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Abstract. Lookups are a popular way to express repeated constraints
in state-of-the art SNARKs. This is especially the case for zero-knowledge
virtual machines (zkVMs), which produce succinct proofs of correct ex-
ecution for programs expressed as bytecode according to a specific in-
struction set architecture (ISA). The Jolt zkVM (Arun, Setty & Thaler,
Eurocrypt 2024) for RISC-V ISA employs Lasso (Setty, Thaler & Wahby,
Eurocrypt 2024), an efficient lookup argument for massive structured ta-
bles, to prove correct execution of instructions. Internally, Lasso performs
multiple lookups into smaller “subtables”, then combines the results.
We present an approach to formally verify Lasso-style lookup arguments
against the semantics of instruction set architectures. We demonstrate
our approach by formalizing and verifying all Jolt 32-bit instructions cor-
responding to the RISC-V base instruction set (RV32I) using the ACL2
theorem proving system. Our formal ACL2 model has undergone exten-
sive validation against the Rust implementation of Jolt. Due to ACL2’s
bitblasting, rewriting, and developer-friendly features, our formalization
is highly automated.
Through formalization, we also discovered optimizations to the Jolt code-
base, leading to improved efficiency without impacting correctness or
soundness. In particular, we removed one unnecessary lookup each for
four instructions, and reduced the sizes of three subtables by 87.5%.

1 Introduction

Cryptographic proof systems [34] are essential to the scalability and privacy of
modern blockchains. Succinct Non-interactive Arguments of Knowledge
(SNARKs) [6, 31, 52] allow participants to prove arbitrary NP computations,
generating short on-chain proofs that can be efficiently verified. In other words,
SNARKs allow untrusted provers to establish that they know a “witness” sat-
isfying some property, such as a correct batch of blockchain transactions that
advance the blockchain from one state to another.
?? This work was partially performed while the first and second authors were interns

at a16z crypto research.
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A special case of SNARKs are zero-knowledge virtual machines (zkVMs),4
which enable succinct proofs of program execution for computer programs com-
piled to bytecode for some instruction set architecture (ISA). zkVMs enable
developers to write programs in high-level programming languages, and for un-
trusted provers to then prove that they ran the program correctly. This is in
contrast to older toolchains for SNARK deployment, which often involve hand-
crafting circuits or constraint systems, a process that requires domain-specific
expertise and is highly error-prone. Because of these benefits, there has been an
explosion of zkVMs for various instruction sets such as RISC-V [40, 56, 67, 72],
EVM [63,68,88], MIPS [86], Cairo [33,71] and others [48,49,77].

zkVMs often rely on lookup arguments to efficiently represent high-degree
constraints that are needed to implement virtually all instruction sets. These ar-
guments allow for proving the correctness of a sequence of lookup operations into
some pre-determined tables. The performance of lookup arguments [10,26,29,30,
35,61,64,84,85] typically scales with the size of the table;5 however, a recent work
by Setty et al. called Lasso [70] overcomes this limitation (for a large useful class
of tables). The key idea of Lasso is that for specific tables that satisfy a form of
decomposability, a lookup on the large table (say of size 264) can be performed via
a sequence of lookups on much smaller subtables (say of size 216). This powerful
observation forms the basis of the Jolt RISC-V zkVM [2], which represents every
RISC-V instruction as one or more decomposable lookups, realizing the “lookup
singularity” vision outlined by Whitehat [81]. Jolt’s implementation [40] is cur-
rently among the fastest zkVMs [65] and, thanks to its lookup-centric approach,
is both simpler and more auditable than competitors [75,76].

While Jolt may be simpler than other zkVMs, it is still a complicated piece
of software. The current implementation [40] contains at least 25,000 lines of
code (and growing), with at least 2000 lines dedicated to specifying lookups.
Given the large surface area, it is crucial to formally verify that Jolt lookups
are actually performing the right operations. This is not merely a theoretical
concern: vulnerabilities in SNARK designs and implementations are quite com-
mon, with soundness bugs present in both protocol specifications [28, 62] and
implementations [19, 23, 57]. Another class of bugs are those affecting the con-
straint system (so-called “front-end”) used to represent computations [12, 17].
These front-end vulnerabilities are also prevalent in SNARK implementations;
for Jolt specifically, a bug in the Lasso lookup front-end could allow a malicious
prover to produce an accepting proof for a different program than the one the
verifier thinks it is verifying.6

In light of these concerns, our goal is to formally verify the semantic
correctness of lookups in the Jolt zkVM, ensuring that the lookups for
each instruction actually produce the expected result for that instruction.

4 Many zkVMs are only succinct and not zero-knowledge, but in keeping with the
common vernacular we will refer to them as zkVMs.

5 This dependency is present in either the prover cost or the preprocessing cost.
6 This would be problematic, for instance, if the program does signature verification,
and the prover produces a valid proof without knowing the secret key.
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1.1 Our Results

We answer this goal with the following contributions:

1. We present a general methodology for formally verifying lookup semantics in
Jolt (or any proof system that relies on Lasso-style decomposable lookups).

2. We instantiate this methodology with a formalization of all RISC-V base
instructions (RV32I) in Jolt using the ACL2 theorem prover [42, 43]. Our
formalization is highly automated thanks to various features of ACL2.

Our formalization and artifacts are publicly available.7 Our approach achieves
correctness guarantees for Jolt lookups while maintaining the flexibility needed
to work with an evolving system like Jolt. We now elaborate on our results.

Jolt Subtables and Instructions. In Jolt, subtables are parametrized by a size
parameter m ∈ N. For each m, a subtable consists of a function

Tm : {0, 1}m × {0, 1}m → F,

which on input (x, y) returns the (x, y)-th entry of the subtable, and a polynomial

Pm ∈ F[X0, . . . , Xm−1, Y0, . . . , Ym−1]

purported to be the multilinear extension (MLE) of Tm (see Section 2.1 for
background on MLEs). Here F is the underlying finite field used in Jolt (of size
at least 2128). The statement we want to formally verify is that Pm is indeed the
MLE of Tm, i.e. that

Pm(x, y) = Tm(x, y) for all x, y ∈ {0, 1}m. (1)

In particular, Equation (1) only needs to hold for parameters m that are used
in Jolt; currently, Jolt only uses m = 8, giving us subtables of size 216 = 65536.
This number is small enough that we can directly test for correctness between
the materialized version and the MLE version. Nevertheless, formalizing the
model of MLEs and proving correctness against the subtable functions is an
interesting mathematical result in their own right.8 We present a formal model
of MLEs for some subtables and prove Equation (1) for larger bit-widths such
as m ∈ {16, 32, . . . } (see Section 4.1 for an example). In future work, we plan to
extend this to arbitrary m ∈ N.

We next describe Jolt instructions. Each instruction in Jolt is parameter-
ized by a word size W ∈ {32, 64},9 comes with an expected semantics, and
a purported alternative way to achieve the same semantics using lookups into
subtables. The alternative way proceeds as follows:
7 https://github.com/kwancarl/acl2-jolt
8 Formal modeling of MLEs will also help any future “back-end” verification effort,
which establishes security of the argument system using the fact that these are
indeed multilinear polynomials.

9 Currently, Jolt only supports 32-bit instructions, with 64-bit planned for the future.
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1. First, the operands of the instruction are split into C = W/m chunks:

Chunk(x, y) = (z0, . . . , zC−1) ∈
(
{0, 1}2m

)C
.

