27, 74] about

obliviousness and is because the obliviousness property guarantees

the query cost is nearly identical under any query distribution (as

claimed in [18, 27, 74]). Intuitively, the query processing in the view

of S should be nearly identical to avoid leaking sensitive informa-

tion. To validate this claim, we run 2
10

queries generated from 6

distinct and typical distributions on OMAPs and these distributions

own different skewness. We test only insertion and search as other

operations are decomposed into them. We show the average time

usage per query in Figure 17. It indeed shows that the performance

of the OMAPs on the same kind of operation is nearly the same

under these different query distributions, validating the rationality

of evaluating the query cost with only the uniform distribution in

the prior experiments.

To explain the obliviousness, the readers may naturally notice

that the procedure and algorithms in S are always designed to per-

form identically under different access patterns (for obliviousness),

e.g., yielding the same interaction rounds, the same communication

bandwidth under any query distribution, and the identical query

cost. We remark actually the procedure in C can be non-oblivious

but incurs only ignorable cost variance under the client-server

paradigm considered in this work. The client-side algorithms are

often required to be oblivious only when implementing them in

secure enclaves [26], which is studied by another line of recent

works [8, 59, 82].

E.3 Network Conditions
Our work in fact proposes the most practical and efficient recur-
sive ORAM and OMAPs up to now. It reduces both the interaction

rounds and communication bandwidth to enhance efficiency. How-

ever, the two reductions have different impacts on query processing.

So here we conduct the four OMAPs compared in Section 7 locally
to make interaction round nearly free. In this way, we remove the

effect of interaction round reduction and can focus on the commu-

nication bandwidth reduction. The experimental results are shown

in Figure 18. Then we can separately figure out the impact of inter-

action round reduction and bandwidth reduction.

• The bandwidth reduction has little impact on improving commu-

nication time as it occupies at most 3mswhile the communication

time under WAN costs at least 0.59s in our prior experiments.

• The bandwidth reduction has a more positive impact on calcu-

lation time. The bandwidth reduction implies there are fewer

pairs retrieved to be calculated. Hence the total time in local is

still greatly reduced although the communication time reduction

affects it little.

With the above claims, now we can apply Table 3, Table 4, Table 7,

and Table 8 to analyze the impacts. The speedup in calculation

time 𝑇1 comes from bandwidth reduction while the speedup of

communication time 𝑇2 nearly completely results from interaction

round reduction as bandwidth reduction has little impact on com-

munication. The readers can easily calculate the different impact

of the two reductions on different 𝑛, for example, when 𝑛 = 2
24
,

there are around 1.09s and 0.12s time enhancement of search based

24

10 12 14 16 18 20 22 24
0

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(a) PBT dataset insertion

10 12 14 16 18 20 22 24
0

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(b) 19-byte key insertion

10 12 14 16 18 20 22 24

1

2

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(c) PBT dataset search

10 12 14 16 18 20 22 24

1

2

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(d) 19-byte key search

ODS+AVL(∗) ODS+B+ DAORAM+AVL(∗) DAORAM+B+

Figure 16: Data obliviousness: processing time on PTB dataset (1KB block).

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(a) Uniform (search)

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(b) Repeated (search)

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(c) Linear scan (search)

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(d) Normal (search)

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(e) Weibull-(1, 1) (search)

10 12 14 16 18 20 22 24

0.5

1

1.5

2

2.5

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(f) Weibull-(1, 1.5) (search)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(g) Uniform (insertion)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(h) Linear scan (insertion)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(i) Repeated (insertion)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(j) Normal (insertion)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(k) Weibull-(1, 1) (insertion)

10 12 14 16 18 20 22 24

2

4

6

8

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
s
)

(l) Weibull-(1, 1.5) (insertion)

ODS+AVL(∗) ODS+B+ DAORAM+AVL(∗) DAORAM+B+

Figure 17: Query obliviousness: OMAP performance under different query distributions.

on B+ tree from interaction rounds and bandwidth reductions, re-

spectively. Please note the proportion differs according to 𝑛 and

OMAPs, but basically, the impact of round reduction is much more

important than bandwidth reduction.

In addition to the prior experiments under WAN conditions with

a latency of 38ms, we further quantify the speedup under varying

latencies. We acquire multiple cloud servers from different cities

to represent C under various network conditions. We depict the

OMAP insertion and search performance when 𝑛 = 2
24

in Ta-

ble 9 and Table 10, detailing the corresponding latency, time usage,

and speedup. These latencies reflect network conditions typical of

most real-world applications. The bandwidth is consistently set to

100Mbps. The results align with expectations: as network condi-

tions worsen and latency increases, the improvement in𝑇1 changes

only slightly, since the bandwidth reduction is independent of la-

tency. The interaction rounds take up a larger portion of the total

time, leading to a more significant speedup. This makes reducing

interaction rounds even more crucial. Therefore, we conclude that

our new OMAPs become increasingly interesting in networks with

higher latency.

