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Abstract. Fully homomorphic encryption (FHE) enables computations
over encrypted data, which allows privacy-preserving services to be held
between a server and a client. However, real-world applications demand
practical considerations, especially concerning public safety and legal in-
vestigations. Existing FHE schemes focus solely on privacy, neglecting
the societal risks of criminal activities utilizing privacy-preserving ser-
vices.

This paper introduces Homomorphic Encryption with Authority (HEwA),
a novel framework that balances data privacy with public safety by in-
corporating an “authority” party. The proposed HEwA system operates
in two phases: a normal phase, where client data privacy is protected,
and an investigative phase, where the authority referring to a legally
authorized entity, such as a government agency, exerts the right to re-
cover suspicious client’s data. We formalize the security model for HEwA,
ensuring that client privacy is protected during the normal phase while
enabling authorities to recover encrypted data in the investigative phase.

As a concrete example, we design an efficient HEwA system solely based
on the CKKS homomorphic encryption scheme, which supports approx-
imate computations over real-number data, making it highly suitable for
fruitful applications in AI, such as secure genomic analysis. We further
provide rigorous security proofs. This new approach addresses the ten-
sion between privacy and public safety in cloud services, paving the way
for the responsible use of homomorphic encryption in practice.

1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme that allows any
circuit to be performed over encrypted data. Since Gentry proposed the first FHE
scheme from the ideal lattice by developing the bootstrapping technique [14], nu-
merous FHE constructions have been suggested based on lattice-based assump-
tions [5, 6, 4, 13, 12, 10]. Since FHE enables the delegation of computations
while preserving the privacy of data, service providers with large-scale comput-
ing power can use FHE to provide a wide range of services without worrying
about the privacy of the client’s sensitive data.

⋆ All authors contributed equally to this work.



Although FHE is a promising primitive for protecting the privacy of data in
use, its application in the real world requires many practical considerations in
advance. For example, in real society, the government has a duty to perform na-
tional defense and public safety functions. Investigative authorities can exercise
coercive power over suspects based on a court-issued warrant to fulfill this duty.
In other words, while the privacy of citizens is generally respected in real soci-
ety, the government, under legal authority, can enforce measures like search and
seizure against specific suspicious individuals to maintain public order. In this
regard, current FHE techniques focus solely on protecting client privacy with-
out considering public safety. This raises the risk of significant negative societal
consequences from the unchecked misuse of cloud services.

We consider the basic scenario with two parties, server and client, using FHE
as follows. The client owns the private data, and the server has computation mod-
els for the desired services. The client generates a secret key and a corresponding
public key, including evaluation keys, and sends them to the server. The client
then encrypts their private data and sends it to the server. The server performs
computations over the encrypted data and then sends the resulting ciphertexts
to the client, which are then decrypted with the secret key by the client.

We now consider the case where the encrypted data in the hand of the server
is decisive evidence of some criminal investigation for the client. For example,
crimes using deepfake services have been rapidly increasing [19, 25], where fake
voices, photos, or videos are easily generated using a specific person’s voice or
image for voice phishing or to create photos or videos that defame a particular
individual. If AI services like deepfake could also be processed over encrypted
data, criminals could take advantage of the privacy-preserving services without
leaving any evidence of the crime. Specifically, they could upload stolen voices
or images encrypted using FHE to a cloud server, receive the evaluation results
as forged voices or photos for criminal use, and then completely destroy the
private key to erase any evidence. In this case, due to the security guaranteed
by homomorphic encryption, neither the government nor the server could access
the data submitted by the client, preventing the government from fulfilling its
role in crime prevention.

In this case, the security model for the FHE scheme should be changed to al-
low investigative authorities to access the data of a suspected individual with the
authorization of the government. The traditional server-client two-party model
is insufficient, and the other third party (or parties), which we call “authority”
is required to decide whether they force certain clients to decrypt their data en-
crypted with FHE. In other words, we suggest the following key question about
this issue.

How can the authority decrypt the client’s FHE ciphertext without any
help from the client?
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1.1 Our Contribution

1.1.1 Homomorphic Encryption with Authority (HEwA)

We propose a new homomorphic encryption system, Homomorphic Encryption
with Authority (HEwA), which not only ensures the data privacy of regular
clients but also allows government agencies to fulfill their role in maintaining
public safety. Instead of the conventional server-client two-party model, we pro-
pose a server-client-authority three-party model by introducing additional au-
thority parties. Authority parties refer to entities such as investigative authorities
or government agencies that possess the legal power to conduct investigations
and enforce measures for public safety only under a warrant. There are two
key considerations when incorporating these parties into the security model of
FHE. First, when a warrant is issued, it should be possible to fully recover the
data of a specific suspicious client. Second, without a warrant, the activities of
regular clients and servers should remain unaffected. In other words, it is impor-
tant to ensure that the authority of investigative bodies is not overly extended,
maintaining a balance between security and public safety functions.

We first divide the HEwA protocol into two phases. The first phase is the
normal phase, where the primary goal is to protect client data privacy. In this
phase, the client’s privacy should be guaranteed so that no other parties, in-
cluding the server and authority, can gain any information about the client’s
sensitive data. Also, the client only interacts with the server in this phase. A
key point to note is that the authority party does not interact with the client
or the server during this phase. This design aims that the client or server can
provide or receive services smoothly without the interference of the authority or
any potential data leakage to the authority. The second phase is the investigative
phase, in which the authority gains access to the ciphertexts submitted by the
suspicious client to the server and can examine the message as evidence. In this
phase, the authority enforces its legal power on the server, requiring the server
to hand over the client’s ciphertexts. The authority, through interaction with
the server, obtains the client’s secret key and decrypts the ciphertexts provided
by the server.
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We propose a new security model and definitions that ensure the objectives
of both phases mentioned above are achieved. To achieve these goals, we need to
define additional security properties. We have established three conditions that
describe the role of the authority party to outline a new security model:

1. In the normal phase, there should be no interaction between the authority
and the other two parties.

2. In the normal phase, no party should be able to obtain any secret information
based on valid public information (e.g., the client’s public key sent to the
server, the authority’s published public key, or the ciphertext sent by the
client to the server) or through eavesdropping on public channels (e.g., the
authority eavesdropping on the ciphertext sent by the client to the server).

3. In the investigative phase, the authority should be able to retrieve the client’s
secret key through communication with the server.

By formalizing the security model for the first time, this paper establishes clear
security standards for future works that share the same objectives.

New Framework with HEwA. To be more specific, the authority party
generates its secret key and public key and posts the public key in a public
place. In the normal phase, suppose a client and a server want to execute the
outsourcing computation protocol. In that case, the client generates its secret
key and public key using the authority’s public key, where the client’s public key
includes the evaluation keys that enable homomorphic operations. Note that
the authority’s public key can be downloaded without any interaction with the
authority since it is posted in a public place. The client sends the public key and
the ciphertext to the server via their secure channel, and the server performs a
desired homomorphic circuit. Then, the server sends the resultant ciphertext to
the client, which is decrypted by the client with its secret key.

In the investigative phase, we assume that the authority party issues the
warrant for some suspicious client, and the client is reluctant to cooperate with
the authority. Then, the server and the authority party help each other to re-
cover the client’s secret key. It is important to note that, in the normal phase,
both the client and the server must be able to proceed with all protocols with-
out any interaction with the authority. At the same time, in the investigative
phase, the authority should be able to gain access to the client’s secret key from
communication only with the server and decrypt only the ciphertexts provided
by the server. This requirement presents a nontrivial challenge in the design of
the HEwA scheme.

Indistinguishability under Chosen-Plaintext Attack. With the addition
of the authority party, new considerations regarding security have emerged.
Specifically, there is a risk that the server could launch an attack to get informa-
tion about the authority’s secret key, which could then be used to gain access to
the client’s private data. Similarly, a client might attempt to obtain the author-
ity’s secret key to decrypt another client’s ciphertext. These scenarios present
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security challenges that were not previously considered in traditional homomor-
phic encryption schemes, making it necessary to extend and strengthen the defi-
nition of security to address these potential vulnerabilities. For these reasons, we
propose a new security definition for the HEwA scheme, called IND-CPAHEwA.
This definition addresses all potential risks of information leakage that may arise
between parties when the authority, a new party with a distinct role, is intro-
duced. We will demonstrate that this definition effectively ensures security even
with the inclusion of the authority.

Traceability of the Client’s Evaluation Key. A malicious client may send
a wrong public key or evaluation key to prevent the authority from extracting
its secret key. The HEwA system does not explicitly verify that the client sends
an honestly generated evaluation key with the authority’s public key. Instead,
we formalize the security condition, called the traceability of the client secret
key, that if the homomorphic evaluation operated with the public key and the
evaluation key is correct, then the authority should be able to recover the client
secret key from the public key and the evaluation key with all but negligible
probability. If an HEwA scheme with this property is used, it implies that if
the client attempts to prevent their secret key from being recovered during the
investigative phase, they will be unable to receive the desired services based
on homomorphic computation. Therefore, for the client to receive homomorphic
encryption services properly, they must accept that their secret key can be re-
covered during the investigative phase. If this condition is ensured, it serves as a
safeguard to prevent the client from maliciously exploiting the services provided
by the server.

