Concretely Efficient Asynchronous MPC from Lightweight
Cryptography

Akhil Bandarupalli', Xiaoyu Ji?, Aniket Kate3, Chen-Da Liu-Zhang*, and Yifan Song®
! abandaru@purdue.edu, Purdue University
? jixy23@mails.tsinghua.edu.cn, Tsinghua University
aniket@purdue.edu, Purdue University & Supra Research
chen-da.liuzhang@hslu.ch, Lucerne University of Applied Sciences and Arts & Web3 Foundation
5 yfsong@mail.tsinghua.edu.cn, Tsinghua University and Shanghai Qi Zhi Institute

3
4

Abstract. We consider the setting of asynchronous multi-party computation (AMPC) with op-
timal resilience n = 3t + 1 and linear communication complexity, and employ only “lightweight”
cryptographic primitives, such as random oracle hash.

In this model, we introduce two concretely efficient AMPC protocols for a circuit with |C| multi-
plication gates: a protocol achieving fairness with O(|C| - n +n?) field elements of communication,
and a protocol achieving guaranteed output delivery with O(|C| - n + n®) field elements. These
protocols significantly improve upon the best prior AMPC protocol in this regime communicating
O(|C| - n + n'*) elements. To achieve this, we introduce novel variants of asynchronous complete
secret sharing (ACSS) protocols with linear communication in the number of sharings, providing
different abort properties.

By combining the AMPC protocols, one can achieve an AMPC with guaranteed output with an
optimistic communication that is similar to the AMPC with fairness.

1 Introduction

Multi-Party Computation (MPC) [Yao82, [GMWST7, [BGWSS| [CCD8S, [RB&89] enables n mutually dis-
trustful parties to compute any function on their private inputs. Moreover, it is guaranteed that the
adversary does not learn any information about the inputs apart from what can be inferred from the
output.

The cryptographic literature has studied MPC for more than forty years and the last decade has
seen tremendous progress towards making it practical. However, most existing MPC systems still rely
on strong networking assumptions such as (bounded) synchrony and broadcast channels that make
their practicability questionable, especially for low-latency application scenarios. In the synchronous
model, messages are assumed to be delivered within a fixed time frame. In high-throughput low-latency
application scenarios in the real world, we cannot set synchronous time bounds generously and thus
unpredictable delays must be tolerated. This makes most existing synchronous MPC systems inadequate.
While protocols designed in the asynchronous model are resilient to such delays, the current designs
may not scale as n grows: Indeed, current asynchronous MPC (AMPC) protocols struggle to scale to
hundreds of parties either due to their 1) communication complexity from the information-theoretic (IT)
approach [BKR94, [PCR10, PCRO0S, [CP23| [GLZS24, LYK ™19] which does not rely on any cryptographic
assumptions or 2) computational complexity from the usage of threshold cryptography for common coins,
additive homomorphic encryption/commitments and/or non-interactive zero-knowledge proofs [CP15]
Coh16l, [BKLZI.20, [HNP05, [HNPOS, [CHLZ21]. Concretely, the best-known IT-secure AMPC with ¢t < n/3
resilience protocols require O(nC + kn't) [GLZS24] for a circuit with C' gates and n parties. Current
computational AMPC protocols [BKR94, [PCRI0, [PCRO0S, [CP15, [CP23, LYK™19| rely on significant
“heavy-weight” public-key cryptography and/or non-interactive zero-knowledge proofs and have high
computational costs as n grows.

Lightweight Cryptography. In this space between these two extremes of heavy-weight number-
theoretic public-key cryptography and IT cryptography, hash-based cryptography is an interesting lightweight
middle-ground option: a cryptographic hash computation is 100x to 1000x faster than an exponenti-
ation in the discrete logarithm setting. Recently, hash-based constructions have been considered for
asynchronous distributed random beacons [BBB™24], asynchronous (distributed) agreement on common

subset [DDL 24|, and asynchronous verifiable secret sharing [SS24]. Among those, HashRand [BBB™24]
demonstrated that the hash-based design is indeed practically more efficient than both computational
designs as well as information-theoretic designs.

Moreover, as Quantum computer development picks up the pace, the world has begun adopting
post-quantum secure cryptography in many frontiers; e.g., Apple recently converted their messaging
service to be post-quantum secure. It is imperative to develop scalable AMPC protocols with post-
quantum security. As contemporary hash functions like SHA3 also behave as Random Oracles against a
polynomial-time quantum adversary, hash-based AMPC constructions can offer post-quantum security
similar to IT-secure constructions.

However, building an AMPC protocol based on Hash functions with comparable communication
efficiency as heavy-weight cryptography-based AMPC protocols is challenging as hashes are not additively
homomorphic.

1.1 Owur Contributions

In this work, we consider the setting of AMPC with linear communication and optimal resilience ¢t < n/3
[IBOKRO4, [ADS20] active corruptions. Given the above considerations, we ask whether it is possible
to construct AMPC based on lightweight cryptography while still maintaining concrete communication
complexity in a similar range as AMPC based on heavyweight cryptography:

Can we achieve concretely efficient AMPC with linear communication and optimal resilience from
lightweight cryptography?

We answer in the affirmative by presenting scalable AMPC protocols that combine the computational
efficiency of IT-secure protocols with practical communication overhead, without compromising post-
quantum security. Our contributions are divided into two parts.

