
Private Neural Network Training with Packed
Secret Sharing

Hengcheng Zhou(B)

Shanghai Jiao Tong University, Shanghai, China
zhc12345@sjtu.edu.cn

Abstract. We present a novel approach for training neural networks
that leverages packed Shamir secret sharing scheme. For specific train-
ing protocols based on Shamir scheme, we demonstrate how to realize
the conversion between packed sharing and Shamir sharing without ad-
ditional communication overhead. We begin by introducing a method
to locally convert between Shamir sharings with secrets stored at differ-
ent slots. Building upon this conversion, we achieve free conversion from
packed sharing to Shamir sharing. We then show how to embed the con-
version from Shamir sharing to packed sharing into the truncation used
during the training process without incurring additional communication
costs. With free conversion between packed sharing and Shamir sharing,
we illustrate how to utilize the packed scheme to parallelize certain com-
putational steps involved in neural network training. On this basis, we
propose training protocols with information-theoretic security between
general n parties under the semi-honest model. The experimental results
demonstrate that, compared to previous work in this domain, applying
the packed scheme can effectively improve training efficiency. Specifically,
when packing 4 secrets into a single sharing, we observe a reduction of
more than 20% in communication overhead and an improvement of over
10% in training speed under the WAN setting.

Keywords: Secure multi-party computation · Packed Shamir secret shar-
ing scheme · Neural network training

1 Introduction

Secret-sharing-based Secure Muti-Party Computation (MPC) [20,21] provides a
promising solution for privacy-preserving machine learning. With secret sharing,
participants first divide their sensitive data into multiple shares. The parties
then collaboratively perform the corresponding computation on these shares,
with the final results being reconstructed after the computation is completed.
Throughout the computation process, data always exist in a shared form, thus
protecting data privacy.

Developing generalized neural network training protocols suitable for real-
world applications is a challenging yet actively pursued research area in MPC.
The initial implementation of private training was carried out by SecureML [15].



2 H. Zhou

SecureML was designed for two parties and was based on the ABY framework
[7], which supported the conversion between arithmetic, boolean, and Yao shar-
ing to benefit from different schemes. Following this line of work, several studies
implemented privacy-preserving neural network training in scenarios involving
three parties [14,18,16,19] and four parties [4,12]. These protocols are tailored
for specific numbers of participants, lacking generality and flexibility. We believe
that it is crucial to develop protocols that can support an arbitrary number of
participants to better accommodate the diverse requirements and scenarios en-
countered in real-world applications. [2] proposed training protocols between n
parties using replicated secret sharing [11]. However, the replicated secret sharing
approach suffers from poor scalability. As the number of participants increases,
the required communication grows rapidly. [22] introduced neural network train-
ing protocols for a general number of n parties based on Shamir secret sharing
scheme [17]. While supporting an arbitrary number of parties and offering com-
munication complexity of O(n), the modulo operations involved in [22] lead to
low efficiency and impact its practical usability.

We are interested in training protocols based on Shamir scheme. Compared
to additive secret sharing, Shamir scheme offers a threshold feature, enabling a
level of error tolerance that is crucial for real-world applications. This tolerance
becomes increasingly significant as the number of participants grows, since it
becomes challenging to guarantee flawless operation from all involved parties.
Replicated secret sharing is another common threshold secret sharing technique,
but it suffers from poor scalability. Therefore, leveraging Shamir scheme offers
significant benefits. Efficiency is the main factor affecting the practicality of
Shamir-based protocols. There has been some work aimed at optimizing pro-
tocols based on Shamir sharing to achieve greater efficiency while retaining the
flexibility of existing protocols. [1,9] implemented Shamir scheme on Galois rings,
which can avoid modulo operations on large prime numbers. Their methods re-
main at the theoretical level of general computation, and their performance on
neural network training is unknown. In this paper, we explore how to acceler-
ate existing protocols based on Shamir sharing by employing the packed Shamir
secret sharing scheme [10].

The packed Shamir secret sharing scheme enables packing multiple secrets
into a single sharing. After packing, multiple secrets can be computed simulta-
neously. However, utilizing packed sharing is not straightforward. On one hand,
packed secret sharing is well-suited for Single Instruction Multiple Data (SIMD)
computations, while the process of neural network training does not entirely
align with this assumption, preventing the direct application of packed sharing.
On the other hand, there is currently no direct conversion between Shamir shar-
ing and packed sharing. TurboPack [8] demonstrated how to perform general
computations on packed sharings, but share conversion in this system requires
extra communication.