1.1.2 Construction with the CKKS HE Scheme

We construct a HEwA scheme based on the approximate homomorphic encryp-
tion, also known as Cheon-Kim-Kim-Song (CKKS) scheme [10]. The CKKS
scheme is a Ring-LWE-based FHE scheme that can encrypt real or complex
number data. It is one of the most promising FHE schemes, which can be used
in lots of applications with real number data, such as artificial intelligence,
privacy-preserving cloud services, and secure genome analysis. Indeed, several
researchers deal with performing privacy-preserving machine learning using the
CKKS scheme, and it is also often used in secure genome analysis in iDASH
competition. This enables many clients to take advantage of high performance
computing while ensuring the privacy of their sensitive data. For this reason, the
CKKS scheme is one of the most practical homomorphic encryption schemes.

One of the most important aspects in the design of the HEwA scheme is
to allow only interaction between the client and the server during the normal
phase, and in the investigative phase, to enable interaction solely between the
authority and the server to retrieve the client’s secret key. Since this is the most
nontrivial part of the construction, devising a method to implement this is of
utmost importance. We design the HEwA system based on the observation that
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the CKKS homomorphic encryption scheme requires the client to share evalu-
ation keys with the server. Evaluation keys are a type of public key needed for
performing encrypted operations such as multiplication, rotation, and conjuga-
tion. They consist of bundles of Ring-LWE samples that encrypt transformed
secret keys under the same secret key. Specifically, we will focus on rotation and
conjugation evaluation keys, which are referred to as Galois keys. Note that the
Galois key is composed of the several ciphertexts, and each ciphertext is the
form of {(bi, ai)}i=0,··· ,dnum−1 ∈ Rdnum

P ·Q, where RP ·Q = ZP ·Q[X]/(XN + 1), and

bi = ai · s+ e+ P · Q̂i · [Q̂−1
i ]Qi · hi(s). Here, hi’s are automorphisms performed

on the polynomials whose inverse can be easily computed.

We can design the scheme using any Galois key, but for explanation, we will
focus on the conjugation key. The conjugation key refers to the evaluation key
for the operation hi(s) = s(X−1). Here, we need the Ring-LWE-based public
key of the authority. Suppose the authority has a secret key sauth ∈ RPQ and
issues the public key (bauth, aauth), which is posted in a public space. The public
key is constructed as bauth = −aauth ·sauth+eauth for a small error eauth. Then, the
client can obtain (bauth, aauth) without directly interacting with the authority and
use it to construct the first and second elements of the conjugation key (b0, a0),
(b1, a1) as follows:

a0 = bauth, b0 = −bauth · s+ e+ P · Q̂0 · [Q̂−1
0 ]Q0

· s(X−1),

a1 = aauth, b1 = −aauth · s+ e+ P · Q̂1 · [Q̂−1
1 ]Q1 · s(X−1),

Note that a0 and a1 are the posted public key of the authority, and the server
can access these elements. Thus, the conjugation key of the client only in-
cludes b0 and b1, and the server uses the public key of the authority as el-
ements of the conjugation key in the conjugation operation. The other ele-
ments beyond the first and second elements are constructed in the usual man-
ner to form {(bi, ai)}i=0,··· ,dnum−1 ∈ Rdnum

P ·Q. In summary, the conjugation key is
{b0, b1, {(bi, ai)}i=2,··· ,dnum−1}, and when mixed with the public key of the author-
ity (bauth, aauth), it acts as a valid conjugation key. In the investigative phase, to
retrieve the client’s secret key with the cooperation of the authority and the
server, the following computation is performed:

b0 + b1 · sauth = P · (Q̂0 · [Q̂−1
0 ]Q0 + Q̂1 · [Q̂−1

1 ]Q1 · sauth) · s(X−1) + e′′,

where e′′ is a small error. After performing this computation, removing the
known multiplicand and errors allows us to obtain s(X−1). By applying the
inverse automorphism, we can retrieve s. Once the authority recovers s, it can
decrypt the ciphertext obtained by cooperation of the server and investigate the
client’s data.

From a security perspective, two key aspects need to be proven. By proving
these two aspects, we establish both the IND-CPAHEwA security of the scheme
and the traceability of the client’s secret key, thus reinforcing the overall security
and robustness of the system.
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Proof of IND-CPAHEwA Security. We demonstrate the IND-CPAHEwA secu-
rity of the system. Since the authority generates its public and secret keys based
on the Ring-LWE problem, the public key is indistinguishable from a uniform
distribution for parties that do not know the secret key. By leveraging this fact
and assuming that the underlying RNS-CKKS homomorphic encryption scheme
is already proven to be IND-CPA secure, we can extend the security guaran-
tee to show that our new scheme also satisfies IND-CPAHEwA security. Since
RNS-CKKS homomorphic encryption is known to provide IND-CPA security,
the IND-CPAHEwA security of our scheme is ensured by our proof.

Proof of Traceability of the Client Secret Key. To establish traceability,
we need to prove that if the homomorphic conjugation operation is performed
accurately, the conjugation key must have been generated through a valid key
generation process. The key point here is that, while previous research in ho-
momorphic encryption focused on showing the correctness of key generation
and homomorphic operations, proving traceability requires demonstrating the
reverse implication. Specifically, we should show that accurate computation of
the conjugation operation necessitates the correct generation of the conjugation
key. To achieve this, we carefully examine each step of the conjugation operation
and rigorously prove the necessary conditions for ensuring the correctness of the
computation. We also compare these conditions to the practical parameters used
in the RNS-CKKS scheme to ensure they hold under realistic circumstances.

1.2 Related Works

After the blueprint of Gentry’s FHE proposal [15], the various FHE schemes [5,
6, 4, 13] has been proposed. Among them, the CKKS scheme and its RNS vari-
ant [12, 10] stands out as a promising candidate for privacy-preserving machine
learning research [17, 18, 2, 23, 21, 22, 7], as it is suitable for dealing with a
large-size of real valued data and it provides approximate computation in a Sin-
gle Instruction Multiple Data (SIMD) manner. So far, FHE has historically been
developed for the two-party scenario engaging a client and a server.

There are two types of research that extend homomorphic encryption to
include more than two parties by introducing new models. These are threshold
homomorphic encryption [16, 3, 26] and multi-key homomorphic encryption [8,
1, 9]. Both approaches assume a model with one server and multiple clients, but
they differ in the key generation process and decryption method.

In threshold homomorphic encryption, the client parties with decryption au-
thority must be fixed before the actual computation takes place. During the
creation of the public key, multiple secret keys are combined to generate a single
public key and evaluation key that are used in the computations. Decryption can
only occur if a certain threshold number of clients participate in the process. On
the other hand, in multi-key homomorphic encryption, computations can be car-
ried out with ciphertexts encrypted under different keys at any point during the
process, meaning the client parties do not need to be fixed before computation
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begins. However, all client parties must participate in the decryption process to
decrypt the result.

These homomorphic encryption models differ in their goals from our HEwA
model. In both of the above models, even with multiple client parties, no party
can inherently access the secret information of other clients. This makes it chal-
lenging to prevent a malicious client from exploiting the server’s services. In
contrast, the authority party in our HEwA model does not participate in the
computations and only becomes involved when a warrant is issued. The HEwA
model is designed to prevent abuse of the server’s services by clients. The HEwA
model is compatible with both threshold homomorphic encryption and multi-
key homomorphic encryption, allowing them to be used together. The HEwA
scheme complements these models by introducing an authority party that can
ensure compliance in investigative scenarios, without altering the core computa-
tion or encryption processes.

1.3 Outlines

In Section 2, we cover the preliminaries of this paper, introducing the definitions
and security of homomorphic encryption, along with the RNS-CKKS homomor-
phic encryption scheme. Section 3 defines the HEwA scheme suggesting the new
properties and security definitions that extend conventional homomorphic en-
cryption. In Section 4, we construct the HEwA scheme from the RNS-CKKS
scheme based on the definitions from the previous section and prove the cor-
responding properties. Section 5 evaluates whether the conditions required for
the scheme’s security can be met using practical parameters in the RNS-CKKS
scheme and verifies that the scheme demonstrates practical performance. Finally,
Section 6 summarizes the results of this paper and suggests potential directions
for future research.

2 Preliminaries

2.1 Notation

Z refers to the set of integers. For positive integers N and q, R and Rq are
defined as Z[X]/(XN + 1) and Zq[X]/(XN + 1), respectively. negl(n) refers to
a negligible function in terms of n, meaning that for every positive polynomial
p( · ), there exists some Np > 0 such that, for all x > Np, the value of the
function is less than 1

p(x) . Let [x]q denote the remainder when x is divided by q,

expressed as an element in the range (−q/2, q/2]. For r =
∑N−1

i=0 riX
i ∈ R, the

ℓ1 norm ∥r∥1 and the ℓ∞ norm ∥r∥∞ are defined as
∑N−1

i=0 |ri| and maxN−1
i=0 |ri|,

respectively. ζN denotes e
2πi
2N and if N is clear from the context, we can represent

it as ζ.
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2.2 LWE and its Ring Variant

In this subsection, we introduce the Learning with Errors (LWE) [24] problem
and its ring variant [20] of which hardness assumption is the basis of the security
of our HEwA scheme.

