
Train Wisely: Multifidelity Bayesian
Optimization Hyperparameter Tuning in Deep

Learning-based Side-Channel Analysis

Trevor Yap1,2[0000−0001−8651−574X], Shivam Bhasin2[0000−0002−6903−5127], and
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Abstract. Side-Channel Analysis (SCA) is critical in evaluating the
security of cryptographic implementations. In recent years, the use of
Deep Neural Networks (DNNs) in SCA has risen in popularity. However,
DNNs consists of many hyperparameters and not every configuration
of hyperparameters result in successful attack. Therefore, the search for
DNN’s hyperparameters poses a significant challenge, especially when
resources are limited. In this work, we explore the efficacy of a multifi-
delity optimization technique known as Bayesian Optimization Hyper-
Band (BOHB) in SCA. This introduces the notion of budget within SCA
to encapsulate the idea of resources when tuning the hyperparmeters of
the DNNs. Next, we proposed a new objective function called ge+ntge,
which could be incorporated into any Bayesian Optimization used in
SCA. We show the capabilities of both BOHB and ge+ntge on four dif-
ferent public datasets. Specifically, BOHB could obtain the least number
of traces in the dataset called CTF2018 when trained in the Hamming
weight and identity leakage models. Notably, this marks the first reported
successful recovery of the key for the identity leakage model in CTF2018.

Keywords: Side-channel · Neural Network · Deep Learning · Profiling
attack · Hyperparameter Search.

1 Introduction

Deep learning-based SCA have found great success when applying DNNs to
analyze traces of physical leakages such as power consumption [13] or electro-
magnetic emanation [2]. These DNNs can retrieve the secret key after analyzing
the traces given. It has been shown by previous works [16, 3] that using DNNs
could recover the secret key with fewer traces compared to classical side-channel
analysis such as Template Attack [6]. Furthermore, that even in the presence of
countermeasures like masking and desynchronization, the DNN can still recover
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the secret key with little to no preprocessing needed [3, 5]. However, DNNs con-
sist of many hyperparameters. Since not every configuration of hyperparameters
will result in a successful attack, one has to tune these hyperparameters to find
a well-performing DNN to retrieve the secret key.

Hyperparameters Optimization (HPO) search and Neural Architecture Search
(NAS) for DNNs have become essential in finding the best-performing attack
that a DNN could mount. This has become a crucial part of evaluating the se-
curity of a cryptographic implementation in evaluation labs. Many works have
considered tackling the problem of finding a well-performing DNN. In the first
work by Zaid et al. [29], authors provide some guidelines to manually create well-
performing DNNs. [23] and [30] further discuss on these guidelines and provide
a more precise methodology that helps to generate smaller and well-performing
DNNs. On the other hand, various automated tools for SCA have been explored
to tackle this issue like Bayesian Optimization [25], reinforcement learning [21]
and evolutionary algorithm [1]. Although these techniques obtained favorable
results, most techniques are slow and could run for days. Due to the large num-
ber of IT products to be evaluated, evaluating the security of these products
in evaluation labs becomes very time-sensitive. An evaluator will naturally set
a budget for any resources like the time needed to quantify the security of the
primitive tested. Therefore, resources such as time are valuable assets to deter-
mine a device’s security and a natural question arises:
Are there automated tools available can produce comparable results while allocat-
ing resources more efficiently?

Multifidelity optimization methods allow speed up in the optimization pro-
cess by allocating more resources to promising configurations and stopping eval-
uations of poorly performing ones early. In this work, we explore a multifidelity
optimization method known as Bayesian Optimization HyperBand (BOHB),
which uses both Bayesian Optimization and HyperBand algorithms to search
for hyperparameters.

Our Contributions. More precisely, the contributions of the paper are as fol-
lows:

1. We apply the multifidelity optimization method, BOHB, and show its ef-
fectiveness as an automated tool. We demonstrate that BOHB can recover
the secret key for all four public datasets tested, while previous works tested
only a few of these public datasets.

2. BOHB is shown to obtain the least number of traces for the public datasets
called CTF2018 in the Hamming weight leakage model compared to other
state-of-the-art methodologies. BOHB uses 82 attack traces to recover the
key. Further, BOHB recovers the secret key of CTF2018 in the identity
leakage model. This marks the first reported instance of a successful attack
using an automated tool against CTF2018 in an identity leakage setting.

3. We propose a new objective function known as ge+ntge to incorporate the
computation of number of attack traces needed for key recovery into the
objective function for the multifidelity optimization method. We show that
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this objective function obtains better results compared to the other objective
functions tested.

In this work, we target synchronized and desynchronized traces. We validate our
approach on traces up to the first-order masking. We leave higher-order masking
to future works. The results can be publicly accessed on the following weblink4.

Paper Organization. The paper is organized as follows. Section 2 will sum-
marize related works. In Section 3 provides the background necessary for SCA,
DNN, and BOHB. We will recall previously used objective functions and present
a new objective function ge+ntge in Section 4. The experimental settings and
datasets used will be shown in Section 5. We present the results using BOHB
in Section 6. Lastly, we will conclude the paper and provide future works in
Section 7.

