
zkMarket: Privacy-preserving Fair Data Trade System
on Blockchain

Seungwoo Kim1, Semin Han2, Seongho Park2,
Kyeongtae Lee2, Jihye Kim1,3, and Hyunok Oh2,3

1 Kookmin University, Seoul, South Korea
donny11489@gmail.com,jihyek@kookmin.ac.kr

2 Hanyang University, Seoul, South Korea
{seminhan, seonghopark,rsias9049,hoh}@hanyang.ac.kr

3 Zkrypto, Seoul, South Korea

Abstract. In this paper, we introduce zkMarket, a privacy-preserving fair trade
system on the blockchain. zkMarket addresses the challenges of transaction pri-
vacy and computational efficiency. To ensure transaction privacy, zkMarket is
built upon an anonymous transfer protocol. By combining encryption with zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARK), both
the seller and the buyer are enabled to trade fairly. Furthermore, by encrypting the
decryption key, we make the data registration process more concise and improve
the seller’s proving time by leveraging commit-and-prove SNARK (CP-SNARK)
and our novel pseudorandom generator, the matrix-formed PRG (MatPRG).
Our evaluation demonstrates that zkMarket significantly reduces the computa-
tional overhead associated with traditional blockchain solutions while maintain-
ing robust security and privacy. The seller can register 1MB of data in 3.2 seconds,
while the buyer can generate the trade transaction in 0.2 seconds, and the seller
can finalize the trade in 0.4 seconds.

1 Introduction
In the realm of digital data trading, a fundamental principle is ensuring fairness, where
the seller receives the payment only if the data is delivered, and the buyer receives
the data only if they pay the correct amount. Traditionally, a trusted third party (TTP)
was considered essential for designing a fair trade [23]. Under this model, various ap-
proaches that depend on a TTP have been proposed [12, 19, 29]. However, with the
emergence of blockchain technology, the advantages of immutability and transparency
in blockchain along with a smart contract have garnered significant attention [22, 30].
A line of works has proposed blockchain-based fair trade protocols that eliminate the
need for a TTP [9, 10, 13, 25–27, 31].

A major challenge in implementing blockchain-based data trading is balancing
transparency with fairness. While transactions are publicly uploaded due to the trans-
parency of the blockchain, this can allow individuals who have not paid to gain access
to the data, potentially compromising fairness. Recent studies in data trading protocols
on blockchains [2, 8, 20, 21] aim to construct fair trade protocol through a hashed time
lock contract. Intuitively, the seller first encrypts the data and then trades the decryption
key. The seller proves that the key is indeed the correct decryption key for the data using

2 S. Kim et al.

a zero-knowledge proof (ZKP) while the data remains undisclosed. Once the proof is
verified, the key is revealed to solve the hashed time lock contract (HTLC), and their
payment is concurrently sent to the seller.

The recent work SmartZKCP [21] highlights that this approach burdens the seller
with extensive computational costs, potentially exposing the seller to Denial of Service
(DoS) attacks when a malicious buyer repeatedly requests data. In traditional HTLC
frameworks, to resolve the puzzle and receive a payment, the seller must disclose the
decryption key. Since the key is not reusable, the seller should encrypt the data for
every trade and generate the ZKP. SmartZKCP addresses this issue by re-encrypting the
encrypted data using a pre-exchanged key. This method ensures that even if the original
decryption key is revealed, only the buyer can decrypt the re-encrypted ciphertext and
access the ciphertext of the original data. However, the seller still needs to re-encrypt
the data for each trade. While SmartZKCP eliminates the necessity of iterative proving,
it still requires the seller to compute encryption within the circuit, which scales with
the data size. According to the experimental figure in [21, Section 6], the seller takes
20 seconds of proving time for 5KB data. It still presents challenges for real-world
scenarios, where the data size is large (e.g., a short web novel is usually 20∼40KB4).

Furthermore, the privacy issues introduced by blockchain’s inherent transparency
cannot be overlooked. Every transaction recorded on the blockchain is public, poten-
tially exposing sensitive financial and behavioral patterns that could be exploited for
advertising, marketing, or fraudulent activities. To address these concerns, a privacy-
preserving data exchange protocol has been proposed [4]. With the circuit randomiza-
tion technique [17], transaction details are effectively shielded from the smart contract
and external parties. However, the runtime for the seller remains extremely high (about
28 seconds for 15 bytes), posing a significant challenge for real-world applications.

To address these issues, we introduce zkMarket, a privacy-preserving fair digital
data trading system on blockchain. zkMarket ensures twofold fairness: 1) Seller fair-
ness: A buyer cannot obtain any knowledge of data before they pay a fair price, and
2) Buyer fairness: A seller cannot receive the payment before they deliver the data to
the buyer. The seller encrypts both the data and the decryption key. Subsequently, only
once at the initial registration phase, the seller publishes the hash values of respective
encrypted data and the decryption key on the blockchain along with a zk-SNARK proof
to demonstrate that: 1) the hash values are indeed output of hashing the ciphertext and
the decryption key, and 2) the ciphertext is the encryption of exactly what the buyer
requests to purchase. Since only the buyer who pays can decrypt the ciphertext of the
decryption key, seller fairness is guaranteed. Buyer fairness is also ensured, as the seller
publishes the hash output of the ciphertext and the decryption key along with the proof.
Specifically, the seller cannot deceive the buyer with misrepresented data. We also em-
phasize that the registration is required only once, it is concise and resilient to DoS
attacks.

To maximize feasibility, we propose a registration algorithm for zkMarket, which is
efficient even for large-sized data, making it compatible with real-world applications.
The foundation of the zkMarket registration algorithm is adopting commit-and-prove
SNARK (CP-SNARK), and our novel technique, matrix-formed pseudorandom gen-

4 For the case of a long novel, the average size of Kindle book ranges from 2.7MB to 4.5MB [28]

zkMarket 3

erator (MatPRG). As mentioned earlier, the registration phase requires the seller to
requires the seller to encode both the encryption and the hash computation, which in-
curs significant computational overhead, proportional to the data size. By leveraging
CP-SNARK, which allows a commitment to the witness to be provided as input, the
seller can avoid proving hash computation within the zk-SNARK circuit. Briefly, the
seller computes the hash of the ciphertext using the Pedersen hash, and passes it as in-
put to the zk-SNARK, allowing the seller to avoid encoding hash computation in the
circuit. The seller can reduce the proving time for encryption by employing our new
approach, MatPRG. MatPRG constructs a key matrix consisting of the decryption key
and a seed. MatPRG multiplies it with a randomly chosen matrix, with the resulting
matrix elements used as pseudorandom values. Proving encryption requires encoding a
pseudorandom function in the circuit, which might involve encoding hash computations
within the circuit when employing counter (CTR) mode [20]. By utilizing MatPRG as
a pseudorandom function of symmetric key encryption, encoding hash computations
can be replaced with a single matrix multiplication. Finally, the seller can reduce the
cost of proving encryption, even for large-sized data. Our evaluation shows that the
proving time for the registration of zkMarket is 0.57 seconds for 32KB of data, whereas
SmartZKCP takes 20 seconds for a much smaller data size of 5 KB. We also observe that
the proving time for 32MB data (which could be the size of a novel) is approximately
130 seconds. We argue that zkMarket maintains practicality even for much larger data
as the registration is only required once.

