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Abstract. A multi-signature scheme allows a list of signers to sign a
common message. They are widely used in scenarios where the same
message must be signed and transmitted by N users, and, instead of
concatenating N individual signatures, employing a multi-signature can
reduce the data to be sent. In recent years there have been numerous
practical proposals in the discrete logarithm setting, such as MuSig2
(CRYPTO’21) for the Schnorr signature. Recently, these attempts have
been extended to post-quantum assumptions, with lattice-based proposals
such as MuSig-L (CRYPTO’22). Given the growth of group action-based
signatures, a natural question is whether a multi-signature can be built
on the same models. In this work, we present the first construction of such
a primitive relying on group action assumptions. We obtain a 3-round
scheme achieving concurrent security in the ROM. Moreover, we instanti-
ate it using the three candidates to the additional post-quantum NIST’s
call, namely LESS, MEDS and ALTEQ), obtaining a good compression
rate for different parameters sets.

Keywords: multi-signature, cryptographic group actions, code equiva-
lence

1 Introduction

Aggregate and Multi-Signatures. An aggregate signature scheme allows n users
to combine their individual signatures on separate messages to produce a single,
directly verifiable aggregate signature. This approach aims to achieve shorter
signature lengths compared to trivial concatenation of individual signatures.
Hence, aggregate signatures are particularly useful in scenarios where a large
number of signatures need to be transmitted and the communication costs within
the network are not negligible. The notion of aggregate signatures was initially
introduced in a seminal paper by Boneh et al. [18]. The authors proposed a
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method that allows a third party to aggregate signatures from distinct users using
a public aggregation algorithm. Although this general aggregation approach is
efficient and valuable in many applications, it is notoriously difficult to achieve
in practice without the use of bilinear pairing [18,12], indistinguishability ob-
fuscation [43] or non-interactive arguments of knowledge [3,33,64]. Furthermore,
there are important scenarios where interactive protocols can be employed and
it is enough to aggregate signatures on a common message. Such constructions
are better known as multi-signatures and typically target additional properties,
including key aggregation and signature compatibility with the underlying scheme.
Although multi-signatures were introduced separately from aggregate signatures
[44,57,56] and the usage scenarios are typically distinct, it is well known that
a multi-signature can be easily transformed into an interactive aggregate sig-
nature by requiring participants to agree on a concatenation of messages to be
signed [13]. Numerous multi-signatures have been proposed for Schnorr’s signa-
ture [55,13,6,49,62,50,35,54], with recent near-optimal schemes MuSig2 [53] and
DWMS [4] requiring only one round of interaction and allowing key aggregation.

Increasing activity in the development of post-quantum signatures has led the
community to explore signature aggregation in this field. Lattice-based proposals
were initially introduced in a restricted model where signatures are aggregated
sequentially by each subsequent user [36]. This approach generalizes the original
line of works on sequential aggregation of trapdoor permutations [48,52,21,40],
extending it to hash-and-sign schemes based on the GPV construction [41], allow-
ing aggregation of Falcon signatures. Within the Fiat-Shamir paradigm, which
includes Dilithium, [20] have recently proposed a sequential aggregation scheme,
achieving however only limited compression. Finally, the idea of aggregating
signatures using lattice-based SNARK was recently investigated in [3] and formal-
ized in [1]. Also, in the interactive model, there is a long line of work proposing
lattice-based multi-signatures [37,39,31,24] culminating with MuSig-L [19], which
achieves properties similar to those of MuSig2 for lattices.

Besides lattice-based solutions and generic approaches based on SNARKs, the
landscape of proposals tailored for other post-quantum assumptions is very limited.
Recently, in [51], the authors generalized the sequential aggregation framework
of [48,36] to generic trapdoor functions, making it compatible with hash-and-
sign schemes from multivariate and code-based assumptions. For Fiat-Shamir
signatures, a tailored non-interactive or sequential solution appears difficult
without achieving limited compression, and no scheme has been proposed.

Group Actions. Cryptographic group actions have received a lot of attention in
the last years, mainly due to the isogeny-based cryptography with the CSIDH
action [22]. However, other actions raised interest in the post-quantum panorama
for the competitive digital signatures based on them. Some examples are NIST’s
additional call proposal, LESS [7], MEDS [26] and ALTEQ [17]. Using this
algebraic framework, other primitives can be built, ranging from Pseudo Random
Functions [2] and Updatable Encryption [47] to digital signature schemes with
advanced functionalities. Some examples of the latter are the threshold signature
given in [10], the (linkable) ring one from [15] and the threshold ring signature
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shown in [59]. If we additionally assume the commutativity of the action, the
design space enlarges to Oblivious Transfers [2], Diffie-Hellman key exchange [29]
and group signatures [14].

Following the construction given in [42] for Graph Isomorphism, a sigma
protocol for group actions can be constructed, allowing a prover to convince a
verifier that she knows the group element mapping a set element xy to another
set element x;. The first message of the protocol is given by & = g x z¢ for a
random group element g. The challenge is a random bit b and instructs the
prover to reveal the group element mapping the set element x; to Z. This sigma
protocol has knowledge error %7 and this quantity can be reduced using parallel
repetitions. Digital signatures based on cryptographic group actions (e.g. [8,27,63])
are obtained by turning parallel instances of the sigma protocol for group actions
into a non-interactive protocol by applying the Fiat-Shamir transform.

1.1 Our techniques

Multi-signature overview. In this paper, we present a novel multi-signature
scheme based on cryptographic group actions. In our scheme, the key held by
an individual party P; coincides with that of the underlying signature based on
group action: the private key is a group element sk; = g; € G, and the public key
is a set element pk; = g; x zg € X, where x( is the common base point. In the
signing phase, the n parties will participate in an interactive round-robin protocol
in which they will compute a common commitment Z, combining the actions of
different group elements so that no party knows entirely the element that maps
xg to x. To achieve this result, party P; samples a random group element g; and,
at the end of the round-robin, the challenge Z is equal to (H?=1 gj) * xo. In this
phase, the signers also generate a random salt r, by firstly committing and then
simultaneously releasing random salts r1, ..., r,, one for each signer. Once the
commitment and the salt r have been generated, the signing parties compute a
random challenge ¢ € {0,...,n}, which specifies the public key pk. = z. of the
c-th signer, and instructs the signers to compute a group element which maps
Z. to the commitment . Again, this will require the signers to cooperate to
compute the responses since the knowledge of the group element mapping the
base point zy to the commitment Z; is distributed among the signers.

This approach mimics a standard optimization used in the context of group
action-based signatures, whereby multiple public keys are used to increase the
challenge space and decrease the signature size [32]. On the other hand, the
security model where an adversary has to forge a multi-signature involving a
target user with the possibility of corrupting other signatories can be traced back
to the security of a peculiar variant of the centralized scheme, where the user
can generate ephemeral keys during the signing process.

Sigma protocol variant. As an intermediate step in our construction, we introduce
a variant of the digital signature from cryptographic group actions. This variant,
while less efficient than the standard signature scheme, serves as a crucial proof
artifact and aids in the security reduction of our multi-signature scheme.
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More specifically, we define a variant of the sigma protocol from cryptographic
group actions which instructs the signer to generate a number n — 1 of ephemeral
keys {&a,...,&,} that are set elements generated by applying a random group
element g; to the base point . The challenge ¢ € {1,...,n} specifies which set
element (either the signer’s public key or one of the ephemeral keys) should be
used in the response calculation. This modified protocol is then transformed into
a digital signature scheme using the Fiat-Shamir transform.

Although this centralized variant is less efficient due to its higher soundness
error of n/(n + 1), it plays a crucial role in proving the security of our multi-
signature scheme. In fact, the ephemeral public keys in this variant correspond
to the public keys of the parties in our multi-signature scheme.