Let m,n, and q be positive integers. For distributions χe over Z and χs over
Zn, the LWE distribution ALWE

m,n,q,χe
(χs) consisting of m samples {(⃗ai,bi)}mi=1 is

defined by computing the equation

bi = ⟨⃗ai,s⃗⟩+ ei mod q,

where a⃗i ∈ Zn
q is a uniform random vector, e⃗i ← χe ∈ Z, and s⃗ ← χs ∈ Zn is a

secret vector.
The LWE problem has two versions: The decision LWE problem denoted as

LWEn,q,χe
(χs) asks to distinguish {(⃗ai,bi)}mi=1 either from ALWE

m,n,q,χe
(χs) or from

the uniform distribution, while the search LWE problem asks to find s⃗ ∈ Zn
q

sampled from ALWE
m,n,q,χ(s).

The Ring LWE (RLWE) problem is a ring variant of the LWE problem. Let
n and q be positive integers, χs and χe be distributions over R. The (decision)
RLWE problem over Rq denoted as RLWEn,q,χe

(χs) is to distinguish between
uniform distribution over R2

q and the distribution of (a, a · s + e) ∈ R2
q, where

a is a uniform random element in Rq, s ← χs is the secret polynomial, and
e← χe.

2.3 Homomorphic Encryption

Homomorphic Encryption (HE) is an encryption scheme that allows for the exe-
cution of arithmetic operations on encrypted data. In addition to the traditional
public-key encryption algorithms, HE introduces the Eval algorithm. The Eval
algorithm defines the basic operations that the homomorphic encryption scheme
supports. The security definition of homomorphic encryption is the same as that
of traditional public-key encryption, with the added requirement that the homo-
morphism property is satisfied. Below, we provide the formal definition of HE
along with the IND-CPA security definition and the homomorphism property.
The HEwA scheme we propose incorporates these definitions.

Definition 1 (Homomorphic Encryption). A homomorphic encryption scheme
(HE) for a message spaceM is a tuple of PPT algorithms HE = (Setup,KeyGen,Enc,
Eval,Dec) defined as follows:

– Setup(1λ)→ pp: Given the security parameter λ as input, the setup algorithm
produces the public parameters pp.

– KeyGen(pp)→ (pk, evk, sk): Given the public parameters pp as input, the key
generation algorithm produces a public key pk, an evaluation key evk (or a
collection of evaluation keys), and a secret key sk.

– Enc(pk,m) → ct: Given the public key pk and a message m ∈ M, the en-
cryption algorithm produces a ciphertext ct.
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– Eval(pk, evk, C, ct1, · · · , ctk) → ct: Given the public key pk, a circuit C :
Mk → M and a set of ciphertexts ct1, · · · , ctk, the evaluation algorithm
produces a ciphertext ct.

– Dec(sk, ct) → m′: Given the secret key and a ciphertext ct, the decryption
algorithm produces a message m′.

Table 1: IND-CPA game

Game IND-CPA
1: (pk, evk, sk)← KeyGen(1λ)
2: (m0,m1)← A(pk, evk)
3: b← {0, 1}
4: ct∗ ← Enc(pk,mb)
5: b′ ← A(pk, evk, ct∗,m0,m1)
6: return [[b = b′]]

Definition 2 (IND-CPA security). Let HE = (Setup,KeyGen,Enc,Eval,Dec)
be a homomorphic encryption scheme. IND-CPA (INDistinguishability under Cho-
sen Plaintext Attack) security is defined via the IND-CPA game in Table 1 and
the advantage of adversary A is defined by

AdvIND-CPA
HE (A) := Pr[IND-CPAA

HE = 1].

HE is IND-CPA secure if AdvIND-CPA
HE (A) ≤ negl(λ) for an arbitrary probabilistic

polynomial-time adversary A.

Definition 3. (C-homomorphism). Let C be a circuit class. A scheme HE is
C-homomorphic if for any circuit C ∈ C and any inputs m1, · · · ,mℓ ∈M,

Pr[HE.Dec(sk,HE.Eval(evk, C, ct1, · · · , ctℓ)) ̸= C(m1, · · · ,mℓ)] = negl(λ),

where (pk, evk, sk) ← HE.KeyGen(1λ) and cti ← HE.Enc(pk,mi). If a scheme is
C-homomorphic such that C includes all arithmetic circuits, then the scheme is
defined to be fully homomorphic.

2.4 RNS-CKKS Scheme

To instantiate our HEwA system, we utilize the RNS-CKKS scheme [11] as
an underlying primitive. We describe the basic operations for the RNS-CKKS
scheme as follows. The RNS-CKKS scheme is proven to satisfy the IND-CPA
security, which is used in the security proof of our HEwA scheme.
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– Setup(1λ) : Set a power-of-two ring degreeN , a secret distribution χsk overR,
an error distribution χerr over R, an ephemeral secret distribution χenc over
R, moduli chains {q0, · · · , qL} and {p0, · · · , pk−1} which contain different

primes,Q =
∏L

i=0 qi and P =
∏k−1

j=0 pj with respect to the security parameter
λ.

– KeyGen(pp) :
• SecretKeyGen(): Sample s← χsk and return the secret key sk := s.

• SwitchKeyGen(s, s′): Let Q =
∏dnum−1

i=0 Qi, where dnum = ⌈(L+1)/α⌉ and
Qi =

∏min(α(i+1)−1,L)
j=αi qj for i = 0, · · · , dnum − 1. We set Q̂i = Q/Qi.

Output a key-switching key

swks→s′ = {swk(i)s→s′}
dnum−1
i=0 := {([−ai·s′+ei+P ·Q̂i·[Q̂−1

i ]Qi ·s]PQ, ai)}dnum−1
i=0 ,

where ai ← RPQ and ei ← χerr.
• PublicKeyGen(sk): For the secret key sk = s, let pk = ([−as + e]Q, a)
be a public encryption key, where a ← RQ, and e ← χerr. Sample the
relinearization key rlk ← SwitchKeyGen(s2, s), the rotation key rotr ←
SwitchKeyGen(s5

r

, s) for each r, and the conjugation key conj← SwitchKeyGen(s−1, s).
Output (pk, evk = (rlk, {rotr}, conj)).

– Enc(pk,m ∈ R) : Sample v ← χenc and e0, e1 ← χerr. Return ct ← [v · pk +
(m+ e0, e1)]Q.

– Dec(sk, ct = (c0, c1)) : For the secret key sk = s, return m = c0 + c1s.
– Add(ct, ct′) : Given two ciphertexts ct, ct′ ∈ Rq, return a ciphertext ctadd ←

ct+ ct′ mod q.
– Mult(evk, ct, ct′) : Given two ciphertexts ct = (c0, c1), ct = (c′0, c

′
1) ∈ R2

q

and an evaluation key evk = (rlk, {rotr}, conj)), compute an output ctmult as
follows:
1. compute (d0, d1, d2)← [(c0 · c′0, c0 · c′1 + c1 · c′0, c1 · c′1)]q.
2. ctmult ← [(d0, d1) + ⌊P−1 ·

∑dnum−1
i=0 [d2]Qi

· rlk(i)⌉]q
– Rot(evk, ct, r) : Given a ciphertext ct = (c0, c1) ∈ R2

q and an evaluation
key evk = (rlk, {rotr}, conj)), compute an left r-step rotation output ctrot as
follows:
1. compute (d0, d1)← (c0(X

5r ), c1(X
5r )).

2. ctrot ← [(d0, 0) + ⌊P−1 ·
∑dnum−1

i=0 [d1]Qi · rotr(i)⌉]q
– Conj(evk, ct) : Given a ciphertext ct = (c0, c1) ∈ R2

q and an evaluation key
evk = (rlk, {rotr}, conj)), compute a conjugation output ctconj as follows:
1. compute (d0, d1)← (c0(X

−1), c1(X
−1)).

2. ctconj ← [(d0, 0) + ⌊P−1 ·
∑dnum−1

i=0 [d1]Qi · conj(i)⌉]q

3 Model

3.1 System Model

In this subsection, we present a detailed formalization of the system model for the
HEwA scheme. First, we provide definitions that specify the algorithms consti-
tuting the HEwA scheme, followed by a discussion of the additional properties
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that are not present in standard homomorphic encryption. Then, we describe
how the defined HEwA scheme can be used by three parties through specific
protocols in each phase.