To address these challenges, we first investigate the training process of neural
networks and identify the SIMD portion. Specifically, for each batch, the forward
propagation and gradient calculation process for each sample is identical. There-



Private Neural Network Training with Packed Secret Sharing 3

fore, we can use the packed scheme for these parts and Shamir scheme for the
remaining computations. Moreover, we found that share conversion can be im-
plemented without additional communication overhead, with packed-to-Shamir
conversion completed locally and Shamir-to-packed conversion embedded into
the truncation protocol. Thus, for neural network training protocols based on
Shamir sharing, incorporating packed sharing does not require additional com-
munication. Based on these insights, we achieve private training between general
n (n ⩾ 3) parties P1, · · · , Pn. The underlying Shamir scheme enables our proto-
cols to support the flexible setting of the number of participants n and adversaries
t. To implement multiplication, our protocols need to satisfy t + s − 1 < n/2,
where s is the number of secrets embedded in a single sharing. Our main contri-
butions are summarized below:

– We propose a sharing conversion framework between Shamir sharing and
packed sharing with no additional communication overhead.

– By analyzing the neural network training process, we identify the SIMD
portion suitable for the packed scheme. Combined with the free conversion
framework, we propose protocols for private neural network training between
general n (n ⩾ 3) parties using both Shamir sharing and packed sharing.

– We conduct experiments with different numbers of participants and different
numbers of secrets to be packed, where we train different neural networks
on the MNIST dataset. The results indicate the advantages of our protocols,
especially under the WAN setting.

2 Preliminaries

2.1 Packed Shamir Secret Sharing Scheme

The packed Shamir secret sharing scheme is a generalization of the standard
Shamir scheme. For a positive integer q, we denote the set {1, 2, · · · , q} by [q].
In Shamir scheme, to share a secret u ∈ Fp among n participants, the dealer
first generates a polynomial f(x) of degree t over Fp[x] such that f(0) = u and
all other coefficients are uniformly random, and then send the share ui = f(i)
to party Pi, i ∈ [n]. The vector (u1, · · · , un) is called a t-sharing of u, which is
denoted by ⟨u⟩t and ⟨u⟩ for simplicity. The secret is stored in evaluation point 0
by default. In our work, we are interested in Shamir sharings with secrets stored
at different slots. For a sharing ⟨u⟩t with corresponding polynomial f , we denote
⟨u⟩t as ⟨u|a⟩t if f(a) = u.

For packed Shamir secret sharing, multiple secrets can be shared into one
single sharing. Let s be the number of secrets to be packed. A degree-d(d ⩾ s−1)
packed Shamir sharing of x = (x1, . . . , xs) ∈ Fs

p is a vector (w1, . . . , wn) for
which there exists a polynomial f(x) ∈ Fp[x] of degree at most d such that
f(−i + 1) = xi for i ∈ [s], and f(i) = wi for i ∈ [n]. We denote the vector
(w1, . . . , wn) as JxKd and JxK for simplicity. We can treat a packed sharing JxKd
as a Shamir sharing ⟨xi|−i+1⟩d for i ∈ [s]. And we can treat a Shamir sharing
⟨u|−i+1⟩d as a packed Sharing JxKd satisfying xi = u, i ∈ [s]. For a random



4 H. Zhou

degree-d packed sharing of x, any d − s + 1 shares are independent of x. Let
D = t+ s− 1, then the sharing JxKD is secure when there are t adversaries. We
use JAKd = (W1, . . . ,Wn) ∈ (Fm×r

p )
n
to represent the sharing of s matrices with

dimension m × r. To avoid ambiguity, we denote A as A =
(
A(1), . . . ,A(s)