2. Second, the chunks are then used to lookup into a list of subtables

L = ((ST0, idx0), . . . , (STn−1, idxn−1)),

where for each j, STj is a subtable (of a given size mj) and idxj ∈ {0, . . . , C−
1} is the index of the chunk that will be used to query the subtable. In other
words, lookup results are computed as

Lookup(L, z0, . . . , zC−1) =
(
Tj [zidxj ]

)n−1
j=0

.

3. Finally, we produce the final result from the subtable lookups using a func-
tion Combine(lookup results) ∈ F, whose range should be in {0, . . . , 2W −1}.

For a concrete example, the 32-bit AND instruction splits the operands (x, y) ∈(
{0, 1}32

)2 into 4 chunks of 16 bits (xi, yi) ∈
(
{0, 1}8

)2, looks up each chunk
in the AND subtable, then concatenates the lookup results, which should be
equal to the bit-wise AND of the two operands. See Appendix B for a list of
all instructions. The relation we formally verify is that the lookup process (per-
forming steps 1, 2, and 3) gives the expected result of the instruction. In other
words, the following equation holds for all W ∈ {32, 64} and x, y ∈ {0, 1}W :

ExpectedResult(x, y) = (Combine ◦ Lookup ◦ Chunk) (x, y). (2)

Theorem 1.1. Equation (2) holds for every Jolt instruction in the base RV32I
instruction sets.
Figure 1 visualizes our results. We further elaborate on our approach in Section 3,
and fully work out an example verified instruction in Section 4.

Automation and Extensibility. Our formalization is highly automated, thanks to
ACL2’s built-in automated rewriting and verified model checking libraries. Our
theorems are discharged with minimal user intervention, requiring only simple
connecting lemmas. At a minimum, our contribution requires expertise with var-
ious formal methods tools (e.g. theorem provers, model checkers, specification
languages), the insight to apply the appropriate method for a particular ap-
plication, and the ability to model real-world and mathematical systems. Our
more significant contribution is in developing an extensible theory which can
automatically discharge the correctness of families of Jolt instructions. Doing
this requires finding a pattern of theorems that enables a tool (e.g. ACL2) to
automatically rewrite formal statements involving Lasso-style lookups and Jolt
instructions into true statements. We illustrate this in Section 3.

In most cases, once we proved correctness of 32-bit instructions, extending
to 64-bit versions requires only restatements of definitions and theorems. Initial
experiments indicate that our approach scales to formally verifying parts of the
RISC-V M-extension [66], which was recently added to Jolt [50]; we leave a full
write-up of this effort to future work.
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Fig. 1: Overview of our formalization. The main contents of our work are the
green equivalences, which we prove for all subtables and instructions in the
base RV32I & RV64I instruction sets. Our result assumes that Lasso correctly
proves the expected decomposable lookups with respect to the black arrows.

Validation with Rust. Since we develop our formal model in ACL2, it is cru-
cial to validate that these models correspond to the Rust implementation [40].
Subtables are small enough (of size at most 216) that we exhaustively check for
correctness between ACL2 and Rust. Since instructions cannot be exhaustively
checked, we perform validation on randomly-chosen inputs, and scope our for-
mal model so that the only points of potential differences are in commonly-used
subroutine helper functions (such as Chunk and Combine functions). We present
these functions in Appendix B for manual inspection.

Efficiency Benefits of Our Formalization. We remove one unused lookup for
each of the comparison instructions (SLT, SLTU, BGE, and BGEU), which con-
stitute 4 out of 19 instructions in total. We discover this optimization through
our ACL2 formalization, as ACL2 tooling could automatically recognize that a
lookup went unused, producing an error message. Furthermore, we recognize that
the sizes of shift-related subtables can be significantly smaller than the current
implementation. This is because only the last 5 bits of the shift amount operand
are relevant to 32-bit shift instructions; thus, we can use 28 × 25 = 213-sized
subtables instead of the 216-sized subtables that is currently used.

We contacted the Jolt developers to integrate these optimizations. The first
(removing unused lookups) was already integrated, and the second (smaller shift
subtables) is currently under review. For more details, see Section 5.

Non-Goals. Since our focus is on verifying lookup semantics, it is necessary
for us to black-box other parts of the Jolt codebase. In particular, we assume
that the underlying “back-end” argument systems (such as Lasso) are secure, and
correctly prove all specified relations (such as all lookups). We also do not model
other parts of the front-end such as R1CS and offline memory-checking [69]. As
Jolt is a large codebase, we believe our approach is a pragmatic compromise that
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allows for incremental verification. In future work, we plan to incorporate other
front-end components into our formal model.

1.2 Related Works

A growing body of work has applied techniques from formal methods to rule
out bugs in SNARK front-ends, with various tradeoffs between the automation
of the tool and the guarantee it provides. Many focus on verifying ZK circuits,
specifically in R1CS format [18,21,39,47,60,78,80]. Some of this work involves
developing solvers over finite fields [36, 58, 59] or detecting under-constrained
circuit bugs [60, 78], aiming for high automation but not necessarily full for-
mal correctness. Some even use ACL2 [18, 20]. On the other hand, there are
formalization results that prove full formal correctness of either a VM front-end
such as Cairo [3, 4], zkWasm [16], or of R1CS or Plonkish circuits via special
DSLs [21,47]. Our work differs from these in the following aspects. First, we tar-
get verifying (a particular form of) lookups that are used inside general-purpose
zkVMs, whereas other works focus on verifying arithmetic constraints such as
R1CS, Plonk-ish, or AIR. Second, we aim for full functional correctness, unlike
other works that aim only to detect, e.g. under-constrained circuits. Finally, de-
spite full formal guarantees, we do not compromise on automation, by leveraging
desirable features of ACL2.

Cairo. The work most relevant to ours is the formal verification effort for the
Cairo ecosystem [33], which consists of a high-level programming language, an
ISA, and a compiler from the high-level language to the ISA. The first work [3]
verified the correctness of an AIR encoding for the Cairo ISA, while the second
work [4] augmented the Cairo compiler with tools that allow for proving correct-
ness of compiled programs, without needing to verify the overall compiler.

There are a few key differences between Cairo and our work with Jolt. Cairo
is a particularly simple VM that is specifically designed to be SNARK friendly,
and pertains to an ad hoc language and architecture. Users who wish to produce
proofs of programs will need to either use the Cairo language, or compile down to
the Cairo ISA from another high-level language. This contrasts with the existing
mature compiler, tooling, and infrastructure for RISC-V, which is Jolt’s target
architecture. Finally, Cairo’s verification efforts in Lean [53] are highly manual.
As Cairo changes, it is unknown how the formal proofs may change. Our efforts
in this work aim to enable automatic, extensible, and scalable verification as Jolt
matures.

zkWasm. Another recent work [16] by the CertiK team [15] focuses on the zk-
Wasm project [87], verifying the correctness of arithmetic constraints for the
zkWasm VM. It is difficult to compare their efforts to ours, since CertiK has not
yet put forth a peer-reviewed publication, instead releasing a code preview with
all proofs omitted, and several high-level blog posts [11, 13, 14]. Nevertheless,
the same comments regarding Cairo’s lack of automated verification can also
be made about CertiK’s formalization in Coq [22]. While Wasm [79] is a more
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complex ISA than Cairo, the particular form of constraint system used to model
Wasm instructions are quite different from Jolt’s, and hence the verification ef-
fort is orthogonal to ours. In particular, zkWasm relies on Plonkish/Halo2-style
constraints [37], while Jolt uses decomposable lookups along with R1CS and
memory-checking.