The following presents the definition of the HEwA scheme. In this defini-
tion, we introduce newly defined operations to provide additional functionalities
beyond the homomorphic encryption scheme defined in Section 2.3. First, the
operation AuthKeyGen is an algorithm that generates a pair (ska, pka) of secret
and public keys of the authority, allowing the authority to eventually obtain
the client’s secret key in the investigative situation. The operation ClientKeyGen
generates the client’s secret key skc, public key pkc, and evaluation key evkc for
homomorphic operations, after downloading the authority’s public key. The def-
initions of Enc, Eval, and Dec are the same as those in standard homomorphic
encryption, where only the client’s keys are used to ensure the protocol oper-
ates solely between the client and the server. Additionally, the SecRes operation
is introduced, allowing the authority to derive the client’s secret key skc from
(pkc, evkc) using its own secret key, ska.

Definition 4 (Homomorphic Encryption with Authority). A Homomorphic-
Encryption-with-Authority scheme (HEwA) is a tuple of PPT algorithms HEwA =
(Setup,AuthKeyGen,ClientKeyGen,Enc,Eval,Dec,SecRec) defined as follows:

– Setup(1λ)→ pp: Given the security parameter λ as input, the setup algorithm
produces the public parameters pp.

– AuthKeyGen(pp) → {(pka, ska)}: Given the public parameters pp as input,
the authority key generation algorithm produces a pair of public key and
secret key for the authority (pka, ska).

– ClientKeyGen(pp, pka)→ (pkc, skc, evkc): Given the public parameters pp and
the authority public key as input, the client key generation algorithm pro-
duces a tuple of public key, secret key, and evaluation key for the client
(pkc, skc, evkc)

– Enc(pkc,m) → ct: Given the client public key pkc and a message m ∈ M,
the encryption algorithm produces a ciphertext ct.

– Eval(pka, pkc, evkc, C, ct1, · · · , ctk)→ ct: Given the authority public key pka,
the client public key pkc, the client evaluation key evkc, a circuit C :Mk →
M and a set of ciphertexts ct1, · · · , ctk, the evaluation algorithm produces a
ciphertext ct.

– Dec(skc, ct) → m′: Given the secret key and a ciphertext ct, the decryption
algorithm produces a message m′.

– SecRes(pkc, evkc, ska) → sk′: Given the client public key, the client evalua-
tion key, and the authority secret key, the secret key restoration algorithm
produces the client’s secret key.

The correctness of this definition includes the correctness defined in Section
2.3. In this section, we focus only on the correctness that is not dealt in the
standard homomorphic encryption, specifically the correctness of the SecRec
algorithm. This definition ensures that when SecRec is performed using pkc and
evkc obtained through ClientKeyGen along with the authority’s secret key, the
resulting key is equal to skc with overwhelming probability.
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Definition 5 (Correctness of Restoration). Assume that after deriving the
public parameter pp through Setup(1λ), AuthKeyGen(pp) is performed to obtain
pka and ska, and ClientKeyGen(pp, pka) is performed to obtain pkc, skc, and evkc.
Then, the following holds.

Pr[SecRes(pkc, evkc, ska) ̸= skc] ≤ negl(λ).

Using the HEwA scheme that satisfies the above definition, we assume the
following system model. We consider a large society where numerous indepen-
dent servers provide cloud services using homomorphic encryption. Each server
operates independently of other servers, offering services to a large number of
clients while ensuring the privacy of client data. We also assume the existence
of an investigative authority responsible for maintaining public safety. This in-
vestigative authority is not allowed to interact with any servers or clients, nor
to eavesdrop on any information under normal circumstances. However, when
a warrant is issued for a suspicious client, the authority must be able to fully
recover information about the client’s data. The former scenario is referred to
as the normal phase, and the latter as the investigative phase.

Normal Phase

– Authority Setup:
1. The authority generates pka and ska using AuthKeyGen(pp)
2. The authority announces pka. That is, the authority makes pka ac-

cessible to anyone without further interaction with the authority,
and signed with the authority’s signing key.

– Client-Server Setup:
1. The server and client establish a secure channel between them.
2. After receiving pka, the client performs ClientKeyGen(pp, pka) to gen-

erate pkc, skc, and evkc. Then, the client sends pkc and evkc to the
server via secure channel between the client and server.

– Homomorphic Evaluations:
1. For its input messages m1, · · · ,mk ∈ M, the client computes and

sends the ciphertexts

ct1 = Enc(pkc,m1), · · · , ctk = Enc(pkc,mk)

to the server via secure channel.
2. After receiving pka, the server performs homomorphic oper-

ations on the circuit C : Mk → M to obtain ct ←
Eval(pka, pkc, evkc, C, ct1, · · · , ctk), then sends it to the client via se-
cure channel between the client and server.

3. The client decrypts the received ct and obtains m← Dec(skc, ct).

In the normal phase, the process begins with the authority generating its pub-
lic and secret key pair and announcing the public key in a publicly accessible
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location. In the description of the normal phase, this is referred to as Author-
ity Setup, which can be considered as a preprocessing step. This step can be
held even before the client agrees to get services from the server. Therefore, it
is reasonable to assume that by the time the client requests cloud computations
from the server, Authority Setup has already been completed. Additionally, it is
assumed that pka is posted in a public location accessible to anyone and signed
with the authority’s signing key, and since it can be downloaded without inter-
acting with the authority, accessing this key is not considered interaction with
the authority. Step 1 in Client-Server Setup is the process where the server and
client invoke a secure channel to encrypt the further interactions with symmet-
ric encryption such as AES. Since the rest of the communication between the
server and client is encrypted, the authority cannot obtain pkc and evkc to run
the SecRec algorithm, which prevents the authority from recovering the client’s
secret key in the normal phase. Step 2 in Client-Server Setup is the procedure
where the client generates its key tuple when it wishes to request cloud compu-
tations from the server. At this point, the client uses the authority’s public key
to generate the key tuple. Among the generated keys, the client sends the public
key and evaluation key to the server. We note that the Authority Setup is held
only once before multiple client-server sessions, and Client-Server Setup is also
established only once before multiple requests of homomorphic evaluations.

Steps 1-3 in the homomorphic evaluations follow the standard process of
homomorphic encryption-based cloud services between the client and the server.
The client sends encrypted data to the server, which then performs homomorphic
computations on the model C using the client’s public key and evaluation key.
The server sends the resulting ciphertext to the client, who decrypts it with their
secret key to obtain C(m1, · · · ,mk). Note that the step 2 in the homomorphic
evaluations requires the server to receive pka from the public place, and this
enables the scheme to satisfy the traceability condition for HEwA, which will be
introduced in the next subsection.

Investigative Phase

1. The server sends pkc and evkc to the authority.
2. The authority performs SecRes(pkc, evkc, ska) using pkc, evkc, and ska

to compute skc.
3. The server sends the target ciphertexts ct1, · · · , ctk to the authority.
4. The authority obtains the client’s messages by decrypting ct1, · · · , ctk

using skc, i.e., Dec(skc, cti) for 1 ≤ i ≤ k.

In the investigative phase, the process involves receiving data from the server
that previously interacted with the suspicious client in order to conduct an in-
vestigation. In traditional homomorphic encryption schemes, even if the server
provides the client’s encrypted data, it cannot be decrypted without the client’s
secret key. However, in the HEwA scheme, SecRec operation allows the recovery
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of the client’s secret key in the investigative phase. When the server provides
the client’s public key or evaluation key to the authority, the authority can use
its own secret key to recover the client’s secret key. The server then sends the
client’s encrypted data to the authority, which can decrypt the ciphertexts using
the recovered secret key to proceed with the investigation.

One might argue that the authority has excessive power since it could po-
tentially recover the decryption key. However, the authority cannot access the
ciphertext without the server’s cooperation in the investigative phase. Cipher-
texts exchanged between the client and the server are transmitted through a
point-to-point secure channel, making it impossible for the authority to eaves-
drop on them. If access permissions need to be set differently for each service
unit, separate public and private key pairs can be generated for each service.
This can be implemented without requiring any modifications to the algorithm.

3.2 Security Model

In this subsection, we propose the security model of the HEwA scheme. More
precisely, we model two security properties that HEwA should meet in the nor-
mal phase and investigative phase, respectively. First, in the normal phase, an
adversary should not be able to learn any private information from the public
information generated from each party. We extend the IND-CPA security of HE
scheme modeling the normal phase, and name this property as IND-CPAHEwA

security. The second type of security dubbed as “traceability” ensures that the
client cannot maliciously alter the public key or evaluation keys to prevent the
authority from recovering its secret key as far as the homomorphic evaluation
on the server returns a correct result.

3.2.1 Indistinguishability under Chosen-Plaintext Attack for HEwA

We propose the following IND-CPAHEwA (Indistinguishability under Chosen-
Plaintext Attack for HEwA) security, extending the standard IND-CPA security
of HE scheme. In this security game, an adversary models a server or an eaves-
dropper in our scenario which has an access to the public keys of authority and
client and a challenge ciphertext encrypted with the client’s public key.

Definition 6 (IND-CPAHEwA security). Let Π be an HEwA scheme. IND-CPAHEwA

security is defined via the IND-CPAHEwA game in Table 2 and the advantage of
adversary A = (A1,A2) is defined by

AdvIND-CPAHEwA

HEwA (A) := Pr[IND-CPAA
HEwA = 1].

