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Abstract

Boolean functions play an important role in designing and analyzing many crypto-
graphic systems, such as block ciphers, stream ciphers, and hash functions, due to
their unique cryptographic properties such as nonlinearity, correlation immunity,
and algebraic properties. The secure evaluation of Boolean functions or Secure
Boolean Evaluation (SBE) is an important area of research. SBE allows parties
to jointly compute Boolean functions without exposing their private inputs. SBE
finds applications in privacy-preserving protocols and secure multi-party compu-
tations. In this manuscript, we present an efficient and generic two-party protocol
(namely BooleanEval) for the secure evaluation of Boolean functions by utilizing a
1-out-of-2 Oblivious Transfer (OT) as a building block. BooleanEval only employs
XOR operations as the core computational step, thus making it lightweight and
fast. Unlike other lightweight state-of-the-art designs of SBE (such as [1] and [2]),
BooleanEval avoids the use of additional cryptographic primitives, such as hash
functions and commitment schemes to reduce the computational overhead.

Keywords: Boolean Functions, Secure Boolean Function Evaluation, Oblivious
Transfer, XOR, Semi-Honest Security
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1 Introduction

A Boolean function is a mathematical function that takes binary inputs and produces a
binary output. They are a fundamental component [3] in many cryptographic systems.
In particular, Boolean functions have applications ranging from block ciphers [4] and
stream ciphers [4] to hash functions [5] and digital signatures. The cryptographic
properties of Boolean functions, such as nonlinearity, resiliency, and balance, make
them important for building cryptographic algorithms that resist various attacks. The
secure evaluation of Boolean functions (also known as Secure Boolean Evaluation
(SBE)) is an active and critical area of research. The research in this domain is driven
by its wide-ranging applications in privacy-preserving protocols and secure multi-party
computations. A two-party SBE allows two parties, Alice and Bob, to jointly evaluate
a Boolean function without revealing their respective inputs. The ability to securely
compute Boolean functions implies the ability to evaluate any computable function
securely (also known as Secure Function Evaluation (SFE) in literature) [6]. No matter
how complex, any function can be represented as a composition of Boolean functions.
Every function can be broken down into a series of logical operations, such as AND,
OR, and NOT, which form the building blocks of Boolean circuits. Summing up, to
securely evaluate a computable function f , we represent it through its corresponding
boolean circuit C. In the following, SBE is employed to evaluate C securely. SBE
has significant applications in multi-party computation, where privacy is one of the
major concerns. For example, it has applications in domains such as privacy-preserving
biometric authentication [7, 8], secure deep learning framework [9], privacy-preserving
machine learning [10], and medical emergencies [11]. Besides, database mining and
data storage outstanding [12, 13] are some of the important applications of SBE. SBE
is also a universal building block, and many interesting cryptographic protocols can
be formulated as instances thereof, e.g., zero-knowledge proofs.

The first SBE protocol [14] was proposed by Yao as a solution to the famous mil-
lionaires’ problem [15]. The problem states the following. Two millionaires, X and Y ,
who possess wealth amounts x and y respectively, aim to determine who is wealthier
without disclosing their actual wealth. Yao proposed an SFE protocol as a solution,
using a function f such that f(x, y) = 1 if Y is wealthier than X, and 0 otherwise.
The goal is to compute f(x, y) while preserving the privacy of both parties’ wealth.
In the current state-of-the-art, there have been several constructions of SBE based
on various techniques such as garbled circuit [1, 2, 14, 16], mix and match [17], and
server-aided [18]. In this work, we focus on designing and analyzing a protocol for the
secure evaluation of Boolean functions using simple cryptographic techniques such as
Oblivious Transfer (OT) and XOR as building blocks. We briefly review the existing
state-of-the-art protocols [1, 2] that utilize the same idea. Malkhi et al. [1] introduced
Fairplay, a full-fledged system that enables generic secure function evaluation (SFE).
It is a two-party SFE protocol where one party, Alice, garbles circuits using the hash
function and XOR operation. Another party, Bob, chooses one of those circuits to
evaluate and verify the remaining using the commitment scheme. In the end, they are
involved in 1-out-of-2 OT to get the output. The complexity of this protocol depends
on the size of the circuit, the number of circuits garbled, and the commitment scheme
and OT used in the protocol. Kolesnikov et al. [2] designed a two-party SFE protocol
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by garbling the circuit corresponding to the function that has to be evaluated. One
party (say Alice) uses a random oracle and simple XOR operation to execute the
process. Then, Alice and Bob are involved in 1-out-of-2 OT to send the necessary
information to Bob to compute the output. Bob evaluates the garbled circuit and
obtains the output.

Our contributions. The major contributions of this paper are mentioned below.

• In this manuscript, we focus on the design and analysis of a two-party SBE pro-
tocol (namely BooleanEval). We present new techniques for secure evaluation of
Boolean functions using only standard cryptographic primitives as building blocks.
BooleanEval allows two parties, Alice and Bob, to securely compute a Boolean
function over their private inputs.

• In particular, we propose a generic design that utilizes 1-out-of-2 OT as a building
block. Any secure 1-out-of-2 OT can be used to instantiate the BooleanEval. Apart
from OT, the protocol utilizes only XOR operations as the core computational step.
XOR operations are efficient and fast. Thus, it leads to minimal computational
overhead and rapid execution.

• BooleanEval is efficient when compared to existing state-of-the-art lightweight
designs such as [1] and [2]. Unlike [1, 2], BooleanEval does not employ addi-
tional cryptographic primitives such as cryptographically secure hash functions and
commitment protocols.