Technical lemmas. The number of iterations required before applying the Fiat-
Shamir transform to the above Sigma protocol is variable and depends on the
number of ephemeral keys generated. This is a novel and non-standard approach
in the construction of Fiat-Shamir signatures, but one that more closely represents
the adversary’s capabilities in our multi-signature. To prove the security of the
centralized variant scheme, we have shown that the underlying Sigma protocol
is a proof of knowledge by providing an explicit description of the knowledge
extractor. Our proof does not require any additional assumptions about group
action beyond those necessary for the construction of a digital signature.

Concurrent security. In the security proof of our multi-signature, the rewinding of
the adversary is not required to answer the signing queries, so that an adversary
can open multiple concurrent signing sessions. Therefore, the centralized scheme
adversary is able to correctly simulate the unforgeability game of the multi-
signature in polynomial time. This guarantees the concurrent security of our
scheme.

Note that, although random salt r generation requires an additional round
of interaction, its use is crucial in the security reduction from the variant of the
centralised signature. In fact, the reduction can correctly answer the signing
queries without knowing the secret key of the party under its control thanks
to the ability to program the random oracle, keeping negligible the probability
to overwrite the hash table since the values r will be different in every signing
protocol execution.

Current limitations. In this work, our primary focus is on achieving efficient
signature aggregation with provable security in the ROM. The emphasis on sig-
nature compression is particularly important because one of the main drawbacks
of digital signatures based on cryptographic group actions is their typically larger
signature size compared to other post-quantum signature schemes. Our proposed
scheme aims to mitigate this disadvantage, making signatures from cryptographic
group actions a viable option in practical scenarios requiring multiple users to
sign the same message. In addition, our scheme enjoys a tight security reduction
to a centralised signature scheme, which in turn has the same security features
as the underlying group action-based signature scheme, which reduces to the
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one-wayness of the group action. On the other hand, our construction lacks
advanced features such as key aggregation, where signature verification is shared
with the centralized scheme and requires the use of a single key obtained by
combining that of the participants.

Outline. The paper is organised as follows. In Section 2 we recall the preliminar-
ies on group actions-based digital signature schemes, multi-signatures and the
associated security notions. In Section 3 we describe the variant of the centralised
digital signature scheme based on cryptographic group actions, then we define
our main contribution which is our multi-signature scheme. In Section 4 we prove
our multi-signature scheme secure, building a reduction from the unforgeability
of our multi-signature to the unforgeability of the variant of the centralised
digital signature from group actions. Section 5 describes how to reduce the size
of our multi-signature scheme by adapting some well-known techniques used
to optimize group action-based digital signature schemes. Finally, in Section 6
we instantiate our multi-signature scheme using LESS, MEDS and ALTEQ as
underlying centralised digital signature schemes.

2 Notation and Preliminaries

With n € N, we denote by [n] the set {1,...,n }. For a finite set X, we write | X|
for the cardinality of X and by x <—s X, we denote the sample of the element
x from U(X), the uniform distribution over X. Moreover, for an algorithm A,
we write x < A(y) to denote the assignment of = to the output of A on input y
and for an adversary A and a function F, we write 2 +— A°F the assignment of
of the output of A4 with oracle access to F. In an interactive protocol between
n parties Pi,..., P,, we assume that each party has access to point-to-point
communication channels. When the interactive protocol is run by a party P;, we
write x — P; to denote the transmission of = from P; to P;. Similarly, we write
x < P; to denote a transmission from P; to P; and the subsequent assignment
to x.

2.1 Cryptographic Group Actions

We introduce the algebraic framework of group actions, in which many crypto-
graphic assumptions from the literature can be modelled.

Definition 1. A group G with identity e is said to act on a set X if there is a
map *: G X X = X such that exx = x and (gh) *x = g x (hxx) for every g,h
in G and x in X. In this case, we say that the triple (G, X, *) is a group action.

We need some additional requirements on the group actions we use, in
particular, we want the action to be effective [2], i.e. there exist efficient algorithms
to sample and represent elements in X and G, to compute products and inverses
in G and to compute the action x. On the other hand, the following problem
must be intractable.
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Definition 2. Given the action (G, X, *), the Group Action Inversion Problem
(GAIP) asks, on input (x,y) in X, to find, if any, an element g in G such that
gxy =x. Given xg in X, the GAIP for xg assumes that the input is of the form
(z0,9 *x x0)-

To prove the security of digital signatures from group actions in the quantum
random oracle model, we need to assume the hardness of the following problem.

Definition 3. Given the action (G, X, *), the Stabilizer Computation Problem
asks, on input xo in X, to find, if any, an element g in G such that g is not the
identity and g x xo = xg. In other words, the problem asks to find a nontrivial
element of Stab(xg) = {g € G | g x ®g = o}, the stabilizer group of xg.

Noteworthy post-quantum actions from the cryptographic literature are
CSIDH [22] and the ones concerning tensors [45,63] and linear codes [8,27].

2.2 Digital Signatures

A digital signature scheme Sig is a tuple of three algorithms (KGen, Sign, Vrfy):

- KGen(l)‘): takes as input a security parameter 1* in unary and generates a
key pair (pk, sk).

— Sign(sk,m): takes as input a signing key sk and a message m and returns a
signature o.

— Vrfy(pk,m,0): takes as input a verification key pk, a message m and a
signature o and returns 1 for acceptance or 0 for rejection.

We define the standard notion of existential unforgeability against chosen-
message attack (EUF-CMA) [46, Def. 13.2].

Definition 4 (EUF-CMA security). Let O be a random oracle, let Sig =
(KGen, Sign, Vrfy) be a signature scheme, let A be an adversary. We define the
advantage of A playing the EUF-CMA game against Sig in the random oracle
model as:

AdvEUF-CMA (1) _ p, Vrfy(pk,m,o) =1 (pk, sk) + K_Gen(l/\)
Sig OSign(sk, -) not queried on m | (m,o) + A°-OSientsk) (pk) |-

We say that Sig is existential unforgeable against chosen-message attacks if the

advantage /—\dvggF'CMA(A) is negligible for any adversary A.

2.3 Signature from Cryptographic Group Action

It is possible to obtain an identification protocol from a cryptographic group
action, as described in Algorithm 1.

It is known that the protocol in Algorithm 1 is complete, 2-special sound and
HVZK sigma protocol. Through parallel repetitions, it is possible to amplify the
knowledge soundness of the protocol and obtain a digital signature by applying
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Algorithm 1: Identification Protocol Based on Group Action —
Setup: Choose zp € X.
Private key: g1 € G.
Public key: 21 < g1 x Zo.

Prover(gi1,z1) Verifier(z)
g+sG
T 4 §* o z
ch ch «s {0,1}
~ —ch z
Z <991

return z xxc, = T

the Fiat-Shamir transform [38]. Assuming some standard security notion on the
group action , the EUF-CMA security of the signature is proved in the (Quantum)
Random Oracle Model [34,25].

For the multi-signature of Section 3, we will consider a variant IT of the
previous Sigma protocol. Intuitively, this variant allows the Prover to artificially
enlarge the challenge space using ephemeral keys in the commitment phase. The
resulting signature is inefficient for a direct application, but it more accurately
captures the perspective of the individual signer in the multi-signature of Section 3.
The modified scheme is described in Section 3.1.

2.4 Multi-Signatures

A multi-signature scheme MS is a tuple of four algorithms (Setup, KGen, MuSign,
MuVrfy).

— Setup(lA): takes as input a security parameter 1* in unary and outputs a
public parameter pp.

— KGen(pp): takes as input a public parameter pp and generates a key pair
(pk, sk).