Π is IND-CPA secure if AdvIND-CPAHEwA

HEwA (A) ≤ negl(λ) for an arbitrary proba-
bilistic polynomial-time adversary A.

We explain that, using the HEwA scheme satisfying IND-CPAHEwA security
following the protocol specified in Section 3.1 in the normal phase, three par-
ties, authority, server, and client, in our scenario cannot learn any meaningful
information about each other’s private data under the assumption that any two
of three parties do not collude and either the server or the authority is honest.
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Table 2: IND-CPAHEwA game

Game IND-CPAHEwA

1: (pka, ska)← AuthKeyGen(1λ)
2: (pkc, evkc, skc)← ClientKeyGen(1λ, pka)
3: (m0,m1)← A1(pka, pkc, evkc)
4: b← {0, 1}
5: ct∗ ← Enc(pkc,mb)
6: b′ ← A2(pka, pkc, evkc, ct

∗,m0,m1)
7: return [[b = b′]]

Adversarial Server. Ensuring the server cannot access the client’s private
data is one of the most critical aspects in the security definition. In our new
IND-CPAHEwA game, the challenger simulates the view of the server to an ad-
versary, forwarding the client’s public key pkc, evaluation key evkc, and the
authority’s public key pka. The security game then asks the adversary to dis-
tinguish whether the challenge ciphertext is an encryption of m0 or m1 with
non-negligible advantages. This definition guarantees that the server cannot gain
any information from the client’s ciphertext.

Also, since HEwA introduces the authority as a participant in the proto-
col, the server should not be able to learn any useful information from the
authority as well. For example, if an adversary can somehow get the author-
ity’s secret key ska using the public keys and evaluation keys, then it may run
SecRec(pkc, evkc, ska) and retrieve the client’s secret key skc all but negligible
probability by the correctness of restoration so that the adversary wins the
IND-CPAHEwA game. Hence, the IND-CPAHEwA security aims to ensure that the
adversary modeling the server, given pka, pkc, and evkc, cannot obtain enough
hints about the authority’s secret key ska to attack the challenge ciphertext en-
crypted with pkc. More precisely, suppose there exists a probabilistic polynomial-
time algorithm B that can derive a hint about ska using only pka, pkc, and evkc.
In this case, the adversary A1 and A2 in the IND-CPAHEwA game could invoke B
as many times as needed. However, the IND-CPAHEwA security definition guaran-
tees that any probabilistic polynomial-time algorithm will have only a negligible
advantage of success. As a result, any information about ska obtained using B
cannot be used in a meaningful way to attack the challenge ciphertext.

Adversarial Client. In the conventional client-server scenario using FHE, it
was unnecessary to consider the client who owns the decryption key as an adver-
sary, as the server does not have any private information that could be exploited.
However, in the HEwA scheme, the presence of the authority party introduces
the possibility that the client may attempt to access the authority’s secret key
to attack the other client’s challenge ciphertext. However, given only the public
key of authority pka, public key pkc and evaluation key evkc of the other client,
the client cannot derive a meaningful information about the authority’s secret
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key ska to attack the other client’s challenge ciphertext. This can be shown as
in the case that considers an adversarial server.

Adversarial Authority. The authority may attempt to gain information about
the client’s message through the protocol between the client and server during the
normal phase. However, as specified in the normal phase protocol, the public key,
evaluation key, and the ciphertext of the client are trasmitted via an encrypted
channel between the client and server. As a result, the authority cannot access
the client’s data during the normal phase. We note that we can also consider a
security game for a malicious authority that an adversary generates pka in the
public key space as well as m0 and m1 in the message space, and then guess a
random bit b without receiving anything. The advantage of the game would be
0 since the adversary gets no further input. Since this security game would be
rather trivial, we do not define such game explicitly.

3.2.2 Traceability of Client Secret Key

A malicious client may attempt to prevent its secret key from being recovered
by the authority during the investigative phase. To achieve this, the client could
manipulate the generation procedure of the public key and evaluation key that
makes it impossible to recover the secret key. One of natural approaches to ad-
dress this issue could be using a zero-knowledge proof (ZKP), where the client
would prove that it has indeed generated the public key and evaluation key hon-
estly from the secret key following the ClientKeyGen algorithm. However, since
homomorphic encryption generally involves large parameter sizes, generating
such a proof would result in a very large proof size, and proving and verifying it
would be computationally expensive and time-consuming. Therefore, we formu-
late a security definition called traceability that fits in the investigative phase
and directly design a practical HEwA system satisfying the traceability, rather
than relying on the heavy tools such as ZKP.

We note that the public key and the evaluation keys are essential for the
server to provide services to the client. In particular, we focus on the evaluation
keys that enable the server to proceed with homomorphic computations over
encrypted data. Our idea is to make the client and the server agree on the au-
thority’s public key, which conceives a part of the client’s evaluation keys. In
this way, we can make it possible that, if a malicious client focuses solely on
preventing the recovery of its secret key during the investigative phase, it may
fail to enable the server to perform the desired computations for the client dur-
ing the normal phase with overwhelming probability. This would mean that the
client cannot receive the data processing service it seeks, rendering the goal of
preventing secret key recovery meaningless. Therefore, we define the ‘traceabil-
ity of a client’s secret key’ as a property that the secret key can be recovered
through SecRec algorithm in the investigative phase as far as the homomorphic
evaluation can be held correctly. We formalize it in the following definitions.
In these definitions, unit homomorphic operations refer to the basic operations
supported by the homomorphic encryption scheme. For example, in the BFV
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scheme, the unit operations include addition, multiplication, row rotation, and
column rotation. In the CKKS scheme, they include addition, multiplication,
rotation, and conjugation. In Definition 7, we define a notion for unit-preserving
public keys of homomorphic encryption scheme to design the traceability game
in Definition 8.

Definition 7 ((C, ℓ)-preserving, ℓ-unit-preserving). Let PK and EVK be
the client public key space and the evaluation key space for the HEwA scheme
Π= (Setup, AuthKeyGen,ClientKeyGen,Enc,Eval,Dec,SecRec), and C be a circuit
class. Let (pka, ska) ← AuthKeyGen(pp). For ℓ > 0 and a positive integer k, a
pair of public key and evaluation key (pk′, evk′) ∈ PK×EVK is (C, ℓ)-preserving
if for any circuit C ∈ C and any inputs m1, · · · ,mk ∈M,

Pr[∥HE.Dec(sk,HE.Eval(pka, pk
′, evk′, C, ct1, · · · , ctk))− C(m1, · · · ,mk)∥∞ ≥ 2−ℓ]

≤ negl(λ),

where cti ← Enc(pk′,mi). If a pair of public key and evaluation key (pk′, evk′) is
(C, ℓ)-preserving such that C includes all unit homomorphic operations, then the
pair is defined to be ℓ-unit-preserving.

Intuitively, a pair (pk′, evk′) is ℓ-unit-preserving if the unit homomorphic op-
erations are correctly held within small errors when using (pk′, evk′) with over-
whelming probability. The following definition presents the traceability notion
which introduces an adversary who generates ℓ-unit-preserving pair of public
key and evaluation key and asks whether the secret key of the target client can
be recovered using the key pair generated by the adversary.

Definition 8 (Traceability). Let Π be an HEwA scheme and ℓ > 0. The ℓ-
traceability of the client secret key is defined via the Traceability game in Table 3
and the advantage of adversary A is defined by

AdvTr,ℓHEwA(A) := Pr[Traceability = 1|(pk′, evk′) is ℓ-unit-preserving], (1)

where pk′, evk′ are defined in the Traceability game. Π is secret ℓ-traceable if
AdvTr,ℓHEwA(A) ≤ negl(λ) for an arbitrary probabilistic polynomial-time adversary
A.

4 Construction from RNS-CKKS Scheme

In this section, we describe our construction for HEwA instantiated with the
RNS-CKKS scheme. More specifically, we explain the intuition behind the con-
struction, and present the algorithms for Setup, AuthKeyGen, ClientKeyGen, and
SecRes, as remaining algorithms such as Enc, Eval, and Dec are the same as in
the original RNS-CKKS scheme.

18



Table 3: Traceability game

Game Traceability
1: (pka, ska)← AuthKeyGen(pp)
2: (pkc, skc, evkc)← ClientKeyGen(pp, pka)
3: (pk′, evk′)← A(pka, pkc, evkc)
4: sk′ ← SecRec(pk′, evk′, ska)
5: return [[skc ̸= sk′]]

4.1 Intuition and Key Idea

The key idea to construct our HEwA scheme is to enforce the client to encrypt
the client’s secret key with the authority’s public key and engrave it as a part
of the evaluation keys of the RNS-CKKS scheme.

In the original RNS-CKKS scheme, s(X−1) is encrypted in the conjugation
keys with the secret key s ∈ R to allow key switching from s(X−1) to s. More
precisely, a conjugation key is of the form {(bi, ai)}i=0,··· ,dnum−1, where

ai ← RPQ,

bi ← [−ai · s+ ei + P · Q̂i · [Q̂−1
i ]Qi

· s(X−1)]PQ.