Backend Verification. Finally, some recent works focused on verifying SNARK
backends, such as verifying soundness for Linear-PCP-based SNARKs [5] and
for the sum-check protocol [7], and functional correctness of SNARK verifier
implementations [27, 51]. These are complementary to our efforts, which focus
solely on the front-end.

2 Preliminaries

2.1 Jolt & Lasso Basics

In this section, we describe the basics of Lasso and the decomposable lookup
relation that the argument proves.

Multilinear Extensions. Given a function f : {0, 1}n → F, its multilinear ex-
tension (MLE) f̃ : Fn → F is the unique multilinear polynomial that agrees
with f on all inputs in {0, 1}n. Its formula is given via multilinear Lagrange
interpolation:

f̃(X) =
∑

y∈{0,1}n

n∏
i=1

eq(X, y) · f(y), (3)

where the equality polynomial eq is defined as

eq(X1, . . . , Xn, Y1, . . . , Yn) =

n∏
i=1

(Xi · Yi + (1−Xi) · (1− Yi)) .

Due to their use in the sum-check protocol, efficient evaluation of MLEs are
crucial for succinctness of the Lasso verifier. MLE evaluations are not efficient
in general, since by (3) we have to sum over 2n terms. However, some MLEs
admit formulas with efficient evaluation, on the order of O(n) field operations
instead of O(2n). This property of fast MLE evaluation is key to the succinctness
of Lasso, and in fact all subtables in Jolt (see Appendix A for the full list) are
chosen to have fast MLE evaluation.

Decomposable Lookup Relations and Lasso. We describe the type of lookup tables
that can be proved efficiently by Lasso. In the original paper [70], it is referred
to as having a Surge-only structure (SOS); in this work, we simply refer to this
property as being decomposable.
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Definition 2.1 (Decomposable Lookup Table). Let T : {0, 1}n → F be
a lookup table for some n ≥ 1 and finite field F. Given a divisor c ≥ 1 of n,
some m ≥ 1, a mapping i : [m] → [c], and a low-degree polynomial g : Fm → F,
we say that T is (c,m, i, g)-decomposable if there exist a sequence of subtables
T1, . . . , Tm : {0, 1}n/c → F such that:

1. The multilinear extensions T̃1, . . . , T̃m of T1, . . . , Tm can be evaluated in
O(log(n/c)) time;

2. For all x ∈ {0, 1}n, writing x = (x1, . . . , xc) ∈
(
{0, 1}n/c

)c
, we have:

T (x) = g
(
T1(xi(1)), . . . , Tm(xi(m))

)
. (4)

Given a (c,m, i, g)-decomposable lookup table T and a commitment scheme cm
for field elements, we define the (committed) decomposable lookup relation as:

RT,c,m,i,g,cm := {(c, (y, x)) | c = cm(y) ∧ y = T (x)} .

Lasso is an argument system for proving correctness of decomposable lookup
relations. In this paper, we will assume that Lasso is complete and sound, mean-
ing that it correctly proves Equation (4) for any (c,m, i, g)-decomposable lookup
table T . Our focus will be to show that the lookup relations in Jolt that are proved
by Lasso in fact represent the intended semantics of RISC-V instructions.

2.2 ACL2 Basics

ACL2 is a highly automated theorem proving system, which also supports pro-
gramming in Common Lisp. It has seen success in verifying hardware, software,
and cyber-physical systems at companies such as Intel, AMD, ARM, Collins
Aerospace, and more [38]. Some Jolt-relevant ACL2 successes include highly-
efficient formal executable models of x86, Y86, JVM, and RISC-V ISAs [32, 46,
83]. While ACL2 handily supports reasoning about software and general-purpose
mathematics, it has seen outsized impact verifying low-level systems, motivat-
ing much tool development in this direction. This makes ACL2 well-suited to
verifying the front-end of Jolt or other zkVMs.

ACL2’s logic is largely first-order, with support for certain higher-order logics
in some applications [8,44,45]. The ACL2 foundations themselves have also been
subjected to extensive formal verification, all the way down to the x86 code
running ACL2 itself [24, 25, 54, 55]. Execution in ACL2 is the same as native
Common Lisp execution, and included in the meta-verification chain of ACL2 is a
verified Common Lisp kernel. The close interaction between ACL2 and Common
Lisp enables concurrent programming and theorem proving about programs.

Table 1 lists some common ACL2 functions and macros used in this paper.
For brevity, we omit the extensive details of the ACL2 rewriting system and
heuristics. For this paper, it is sufficient to know that ACL2 will automatically
attempt to rewrite formal statements into known equivalent statements. For
example, the following is a theorem which is automatically proven in ACL2:

(defthm foo (equal (- a a) 0))
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Table 1: Common ACL2 functions, macros, and other commands used in this
paper.

Command Description
defun Define a function symbol
define Define a function symbol, enforce guard checking, and more
b* Binder for local variables; often used to simplify control flow

defthm Name and prove a theorem
cons Construct a pair or list
car Return the head of a list
cdr Return the second element of a cons pair
logcar Return the least significant bit of a number
logcdr Return all but the least significant bit of a number

part-select Return a bitvector part of an integer
natp Recognizer for natural numbers
bitp Recognizer for bits

unsigned-byte-p Recognizer for unsigned numbers fitting a specified bit width
def-gl-thm Name and prove a theorem using GL symbolic simulation

The function defthm above introduces a theorem named foo stating that a−a =
0. When ACL2 proves foo, it also automatically introduces a rewrite rule which
enables one to replace terms of the form (- a a) with 0. For example, foo is
sufficient to discharge the following theorem attempt:

(defthm bar (equal (- (+ b c) (+ b c)) 0))

ACL2 will automatically pattern match the term (+ b c) to a and apply an
instance of theorem foo.10 A typical ACL2 theorem will involve: (1) hypotheses
(if any); and (2) the theorem conclusion. More details on the ACL2 rewriting
system can be found in the ACL2 documentation [82].

Another instrument in the ACL2 toolkit is the use of bitblasting. Bitblasting
is the process of reducing theorems on finite domains into decision problems on
bitvectors, making them amenable to SAT-like decision procedures. ACL2 sup-
ports bitblasting via several frameworks. We use GL, which supports bitblasting
via BDDs or external SAT solvers [73, 74]. The internal GL BDD-based model
checker and proof procedures are fully written in and verified with ACL2. When
external solvers are used, GL can efficiently check the resolution proof produced
by the SAT solver to avoid trusting any external tools, thus maintaining sound-
ness. If a proof fails and terminates, then GL produces counterexamples. In
addition to a hypothesis and conclusion, a typical GL theorem event will involve
bindings which assign bits to represent variables in the theorem statement.