)
∈

(Fm×r
p )

s
. Particularly, we call a packed sharing a special sharing, if the s secrets

to be packed are the same.
The reconstruction of a degree-d sharing requires d + 1 shares and can be

achieved through the Lagrange interpolation method. For d ⩾ s− 1 and x,y ∈
Fs
p, Jx + yKd = JxKd + JyKd, here the addition is coordinate-wise. Let ∗ denote

the coordinate-wise multiplication. We can compute Jx∗yKd1+d2 = JxKd1 ∗JyKd2 ,
where d1 and d2 need to satisfy d1 + d2 < n so that n participants can recover
the secret. Follow the same method in [6] for calculating ⟨ab⟩t from ⟨a⟩t and ⟨b⟩t,
we can compute Jx ∗ yKd3

(d3 ⩾ s− 1) with the help of a double packed sharing
(JrKd1+d2

, JrKd3
), where r ∈ Fs

p is a random vector. Particularly, a public vector
c ∈ Fs

p can be transformed to JcKs−1. Therefore, the parties can compute locally
Jc+ xKd = JcKs−1 + JxKd and Jc ∗ xKd+s−1 = JcKs−1 ∗ JxKd. For a single element
c ∈ Fp, the parties can compute JcxKd = cJxKd.

2.2 Neural Network Training

The training process of a neural network can be summarized into three stages:
forward propagation, gradient calculation, and parameter updation. We use a0 to
denote the input. The target parameters that need to be updated are wl and bl,
where l ∈ [L] and L is the number of layers. We denote the number of neurons in
the lth layer by dl and use d to denote the number of neurons in the input layer.
For fully connected neural networks, forward propagation is performed according
to zl = wlal−1 + bl and al = σ

(
zl
)
, where σ is the activation function. We use

L to denote the loss function and define δl = ∂L/∂zl, l ∈ [L]. After we compute

δL, we can compute δl according to the formula: δl =
(
wl+1

)T
δl+1 ⊙ σ′ (zl),

l ∈ [L− 1]. With δl, l ∈ [L], we can compute the gradients ∂L/∂wl = δl
(
al−1

)T
and ∂L/∂bl = δl. These gradients are then used to update the target parameters
wl and bl. This three-stage process of forward propagation, gradient calculation,
and parameter updation forms the core of the neural network training procedure.

3 Packed Neural Network Training

3.1 Training with Shamir Secret Sharing

We choose protocols from [22] as the underlying Shamir-based protocols and
follow the method in them to compute the training of neural networks. In [22],
data are represented as fixed-point integers and further encoded in a finite field.
Therefore, truncation is required after multiplication. Additionally, truncation
is also utilized to implement the calculation of the activation function ReLU.
Two kinds of truncation are used in [22]: a probabilistic truncation and a de-
terministic truncation. The probabilistic approach, which is an efficient method



Private Neural Network Training with Packed Secret Sharing 5

originally proposed in [3], has been identified by [13] as insecure. Therefore, we
use deterministic truncation only to guarantee security.

3.2 Embedding Packed Scheme into the Training Process

We focus on the training of neural networks using the mini-batch gradient de-
scent algorithm. During the training phase, the computation process is identical
for each batch. So a natural idea is to bundle different batches together, enabling
simultaneous training of multiple batches. While computationally feasible, the
results differ from training batches sequentially. For distinct batches, the tar-
get parameters requiring updates are different. The target parameters at the
beginning of each iteration are the updated parameters from the previous itera-
tion. Therefore, during the neural network training process, the computation of
multiple batches is not a parallel process.

In the mini-batch gradient descent algorithm, the average gradients of all
samples in a batch are used as an estimate of the global gradients. The gradient
calculation procedure is independent for each sample in a batch. And the target
parameters requiring updates are the same for each sample. After gradient cal-
culation, the gradients of all samples in a batch are aggregated and averaged to
update the parameters. Therefore, we can employ the packed scheme to calcu-
late all processes before gradient aggregation. More precisely, we divide a batch
into s sub-batches and pack the s sub-batches together. Here we assume that
the batchsize is divisible by s. Through packed sharing, we can simultaneously
train s sub-batches. After calculating the gradients, the secrets stored at differ-
ent slots within the packed sharings must be extracted to complete the gradient
aggregation. Once the gradient aggregation is finished, we can get the average
gradients to update the parameters.

We refer to the training using solely the Shamir secret sharing scheme as
Shamir training and the training utilizing the packed Shamir secret sharing
scheme as packed training. The process of an iteration of Shamir training and an
iteration of packed training when s = 4 is illustrated in Fig. 1. It is important to
note that all data are secret-shared during the calculation process. The following
theorem shows the equivalence between packed training and Shamir training.