In our setting, the authority announces its public key pka = (bauth = −aauth ·
sauth + eauth, aauth), where aauth ← RPQ, sauth ← χsk, and eauth ← χerr and stores
the corresponding secret key sauth. Using the public key of the authority, the
client samples a conjugation key {(bi, ai)}i=0,··· ,dnum−1, where (a0, a1) is set to
be (bauth, aauth) instead of sampled them from the uniform distribution overRPQ,
and the rests are computed as same as the original conjugation key. In this way,
if the authority retrieves a part of the conjugation key {(b0, a0), (b1, a1)}, the
authority can recover s(X−1) by computing

b0+b1·sauth = P ·(Q̂0·[Q̂0
−1

]Q0
−Q̂1·[Q̂1

−1
]Q1
·sauth)·s(X−1)+(eauth·s−e1·sauth+e0),

discarding the error terms and dividing the known value multiplied to it.
Moreover, it can be shown that the proposed HEwA scheme satisfies the

traceability condition defined in Definition 8. That is, if the client requests a ser-
vice that includes unit operations, especially the conjugation in our construction,
and wants the service to be held correctly, then it should honestly generate the
conjugation key allowing the authority to recover the client’s secret key in the
investigative phase with an overwhelming probability under certain parameter
conditions. The parameter conditions for traceability are specified in Theorem 3
in the following subsection. The beauty of this procedure is that it solely relies
on the FHE without the help of any other heavy tools such as ZKP, to guarantee
that the conjugation key is generated honestly using the given authority’s public
key except for the cryptographically negligible probability.
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We remark that this idea applies not only to conjugation keys, but also to
rotation keys in a similar manner. We embed the authority’s public key into the
client’s conjugation key for the following reasons.

1. Conjugation operation is essential for bootstrapping in homomor-
phic encryption. Conjugation operation is a fundamental component of
the bootstrapping process in homomorphic encryption. Therefore, if a suf-
ficiently complex computation requires bootstrapping, conjugation becomes
necessary even if the computation itself does not inherently involve conjuga-
tion. For sufficiently complex computational models, conjugation operations
are indispensable. Typically, computations requested from the cloud tend to
involve complex models that are challenging for clients to compute indepen-
dently, making bootstrapping—and consequently, conjugation—frequently
necessary.

2. Redundant inclusion of conjugation in simpler calculation is pos-
sible. Even if a model is simple enough to not require bootstrapping or
conjugation operations, the server can redundantly incorporate conjugation
into the computation model. For example, the server could include a step
where conjugation is performed twice on a specific intermediate value. In
such cases, if the client issues a valid conjugation key honestly, the compu-
tations yield the correct result. However, if the client intentionally provides
an invalid conjugation key, the result will be incorrect. Since the client has
no authority to constrain the server’s computation procedures, the server is
free to include such operations.

4.2 Algorithms

In this subsection, we present the algorithms for HEwA instantiated with the
RNS-CKKS scheme. LetΠ = (Setup,AuthKeyGen,ClientKeyGen,Enc,Eval,Dec,SecRec)
for which Setup, AuthKeyGen, ClientKeyGen, and SecRes are defined as follows.
Then the correctness of restoration algorithm SecRec is proven.

– Setup(1λ) : Set a power-of-two ring degreeN , a secret distribution χsk overR,
an error distribution χerr over R, an ephemeral secret distribution χenc over
R, moduli chains {q0, · · · , qL} and {p0, · · · , pk−1} which contain different

NTT-friendly primes, Q =
∏L

i=0 qi and P =
∏k−1

j=0 pj with respect to the
security parameter λ. Let α be a positive integer, dnum := ⌈(L+ 1)/α⌉ and
Qi :=

∏min(α(i+1)−1,L)
j=αi qj for i = 0, · · · , dnum − 1 so that Q =

∏dnum−1
i=0 Qi.

We set Q̂i = Q/Qi.
– AuthKeyGen(·) : Sample aauth ← RPQ, sauth ← χsk, and eauth ← χerr. Return

pka = (bauth := −aauth · sauth + eauth, aauth) and ska = sauth.
– ClientKeyGen(pka) : Parse pka := (bauth, aauth) ∈ R2

PQ.
• SecretKeyGen(): Sample s← χsk and return the secret key sk := s.
• SwitchKeyGen(s, s′): Output a key-switching key

swks→s′ = {swk(i)s→s′}
dnum−1
i=0 := {([−ai·s′+ei+P ·Q̂i·[Q̂−1

i ]Qi
·s]PQ, ai)}dnum−1

i=0 ,

where ai ← RPQ and ei ← χerr.
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• PublicKeyGen(sk, pka = (bauth, aauth)): For the secret key sk = s, let pk =
([−as+ e]Q, a) be a public encryption key, where a← RQ, and e← χerr.
Sample the relinearization key rlk ← SwitchKeyGen(s2, s), the rotation
key rotr ← SwitchKeyGen(s5

r

, s) for each r. Sample the conjugation key
conj ← (b0, b1, {(bi, ai)}i=2,··· ,dnum−1) as follows. Sample ai ← RPQ for
i = 2, · · · , dnum− 1 and ei ← χerr for i = 0, · · · , dnum− 1, and compute
b0 = −bauth · s+ e+ P · Q̂0 · [Q̂−1

0 ]Q0
· s(X−1), b1 = −aauth · s+ e+ P ·

Q̂1 · [Q̂−1
1 ]Q1 ·s(X−1), and bi ← [−ai ·s+ei+P · Q̂i · [Q̂−1

i ]Qi ·s(X−1)]PQ

for i = 2, · · · , dnum− 1.
– SecRes(evkc, ska) : Let ska = sauth. From evkc, parse the conjugation key

conj = (b0, b1, {(bi, ai)}i=2,··· ,dnum−1). Compute

s′ ←
[⌊

1

P
(b0 + b1 · sauth)

⌉
· Q0Q1

Q
· (Q1[Q̂

−1
0 ]Q0

+Q0[Q̂
−1
1 ]Q1

· sauth)−1

]
Q0Q1

and output sk′ := s′(X−1).

Theorem 1 (Correctness of Restoration). The secret key of Π is recov-
ered from SecRes(pkc, evkc, ska) with all but negligible probability as long as the
following inequality holds:

Pr

[
∥−eauth · s+ e1 · sauth + e0∥∞ <

P

2
: s← χsk, eauth, e0, e1 ← χerr

]
> 1−negl(λ).

Proof. Let (pka = (bauth = −aauth · sauth + eauth), ska := sauth) sampled from AuthKeyGen,
and {(bi = [−ai · s+ ei + P · Q̂i · [Q̂−1

i ]Qi · s(X−1)]PQ, ai)}i=0,1 be a part of the
conjugation key in evkc. Then,

b0 = [−(−aauth · sauth + eauth) · s+ e0 + P · Q̂0 · [Q̂−1
0 ]Q0

· s(X−1)]PQ, and

b1 · sauth = [−aauth · s · sauth + e1 · sauth + P · Q̂1 · [Q̂−1
1 ]Q1

· s(X−1) · sauth]PQ.

Hence,

b0+b1·sauth = P ·(Q̂0·[Q̂−1
0 ]Q0

+Q̂1·[Q̂−1
1 ]Q1

·sauth)·s(X−1)+(−eauth·s+e1·sauth+e0),

where the operations are held modulo PQ. If ∥−eauth · s+ e1 · sauth + e0∥∞ < P
2 ,

then (Q̂0 · [Q̂−1
0 ]Q0

+ Q̂1 · [Q̂−1
1 ]Q1

· sauth) · s(X−1) mod Q is recovered by the
calculation

⌊
1
P (b0 + b1 · sauth)

⌉
. After that, s(X−1) mod Q0Q1 can be recovered

by dividing it and the modulus Q by Q/Q0Q1 first, and multiplying an inverse
of Q1[Q̂

−1
0 ]Q0

+Q0[Q̂
−1
1 ]Q1

· sauth mod Q0Q1 to the result. This concludes the
proof of the correctness of restoration.

4.3 Security Proof

In this section, we prove that the HEwA scheme defined above satisfies all se-
curity conditions. The first theorem demonstrates that the scheme satisfies the
IND-CPAHEwA security definition. This proof leverages the fact that the under-
lying RNS-CKKS scheme already satisfies IND-CPA security.
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Theorem 2 (IND-CPAHEwA Security). Given that RNS-CKKS is IND-CPA se-
cure, the HEwA scheme Π instantiated with RNS-CKKS satisfies the IND-CPAHEwA

security under the hardness assumption of RLWEn,PQ,χerr(χsk).

Proof. For a message m ∈M, We define distributions D0 and D1 as follows.

D0 := {(pka, pkc, evkc, ct) : (pka, ska)← AuthKeyGen(·), (pkc, evkc, skc)←
ClientKeyGen(pka), ct← Enc(pkc,m)},

D1 := {(pka, pkc, evkc, ct) : pka ← RPQ, (pkc, evkc, skc)← ClientKeyGen(pka),

ct← Enc(pkc,m)}.