Organization of the paper. The preliminaries are contained in Section 2. Our pro-
posed secure Boolean function evaluation design (BooleanEval) is described in Section
3. Security analysis and efficiency analysis are provided in Section 4 and Section 5,
respectively. Finally, we have concluded this paper in Section 6.

2 Preliminaries

2.1 1-out-of-2 OT

1-out-of-2 OT is a two-party privacy preserving cryptographic protocol. It involves
two parties say Alice and Bob where Alice has two messages (m0,m1). Bob is allowed
to obtain message mb according to his choice bit b ∈ {0, 1}. A schematic diagram of
1-out-of-2 OT is shown in Figure 1. A 1-out-of-2 OT satisfies the following security
properties.

• Alice’s privacy: Bob should not be able to obtain messages other than the chosen
message mb.

• Bob’s privacy: Alice should be unable to gain any information about the choice bit
b of Bob.
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Alice Bob

Fig. 1 1-out-of-2 Oblivious Transfer

2.2 Boolean function

A Boolean function f is defined as a map f : {0, 1}v1 −→ {0, 1} for some v1 ∈ N.
However, the function f can be generalized as a map from v1 tuple binary string to
an u tuple binary string defined as f : {0, 1}v1 −→ {0, 1}u. Some simple example of
Boolean functions are given in Example 1, 2, and 3.
Example 1. fAND : {0, 1} × {0, 1} −→ {0, 1} by

fAND(X,Y ) = X · Y =

{
0 if one of X or Y is 0

1 if both X and Y are 1

Example 2. fNOT : {0, 1} −→ {0, 1} by

fNOT(X) = ¬(X) =

{
0 if X = 1

1 if X = 0

Example 3. fOR : {0, 1} × {0, 1} −→ {0, 1} by

fOR(X,Y ) = X + Y =

{
0 if both of X and Y are 0

1 if one of X or Y is 1

2.3 Universal Logic Gates

Logic gates are fundamental tool for constructing a digital circuit. Basic logic gates are
AND,NOT,OR gates. In general, AND,NOT,OR operations are represented as ·,¬,+
respectively. The constructions and truth tables of these gates are given in Example
4, 5, and 6.
Example 4. AND gate construction and it’s truth table.

Input Output

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

Example 5. NOT gate construction and it’s truth table.
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Input Output

X Z

0 1

1 0

Example 6. OR gate construction and it’s truth table.

Input Output

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

Note that the truth tables of the logic gates AND,OR,NOT represents the corre-
sponding Boolean function’s output (refer Example 1, 2, 3). Moreover, any other
logic gate can be constructed using only AND and NOT gates. Therefore, AND,NOT
gates together are called universal logic gates. Consequently, any Boolean circuit C
can be constructed using AND,NOT logic gates. Any Boolean function f can also be
represented as a Boolean circuit C such that the output of the function f and the
circuit C are same.

De Morgan’s Law. For any two propositions X,Y the De Morgan’s law says.

¬(X + Y ) = (¬(X)) · (¬(Y )) (1)

¬(X · Y ) = (¬(X)) + (¬(Y )) (2)

Input and Non-input Gates. Let C be the circuit corresponding to the Boolean
function f . We divide the gates in C into two separate classes: input gates and non-
input gates. We provide a illustrative example in Figure 2.

• Input Gate. The gates Gi whose input wires are not the output of any other gates
of that circuit are defined as input gates. For example, gates G1, G2, G3 are input
gates in Figure 2.

• Non-input Gate. The gates Gi whose one or both of the input wires are output
wires of any other gates in C are defined as non-input gates. For instance, gates
G4, G5, G6 are non-input gates in Figure 2.
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Fig. 2 Example of input and non-input gates of a circuit C

3 Proposed Secure Boolean Function Evaluation
Protocol BooleanEval

A high level overview: In this work, we concentrate ourselves in the design of
a two-party secure Boolean function evaluation protocol namely BooleanEval. Our
scheme involves two parties: sender Alice and receiver Bob having their private inputs
x = (x1, x2, . . . , xv1) ∈ {0, 1}v1 and y = (y1, y2, . . . , yv2) ∈ {0, 1}v2 respectively where
v1, v2 ∈ N. They wish to securely evaluate a Boolean function f : {0, 1}v1 ×{0, 1}v2 →
{0, 1}u for some u ∈ N. Note that any Boolean function f can be represented as an
acyclic Boolean circuit C [2] using only AND and NOT gates such that, for all inputs
x ∈ {0, 1}v1 , y ∈ {0, 1}v2 , C(x, y) = f(x, y). We are utilizing the fact that AND and
NOT gates together is known as universal logic gates. The input AND gates and input
NOT gates with respect to the input yl of Bob are obliviously evaluated by executing an
OT protocol between Alice and Bob. On the other hand, for each input NOT gate with
respect to input xk of Alice, an arbitrary bit string ax̄k

is sent to Bob by Alice where
a0, a1 ∈R {0, 1}λ. In case of OT for input AND gate, Alice’s input pair corresponding
to its input bit xk is of the form (a0, x̄ka0 ⊕ xka1) and Bob’s input choice is its input
bit yl where a0, a1 ∈ {0, 1}λ. While in case of OT for input NOT gate, Alice’s input
pair is (a0, a1) and Bob’s input pair is ȳl for its input bit yl, where a0, a1 ∈R {0, 1}λ.
For the case of each non-input AND gate, Alice makes a set containing all four possible
outcomes and for each non-input NOT gate, it makes a set containing all two possible
outcomes. The outcomes in each case are represented by arbitrary bit strings with
the help of associated input wire bit strings. Moreover, these outcomes are written in
randomized order in the set. As a result, after execution Bob will get only arbitrary
bit strings as output. At the final stage, Alice sends associated bit strings (a, b) for
the final output gate as (a, 0) and (b, 1) so that Bob can determine the output as 0 if
he gets a and 1 if he gets b.
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Fig. 3 Diagram of OT construction for AND gate