— MuSign(sid, sk, pk,m, L): is an interactive protocol that is run by a party P;
taking as input a session ID sid, a key pair (pk,sk), a message to be signed
m and an ordered set of co-signers’ public keys L = (pky, ..., pky) such that
pk; = pk. The protocol terminates with each party obtaining a signature o
as output.

— MuVrfy(L, m,0): takes as input an ordered set of public keys L, a message
m and a signature o and returns 1 for acceptance or 0 for rejection.
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— Game 1: MS-UF-CMA s
MGiq is a machine running the instruction of the party P; in the multi-signature
protocol MuSign(sid, sk*, pk*, m, L), where L = (pku, ..., pky) such that pk; =
pk*.

Q+0; S« 0 OMuSign(sid, msg):
pp s Setup(\) 1: if sid ¢ S then
(pk*,sk*) <—s KGen(pp) 2: (m,L) < msg
(L,m, o) s A%OMuSiEn (pic*) 3: if pk* € L then
if pk* ¢ LV (m,L) € Q then 4: return |
return | 5: Msd s MuSign(sid, sk*, pk*, m, L)
6.
7
8
9:

return MuVrfy(L, m, o) Q<+ QU {(m, L)}
S+ SuU{sid}
return Msq4()

return Mqq(msg)

Below, we show the definition of multi-signature unforgeability under adaptive
chosen message (MS-UF-CMA). In this model, the forger controls all signers’
private keys except for at least one honest signer. The forger can choose the
keys of the rogue signers and adaptively query an aggregate signature oracle.
Finally, to win the experiment, the forger must produce a valid, non-trivial
multi-signature involving the public key of the honest signer. The security notion
is adapted from [31] and allows the adversary to open concurrent signing sessions.

Definition 5 (MS-UF-CMA Security). Let O be a random oracle, let MS =
(Setup, KGen, MuSign, MuVrfy) be a multi-signature scheme, and let A be an ad-
versary. We define the advantage of A playing the MS-UF-CMA game (Game 1)
against MS in the random oracle model as:

AdviieUF-MA(4) — Pr[MS-UF-CMAps(A) = 1].

We say that MS is existential unforgeable against chosen-message attacks if the

advantage Advys OFMA(A) is negligible for any adversary A.

3 The Multi-Signature Scheme

In this section, we present a multi-signature scheme based on cryptographic
group actions, for which the key pairs used by the signing parties are compatible
with the key pairs of standard digital signatures based on group actions such as
LESS [9], MEDS [27], or ALTEQ [17].

3.1 Modified Centralized Signature

In the following, we present a variant of the base X-protocol from cryptographic
group action (Algorithm 1), and we prove the EUF-CMA security of the associated
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signature. The variant allows the signer to use ephemeral keys during signature
creation. Although this has no impact on security, the modified signature allows
the behaviour of an adversary to be abstracted more accurately in the multi-
signature protocol, and is, therefore, a useful tool in the security proof of the
upcoming scheme.

Given a security parameter \, (G, X, *) will denote a cryptographic group
action, xg is a fixed element in X, gy = eg is the identity of G, and N is a fixed
positive integer. Given n € N, let ¢(n) be the minimum positive integer such that
(n/(n+ 1))t <272 Let Ch C [0, NJ*™) and f,,: Ch — [0,n]"™) be a family of
maps such that f, ! (U([0,n]!™)) ~ U(Ch) for any n € [1, N].

Protocol 1 (Group Action X-protocol with Ephemeral Keys). Given the public
parameters pp = (G, X, *, Zo, o, N, Ch, {fn}), the protocol proceeds as follows:

— (g1,21) <3 Gen(pp): the key-generation algorithm takes as input the public
parameters pp. It uniformly samples g1 € G and computes x1 < g1 x xg. It
returns the witness-statement pair (x1,g1).

— com <3 Py(g1,21): given a statement 1 € X and the corresponding wit-
ness g1 € G, the prover chooses n € [1,N]|. Then, it uniformly samples
Jr and computes &y, < g * o for k € [2,n]. Then, it uniformly samples
Y9 and computes 9 «— G xxo for j € [1,t(n)]. Finally, it returns
com  (&g,..., Zn, &M, ..., &),

— ch <—s Vi (com): given a commitment com, the verifier returns a uniformly
random challenge ch € Ch.

— rsp < Pa(g1,x1,com,ch): given a statement x1, the corresponding witness
g1, a commitment com = (£,%) and a challenge ch € Ch, the prover sets
g1 = g1,%1 = w1 and computes ch’ < f,(ch). Then, for each component
ch;» € [0,n] of ch’, they compute a response Zj g(ﬂgc—hj for j € [1,t(n)].
Finally, they output rsp < (21, ..., Z¢(n))-

— {0,1} « Vy(x1,com,ch,rsp): given a statement x1 € X, a commitment
com = (Z,%), a challenge ch and a response rsp = (z1,. .., zyn)), the verifier
proceeds as follows. They compute ch’ < f,(ch) and set 2, = x1. Then, for
each j € [1,t(n)], compute §) 2j *f:ch}. The verifier accepts (returns 1)
if §y = I, otherwise rejects (returns 0).

We denote Protocol 1 with IT. In Appendix A, we show that IT is correct,
HVZK, and knowledge sound. Once the Prover choose n € [1, N], the soundness
of the protocol is £5™, with r, = n/(n+1). Therefore, due to the choice of ¢(n),
the protocol has negligible soundness error.

By applying the Fiat-Shamir transform to the protocol IT, we obtain a digital
signature scheme FS[IT]. The signature is obtained by taking the transcript of IT
without the challenge. The challenge can be recovered as the digests of a hash
function H on the commitment com and the message m. In the signature scheme,
instead of computing f, on the output of H, we can consider an additional
argument for the hash function and write H™ = H(n,-): {0,1}* — [0,n]™).
Notice that this description still falls within the random oracle model and can be
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Algorithm 2: Variant Signature Scheme based on Group Actions —

*x: G x X — X is a cryptographic group action. H™: {0,1}* — [O,n}t(”) is a
random oracle.

Setup(1*): Sign(sk, pk, m, n):

1: ,CE()(*$X 1: @0%%0;@0%6

2: pp < xo 2: &1 < pk; g1 < sk

3: return pp 3: for k<« 2,...ndo

4: gk —s G

KGen(pp = o): 51 Tp ¢ G *To

1: g1 +sG 6: L+ (%2,...,%n)

2: x1 < g1 * To 7: for j <+ 1,...,t(n) do

3: return (pk = z1,sk = g1) 8 §¥«s@

9: 7U) g(j) * To

Vrfy(pk = &1, m, o): 10: &+ (21, ..., z4™)

L (L&, 21,y 24m) & O 11: ch + H™(L, & m)

2: (Z2,...,2n) < L 12: for j < 1,...,t(n) do

3: ch « H™(L, %, m) 13z « §<9'>gc—h]1_

4 fOI:,] “1,. ';’t(n) do 14: return o < (L, %, 21,. .., 2y(n))

S Tz Zch;

6: & < (T, s Ehm)

7: return ¥’ = %

instantiated, for instance, by using an extendable-output function (XOF). The
full description of the signature scheme can be found in Algorithm 2.

Theorem 1. Let IT be as in Protocol 1 for a cryptographic group action (G, X, %)
with base element xo. If no polynomial-time (quantum) adversary can solve the
GAIP (Definition 2) and the Stabilizer Computation Problem (Definition 3)
for xg except with a negligible probability, then FS[II| (Algorithm 2) is strong
EUF-CMA in the (quantum) random oracle model.