Then, the distributions D0 and D1 are computationally indistinguishable under
the hardness assumption of RLWEn,PQ,χerr(χsk).

Suppose that the HEwA scheme Π is not IND-CPA secure so that there exists
an adversary A winning the IND-CPAHEwA game with a non-negligible advan-
tage. We can construct an IND-CPA adversary B for the RNS-CKKS scheme
with a non-negligible advantage by simulating a IND-CPAHEwA game to A as
follows.

1. The IND-CPA challenger C sends the public key and evaluation key (pk, evk)
of RNS-CKKS to B.

2. B samples pka ← RPQ, and sends (pka, pk, evk) to A.
3. A sends (m0,m1) to B so that B forwards it to C.
4. As C sends ct∗ to B, B forwards it to A.
5. Finally, when A sends a bit b′ back, B forwards it to C.

Since D0 and D1 are computationally indistinguishable, the security game simu-
lated by B defined as above is indistinguishable from the real IND-CPA security
game for A. Hence, B wins the IND-CPA game with a non-negligible advan-
tage by forwarding A’s answers, and this contradicts to the assumption that
RNS-CKKS is IND-CPA secure. Therefore, the HEwA scheme Π instantiated
with RNS-CKKS is IND-CPA secure under the assumption that RNS-CKKS is
IND-CPA secure and RLWEn,PQ,χerr(χsk) is hard.

Next, we prove the traceability of the client’s secret key. We need to show
that for the conjugation operation to produce the desired result the conjugation
key should follow the known structure of the conjugation key. This proof is
more complex than merely demonstrating the correctness of the homomorphic
operation, as it requires proving the reverse direction, making the argument
more challenging. We will use the following useful lemma in the main proof.
After proving the following lemma, we will proceed to prove Theorem 3.

Lemma 1. Let Xi be independent integer-valued random variables with uniform
distribution from (−ti, ti] ∩ Z for i = 0, · · · , N − 1 and integer ti ≥ 0, and tmin

is the minimum value among the nonzero ti’s. If N ≥ 2,
∑N−1

i=0 ti > 0, and
tmin ≥ 5, then the following formula holds.

Pr

[∣∣∣∣∣
N−1∑
i=0

Xi

∣∣∣∣∣ ≥ 1

N

N−1∑
i=0

ti

]
>

1

4

22



Proof. Let the number of non-zero ti’s be n. Since
∑N

i=0 ti > 0, we have n ≥ 1.
1) The case n = 1: Without loss of generality, assume that t0 > 0. Then, we

have

Pr

[∣∣∣∣∣
N−1∑
i=0

Xi

∣∣∣∣∣ ≥ 1

N

N−1∑
i=0

ti

]
= Pr

[
|X0| ≥

t0
N

]
≥ 2(t0(1− 1/N)− 1)

2t0

= 1− 1

N
− 1

t0
>

1

4
,

2) The case n ≥ 2: Without loss of generality, assume that ti > 0 for
i = 0, · · · , n. Since Pr

[
Xi ∈ (−ti

(
1− 2

n

)
, ti]
]
≥ 1 − 1

n and Xi’s are mutually
independent, we have

Pr

[
Xi ∈

(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]
≥
(
1− 1

n

)n

The conditional distribution of Xi given the event that Xi ∈
(
−ti

(
1− 2

n

)
, ti
]
is

also the uniform distribution from
[
[−ti

(
1− 2

n

)
] + 1, ti

]
, where the inner square

bracket is the gauss function. Note that the center of the interval [[−ti
(
1− 2

n

)
]+

1, ti] is βi = ([−ti
(
1− 2

n

)
] + 1 + ti)/2, which is larger than ti/n. Since each

conditional distribution of Xi has a symmetric distribution with mean βi, the
sum of these conditional distribution

∑n−1
i=0 Xi has also a symmetric distribution

with mean
∑n−1

i=0 βi, which is larger than
∑n−1

i=0
ti
n . Thus, we have

Pr

[
n−1∑
i=0

Xi ≥
1

n

n−1∑
i=0

ti

∣∣∣∣Xi ∈
(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]

≥ Pr

[
n−1∑
i=0

Xi ≥
n−1∑
i=0

βi

∣∣∣∣Xi ∈
(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]
≥ 1

2

We know that (1− 1
x )

x is increasing function when x > 0, and thus (1− 1
n )

n ≥
(1− 1

2 )
2 = 1

4 . Thus, we have

Pr

[
N−1∑
i=0

Xi ≥
1

N

N−1∑
i=0

ti

]
≥ Pr

[
n−1∑
i=0

Xi ≥
1

n

n−1∑
i=0

ti

]

>Pr

[
n−1∑
i=0

Xi ≥
1

n

n−1∑
i=0

ti
∧

Xi ∈
(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]

=Pr

[
n−1∑
i=0

Xi ≥
1

n

n−1∑
i=0

ti

∣∣∣∣Xi ∈
(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]

· Pr
[
Xi ∈

(
−ti

(
1− 2

n

)
, ti

]
, i = 0, · · · , n− 1

]
≥ 1

2
·
(
1− 1

n

)n

≥ 1

8
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Similarly, we can prove that Pr
[∑N−1

i=0 Xi ≤ − 1
N

∑N−1
i=0 ti

]
> 1

8 , and thus we

have

Pr

[∣∣∣∣∣
n−1∑
i=0

Xi

∣∣∣∣∣ ≥ 1

n

n−1∑
i=0

ti

]
>

1

4
.

Theorem 3 (Traceability of Client Secret Key). If there exist Bs and Be

such that

1. Pr[∥s∥∞ > Bs | s← χsk] and Pr[∥e∥∞ > Be | e← χerr] are negligible,
2. Qi ≥ 5 for all i’s, and
3. the following inequality holds,

N ·Be ·Bs +
P

Q1
· 2N · dnum ·∆ · 2−ℓ ·Bs +

P

Q0
· 2N · dnum ·∆ · 2−ℓ <

P

2
,

then the HEwA scheme Π is secret ℓ-traceable.

Proof. We will prove that if the unit homomorphic operations of Π—addition,
multiplication, rotation, and conjugation—are performed with sufficient accu-
racy, the SecRec algorithm should necessarily recover skc with overwhelming
probability. To do this, we need to show that no pk′, evk′ exist such that the
unit homomorphic operations can be performed with sufficient accuracy but the
probability that SecRec fails to recover skc is non-negligible. Since the SecRec
algorithm in Π uses only the conjugation key to recover the secret key, it is suffi-
cient to consider only the conjugation operation to consider the result of SecRec.
Therefore, we should prove that no conj′ exists such that the Conj operation
is performed correctly, but the probability that the result of SecRec is not skc
remains non-negligible.

For conj′ to be used as a conjugation key in the Conj operation, it should
consist of b̃0, b̃1, {(b̃i, ãi)}i=2,··· ,dnum−1, each of which is in RPQ. For the conju-
gation operation, we set ã0 and ã1 based on the authority’s public key pka =
(bauth, aauth) ∈ R2

PQ, where ã0 = bauth and ã1 = aauth, and prepares {(b̃i, ãi)}i=0,··· ,dnum−1

for the conjugation operation. Let ẽi := b̃i + ãi · s − P · Q̂i · [Q̂−1
i ]Qi

· s(X−1)
for i = 0, · · · , dnum − 1. If ∥−eauth · s + ẽ1 · sauth + ẽ0∥∞ < P

2 holds, then for
the same reasons as in the proof of Theorem 2, the result of SecRec will cor-
rectly derive skc. Therefore, we will prove that with overwhelming probability,
∥−eauth · s+ ẽ1 · sauth + ẽ0∥∞ < P

2 holds.
Let (b, a) ∈ R2

Q represent the ciphertext that encrypts∆·m through Enc, such
that b+a ·s = ∆ ·m. (The LWE error is now regarded as inserted in the message
m, and it does not harm our proof.) The Conj algorithm starts by computing
(b(X−1), a(X−1)), followed by performing a key-switching operation on a(X−1)
using conj. After the key-switching operation, let the resulting ciphertext be
(b′, a′), and let e′ represent the error related to the computational accuracy,
satisfying the following:

b′ + a′ · s = a(X−1) · s(X−1) + e′.
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To ensure that the error is within 2−ℓ for each message, we require that |e′(ζ5j )| <
∆ · 2−ℓ for all j = 0, · · · , N/2, with overwhelming probability. Defining zi :=

e′(ζ5
j

), we have

z′ =

[
z
z̄

]
=



z0
...

zN/2−1

z̄0
...

z̄N/2−1


=



1 ζ5
0

ζ5
0·2 · · · ζ50·N−1

...

1 ζ5
1

ζ5
1·2 · · · ζ51·N−1

1 ζ̄5
0

ζ5
0·2 · · · ζ50·N−1

...