2 Related Works

Both Multiayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs)
were shown to outperform classical SCA attacks like Template attacks and other
machine learning techniques in [16], resulting in the rise of popularity of DNN
in SCA. In fact, [5] and [20] show that such CNNs can attain strong results
even in the presence of countermeasures. But this also introduced a large num-
ber of hyperparameters to tune (e.g., the number of layers, kernel size, type
of activation functions, etc.) compared to other machine learning or classical
SCA. Furthermore, Maghrebi et al. have pointed out that the performance of
DNNs is greatly influenced by their hyperparameters. This pushes for the need
for methodologies to find good hyperparameters in the domain of SCA. How-
ever, finding and tuning hyperparameters is not an easy task, especially when
resources are limited.

Various works have explored the influences of specific hyperparameters in the
performance of the DNN within SCA. [22] examines how the number of layers
and neurons and the type of activation function within a MLP would affect the
performance. [14] explores the usage of weight initialization in SCA and found
that weight initializers play a significant role in the training process, especially
on datasets that are difficult to break. [24] investigates how the type of pooling
layers affects the performance. In addition, new loss functions are customized
for SCA [28, 31, 11], which are mostly evaluated in [12]. Introducing these new
loss functions has also expanded the range of hyperparameters to tune in SCA.

Zaid et al. [29] proposed the first methodology to build CNN manually. The
methodology gives some intuition of what the DNNs are looking at within the
trace, providing some explainability of the neural network. [23] and [30] further
examine these guidelines and improve on the methodology. For example, it has
been shown by [23] that adding standardization on the traces could remove the
first layer of kernel size 1 proposed by [29]. [10] further investigated the use of

4 https://github.com/yap231995/BOHB-SCA.git
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ResNets in SCA and provided methodology when constructing one by hand.
However, manually tuning the hyperparameters could take a lot of time to find
a well-performing DNN. Therefore, various studies considered using automated
tools to search for well-performing DNNs.

Among the automated tools, the hyperparameters optimization and neural
architecture search are two approaches explored in SCA. HPO fixed the architec-
tures of the DNN, like MLP or CNN. The HPO problem is solved by searching
for the best-performing DNN through a range of hyperparameters. Allowing one
to define the range of hyperparameters of fixed architectures could enable hu-
man expertise to be included. On the contrary, to solve the NAS problem, a
predefined architecture may not be given; instead, techniques proposed usually
specifies certain building blocks and constructs a DNN based on them. [21]
tackles the HPO problem by using reinforcement learning to find small CNN
capable of key recovery. On the other hand, InfoNeat, developed by [1], focuses
on the NAS problem to build DNNs based on information theoretic criteria as
stopping criteria for each configuration. Although these automatic methods at-
tain favorable results, they are slow and could run for more than a day. Wu
et al. [25] consider the Bayesian Optimization based on Gaussian Processes to
search for the best-performing DNN addressing the HPO problem. They pro-
posed a framework called AutoSCA, where they train a DNN using 10 epochs
for a given configuration or a set of hyperparameters. This trained DNN is then
used within Bayesian Optimization to pick the next configuration. Although this
framework could finish a run within a day, we observe a gap where 10 epochs
may not be enough to determine if the configuration is good enough, as more
epochs could be used to obtain better results on those more promising hyperpa-
rameters. Our aim is to propose the use of multifidelity optimization to allocate
resources more efficiently. This will provide evaluators with another tool to use
when resources like time are scarce.

3 Background

3.1 Profiling Attacks

One of the most common side-channel settings is known as the profiling attack.
It assumes the worst-case scenario where the adversary has access to a clone
device similar to the target device. The profiling attack is executed in two phases:
profiling and attack phase. In the profiling phase, the adversary either knows or
can manipulate the key of the clone device. Then, a distinguisher F can be built
from the profiling traces of a known set of random public variables (plaintexts or
ciphertexts) obtained from the clone device. In the second phase, the adversary
performs the attack by collecting several attack traces from another set of known
public variables of the target device. The trained distinguisher is applied to
output a probability score for each hypothetical sensitive value yi = F(ti) for
each attack traces ti acquired from the target device. The log-likelihood score
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for each key k ∈ K is then computed:

sNa(k) =

Na∑
i=1

log(yi[zi,k])

where Na as the number of attack traces used and zi,k = C(pi, k) are the hypo-
thetical sensitive values based on the key k with pi being the corresponding public
variable to the trace ti. Here, C is the leakage model based on the cryptographic
implementation. An example of C is the Hamming weight of the AES Substi-
tution Box (Sbox), HW (SboxAES(pi ⊕ k)). The log-likelihood score is sorted
in decreasing order: G = {G0, G1, . . . , G|K|−1} with G0 being the log-likelihood
score for the most likely key candidate and G|K|−1 is the log-likelihood score for
the least likely key candidate. The index of G is the rank of the key. We define
the guessing entropy GE to be the average rank of the secret key over multiple
experiments. In this work, we average over 100 experiments. If GE = 0, then
the attack is successful. We also denote NTGE as the least number of attack
traces required to obtain GE = 0.

We train a DNN, fθ, as the distinguisher where F = fθ with θ as the
given hyperparameters. In this paper, we will explore two very commonly used
architectures known as MLP and CNN.