Sketch of proof. The complete proof can be found in Appendix A. We first prove
that the Sigma protocol underlying Sig[#] is a (quantum) proof of knowledge. We
start by taking a simplified Sigma protocol I1[n], with a fixed number of n — 1
ephemeral keys, and showing that it is a proof of knowledge roughly equivalent
to the basic protocol of Algorithm 1, with a higher knowledge error. Next, we
show that we can use the knowledge extractor for IT[n] to extract a witness from
a dishonest prover against IT, moreover, we show that this does not change the
knowledge error of the protocol. Finally, we show that, if the base protocol in
Algorithm 1 is correct, has high min-entropy, and is HVZK, then IT also has
the same properties. We observe that these properties are required in concrete
applications to construct digital signatures from group actions, so we make the
same assumptions in the construction of the variant. Therefore, [34, Theorem 22]
can be applied to show that the signature is EUF-CMA in the QROM. O
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Fig. 1: High level description of MS-GA scheme of Algorithm 3, answering on
ch = 1. P, reveals the map from z; to #(1), while all other parties reveal the
ephemeral group element §/).

3.2 Our Multi-Signature Scheme

The multi-signature scheme is designed in a way that closely resembles the
centralized digital signature scheme described in the previous section. In fact, in
the multi-signature that we present in this section, the ephemeral signing keys
used in the centralized signature in Algorithm 2 are replaced by the signing keys of
the other parties taking part in the signing process. We recall that the centralized
signature in Algorithm 2 is not efficient in any way, but it is unforgeable under
chosen message attacks. In the security analysis, we will reduce the security of
the multi-signature scheme, according to Definition 5, to the unforgeability of
the centralized digital signature.

At a high level, the multi-signature signing algorithm that we present instructs
each party in the signing set to perform the following operations. Suppose L
is an ordered signing set of n users Pi,..., P,. Each party P; in L randomly
generates a salt r;, which will be used to generate a shared randomness associated
to the signing session, and contributes to the creation of the sigma protocol
commitment Z. In particular, the parties in L perform the following operations
in a round-robin fashion:

1. P; commits to a random salt r;, by computing com;, a commitment which
binds 7; also to the commitments of the parties acting before P; in the ordered
set L*;

2. P; contributes to the generation of the sigma protocol commitment Z by

generating t(n) group elements §() = @gi)a e 75’53»

compute the partial commitment in #(*) starting from the partial commitment
it received from the party acting before it, namely #(—1,

) and using them to

4 Binding the commitment to 7; to the commitments of the previous salts is useful to
avoid broadcasting each commitment to each party. The only commitment that must
be broadcast and seen by every party is com,,, which is a commitment to all the salts
Tiy..3Tn.



12 D’Alconzo et al.

Then P; sends to P;;; the cryptographic commitment com; and the sigma
protocol partial commitments #(*. The same operations are repeated by each
party, until the last signing party P,, which broadcasts its commitment com,,
and & = ("), Then, all the parties reveal their randomness r; and check that
the cryptographic commitments have been honestly computed. If this is the case,
each party computes the shared randomness r < Hy(rq,...,r,) which acts as
a session identifier. Using the shared randomness r and the commitment z, the
parties generate the challenge ch «+ H;") (Z,7,L,m), a string of ¢(n) elements in
{0,1,...,n}. In the response phase, a challenge ch; =i # 0 requires revealing a

map frorn x;, the public key of P to Z; = :c . Each party Py, for k # i, reveals

the ephemeral group element g; (k) . P; then computes the response as

(i)

Otherwise, if ch; = 0 then the response is the group element mapping the base

point xg to Z;. Each party reveals the ephemeral group element g ~(k) and the

response is computed as
n—1
~(n—k
zj = <H9§ )>~ (1)

k=0
In the latter case, it is agreed that the calculation of z; is entrusted to the

last user P,. A high-level description of the multi-signature scheme is shown in
Figure 1 for ch = 1. The full description of the protocol is given in Algorithm 3.

4 Security Proof

In the following, we prove the MS-UF-CMA security of the protocol in Algo-
rithm 3. In particular, we reduce security to the EUF-CMA of the centralized
signature variant described in Section 2.3.

Theorem 2. Let x: G x X — X be a cryptographic group action and let IT be
as in Protocol 1. Let A be a MS-UF-CMA adversary against MS-GA[x] in the
random oracle model which makes qs signing queries, qy queries to the random
oracles Hy,H1,Hs. Then, there exists a EUF-CMA adversary B against FS[II|
1ssuing qs signing queries and qu queries to the random oracle H', such that

. 9s(qn +4ds) | 2dsqu
AdviS G (A) < Advesi ™A (B) + 0 +

and the running time of B is about that of A.

Proof. In the following, we denote the random oracles and the signing oracle in
the MS-UF-CMA game as Hy, Hy, Ho and OMuSign. The EUF-CMA adversary
B has access to a signing oracle OSign of the FS[/I] and an outer random oracle
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Algorithm 3: MS-GA[x] —
*: G x X — X is a cryptographic group action. The random oracles are
Ho: {0,1}* — {0,1}** Hy: {0,1}* — {0, 1}%* and H{™: {0,1}* — [0,n]!(™.
During the execution of MuSign, each party maintains a list of active session
identifiers in a list S.
Setup(1*): 6: x; < pk; gi < sk
1: zp s X 7 i s {0, 1}5%n
2: pp < 7o 8: com¢_1,i(i_1) <+ Pi_1
3: return pp comg = &, v{"/’” =z
9: com; < Ho(com,_1,7;)
KGen(pp = z0): 10: §(i‘> 8 Gf(n) )
l: g5 G 11: &9 (g7« 2] je oy
2: T4 g*To 12: 29, com; = Pigs
3: return (pk = z,sk = g) 13: 3 « @™, ,fﬂi?z)) If
i = n send to each party
MuVrfy(L, m, o): 14: ri = Py, rp <— P, Vk # 4
L (z1,...,20) < L 15: if 35 : com; # Ho(comj_1,7;)
2: (ch,ryz1,. ., 240)) O then
3: for j < 1,...,t(n) do 16:  return L
4 Fj 4z Ten, 17: 7+ Hi(r1,...,mn)
5 (F1y e Bue) )
. n) : for j ,...,t(n) do
6: if Hy" (7,7, L,m) = ch then 20:  if ch; =iV (ch; = 0Ai = n)
7:  return 1
8: else then~<k) )
9: return 0 21: 95 <« P, Vk 71 A
2z o« (ISt
MuSign(sid, sk, pk, m, L): Jo = e ,
1: (pki,...,pkn) < L 23: zj —> Py, Vk # i
2. if sid € SV i pk; = pk then 4 else
25: G: ' —> Pen.
3:  return L J J
4: Set i such that pk; = pk 26: % < Fa,
5: S «+ SU{sid} 27: 0« (ch,7, 21, .., Zi(n))

H’. After receiving the target public key pk* in the EUF-CMA game, B forwards
pk* to A.