1 ζ5
1

ζ5
1·2 · · · ζ51·N−1


·


e′0
e′1
e′2
...

e′N−1

 = U · e′.

Given the matrix U defined as above, 1√
N
U is a unitary matrix, so it satisfies

U−1 = 1
N ŪT . Therefore, we have e′ = 1

N ŪT · z′. Since |ζ| = 1, we have ∥e′∥∞ ≤
1
N ∥Ū

T ∥∞ · ∥z′∥1 < 1
N ·N ·∆ ·2

−ℓ = ∆ ·2−ℓ. Thus, the condition ∥e′∥∞ < ∆ ·2−ℓ

with overwhelming probability is a necessary condition for the precise evaluation
of the conjugation operation.

The ciphertext (b′, a′) after the key-switching operation is computed as fol-
lows:

(b′, a′) = P−1 ·

(
dnum−1∑
i=0

[a(X−1)]Qi
· (b̃i, ãi)

)
.

When calculating b′ + a′ · s, the expression becomes

b′ + a′ · s = P−1 ·
dnum−1∑
i=0

[a(X−1)]Qi · (b̃i + ãi · s)

= P−1 ·
dnum−1∑
i=0

[a(X−1)]Qi
· (ẽi + P · Q̂i · [Q̂−1

i ]Qi
· s(X−1))

= P−1 ·
dnum−1∑
i=0

[a(X−1)]Qi
· ẽi +

dnum−1∑
i=0

[a(X−1)]Qi
· Q̂i · [Q̂−1

i ]Qi
· s(X−1))

= P−1 ·
dnum−1∑
i=0

[a(X−1)]Qi
· ẽi + a(X−1) · s(X−1).

Therefore, for precise evaluation to be possible, the following condition must
be satisfied:

∥e′∥∞ = ∥P−1 ·
dnum−1∑
i=0

[a(X−1)]Qi
· ẽi∥∞ < ∆ · 2−ℓ.

Here, a is a component of the ciphertext that is extracted independently of
conj, and it is computed as a = v · apk + e0 for some ephemeral v. Since a is
derived from a secret key independent of s, it can be viewed as an LWE sample.
From the client’s perspective, who knows only s, a is indistinguishable from an
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element uniformly sampled from RQ. Therefore, it is valid to assume that a is
sampled from a uniform distribution for the sake of analysis. Given that a follows
a uniform distribution, a(X−1) will also follow a uniform distribution due to the
permutation of coefficients. Thus, for ui ← RQi , we should have

∥∥∥∥∥
dnum−1∑
i=0

ui · ẽi

∥∥∥∥∥
∞

< P ·∆ · 2−ℓ (2)

with overwhelming probability.

We aim to prove that the condition
∑dnum−1

i=0 Qi∥ẽi∥1 ≤ P · 2N · dnum ·∆ · 2−ℓ

is a necessary condition for Equation (2) with overwhelming probability. To do

so, we need to show that if
∑dnum−1

i=0 Qi∥ẽi∥1 > P · 2N · dnum · ∆ · 2−ℓ, then

Pr
[∥∥∥∑dnum−1

i=0 ui · ẽi
∥∥∥
∞
≥ P ·∆ · 2−ℓ

]
is non-negligible. Note that ẽi are fixed

values in the current situation. Let ui = ui,0 + ui,1X + · · · + ui,N−1X
N−1 and

ẽi = ẽi,0+ ẽi,1X+ · · ·+ ẽi,N−1X
N−1. Define Ti,j = ui,j ·ei,−j , where the negative

index in ei,−j is considered modulo N . Ti,j follows a uniform distribution in the

range
[
−Qi

2 · ei,−j ,
Qi

2 · ei,−j

]
, and since the ui,j are independent for different

i, j, the Ti,j are also independent. We can express the constant term v0 of v =∑dnum−1
i=0 ui · ẽi as

∑dnum−1
i=0

∑N−1
j=0 Ti,j . By applying Lemma 1, we obtain

Pr

[
|v0| >

1

N · dnum

dnum−1∑
i=0

Qi

2
· ∥ẽi∥1

]
>

1

4
,

Thus, with a probability greater than 1
4 , the following holds:

∥∥∥∥∥
dnum−1∑
i=0

ui · ẽi

∥∥∥∥∥
∞

= ∥v∥∞ ≥ |v0|

>
1

N · dnum

dnum−1∑
i=0

Qi

2
· ∥ẽi∥1

> P ·∆ · 2−ℓ

Through this, we have proven that the condition
∑dnum−1

i=0 Qi∥ẽi∥1 ≤ P ·2N ·dnum·
∆ · 2−ℓ is a necessary condition for Equation 2 with overwhelming probability.
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As a result, we can show that ∥ẽi∥1 ≤ P
Qi
·2N ·dnum ·∆ ·2−ℓ. Therefore, with

overwhelming probability, we obtain the following inequality,

∥−eauth · s+ ẽ1 · sauth + ẽ0∥∞ ≤∥eauth · s∥∞ + ∥ẽ1 · sauth∥∞ + ∥ẽ0∥∞
≤∥eauth∥1 · ∥s∥∞ + ∥ẽ1∥1 · ∥sauth∥∞ + ∥ẽ0∥1
≤N · ∥eauth∥∞ · ∥s∥∞

+
P

Q1
· 2N · dnum ·∆ · 2−ℓ · ∥sauth∥∞

+
P

Q0
· 2N · dnum ·∆ · 2−ℓ

≤N ·Be ·Bs +
P

Q1
· 2N · dnum ·∆ · 2−ℓ ·Bs

+
P

Q0
· 2N · dnum ·∆ · 2−ℓ <

P

2
,

Therefore, by Theorem 1, with overwhelming probability, the SecRec algorithm
can successfully recover skc.

5 Feasibility and Performance

The two remaining issues are to verify whether the RNS-CKKS-based HEwA
scheme defined above is practical for implementation and to assess its perfor-
mance compared to the existing RNS-CKKS scheme. In this section, we will
confirm that our scheme can be designed to guarantee correctness and security
using the current RNS-CKKS scheme. Additionally, we will show that the pa-
rameter regime that meets the conditions in the correctness and security proofs
for the RNS-CKKS-based HEwA is compatible with that of the original RNS-
CKKS setting so that the time performance of the HEwA scheme does not differ
significantly from the homomorphic encryption schemes.

5.1 Feasibility of Secure HEwA

The conditions required to ensure correctness in Theorem 1 are as follows,

Pr

[
∥−eauth · s+ e1 · sauth + e0∥∞ <

P

2
: s← χsk, eauth, e0, e1 ← χerr

]
> 1−negl(λ).

This condition can easily be satisfied. In the case of χerr, it refers to the error
distribution used in ring-LWE sampling, typically a normal distribution with
σ = 3.2. For χsk, a ternary distribution with support {−1, 0, 1} is commonly used
in homomorphic encryption, meaning that ∥s∥∞ = 1 in most cases. Therefore,
in a homomorphic encryption system that uses integers with hundreds of bits
for P , these conditions are met without issue.
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The conditions required to ensure traceability in Theorem 3 are as follows.
Pr[∥s∥∞ > Bs | s ← χsk] and Pr[∥e∥∞ > Be | e ← χerr] are negligible, Qi’s are
larger than or equal to 5, and

N ·Be ·Bs +
P

Q1
· 2N · dnum ·∆ · 2−ℓ ·Bs +

P

Q0
· 2N · dnum ·∆ · 2−ℓ <

P

2
.

By setting Be = 27 and Bs = 2, the two probabilities mentioned above become
negligible. Trivially, the modulus qi’s used in CKKS schemes are larger than or
equal to 5. Additionally, if N = 216, dnum < 25, ∆ < 260, and ℓ > 20, these
values fall within the parameter ranges currently used in most schemes. Since
we set the parameters for key-switching correctness with P ≈ Qi, we can safely
assume P

Qi
< 210. In this case, the left-hand side of the inequality becomes less

than 264. Given that P is an integer with hundreds of bits, this inequality is
easily satisfied, ensuring that the condition holds.

5.2 Runtime Performance

The most important aspect of runtime performance is the efficiency of encryp-
tion, decryption, and homomorphic operations. Since the computations in these
algorithms are identical to those in the existing RNS-CKKS homomorphic en-
cryption scheme, there is no difference in runtime performance. Therefore, there
is no runtime trade-off resulting from the new security conditions, as the perfor-
mance remains unchanged.

6 Conclusion

We extended the traditional client-server model for homomorphic encryption
by introducing a new definition of Homomorphic Encryption with Authority
(HEwA) based on a client-server-authority model. We proposed the correspond-
ing definitions for correctness and security. Furthermore, we designed a practical
HEwA scheme based on the RNS-CKKS scheme that satisfies these definitions.
We demonstrated that the parameter conditions required by this scheme are met
by the parameters currently used in practical implementations. Additionally, we
confirmed that the performance of the HEwA scheme is equivalent to that of the
original RNS-CKKS scheme. Future work will focus on applying this model to
more complex scenarios, such as multi-key homomorphic encryption and other
advanced use cases.
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