3.2 Successive Halving, HyperBand and BOHB

The performance of a model in machine learning can be described as a function
f : Θ → R with θ ∈ Θ as their hyperparameters. We note here that Θ is a pre-
defined space that an expert with prior knowledge could consider to manipulate.
We call the performance of a model f the objective function. The HPO problem
can be defined as searching for θ∗ such that it satisfies

θ∗ = argmin
θ∈Θ

f(θ). (1)

Since resources are limited, evaluators are often required to set budgets to eval-
uate a primitive. In the following, we shall present BOHB and the algorithms
that are building blocks for BOHB. These algorithms incorporate budgets into
their computation.

SuccessiveHalving [9] is one such hyperparameter optimization algorithm
that employs the multi-armed bandit strategy. Given a budget b and a set
of configurations, SuccessiveHalving evaluated the configurations’ performance
based on the budget b. Then it continues to evaluate the performance of the
top η−1 configurations on a η times larger budget until the maximum budget
is attained. [15] recommended taking η = 3 in practice. We illustrate how one
full run of SuccessiveHalving is depicted in Figure 1. The evaluation of the top
models with larger budgets helps to allocate the resources much more efficiently
to more promising models.

Despite the efficient allocation within SuccessiveHalving, there is a trade-off
in terms of the number of configurations to initialize and the initial budget to be



6 Yap et al.

Fig. 1: Visualization representation of one full run of SuccessiveHalving with
b0 = 18 and bmax = 486. In the first iteration, 27 models are evaluated with
budget of 18 each. In the second iteration, the top 9 models are rerun with a
larger budget of 54 each. Subsequently, the top 3 models out of the previous 9
models are rerun with a larger budget of 162. In the last iteration, we choose
the top performing out of the 3 models and run with the budget of 486. Here,
the performance score corresponds to the value of f(θ) for the hyperparameter
θ which could be different metric like validation loss.

used. Li et al. [15] created HyperBand to solve this issue by repeatedly applying
the SuccessiveHalving with different starting number configurations and initial
budget. The pseudo-code of SuccessiveHalving and HyperBand are illustrated
in Algorithm 1 and 2 respectively.5 It has been shown that HyperBand’s con-
vergence to the global optimum is restricted as it is based on randomly sampled
configuration.

Algorithm 1 SuccessiveHalving

Input: initial budget b0, maximum budget bmax, η, n different configurations
HP = {θ1, θ2, . . . , θn}.

1: b = b0
2: while b ≤ bmax do
3: Evaluate all configuration in HP with budget b, L = {f(θ, b) : θ ∈ HP}.
4: Pick the top ⌊ |HP |

η ⌋ performing configuration. HP = topk(L,HP, ⌊ |HP |
η ⌋).

5: Set the next round budget, b = η × b.
6: end while

5 The version of the HyperBand algorithm is slightly different from the original but
is used in the original code of BOHB. Difference is how to compute the number of
configuration n.
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Algorithm 2 HyperBand
Input: minimum and maximum budgets per configuration bmin and bmax, η

1: smax = ⌊logη bmax
bmin

⌋
2: for s from smax to 0 do
3: sample n = ⌊⌊ smax+1

s+1 ⌋ × ηs⌋ configurations HP = {θ1, θ2, . . . , θn}
4: run SuccessiveHalving(b0, bmax, η,HP ) with budget b0 = ηs × bmax.
5: end for

In order to resolve the above issue, Falkner et al. combine Bayesian Op-
timization and HyperBand by proposing BOHB [8]. BOHB uses HyperBand
to decide the number of configurations and the budget in which these con-
figurations are to be evaluated. Furthermore, it replaced the randomly drawn
sample at the beginning of each HyperBand iteration with Bayesian Optimiza-
tion. For iteration i, Bayesian Optimization models the objective function f by
using a probabilistic model p(f |D) with currently observed data points D =
{(θ0, o0), (θ1, o1), . . . , (θi−1, oi−1)} where oi := f(θi). We note that θj is a hy-
perparameter configuration in our use case. Given a probabilistic model p(f |D),
the Bayesian Optimization proceeds with the following steps in each iteration:

1. Select a new point θnew such that it maximizes a given acquisition function
a : Θ → R:

θnew = argmax
θ∈Θ

a(θ)

2. Evaluate the performance of θnew with the objective function f , onew =
f(θnew).

3. Add the new data point into the dataset D ← D ∪ {(θnew, onew)} and refit
the probabilistic model p(f |D).

We note that in each iteration, the acquisition function a is based on the cur-
rent probabilistic model p(f |D). BOHB uses a variant of Bayesian Optimization
known as the Tree-structured Parzen Estimator (TPE) [4]. BOHB uses TPE
with a multidimensional kernel density estimator (KDE) to estimate the follow-
ing densities:

l(θ) = p(o < α|θ, D)

g(θ) = p(o > α|θ, D).
(2)

It picks the next point θnew that maximizes the ratio l(θ)
g(θ) . [4] have shown that

this is equivalent to maximizing a commonly used acquisition function known
as expected improvement (EI) (i.e., a(θ) =

∫
max(0, α−f(θ)dp(f |D)). We note

that here, switching out the TPE with the commonly used Gaussian process
as used in [25] is possible. However, Gaussian processes run in cubic time with
respect to the number of data points while, due to the usage of multidimen-
sional KDE (see Appendix A), the TPE scales linearly instead. We will leave
the benchmarking of different probabilistic models and acquisition functions for
future works.
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Algorithm 3 Sampling in BOHB
Input: datasets D =

⋃
b Db, fraction ρ for random sampling, q percentage of models to consider,

minimum number of data points Nmin to build a model, number of sample Ns from KDEs, and
bandwidth factor bw.
Output: next configuration θ to evaluate.