1. Security with Fairness: Our first result features an AMPC with security with fairness and communi-
cation complexity O(n) elements per multiplication, and O(n?) elements of additive overhead. Note that
such an overhead is minimal since any AMPC requires each party to reliably broadcast their input, and
the cost for each reliable broadcast incurs inherently a quadratic term O(n?) [DR85]. More precisely, we
achieve the following:

Theorem 1. Let n = 3t + 1 and k denote the security parameter. For a finite field F of size 2(%) and
any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that is secure
against at most t corrupted parties with security with fairness. Let the input and output size be C; and
Co respectively, the achieved communication complexity is O((|C| + C1) -n + D -n? + Co - n®) field
elements.

2. Guaranteed Output Delivery: We then move on to the stronger setting of guaranteed output delivery. In
this case, we achieve communication complexity of O(n) elements per multiplication, and O(n®) elements
of additive overhead. More precisely:

Theorem 2. Let n = 3t + 1 and k denote the security parameter. For a finite field F of size 2%) and
any circuit C' of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
the circuit that is secure against at most t corrupted parties with guaranteed output delivery. Let the input
and output size be Cr and Co respectively, the achieved communication complezity is O((|C|+Cr+Co)-
n+ D -n%+nd) field elements.

By executing the asynchronous MPC protocols with fairness and guaranteed output delivery in se-
quence, and using the output from the fair MPC if it did not fail and the guaranteed output MPC
otherwise, we achieve the optimal communication when all parties are honest (additive O(n3) elements
overhead), while achieving guaranteed output delivery.

Corollary 1. Let n =3t + 1 and k denote the security parameter. For a finite field F of size 22 and
any circuit C' of size |C| and depth D, there is a fully malicious asynchronous MPC protocol computing
the circuit that is secure against at most t corrupted parties with guaranteed output delivery. Let the input
and output sizes be Cr and Co respectively. The optimistic communication complexity is O((|C| + Cy) -

n+D-n?+ Co -n?) field elements when all parties are honest. In the worst case, the communication is
O((|C| 4+ Cr) n+ D -n?+ Co -n+n®) field elements.

Computational Efficiency. On top of communication efficiency, our protocols are computationally
efficient. Our AMPC protocol with fairness requires O(n?) Hash computations per party, independent of
circuit size. Further, our AMPC with GOD protocol requires O(n|C|+n%) Hash computations per party.
In comparison, protocols based on homomorphic cryptography like [CP15] [AJM™23] require 2(n|C|)
computations per party, where each such operation is 100x to 1000x more expensive than a Hash
computation.

Reduction to Small Field. All the above results assume a finite field F of size at least 2(*). In
Section [6] we show how to reduce the field size requirement and obtain the following theorems.

Theorem 3. Let n = 3t + 1 and k denote the security parameter. For a finite field F of size at least
n+ 1 and any circuit C of size |C| and depth D, there is an AMPC protocol computing the circuit that
is secure against at most t corrupted parties with security with fairness. Let the input and output size be
Cr and Co respectively, the achieved communication complexity is O((|C| + Cr) -n+ D -n? + Co - n?)
field elements plus O(k - n3) bits.

Theorem 4. Let n = 3t + 1 and k denote the security parameter. For a finite field F of size at least
n+1 and any circuit C of size |C| and depth D, there is a fully malicious asynchronous MPC' protocol
computing the circuit that is secure against at most t corrupted parties with guaranteed output delivery.
Let the input and output size be C; and Co respectively, the achieved communication complexity is
O((|C|+ Cr +Co) - n+ D -n* +nd) field elements plus O(k - n®) bits.

1.2 Related Work

The communication complexity in AMPC has been the subject of a very significant line of work.
Information-Theoretic MPC. In the IT setting, the first protocol with optimal resilience ¢ < n/3
was provided by Ben-Or, Kelmer, and Rabin [BKR94]. The works [PCR10, PCRO8| achieved O(n?) field
elements per multiplication, which was further improved in [CP23] to O(n?). The works [GLZS24} [JTL.S24]
recently improved the scope to O(n) elements, but the additive overhead is 2(n!?) elements, making
it impractical. In the case of ¢ < n/4 and perfect security, the recent work [AAPP24] achieves linear
communication O(n) elements per multiplication with an additive overhead of O(n°) elements.
Cryptographic MPC. There are several communication-efficient protocols with optimal resilience ¢ <
n/3 under different assumptions. However, these works make use of heavy cryptography, typically in the
form of threshold (somewhat homomorphic) encryption and/or non-interactive zero-knowledge proofs,
which increases considerably the computational overhead. Our protocols only make use of hash functions,
which are orders of magnitude faster.

The works [HNPO5], [HNPOS, [CHLZ21] make use of an additive homomorphic encryption, with [HNPOS|
CHLZ21] communicating O(n?) elements per multiplication. The work [CP15] achieves O(n) elements
per multiplication at the cost of using somewhat-homomorphic encryption. The work [CHLZ21] also
achieves linear cost using additive-homomorphic encryption for ¢t < (1 —¢)n/3, but considers the atomic-
send model. The works [Coh16, BKLZL20] achieve a communication independent of the circuit size using
fully-homomorphic encryption. Finally, the works [LYK™19, [DGKN09] introduce AMPC protocols where
the preprocessing phase may not terminate, i.e. they are not live. This undesirable condition is more
critical than the standard security with abort, as in the latter case, parties realize that the protocol failed
(they obtain L as output).

There also exist works that use homomorphic commitments to achieve ACSS with linear communica-
tion [AJM™23| per secret. However, this protocol requires O(n) discrete-log operations per secret, which
is a scalability bottleneck.

Lightweight Protocols. There are no MPC protocols that make use of lightweight cryptography,
but some have appeared for concrete functionalities, including asynchronous distributed random bea-
cons [BBBT24], asynchronous common subset [DDL™24], and asynchronous verifiable secret sharing [BKP11),
SS24]. The work [BKP11] introduces an ACSS protocol with O(n®L) communication for sharing L secrets.
[SS24] improve this complexity to O(nL + kn?log(n)) bits when the dealer is honest using Hash-based
Zero-Knowledge proofs and Pseudorandom functions (PRFs). However, a malicious dealer can increase
communication to O(n%L + kn?) bits, which is too expensive to build linear AMPC.