Moreover, zkMarket offers anonymous trading, ensuring that transaction details are
valid. This is achieved using encrypted accounts and zk-SNARK, which validate trans-
action integrity without revealing sensitive information. The system ensures that details
such as the identities of the buyer and seller, the data’s nature, and the payment amount
remain protected, while the transaction’s validity is publicly verifiable. For payment
privacy, zkMarket integrates the existing anonymous transfer technique [18] to shield
financial details.

1.1 Our contributions

As a result, zkMarket has been designed as a privacy-preserving and fair digital data
trading platform where buyers and sellers can transact equitably, and no one can learn
any transaction information, including the identities of the traders, and data details. Our
contributions are summarized as follows:

– We propose zkMarket, which is a blockchain-based digital data trade platform pro-
viding fairness through combining encryption and zk-SNARK. zkMarket also en-
ables the participants to trade anonymously by employing an anonymous transfer
protocol.

– zkMarket supports one-time registration by encrypting the decryption key as well
as the data. As a result, zkMarket is robust against DoS attacks.

– We also significantly reduce the proving cost of the seller incurred during the data
registration by employing commit-and-prove SNARK (CP-SNARK) and devising
a novel primitive MatPRG.

– We fully implement zkMarket and empirically evaluate the practicality of zkMar-
ket. For instance, proving time for registering 32KB data takes approximately 0.19

4 S. Kim et al.

seconds, and only 3.2 seconds is taken for 1MB data. We stress that these are prac-
tical figures since registration is required only once in the initial phase. Moreover,
proving time for trade request and acceptance takes 0.2 seconds and 0.38 seconds
respectively, regardless of the data size.

1.2 Related work

The Zero-Knowledge Contingent Payment (ZKCP) [2] protocol, leverages zero-
knowledge succinct non-interactive argument of knowledge (zk-SNARK) and a hash-
locked transaction to facilitate fair exchanges on the Bitcoin network. ZKCP achieves
fairness by applying zk-SNARK to verify that encrypted data satisfies conditions de-
fined by the buyer, without revealing the data itself. With this method, the seller has to
create a verifiable commitment to their data and generate proofs that confirm the data
satisfies the buyer’s specified requirements. This proof guarantees payment only if the
data aligns with the buyer’s expectations. While the first implementation of ZKCP is in-
stantiated with Pinocchio [24] zk-SNARK which needs a trusted setup, ZKCPlus [20]
extends ZKCP by eliminating the trusted setup and improving the performance of sell-
ers. They replace trusted setup with public setup and lessen the proving overhead by
adopting circuit-friendly block cipher in a data-parallel encryption mode and devis-
ing a new commit-and-prove non-interactive zero-knowledge (CP-NIZK) argument of
knowledge. SmartZKCP [21] identifies that the off-chain verification in ZKCP and
ZKCPlus can cause a reputation attack, where a malicious third party could damage an
honest seller’s reputation by falsely claiming that the seller delivered incorrect goods
or invalid proofs. SmartZKCP also identifies vulnerabilities in ZKCP, such as a DoS
attack and an eavesdropper’s attack. SmartZKCP proposes an advanced ZKCP protocol
where the eavesdropper’s attack is mitigated through double encryption while the DoS
attack is prevented by locking the buyer’s fee within the smart contract.

2 Preliminaries
We introduce the notations and (informal) definitions of cryptographic primitives used
throughout this paper. We denote random sampling of an element by←$. For example,
x←$ F denotes the random sampling x from finite field F. A hash function denoted as
CRH is the collision-resistant hash function.

2.1 Encryption schemes

We use standard definitions of a symmetric-key encryption scheme SE =
(Gen, Enc,Dec) and public-key encryption scheme PKE = (Gen, Enc,Dec). Both en-
cryption schemes ensure ciphertext indistinguishability under chosen-plaintext attack
(IND-CPA) security and key indistinguishability under chosen-plaintext attack (IK-
CPA [5]) security. Formal definitions are described in Appendix A.1 and Appendix A.2
respectively.

2.2 Commitments

We use a standard commitment scheme Com = (Setup,Com) that allows one to com-
mit a value. Setup(1λ) outputs a commitment key ck taking the security parameter as
input, and Com(ck,m; o) returns the commitment c to message m over the opening
randomness o with ck. A commitment scheme should ensure hiding where the com-

zkMarket 5

mitted value does not reveal any information about the value, and binding where the
commitment is only opened to the original committed value.

2.3 Merkle Tree

Merkle Tree is a data structure where a party can commit to some value succinctly
and further prove a membership of some leaf value. Briefly, each leaf is computed by
(collision-resistant) hashing specific value (e.g., a commitment to some value) and its
parent node is computed by hashing its children nodes, and the whole tree is constructed
by working iteratively until reaching the root. rt denotes the root of the tree and the path
for proving membership of a specific node (node) is denoted as Pathnode. The algorithm
consists of as following:

– ComputePath(node)→ Path: takes a leaf node node as input and returns a corre-
sponding authentication path Path to the root rt.

– MemVerify(rt, node,Pathnode) → 0/1: takes the root rt, a leaf node node, and
its corresponding membership proof Pathnode and outputs 1 if rt matches the hash
value computed from node along with Pathnode, 0 otherwise.

– TreeUpdate(nodenew)→ rtnew: returns new root value rtnew for the updated Merkle
Tree on newly added value new.

2.4 SNARK

The definition of a SNARK for a relation R is composed of a tuple of algorithms
Πsnark = (Setup,Prove,Verify) working as follows (A formal definition is described
in Appendix A.3):

– Setup(1λ, R) → crs: takes a security parameter 1λ and a relation R as inputs, and
returns a common reference string crs.

– Prove(crs,x,w)→ π: outputs a proof π on inputs crs, a statement x, and a witness
w such that R(x;w).

– Verify(crs,x, π)→ 0/1: inputs crs,x and π and outputs 1 if π is accepted, 0 other-
wise.

2.5 Anonymous transfer protocol

To trade digital content on blockchain, a fee transaction occurs inevitably between the
seller and the buyer. On blockchains like Ethereum, the transaction is opened to any
party. It implies that anyone can observe transaction details, including payments. To en-
sure better privacy (referred to here as trade anonymity), the transaction must be hidden
from unrelated parties. To provide user privacy on a public blockchain, we apply the
anonymous transfer protocol such as Azeroth [18], zeroCash [6], and blockMaze [16].
In this paper, we employ Azeroth due to its advantages in the efficiency of anonymous
transfer and gas consumption.
Revisit Azeroth. Azeroth consists of two types of accounts: an externally owned ac-
count (EOA), which is visible publicly, and an encrypted account (ENA). The sct values
represent encrypted account balances, which are mapped to the ENA in the smart con-
tract as addr. Both accounts work on the blockchain, with their encrypted balances to
ensure privacy. Also, When a new commitment (cmAzeroth) is added to the Azeroth’s
Merkle Tree, it signifies the addition of a new transaction or balance update. When

6 S. Kim et al.

a user wants to send funds to a specific recipient, they update Azeroth’s Merkle Tree
with a commitment(cm) and encrypt the recipient’s information alongside the trans-
action. This setup enables only the intended recipient, who can decrypt the ciphertext
included in the transaction, to claim ownership of the uploaded cm within the Merkle
Tree. Furthermore, as the recipient’s information is encrypted in the transaction, third
parties are unable to identify the destination of the funds, ensuring confidentiality in
fund transfers.

3 zkMarket
In this section, we present the construction of zkMarket along with the three main stages
of the protocol: Data registration, Trade generation, and Trade acceptance.