1: if rand() < ρ then return random configuration, θnew.
2: end if
3: b = argmaxb{Db : |Db| ≥ Nmin + 2}
4: if b = ∅ then return random configuration, θnew.
5: end if
6: Fit KDEs according to Equation 2 with Nb,l number of best configurations to model l(θ) and

Nb,g number of worst configurations to model g(θ).
7: draw Ns according to l′(θ) which is the same as l(θ) but with all the bandwidths of the KDE is

multiplied by a factor of bw.

8: return configuration θnew that maximizes the ratio
l(θ)
g(θ)

.

When sampling configurations in BOHB, a fraction of the random run ρ are
randomly sampled while the rest are sampled using the Bayesian Optimization
considered. This is to promote more exploration of configuration. We describe the
sampling process within BOHB in Algorithm 3. This is performed within line 3
of Algorithm 2 when BOHB executes the HyperBand procedure. After initialized
with Nmin + 2 random configurations, Nb,l = max(Nmin, q ·Nb) number of best
configurations and Nb,g = max(Nmin, Nb−Nb,l) number of worst configurations
are used to fit KDEs to model the two densities l(θ) and g(θ) respectively (line
6 of Algorithm 3). Then, it sample Ns from the modified KDE of l(x) and pick

the θnew that maximizes the ratio l(θ)
g(θ) . The modified KDE l′(x) is simply l(θ)

but with all the bandwidths is multiplied by a factor of bw. For full details of
the internal working of BOHB, we refer readers to its original paper [8].

4 Objective Functions

The type of objective function f is an essential component in an HPO problem.
It determines which performance measure to minimize (according to Equation 1)
in an HPO problem and guides the hyperparameter optimization algorithm. We
want to emphasize that we do not include the network size in the objective func-
tion, as we prioritize the discovery of a DNN capable of recovering the secret key
as significantly more important. In [25], they explored three different objective
functions: key rank, validation loss function on attack traces, and a proposed
objective function called Lm. In this section, we will first recall the definition
of the objective functions Lm and the validation loss used previously. Then, we
will propose a new objective function called ge+ntge, which incorporates not just
the guessing entropy GE but also NTGE into the performance measure, which
was never considered before.

4.1 Prior Objective Functions used: Lm and Val loss

Lm. In [25], they modify the Leakage Difference Distribution (LDD) created
by [26] to create a metric called Lm as an objective function for their Bayesian
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Optimization framework known as AutoSCA. The LDD is defined as

LDD(k, k∗) =

Q∑
i=0

||LM(pi, k
∗)− LM(pi, k))||2, k ∈ K,

where LM is the leakage model, pi is the public data and k is the corre-
sponding key. An example of LM is the Hamming weight leakage model, where
LM(pi, k) = HW (Sbox(pi⊕k)). This provides an estimation of the hypothetical
label distribution variation between the actual key and the other key candidates.
[25] extend this metric as a correlation between the key guessing vector G and
LDD:

Lm(LDD,G) = corr(argsort(LDD),G).

It has been shown in [25] that using this Lm obtains superior results compared to
other tested metrics like key rank and validation loss in the AutoSCA framework.
Therefore, we will test BOHB with Lm as its objective function. Note that since
we are minimizing f , we can simply set f = −Lm.

Val Loss. Furthermore, it was previously demonstrated that minimizing the
categorical cross-entropy loss is equivalent to maximizing the generalization of
the mutual information between the leakage model and the trace (also known as
perceived information) [17]. Similar to [25], we explore whether the minimization
of the validation loss of the attack traces as an objective loss in BOHB can help
to find good-performing DNNs. We denote this objective function as Val loss.

4.2 A New Objective Function: ge+ntge

In [25], they investigated three different objective functions: key rank, validation
loss based on attack traces, and Lm. They concluded that Lm is the best ob-
jective function. However, the key rank did not consider NTGE in its objective
function. The main goal of the hyperparameter search is not just to recover the
secret key within the given number of traces but also to get the best-performing
DNN, especially if an evaluator wants to know the smallest NTGE required. In
other words, we want the DNN to recover the secret key with the least number
of attack traces. Therefore, one should include NTGE in the objective func-
tion. Hence, we proposed the objective function known as ge+ntge to incorporate
NTGE into the optimization process.

For a given configuration/hyperparameters θ and a fixed number of attack
traces Na for evaluation, we define the objective function ge+ntge as follows:

ge+ntge(θ) =

{
NTGE if GE = 0,

GE +Na + c otherwise

where c is a small positive constant. When the GE ̸= 0, this means that for Na

of attack traces, the trained DNN with hyperparameters θ did not recover the
key. Since we want to show how far off the given configuration is to recover the
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key (i.e., GE = 0), we add GE to Na. The constant c is further added to give
an extra penalty for not recovering the key within the given number of attack
traces. We set c = 100 throughout this paper. Since we are minimize f according
to Equation 1 and we want to minimize ge+ntge, we simply set f = ge+ntge.

5 Experimental Settings

5.1 Datasets and Leakage model

We consider four publicly available datasets running the Advanced Encryption
Scheme (AES) [7]. These are scenarios commonly faced in SCA. We focus on
attacking a single byte of the secret key.