3.1 Our Construction

Let the function f to be evaluated between Alice and Bob with their private
inputs x = (x1, x2, . . . , xv1) ∈ {0, 1}v1 and y = (y1, y2, . . . , yv2) ∈ {0, 1}v2 respec-
tively where v1, v2 ∈ N. Suppose that C be the acyclic Boolean circuit satisfying
C(x, y) = f(x, y) ∀x ∈ {0, 1}v1 , y ∈ {0, 1}v2 . Moreover, assume that C is designed
using AND and NOT gates. Then, Alice and Bob jointly execute input AND gates,
input NOT gates, non-input AND gates and non-input NOT gates in the following
manner.

Input AND gate computation for Alice’s input bit xk and Bob’s input bit yl.

Alice first chooses a0, a1 ∈R {0, 1}λ associated with 0 and 1 respectively. Then Alice
with inputs (a0, x̄ka0 ⊕ xka1) and Bob with input choice bit yl involve in a 1-out-of-2
OT. At the end of OT, Bob receives a1 if xk = 1 and yl = 1, else it receives a0. A
schematic diagram of this construction is shown in Figure 3.

Input NOT gate computation for Bob’s input yl. In this case, Alice chooses

a0, a1 ∈R {0, 1}λ associated with 0 and 1 respectively. In the following, Alice with
input (a0, a1) and Bob with input choice bit ȳl involves in a 1-out-of-2 OT protocol,
where a0, a1 ∈R {0, 1}λ are associated with 0 and 1 respectively. On completion of
OT protocol, Bob receives aȳl

. A schematic diagram of this construction is shown in
Figure 4.

Input NOT gate computation for Alice’s input xk. Alice chooses ax̄k
∈R

{0, 1}λ and sends it to Bob, where a0, a1 are associated with 0 and 1 respectively.

Non-input AND gate computation for inputs wi, wj ∈ {0, 1}λ. Let wi ∈
{a0, a1} and wj ∈ {b0, b1} where a0, b0 are associated with 0’s and a1, b1 are associated
with 1’s. Then Alice does the following,

(i) Alice chooses c0, c1 ∈R {0, 1}λ corresponding to 0 and 1 respectively for the output
wire.
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Fig. 4 Diagram of OT construction for NOT gate

(ii) Makes a set consisting the following four entries

e00 = a0 ⊕ b0 ⊕ c0;

e01 = a0 ⊕ b1 ⊕ c0;

e10 = a1 ⊕ b0 ⊕ c0;

e11 = a1 ⊕ b1 ⊕ c1;

(iii) Sends the set EAND = {e00, e01, e10, e11} to Bob in a randomized order.
(iv) Sends {c0, c1} in randomized order to Bob.

On receiving EAND in some randomized order Bob does XOR of wi ⊕ wj with each
member of the received set and checks whether it gets cσ ∈ {c0, c1} in one of the four
cases. If not, then Bob outputs ⊥ and aborts, else it sets the output wr = cσ. Note
that, due to the XOR-ing, Bob will get either c0 or c1 in one of the four cases.

Non-input NOT gate computation for input wi ∈ {0, 1}λ. Let wi ∈ {a0, a1}
where a0 is associated with 0, and a1 is associated with 1. Then Alice does the
following,

(i) Selects c0, c1 ∈R {0, 1}λ associated with 0 and 1 respectively.
(ii) Makes a set containing

e0 = a0 ⊕ c1;

e1 = a1 ⊕ c0;

(iii) Sends the set ENOT = {e0, e1} to Bob in randomized order.
(iv) Forwards {c0, c1} to Bob in some random order.

Bob on receiving ENOT in randomized order, he does XOR of wi with each elements
of the received set and verifies whether it obtains cσ ∈ {c0, c1}. If not, then outputs ⊥
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and abort, else writes the output wr = cσ. This is due to the fact that the XOR-ing
will enable Bob to get either c0 or c1 in one of the two cases.

After executing all the input and non input gates, Bob remains with a string cσ.
In the following, Alice sends the set {(c0, 0), (c1, 1)} to Bob for the final output gate of
the circuit. As a consequence, Bob will be able to obtain the associated bit value of cσ.
In other words, Bob obtains the output of function f(x, y) since C(x, y) = f(x, y)1.
At the end, Bob will send f(x, y) to Alice.