3.1 Overview

Before we delve into zkMarket, we outline its construction and the properties to be
considered. In zkMarket, a seller registers the data they want to sell on the blockchain,
and a buyer purchases it by paying an appropriate price. However, a seller might try to
receive payment without delivering the correct contents; that is, the seller could send
different data that is not what the buyer requests. Conversely, a buyer might attempt
to obtain the data without payment. Consequently, we consider the following security
properties to prevent such malicious behaviors of the seller and the buyer.

– Fairness: Fairness can be divided into two aspects, seller fairness and buyer fair-
ness. The former states that any buyer cannot obtain the (partial or whole) data
before they fulfill the payment, and the latter ensures that any seller cannot receive
the payment without delivering the data that the buyer requests to purchase.

– Trade Anonymity: No party can gain knowledge of transaction details, including
which data is traded, who buys or sells, and the trade amount.

zkMarket is designed into three main phases to satisfy the aforementioned security
properties: 1) Register phase: the seller registers their data on the blockchain market,
2) Trade generation phase: the buyer requests to purchase the data, and 3) Trade accep-
tance phase: the seller approves the purchase request sent by the buyer.

In the registration phase, a seller encrypts the data to prevent malicious behavior
by the buyer. Since only the ciphertext of the data is accessible, no one can obtain (or
infer) the raw data without payment. Thus, zkMarket satisfies seller fairness through
the encryption of the data. To simultaneously provide buyer fairness, the seller is com-
pelled not to change the data after receiving payment. Therefore, the seller additionally
submits the hash values of the decryption key and the encrypted data, along with a zk-
SNARK proof. This proof verifies that the ciphertext is an accurate encryption of the
initially registered data and that the hash is correctly derived from the decryption key.
It ensures that a malicious seller cannot deceive buyers by misrepresenting the data, as
any changes would fail the verification. Furthermore, the seller encrypts the decryption
key with buyer’s public key so as to prevent that no one but only the buyer can take
the decryption key. The seller additionally generates the proof proving that the seller
encrypts the decryption well. This work is required only once at the registration phase
during whole protocol, it is resistant to denial-of-service (DoS) attacks. However, the
seller must encode hashing and encryption operations within the circuit, which results

zkMarket 7

in significant computational overheads, undermining practicality as data size increases.
To mitigate overhead in the registration phase, we propose two approaches. First, we
efficiently prove hash computations using commit-proving SNARK (CP-SNARK). Sec-
ond, we introduce MatPRG, a matrix-formed pseudorandom generator, to improve the
efficiency of the encryption proof.

During the trade generation phase, the buyer submits a trade request and demon-
strates their ability to pay using zk-SNARK. The buyer locks the fees in a smart contract
and updates the blockchain with the necessary transaction details. In the transaction de-
tails uploaded by the buyer, information about the content being purchased and the
seller is encrypted, preventing third parties from deducing any specifics from the trans-
action itself. Since the buyer must prove that the amount they are paying matches the
price (of the content), seller fairness is still guaranteed in zkMarket. From the buyer’s
transaction, information such as the data being requested to trade, the price of the data,
and the remaining balance in the buyer’s account remains hidden.

In the trade acceptance phase, the seller approves the trade request and sends the
decryption key to the buyer via the blockchain. However, since the decryption key is
transmitted through the blockchain where transactions are publicly recorded, a mali-
cious participant could attempt to obtain the decryption key without payment. To pre-
vent such a malicious event, the seller encrypts the decryption key with the buyer’s
public key before transmission. Furthermore, to ensure that the seller provides the cor-
rect decryption key, the seller proves that the encrypted decryption key can indeed de-
crypt the data that the buyer requests to trade. Consequently, only the buyer involved in
the transaction can access the decryption key. In the seller’s transaction for accepting a
trade, no information about the decryption key is leaked. Only a valid buyer can decrypt
the ciphertext of the key, ensuring that the data can be traded anonymously.

3.2 Analysis on Register phase

In the registration phase, a seller encrypts the data to prevent unauthorized parties who
do not pay from accessing it. In other words, encryption provides zkMarket with seller
fairness since no one can get the data from the ciphertext without payment. The seller
also encrypts the decryption key making the seller register the data only once, which en-
hances the robustness against denial-of-service (DoS) attacks. Moreover, a seller must
publish the hash output of the ciphertext and generate proof that the published hash
output is correctly computed from the ciphertext. The hash value is registered to a valid
data (goods) list if and only if the proof verification passes. By doing this, it is en-
sured that a malicious seller cannot deliver different data after receiving payment. Even
though fairness is fulfilled by submitting the proof, it incurs expensive proving overhead
since the hash computation is proven in the zk-SNARK circuit. In detail, a seller proves
that: 1) the ciphertext ct is indeed the encryption of data, 2) hct is the hash output of ct,
and 3) hk is the hash output of the encryption key (of data) k and the seller’s secret key
skseller, that is, hk = CRH(skseller||k). Namely, the encryption and hash computations are
encoded within the circuit, which imposes heavy computation on the seller. We present
two approaches to register efficiently. The first one is employing CP-SNARK, and the
second one is our novel PRG, MatPRG.

8 S. Kim et al.

Leveraging CP-SNARKs for efficient hash computation One of the significant over-
heads for the prover in the registration phase is checking hct within the zk-SNARK
circuit. The hash computation is proportional to the data size. Namely, computing the
hash function within the circuit demands a substantial amount of proving time, partic-
ularly for large-sized data. To reduce the proving time required for checking hct, we
employ CP-SNARK introduced in [7]. A commit-and-prove SNARK (CP-SNARK) for
a relation R consists of four algorithms Πcp = (Setup, Prove, Verify, VerCommit) that
works as follows:

– Setup(R) → (ck, ek, vk) ←: takes a relation R as input and outputs a common
reference string that includes a commitment key ck, an evaluation key ek, and a
verification key vk.

– Prove(ek,x,w) → (π, c; o): takes an evaluation key ek, a statement x, and a wit-
ness w := (u, ω) such that the relation R holds as inputs, and outputs a proof π, a
commitment c, and an opening o such that VerCommit(ck, c, u, o) = 1.

– Verify(vk,x, π, c)→ 0/1 : takes a verification key vk, a statement x, a commitment
c, and a proof π as inputs, and outputs 1 if x, c, π is within the relation R, or 0
otherwise.

– VerCommit(ck, c, u, o) → 0/1 : takes a commitment key ck, a commitment c, a
message u, and an opening o as inputs, and outputs 1 if the commitment opening is
correct, or 0 otherwise.

Definition 1. CP-SNARK satisfies completeness, succinctness, knowledge soundness,
zero-knowledge, and binding.

CP-SNARK allows a commitment to the witness to be provided as input along with
the proof. By hashing the ciphertext using a Pedersen hash, it can be treated as a com-
mitment to the ciphertext. Consequently, proving hct within the circuit is smoothly re-
placed by committing to ct instead. Finally, a seller can move the hash computation
outside of the circuit, thus reducing the proving overhead.

MatPRG: Matrix-formed PRG Recall that a seller has to prove that the ciphertext
of data is encrypted correctly in the zk-SNARK circuit during the registration phase.
To prove encryption efficiently, we can consider a block cipher based on PRF using
SNARK-friendly hash function such as MiMC7 [3] or Poseidon [14], i.e., ct = data +
PRFk(r). However, it is still a burden for the seller, particularly when the size of the
data is large (e.g., an image file). In particular, if the data is large, a seller must encode
the PRF within the circuit for each block.