ASCADf and ASCADr. The ASCAD dataset consists of a first-order masked
AES implementation on an 8-bit AVR microcontroller (ATMega8515) [3]. We
target the third byte of the first round AES Sbox. This is a first-order masked
key byte. Two versions known as ASCADf and ASCADr are part of the ASCAD
dataset. ASCADf contains traces corresponding to the same fixed key for both
profiling and attack. ASCADr contains profiling traces generated from a random
key setting, while the attack traces are obtained from the fixed key target device.
We use 45000 profiling traces for both datasets. Moreover, we use 2000 attack
traces for ASCADf and 10000 attack traces for ASCADr. The traces in ASCADf
are composed of 700 sample points, while the traces in ASCADr consist of 1400
sample points.

CTF2018. At the Conference on Cryptographic Hardware and Embedded Sys-
tems (CHES) in 2018, a dataset called CTF2018 was released 6. The CTF2018
dataset consists of traces from running a first-order masked AES on a 32-bit
STM microcontroller. We use 45000 traces for profiling and 3000 traces for at-
tack. Unlike the ASCADf dataset, both profiling and attack traces consist of
different fixed keys. We attack the first byte of the key. The traces have 2200
sample points.

AES HD. The AES HD is an unprotected AES hardware implementation
dataset executed on an FPGA in a round-based architecture. We target the
last round leakage Sbox−1

AES(ct15⊕k∗15)⊕ct11 where cti is the i
th ciphertext byte

and k∗15 is the 15th byte of the last round secret key. We use 45000 profiling
traces and 3000 attack traces.

Leakage Model. We investigate two common hypothetical leakage models: the
identity (ID) and the Hamming weight (HW) leakage models for ASCADf, AS-
CADr, and CTF2018. In other words, the hypothetical sensitive variables we con-
sider are SboxAES(pt⊕k) for the ID leakage model and HW (SboxAES(pi⊕k)).
On the other hand, we only consider the HD leakage model for AES HD dataset
as with previous works [1, 29]: SboxAES(ct15 ⊕ k)⊕ ct11.

6 https://chesctf.riscure.com/2018/news
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Table 1: Hyperparameter search space.

Hyperparameter Options

MLP

Number of Dense Layers 1 to 8 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

CNN

Convolution layers 1 to 4 in step of 1
Convolution filters 4 to 16 in step of 4

Kernel size 26 to 52 in step of 2
Padding 0 to 16 in step of 2

Pooling type Average or Max
Pooling size 2 to 10 in step of 2

Number of Dense Layers 1 to 8 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

Others

Batch size 100 to 1000 in a step of 100
Activation function ReLU, SeLU,ELU or tanh

Optimizer Adam or RMSprop
Learning Rate 1e− 3, 1e− 4, 5e− 4, 1e−5, 5e−5

Weight Initializer Random Uniform or Glorot Uniform or He Uniform

5.2 DNN Architecture and Training Setting

The hyperparameter search space is provided in Table 1. Furthermore, we fix the
polling stride equal to the pooling size for simplicity. The epochs to train each
model are determined by the HyperBand algorithm used within BOHB. Further-
more, we fixed the iteration of BOHB to 50. Throughout the paper, we train the
DNNs with categorical cross-entropy loss function similar to other works [1, 21,
25, 29]. We run BOHB by using the HpBandster library on top of PyTorch [18].
We run our experiments on a single CPU and one NVIDIA-GeForce-GTX-970
with 4 Gigabytes of GPU memory and 1664 GPU cores. Here, we consider a
total of 76800 hyperparameters configurations for MLP and around 1.548× 109

different configurations for CNN. This range is larger than [25] and [21]. This
is because they did not consider hyperparameters like batch size and padding,
which could affect the training of the DNN. Within the other parameters of
BOHB, we fixed η to be 3 as recommended and the fraction of the run ρ to be
randomly sampled as 1

3 .

5.3 Budget Considered: Number of Epochs

The minimum budget bmin and the maximum budget bmax of training one neural
network is given to BOHB as parameters. Based on the values of both bmin and
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Table 2: Total time taken to run BOHB.

Max Budget bmax 50 100 200 500

ASCADf ≈ 3hrs ≈ 7.5hrs ≈ 12hrs ≈ 1day13hrs

ASCADr ≈ 4hrs ≈ 10hrs ≈ 14.5hrs ≈ 1day21hrs

AES HD ≈ 5hrs ≈ 12hrs ≈ 17hrs ≈ 2day6hrs

CTF2018 ≈ 4hrs ≈ 10hrs ≈ 14hrs ≈ 1day21hrs

bmax, the HyperBand subroutine optimized the number of DNNs to train and
the budget given to train these DNNs as described in Section 3.2. The budget
could be any resource, like the amount of time taken or the number of epochs
to train a neural network. We note that the number of epochs is essentially the
same as the time taken for training. As a DNN is trained with more epochs, the
more time it will take to finish training. Therefore, we consider the number of
epochs as the budget as the parameters for BOHB.

Previous works have shown that a DNN could obtain the secret key even
with a small number of epochs [1, 25]. Therefore, we fixed our minimum budget
bmin to be 10 throughout. We will explore the impact of bmax in Section 6.

6 Experimental Results

In this section, we investigate the performance and run time of BOHB when
the maximum budget bmax varies. We denote NTGEbest as the best NTGE
attained by BOHB in the various settings given.