For example, consider the foo example from Section 2.2, which stated a −
a = 0. We can prove this theorem with GL if we restrict the domain of a:

1 (def-gl-thm foo-gl
2 :hyp (unsigned-byte-p 32 a)
3 :concl (equal (- a a) 0)
4 :g-bindings (auto-bindings (:nat a 32)))

10 This example is contrived, as other ACL2 heuristics may discharge bar before the foo
rewrite rule has a chance to fire, but it demonstrates the basics of ACL2 rewriting.
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The value provided to the key :hyp is the hypothesis of the theorem, which
states that a is an unsigned 32-bit integer; the value provided to :concl is the
conclusion, which is the same as foo; and :g-bindings indicate variable bindings
for a – in this case (gl::auto-bindings (:nat a 32)) is simply a convenient
way of assigning bits 0 – 32 to a.

On the backend, GL is performing symbolic simulation on a as a symbolic
object. By default, BDDs are used to encode the symbolic objects, but external
SAT solvers can be used as well. The internal GL BDD-based model checker and
proof procedures are fully written in and verified with ACL2. When external
solvers are used, GL can efficiently check the resolution proof produced by the
SAT solver to avoid trusting any external tools, thus maintaining soundness. If
the proof fails and terminates, then GL produces counterexamples.

Note that foo-gl is again a contrived example for two reasons: (a) GL’s
proof procedures involve clause processing, which enables use of foo to dis-
charge foo-gl; (b) bitblasting and model checking tends to find better utility
in situations which involve detailed, complex, and sometimes tedious operations
on many objects. These situations often arise in hardware or low-level systems
verification, such as the subject of this paper. To provide an example of such
a use case, consider the the following well known bitwiddling hack [1] for the
logcount (a.k.a. popcount, Hamming weight, 1s count, etc.) of an int v, which is
also a common problem in GL tutorials:

1 v = v - ((v >> 1) & 0x55555555);
2 v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
3 c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

The following ACL2 events verify the above obtuse C-style code is indeed equiv-
alent to a standard definition of logcount:

1 ;; Define 32-bit multiplication
2 (defun 32* (x y)
3 (logand (* x y) (1- (expt 2 32))))
4
5 ;; Define logcount using a bitwiddling hack
6 (defun fast-logcount-32 (v)
7 (b* ((v (- v (logand (ash v -1) #x55555555)))
8 (v (+ (logand v #x33333333)
9 (logand (ash v -2) #x33333333)))

10 (c (ash (32* (logand (+ v (ash v -4)) #xF0F0F0F) #x1010101) -24)))
11 c))
12
13 ;; Verify the correctness of fast-logcount-32 against a standard logcount
14 (gl::def-gl-thm fast-logcount-32-correct
15 :hyp (unsigned-byte-p 32 v)
16 :concl (equal (fast-logcount-32 v) (logcount v))
17 :g-bindings (gl::auto-bindings (:nat v 32)))

The first event in the above code snippet is a call to defun introducing the
function 32*, which performs multiplication modulo 232 by taking the bitwise
“and” of a product with 232 − 1. The second event introduces a function on
v which performs the same operations as in the bitwiddling hack; notably, b*
is a binder playing the role of the assignment operator. The final event simply
asserts that the bitwiddling version of logcount is the same as the standard ACL2
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<instruction>-W

<instruction>-semantics-W

<functional specification>

Custom theory

Bitblasting

MLEs
Subtables
Lookups

Fig. 2: Approach to verifying Jolt instructions, where W ∈ {32, 64}

logcount. This approach – defining different versions (optimized or otherwise) of
semantically equivalent functions and proving them equivalent – is archetypal of
many verification efforts, and is repeated in this paper.

GL’s symbolic simulation of large sets of boolean functions with BDD-based
procedures has successfully verified many large-scale industrial designs. However,
model checking with SAT or BDDs has its limits, either due to what is expressible
in the language or due to scalability issues. For sophisticated verification efforts
involving various high-level protocols, low-level machinery, and their interactions
– such as Jolt – a unified approach combining bitblasting with light user-guided
theorem proving is more effective. Often, the expedient approach to verification
with ACL2 is to setup a theory with the appropriate theorems which enable
ACL2 heuristics to automatically discharge the final desired theorems. We will
describe such an approach in the context of Jolt lookups.

3 General Approach to Lookup Formalization

Formalizing each Jolt instruction in ACL2 broadly involves proving two parts:

(A) the multilinear extensions (MLEs) involved in the lookups are equivalent to
their respective intended behavior; and

(B) the composition of chunking the inputs, lookups to materialized subtables,
and combining the results is equivalent to the intended instruction semantics.

A particular Jolt instruction may involve multiple lookups, but otherwise part
(A) is a straightforward exercise in equational reasoning. In fact, part (A) is
amenable to bitblasting if we restrict our attention to Jolt-specific bitwidths.

Part (B) involves combining new definitions, intermediate semantic layers,
bitblasting, and theory management to automatically trigger rewrite rules that
discharge the desired final theorem with very little user-interaction. It is the
part that we focus on in this section. A summary of our approach is visualized
in Figure 2, and a full example of an instruction is given in Program 4.

The first step in part (B) is to define and verify the necessary subtables
for each Jolt instruction. We make a distinction between subtables which are
indexed by one or two parameters, and define analogous functions for each. Since
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many subtables are intended to be the same size, we have a single function which
generates the indices based on upper limits for x and y (for subtables indexed by
two parameters). Lookup functions are built on top of existing ACL2 association
list and related libraries. Some subtables are further parameterized (e.g. by word
sizes or chunk index) but all lookup functions take a subtable and either one or
two parameters. A common pattern of theorems and rewrite rules enable us
to readily verify that lookups to these subtables return the expected result.
These theorems often state the return “type” and correctness of the supporting
functions.

For every Jolt instruction, we define an equivalent instruction which replaces
the lookup stage with their intended semantics; otherwise, they contain identi-
cal chunking and combining stages. We name this intermediary semantics rep-
resentation <instruction>-semantics-32 and simply bitblast their correct-
ness. Then we define the Jolt instructions themselves, which we simply name
<instruction>-32. Because they only differ with respect to lookups, proving
the Jolt instructions equivalent to their intermediate versions reduces to the
theorems we prove about the subtables and lookups.

We restrict our use of bitblasting to theorems about lower-level functions
or intermediate steps. Even though we verify the correctness of each subtable
and the associated MLEs, they are simply stored as ACL2 rewrite rules. Clause
processing with lookup arguments is not mature in GL or ACL2; a naïve at-
tempt to bitblast or otherwise prove the correctness of sltu-32 or any direct
implementation of a Jolt instruction will involve too many function definitions.
Part of this is exacerbated by the concrete values of W = 32 and m = 8 in the
32-bit version of Jolt instructions. Certain executions in proof attempts with
such instructions are no longer symbolic and tables of size 216 can literally be
materialized. On their own, such tables can be exhaustively checked for correct-
ness, but layering on top various chunking and combining functions can easily
cause the state space to be intractable or misdirect the theorem prover. Instead,
for top-level theorems, we control the rules space, preventing the rewriter from
expanding the function definition in most proofs, enabling it to focus only on
the correctness lemmas, and providing it with a simple chain of equivalences to
obtain the final desired theorem.

4 Formalization Example: Set Less Than (Unsigned)

In this section, we describe the process of formalizing and verifying an example
Jolt instruction, set less than (unsigned), abbreviated by SLTU. We begin with
the modelling and verification of the MLEs, corresponding to part (A) of the
approach described in Section 3. Then we verify the top-level Jolt instruction
itself, corresponding to part (B).