3.2 Correctness

In the following, the correctness of BooleanEval is discussed. We construct 1-out-of-
2 OT for input gates. The correctness of 1-out-of-2 OT for AND and NOT gates is
described below.
Correctness of 1-out-of-2 OT for input AND gate. The output of AND is 1,
only when, both the input wire’s value are 1; otherwise, it is 0. Recall that a0, a1
are bit strings associated with bit values 0 and 1, respectively. The construction of
1-out-of-2 OT for AND gate gives an output a0 to Bob if the choice bit of Bob is
yl = 0. Therefore, when the input wire’s value for AND gate is one of the pairs of
(xk = 0, yl = 0), (xk = 1, yl = 0), Bob obtains a0, which is associated with the bit 0.
On the other hand, Bob obtains x̄ka0⊕xka1 if the choice bit of Bob is yl = 1. Therefore,
when input wire’s value for AND gate is the pair (xk = 0, yl = 1), Bob obtains a0
(putting xk = 0). If the input wire’s value for AND gate is the pair (xk = 1, yl = 1),
Bob obtains a1 (putting xk = 1), where a1 is the bit string corresponding to the bit
value 1. Therefore, the output of 1-out-of-2 OT correctly follows the truth table of
AND gate.
Correctness of 1-out-of-2 OT for input NOT gate. The truth table of NOT gate
shows that the output wire’s value is 1 when the input wire’s value is 0 and vice versa.
It follows from the construction of 1-out-of-2 OT for NOT gate that Bob receives a1
if his choice bit is ȳl = 1. That is, if the input wire’s value of Bob is yl = 0, he obtains
bit string a1 which is associated with bit 1. On the other hand, Bob obtains a0 if the
choice bit of Bob is ȳl = 0, i.e, if the input wire’s value is Bob’s is yl = 1, he obtains the
bit string a1 corresponding to bit 1. Therefore, the output of 1-out-of-2 OT correctly
follows the truth table of NOT gate.
Correctness of non input AND gate. Corresponding to each non-input AND gate,
Bob has bit strings wi, wj corresponding to the input wires . Alice sends the set
EAND = {e00, e01, e10, e11} to Bob. Alice also sends the set {c0, c1} associated with the
output wire of the AND gate to Bob. Therefore, Bob has wi, wj , EAND and {c0, c1}.

1Note that, if Alice wants to obtain the output of the function f(x, y) by herself, she don’t send the set
{(c0, 0), (c1, 1)} to Bob. Bob will send wr(= cσ) to Alice and observing the value of cσ, Alice will get the
associated bit value, i.e., f(x, y).
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As per the construction 3.1

e00 = a0 ⊕ b0 ⊕ c0;

e01 = a0 ⊕ b1 ⊕ c0;

e10 = a1 ⊕ b0 ⊕ c0;

e11 = a1 ⊕ b1 ⊕ c1;

where a0, b0 are random bit strings corresponding to 0 and a1, b1 are random bit strings
corresponding to 1, associated with input wires of the AND gate. Clearly, wi ∈ {a0, a1}
and wj ∈ {b0, b1}. c0, c1 are randomly chosen bit strings by Alice corresponding to
the output wire of that AND gate. It is easy to see that XOR-ing wi, wj with the set
EAND sent by Alice will enable Bob to obtain the correct output string cσ for some
σ ∈ {0, 1}.

e00 ⊕ wi ⊕ wj = a0 ⊕ b0 ⊕ c0 ⊕ wi ⊕ wj ;

e01 ⊕ wi ⊕ wj = a0 ⊕ b1 ⊕ c0 ⊕ wi ⊕ wj ;

e10 ⊕ wi ⊕ wj = a1 ⊕ b0 ⊕ c0 ⊕ wi ⊕ wj ;

e11 ⊕ wi ⊕ wj = a1 ⊕ b1 ⊕ c1 ⊕ wi ⊕ wj ;

Since, wi ∈ {a0, a1} and wj ∈ {b0, b1}, we can see that Bob obtains cσ = ci·j correctly
as per the truth table of AND gate. In particular, if wi = a0, wj = b1, then from
second expression it follows that Bob obtains cσ = c0 = c{0·1} correctly. Similarly, if
wi = a0, wj = b0, Bob obtains cσ = c0 = c{0·0}. For wi = a1, wj = b0, Bob obtains
cσ = c0 = c{1·0}, and when wi = a1, wj = b1, from last expression, Bob obtains
cσ = c1 = c{1·1}. Therefore, Bob correctly obtains a bit string cσ associated with the
output wire as per the truth table for AND gate.
Correctness of non-input NOT gate. Corresponding to each non-input NOT gate,
Bob has bit strings wi corresponding to the input wires. Alice sends the set ENOT =
{e0, e1} to Bob. Alice also sends {c0, c1} associated with output wire of the NOT gate
to Bob. Therefore, Bob has wi, ENOT, and {c0, c1}. As per the construction 3.1

e0 = a0 ⊕ c1;

e1 = a1 ⊕ c0;

where a0 is a random bit string corresponding to 0, and a1 be the random bit strings
corresponding to 1 associated with input wire of the NOT gate. Clearly, wi ∈ {a0, a1}.
c0, c1 are randomly chosen bit string by Alice corresponding to the output wire of that
NOT gate. It is easy to see that XOR-ing wi with ENOT sent by Alice will enable Bob
to obtain the correct output string cσ for some σ ∈ {0, 1}

e0 ⊕ wi = a0 ⊕ c1 ⊕ wi;

e1 ⊕ wi = a1 ⊕ c0 ⊕ wi;
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Since, wi ∈ {a0, a1}, we can see from the above data that Bob obtains cσ = c¬i

correctly as per the truth table of NOT gate. In particular, if wi = a0, Bob correctly
obtains cσ = c1 = c{¬0}. If wi = a1, Bob correctly obtains cσ = c0 = c{¬1}. Therefore,
Bob correctly obtains the bit string cσ associated with the output wire as per the
truth table for NOT gate.

Thus, Bob can correctly compute all the non-input gates in topological order. As
a consequence, Bob obtains the bit string cσ corresponding to C(x, y). At the end of
the execution of all the gates in the circuit, Alice sends {(c0, 0), (c1, 1)} corresponding
to the final output gate to Bob. Clearly, cσ ∈ {c0, c1} as Bob correctly computed all
the gates of the circuit. Matching the value of cσ with {c0, c1}, Bob gets the output
wire’s bit string value of circuit C and associated bit value of that bit string correctly.