Theorem 1. Packed training and Shamir training yield identical updates for
target parameters after a single iteration.

Proof. For target parameters wl and bl, l ∈ [L], we represent the parameters
updated after an iteration of Shamir training as wl

Shamir and blShamir, and the

parameters updated after an iteration of packed training as wl
packed and blpacked.

Let σl
i denote the gradient corresponding to wl calculated by the i-th sample in

a batch. For Shamir training, wl is updated as follows:

wl
Shamir = wl − η

NB

NB∑
i=1

σl
i, (1)



6 H. Zhou

Pack
Unpack

Compute

the average
Gradients

Gradients

A batch A sample

Update

parameters

Compute gradients

Compute gradients

Compute

the average

Update

parameters

Packed training

Shamir training

Split
A sub-batch

Fig. 1. The process of Shamir training and packed training for a batch (s = 4).

where NB represents the batchsize. For packed training, we assume that NB

is divisible by s and NB = sk. Without loss of generality, when dividing the
batch into s groups, we put the j-th sample in the ⌈j/k⌉-th group, j ∈ [NB ]. For
l ∈ [L], the target parameter wl is updated as follows:

wl
packed = wl − η

NB
(

s−1∑
i=0

(i+1)k∑
j=ik+1

σl
j)

= wl − η

NB

NB∑
i=1

σl
i

= wl
Shamir. (2)

The same analysis also applies to parameter bl, l ∈ [L]. ⊓⊔

In the process of packed training, we need to convert between Shamir sharing
and packed sharing. Two types of conversion are required: (1) After calculating
the gradients, we need to aggregate the gradients stored at different slots in
packed sharings. Here, we need to first convert the packed sharings to Shamir
sharings with secrets stored at the same slot, and then perform corresponding
operations on these sharings. (2) Since the target parameters are in the form
of packed sharing while the gradients we calculated are in the form of Shamir
sharing. When updating the parameters, we need to implement the conversion
from Shamir sharing to packed sharing to ensure the consistency of the sharing
form. Note that the computations are identical for each sub-batch. Therefore,
the target parameters are actually in the form of special sharing, which means
we only need the conversion from Shamir sharing to special sharing.



Private Neural Network Training with Packed Secret Sharing 7

3.3 Free Conversion between Packed Sharing and Shamir Sharing

In this section, we introduce how to implement the two kinds of conversion we
need. We begin by introducing a method to locally convert between Shamir
sharings with secrets stored at different slots. Building upon this conversion,
we achieve a free conversion from packed sharing to Shamir sharing. We then
show how to embed the conversion from Shamir sharing to special sharing into
the truncation used during the training process without incurring additional
communication costs.

Sharing Conversion between Different Slots We first introduce the con-
cept of local conversion between different secret sharing schemes. The following
definition comes from [5].

Definition 1 (Share conversion). Let S, S ′ be two secret-sharing schemes
over the same secret-domain. We say S is locally convertible to S ′ if there exist
local conversion functions g1, . . . , gn such that the following holds. If (u1, . . . , un)
are valid shares of a secret u in S, then (g1 (s1) , . . . , gn (sn)) are valid shares
of the same secret u in S ′. We denote by g the concatenation of all gi, namely
g (u1, . . . , un) = (g1 (u1) , . . . , gn (un)), and refer to g as a share conversion func-
tion.

Let Sα denote the Shamir secret sharing scheme with the secret stored at
point α. We show that Sα is locally convertible to S0.

Theorem 2. The scheme Sα(α /∈ [n]) is locally convertible to S0 via the function
g in which gi(ui) = ui

∏n
j=1,j ̸=i(1− αj−1), i ∈ [n].