2 Technical Overview

In the following, we use [s]: to denote a degree-t Shamir secret sharing of s and a_¢41, ..., a, to denote
distinct field elements.

We give a high-level overview of the main techniques used in this work. Following [CP23| [(GLZS24], an
asynchronous MPC (AMPC) can be obtained from the following three steps. The first step is to realize
an asynchronous complete secret sharing (ACSS) [PCR09] protocol which ensures that all honest parties
can obtain their shares of a degree-t Shamir sharing [s]; distributed by a dealer. Then, the second step is
to prepare Beaver triples [Bea92] with the help of ACSS in the offline phase. After preparing a sufficient
number of Beaver triples, all parties only need to do public reconstruction in the online phase, which can
be achieved with linear communication complexity and high concrete efficiency.

For the preparation of Beaver triples, [GLZS24] first achieves linear communication per triple in
the information-theoretic setting, while for concrete efficiency, the overhead is O(n”) (regardless of the
costs of ACSS). Their idea is to run two different processes for triple generation in parallel and argue
that all parties will eventually get the triples from one process. However, their construction incurs
overheads of O(n%) in the first process and O(n”) in the second process. Our first technical contribution
is a new construction for the second process that is conceptually simpler and more concretely efficient.
Relying on the random oracle hash, we manage to reduce the overheads of both processes to O(n?).
One drawback of our technique, however, is that our construction can only achieve malicious security
with abort (and fairness) rather than guaranteed output delivery as achieved in [GLZS24]. Our second
technical contribution is to use the party-elimination framework [BTHO6] to compile our protocol to
achieve guaranteed output delivery with an additive overhead O(n®). To the best of our knowledge, we
are the first to use the party-elimination framework in the asynchronous network setting.

Another problem is the concrete efficiency of ACSS. In the information-theoretic setting, [JLS24] gives
the first ACSS protocol with linear cost per sharing but with an additive overhead of O(n!?). We note
that when targeting malicious security with abort, we only need a weaker security guarantee on the ACSS
protocol: Instead of requiring all honest parties to eventually obtain their shares, we only require that all
honest parties will eventually terminate the protocol either with the correct shares or a failure symbol.
Note that this is different from an asynchronous verifiable secret sharing (AVSS) protocol which does
not ensure all honest parties obtain their shares even if all parties follow the protocol. Based on random
oracle hash, we give a concretely efficient ACSS protocol that only achieves malicious security with abort.
Concretely, the cost per sharing is linear and the additive overhead is O(n?). When constructing our
GOD protocol, we upgrade the above ACSS protocol to achieve identifiable abort where an honest party
may either receive his correct shares or a proof that can be used to accuse the corrupted dealer. Our
ACSS protocol with identifiable abort also supports efficient public reconstruction: When the corrupted
deal is accused, all parties may together recover the secrets shared by this dealer with linear cost. This
will be an important building block for our GOD protocol as we will elaborate later.

In the following, we start by recapping the techniques in [GLZS24] and then introduce our new
solution for preparing Beaver triples. Next we show how to achieve malicious security with fairness and
GOD.

2.1 Overview of Previous Approach and Our New Construction

Triple Generation Framework in [GLZS24]. To prepare random Beaver triples, the authors in [GLZS24)
design two processes where each process can achieve a linear cost per triple but does not guarantee ter-
mination when executed alone. On the other hand, they show that the first process will terminate when
at least et corrupted parties participate, while the second process will terminate when no more than et
corrupted parties participate. Then they connect these two processes by requiring that a party can only
participate in the second process if he has participated in the first process. In this way, at least one
process will eventually terminate and all parties will get their triples with linear cost.

In [GLZS24], the first process is adapted from the triple extraction process introduced in [CP17]. At
a high level, the idea is to first let all parties distribute Beaver triples ([a]t, [b]t, [¢:]) through ACSS where
¢ = a-b, and then jointly extract random Beaver triples which are unknown to each party. Recall that in
the asynchronous setting, corrupted parties may never participate in the execution. Therefore, to ensure
termination, all honest parties can only expect to agree on a set of size L = 2t + 1 of successful dealers

and in this case, the triple extraction process can generate (L 4+ 1)/2 — ¢t = 1 random triple. This leads
to a quadratic communication cost per triple in [CP17]. To save a factor of O(n), the idea of the first
process is to let all parties wait for a set of size L = (2 4 €)t + 1 of successful dealers. Then all parties
can extract (L + 1)/2 —t = O(n) Beaver triples and thus achieve the linear cost per triple. However,
this requires at least et corrupted parties participating in the first process. Since corrupted parties may
never participate in this process, this process may never terminate.

To counter the above malicious strategy, the second process targets for the case where at most et
corrupted parties participate. In addition, to link these two processes, a party P; will only accept P;’s
messages in the second process if P; terminates P;’s ACSS protocol in the first process. In this way, a
corrupted party must first participate in the first process to participate in the second process.

For the second process, the authors in [GLZS24] adapt the triple extraction process to work with
packed Beaver triples [GPS22], where each packed Beaver triple can be transformed to O(n) standard
Beaver triples. To share packed Beaver triples, the authors in [GLZS24] design an efficient sharing protocol
for degree-(1 4 ¢€)t packed Shamir sharings, which only works when the corruption threshold is smaller
than ef. Also the smaller corruption threshold allows them to utilize the error correction property for
higher-degree polynomials.