3.3 A Toy Example

In this section, we provide a toy example of BooleanEval. Let us consider a Boolean
function f : {0, 1}4 × {0, 1}4 → {0, 1} defined by f(x, y) = [{(¬(x1 · y1)) + (¬(x2 ·
y2))} · (x3 · y3)] · {¬(x4 + y4)}. Using De Morgan’s law we have,

f(x, y) = [{(¬(x1 · y1)) + (¬(x2 · y2))} · (x3 · y3)] · {¬(x4 + y4)}
= [{¬((x1 · y1) · (x2 · y2))} · (x3 · y3)] · {(¬x4) · (¬y4)} [ by 1, 2]

Alice has private input x = 0101 and Bob has private input y = 1100. Here, v1 =
4, v2 = 4, u = 1 and x1 = 0, x2 = 1, x3 = 0, x4 = 1; y1 = 1, y2 = 1, y3 = 0, y4 = 0. Let
λ be a security parameter. The Boolean circuit C corresponding to f(x, y) is given
in Figure 5. Let Wi be the output wire of Gi for i = 1, 2, . . . , 10. We denote by wi

the bit string obtained by Bob corresponding to the output wire Wi of gate Gi for
i = 1, 2, . . . , 10. The computation of circuit is described below.
Computation of Input Gates (G1, . . . , G5):

• Alice has private inputs x1 = 0, x2 = 1, x3 = 0 and Bob has private inputs y1 =
1, y2 = 1, y3 = 0 for G1, G2, G3 (AND gates) respectively. Bob has private input
y4 = 0 for G5 (NOT gate), and Alice has private inputs x4 = 1 for G4 NOT gate.

• To compute input AND gate G1, Alice first chooses a10, a
1
1 ∈R {0, 1}λ associated

with 0 and 1 respectively. In the following, Alice and Bob are involved in an 1-out-
of-2 OT. Since x1 = 0, Alice’s input messages to OT are (a10, x̄1a

1
0⊕x1a

1
1) = (a10, a

1
0)

and Bob’s choice bit is y1 = 0. Thus, Bob receives a10 as an output of OT. Therefore
w1 = a10.
Similarly, to compute gate G2, G3, Alice first chooses a20, a

2
1 and a30, a

3
1 ∈R {0, 1}λ

where a20, a
3
0 are associated with 0, and a21, a

3
1 are associated with 1. Since x2 =

1, Alice and Bob inputs to the OT are (a20, x̄2a
2
0 ⊕ x2a

2
1) = (a20, a

2
1) and y2 = 1

respectively. At the end, Bob obtains a21 i.e., w2 = a21 as the output of OT. In a
similar way, Bob obtains w3 = a30 as x3 = 0, y3 = 0 after computing the gate G3.

• G4 is an input NOT with Alice’s input x4 = 1. Alice chooses a40, a
4
1 ∈R {0, 1}λ

associated with 0 and 1 respectively. Alice sends a4x̄4
= a40 to Bob. Therefore, w4 =

a40.
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Fig. 5 Flow Diagram of Corresponding Boolean Circuit of Function f

• G5 is an input NOT gate in which Bob’s input is y5 = 0. Alice first chooses a50, a
5
1 ∈R

{0, 1}λ associated 0 and 1 respectively. Then Alice and Bob are involved in 1-out-
of-2 OT with Alice’s input (a50, a

5
1) and Bob’s choice bit ȳ5 = 1. On completion of

OT, Bob receives w5 = a5ȳ5
= a51.

Computation of Non-input Gates (G6 . . . G10):

• Note that W1,W2 are input wires of AND gate G6 and w1 ∈ {a10, a11}, w2 ∈ {a20, a21}.
To compute G6, Alice does the following,

(i) Alice chooses a60, a
6
1 ∈R {0, 1}λ corresponding to 0 and 1 respectively for the

output wire W6.
(ii) Makes a set with the following four entries

e600 = a10 ⊕ a20 ⊕ a60;

e601 = a10 ⊕ a21 ⊕ a60;

e610 = a11 ⊕ a20 ⊕ a60;

e611 = a11 ⊕ a21 ⊕ a61;

(iii) Sends the set EG6
= {e600, e611, e610, e601}, along with {a60, a61} to Bob.

On receiving EG6 , Bob does the following,

e600 ⊕ w1 ⊕ w2 = a10 ⊕ a20 ⊕ a60 ⊕ a10 ⊕ a21 = ⊥;

e601 ⊕ w1 ⊕ w2 = a10 ⊕ a21 ⊕ a60 ⊕ a10 ⊕ a21 = a60;
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e610 ⊕ w1 ⊕ w2 = a11 ⊕ a20 ⊕ a60 ⊕ a10 ⊕ a21 = ⊥;

e611 ⊕ w1 ⊕ w2 = a11 ⊕ a21 ⊕ a61 ⊕ a10 ⊕ a21 = ⊥;

Bob compares the output of the above XOR computations with the set {a60, a61} to
obtain w6 = a60.

• The AND gate G7 has input wires W4,W5 and w4 ∈ {a40, a41}, w5 ∈ {a50, a51}. Similar
to the computation of G6, to compute G7, Alice does the following,

(i) Alice chooses a70, a
7
1 ∈R {0, 1}λ corresponding to 0 and 1 respectively for the

output wire W7.
(ii) Makes a set with the following four entries

e700 = a40 ⊕ a50 ⊕ a70;

e701 = a40 ⊕ a51 ⊕ a70;

e710 = a41 ⊕ a50 ⊕ a70;

e711 = a41 ⊕ a51 ⊕ a71;

(iii) Sends EG7
= {e700, e701, e711, e710} along with {a71, a70} to Bob.