4.1 Formalizing MLEs for Subtables

Given x, y ∈ {0, 1}W , the SLTU instruction returns 1 if x < y and 0 otherwise,
treating x and y as unsigned integers. To get a multilinear extension formula for
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Program 1: ACL2 Formalization of Ẽqm

1 ;; Equality of two bits, computes x * y + (1 - x) * (1 - y)
2 (define b-eq-w ((x bitp) (y bitp))
3 (b-xor (b-and x y) (b-and (b-xor 1 x) (b-xor 1 y))) ...)
4
5 ;; Equality of two bitvectors, computes: Prod (xi * yi + (1 - xi) * (1 - yi))
6 (define eq-w ((x :type unsigned-byte) (y :type unsigned-byte))
7 (b* (((unless (and (natp x) (natp y))) 0) ;; Edge cases
8 ((if (xor (bitp x) (bitp y))) 0)
9 ((if (and (bitp x) (bitp y))) (b-eq-w x y)) ;; Base case

10 (x-0 (logcar x)) ;; LSB of x
11 (y-0 (logcar y)) ;; LSB of y
12 (x-rest (logcdr x)) ;; Rest of x
13 (y-rest (logcdr y))) ;; Rest of y
14 (b-and (b-eq-w x-0 y-0) (eq-w x-rest y-rest))) ;; Recursive case
15 ///
16 ;; eq-w correctness theorem for arbitrary unsigned ints
17 (defthmd eq-w-equal-equiv
18 (implies (and (natp x) (natp y)) (equal (eq-w x y) (if (equal x y) 1 0)))))

SLTU, we use two other MLEs, Ẽqm for “equality” and L̃tum for “less than (un-
signed)”, a helper polynomial. The construction of the former is straightforward:

Ẽqm(X,Y ) =

m−1∏
i=0

((1−Xi)(1− Yi) +Xi · Yi) (5)

checks whether bitvector chunks X and Y of length m are equal. The i-th factor
in the product of Equation (5) above checks whether the i-th bits in X and Y
are the same, returning 1 if so and 0 otherwise. Thus if X and Y mismatch in
any position, the entire product is 0. Otherwise, the product is 1.

We embed Ẽqm into ACL2 and prove it is indeed equivalent to the mathemat-
ical semantics of an “equal” function. The entire sequence of events is displayed
in Program 1. We define two functions: b-eq-w, which computes whether two
bits are equal; and eq-w, which calls b-eq-w recursively along the lengths of
two bitvectors. The b* macro in eq-w is a binder that also supports conve-
nient features [9], similar to the Common Lisp let*. The desired theorem is
eq-w-equal-equiv, which states that eq-w (or Equation (5)) is equivalent to
equality when x and y are unsigned integers.

The MLE for “less than (unsigned)” is defined by

L̃tum(X,Y ) =

m−1∑
i=0

(1−Xi) · Yi · Ẽqi(X<i, Y<i)

=

m−1∑
i=0

(1−Xi) · Yi ·
i−1∏
j=0

((1−Xj) · (1− Yj) +Xj · Yj).

(6)

Intuitively, L̃tum(X,Y ) recognizes when X < Y because a summand will be
nonzero only if the (i−1)-th most significant bits are equal, Yi is high, and Xi is
low, i.e. when i is the most significant bit position which determines X < Y . We
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Program 2: ACL2 Formalization of L̃tum

1 ;; Compute the MLE for LTU
2 (define ltu-w ((x :type unsigned-byte) (y :type unsigned-byte)) ...
3 (b* (((unless (and (natp x) (natp y))) 0) ;; Edge case
4 ((if (and (zerop (integer-length x)) (zerop (integer-length y)))) 0) ;; Base case
5 (x-0 (logcar x)) ;; LSB of x
6 (y-0 (logcar y)) ;; LSB of y
7 (x-rest (logcdr x)) ;; Rest of x
8 (y-rest (logcdr y)) ;; Rest of y
9 (ltu-0 (b-and (b-and (b-xor 1 x-0) y-0) (eq-w x-rest y-rest)))) ;; Summand

10 (b-xor ltu-0 (ltu-w x-rest y-rest)))) ;; Recursive case

can easily verify Equation (6) is correct for large bitwidths by defining an ACL2
function ltu-w which computes L̃tum and using GL to bitblast its correctness
theorem ltu-w-equiv-<-32.

4.2 Verifying an Instruction involving Subtable Lookups

Now that the MLEs for the SLTU subtables are verified, we proceed with ma-
terializing the subtables. We model subtables in ACL2 as association lists, i.e.
lists of pairs where the first element in the pair acts as a key and the second
element acts as a value. For subtables associated with MLEs, the keys are the
operands and the values are the expected results. To make this concrete, consider
materialize-eq-subtable in Program 3. Evaluating the function on a list of
X and Y operands, such as

((1 . 1) (1 . 0) (0 . 1) (0 . 0)),

returns the following subtable:

(((1 . 1) . 1) ((1 . 0) . 0) ((0 . 1) . 0) ((0 . 0) . 1)).

As expected, the values in the subtable are 1 only when X and Y are equal
and 0 otherwise. By proving a small number of intermediate lemmas, we au-
tomatically obtain a correctness theorem for Ẽqm’s subtable in the form of
lookup-eq-subtable-correctness in Program 3. This theorem states that if
the operands of interest are indexed in the subtable, then the lookup value is 1
if the operands are equal and 0 otherwise. Very similar functions and theorems
are formalized for L̃tum; the only substantial difference is that = is replaced with
<. The function application

(create-tuple-indices x-hi y-hi)

simply creates the list

((x-hi . y-hi) ... (1 . 1) (1 . 0) (0 . 1) (0 . 0)),

and
(tuple-lookup i j subtable)

returns the value of the subtable at index (i . j).
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Program 3: ACL2 Formalization of Eqm Subtable

1 ;; Given a list of (x y) operands, materialize a list of key-value pairs
2 ;; key: (x y) value: (if (= x y) 1 0)
3 (defun materialize-eq-subtable (idx-lst)
4 (b* (((unless (alistp idx-lst)) nil) ;; Edge case
5 ((if (atom idx-lst)) nil) ;; Base case
6 ((cons hd tl) idx-lst) ;; Bind head & tail in the index list
7 ((unless (consp hd)) nil) ;; Edge case
8 ((cons x y) hd)) ;; Bind x & y operands in the head
9 ;; Construct a key-value pair and append it to the rest of the eq subtable

10 (cons (cons hd (if (= x y) 1 0)) (materialize-eq-subtable tl))))
11 ...
12 ;; Lookup values within the bounds of the subtable are equivalent to "="
13 (defthm lookup-eq-subtable-correctness
14 (implies (and (natp i) (natp j) (natp x-hi) (natp y-hi) (<= i x-hi) (<= j y-hi))
15 (b* ((indices (create-tuple-indices x-hi y-hi))
16 (subtable (materialize-eq-subtable indices)))
17 (equal (tuple-lookup i j subtable) (if (= i j) 1 0)))) ... )

We are now ready to tackle SLTU itself. Each Jolt instruction has three
stages: chunk, lookup, and combine. For SLTU, integers x, y ∈ {0, 1}W=32 are
chunked into subvectors of size m = 8 so that

x = x0‖x1‖x2‖x3, y = y0‖y1‖y2‖y3 (7)

in preparation for the subtable lookups. Lookups are performed using interwoven
chunks as indexes, setting

Z0 := Ltum [x0‖y0] , Z1 := Ltum [x1‖y1] , Z2 := Ltum [x2‖y2] , Z3 := Ltum [x3‖y3] ,
W0 := Eqm [x0‖y0] , W1 := Eqm [x1‖y1] , W2 := Eqm [x2‖y2] . (8)

Then combining the results gives

SLTU(x, y) =

3∑
i=0

Zi

i−1∏
j=0

Wj = Z0+Z1 ·W0+Z2 ·W0 ·W1+Z3 ·W0 ·W1 ·W2. (9)

Verifying that Equation (9) is indeed equivalent to (if (< x y) 1 0) is the
ultimate objective, which is Program 4.