6.1 Synchronized Datasets

Time Taken. Firstly, we will show the total time in training for all the datasets.
Here, we consider the CNN with ID leakage model, which will take the longest
time to train. The total time taken for each of the datasets is given in Table 2.
We see that the larger the max budget bmax, the longer the time required. This is
expected, as a larger bmax will result in a larger smax. Therefore, more hyperpa-
rameters/configurations are sampled for evaluation (see line 3 of Algorithm 2). It
was reported that [21] uses around 4 days to finish their run when using reinforce-
ment learning, while [1] uses 2 days. It has been reported by [25] that 10 hours on
average are required for a single run. However, as stated above, AutoSCA sim-
ply fixed the number of epochs for every single configuration. Technically, the
AutoSCA framework by [25] can be considered a special case of BOHB where
bmin = bmax = 10. Therefore, AutoSCA will have a similar time required to run
with BOHB, although they used Gaussian Processes instead of TPE. Recall that
the Gaussian Process has a cubic time complexity w.r.t number of data, whereas
TPE offers linear complexity.
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Table 3: NTGEbest on the ASCADf for HW leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 1097 1216 1314 849

MLP: Val loss 1111 1132 1148 1139

MLP: Lm 1641 1314 918 1064

CNN: ge+ntge 1388 1314 1157 1195

CNN: Val loss 1461 1445 1193 1345

CNN: Lm 1812 1499 1379 1233

Table 4: NTGEbest on the ASCADf for ID leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 358 304 201 260

MLP: Val loss 376 315 323 251

MLP: Lm 400 272 335 321

CNN: ge+ntge 416 359 307 244

CNN: Val loss 473 297 322 255

CNN: Lm 317 424 352 322

ASCADf. Table 3 and 4 show the NTGEbest for various max budgets when
applying BOHB on the ASCADf dataset. Here, we observed that for MLP and
CNN settings in both HW and ID leakage models, NTGEbest is obtained using
the proposed objective function ge+ntge. Overall, even with a small max budget
of 50, BOHB could find a competitive NTGE compared to a larger max budget.
For both ID and HW leakage models, NTGEbest are found within a max budget
of 200 or 500. Although we obtain competitive results with a max budget of
50 in the ID leakage model, it is observed that when the max budget bmax is
increased, there is a higher probability that NTGEbest attained will be smaller.
This is because, with a larger budget, BOHB will be given more budget to explore
more hyperparameters.

ASCADr. For ASCADr, we showNTGEbest for various max budgets in Table 5
and 6. Unlike in ASCADf, we see that for both HW and ID leakage models, the
least NTGEbest is attained with a max budget bmax of 50 and 100. This is
surprising as a lower budget means that BOHB attains better results despite
searching for lesser hyperparameters. This means that when using BOHB, it is
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Table 5: NTGEbest on the ASCADr for HW leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 1548 1641 2019 1559

MLP: Val loss 2323 1664 2076 1874

MLP: Lm 1866 2278 2167 2262

CNN: ge+ntge 1890 942 1449 895

CNN: Val loss 1582 2193 1721 1177

CNN: Lm 1411 879 1026 1836

Table 6: NTGEbest on the ASCADr for ID leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 2788 2358 2169 2711

MLP: Val loss 2579 1726 2976 1984

MLP: Lm 1568 1985 2443 2180

CNN: ge+ntge 3103 2784 3101 2999

CNN: Val loss 3108 3101 3101 2999

CNN: Lm 3103 2916 2910 3101

possible to use less time to recover the secret key (see Table 2). We hypothesize
this is because a certain fraction of runs are randomly sampled for exploration
during BOHB. Next, we observe that ge+ntge attain the smallest NTGEbest for
MLP (HW) and CNN (ID) setting while Lm acquire the leastNTGEbest for CNN
(HW) and MLP (ID) setting. However, we note that ge+ntge obtain the second
smallest NTGEbest using a 500 max budget and the third smallest NTGEbest

using a max budget of 100. This shows that ge+ntge is a valid objective function
to be considered when using BOHB.

AES HD. Next, we show the NTGEbest of AES HD for various max budgets
in Table 7. We recall here that the ID leakage model here denotes the use of
SboxAES(ct15 ⊕ k) ⊕ ct11 as the label. From Table 7, we observe that using
Val loss as the objective function attains the smallest NTGEbest in comparison
to ge+ntge and Lm. We note that ge+ntge and Lm still acquire relatively similar
NTGEbest compared to those in Val loss. The best max budget is 100, and
we see that increasing the max budget does not necessarily mean a decrease
in NTGEbest. This is most likely because some configurations are randomly
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Table 7: NTGEbest on the AES HD for ID leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 1522 1255 1577 1409

MLP: Val loss 1283 1030 1374 1343

MLP: Lm 1426 1119 1395 1367

CNN: ge+ntge 1353 1314 1378 1204

CNN: Val loss 1505 1132 1693 1382

CNN: Lm 1499 1319 1923 1492

Table 8: NTGEbest on the CTF2018 for HW leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge 180 450 936 200

MLP: Val loss 713 742 269 288

MLP: Lm 1219 893 1237 773

CNN: ge+ntge 141 122 135 82

CNN: Val loss 101 149 185 89

CNN: Lm 115 147 140 91

sampled, affecting the overall BOHB results. This is favorable for evaluators,
as this means there is a possibility the dataset could be broken with a smaller
budget. As a result, less time is used to analyze the dataset.