On receiving EG7 , Bob does the following,

e700 ⊕ w4 ⊕ w5 = a40 ⊕ a50 ⊕ a70 ⊕ a40 ⊕ a51 = ⊥;

e701 ⊕ w4 ⊕ w5 = a40 ⊕ a51 ⊕ a70 ⊕ a40 ⊕ a51 = a70;

e710 ⊕ w4 ⊕ w5 = a41 ⊕ a50 ⊕ a70 ⊕ a40 ⊕ a51 = ⊥;

e711 ⊕ w4 ⊕ w5 = a41 ⊕ a51 ⊕ a71 ⊕ a40 ⊕ a51 = ⊥;

Therefore, Bob obtains w7 = a70.
• The NOT gate G8 has input wire W6 and note that w6 ∈ {a60, a61}. To compute G8,
Alice does the following,

(i) Alice selects a80, a
8
1 ∈R {0, 1}λ associated with 0 and 1 respectively for the output

wire W8.
(ii) Makes a set with following two entries

e80 = a60 ⊕ a81;

e81 = a61 ⊕ a80;

(iii) Sends the set EG8 = {e81, e80} along with {a80, a81} to Bob.

On receiving EG8
, Bob computes

e80 ⊕ w6 = a60 ⊕ a81 ⊕ a60 = a81;

e81 ⊕ w6 = a61 ⊕ a80 ⊕ a60 = ⊥;
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Therefore, Bob obtains w8 = a81 after comparing the outputs of above XOR
computations with the set {a80, a81}.

• Observe that W8,W3 are input wires of AND gate G9, w8 ∈ {a80, a81}, w3 ∈ {a30, a31}.
To compute G9, Alice performs the following steps.

(i) She chooses a90, a
9
1 ∈R {0, 1}λ corresponding to 0 and 1 respectively for the output

wire W9.
(ii) Alice makes a set with the following four entries

e900 = a80 ⊕ a30 ⊕ a90;

e901 = a80 ⊕ a31 ⊕ a90;

e910 = a81 ⊕ a30 ⊕ a90;

e911 = a81 ⊕ a31 ⊕ a91;

(iii) Sends the set EG9
= {e911, e910, e901, e900} and {a90, a91} to Bob.

Bob performs the following XOR operations,

e900 ⊕ w8 ⊕ w3 = a80 ⊕ a30 ⊕ a90 ⊕ a81 ⊕ a30 = ⊥;

e901 ⊕ w8 ⊕ w3 = a80 ⊕ a31 ⊕ a90 ⊕ a81 ⊕ a30 = ⊥;

e910 ⊕ w8 ⊕ w3 = a81 ⊕ a30 ⊕ a90 ⊕ a81 ⊕ a30 = a90;

e911 ⊕ w8 ⊕ w3 = a81 ⊕ a31 ⊕ a91 ⊕ a81 ⊕ a30 = ⊥;

Hence, Bob obtains w9 = a90 after comparing the output of above XOR computations
with the set {a90, a91}.

• G10 is the output gate of circuit C with input wires W9 and W7. Note that w9 ∈
{a90, a91}, w7 ∈ {a70, a71}. To compute G10, Alice does the following,

(i) Selects a100 , a101 ∈R {0, 1}λ corresponding to 0 and 1 respectively for the output
wire W10.

(ii) Makes a set with the following four entries

e1000 = a90 ⊕ a70 ⊕ a100 ;

e1001 = a90 ⊕ a71 ⊕ a100 ;

e1010 = a91 ⊕ a70 ⊕ a100 ;

e1011 = a91 ⊕ a71 ⊕ a101 ;

(iii) Sends the set EG10 = {e1000, e1011, e1010, e1001} and {(a101 , 1), (a100 , 0)} to Bob.

Bob receives EG10
and does the following XOR computations,

e1000 ⊕ w9 ⊕ w7 = a90 ⊕ a70 ⊕ a100 ⊕ a90 ⊕ a70 = a100 ;

e1001 ⊕ w9 ⊕ w7 = a90 ⊕ a71 ⊕ a100 ⊕ a90 ⊕ a70 = ⊥;
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Table 1 List of Symbols

Symbol Meaning

x Private input of Alice
y Private input of Bob
v1 Cardinality of x
v2 Cardinality of y
u Cardinality of output of function f
λ length of arbitrary bit string chosen by Alice, security

parameter
k Index of Alice’s input
v number of input gates
l Index of Bob’s input
N Size of circuit
∈R Randomly chosen
wr Corresponding bit string of output wire
cσ Corresponding value of output wire, obtained by Bob
c
≡ Indistinguishable symbol

e1010 ⊕ w9 ⊕ w7 = a91 ⊕ a70 ⊕ a100 ⊕ a90 ⊕ a70 = ⊥;

e1011 ⊕ w9 ⊕ w7 = a91 ⊕ a71 ⊕ a101 ⊕ a90 ⊕ a70 = ⊥;

• Bob obtains w10 = a100 after comparing the outputs of the above XOR computations
with the set {(a101 , 1), (a100 , 0)} sent by Alice. Note that a100 corresponds to the bit 0,
thus Bob deduce that the output of the circuit C is 0. In the following, Bob sends
0 to Alice.

4 Security Analysis

In this section, we present the security analysis of BooleanEval. The security model of
BooleanEval is presented below. A two-party secure Boolean Function Evaluation is a
cryptographic protocol satisfying the following security properties.

• Alice’s privacy: Bob obtains only the the output of the Boolean function, and can
not obtain any information about the Alice’s private inputs.