Proof. Let ⟨u|α⟩t = (u1, · · · , un) be a t-sharing of u ∈ Fp, then u can be com-
puted by the Lagrange interpolation method:

u =

n∑
i=1

n∏
j=1,j ̸=i

α− j

i− j
ui. (3)

Consider the sharing (g1 (u1) , . . . , gn (un)). When applying the Lagrange inter-
polation method to compute the secret at the evaluation point 0, we can get:

n∑
i=1

 n∏
j=1,j ̸=i

−j

i− j

ui

n∏
j=1,j ̸=i

(
1− αj−1

)
=

n∑
i=1

n∏
j=1,j ̸=i

−j(1− αj−1)

i− j
ui

=

n∑
i=1

n∏
j=1,j ̸=i

α− j

i− j
ui

=u, (4)

thus the sharing (g1 (u1) , . . . , gn (un)) is consistent with the same secret u. ⊓⊔



8 H. Zhou

The proof of Theorem 2 only shows that the sharing (g1(u1), . . . , gn(un)) is
an (n − 1)-sharing, which means that although we can perform the conversion
locally, this comes at the cost of an increased degree of the resulting sharing. It
should be noted that since α /∈ [n], g is reversible. Therefore, we can get that
S0 is also locally convertible to Sα. Combined with Theorem 2 we can achieve
the conversion between Shamir sharings from one slot to another slot. As long
as these slots don’t coincide with the slots used to deliver the secret share.

From Packed Sharing to Shamir Sharing Since a packed sharing JxKd can
be seen as a Shamir sharing ⟨xi|−i+1⟩d for i ∈ [s]. We can easily convert the
sharing JxKd to s Shamir sharings {⟨xi|0⟩d}si=1 according to Theorem 2.

From Shamir Sharing to Packed Sharing As discussed in Sect. 3.2, when
updating parameters, we need to update s slots in the packed sharings at the
same time. This requires the conversion from Shamir sharing to a typical kind
of packed sharing, i.e., special sharing. According to Eq. (1), after summing the
gradients, we need to perform multiplication with the public value η/NB . This
operation is non-trivial since all data are represented as fixed-point numbers,
necessitating a truncation step. We first introduce how to put the comparison
used in truncation into the offline phase. Based on this, we introduce how to
integrate the requisite sharing conversion within the truncation procedure.

As stated in Sect. 3.1, we use deterministic truncation only. Compared with
probabilistic truncation, deterministic truncation eliminates the influence of the
carry bit introduced by the addition of random numbers to the bits being trun-
cated [3]. This is achieved through a time-consuming comparison protocol. The
input for this comparison consists of a public value and random sharings. There-
fore, this process can be performed offline to significantly reduce the online
communication overhead of the truncation to a single invocation of the reveal
operation. Specifically, for random sharings generated for this truncation, we
precompute the comparison results for all potential public values. For a proto-
col truncating m bits, 2m comparisons are required. These operations can be
parallelized, enabling all comparisons to be completed in constant rounds [3].

The output of deterministic truncation can be seen as the output of proba-
bilistic truncation minus the result of the comparison protocol. And the output
of probabilistic truncation is calculated by addition between public values and
random sharings [22]. Thus, by expressing the random sharings and the compari-
son outcome in the form of special sharing, the result of deterministic truncation
is automatically in the form of special sharing, all achievable within the offline
phase. From the perspective of the online phase, this conversion is free.

Beyond facilitating sharing conversion, deterministic truncation serves the
role of degree reduction. This is achieved by adjusting the degree of the random
sharings and the comparison output, since these sharings determine the degree
of the truncation output. When we convert from packed sharings to Shamir shar-
ings, the degree goes up. However, truncation can allow the degree to return to
its original level when we later convert Shamir sharings back to packed sharings.



Private Neural Network Training with Packed Secret Sharing 9

3.4 Algorithm for Neural Network Training

Utilizing the protocols detailed in [22] along with the sharing conversion process
outlined in Sect. 3.3, we are able to perform packed training on neural networks.
Algorithm 1 shows the protocol for an iteration of private training using the
mini-batch gradient descent algorithm, where η represents the learning rate.
We denote this protocol as ΠDNN . In ΠDNN , FδL represents the functionality
for computing δL, and FDReLU represents the functionality for computing the
derivative of ReLU. These functionalities can be realized by the packed version
of related protocols documented in [22].