To resolve such hindrance, we devise a novel PRG, MatPRG, the matrix-formed
PRG. To clairfy, given a randomly chosen matrix A ∈ Zn×m

q , MatPRG for input mes-
sage K1 ∈ {0, 1}xk outputs pseudorandom matrix R ∈ {0, 1}nk log q . R is secure
under Linear System Model (LSM), where an adversary attempts an attack solely using
a linear system algorithm, which allows one to perform only linear operations on given
matrices. Under a linear system algorithm, an adversary can find the message K1 from
the pseudorandom matrix R with only negligible probability. Further details for the
LSM are deferred to Appendix E.2

Replacing the PRF in encryption with MatPRG can alleviate the proving overhead
effectively. The key is expressed as matrix K1 of size is x × k. Then, K2, a randomly

zkMarket 9

sampled (m − x) × k matrix, is generated in the MatRand phase. With K1, and K2,

the matrix K is defined as
[
K1

K2

]
, and the pseudorandom matrix R is generated as

R ← fA(K) ∈ {0, 1}nk log q by the MatPRG. The formal definition of MatPRG is as
follows.

Definition 2. Let n,m, q ∈ N such that m > n and m ≈ n. Let A ∈ Zn×m
q and

K ∈ {0, 1}m×k. Then, we define a function fA : {0, 1}mk → Zn×k
q
∼= {0, 1}nk log q as

K 7→ AK.

Since m ≈ n, the function fA is not surjective. That is, for arbitrary R ∈ Zn×k
q ,

there may not exist K := f−1
A (R) ∈ {0, 1}m×k. However, generally it is difficult to

determine whether K exists or not because computing K from the given random matrix
A and R is challenging.

Definition 3 (MatPRG). Let K1 ∈ {0, 1}x×k be a key. Let A←$ Zn×m
q be a randomly

selected matrix. Then the MatPRG is defined by the following process:

– K2 ←MatRand(1λ): Generate K2 ←$ {0, 1}(m−x)k.

– R ← MatPRG(A,K1,K2): The verifier takes K :=

[
K1

K2

]
∈ {0, 1}mk as input

and computes the output R = fA(K) ∈ {0, 1}nk log q .

Theorem 1. If m = n+ δ and δk > 128, then the MatPRG is a pseudorandom gener-
ator and it is secure under the LSM.

Given the matrix formed symmetric key K1, K is constructed by combining K1

and the seed K2, while R is the matrix of random values generated by MatPRG. With
MatPRG, a seller can efficiently prove cti = datai + PRFk(r). Since each element of
R is used as PRFk(r), proving the encryption in the registration phase is reduced to
proving that K is constructed by combining the key K1 and the seed K2, and that R is
the matrix of random values generated by MatPRG. In other words, proving the PRF for
each ciphertext is replaced to compute one matrix multiplication. The detailed relation
for Rct with MatPRG is available in Appendix D.1

3.3 Construction

Putting everything together, we present the construction of zkMarket. The algorithm
with prefix SC. denotes the algorithms executed on the smart contract. The overview of
zkMarket is illustrated in Figure 1 and the overall flow based on subsequent algorithms
is available in Figure 3 in Appendix F.

Setup phase The setup algorithms (Algorithm 1) for zkMarket run both off-chain and
on the smart contract. In the off-chain setup, Setup generates a common reference string
(CRS) for zk-SNARK of three relations corresponding to the three main phases: Rreg,
Rgen, and Racc, and also generates the key pair (pk, sk) for public key encryption. It also
invokes the setup of Azeroth for anonymous transfer and outputs an address addr and
the symmetric key kENA used for encrypting the account. Since the smart contract ex-
ecutes verification for zk-SNARK proofs, SC.Setup, therefore, stores verification keys

10 S. Kim et al.

Fig. 1: The overview of zkMarket. Transactions depicted in red color represent the Aze-
roth transactions.

(vkreg, vkgen, vkacc). Finally, a Merkle tree is initialized to facilitate anonymous transac-
tions. We defer detailed descriptions of the relations of each algorithm to Appendix D
due to the space limit.

Algorithm 1 Setup Algorithm
Off − chain

Setup(1λ) :

crs1 ← Πcp.Setup(1λ, Rreg)

crs2 ← Πsnark.Setup(1λ, Rgen)

crs3 ← Πsnark.Setup(1λ, Racc)

(pk, sk)← PKE.Gen(1λ)

(addr, kENA)← Azeroth.Setup(1λ);

return crs := (pk, sk, addr, kENA, crs1, crs2, crs3)

Smart Contract

SC.Setup(pp) :

Store vkreg, vkgen, vkacc;

Initialize a Merkle Tree MT;

Registration phase As described in Section 3.2, the one-time registration phase can
provide seller fairness and buyer fairness by encrypting the data and the decryption key
and publishing the corresponding hash values. Also, the proving overhead of the seller
is mitigated by employing CP-SNARK and MatPRG. By leveraging CP-SNARK, the
seller no longer needs to encode hash computation for hct within the circuit, and this
approach allows the commitment to hct to be output during proof generation. Moreover,
with MatPRG, the seller can prove the correctness of encryption in a batch manner.
Off-chain: In RegisterData , the seller encrypts the data (data) with symmetric key
encryption and publishes hash outputs of ciphertext hct and the corresponding key hk.
Then, the seller generates a proof πreg to prove that: 1) the data is correctly encrypted,
and 2) the hashed values hk and hct are correctly computed from the ciphertext and the

zkMarket 11

key corresponding to the data that the seller is registering. Seller-fairness is guaranteed
by the encryption of data, since anyone on the blockchain, including the buyer, cannot
obtain the data before paying. Buyer-fairness can be preserved by the hash outputs of the
key and ciphertext; a malicious seller cannot replace the data with different or incorrect
data after registration, since the hash outputs of the ciphertext and the key are proven
under the zk-SNARK. Note that invalid or altered data cannot pass the verification of
zk-SNARK.
Smart contract: The smart contract for data registration allows a seller to register data
on the blockchain if and only if the proof published by the seller is valid. It verifies the
proof πreg along with hk, hct, and adds those hash outputs to Listdata.

Algorithm 2 RegisterData Algorithm
Off − chain

RegisterData (1λ, crs, data, skseller,A ∈ Zn×m
q) :

K1 ∈ {0, 1}x×k ← SE.Gen(1λ)

(K2, ct)← SE.Enc(K1,A, data)

K :=

[
K1

K2

]
∈ {0, 1}m×k

hk ← CRH(skseller||k)

γ ←$ Zk×1
q

x := (A, hk)

w := (ct, data,K,R, γ, skseller)

(πreg, hct)← Πcp.Prove(crs1,x;w)

return txreg = (hk, hct, πreg)

Smart Contract

SC.RegisterData (txreg) :

parse txreg = (x, πreg);

parse x := hk, hct;

assert Πcp.Verify(vkreg,x, πreg);

Listdata ← Listdata ∪ {hk, hct};

SE.Enc(K1,A, data)

K2 ← MatRand(1λ)

K :=

[
K1

K2

]
∈ {0, 1}m×k

R ∈ Zn×k
q ← MatPRG(A,K1,K2)

for i in{0, ..., n} do

for j in{0, ..., k} do

ct[i+ j]← data[i+ j] +R[i][j]

return (K2, ct)

Trade generation phase A buyer can request an order for data registered on the mar-
ket during the trade generation phase. Through GenerateTrade, a buyer commits to its
payment for the purchase. At the same time, the buyer encrypts an order including the
payment details. Then, it sends the transaction with proof proving that the payment is
correctly committed and the ciphertext is indeed the encryption of the order made by
the buyer. The proof additionally demonstrates that the balance of the buyer’s account
is sufficient to make the payment.
Off-chain: The buyer expresses its intention to purchase using the GenerateTrade (Al-
gorithm 3), which comprises three primary steps.