At a high level, we show that controlling n — 1 users in the multi-signature
is no better than choosing n — 1 ephemeral keys in the centralized signature.
We show that B can simulate OMuSign by querying OSign and programming
the random oracle Hy with the challenges provided by the outer random oracle
H’. During a query to OMuSign, the adversary may choose the value of the
commitment Z of the sigma protocol by controlling the last user. However, the
adversary can not control the value of the shared salt r, and B is able to program
the random oracle Hy before the adversary learns the value of r. In this way,
the manipulation of the final commitment cannot influence the challenge and be
exploited in parallel sessions.
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Algorithm 4: Full Reduction EUF-CMA — MS-UF-CMA
OMuSlgn(S|d (m, L)):

B(pk*):
1: 9+ 0; S+ 0; M« 0
9. (L7 m, 0_) s AO,OMuSign(pk*)
3 (1, xn) « L
4: (ch,rz1,...,24(n)) < 0O
5: if MuVrfy(L,m,o) A 30 :
z* A (m,L) ¢ Q) then
Recover Z as in MuVrfy
m' < MT[z,r, L, m]
if m' € M then
raise badmcol
10: L' —
Lid1y.--, mn)
11: o« (L, %, 2,...
12:  return (m’,o’)

(m2,...,

) Zt(n))

Ho(r):

1: if HTo[r] = L then
2: com ¢s {0,1}**
3:  HTo[r] - com

4: return HTo[r]

H1(Q):

1: if HT1[Q] = L then
2: 7 <s{0,1}*

3: HT1[Q] —~r

4: return HT,[Q]

H2(Q = (2,
1: if HT2[Q] # L then

2 return HT;[Q)]

3 L+ (z1,...,Tn)

4: if $i such that z; = pk* then
5.

6

7

r,L,m)):

ch <—s Ch
: else
L —
Lid1y---, xn)
8 m/ «sM
9:  chP « H(L, & m')
10: ch « 1,4 (ChB)
11:  MT[Q] + m/
12: HTQ[Q] < ch
13: return ch

(l‘z,...

(z: =

Ti—1,T1,

y Li—1,L1,

10:
11:
12:

13:
14:
15:
16:

17:
18:
19:

20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:

37:
38:
39:
40:

0 @« Qu{(m, L)}
(xh ..,CL‘n) «~— L
if sid € SV 3i:z; = 2* then
return L
S + Su{sid}
m' s M
M~ MU{m'}
(comP, 28 .., ztB(n)) s
OSlgn( 2]
(&5,...,2
com”
ch® « 71 ;(H' (com®,m”))
ri <3 {0, 1}>‘
com;_1, 2"V o Py
com; H/o(comz-,hn-)
for j < 1,...,¢(n) do
if ch} # i then
gj“ +—s G
50 ¢ g0 4 gD
else
~(1)

comg =&, T

—g;

<—IL'J

7@ ,com; —> Piyq
- (n) ~(n)
m<—( s Zyny)
Retrleve Tk such that
HTo[comi_1,7%] = comy, Vk # i
r<Hi(ry,...,m)
if HT2[Z,r, L, m] # L then
raise badycol
HTs[&,r, L, m] < ch®
ri —> Py, T <— P, Vk 7& 7
if 3] : fj 75 rj then
return |
for j < 1,...¢(n) do
if ch; = ¢ then
~<’“) @ Po,Vk £

.7
n—(i+1) ~(n—k
zj + ( k:é >g](» >)ZJB

Zj »Pk,Vk: # 7
else if ch; =0A 7 =n then
g](k) Py, Vk #i
(05"
zj — Py, Vk #1
else

g](’b) —> Pchj
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The main focus of the reduction concerns the simulation of the random
oracle Hy. After receiving a query containing the target public key among the
participants’ keys, B queries the outer random oracle H and reprograms Hs with
a permutation of the received challenge. When A produces a valid signature, B
will be able to map it into a signature for the centralized scheme using the keys
of the users controlled by A as ephemeral keys.

In the following, we make the simplified assumption that before A outputs a
forged signature, it makes a query on Hs, as would be done during the signature
verification. Moreover, we assume that A always outputs a valid signature, and
halts by returning L otherwise. Notice that we can always modify A to behave
this way by running the verification algorithm on the provided signature, and
checking that the message provided was not queried to the signing oracle with
the same set of signers.

More in detail, we prove the reduction by presenting a sequence of hybrid
games, modifying the MS-UF-CMA game (Game 1) until it can be simulated
by the EUF-CMA adversary B against the centralized signature FS[IT]. In the
following, we use the notation Pr[Game,(.A) = 1] to denote the probability that
Game,, returns 1 when played by A. The complete reduction is described in
Algorithm 4.

Gamey This is the initial strong MS-UF-CMA game against the MS-GA[*] scheme,
except that it uses programmable random oracles. At the start of the game,
the challenger initializes three tables, HTo,HT1, HT for Hg, Hq, Hs, respec-
tively. When a query @ for Hy is received, if HT([@] = L it uniformly samples
com <s {0,1}?* and stores HT([Q] < com, finally it returns HT[Q] (simi-
larly for Hy and Hy). It follows that Pr[Gameo(A) = 1] = Advyscan]  (A).

Game; This game is identical to Gamey, except that OMuSign aborts by raising
badheol when the following happens: being & the commitment and r <
Hi(ry,...,7,) the salt generated by A4 and OMuSign during the sign query
(sid, (m, L)), the challenger aborts the game if the random oracle Hy was
already queried at input @ = (Z,r,L,m), i.e. HT3[Q] # L. Otherwise,
OMuSign samples ch <s [0,n]*(™) and programs HT»[Q] « ch. It follows that
|Pr[Game0(A) = 1] — Pr[Game1 (.A) = 1]‘ < Pr[badhco|].

Game, This game is identical to Game;, except that OMuSign and Hs are sim-
ulated as follows. At the start of the game, the challenger initializes an
empty set M, that will be used to track the messages queried by the sim-
ulator to OSign, and a look-up table MT used to map the queries to Hy to
the messages included in the queries to H’. In particular, when OMuSign
receives a query, it samples a random message m’ € M and adds it to M
before sending a sign query to OSign for m’. When Hsy receives a query
Q = (&,7, L,m) such that pk* € L, it samples a random message m’ € M and
sets MT[Q] <~ m/ before querying H on (L, &, m’). After the adversary out-
puts a valid signature o = (ch,r, 21, ..., 2;(,,)) on message m with users public
keys L = (21,...,2,), the challenger derives Z as in the execution of MuVrfy,
and retrieves m’ < MTI[Z,r, L,m]. If m’ € M, the game aborts by raising
badmeor. It follows that |Pr[Game; (A) = 1] —Pr[Gamey(A) = 1]| < Pr[badmcol]-
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The reason why in Game,, for the sign query to OMuSign and hash query
to Hg, the simulator B is instructed to sample a random message m’ resides in
the definition of forgery in the multi-signature scheme and in the centralized
signature scheme. In particular, in the multi-signature game, A can produce a
forgery on a message m signed on behalf of the public keys in L even if during the
training with the oracle OMuSign it previously queried a signature for the same
m but with a different set of signers L’. This does not hold for the centralized
signature, where the forgery must be associated to a message that has never been
queried to H’'.

We now show that the EUF-CMA adversary B can simulate Game;, as de-
scribed in Algorithm 4. At the start of the game, B initializes an empty set
M <« () that will store the queries to OSign. In the following, given a vector z,
we will denote with ; ;(z) the permutation of elements with index ¢ and j in x.

Random oracles queries. When a query Qg for Hy is received, if HT([Qo] = L,
B uniformly samples com <s {0,1}2*, stores HT([Qo] <~ com, and returns
HTo[Qo]. Similarly, when a query @, for H; is received if HT{[Q,] = L, B
uniformly samples com <s {0,1}?*, stores HT;[Q;] + com, and returns
HT1[@1]. Instead Hz, the random oracle employed to generate the challenge
ch, is simulated as follows. Suppose a query Q2 = (Z,r,L,m) for Hy is
received and HT3[Qs] = L. Let n = |L|, if pk* & L, i.e. the random oracle
query do not refer to the public key that the forger must impersonate,
B uniformly samples ch <s [O,n]t(") and returns it. Otherwise, suppose
L = (z1,...,7,) such that z; = pk* and let L’ be the set of public keys
in L after permuting the order of x; and x; and subsequently removing z;,
ie. L' = (x9,...,2i-1,21,Zi+1,---,Zn). This way, L’ can be used as a set
of ephemeral keys for the centralized signature scheme. Then, B samples
a uniformly random message m’ and queries (L', Z,m’) to H'(™) obtaining
ch®, which acts as the challenge of the centralized signature scheme. Next,
it computes ch as the permutation 7 ;(ch®), making it compatible with the
public keys in L, and stores MT[Q2] + m’ and HT3[Q2] + ch. Finally, it
returns HT2[Q2].