Algorithm 1 Secure Neural Network Packed Training ΠDNN

Input: Ja0KD, JyKD;
1: for l = 1 to L− 1 do
2: JzlKD = JwlKDJal−1KD + JblKD;
3: Given JzlKD, the parties invoke FDReLU to compute JelKD;
4: JalKD = JzlKDJelKD;
5: end for
6: JzLKD = JwLKDJaL−1KD + JbLKD;
7: Given JzLKD and JyKD, the parties invoke FδL to compute JδLKD;
8: for l = L− 1 to 1 do
9: JδlKD = J

(
wl+1

)T KDJδl+1KD ⊙ JelKD;
10: end for
11: for l = L to 1 do
12: J∂L/∂wlKD = JδlKDJ

(
al−1

)T KD;

13: The parties convert J∂L/∂wlKD to {⟨∂L/∂wl
(j)|0⟩n−1}sj=1;

14: The parties convert JδlKD to {⟨δl
(j)|0⟩n−1}sj=1;

15: ⟨σw
l⟩n−1 =

∑s
j=1⟨∂L/∂wl

(j)|0⟩n−1;

16: ⟨σb
l⟩n−1 =

∑s
j=1⟨δ

l
(j)|0⟩n−1;

17: for i = 1 to dl do
18: JbilKD = JbilKD − η/NB

∑NB
j=1⟨(σb

l)ij⟩n−1;
19: end for
20: JwlKD = JwlKD − η/NB⟨σw

l⟩n−1;
21: end for

When performing local multiplication on packed sharings, the degree of re-
sulting sharings will increase. That’s why we need to ensure that 2D = 2(t +
s− 1) < n. After the training is completed, the participants can perform secret
reconstruction to obtain the target parameters in plaintext form.

Communication Complexity The training process can be divided into two
parts: one that utilizes the packed scheme, such as forward propagation and gra-
dient calculation process for individual samples, and another that relies solely on
Shamir secret sharing, such as gradient aggregation and averaging. For the lat-
ter, the communication using Shamir training and packed training is the same,



10 H. Zhou

since only Shamir sharings are actually used. It is the first part that causes the
communication difference between using Shamir training and packed training.
Note that all interactions in our protocols occur within the secret reconstruction
operation. During the secret reconstruction process, all participants send their
shares to a specific participant, who then recovers the secret and sends it back to
the others. For Shamir secret sharing, revealing s secrets requires 2s(n−1)ℓ bits
of messages, where ℓ is the length of p. When considering the packed scheme, to
reveal s elements, the parties only need to send one element to the specific party,
resulting in a total of (s+1)(n−1)ℓ bits of messages with the same communica-
tion round as using Shamir secret sharing. Therefore, for the calculation of the
first part, as the number of participants increases, the communication overhead
of the protocols based on packed scheme tends to be half of that of the protocols
based on Shamir scheme.

4 Experiments

The experiments were carried out on a single server equipped with 2 24-core
2.20GHz Intel Xeon Gold 5220R CPUs and 128GB of RAM both in the LAN
setting and in the WAN setting. In the WAN setting, the average latency and
average bandwidth are set to be 80 ms and 100 MB/s, respectively. We accel-
erated the computation of local matrix multiplication using an NVIDIA RTX
3090 GPU. We set the prime of the finite field to be 2110 − 21, and the other
parameters follow the settings in [22]. We train the same two 3-layer DNNs as
in [22], Network A and Network B, on the MNIST dataset. Due to the security
issue introduced in [13], we choose protocols in [22] with probabilistic truncation
replaced with deterministic truncation and comparison computed offline as the
baseline protocols. Our experiments show that the accuracy of Network A can
reach 91.49% after 10 epochs of training, and Network B can achieve 92.51%
accuracy after 5 epochs of training.

The experiments were first conducted under the LAN setting. We set the
number of adversaries t to 1. The time for 12 participants to conduct an epoch
of Shamir training using Network A and Network B was 0.98h and 0.90h, re-
spectively. When s = 4, the time for one epoch of training using Network A
and Network B was 0.99h and 0.87h, respectively. We can see that the training
time of Shamir training and packed training are basically the same. This is be-
cause training time is influenced by multiple factors, especially the number of
communication rounds. However, applying the packed scheme does not change
the number of communication rounds. The influence of reduced communication
on training time can be better reflected in an environment with higher network
latency. Therefore, our subsequent experiments were conducted under the WAN
setting. Table 1 shows the time required for an epoch of Shamir training and
packed training under different settings of n and s in the WAN setting. This
table also includes the theoretical amortized communication overhead for each
participant.



Private Neural Network Training with Packed Secret Sharing 11

Table 1. The time (h) and communication (GB) required for an epoch of training.