We first formalize a version of SLTU without subtables, instead directly call-
ing the intended function of the lookups in this intermediary semantics version of
the instruction, which we call sltu-semantics-32. The bindings which involve
part-select correspond to Equation (7). One subtle note is that ACL2 indexes
bitvectors such that the least significant bit is 0, whereas Jolt indexes the most
significant chunks as 0; hence the 8-bit chunk resulting from

(part-select x :low 0 :width 8)

corresponds to the 3-rd chunk x3 of x. The next sequence of bindings is se-
mantically equivalent to the lookup stage in Equation (8). The final expression
returned is equivalent to Equation (9). Verification is again a straightforward
application of GL. Finally, we define the Jolt version of SLTU, sltu-32. The
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function sltu-32 is identical to sltu-semantics-32 except that we actually
materialize the subtables and perform lookups. We prove it equivalent to the
version without lookups, sltu-semantics-32, giving us a chain of equivalences
which enable us to conclude that Jolt SLTU is correct.

5 Optimizations & Impact to Jolt’s Codebase

An ACL2 analysis of Jolt forces the development of a formal specification for
the Jolt components we verify. Formal specification in itself is already an impor-
tant contribution to any project. In a large technology company, documentation
and specification can have its own dedicated stage in a product cycle. However,
Jolt was originally announced in the form of an academic paper, eliding some
implementation details. Conversely, the Rust implementation of Jolt contains
many undocumented engineering efforts, either a result of filling in the gaps of
the Jolt paper or complete departures altogether. For example, some MLEs have
no mathematical specification beyond their function. The MLE known as ẼqAbs
simply checks whether all but the MSBs of two bitvectors are equal. Despite its
name, ẼqAbs does not check whether two signed integers are equal under the
absolute value function. A naïve attempt to verify against the absolute value
function resulted in automatically generated counterexamples. Examples such
as these, which were not documented in either the original paper or in the Jolt
codebase, are now identified and documented.

By the time large projects go to formal verification, the design is often already
highly optimized (indeed this is often the point of formal methods: to verify the
optimization is correct). In the case of Jolt, we discovered several optimizations
during the course of our formalization, some of which were caught automatically
by ACL2. Consider again the formalization of SLTU in Program 4. Note that
the lookup w3 is prefixed by a ?. The b* macro enforces that all bindings should
be used in the body unless otherwise indicated, such as with ?. Indeed, w3 is
not used to evaluate SLTU but this lookup is still listed in the Jolt paper, and a
previous version of the Jolt codebase. The same also applies for the SLT, BGEU,
and BGE instructions.11 The efficiency gain from this optimization depends on
how often these 4 instructions are used in a typical RISC-V program, since the
prover only “pays” for instructions that get executed. Nevertheless, instruction
overhead is linear in the number of lookups necessary; for an instruction like
SLTU which originally required 8 lookups, we achieve a 12.5% speedup in prover
time by saving 1 lookup.

We also discovered that all shift subtables in the Jolt codebase can be reduced
in size. The maximum meaningful shift for 32-bit integers is 32 = 25. Thus a
shift subtable need only be size 28 × 25 = 213, with 28 indices for the chunk
to be shifted and 25 indices for the shift parameter. However, the Jolt Rust

11 BLT and BLTU are also RISC-V instructions which benefit from this optimization,
but in the Rust implementation they are implemented by referencing the other com-
parison instructions.
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Program 4: ACL2 Formalization of Jolt SLTU Instruction.

1 ;; SLTU without subtables, just lookup semantics
2 (define sltu-semantics-32 ((x (unsigned-byte-p 32 x)) (y (unsigned-byte-p 32 y)))
3 (b* (((unless (unsigned-byte-p 32 x)) 0) ;; Edge cases
4 ((unless (unsigned-byte-p 32 y)) 0)
5 (x8-3 (part-select x :low 0 :width 8)) ;; Chunk
6 (x8-2 (part-select x :low 8 :width 8))
7 (x8-1 (part-select x :low 16 :width 8))
8 (x8-0 (part-select x :low 24 :width 8))
9 (y8-3 (part-select y :low 0 :width 8))

10 (y8-2 (part-select y :low 8 :width 8))
11 (y8-1 (part-select y :low 16 :width 8))
12 (y8-0 (part-select y :low 24 :width 8))
13 (z0 (if (< x8-0 y8-0) 1 0)) ;; Lookup semantics
14 (z1 (if (< x8-1 y8-1) 1 0))
15 (z2 (if (< x8-2 y8-2) 1 0))
16 (z3 (if (< x8-3 y8-3) 1 0))
17 (w0 (if (= x8-0 y8-0) 1 0))
18 (w1 (if (= x8-1 y8-1) 1 0))
19 (w2 (if (= x8-2 y8-2) 1 0))
20 (?w3 (if (= x8-3 y8-3) 1 0))) ;; ignore w3
21 (+ z0 (* z1 w0) (* z2 w0 w1) (* z3 w0 w1 w2)))) ;; Combine
22
23 ;; Correctness of SLTU intermediate semantics layer
24 (gl::def-gl-thm sltu-semantics-32-correctness
25 :hyp (and (unsigned-byte-p 32 x) (unsigned-byte-p 32 y))
26 :concl (equal (sltu-semantics-32 x y) (if (< x y) 1 0))
27 :g-bindings (gl::auto-bindings (:mix (:nat x 32) (:nat y 32))))
28
29 ;; Define SLTU with subtable lookups
30 (define sltu-32 ((x (unsigned-byte-p 32 x)) (y (unsigned-byte-p 32 y))) ...
31 (b* (((unless (unsigned-byte-p 32 x)) 0) ;; Edge cases
32 ((unless (unsigned-byte-p 32 y)) 0)
33 (x8-3 (part-select x :low 0 :width 8)) ;; Chunk
34 (x8-2 (part-select x :low 8 :width 8))
35 (x8-1 (part-select x :low 16 :width 8))
36 (x8-0 (part-select x :low 24 :width 8))
37 (y8-3 (part-select y :low 0 :width 8))
38 (y8-2 (part-select y :low 8 :width 8))
39 (y8-1 (part-select y :low 16 :width 8))
40 (y8-0 (part-select y :low 24 :width 8))
41 (indices (create-tuple-indices (expt 2 8) (expt 2 8))) ;; Materialize subtables
42 (ltu-subtable (materialize-ltu-subtable indices))
43 (eq-subtable (materialize-eq-subtable indices))
44 (z0 (tuple-lookup x8-0 y8-0 ltu-subtable)) ;; Perform Lookups
45 (z1 (tuple-lookup x8-1 y8-1 ltu-subtable))
46 (z2 (tuple-lookup x8-2 y8-2 ltu-subtable))
47 (z3 (tuple-lookup x8-3 y8-3 ltu-subtable))
48 (w0 (tuple-lookup x8-0 y8-0 eq-subtable))
49 (w1 (tuple-lookup x8-1 y8-1 eq-subtable))
50 (w2 (tuple-lookup x8-2 y8-2 eq-subtable))
51 (?w3 (tuple-lookup x8-3 y8-3 eq-subtable))) ;; ignore w3
52 (+ z0 (* z1 w0) (* z2 w0 w1) (* z3 w0 w1 w2))) ;; Combine
53 ///
54 ;; Equivalence between sltu-32 & its intermediate semantics version
55 (defthm sltu-32-sltu-semantics-32-equiv
56 (equal (sltu-32 x y) (sltu-semantics-32 x y))
57 :hints (("Goal" :in-theory (enable sltu-semantics-32)))))
58
59 ;; Correctness of Jolt SLTU
60 (defthm sltu-32-correctness
61 (implies (and (unsigned-byte-p 32 x) (unsigned-byte-p 32 y))
62 (equal (sltu-32 x y) (if (< x y) 1 0))))
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implementation materializes a 28×28 = 216 subtable for shifts. Our formalization
exhibits a proof that we can reduce Jolt’s three shift subtables by 87.5%. This
directly translates to reduced cost for shift operations, though performance gains
may vary depending on programs, and integrating this change into Jolt requires
additional engineering effort to handle subtables that are now of different sizes.