Potential Solution to Achieve Linear Communication Based on [DNO7]. We note that the
second process in [GLZS24] is quite involved and complicated. Our starting point is the well-known DN
technique [DNO7] to prepare random Beaver triples in the synchronous setting:

1. All parties first prepare random sharings ([a], [b]:) and a pair of random double sharings ([r]:, [r]2t)-

2. All parties locally compute [z]o = [al¢ - [b]¢ + [r]2: and send it to Piing. Then Piing reconstructs and
sends z to all parties.

3. After receiving z, all parties locally compute [c]; = z — [r];.

When using the DN technique [DNO7] in the asynchronous setting, we have to address the following
two issues: (1) efficiently preparing double sharings, and (2) avoiding a malicious Piing not sending any
result back. To better explain our idea, let us first assume that all messages sent by corrupted parties
are honestly computed (but corrupted parties may choose to not send some messages). We will consider
the malicious security case in the next subsection.

Following from the observation in [GLO™ 21|, for double sharings, we may instead prepare ([r]:, [0]2¢)
where [0]a; is a random degree-2t Shamir secret sharing of 0. This allows us to decouple the relation
of these two sharings. Then we can prepare ([a]t, [b]t, [r]¢) through standard techniques in [DNO7] and
ACSS, and the remaining problem is how to prepare [0]2; with linear communication. Again, relying on
the techniques in [DNOQ7], this question is further reduced to allowing a single dealer to distribute degree-
2t Shamir sharings of 0 with linear communication. Recall that in the second process, it is sufficient to
deal with the case where there are at most et corrupted parties. Let a_(;_¢)s41,- -, an be distinct field
elements, with a smaller corruption threshold, the following simple sharing protocol works:

1. Suppose the dealer D wants to share [o1]a¢, ..., [0(1—e)¢]2t. D first encodes these et degree-2¢ Shamir
sharings into a random degree-(2t, (2—e¢)t) bivariate polynomial F'(z, y) such that F(z, a_;11) = [0;]2¢
foralli € {1,...,(1 —€)t}. Then D sends F(z, ;) to P;.

2. After receiving F(x,q;) from D, P; broadcasts (support, P;, D) and sends F(a;, ;) to each party
P;. If at least 2t + 1 parties support D, the sharing phase succeeds.

3. After receiving (2 — €)t + 1 evaluations of F(«;,y), P; reconstructs F(«a;,y) and recovers his shares

of [o1]at, -+ [0(1—eyt]ot-

First notice that the communication cost per sharing is linear. To see why it works, note that when 2¢+1
parties support D, there are at least 2¢ + 1 — et honest party P; who will send F(«;, ;) to P;. Thus,
every honest P; can eventually obtain his shares.

For the second issue, we follow the idea in [GLZS24] to let each party perform as Ping to prepare
O(1/n) fraction of random Beaver triples.

2.2 Our Solution for AMPC with Fairness

Towards Malicious Security with Abort. Unfortunately, our new protocol is not sufficient to achieve
malicious security. To see this, note that Pyng can only expect to receive 2t + 1 shares of [z]o;, which are

just enough to reconstruct the secret. This means that even a single incorrect share would result in an
incorrect triple and Ping cannot detect it with the 2¢ 4 1 shares he received.

On the other hand, we manage to show that the random Beaver triples prepared using our approach
achieve malicious security up to additive attacks, i.e., for each triple ([a]¢, [b]¢, [c]¢), the adversary may
choose an arbitrary constant d such that ¢ = a-b+d. Thus, we follow the verification protocol in [GLZS24]
to check the correctness of the prepared triples. If the verification fails, the protocol aborts. This allows
us to achieve malicious security with abort.

One small issue is that the protocol may not terminate due to an honest party aborting the protocol
earlier. Indeed, when an honest party aborts, the corruption threshold of the remaining parties can be
t > n/3. To address this, when an honest party finds the computation fails on his part, he will continue
to participate in the protocol execution while sending a failure symbol whenever he needs to send a
message. A party that receives a failure symbol from some other party will also regard the computation
as failing. This ensures the termination of our final protocol.

Security with Abort ACSS. So far, all previous discussion assumes an ACSS protocol. As we men-
tioned in the introduction, known solutions for ACSS with linear cost either incur a large communication
overhead or a large computation overhead. We note that when targeting for malicious security with abort.
It is sufficient to achieve a weaker guarantee where each honest party will eventually terminate the pro-
tocol with his correct shares or a failure symbol.

Our starting point is a distributed Zero-Knowledge (dZK) proof from [ABCP23|, which allows a
prover (the dealer) to prove that a distributed set of verifiers possess shares from a degree-t polynomial.
It works as follows. Verifier Py possesses L shares f;(ay) for ¢ € [1, L]. The prover first samples a random
degree-t polynomial Y(x). Then, it generates commitments C[¢] to points Y(ay) for ¢ € [1,n] using a
Random Oracle H, and broadcasts them. The verifiers sample a random point p and ask the prover to
broadcast r(x) := Y(x) — EiLzl p' fi(z). Then, each verifier Py checks if H(r (o) + EiLzl P fi(a)) < C[e).
If the degrees of fi(z),Y(z) > ¢ and r(x) must have degree-t, then ZiLzl ¢; - pt = 0, where ¢; is the
coefficient of the higher degree term in f;(x). However, according to the Schwartz-Zippel lemma, a
non-zero polynomial evaluates to zero on a randomly sampled point with probability < ﬁ This proof
technique can be made non-interactive by using the Fiat-Shamir heuristic, where the prover creates the
challenge point p by applying H on generated commitments.