12 S. Kim et al.

First, the buyer commits to its payment. Specifically, the buyer commits to its pay-
ment fee using the seller’s public key pkseller, the hash of the symmetric key hk, the
buyer’s public key pkbuyer, and the randomness r. The commitment cm is then pub-
lished on the blockchain. By committing to the payment, even a malicious buyer cannot
deny the purchase or decrease the payment amount below the agreed price.

Secondly, the buyer encrypts an order, order := (r, fee, hk, pkbuyer). Encrypting
order prevents cheating by the seller, where a malicious seller might take fee before
delivering data.

Finally, to transfer anonymously, the buyer creates a new encrypted account state
sctnew to vindicate its payment capacity. The previous encrypted state sctold represents
the buyer’s existing balance, while sctnew indicates the remaining balance after deduct-
ing the payment.

The proof πgen proves that: 1) the commitment cm is indeed a commitment to
pkseller, fee, hk, pkbuyer and r; 2) ctorder is the ciphertext resulting from encrypting order
under pkseller; and 3) the value of fee is equal to difference between the decrypted values
of sctold and sctnew.
Smart contract: The SC.GenerateTrade (Algorithm 3) handles the buyer’s requests to
purchase the data registered on the blockchain. It first verifies that sctold used in proof
generation matches the value registered on the blockchain, and then it validates the
proof πgen. Once the proof verification is passed, it updates sctold to sctnew and updates
cm to the Merkle tree MT. During this process, the buyer’s balance is updated to reflect
the deduction of the purchase cost. Finally, it emits an event5 with ctorder to enable the
seller to process the order.

Algorithm 3 GenerateTrade Algorithm

Off−chain

GenerateTrade(1λ, crs, fee, pkseller, pkbuyer, addrbuyer, hk, kENA) :

r ←$ F

cm← Com(pkseller||fee||hk||pkbuyer; r)

order := (r, fee, hk, pkbuyer)

ctorder ← PKE.Enc(pkseller, order)

sctold ← ENA[addrbuyer]

balold ← SE.Dec(kENA, sctold)

balnew ← balnew − fee

sctnew ← SE.Enc(kENA, balnew)

x := (cm, ctorder, sctold, sctnew)

w := (r, hk, pkseller, pkbuyer, kENA, fee)

πgen ← Πsnark.Prove(crs2,x;w)

return txgen = (x, πgen)

Smart Contract

SC.GenerateTrade(txgen) :

parse txgen = (x, πgen);

parse x = (cm, ctorder, sctold, sctnew);

assert ENA[addrbuyer] == sctold

assert Πsnark.Verify(vkgen,x, πgen);

ENA[addrbuyer]← sctnew

rtnew ← MT.TreeUpdate(cm)

Listrt ← Listrt ∪ rtnew

Emit Event ctorder;

5 Emit event is a mechanism that allows external applications to observe specific actions or state
changes within a smart contract. These events are recorded on the blockchain.

zkMarket 13

Trade acceptance phase After the buyer sets up the trade through GenerateTrade and
the proof is verified by the smart contract using SC.GenerateTrade, the seller decides
whether to accept the request. The seller first checks that the payment amount fee from
the buyer is sufficient, i.e., the buyer has paid enough money to purchase the data. Then,
to finalize the deal, the seller prepares the decryption key for the encrypted data which
is to be delivered to the buyer, and claims the frozen fee from the buyer. The algorithms
for the trade acceptance phase is depicted in Algorithm 4.
Off-chain: Through AcceptTrade, the seller approves the buyer’s request for purchase
and finalizes the deal by providing the decryption key for the encrypted data ct. To ac-
cept, the seller decrypts the ciphertext of an order ctorder using their secret key skseller.
If the fee in order equals the price of the data, then the seller proceeds to send the de-
cryption key k. However, the decryption key can be intercepted during the transmission.
Therefore, the seller encrypts the key k as ctk using the buyer’s public key and gener-
ates a proof demonstrating that ctk is indeed the encryption of the k that can decrypt
the ct. We stress that this approach is advantageous as it does not require any trusted
setting such as a secure channel. Subsequently, the seller computes the path Path of the
commitment cm within the Merkle tree registered on the blockchain.

Additionally, the seller generates a nullifier nf using cm and skseller. If nf is not used,
the seller could execute the AcceptTrade algorithm multiple times for the same purchase
request, potentially receiving the fee multiple times. However, by generating nf using
cm and the seller’s secret key skseller, and checking that nf is not included in the Listnf

in the smart contract, the seller is prevented from executing the AcceptTrade algorithm
more than once for the same request. This ensures that the seller cannot receive the fee
more than once for the same transaction, preventing double-spending.

Next, the seller generates oAzeroth and cmAzeroth for claiming the fee in an anonymous
transfer manner. Note that oAzeroth and cmAzeroth are required for anonymous transfer in
Azeroth [18]. Briefly, using cmAzeroth, the seller can anonymously validate their claim
for fee, and cmAzeroth is used to update the Azeroth Merkle tree MTAzeroth after the proof
πacc is verified. Once the commitment cmAzeroth is updated in the Azeroth Merkle tree,
the seller can retrieve the fee using the Azeroth protocol at any time in the future.6.

Finally, the seller creates a commitment cm identical to the one generated by the
buyer during the trade generation phase. Since the seller knows the messages of cm,
they can prove that the same cm can be generated during the AcceptTrade step. Note
that if cm is passed as a part of the statement for making the proof, anyone not involved
in the trade can learn the identity of the buyer by linking the cm created by the buyer to
the cm created by the seller. As a result, passing cm as part of the statement can reveal
the identities of the trading participants. To prevent such linkability, we employ the
Merkle tree to enable the buyer to verify the value and the membership of cm without
including cm in the statement.

Consequently, πacc proves that ctk is genuinely the encryption of k which is used by
the buyer to decrypt ct. Moreover, since we employ Azeroth as the anonymous transfer
framework, the seller proves that the commitment cmAzeroth is computed correctly. Also,

6 The cmAzeroth included in the Merkle tree can be transferred to the user’s ENA using the zk-
Transfer algorithm in Azeroth. Further details of the anonymous transfer are outside the scope
of our interest. We refer to [18] for more detail.

14 S. Kim et al.

as described previously, πacc includes proving the Merkle tree membership for cm. Ad-
ditionally, it ensures that the acceptance of the transaction is processed only once by
verifying that nf is not in the Listnf ; i.e., by confirming that it is the initial transaction
through a nullifier nf, it prevents the seller from accepting multiple fees from the same
transaction.
Smart contract: SC.AcceptTrade allows the seller to accept purchase requests. First, it
verifies the proof πacc generated by the seller. Then, it checks whether nf is not in the
Listnf and whether the root rt is in the Listrt. Once these are completed, nf is append
to the Listnf , and the Azeroth Merkle tree is updated with cmAzeroth. Finally, it emits an
event with ctk to enable the buyer to retrieve the decryption key.