Signing queries. On a new query Q = (sid, (m, L)), B runs MuSign up to
Line 9. Suppose L = (z1,...,%,) such that z; = pk*. Then, it samples a
uniformly random message m’ <s M, adds m’ to M, and queries OSign

on m’. The signing oracle response is (com?, 28, .. .,zf(n)), with com? =
(25,...,28 38 ... ,if(n)). B will only use responses sz from OSign that

link z; to 5053 , which correspond to the values 1 of the challenges sampled
by the oracle. Hence, B computes the permutation of the challenge of the
centralized signature, obtaining ch® « 7 ;(H™ (com? m/)), that will be
used to program the answer of Ha. Then, MuSign is simulated up to Line 13
,t(n) it receives 555-%1). Then, if ch§3 # 1, it
samples §]@ +s G and sets ig.i) — gj"’ * 5:;7;1). Otherwise, if ch§g =1, it
sets igi) — 535” , since it knows the group element mapping the public key
x; to i? from the centralized signature previously queried. Subsequently,

as follows: for each j < 1,...
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before revealing r;, B retrieves r1,...,r, from HT. If some com;’s were not
obtained after a query to Hy for (com;_1,7;), it follows the execution of
MuSign and returns L on Line 16. Next, it computes r < Hy(r1,...,7,) and

programs HTs[Z, 7, L, m| + ch®. Finally, the remainder of MuSign’s execution
(@)
I
(k) =(n) =(i+1) 5B

Otherwise, it receives g; for k # ¢ and computes z; < g; * ... g; ' "2}.

is simulated as follows: for each j < 1,...,t(n), if ch; # i, B reveals g

Eventually, A will output a valid signature o = (ch,7,21,...,2yy)) for a
message m under public keys L = (z1,...,x,). If A is winning the MS-UF-CMA
game, then there exists an index i € [n] such that pk* = z; and (m,L) ¢ Q. B
can run MuVrfy up to Line 5 to recover & = (&1, ..., Z4()). From our simplifying
assumption on A, o is valid and @ = (Z,r, L, m) must have been queried to Hs.
Then, B assigns to L’ the set of public keys in L after permuting the order of z; and
x; and subsequently removing z;, i.e. L' = (z2,...,%i—1,T1, Tit1, ..., Zn). Next, it
retrieves m’ <— MT[z,r, L, m] and aborts by raising badmeol if m’ € M. Otherwise,
B wins the EUF-CMA game, returning the signature (L', %, z1,. .., 24py)) on
message m’. In fact, ch was obtained in the simulation of Hy as ch = wl,i(ch’),
where ch’ = H'™)(L/ &, m'). Let &, < =, for all k € [n],k # 1,i and let
&; + 1,31 < ;. For any j « 1,...,¢(n), it follows that:

Zj* i‘ch; = Zj *Tch; = i‘j.
If none of the bad events happen, B perfectly simulate Game,, and we obtain

Adv]gslﬁ']CMA(B) = Pr[Gamey(A) = 1]

> Adviiscap T (A) — Prlbadicol] — Pr[badmeol]-

B can simulate Game, with at most the same running time of A plus the time
required for running MuVrfy.
In the following, we bound the probability of each bad event happening.

Probability of badn. . The event badpe occurs on Line 25 of OMuSign on
input (sid, (m, L)) when, after obtaining the commitment Z and the salt
r+ Hy(r,...,m), a value for Q = (&, r, L,m) was already assigned in HTs.
The table HT5 is populated by either OMuSign or Hs, so that its entries are
at most qs + qu. The salt r is obtained from H; on inputs rq,...,r,, where
i, k # i is provided by A and r; is sampled uniformly random from {0, 1},
The probability that a uniformly random r; produces a collision with one
of the entries is then at most (gs + qn)2~%. Since at most qs are made to
OMuSign, then Pr[badhco|] < qS(qS + qH)Q_és‘"‘".

Probability of bad,. The event badme occurs on Line 9 of the simula-
tion of B when, after the adversary A outputs a valid signature o =
(ch,7, 21,..., 2(n)) on message m with users public keys L = (x1,...,2,), B
derives Z as in the execution of MuVrfy, and retrieves m’ «+ MT[Z,r, L, m],
the message sampled during a random oracle query to Hg, such that m’ € M.
There are two possibilities that can cause the badn,c event: either in Hs
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(Line 8) if it samples m’ € M that is already in M, or in OMuSign (Line 6)
if it samples m’ € M such that it is already a value in MT. The set M is
populated by OMuSign, so that its entries are at most gs. Since |M| = 2,
the probability that a uniformly random m’ € M produces a collision with
one of the entries of M is then at most qs/|M| < qs/2. Since at most gy
queries are made to Hs, the probability of the first occurrence is at most
qugs /2. Similarly, the table MT is populated by Hy with at most qy entries,
and the probability that a uniformly random m’ € M produces a collision
with one of the entries of MT is at most qu /2. Since at most qs queries
are made to OMuSign, the probability of the second occurrence is at most
qngs /2. Therefore, we obtain Pr[badmeol] < 2qsqn/2.

Combining the previous bound on bad events, we obtain the claimed estimate
of Advisarg  (A). O

Concurrent executions. Note that the security proof reduces the security of the
multi-signature to the security of a centralized signature, which is concurrently
secure since it does not require interactions between parties. Also, the simulation
does not require B to rewind the adversary during the execution of the training
phase, when the adversary queries the sign oracle and builds signatures of
chosen messages with its support. The rewinding is executed only once, when
the adversary of the multi-signature produces its forgery. This means that the
execution time of the simulator B is polynomial in the execution time of the
adversary, which is polynomial in lambda.

Identifiable abort. Our protocol can be adapted to allow the signers to identify
when a party misbehaves. If during the construction of the commitment, each party
broadcasts their partial commitment, then in an eventual failure of the signature
protocol the honest party will always be able to identify at least one malicious
party for each signing protocol execution. In fact, when the commitments are
opened, one can check that the group element g; of the parties P; which are not
selected by the challenge actually maps the previous partial commitment Z;_; to
ZT;.

5 Signature Optimizations

In this section, we apply some standard optimization techniques to MS in order
to decrease the size of the multi-signature. Note that when defining the multi-
signature protocol, it is necessary to ensure that the centralized signature keys
are compatible with the interactive protocol. Therefore, all optimizations that do
not intervene directly on the keys are potentially applicable.

One of the main efficiency measures for the multi-signature scheme is the
compression rate, i.e., the reduction in the length of the signature aggregation
of n users compared to the trivial concatenation of n individual signatures.
Let X, be the multi-signature of n users and let o be the individual signature
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of the centralized scheme. The compression rate of n signatures is defined as

T(n)=1- L_El’;l‘ . In order to optimize the compression rate, we reduce the size of
X, without affecting the security of the scheme.

Consider a group action (G, X,x) and a security parameter A. The non-
optimized version of the X-protocol II is described in Algorithm 1. In the
following, we assume that a group element can be represented with strings of g
bits, while a challenge for a single instance of the protocol can be represented
with a single bit. Since II is commitment-recoverable, we are only interested in
the size of the restricted transcript (ch, rsp), where the response rsp is an element
of the group. We already discussed that to achieve negligible knowledge error, it
is required to parallel repeat II for ¢ = )\ times, obtaining II; = II*. We present
each optimization as a successive transformation applied on top of II;, analysing
the updated parameters (e.g., the number of repetitions of the protocol) and the
size of the signature obtained by applying Fiat-Shamir. The centralized signature
associated with IT; is denoted with FS[IT;], while the multi-signature is denoted

The bit size of the non-optimized centralized signature FS[II;] is given by:

lch| + Irsp| = A + M.