6 Conclusion & Future Work

We present a formal model of Lasso-style lookup arguments, and verify all 32-bit
base Jolt instruction lookups using ACL2 in a highly automated and validated
manner. We also demonstrate the utility of ACL2-based formalization via iden-
tifying possible optimizations, resulting in performance improvements for Jolt.

Our work takes the first step towards full formal correctness of Jolt’s front-
end, demonstrating that an incremental approach to front-end verification (start-
ing with instruction lookups) is both feasible and useful. We have already started
verifying the M-extension to Jolt, and plan to extend our formalization to include
the other two components of Jolt’s front-end (R1CS and memory-checking) in
future work.
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A Subtables Specification

In this section, we give a full specification of all subtables used in the RV32IM
version of Jolt.

A.1 Notation

We denote [a, b] := {a, a + 1, . . . , b}, and for a vector x, we denote x[a,b] :=
(xa, . . . , xb).

– M is the size of the subtable, assumed to be of the form M = 22m for some
m ∈ N. Here m is the number of bits for each operand, and we have m = 8
for all use cases of subtables in Jolt instructions. However, for full generality,
we will parametrize each subtable by m.

– We write x as the first operand. It is a m-bit natural number, whose bi-
nary representation (in big-endian form) is a vector (x0, x1, . . . , xm−1) ∈
{0, 1}m. Note that x0 denotes the most significant bit. Similarly, we write
X = (X0, X1, . . . , Xm−1) to be the vector of variables in the multilinear
extension (over the finite field F).

– We write y as the second operand. It is a m-bit natural number, whose
binary representation is a vector (y0, y1, . . . , ym−1) ∈ {0, 1}m. Similarly, we
write Y = (Y0, Y1, . . . , Ym−1) to be the vector of variables in the multilinear
extension.

– For some subtables, it is more convenient to think of a single vector z that
is the concatenation of x and y. We write z = x‖y to denote the concate-
nation of x and y, indexed as z = (z2m−1, z2m−2, . . . , z1, z0) ∈ {0, 1}2m.
Similarly, we write Z = (Z0, Z1, . . . , Z2m−1) to be the vector of variables in
the multilinear extension.

– The subtable value is a natural number having at most 2m bits, embedded in
a larger prime field. The indexing is done in the natural way, by interpreting
the concatenation z := x‖y as a 2m-bit natural number.

Some subtables (such as shift) are further parametrized by additional values:

– W ∈ {32, 64} is the word size.
– i: For shift instructions, this is the index of the chunk being shifted.

A.2 List of Subtables

For each subtable, recall that we write x, y ∈ {0, 1}m, z := x‖y ∈ {0, 1}2m
for the input, and similarly write X = (X0, . . . , Xm−1), Y = (Y0, . . . , Ym−1),
Z = X‖Y = (Z0, . . . , Z2m−1) for the list of variables.

We list the subtables roughly in order of complexity and following the order
of their appearance in the instructions (listed in Appendix B). For each subtable,
we list the function used in materializing the subtable, the ACL2 implementation
of the function, and the multilinear extension of the function. We note that four
subtables, namely DivByZero, LeftIsZero, RightIsZero, and ZeroLSB, are used
in Jolt only in proving the RISC-V M-extension.
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1. And:

• Function:

Andm(x, y) = (x0 ∧ y0, x1 ∧ y1, . . . , xm−1 ∧ ym−1)

• ACL2: (logand x y)
• Multilinear Extension:

Ãndm(X,Y ) =

m−1∑
i=0

2m−i−1 ·Xi · Yi

2. Or:

• Function:

Orm(x, y) = (x0 ∨ y0, x1 ∨ y1, . . . , xm−1 ∨ ym−1)

• ACL2: (logior x y)
• Multilinear Extension:

Õrm(X,Y ) =

m−1∑
i=0

2m−i−1 · (Xi + Yi −Xi · Yi)

3. Xor:

• Function:

Xorm(x, y) = (x0 ⊕ y0, x1 ⊕ y1, . . . , xm−1 ⊕ ym−1)

• ACL2: (logxor x y)
• Multilinear Extension:

X̃orm(X,Y ) =

m−1∑
i=0

2m−i−1 · ((1−Xi) · Yi +Xi · (1− Yi))

4. DivByZero:

• Function:

DivByZerom(x, y) =

{
1 if (xi, yi) = (0, 1) for all i
0 otherwise

• ACL2: (if (and (= x 0) (= y (1- (expt 2 m)))) 1 0)
• Multilinear Extension:

˜DivByZerom(X,Y ) =

m−1∏
i=0

((1−Xi) · Yi)

5. Eq:

25



• Function:

Eqm(x, y) =

{
1 if x = y

0 otherwise

• ACL2: (if (= x y) 1 0)
• Multilinear Extension:

Ẽqm(X,Y ) =

m−1∏
i=0

((1−Xi) · (1− Yi) +Xi · Yi)

6. EqAbs:

• Function:

EqAbsm(x, y) =

{
1 if xi = yi for all i > 0

0 otherwise

• ACL2: (if (= (loghead (1- m) x) (loghead (1- m) y)) 1 0)
• Multilinear Extension:

ẼqAbsm(X,Y ) =

m−1∏
i=1

((1−Xi) · (1− Yi) +Xi · Yi)

7. Identity:

• Function:
Idm(z) = z

• ACL2: (z)
• Multilinear Extension:

Ĩdm(Z) =

m−1∑
i=0

2m−i−1 · Zi

8. LeftIsZero:

• Function:

LeftIsZerom(x, y) =

{
1 if x = 0

0 otherwise

• ACL2: (if (= x 0) 1 0)
• Multilinear Extension:

˜LeftIsZerom(X,Y ) =

m−1∏
i=0

(1−Xi)