This dZK proof technique can be trivially used to build an Asynchronous Verifiable Secret Sharing
(AVSS) protocol. In this protocol, the dealer sends shares of polynomials f;(x) to parties over private
channels and broadcast commitments and the dZK proof using Reliable Broadcast (RBC). At least ¢ + 1
honest parties that participate in the dealer’s RBC successfully verify and possess valid shares of the
secrets. However, a corrupted dealer might never send shares to ¢ honest parties, and force the protocol
to terminate with ¢ 4 1 honest parties.

We address this issue by enabling the ¢ 4+ 1 parties who terminated with shares to help other honest
parties interpolate their shares. In this protocol, the dealer encodes the share polynomials into larger
degree-(2t,t) bivariate polynomials F;(z,y), where each F; packs t + 1 degree-t share polynomials f.
the dealer sends the row and column polynomials F;(x, ap), F;(cy,y) to party Pp. Each party verifies its
shares using the dZK proof. Then, parties participate in a share interpolation phase where they send
common points on each other’s share polynomials. Each party receives a sufficient number of points on
its row polynomials and eventually reconstructs its shares. However, a corrupted party can send wrong
shares to an honest party, which might cause it to output wrong shares. Therefore, each party verifies
its shares using the dZK proof. If the verification succeeds, the party outputs its shares. Otherwise, it
outputs abort. Further, like in AVSS, parties can reconstruct the share polynomials by using dZK proofs
to prove the validity of shares, followed by Lagrange interpolation.

In summary, this protocol utilizes bivariate polynomials over an underlying AVSS protocol to achieve
ACSS with abort. The communication complexity of this construction is linear per sharing plus an
additive overhead O(n?).

From Malicious Security with Abort to Fairness. We note that the above ACSS protocol is also
an AVSS protocol. Our next step is to compile our AMPC protocol to achieve fairness. We focus on the
case where all parties should receive the same function output. At a high level,

1. During the input phase, each party P; also shares a random degree-t Shamir sharing [r;]; using our
ACSS protocol.

2. Without loss of generality, suppose the first ¢ 4+ 1 parties successfully share their random sharings.
We use [r]: := [r1]¢ + ... + [r++1]¢ as a random mask for the final output y.

3. After running our AMPC protocol that achieves malicious security with abort, each party either
outputs y + r or a failure symbol. Now all parties run a multi-value BA protocol to agree on the
final output. If the final output is y + r, all parties verifiably reconstructs r1,...,7.11. Otherwise, all
parties abort.

In this way, if all parties fail to agree on the output y 4, the function output y is perfectly protected
by r; generated by an honest party P;. On the other hand, after all parties agree on the output y + r,
by the property of AVSS, corrupted parties cannot prevent honest parties from reconstructing the mask
r and learning y.

2.3 From Security with Fairness to GOD

Our next goal is to achieve malicious security with guaranteed output delivery. We note that our current
AMPC protocol may fail due to the following two points:

— The random Beaver triples prepared in the preprocessing phase are incorrect.
— Honest parties do not obtain their shares of degree-t Shamir sharings, leading to failure in the online
phase.

Note that if the random Beaver triples are all correct and all honest parties obtain their shares, then the
protocol is guaranteed to succeed. We will first address the second issue.

Public Reconstruction with Party Elimination Framework. With the help of Beaver triples,
the online phase only involves public reconstruction of degree-t Shamir sharings. In particular, for each
[z]; to be reconstructed in the online phase, it can be written as [z]; = Y., [z;]; where [z;]; is a
linear combination of the sharings dealt by P;. To ensure the success of reconstruction, our idea is to
first augment the ACSS protocol to achieve identifiable abort, where an honest party either receives his
correct shares or a proof that can be used to accuse the corrupted dealer, and support efficient public
reconstruction. Then in the online phase, all parties may perform the public reconstruction of [z]; as
follows.

Step 1: Check the Existence of degree-t Sharing. For i € [n], each party checks whether he
has shares of [z;];. If true, he computes his shares of [z]; and broadcasts it. Otherwise, he broadcasts
the proof to accuse the corrupted P;.
Step 2: Do Public Reconstruction with ACSS Proof. Each party waits to receive messages
from others:

e When he first receives enough shares of [z]; and succeeds in reconstructing secret x by online

error correction, he sets the reconstruction result as .

e When he first receives an ACSS proof, he sets the reconstruction result as L.
Step 3: Agreement on Public Reconstruction Result. All parties run an agreement protocol
to agree on the same reconstruction result in Step 2. If the agreement result is not 1, all parties
output the result and terminate. Otherwise, all parties continue to agree on a corrupted dealer P;.
Step 4: Public Reconstruction of Corrupted Dealer’s Secrets. In case a corrupted dealer P;
is identified, all parties reconstruct the secrets shared by P;, compute x; by the linear combination
of P;’s secrets, and replace their shares of [z;]; by ;.

Note that whenever a corrupted dealer P; is identified, all parties will replace [2;]; by the constant value
x;. This ensures that the public reconstruction procedure will not fail due to P; again. Thus, all parties
can eventually reconstruct the secret x by repeating the above four steps and removing corrupted dealers.
To achieve linear communication per reconstruction, we combine our technique with the efficient public
reconstruction protocol in [DNQT7].

Security with Identifiable Abort ACSS. According to the analysis of the requirements of ACSS for
public reconstruction, we present our next ACSS protocol, which achieves security with identifiable abort.
In this protocol, each honest party outputs its shares when the dealer is honest and only outputs abort
when the dealer behaves maliciously. Further, each party that outputs abort also outputs a verifiable
proof which can implicate a malicious dealer. This proof allows all honest parties to definitively identify

that the dealer is malicious, and can be forwarded to and verified by other parties as well. Therefore,
this protocol is strictly stronger than the previous protocol, where any Byzantine faulty party (not just
the dealer) can make an honest party output abort.