In the non-optimized version of the multi-signature MS[IT;], the signature
produced by n users is given by X, = (ch,r, z1,..., zt(n)). The expected sizes (in
bits) of the elements of X, are expressed by

|ch] = logy(n 4+ 1)t(n), |r| =2X, |z] =t(n)ls.

5.1 Compression of Random Elements

A basic technique used to reduce the size of the signature FS[II'] is based on the
following simple observation: when ch; = 0 the response for the i-th repetition is
just the uniformly random group element g; € G used to build the commitment.
Therefore, in practice, g; can be replaced by a short random seed s; of size
A which is used as the input of a Pseudorandom Number Generator PRNG to
generate the group element. Then, every time ch; = 0, the signer can set rsp; < s;
saving £g — A bits for each 0 challenge. If the challenge array is uniformly sampled
from {0, 1}, then the expected number of bits saved using this optimization is
t(fg — A)/2. This technique was already adopted in the context of isogenies [61]
and later employed in group action-based signatures.

When random responses are compressed using seed of length A, it is required
to also employ a random salt of length at least 2 to prevent collision search
attacks [23]. This corresponds to a slight increase in the signature size, which
now includes the random salt.

Let I15 be the protocol obtained by applying the aforementioned optimization
to I, then the expected bit size of the signature for FS[IT5] is given by

1 1
[r| + |ch| + |rsp] = 2A+ A + ¢ (2)\ + 2€g> ,
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where the terms of |rsp| correspond to the size of the responses to non-zero and
zero challenges, respectively. Notice that this holds only on average and that in
the worst case, the size of the response can grow up to t/g.

When we consider the multi-signature described in Algorithm 3, things get
more complicated because the signers Py, ..., P, build the responses z;,i € [t(n)],
in a round-robin fashion by multiplying the group elements that they have
generated as described in Equation (1). Therefore, when the challenge ch; = 0, no
contribution is required from the secret keys of the participants, and the response
to the i-th repetition of the sigma protocol can be encoded in two possible ways:

— with the full list of seeds (s1,...,s,) corresponding to the group element of
each party, which are multiplied to retrieve the response z;;
— with the direct encoding of the group element z;.

This means that the use of seeds is convenient as long as the representation
of an element in G is heavier than the concatenation of n seeds, i.e. nA < (g,
t(n)

and if the expected number of zeros in a ¢(n)-bit long challenge is 4, then the

t(n)(lg—nX)

n+1 :

Similarly, the challenge ch can be expanded from a digest d € {0, 1}?* obtained
from Hs in Algorithm 3.

Applying the aforementioned optimizations, the expected sizes (in bits) of

the challenge and the response array for MS[I15] are approximated by

t(n)
n+1

expected number of bits saved by using this technique is

‘Ch| = 2], |’I“| = 2], |Z‘ = (néG + gseeds>7 lseeds = min{n)\,fG}
where the terms of |z| correspond to the size of the responses to non-zero and
zero challenges, respectively.

5.2 Seed Trees

A binary tree of seeds (seed tree) can be used to reduce the communication cost
of the seeds used to construct the random elements of the group [15]. The tree
is computed by taking a master seed of length A as the root of the tree. Then,
from each node, two children are generated from the output of length 2\ of a
PRNG taking as input the value of the node. To represent ¢ seeds, this process
is repeated for [log(t)] times so that the tree has 2/1°8()] > ¢ leaves having the
seeds as values. The seeds corresponding to a subset of the leaves can be revealed
by sharing a suitable subset of parent nodes and computing the corresponding
leaves. In particular, to communicate the value of all the ¢ seeds except for those
indexed by a subset of {1,...,t} of size w, it is enough to send the values of the
following number of nodes:

210221 4 w([log, ()] — Mogy(w)] — 1)

The communication cost of using a seed tree is advantageous when there

are at least % zero challenges. This can be enforced by sampling the challenges

according to a fixed-weight distribution, as shown in the next optimization.
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In the multi-signature, the expected number of zero challenges is % There-
fore, the use of a seed tree is already ineffective for n = 2 users.

5.3 Unbalanced Challenges

When random responses corresponding to ch; = 0 are compressed with a seed
as described above, the resulting size is much smaller than when the challenge
is non-zero. A standard technique to exploit this imbalance is to modify the
distribution of challenges to increase the number of zero challenges in ch [15,60,9].
More precisely, with this optimization, we choose parameters t,w such that there
are exactly w non-zero challenges among t execution of the protocol. When the
challenge space is binary, as in Algorithm 1, the number of challenges in {0, 1}
having exactly w components equal to 1 is (f}) Therefore, the choice of ¢, w must

be made so that .
N

<27 2

() = 2)

The security of this solution is well understood in the case of special-sound
JY-protocol since, as for parallel repetition, the resulting protocol is still special-
sound with challenge space of cardinality (f}) However, this is not trivial to
extend to generic k-special-sound X-protocol of multi-round protocols and was
only recently proved secure in [11].

By applying this optimization on Ils, for each response we send w group
elements corresponding to ch; = 1. The remaining ¢ — w group elements corre-
sponding to ch; = 0 are replaced by random seeds that can be further compressed
using the Seed Tree optimization. We obtain the protocol I13, the size of the
signature associated with FS[IT5] is given by:

7| + [ch] + [rsp| = 2X + A + (222 ()T 1+ w(Tlog, ()] — [logy(w)] — 1)) - A + wle.

Notice that when A < {g, using this optimization with an appropriate choice
of w compresses the signature considerably. On the other hand, to maintain the
same security level, ¢ must be chosen according to Equation (2). This typically
results in an increase in the number of parallel repetitions, leading to a trade-off
between the size of the signature and the efficiency of the signing and verification
process.

In the multi-signature of Section 3, the use of fixed-weight challenges can
still be useful to decrease the cheating probability of the adversary. In fact, the
best strategy for an adversary is to control all parties except the target user P;
and to have a challenge with few components ch; = i. To make this possibility
negligible, a large number of parallel repetitions ¢(n) must be chosen, making the
signature inefficient. As a countermeasure, we can consider challenges where each
value 4 € [1,n] appears the same number of times. More in detail, for each n € N,
we choose t,w such that the challenges are elements of [0,n]" with exactly w
components equal to ¢, for each i € [1,n], and the remaining ¢t — nw components
are equal to 0. Let Ch%* denote the challenge set mentioned above. The number
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of challenges in Ch%¥ is
t!

(t — nw)!(wh)"
Once a commitment is fixed, let 7., be the maximum number of challenges in
Chb% an adversary can answer to without knowing the private key (i.e. from the

responses to such challenges it would not be possible to extract the witness).
Then ¢,w must be chosen such that

Nt,w -
<274, 3

Lemma 1. Given n € N, the value 0., can be expressed as

(t—(n—k)w)! ((n—k)w)!
03%1382{—1 (t —nw)l(W)k  (wh)r=k (4)

Proof. Suppose w.l.o.g. that the target user is P;, so that, without knowing their
private key, an adversary cannot answer two challenges with 0 and 1 in the same
component. In the following, let Ch,, = {0,...,n} and let Ch!, be the set of
challenge strings of length ¢. For a subset C' C Ch,, let H¢ be the undirected
graph whose vertices are the elements of Ch,, and in which, for any z,y € Ch,,,
there is a link between x and y in H¢ if and only if there exist two challenge
strings ch, ch’ € C such that ch; = z and ch = y for some index 1 < i < ¢.