• Bob’s privacy: Alice should not be able to obtain any information about Bob’s
private inputs.

To prove the security of the BooleanEval, we consider the following assumptions.

• The underlying OT protocol utilized to instantiate BooleanEval is secure.
• Alice and Bob behave in a semi-honest manner.

We will provide a simulation-based security proof of BooleanEval. We follow the
approach of [2]. Intuitively, the protocol is secure if whatever is seen by its party can
be computed only from that party’s input and output. We denote the view of Alice to
a protocol ϕ as V ϕ

A and the view of Bob to protocol ϕ as V ϕ
B . Consider two simulators

S1, S2 that provide output for the view of Alice and Bob in the ideal world. We are

going to show that {S1(x, f(x, y))} c≡ V ϕ
A and {S2(y, f(x, y))} c≡ V ϕ

B .
Theorem 1. Alice should be unable to obtain any information about Bob’s private
input.
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Proof. Let us assume that Alice is corrupted. Simulator S1 is constructed in such a
way that given input (x, f(x, y)), S1 can simulate the view of Alice. Alice has private
input xk and assigns two random bit strings a0, a1 ∈R {0, 1}λ to 0 and 1 respectively.
Alice’s view in this protocol consists only of the view in the OT protocol. Let S1

OT

denote the simulator for the secure 1-out-of-2 OT protocol. Alice’s input for the OT
protocol is (a0, a1) ∈R {0, 1}λ (for input NOT gate) or (a0, x̄ka0 ⊕ xka1) (for input
AND gate). Since we assume that the OT protocol is secure, the simulator S1 computes
the OT protocol with Alice’s inputs, and it is impossible to gather extra information
about the choice bit, i.e., about the private input yl of Bob. Therefore, it is easy to
conclude that the output of S1 is indistinguishable from the view of Alice, that is,

{S1(x, f(x, y))} c≡ V ϕ
A .

Theorem 2. Bob obtains only the output of the Boolean function and can not obtain
any information about Alice’s private inputs.

Proof. We construct a simulator S2 such that given input (y, f(x, y)) to S2, it can
simulate the view of Bob. Bob’s view of this protocol consists of the OT protocol and
the intermediate values obtained as the output of gates in the circuit. Let us consider
simulator S2

OT that simulates the OT protocol for Bob. The simulator S2
OT takes input

yl and outputs wr = a0 or a1 ∈R {0, 1}λ (for NOT gate) and a0 or x̄ka0 ⊕ xka1 (for
AND gate). However, S2 does not know Alice’s input xk due to the security property
of the OT protocol. Moreover, S2 does not know the value EG that Alice sends to Bob
to compute the gate G, as S2 only knows y and f(x, y). Therefore, S2 can not evaluate
the circuit honestly. Next, S2 will generate fake EG and evaluate it as follows.

• S2
OT has all the values corresponding to the output wires of input gates of the circuit

C.
• S2 sets two random bit strings for input wires of each non-input gate G. It chooses
a′0, a

′
1 ∈R {0, 1}λ associated to 1st input wire and b′0, b

′
1 ∈R {0, 1}λ associated to 2nd

input wire (in case of AND gate), and chooses a”0, a
′′
1 ∈R {0, 1}λ as an input wire’s

value (in case of non-input NOT gate). S2 also sets a fake bit string f ′(x, y) ∈ {0, 1}λ
corresponding to f(x, y) and generates a fake set EG consisting

ek1k2
=

{
a′k1

⊕ b′k2
⊕ f ′(x, y) if G is AND gate

ek1
=

{
a′′k1

⊕ f ′(x, y) if G is NOT gate

where k1, k2 ∈ {0, 1}. S2 runs the protocol and simulates the output f(x, y). We will
show that no polynomial time distinguisher D can distinguish the simulated and the
real circuit evaluation output with non-negligible probability. We use the induction
method to prove the above statement. We gate by gate in the topological order. Let
σi include all the active secrets on the input wires of first i gates and let Di be the
corresponding polynomial time distinguisher. For the input gates Gi of the circuit C,
the output wire’s value wi is obtained from the OT protocol, identically distributed
in real and simulated cases. The OT protocol is secure in this model, and therefore,
no distinguisher D0 can obtain the corresponding values of the input or output wire’s
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Table 2 Comparison summary of SFE protocols

Protocol Number of
Commitments

Number of OT
Executions

Number of Hash
Evaluations

Number of XOR
operations

Malkhi et al. [1] mN mN 6mN 10mN
Kolesnikov et al.
[2]

- v2 10N − 8α (10N − 5α)(λ +
1) + 4N

BooleanEval - v2 - 16λ(N−v)+v2λ

N = Number of logic gates, λ = Security parameter, m = Number of garbled circuits [1], α = Number of
XOR gate in [2], v2 = Number of private inputs of Bob, v = Number of input gates.

string wi with non-negligible probability. Now let us assume that no polynomial time
distinguisher Di−1 can distinguish transcripts σi−1, i.e., Di−1 can not obtain the
secret values of input wires of the first i − 1 gates with non-negligible probability.
From the view of the i-th gate of the circuit C, S2 only has values associated with
input wires and some possible combinations of XOR values (EGi

) of input wires.
Moreover, Di−1 cannot conclude that the secret values correspond to input wires of
i − 1 gates with non-negligible probability. Thus, Di cannot obtain any information
about the input wires values of i-th gate. Therefore, there does not exist Di that
cannot distinguish the real and simulated transcript σi with non-negligible probability.

Thus, S2 is indistinguishable from the real view of Bob i.e., {S2(y, f(x, y))} c≡ V ϕ
B .