We augment the existing protocol by creating dZK proofs for the entire bivariate polynomial. In
this approach, the dealer creates commitments and dZK proofs for bivariate polynomials, which results
in commitments being n x n matrices and the dZK proof polynomial being a degree-(2¢,t) bivariate
polynomial. This technique is analogous to using AVSS to share each party’s column polynomials. In
detail, in the column interpolation phase, the dZK proof allows an honest party to distinguish between
valid and invalid shares in its column. As at least ¢ + 1 honest parties possess valid shares on every other
party’s column polynomial, each party will successfully interpolate its column.

If the dealer is honest, each honest party participates in the row interpolation phase by sending
points on its column polynomial. Again, parties use the dZK proof to identify correct points on their
rows. Eventually, after receiving 2t 4+ 1 valid points, each party interpolates its rows and shares of f;(x).
However, a corrupted dealer can broadcast invalid commitments for a party P;’s column. In this case,
P; will not be able to participate in the row interpolation phase because it cannot generate a valid proof
that these points are on its column. Therefore, parties cannot recognize the difference between correct
and incorrect points on their rows. However, P; can implicate the dealer by broadcasting the ¢ + 1 valid
points it received on its column polynomial. Other parties can verify this proof by reconstructing P;’s
columns and checking if the dealer’s commitments are malformed. Therefore, parties either output shares
or eventually agree that the dealer is corrupted. We ensure that this protocol has linear cost in both
cases by using additional techniques like batching.

Another important requirement for our ACSS is that the reconstruction of the dealer’s secret should
be communication efficient. We introduce an efficient method to publicly reconstruct a batch of L secrets
filag), ..., fr(ap) with linear cost. We adopt the public reconstruction technique in [DNOT7] into an
AVSS protocol. In detail, the dealer forms groups of share polynomials f;(z) of size ¢t + 1 and forms
degree-t polynomials gi(z) := Zij:ll m(x) - o for k € [1,n]. Then, it runs an AVSS protocol for
each gi(z). In the reconstruction phase, parties reconstruct gp(z) to party Pg. Then, Py reconstructs
g (ag) = Zf;:ll fm(ao) - a" ', which is equivalent to evaluating ¢(r) := Zf;:ll fm(ag) - 2™t at point
ay. Finally, each honest party uses Online Error Correction to reconstruct ¢(x) and the ¢ 4+ 1 secrets
within it. The amortized costs are linear with the secret number L.

Triple Generation with Party Elimination Framework. Finally, we tackle the first issue: the
prepared random Beaver triples can be incorrect in the preprocessing phase. Recall that the triple
generation step is done by running two processes in parallel and the first process is identical to that
in [GLZS24]. Thus, from the analysis in |[GLZS24], the triples generated from the first process are
guaranteed to be correct.

For the second process, our idea is to verify the Beaver triples led by different kings separately. In case
the check fails, all parties help Piing to identify a corrupted party. Then this corrupted party is removed
and all parties restart the preparation step. More concretely, when the verification fails, all parties will
send their shares of ([a]¢, [b]¢, []¢, [0]2¢) tO Piing. The second process may fail due to the following reasons.

— Not all honest parties have their shares of [a]¢, [b]¢, [r]¢-
— A corrupted dealer distributes an incorrect degree-2¢ Shamir sharing of 0.
— A corrupted party sends an incorrect share to Ping.

For the first case, Fijng would receive a proof and he will just use this proof to implicate a corrupted
dealer. For the second case, we augment the sharing protocol for degree-2¢t Shamir sharings of 0 with
identifiable abort as well. When the verification fails, all parties help Piing to recover the degree-2¢ Shamir
sharings of 0 dealt by each dealer. Then Fng can generate a proof to implicate a corrupted dealer in
case a corrupted dealer distributes an incorrect degree-2¢ Shamir sharing of 0. In the third case, after
Piing reconstructs [al, [b]¢, [r]: and [0]2:, he may compute the correct sharing of [z]a; and check which
party sends an incorrect share. To be able to implicate this corrupted party, when a party P; sends his
share of [z]a; to Piing, we ask P; to broadcast a commitment of his share and then provide the opening
to Piing. Later, Piing may use the opening of this commitment to prove that this message is indeed from
P;.

3 Preliminaries

We denote the security parameter by & and require the field size to be 22,

3.1 Model

We consider protocols among a set P of n parties Py, ..., P,. Our protocols are proven secure in the model
by Canetti [Can00]. Parties have access to a network of point-to-point asynchronous and secure channels
(for details of the asynchronous network model, we refer the reader to [CR98]). Asynchronous channels
guarantee eventual delivery, meaning that messages sent are eventually delivered, and the adversary
does the scheduling of the messages. In particular, the adversary can arbitrarily (but finitely) delay all
messages sent and deliver them out of order. We also consider the fully malicious adversary, that can
completely control the behavior of corrupted parties.

Functionality of Asynchronous MPC. We define the functionality for AMPC with fairness in Ap-
pendix [C.8 and use the AMPC with GOD in [CP23] (see Appendix [D.9).

3.2 Agreement Primitives

Our construction makes use of the following agreement primitives and we give the definitions of them in

Appendix [A7T]

— Reliable Broadcast. It allows the parties to agree on the value of a sender without requiring
termination if the sender is corrupted. [DXR21] shows that when ¢ < n/3, there is a t-resilient
protocol with communication complexity O(L - n + & - n?) for broadcasting L bits messages in the
random oracle model.