Let C be the set of all subsets C' of Ch%; such that 0 and 1 are not connected
in He. It follows that 7, is the maximum cardinality among the sets in C.
Given a set C € C, let k be the number of challenges aq,...,ax € Ch, \ {1}
for which there is a path between 0 and «; in H¢. The remaining n — k — 1
challenges f1,...,8n—k—1 € Ch, \ {0,1} can either be all connected to 1 or
form smaller connected components. For any ch € Ch%¥  there are exactly w
components of ch equal to ; or 3;, and ¢t — nw components equal to 0. Therefore,
in C' we can have at most % choices for the entries that have a path

to 0. The remaining (n — k)w entries, can have at most % choices when

(w
B1,...,Bn_k_1 are all connected to 1. Therefore, the maximal size of a set C € C
is given in Equation (4). O
In the following, we choose t = (n + 1)w, so that each value in {0,...,n}

appears exactly w times.

Lemma 2. Gwenn € N, let 1y = Nnt1)w,w- Then

—~

_ (nw)!
e =

Proof. Substituting ¢ = (n + 1)w in Equation (4), we obtain

max ((k4+ Dw)! ((n — k)w)!
0<k<n—1 (w!)kﬂ (w!)nfkr

Nw = Nn+w,w =
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Consider the discrete function f(k) taking values in {0,...,n — 1}, defined by

k+ Dw)! ((n — k)w)!
i = D (),

Notice that f(k) = f(n—1—k), it is then sufficient to prove that f is decreasing
for k < |(n—1)/2]. In fact, for any k, it holds that
L n—k

fk) (k4 D) (n—kw)! T (n—k)w—i
(k+2)w—1’

fD) " (k2w (k- Dol 11

Notice that for any term in the product, it holds that

(n—kw—i>(k+2w—i <> k< V;ﬂ

Therefore n, = f(0) = f(n—1) = EZTJ))' 0

If we substitute the value of 7, from previous lemma in Equation (3), then
the choice of w should be made such that

9-A > Mo _ <(n + l)w> 71.
= |Ch51n+1)w,w‘ w

The choice of w is made with the aim of minimizing the size of the response
array z, where
|2| = nwlc + wlseeds- (5)

In Section 6 we provide a concrete analysis of the optimal values for w for
the selected signature schemes.

5.4 Multiple Public Keys

It is possible to consider multiple public keys for each user in order to reduce the
size of the signature. This is a standard technique [32] employed in group action-
based signatures to achieve a trade-off between signature size and public key size.
Unlike previous optimizations, in this case the underlying security assumption is
modified. The signer generates s — 1 public keys associated to different private
keys, and the challenge space is extended from {0,1} to {0,...,s — 1} so that a
challenge can select one of the keys. The response is then generated using the
relevant private key, exhibiting a group element that maps the selected public
key to the commitment. The security assumption underlying the signature is
modified to the following

Definition 6. Given a group action (G, X, *), the Multiple Group Action Inverse
Problem (MGAIP, ) takes as input a collection of elements xg, ..., xs_1 in the
orbit G x g, and asks to find g € G such that x; = g x x;, for some i # j.
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This problem is still hard, and reduces tightly to GAIP, for instance, a proof
is given in [8, Theorem 3] and it can be easily generalized. Since the challenge
space of the single instance is extended from a binary space to one of s elements,
the soundness error is reduced to 1/s. Clearly, this also reduces the number of
repetitions required to t = [A/log(s)].

To obtain a soundness error negligible in A with a single instance of the
protocol would require generating an exponential number of keys (s = 2*). For
this reason, this approach is usually combined with the previous optimizations
to reduce the size of the signature with a limited increase in the public-key
size. Notice that when ch; = 0, the response is still a random group element
that can be replaced with a short seed; while for ch; # 0 a full group element
is required. We can then apply the fixed-weight optimization to send w group
elements corresponding to ch; # 0 and ¢ — w short seeds corresponding to ch; = 0.
Therefore, the choice of ¢,w must be made so that

(e RS (6)

By combining all previous optimizations, we obtain the protocol I14. The size
of the signature associated with FS[II4] is given by:

7]+ Ich| +[rsp| = 2A-+ A+ (271921 4w (Tlogy (¢)] — logy (w)] 1)) - A+wle. (7)

Notice that this is the same as the fixed-weight case, but here the number of
repetitions will be smaller due to the increased number of public keys, resulting
in a more compact signature.

Using this optimization in the multi-signature requires minor modifications
to the MS protocol described in Algorithm 3. In fact, the protocol already allows
multi-bit challenges to select a specific user’s key. It is, therefore, sufficient
to extend the challenge space so that one of the user’s keys can be selected.
Notice, however, that this optimization modifies the public keys of the underlying
signature, and is therefore applicable only if the signature scheme provides
for it. The changes described below will then be used in Section 6 for the
parameterization of signatures using multiple public keys.

In the following, we combine the use of multiple public keys with the un-
balanced challenge optimization of the previous section, evaluating its impact
on soundness error and signature size. Concretely, suppose each user P; has
s public keys ml(-o),...,xgsfl) € X, where 20 = zo. For a fixed n € N, let

K3
Ch,,s ={0,...,n(s — 1)} be the challenge space of the single instance, where 0
identifies xp and k = (i — 1)(s — 1) 4 j identifies acgj) of user P;, with 1 <i<mn
and 1 < j < s — 1. Similarly to the single key case, we choose ,w such that the
challenges are elements of Ch!,  with exactly w components corresponding to the
i-th user, and the remaining ¢ — nw components are equal to 0. Let Chﬁ;f‘; denote
the challenge set described above. The number of challenges in Chﬁ;f‘; is

t!

(t — nw)!(w!)™ (s =1)™.
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Let 7., be the maximum number of challenges in Ch/;, an adversary can answer
to without knowledge of the private key. Then ¢, w must be chosen such that

Tt w

<927, 8
chig] ®)

As in the case of the single key, we simplify by choosing t = (n+ 1)w. By adapting
Lemma 1 and Lemma 2, we obtain that

_ ((ki + Dw)! b ()] -
Nw = k:l-i-.nr-Ii-l%i(:n—]_ H 7(8 1) = (S 1) .

i=1

If we substitute the value of 7, in Equation (8), then the choice of w should be

made such that
-1
A New _((n+Dw —w
2 2|Ch<n+1)w,w|—< " (s —1)7%. 9)

With respect to Equation (5), the expression for the size of the response size
remains unchanged. On the other hand, as s increases, we can choose a smaller
w in order to obtain a more compact signature.

6 Instantiation and Evaluation

In this section, we will provide concrete applications of the multi-signature scheme
described in Section 3 to some digital signature schemes based on group actions,
namely LESS, MEDS, and ALTEQ. We evaluate the efficiency of the scheme by
measuring the compression rate, as defined in Section 5.

Consider a group action (G, X,*) and a security parameter \. Using the
optimizations described in the previous section, in Table 1 we summarize the bit
length of IV centralized signatures and the multi-signature of NV users® associated
with the group action. In more detail, we assume that for both centralized and
multi-signature, we have the same size for random salts /s,y = 2\, outputs of
the random oracle lgigest = 2A, seeds for random elements A, and group elements
lg. For the centralized signature, the number of repetitions ¢ and fixed-weight
parameter of the challenges w are chosen according to Equation (6) and are
reported in the parameter sets of each scheme. In the multi-signature, the fixed-
weight parameter w’ is chosen according to Equation (9) and depends on the
number of signers. Notice that, as discussed in Section 5.2, only the centralized
signature 