Algorithm 4 AcceptTrade Algorithm

Off − chain

AcceptTrade(1λ, crs, fee, ctorder, pkseller, skseller, pkbuyer, hk) :

order← PKE.Dec(skseller, ctorder)

parse order = (r, fee, hk, pkbuyer)

ctk ← PKE.Enc(pkbuyer, k)

cm← Com(pkseller||fee||hk||pkbuyer; r)

rt← Listrt.TOP

Path← MT.ComputePath(cm)

nf ← CRH(cm||skseller)

oAzeroth ←$ F

cmAzeroth ← Com(fee||addrseller ; oAzeroth)

x := (rt, nf, cmAzeroth, hk, ctk, pkseller, addrseller)

w := (cm, Path, skseller, k, pkbuyer, r, fee, oAzeroth)

πacc ← Πsnark.Prove(crs3,x;w)

return txacc = (x, πacc)

Smart Contract

SC.AcceptTrade(txacc) :

parse txacc = (x, πacc);

parse x = (rt, nf, cmAzeroth, hk, ctk, pkseller, addrseller);

assert nf /∈ Listnf

assert rt ∈ Listrt

assert Πsnark.Verify(vkacc,x, πacc);

Listnf ← Listnf ∪ {nf};
MTAzeroth.TreeUpdate(cmAzeroth)

Emit Event ctk;

4 Evaluation
4.1 Implementation

We implement zkMarket using the Arkworks library [11] in Rust and the smart contracts
have deployed on the Ethereum test network blockchain using Hardhat [1]. We instan-
tiate zk-SNARK with Groth16 [15] (for GenerateTrade and AcceptTrade described in
Algorithm 3 and Algorithm 4), and cp-SNARK (for RegisterData described in Algo-
rithm 2) from LegoSNARK [7] based on Groth16. Both of them work over a bilinear
map. We use the BN254 for the curve instantiation. For the public key encryption, we
employ the ElGamal encryption. We use the MiMC7 [3], SNARK-friendly hash func-
tion, and instantiate the Merkle tree based on MiMC7. All the benchmarks are evaluated
using an Apple M1 Pro processor with 32GB of RAM.

4.2 Benchmarks for zkMarket

zkMarket 15

32 64 512 1024 2048 4096 32768
10−1

100

101

102

0.19

0.36

1.7

3.2

6

12

130

Data size (KB)

Pr
ov

in
g

tim
e

(s
)

RegisterData

Fig. 2: Proving time of RegisterData

Performance analysis on data register As described above, the significant overhead
in zkMarket emerges when the data is registered. Note that the performance of algo-
rithms varies with the data size since the encryption and hash operations within the
zk-SNARK circuit scale with the size of the data. The overhead for hash operations
was resolved using CP-SNARK, while the overhead for encryption operations was ad-
dressed with MatPRG. As a result, proving 64KB of data takes 0.36 seconds, while
1024KB (1MB) requires 3.2 seconds of proving time. A 17-page PDF file of 2MB re-
quires a proving time of 6 seconds, while a 36MB video file with 1080×1920 resolution
(FHD) and a duration of 33 seconds results in a proving time of 130 seconds.

Performance evaluation of GenerateTrade and AcceptTrade Table 1 shows the
performance evaluation of GenerateTrade and AcceptTrade with a Merkle tree of depth
32. Unlike RegisterData , GenerateTrade and AcceptTrade are executed each time a
transaction occurs. However, GenerateTrade and AcceptTrade are not impacted by the
size of the data, whereas RegisterData is. Recall that GenerateTrade proves the buyer’s
ability to pay, while AcceptTrade proves the correctness of the decryption key, both gen-
erating zk-SNARK proofs for a fixed-size fee and key. Consequently, GenerateTrade
and AcceptTrade can run in constant time. The proving time and the verification time
of GenerateTrade take around 200ms and 20ms respectively, and those of AcceptTrade
take around 380ms and 0.02ms respectively.

Algorithm Constraints CRS size
(MB)

Setup (s) Prove (s) Verify (s)

GenerateTrade 12,882 4.3 0.19 0.2 0.02

AcceptTrade 24,210 9.3 0.2 0.38 0.02

Table 1: Evaluation of GenerateTrade and AcceptTrade with 32 depth Merkle tree

16 S. Kim et al.

Gas consumption of smart contract We also measure the gas consumption of smart
contracts throughout whole phases in zkMarket. SC.RegisterData requires 285,131
gas, while SC.GenerateTrade and SC.AcceptTrade which include updating the Merkle
tree, costs 1,996,915 and 1,378,750 respectively.

zkMarket 17

References
1. https://github.com/NomicFoundation/hardhat
2. Zero knowledge contingent payment. https://en.bitcoin.it/wiki/Zero_

Knowledge_Contingent_Payment, accessed: 2024-06-17
3. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient encryption

and cryptographic hashing with minimal multiplicative complexity. In: ASIACRYPT. pp.
191–219 (2016)

4. Avizheh, S., Haffey, P., Safavi-Naini, R.: Privacy-preserving fairswap: Fairness and privacy
interplay. Proceedings on Privacy Enhancing Technologies (2022)

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption.
In: International Conference on the Theory and Application of Cryptology and Information
Security. pp. 566–582. Springer (2001)

6. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zero-
cash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Se-
curity and Privacy. pp. 459–474 (2014). https://doi.org/10.1109/SP.2014.36

7. Campanelli, M., Fiore, D., Querol, A.: Legosnark: Modular design and composition of suc-
cinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2075–2092 (2019)

8. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contingent pay-
ments revisited: Attacks and payments for services. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 229–243 (2017)

9. Chenli, C., Tang, W., Jung, T.: Fairtrade: Efficient atomic exchange-based fair exchange
protocol for digital data trading. In: 2021 IEEE International Conference on Blockchain
(Blockchain). pp. 38–46. IEEE (2021)

10. Chenli, C., Tang, W., Lee, H., Jung, T.: Fair 2 trade: Digital trading platform ensuring ex-
change and distribution fairness. IEEE Transactions on Dependable and Secure Computing
(2024)

11. arkworks contributors: arkworks zksnark ecosystem (2022), https://arkworks.rs
12. Dai, W., Dai, C., Choo, K.K.R., Cui, C., Zou, D., Jin, H.: Sdte: A secure blockchain-based

data trading ecosystem. IEEE Transactions on Information Forensics and Security 15, 725–
737 (2019)

13. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital goods. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Se-
curity. pp. 967–984 (2018)

14. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A new
hash function for {Zero-Knowledge} proof systems. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 519–535 (2021)

15. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual interna-
tional conference on the theory and applications of cryptographic techniques. pp. 305–326.
Springer (2016)

16. Guan, Z., Wan, Z., Yang, Y., Zhou, Y., Huang, B.: Blockmaze: An efficient privacy-
preserving account-model blockchain based on zk-snarks. Cryptology ePrint Archive,
Paper 2019/1354 (2019), https://eprint.iacr.org/2019/1354, https://
eprint.iacr.org/2019/1354

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks.
In: Advances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 17-21, 2003. Proceedings 23. pp. 463–481.
Springer (2003)

18. Jeong, G., Lee, N., Kim, J., Oh, H.: Azeroth: Auditable zero-knowledge transactions in smart
contracts. IEEE Access 11, 56463–56480 (2023)

https://github.com/NomicFoundation/hardhat
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://arkworks.rs
https://eprint.iacr.org/2019/1354
https://eprint.iacr.org/2019/1354
https://eprint.iacr.org/2019/1354

18 S. Kim et al.

19. Jung, T., Li, X.Y., Huang, W., Qian, J., Chen, L., Han, J., Hou, J., Su, C.: Accounttrade: Ac-
countable protocols for big data trading against dishonest consumers. In: IEEE INFOCOM
2017-IEEE Conference on Computer Communications. pp. 1–9. IEEE (2017)