— Byzantine Agreement. It allows parties to agree on a common message. For ¢t < n/3, t-resilient
binary asynchronous Byzantine agreement with communication complexity O(n?) can be achieved
given a common coin (see e.g. [MMRI15]). Multi-valued Byzantine agreement with communication
complexity O(L -n + k- n?log(n)) can be achieved in the random oracle model and given a common
coin, where L is the size of the message (see [NRS™T20)]).

— Reliable Agreement. Reliable agreement is the agreement version of the reliable broadcast where
all parties have input. Compared to the standard byzantine agreement, a reliable agreement only
guarantees the termination when honest parties provide matching input. For ¢t < n/3, t-resilient
reliable agreement protocol can be achieved with communication complexity O(L - n?) for agreeing
on L bits message (see [DDLT24]).

— Agreement on a Common Set. If allows parties to agree on a set of at least n — ¢ parties that
satisfy a certain property. For ¢ < n/3, t-resilient agreement on a common set protocol can be
achieved with communication complexity O(x - n?) in the random oracle model (see [DDLT24]).

3.3 Merkle Trees Commitments

In this work, we use Merkle trees to instantiate vector commitments [CF13] and denote it by MT =
(MT.Setup, MT.Com, MT.Open, MT.Vfy). Let n be a power-of-two, given a vector x of size n and collision-
resistant hash function, the Merkle trees commitment is constructed by a binary tree, where the leaves
are something related to elements in «, each node is the hash of its children and the root is commitment.
We denote the i-th element in x as x[i], to promise the hiding property, the leaves are the commitment
of each element x[i]. The commitment of x[i] here can be realized by any standard commitment scheme,
in particular, we can use H(x[i],r) as the commitment of x[i] where H denotes the random oracle and
r is a random element.

The commitment is the root, and the opening of commitment at position i consists of the correspond-
ing leaf x;, random value r, and all the sibling values of all the nodes in the path from this leaf z; till the
root, which is logarithmic in the size of . In the following, we denote the i-th opening of x[i] as op[x|i].

4 Achieving Malicious Security with Fairness

4.1 Security with Abort ACSS

The functionality Facss-abort defined below allows each honest party to output either a share of the secret
or abort. The adversary can force an honest party to output abort by sending (abort, P;) to Facss-Abort-
Additionally, Facss-abort €nables parties to reconstruct the shared secrets when requested by ¢+ 1 parties.

,_[Functionality Facss-Abort])

Public Input: (ao,...,an), L
Facss-abort Tuns with parties P = {Py,..., P,}, a dealer D € P, and an adversary S.

1: Upon receiving L degree-t polynomials g1 (-),...,qr(+) from D, for each P; € P, send an requested-based
delayed output ¢1 (), .., qr(o) to P;.
— Upon receiving a request (abort, P;) from S, if the output of P; has not been delivered, change the
output of P; by abort. Otherwise, ignore this request.
2: Upon receiving Public-Recon from ¢+ 1 parties, send an requested-based delayed output qi(-),...,qz(-)
to each P; € P.

. J

For the construction of ACSS with abort. We adopt the distributed Zero-Knowledge Proofs in Atapoor
et al. [ABCP23] to the asynchronous setting. The main idea of this protocol is to combine the dZK proof
with bivariate polynomials, where each honest party has partial information about another honest party’s
shares. Digging deep, the dealer, who wishes to share L degree-t polynomials among the parties denoted
by fi(x), splits the L polynomials into groups of ¢+ 1 polynomials and encodes each group into a degree-
(2t,t) bivariate polynomial, denoted by F;(z,y). Then, the dealer creates an n x n matrix of evaluation
points and distributes the i-th row and column to party P;.

_‘ Protocol IIacss-ab

Let a—¢,...,a0,...,a, be distinct field elements.
Dealer D Protocol

1: D possesses a list of L degree-t polynomials fi(x),..., fo(x). D divides them into groups containing
t + 1 polynomials each, denoted by f; ;(z) for i € [1, thLl],j € [1,t + 1], where fi () = fi—1)«t+1)+4-
2: Encode Sharings: For each {f; ; ’;ill, D samples a degree-(2t,t) bivariate polynomial F;(z,y) where

Fi(a7j+l7y) = fi,j($)7 for j € [17t+ 1]7 S [17 H—Ll]

3: Commitments: Dealer D samples a random degree-(¢,t) bivariate polynomial Y(z,y). Then, D com-
putes commitment vector C for the share polynomials as C[i] = H(f1(o),..., fo(a), Y(ao, as)), for
i €[1,n].

4: Distributed Zero-Knowledge (dZK) proofs: D runs the following steps.
(a) D samples a random degree-t polynomial fo(z) and a random degree-(¢,t) bivariate nonce polyno-

mial Yo(z,y).

(b) It computes vector C as C[i] = H(fo(c), Yo(ao,)), and d = H(C,C).
(c) Finally, it computes polynomial r(z) as follows.

r(@) = fo(x) = Y d'fi(z)
i€[1,L]

5: Send Shares and Broadcast Commitments: D reliably broadcasts C,C,r(z). Further, D sends
<Sh(17”68, {Fl(x7 aj)}7 Y(l‘, aj)7 %(ajv y))7 {E(aﬁ y)}7 Y(aj7 y)7 YO(ajv y))> to party Pj eP.

The dealer then computes unconditionally hiding commitments of shares. It randomly samples a
degree-(t, t) nonce polynomial Y{z, y), and computes commitments C[i] := H(f1(;), ..., fr(a;), Y(ag, a;))
for ¢ € [1,n]. These commitments leak no information about the shares because of the pigeon-hole prin-
ciple and H being a random oracle.