(n, s)
Network A Network B

Time Comm. Time Comm.

(6, 1) 5.34 3.31 4.23 2.88
(6, 2) 5.01 2.78 3.91 2.45
(12, 1) 9.64 3.64 8.21 3.16
(12, 2) 8.79 3.06 7.36 2.70
(12, 4) 8.27 2.76 6.90 2.47

It can be observed from Table 1 that when considering a high-latency net-
work, packed training is more efficient than Shamir training because it requires
less data communication. This means that packed training can better adapt to
the needs of actual application scenarios.

5 Conclusion

In this paper, we propose private neural network training protocols that leverage
the packed Shamir secret sharing scheme. With packed sharing, we achieve par-
allelization of training data samples in a single batch. Our protocols are based
on the Shamir sharing-based protocols proposed in [22] and can fully inherit the
advantages of flexible deployment and O(n) communication complexity. Com-
pared with [22], our protocols have lower communication overhead, making them
more suitable for practical scenarios.

Acknowledgments. The work was supported in part by the National Key
Research and Development Program of China under Grant 2022YFA1004900,
and the National Natural Science Foundation of China under Grants 12031011
and 12361141818.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings.
In: Proceedings of the Theory of Cryptography Conference. pp. 471–501 (Dec 2019)

2. Baccarini, A.N., Blanton, M., Yuan, C.: Multi-party replicated secret sharing over
a ring with applications to privacy-preserving machine learning. Proceedings on
Privacy Enhancing Technologies 2023, 608–626 (2023)

3. Catrina, O., Hoogh, S.: Improved primitives for secure multi-party integer compu-
tation. In: International Conference on Security and Cryptography for Networks.
pp. 182–199 (2010)

4. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: efficient 4PC framework for pri-
vacy preserving machine learning. In: Symposium on Network and Distributed
System Security (NDSS) (2020)



12 H. Zhou

5. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Proceedings of the Second Inter-
national Conference on Theory of Cryptography. pp. 342–362. Springer-Verlag,
Berlin, Heidelberg (2005)

6. Damg̊ard, I., Nielsen., J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Annual International Cryptology Conference. pp. 572–590 (2007)

7. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: Network & Distributed System Security
Symposium (2015)

8. Escudero, D., Goyal, V., Polychroniadou, A., Song, Y.: TurboPack: Honest major-
ity mpc with constant online communication. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 951–964
(2022)

9. Escudero, D., Xing, C., Yuan, C.: More efficient dishonest majority secure compu-
tation over Z2k via galois rings. In: Advances in Cryptology – CRYPTO 2022. pp.
383–412. Springer-Verlag, Berlin, Heidelberg (2022)

10. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing. pp. 699–710 (1992)

11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan Part III-Fundamental Elec-
tronic Science 72, 56–64 (1989)

12. Koti, N., Patra, A., Rachuri, R., Suresh, A.: Tetrad: Actively secure 4PC for se-
cure training and inference. In: Symposium on Network and Distributed System
Security (NDSS) (2022)

13. Li, Y., Duan, Y., Huang, Z., Hong, C., Zhang, C., Song, Y.: Efficient 3PC for binary
circuits with application to maliciously-secure DNN inference. In: Proceedings of
the 32nd USENIX Conference on Security Symposium (2023)

14. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and communi-
cations security. pp. 35–52 (2018)

15. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving ma-
chine learning. In: IEEE Symposium on Security and Privacy. pp. 19–38 (2017)

16. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning.
In: Symposium on Network and Distributed System Security (NDSS) (2020)

17. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

18. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies 2019(3),
26–49 (2019)

19. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: FAL-
CON: honest-majority maliciously secure framework for private deep learning. Pro-
ceedings on Privacy Enhancing Technologies 2021(1), 188–208 (2021)

20. Yao, A.: Protocols for secure computations. In: 23rd Annual Symposium on Foun-
dations of Computer Science. pp. 160–164 (1982)

21. Yao, A.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science. pp. 162–167 (1986)

22. Zhou, H.: Information-theoretically secure neural network training with flexible
deployment. In: Artificial Neural Networks and Machine Learning – ICANN 2023.
pp. 324–336. Springer Nature Switzerland, Cham (2023)


	Private Neural Network Training with Packed Secret Sharing