20. Li, Y., Ye, C., Hu, Y., Morpheus, I., Guo, Y., Zhang, C., Zhang, Y., Sun, Z., Lu, Y., Wang, H.:
Zkcplus: Optimized fair-exchange protocol supporting practical and flexible data exchange.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. pp. 3002–3021 (2021)

21. Liu, X., Zhang, J., Wang, Y., Yang, X., Yang, X.: Smartzkcp: Towards practical data ex-
change marketplace against active attacks. Cryptology ePrint Archive (2024)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Re-
view p. 21260 (2008)

23. Pagnia, H., Gärtner, F.C., et al.: On the impossibility of fair exchange without a trusted third
party. Tech. rep., Citeseer (1999)

24. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable com-
putation. Communications of the ACM 59(2), 103–112 (2016)

25. Sheng, D., Xiao, M., Liu, A., Zou, X., An, B., Zhang, S.: Cpchain: a copyright-preserving
crowdsourcing data trading framework based on blockchain. In: 2020 29th international con-
ference on computer communications and networks (ICCCN). pp. 1–9. IEEE (2020)

26. Su, G., Yang, W., Luo, Z., Zhang, Y., Bai, Z., Zhu, Y.: Bdtf: A blockchain-based data trading
framework with trusted execution environment. In: 2020 16th International Conference on
Mobility, Sensing and Networking (MSN). pp. 92–97. IEEE (2020)

27. Tas, E.N., Seres, I.A., Zhang, Y., Melczer, M., Kelkar, M., Bonneau, J., Nikolaenko, V.:
Atomic and fair data exchange via blockchain. Cryptology ePrint Archive (2024)

28. The book buff: How Many Books Can a Kindle Hold? [8GB vs 32GB] (2023), https:
//thebookbuff.com/how-many-books-can-a-kindle-hold/

29. Wang, B., Li, B., Yuan, Y., Dai, C., Wu, Y., Zheng, W.: Cpdt: A copyright-preserving data
trading scheme based on smart contracts and perceptual hashing. In: 2022 IEEE International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom).
pp. 968–975. IEEE (2022)

30. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper 151(2014), 1–32 (2014)

31. Zhao, Y., Yu, Y., Li, Y., Han, G., Du, X.: Machine learning based privacy-preserving fair data
trading in big data market. Information Sciences 478, 449–460 (2019)

A Formal definitions
A.1 Symmetric-key encryption

We use a symmetric-key encryption scheme SE = (Gen, Enc,Dec), and each of the
algorithms in the tuple works as follows.

– Gen(1λ)→ k : outputs a key k taking a security parameter 1λ as input.
– Enc(k,m) → ct : returns a ciphertext ct by encrypting a message m on symmetric

key k.
– Dec(k, ct)→ m : takes a ciphertext ct and a symmetric key k as inputs and outputs

a plaintext m.

The symmetric encryption scheme SE ensures indistinguishability under chosen-
plaintext attack (IND-CPA) security and key indistinguishability under chosen-plaintext
attack (IK-CPA [5]) security.

https://thebookbuff.com/how-many-books-can-a-kindle-hold/
https://thebookbuff.com/how-many-books-can-a-kindle-hold/

zkMarket 19

A.2 Public-key encryption

The public-key encryption scheme we use consists of a tuple of algorithms PKE =
(Gen, Enc,Dec) and works as follows.

– Gen(1λ) → (sk, pk) : returns a key pair (sk, pk) for secret key sk and public key
pk taking a security parameter 1λ as input.

– Enc(pk,m)→ ct : inputs a public key pk and a plaintext m, and outputs a ciphertext
ct

– Dec(sk, ct) → m : takes a secret key sk and a ciphertext ct and outputs a plaintext
m.

The encryption scheme PKE guarantees ciphertext indistinguishability under chosen-
plaintext attack (IND-CPA) security and key indistinguishability under chosen-plaintext
attack (IK-CPA [5]) security.

A.3 SNARK

A SNARK has to be complete, knowledge-sound, and succinct. A SNARK is complete
if Verify(crs,x, π) outputs 1 with overwhelming probability for (x;w) ∈ R and for any
λ ∈ N and R ∈ Rλ where crs← Setup(1λ, R) and π ← Prove(crs,x,w). Knowledge
soundness (informally) means that a prover knows and can extract witness w from a
proof π which passes the verification. For the succinctness, it means that the proof size
and the verification time are logarithmic on the size of the witness. A SNARK may
satisfy zero knowledge when nothing about the witness is leaked from the proof. We
refer such SNARK to zk-SNARK and it can be constructed with the simulator which
outputs a valid proof without knowing the witness w.

B Notations for anonymous transfer (Azeroth)

Notation Description
addr User’s address
EOA Externally owned public account
ENA Encrypted account
kENA Symmetric key for encrypted account ENA
sct Encrypted balance in ENA
cmAzeroth Commitment in the Azeroth protocol
oAzeroth Opening value of cmAzeroth

MTAzeroth Merkle tree in the Azeroth protocol
Table 2: Notations related to Azeroth used in zkMarket

C Security analysis
In this section, we present the intuition of the security properties that zkMarket satisfies,
as outlined in Section 3.1.

20 S. Kim et al.

Fairness In the RegisterData phase, the seller registers the data using the hash values
of the encrypted data (ct) and the symmetric encryption key (k). To obtain the k, the
buyer must pay the purchase fee during the GenerateTrade phase, which then allows
them to receive the k in the AcceptTrade phase, thereby ensuring seller-fairness.

For the seller to receive the fee for the data, the k must be delivered to the buyer
in the AcceptTrade phase. The smart contract verifies the proof (πacc) that the key has
been encrypted with the buyer’s public key, ensuring that the seller cannot receive the
fee without providing the key to the buyer, thereby ensuring buyer-fairness.

Trade anonymity To prevent an eavesdropper obtain any details about the transac-
tion, we use zk-SNARK, public key encryption, and Merkle trees. Information that
eavesdroppers can access in zkMarket transactions includes cm, ctorder, sctold, sctnew

during the GenerateTrade phase, and rt, nf, cmAzeroth, hk, ctk, pkseller, addrseller during
the AcceptTrade phase.

In the GenerateTrade phase, commitment schemes and public key encryption en-
sure that the eavesdropper cannot identify the specific content the buyer intends to pur-
chase. Similarly, in the AcceptTrade phase, the eavesdropper cannot determine to whom
the seller is delivering the content.

D Relations for zkMarket
As mentioned previously in Section 3.3, there exists three relations for each phase of
zkMarket. Here we provide details of respective relations.

D.1 Relation for RegisterData

The relation for the registration phase Rreg consists of two parts, Rct and Rhk .
Before explaining Rct, we describe the relation for MatPRG, RMatPRG, which is

employed to encryption:

RMatPRG(A;K,R, γ) = 1⇔ A×K× γ = R× γ

RMatrix R proves whether R is generated by fA(K). To verify this efficiently, in-
stead of directly checking A ×K = R, the verification is performed using a random
matrix γ by checking A×K× γ = R× γ.

Finally, Rct is as follows:

Rct(A; ct, data,K,R, γ) = 1⇔ RMatPRG(A;K,R, γ) = 1∧ ⇔ ct = data + ri,j ,

The relation for hash Rh is as follows:

Rh(h;m) = 1⇔ h = CRH(m)

Rh proves that the hash value h is computed from the input m. Note that the multiple
inputs are passed to hash function as concatenated (e.g., CRH(m1||m2)).