25

10 12 14 16 18 20 22 24

20

40

60

80

100

120

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(a) Total time of search

10 12 14 16 18 20 22 24

0

100

200

300

400

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(b) Total time of insertion

10 12 14 16 18 20 22 24

0

1

2

3

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(c) Communication time of search

10 12 14 16 18 20 22 24

0

5

10

𝑛 (2
𝑥
)

T
i
m
e
u
s
a
g
e
(
m
s
)

(d) Communication time of inser-

tion

ODS+AVL(∗) ODS+B+ DAORAM+AVL(∗) DAORAM+B+

Figure 18: Query processing in local.

City Hangzhou (12ms) Tokyo (35ms) Kuala Lumpur (82ms) San Francisco (154ms) London (208ms)

Time components 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3

AVL

prior (s) 0.36 2.16 2.52 0.37 6.54 6.91 0.36 15.79 16.15 0.38 29.20 28.88 0.37 39.19 39.56

ours (s) 0.11 0.65 0.76 0.11 1.76 1.87 0.12 4.28 4.40 0.11 7.61 7.72 0.11 9.91 10.02

speedup (%) 69.4 69.9 69.8 70.3 73.1 72.9 66.7 72.9 72.8 71.1 73.9 73.3 70.3 74.7 74.7

B+

prior (s) 0.17 0.92 1.09 0.17 2.69 2.86 0.16 6.38 6.54 0.16 11.49 11.65 0.17 16.23 16.40

ours (s) 0.06 0.28 0.34 0.06 0.76 0.82 0.06 1.81 1.87 0.06 3.21 3.27 0.06 4.41 4.47

speedup (%) 64.7 69.6 68.8 64.7 71.7 71.3 62.5 71.6 71.4 62.5 72.1 71.9 64.7 72.8 72.7

Table 9: Time usage of insertion under different latency. 𝑇1 is calculation time, 𝑇2 is the communication time, and 𝑇3 is the total processing

time.

City Hangzhou (12ms) Tokyo (35ms) Kuala Lumpur (82ms) San Francisco (154ms) London (208ms)

Time components 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3

AVL

prior (s) 0.13 0.72 0.85 0.13 2.19 2.32 0.13 5.26 5.39 0.12 9.15 9.27 0.13 13.09 13.22

ours (s) 0.09 0.28 0.37 0.10 0.83 0.93 0.09 2.01 2.10 0.09 3.52 3.61 0.10 4.87 4.97

speedup (%) 69.4 69.9 69.8 70.3 73.1 72.9 66.7 72.9 72.8 71.1 73.9 73.3 70.3 74.7 74.7

B+

prior (s) 0.15 0.61 0.76 0.15 1.78 1.83 0.15 4.26 4.41 0.15 8.08 8.23 0.15 10.81 10.96

ours (s) 0.04 0.30 0.34 0.04 0.74 0.78 0.05 1.72 1.77 0.04 3.17 3.21 0.05 4.15 4.20

speedup (%) 73.3 50.8 55.3 73.3 58.4 57.4 66.7 59.6 59.9 73.3 60.8 61.0 66.7 61.6 61.7

Table 10: Time usage of search under different latency. 𝑇1 is calculation time, 𝑇2 is the communication time, and 𝑇3 is the total processing

time.

26

	Abstract
	1 Introduction
	1.1 Overview

	2 Preliminaries
	3 Revisit
	3.1 Prior Recursive ORAM
	3.2 Prior OMAPs

	4 OMAP Framework
	4.1 Security Model
	4.2 OMAP Framework

	5 Data-independent Tree
	5.1 Construction
	5.2 Analysis

	6 Group OMAP
	7 Evaluation
	7.1 Practical ORAM with de-amortization
	7.2 Efficient OMAP with less communication

	8 related work
	9 Conclusion
	References
	A Notation Table
	B DAORAM Analysis
	B.1 Correctness and Security
	B.2 ORAM Discussion
	B.3 Additional ORAM Experiments

	C Group OMAP Analysis
	D OMAP Analysis
	D.1 OMAP Correctness
	D.2 OMAP Security
	D.3 Delete and Updating Keys

	E Additional OMAP Experiments
	E.1 Search, Delete and Update
	E.2 Obliviousness
	E.3 Network Conditions