CTF2018. We illustrate the NTGEbest of CTF2018 for various max budget in
Table 8 for HW leakage. We observe that ge+ntge is the best objective for both
MLP and CNN setting of HW leakage. For CTF2018, when running BOHB on
a large max budget of 500, the NTGEbest attained are all less than 100 attack
traces. If we compare it with prior works, BOHB attains the best results (see
Table 12).

Next, we consider the ID leakage model for CTF2018. Table 9 reports the
NTGEbest acquired for the different max budgets attained in CTF2018 with
the ID leakage model. In [25] and [21], they reported that they could not find
good-performing DNN. This is also discussed in [19]. However, we are able to
find good-performing DNNs with the use of BOHB. In fact, with relatively small
bmax of 50 and 100, BOHB could find a DNN that could retrieve the secret key
with less than 3000 attack traces. This illustrates the effectiveness of BOHB in
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Table 9: NTGEbest on the CTF2018 for ID leakage model. The best NTGEbest

among the MLP and CNN setting are marked in blue and red respectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge GE = 5 2691 2975 2983

MLP: Val loss 2991 GE = 1 2987 2955

MLP: Lm GE = 2 2864 2999 2523

CNN: ge+ntge 2992 GE = 2 2999 2927

CNN: Val loss 2912 GE = 1 2987 2907

CNN: Lm GE = 1 2989 GE = 1 2958

finding a well-performing DNN. Indeed, training with the ID leakage model is
much inferior compared to training with the HW leakage model, as the number
of traces to break is significantly more than in the HW leakage model. Next,
we highlight that when we increase the bmax, finding a well-performing DNN
becomes increasingly stable for the CTF2018 dataset.

6.2 Desynchronized Traces

In this section, we consider the setup where we train the DNN with desynchro-
nized profiling traces and tackle attack traces that have the same desynchroniza-
tion level as the profiling traces. We only consider the desynchronization level
of 50 on ASCADf, which we will denote as ASCADf desync50.

Table 10 and 11 both presents the NTGEbest for various max budget. We
observe that for bmax = 50, BOHB is unable to find any successful model when
training in both HW and ID leakage models. This shows that the desynchronized
datasets are more difficult to attack and require more resources for a successful
attack. For the HW leakage model, we see that if we increase the max budget to
more than 100, BOHB can find well-performing CNN for all objective functions.
Furthermore, only when the max budget is 500 could BOHB find an MLP to
attack the ASCADf desync50 dataset successfully. This shows that it is easier
to attack a desynchronized dataset with CNN compared to MLP and confirms
the claims of [27]. This is most likely due to the shift-invariant property of CNN.
For the ID leakage model of ASCADf desync50, we observe that when the max
budget is 100, BOHB could only find well-performing CNN for ge+ntge and Lm

as the objective function. But when the max budget is either 200 or 500, BOHB
can find well-performing CNN for all objective functions. On the other hand,
only the use of ge+ntge with a max budget of either 200 or 500 can BOHB
obtain a well-performing MLP. This shows that ge+ntge is a preferred objective
function for desynchronized datasets.
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Table 10: NTGEbest on the ASCADf desync50 for HW leakage model. The best
NTGEbest among the MLP and CNN setting are marked in blue and red re-
spectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge GE = 129 GE = 139 GE = 210 4507

MLP: Val loss GE = 108 GE = 70 GE = 171 3769

MLP: Lm GE = 106 GE = 118 GE = 85 4861

CNN: ge+ntge GE = 201 3530 2841 3048

CNN: Val loss GE = 216 4278 3402 2469

CNN: Lm GE = 174 3309 2778 2822

Table 11: NTGEbest on the ASCADf desync50 for ID leakage model. The best
NTGEbest among the MLP and CNN setting are marked in blue and red re-
spectively.

Max Budget bmax 50 100 200 500

MLP: ge+ntge GE = 6 GE = 7 4951 4275

MLP: Val loss GE = 6 GE = 6 GE = 10 GE = 5

MLP: Lm GE = 9 GE = 7 GE = 2 GE = 8

CNN: ge+ntge GE = 5 3182 1694 1744

CNN: Val loss GE = 3 GE = 3 2459 1311

CNN: Lm GE = 17 2067 2054 1986

Which Objective Function and Max Budget to use? From the exper-
iments, we highlight that ge+ntge obtain the best NTGEbest in 8 out of 14
scenarios. In comparison, Lm and Val loss both attain best NTGEbest in 3 dif-
ferent scenarios. This shows that ge+ntge can be considered as a better objective
function for BOHB. However, we note that the type of objective function could
be dataset dependent as Val loss obtain the best NTGEbest for AES HD for
both MLP and CNN settings. Therefore, one should try each objective function
with BOHB when resources permit. On the other hand, when resources/budgets
are scarce, we suggest that ge+ntge be the preliminary objective function to be
used with BOHB.

Next, we recommend using a max budget of 100 if resources are limited as it
obtains the best NTGEbest for AES HD. But if sufficient resources exist, a max
budget of 500 should be considered. This is because BOHB managed to recover
the secret key for all the scenarios with a max budget of 500 when tackling
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CTF2018 with the ID leakage model, whereas there exist scenarios where no
DNNs could recover the secret key when a lower budget is used (see Table 9).