10

“ Protocol I1acss.ap

Participant Party Protocol

1: Verifying shares: A participant party P; that receives a (Shares)message executes the following steps
to verify their correctness.
(a) Verify Commitments: For each k € [t 4 1],i € [L/(t + 1)], P; computes f(;_1).p11)())
F/(a—gt1, ;). It then computes C'[j] = H(fi(ay),..., fr(a;), Y (a0, a;)) and verifies if C’[j]
Cljl.
(b) Verify dZK Proof: Finally, P; computes d = H(C,C). Then, it verifies if the following equation
is true.

11l

H(r(ay)+ Y d'fi(a;),Yo' (a0, 7)) = C[J]
ie[1,L]

2: Run Reliable Agreement: Party P, inputs 1 to Fr. on successfully verifying its shares. After termi-

nating F., with output 1, all parties terminate the sharing phase and move to the next phase.
Share Interpolation Phase

In the following, each party who accepts his shares from D before terminating the sharing phase still
participates in the following procedures, but he will not verify their shares again (so he will output his
shares and not abort).

3: Send common shares on rows: P; computes and sends the message
(Row, (F1(ag,), .. -, Ft% (ar, o), Y(ak, oj), Yo(ak, @j))) to party Pj.

4: Reconstruct columns: On receiving ¢t + 1 shares on its column polynomial, P reconstructs
Fil(akv y)7 YI(OUW y)7)/Ol(akv y)'

5: Send common shares on columns: Py computes and sends message
(Column, (Fi(ag, o), ..., F' 1 (ak,ap), Y (ak, ar), Yo' (ak, ar))) to party Pp.
t+1

6: Reconstruct rows: Upon receiving 2t 4+ 1 valid shares on its row, P, reconstructs the row polynomials
Fl(x,a0), Y (z, c0), Yo' (z, ap).

7: Verify commitments and dZK proofs: P, reconstructs its row polynomials and verifies commitments
and dZK proofs. If the verification succeeds, then P, outputs its shares and terminates the protocol.
Otherwise, it outputs (Abort) and terminates.

Public Reconstruction Phase

8: Reconstruction: FEach party P, who gets its shares will send the message
(PubRec, (fi(ae), ..., fi.(cae), Y (o, ae), Yo' (a0, a))) to each Pj.

On receiving a (PubRec) from party P, P; computes commitment C'[¢(] :=
H(fi(ae),. .., fr(ae), Y (a0, a¢)) and checks C'[{] L C[{]. Further, it checks the dZK proof by
verifying if H(r(ae) + Zje[l’L] & fi(ce), Yo' (o, ve)) = C[f). If the verification succeeds, P; accepts the
point. It then waits for ¢ + 1 valid points and interpolates fi(z),..., fr(z).

The dealer then generates a dZK proof by randomly sampling a degree-t polynomial fy(x) and a
degree-(t,t) bivariate nonce polynomial Yy(z,y). The dealer generates unconditionally hiding commit-
ments of fo(z) by computing C[i] := H(fo(x;), Yo(a, ;). Then, the dealer follows the Fiat-Shamir
heuristic and computes a succinct commitment d = H(C,C) over the commitment transcript to act as
the challenge point for the dZK proof. Finally, the dealer computes r(z) = fo(z) — > ;e 1 difi(x). Tt
uses RBC to broadcast C,C,r, and sends row and column polynomials of F;,Y, Yy over private channels.

A party P, receiving shares from dealer verifies them using the dZK proof. If the verification succeeds,
Py inputs 1 to a Reliable Agreement instance Il.,. This primitive is the agreement version of reliable
broadcast, where every party has an input and sends an ECHO message for its own input, rather than
the broadcaster’s value. If a party terminates I, with output 1, then at least ¢4+ 1 honest parties verified
their shares and input 1 to I/,,.

The t 4+ 1 honest parties that received their shares enable all other parties to interpolate their own
shares. Each party P; first sends F;(«;j, ay) to parties P, € P. Upon receiving ¢ + 1 points on its column,
a party (that did not receive shares from the dealer) interpolates its column polynomial. Then, P sends
points on its row polynomials to other parties. Upon receiving 2t + 1 points on its row polynomial, it
interpolates its row polynomials. Finally, it verifies the L interpolated shares of polynomials f;(x) using
the dZK proof broadcast by D. If the verification succeeds, then it outputs the shares, otherwise it aborts
the protocol.

11

In this protocol, all parties output their shares only when D is honest and no other party behaves
maliciously. Note that a single faulty party can make an honest party abort the protocol by sending it
the wrong shares in the column and row interpolation phase, even when the dealer is honest.

Public Reconstruction. An honest party P; that does not output abort sends its shares and the
corresponding nonces Y(ayg, a;), Yo(w, ;). A party receiving these shares verifies them using the com-
mitments and dZK proofs broadcast by the dealer. Then, it waits for ¢4 1 valid shares and uses Lagrange
interpolation to verify the shares.

Lemma 1. Protocol ITacss-ap securely computes Facss-abort Ggainst a fully malicious adversary A who
corrupts at most t < n/3 parties.

We prove Lemma [T and analyze the costs in Appendix

4.2 Preparing Random Degree-t Shamir Sharings and Weak Public Reconstruction

In our construction for AMPC with fairness, we need to let all parties prepare random degree-t Shamir
sharings and do public reconstruction. As we introduced in section we only require a weaker
version of them and allow all parties’ output can be a failure symbol. We define the functionality
FrandSh-Weak s F pubRec-Weak and give the corresponding construction Ilrangsn-weak, I pubrec-weax for them, refer
to Appendix [C.I] and [C.2| for more details.

4.3 Preparing Random Beaver T