In conclusion, the relation for the registration phase, Rreg, is as follows:

Rreg(A, hk; ct, data,K,R, γ, skseller) = 1⇔

Rh(hk; skseller, k) = 1 ∧Rct(A; ct, data,K,R, γ) = 1

zkMarket 21

Rreg, satisfies both Rh and Rct at the same time, can prove the registration is cor-
rectly done without revealing the data before the deal is done. Based on the Rreg, the
algorithm for register data is depicted in algorithm 2.

D.2 Relation for GenerateTrade

The relation for trade generation is then as follows:

Rcom(cm;m, r) = 1⇔ cm = Com(m; r)

RPKE(pk, ct;m) = 1⇔ ct = PKE.Enc(pk,m)

Rcom proves that the commitment cm indeed commits to the message m with the
randomness r. RPKE proves that the ciphertext ct is genuinely from public-key encryp-
tion of the message m with the public key pk.

Rfee(sctold, sctnew; kENA, fee) = 1⇔ fee = SE.Dec(kENA, sctold)−SE.Dec(kENA, sctnew)

Rfee proves the buyer’s ability to pay for the data. Namely, it checks that the pay-
ment fee is equal to the difference between the existing balance and the balance after
payment. Since the account is encrypted for anonymous transfer, Rfee is proven under
SNARK circuit by decrypting sctold and sctnew with the decryption key kENA.

Rgen

(
cm ctorder

sctnew sctold
;

r hk pkseller

pkbuyer kENA fee

)
= 1

⇔ Rcom(cm; pkseller, fee, hk, pkbuyer, r) = 1

∧RPKE(pkseller, ctorder; order) = 1 ∧Rfee(sctold, sctnew; kENA, fee) = 1

At last, Rgen proves that: 1) cm is the commitment to fee with the public key of
both buyer and seller, and the hash value of the symmetric key hk over randomness r,
2) ctorder is an encryption of order with the public key of the seller pkseller, and 3) the
payment fee is equal to the subtraction the decryption of sctnew from the decryption of
sctold. Note that the decryption of sct is the balance of account.

D.3 Relation for AcceptTrade

Before demonstrating the relation for the trade acceptance phase, we provide the expla-
nation for the Merkle tree relation since it is used in the acceptance phase.

RMT(rt; leaf,Path) = 1⇔ MT.MemVerify(rt, leaf,Path) = 1

RMT proves that the given path (Path) is the authentication path of the leaf nodes
leaf reaching to the root rt.

Finally, the relation for the trade acceptance phase Racc is as follows:

Racc


rt nf

cmAzeroth hk

ctk pkseller

addrseller

;
cm Path skseller

k pkbuyer r
fee oAzeroth

 = 1

22 S. Kim et al.

⇔ RPKE(ctk; pkbuyer, k) = 1 ∧Rh(hk; skseller, k) = 1

∧Rh(nf; cm, sk) = 1

∧Rcom(cm; pkseller, fee, hk, pkbuyer, r) = 1

∧Rcom(cmAzeroth; fee, addrseller, oAzeroth) = 1

∧RMT(rt; cm,Path) = 1 ∧Rnf(nf; cm, sk) = 1

Racc contains six relations RPKE, two different Rh, two different Rcom, and RMT.
As explained previously, RPKE proves that the ctk is genuinely the encryption of the k
which can be used to decrypt the ct with pkbuyer, the public key of buyer. The hk is
the hash value of the k and skseller can be proven with the former Rh. Also, the other
Rh proves that the nullifier nf is computed correctly with the commitment cm and the
secret key of the seller sk. One of the Rcom proves that cm is the commitment to fee
with the public key of both buyer and seller, and hk over randomness r. The other Rcom

is required for anonymous transfer, Azeroth, and it proves that cmAzeroth commits to fee
with the address of the seller.

E Deferred things for MatPRG
As described in Section 3.2, we devise new matrix-formed pseudorandom generator,
MatPRG, to alleviate the proving overhead. In this section, we show deferred details
related to MatPRG.

E.1 Pseudorandom Generator (PRG)

Informally, a pseudorandom generator produces a (long) sequence of numbers appear-
ing randomly on a secret seed. The produced sequence should be computationally in-
distinguishable from a genuine random sequence.

Definition 4 (PRG, Pseudorandom Generator). Let function G : {0, 1}n → {0, 1}m
with m > n is pseudo-random generator. Then, for all PPT adversaries A and random
y ∈ {0, 1}m and pseudo-random G(x) for a random seed x ∈ {0, 1}n, there is a
negligible function negl such that

| Pr[A(1n, y) = 1]− Pr[A(1n, G(x)) = 1] | ≤ negl(n)

E.2 Linear System Model (LSM)

Let m > n. For a given matrix A ∈ Zn×m
q , K2 ∈ {0, 1}(m−x)×k, and R ∈ Zn×k

q , the

linear system algorithm finds the matrix K1 ∈ {0, 1}x×k such that A
[
K1

K2

]
= R, as

follows:

1. Decompose A into an n× n square matrix A1 and an n× (m− n) matrix A2.
2. Compute the inverse of A1 (in this case, the matrix A1 is invertible with probability

1− 1
q .) and multiply it by R−A2K2:

K1 = A1
−1(R−A2K2)

zkMarket 23

E.3 Security proof for MatPRG

Here, we present the security proof for the theorem 1 under the LSM defined in E.2.

Proof. Consider a matrix A = [A1 A2] ∈ Zn×m
q , where A1 ∈ Zn×n

q and A2 ∈ Zn×δ
q ,

with A1 being an invertible matrix.
In the LSM, this adversary can construct K2

∗ by randomly sampling from
{0, 1}δ×k and then compute K1

∗ = A1
−1(R − A2K

∗
2). The adversary’s objective

is to distinguish between a truly pseudorandom output and a genuinely random one.
To determine this, the adversary checks that K1

∗ ∈ {0, 1}x×k and scrutinizes whether
R = fA(K∗). If the equation holds true, the adversary leans towards identifying the
output as “pseudo-random." Conversely, if R ̸= AK∗, the attacker inclines towards
labeling the output as “random."

In essence, the adversary’s success in distinguishing between the two outcomes re-
lies on the uniqueness of K2. If the adversary’s guess aligns with the true K, indicating
a pseudorandom output, the success probability is 1

2δk
. Therefore, if δk > 128, the

success probability becomes negligible, ensuring the security of our PRG.

F Algorithmic overview
According to the construction of zkMarket in Section 3.3, we depict the overall proce-
dure of zkMarket in Figure 3.

The Protocol of zkMarket

Seller SmartContract Buyer

. Setup .

addrseller
, kENA

, pkseller
, skseller ← Setup(1λ) addrbuyer

, kENA
, pkbuyer

, skbuyer ← Setup(1λ)

. .Register data .

data

txreg ← RegisterData (crs1, data, skseller
) txreg SC.RegisterData (txreg)

. Generate Trade .

{hk, hct} ∈ Listdata
Listdata Select data hk, hct

inputgen = (fee, pkseller
, pkbuyer

, addrbuyer
, hk, kENA)

SC.GenerateTrade(txgen)
txgen txgen ← GenerateTrade(crs2, inputgen)

x, ctorder Emit Event ctorder

. .Accept Trade .

inputacc = (fee, ctorder, pkseller
, skseller

, pkbuyer
, hk)

txacc ← AcceptTrade(crs3, inputacc)
txacc SC.AcceptTrade(txacc)

Emit Event ctk
ctk k ← PKE.Dec(pkbuyer

, ctk)

data ← SE.Dec(k, data)

Fig. 3: Illustration of zkMarket workflow following algorithm in Section 3.3

	zkMarket: Privacy-preserving Fair Data Trade System on Blockchain