For desynchronized datasets, we observed that a larger budget would be
required to attain GE = 0. Therefore, a max budget of 500 would be preferred.
Furthermore, we highlight that ge+ntge is the only objective function to find a
well-performing MLP on ASCADf with a desynchronization level of 50 when
using the ID leakage model. Therefore, it is recommended to use ge+ntge as an
objective function for desynchronized datasets.

Comparing with other prior works. We present the results of NTGEbest

with other prior works in Table 12. Our goal was to give evaluators another
tool to tackle more difficult datasets by allocating the resources more effectively
through BOHB. We show that BOHB can obtain comparable results and still
find a DNN with GE = 0 for every dataset tested. However, we want to highlight
that the search space for each work is different. In fact, our search space is much
bigger compared to those in [21] and [25]. We emphasize that BOHB can recover
the secret key of CTF2018 of the HW leakage model with less than 100 attack
traces. This is the least number of traces reported among the other automated
tools. Furthermore, for the first time it was recorded, we could successfully re-
cover the secret key of CTF2018 using the ID leakage model. Surprisingly, despite
the BOHB did not consider the number of parameters in their objective func-
tion, we observe several instances where the number of parameters are relatively
small. For instance, BOHB found a well-performing model with 10, 596 parame-
ters in ASCADf (ID). This model is smaller than those found in [21], where they
consider the size of the model in their methodology. Furthermore, this model by
BOHB has a similar performance of compared to the model found in [21]. Sim-
ilar observations can be seen in CTF2018 (HW) and ASCADf desync50 (HW).
Overall, we have demonstrated the capability of BOHB to recover the key for all
datasets tested. These show that BOHB is effective in finding well-performing
DNNs.

7 Conclusion and Future Works

In this work, we introduce a multifidelity optimization method known as BOHB
into the domain of SCA. BOHB allocates resources efficiently and finds well-
performing DNNs through the use of Bayesian Optimization when sampling.
We show the capabilities of BOHB by showing that it could find a DNN that re-
covers keys on all the public datasets tested: ASCADf, ASCADr, AES HD, and
CTF2018. Although, in most datasets, BOHB did not attain the best results.
This is most likely due to the differences in search space, as the tested hyper-
parameter search space is bigger than those used in other works. Despite that,
BOHB obtained the best results for both CTF2018 (HW) and CTF2018 (ID). In
addition, we also proposed a novel objective function known as ge+ntge. We show
the effectiveness of ge+ntge compared to other objective functions, and also in-
troduce the notion of budget when finding efficient architectures for DNN-based
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Table 12: Comparing best NTGE obtain by various works. NTGE with colors
are the best NTGEbest provided by the dataset. Colored NTGEbest are the best
NTGE for the particular dataset.

Dataset Epochs No. of parameters NTGEbest

[29]
ASCADf (ID) 50 16, 960 191

AES HD 20 3, 282 1, 050
ASCADf desync50 (ID) 50 87, 279 244

[1]
ASCADf (ID) 8 15, 107 130
ASCADr (ID) 8 317, 408 120

AES HD 33 102, 757 170

[25]

ASCADf (HW) 10 1, 388, 457 447
ASCADf (ID) 10 1, 544, 776 120
ASCADr (HW) 10 1, 314, 009 496
ASCADr (ID) 50 1, 539, 320 1, 568
CTF2018 (HW) 50 2, 418, 085 618

[21]

ASCADf (HW) 50 8, 480 1, 246
ASCADf (ID) 50 79, 439 202
ASCADr (HW) 50 15, 241 911
ASCADr (ID) 50 70, 492 490
CTF2018 (HW) 50 33, 788 122

ASCADf desync50 (HW) 50 516, 361 1, 592
ASCADf desync50 (ID) 50 41, 321 443

Ours

ASCADf (HW) 56 845, 109 849
ASCADf (ID) 200 10, 596 201
ASCADr (HW) 34 659, 409 879
ASCADr (ID) 17 1, 465, 056 1, 568

AES HD 34 1, 725, 856 1, 030
CTF2018 (HW) 500 3, 645 82
CTF2018 (ID) 18 25, 596 2, 523

ASCADf desync50 (HW) 500 10, 401 2, 4698
ASCADf desync50 (ID) 500 91, 976 1, 311

SCA. For future work, it would be interesting to consider other Bayesian Opti-
mization rather than TPE. One could explore the different probability models
and acquisition functions used within BOHB. For another direction, one could
look into the capability of different multifidelity optimization in the SCA domain,
such as DEHB, in comparison to BOHB. As stated in the previous section, it
is surprising that BOHB found smaller models despite the objective functions
studied did not consider the number of parameters; it would be interesting to
study objective functions that consider the number of parameters in the future.
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A Kernel Density Estimator

In this section, we describe the KDE used in BOHB. Suppose h = (h1, . . . , hq) ∈
Rq and let X1, . . . , Xn be independent and identically distributed samples drawn
from an unknown density distribution. The multivariate KDE at a given point
x ∈ Rq is describe as

f(x) =
1

nh1 · · ·hq

n∑
i=1
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)
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with the function k as the kernel function. It is stated in [8], BOHB uses Gaussian
kernel for the continuous parameters. On the other hand, the Aitchison-Aitken
kernel are used for categorical parameters.