5 Efficiency and Comparison

We now present the efficiency analysis of BooleanEval. The proposed design utilizes
1-out-of-2 OT protocol as a building block to compute input gates. In addition,
BooleanEval employs simple XOR operations to compute the final output of a circuit
C. Let us assume that to construct the circuit C, N number of logic gates Gi are
required. The complexity of BooleanEval majorly depends on the computation and
communication complexity of the underlying OT used to instantiate BooleanEval. Let
us assume that the underlying OT’s communication and computation cost is β1 and
β2, respectively. Let the number of input gates in the circuit be v.

Communication Complexity. A total of v2 OT executions are required to evaluate
a circuit C using BooleanEval. Thus, the total communication cost accrued during OT
execution is v2β1. There are v − v2 input NOT gates for Alice. λ bits are required to
send the random bit strings ai to Bob for each of the v − v2 input NOT gates. Thus,
a total of (v − v2)λ bits are required for this step. In addition, 4λ bits are needed to
transmit EAND for each non-input AND gate, while 2λ bits are required to transmit
ENOT for each non-input NOT gate. Moreover, 2λ bits are required to transmit the
set {c0, c1} for each of the non-input gates to Bob. Thus, at most 6λ bits are needed
to be communicated for each non-input gate of the circuit C. For the computation of
the final output, 2λ + 2 bits are required to send (cσ, σ) to Bob, and 1 bit is needed
to send f(x, y) to Alice. Thus, the total communication complexity of BooleanEval is
v2β1 + 6(N − v)λ+ (v − v2)λ+ (2λ+ 3).
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Computation Complexity. Alice performs λ XOR operations for her input message
(a0, x̄ka0 ⊕ xka1) to the underlying OT protocol. Since a total of v2 OT executions
are required, the total cost incurred during OT execution is v2β2. In constructing the
set EAND for each non-input AND gate, Alice needs to compute 8λ XOR operations.
Similarly, to compute EAND for each non-input AND gate, Bob needs to compute 8λ
XOR operations. Similarly, in the case of each non-input NOT gate, Alice and Bob
both require 2λ XOR operations. Since the size of the circuit C is N , a total of
16λ(N − v) + v2λ XOR operations are needed to be performed. Therefore, the total
computation cost of BooleanEval is v2β2 OT cost and 16λ(N−v)+v2λ XOR operations.

We present a detailed comparative analysis of BooleanEval with the existing state-
of-the-art protocols that employ similar design techniques, such as OT and XOR. In
particular, we compare BooleanEval with [1] and [2]. The summary of our comparative
analysis is provided in Table 2. As evident by the data in Table 2, BooleanEval is very
efficient compared to [1, 2]. Unlike BooleanEval, [1] requires costly operations such as
hash evaluations and commitments. In addition, number of OT executions in [1] is
more than that in BooleanEval. The design of [2] also requires costly hash evaluations.
On the design level, BooleanEval is better than [1, 2] as it only requires OT as a
building block, whereas [1, 2] requires hash functions and commitment schemes as
additional building blocks in their design. Although [2] does not require commitment
schemes, it requires 10N − 8α hash evaluations. Thus, overall BooleanEval performs
better than [1, 2].

6 Conclusions

In this paper, we presented the design and security analysis of a two-party SBE proto-
col BooleanEval by using 1-out-of-2 OT as cryptographic building block. BooleanEval
is efficient and fast as the only cost intensive operation employed in BooleanEval is
XOR. A comparative analysis with the existing state-of-the-art protocols such as [1]
and [2] showed the superiority of BooleanEval in terms of efficiency.

References

[1] Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay-secure two-party
computation system. In: USENIX Security Symposium, vol. 4, p. 9 (2004). San
Diego, CA, USA

[2] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and
applications. In: Automata, Languages and Programming: 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II
35, pp. 486–498 (2008). Springer

[3] Cusick, T.W., Stanica, P.: Cryptographic Boolean Functions and Applications.
Academic Press, (2017)

[4] Wu, C.-K., Feng, D.: Boolean Functions and Their Applications in Cryptogra-
phy. Springer, (2016). https://doi.org/10.1007/978-3-662-48865-2 . http://dx.

18

https://doi.org/10.1007/978-3-662-48865-2
http://dx.doi.org/10.1007/978-3-662-48865-2
http://dx.doi.org/10.1007/978-3-662-48865-2


doi.org/10.1007/978-3-662-48865-2

[5] Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis,
Citeseer (1993)

[6] Schneider, T.: Practical secure function evaluation. In: Informatiktage, pp. 37–40
(2008)

[7] Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Computer Security–ESORICS 2011: 16th European Symposium
on Research in Computer Security, Leuven, Belgium, September 12-14, 2011.
Proceedings 16, pp. 190–209 (2011). Springer

[8] Bringer, J., Chabanne, H., Favre, M., Patey, A., Schneider, T., Zohner, M.:
Gshade: Faster privacy-preserving distance computation and biometric identifi-
cation. In: Proceedings of the 2nd ACM Workshop on Information Hiding and
Multimedia Security, pp. 187–198 (2014)

[9] Rouhani, B.D., Riazi, M.S., Koushanfar, F.: Deepsecure: Scalable provably-secure
deep learning. In: Proceedings of the 55th Annual Design Automation Conference,
pp. 1–6 (2018)

[10] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: applying neural networks to encrypted data with high throughput
and accuracy. In: Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48. ICML’16, pp. 201–210.
JMLR.org, (2016)

[11] Ramos-Casals, M., Brito-Zerón, P., Kostov, B., Sisó-Almirall, A., Bosch, X., Buss,
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