9. LeftMSB:

• Function:
LeftMSBm(x, y) = x0
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• ACL2: (logbit (1- m) x)
• Multilinear Extension:

˜LeftMSBm(X,Y ) = X0

10. LtAbs:

• Function:

LtAbsm(x, y) =

{
1 if x[1,m−1] < y[1,m−1]

0 otherwise

• ACL2: (if (< (loghead (1- m) x) (loghead (1- m) y)) 1 0)
• Multilinear Extension:

L̃tAbsm(X,Y ) =

m−1∑
i=1

(1−Xi) · Yi ·
i−1∏
j=0

((1−Xj) · (1− Yj) +Xj · Yj)

11. Ltu:

• Function:

Ltum(x, y) =

{
1 if x < y

0 otherwise

• ACL2: (if (< x y) 1 0)
• Multilinear Extension:

L̃tum(X,Y ) =

m−1∑
i=0

(1−Xi) · Yi ·
i−1∏
j=0

((1−Xj) · (1− Yj) +Xj · Yj)

12. RightIsZero:

• Function:

RightIsZerom(x, y) =

{
1 if y = 0

0 otherwise

• ACL2: (if (= y 0) 1 0)
• Multilinear Extension:

˜RightIsZerom(X,Y ) =

m−1∏
i=0

(1− Yi)

13. RightMSB:

• Function:
RightMSBm(x, y) = y0

• ACL2: (logbit (1- m) y)
• Multilinear Extension:

˜RightMSBm(X,Y ) = Y0
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14. ZeroLSB:

• Function:
ZeroLSBm(z) = z − (z mod 2)

• ACL2: (- z (mod z 2))
• Multilinear Extension:

˜ZeroLSBm(Z) =

m−1∑
i=1

2m−i · Zi

15. TruncateOverflow: This subtable is further parametrized by a word size

W . Informally, this subtable truncates z = x‖y to w bits and then zero-
extends it to 2m bits, where w = W mod (2m) is the number of overflow
bits.
• Function:

TruncateOverflowm,W (z) = z mod 2W mod (2m).

• ACL2: (mod z (expt 2 (mod W (* 2 m))))
• Multilinear Extension:

˜TruncateOverflowm,W (Z) =

(W mod 2m)−1∑
i=0

2i · Zm−i−1.

16. SignExtend: This subtable is further parametrized by a width w ≤ 2m.

Informally, this subtable returns either all-zero or all-one (for w bits) de-
pending on the w-th least significant bit of z = x‖y (interpreted as a sign
bit).
• Function:

SignExtendm,w(z) =

{
0 if z2m−w = 0

2w − 1 if z2m−w = 1

• ACL2: (* (logbit (1- w) z) (1- (expt 2 w)))
• Multilinear Extension:

˜SignExtendm,w(Z) = (2w − 1) · Z2m−w.

17. Sll: This subtable is further parametrized by two values, the chunk index i

and the word size W . Informally, this subtable assumes that x is the i-th
chunk of someW -bit number12, shifts it left by y mod W bits, then truncates
the result to be W −m · i bits.

12 Each chunk has m bits, and the indexing goes from left-to-right, so the first chunk
is the most significant bits of x
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• Function:

Sllm,i,W (x, y) = (x� (y mod W )) mod 2W−m·i

• ACL2: (mod (ash x (mod y W)) (expt 2 (- W (* i m))))
• Multilinear Extension: Let m′ = min(m, dlog2(W )e) and nout =

min (m,max (0, k +m · (i+ 1)−W )) denotes the number of bits that
goes out of range. Then:

S̃llm,i,W (X,Y ) =

2m
′
−1∑

k=0

Ẽqm′(Y, k) ·

m−nout−1∑
j=0

2k+j ·Xm−j−1

 .

18. Srl: This subtable is further parametrized by two values, the chunk index

i and the word size W . Informally, this subtable assumes that x is the i-th
chunk of some W -bit number, shifts it left by m · i bits to align with the
pre-chunk position, then shifts it right by y mod W bits.
• Function:

Srlm,i,W (x, y) = (x� m · i)� (y mod W ).

• ACL2: (ash (ash x (* i m)) (- (mod y W)))
• Multilinear Extension: Letm′ = min(m, dlog2(W )e),m′′ = min(m,W−
m·i), and nout = min (m,max (0, k +m · (i+ 1)−W )) denotes the num-
ber of bits that goes out of range. Then:

S̃rlm,i,W (X,Y ) =

2m
′
−1∑

k=0

Ẽqm′(Y, k) ·

m′′−1∑
j=nout

2m·(i−1)−k+j ·Xm−j−1

 .

19. SraSign: This subtable is further parametrized by the word size W . Infor-

mally, this subtable returns x(m−1)−((W−1) mod m) (interpreted as a sign bit)
duplicated y mod W times in the most significant bits of the result (which
is a W -bit number).
• Function: Let isign = m− 1− ((W − 1) mod m). Then:

SraSignm,W (x, y) =

{
0 if xisign = 0∑(y mod W )−1

i=0 2W−1−i if xisign = 1
.

• ACL2:
(* (logbit (1- m) x)

(ash (1- (expt 2 (logand (1- W) y)))
(- W (logand (1- W) y))))

• Multilinear Extension: Let m′ = min(m, dlog2(W )e). Then:

S̃raSignm,W (X,Y ) =

2m
′
−1∑

k=0

Ẽqm′(Y, k) ·Xisign ·

k−1∑
j=0

2W−1−j

 .
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B Instructions Specification

In this section, we give a full specification of all (single-cycle) instructions used in
the RV32IM version of Jolt. We omit the specification of multi-cycle instructions,
which are decomposed into a series of single-cycle instructions. For more details,
see [41].

B.1 Notation & Helper Functions

We use the following notation for the instructions:

– W ∈ {32, 64} is the word size.
– x, y ∈ {0, 1}W are the first and second input operands, respectively. For some

instructions, there is only one operand, in which case the other operand is
set to zero (and not involved in the lookup procedure).

– Signed operands are interpreted in two’s complement form, so that addition,
subtraction, and multiplication have the same result for both signed and
unsigned interpretations of the operands.

– M ∈ N is the size of the subtables, so that m := log2(M)/2 is half of the
number of bits in each chunk. For all Jolt instructions, we have M = 216

and m = 8.
– C ∈ N is the number of chunks that each operand is split into. Except where

otherwise specified, we have C = 4 for W = 32 and C = 8 for W = 64. Note
that W = C ·m for all instructions, unless otherwise specified.

Note that in the Rust codebase [40], regardless of whetherW = 32 orW = 64,
the Rust code represents operands as u64, the type of unsigned 64-bit integers.

We also introduce the following helper functions that are used in instruc-
tions. For each function, we give the mathematical definition, followed by the
ACL2 and Rust implementations. For our formalization to be correct, the ACL2
and Rust definitions must be equivalent to the mathematical definition. This
is currently checked by inspection for each function; future work will include a
verified connection.

1. Truncate: Given word size W ∈ N, we define the truncate function as:

TruncateW (z) = z mod 2W ∈ {0, 1}W . (10)

Note that if z has less than W bits, it will be zero-extended to W bits.
In ACL2, we represent this function in many different ways: (loghead W z),
(mod z (expt 2 W)), or (part-select z :low 0 :width W). Given ACL2’s
automated nature, we can use any of these interchangeably with automatic
proofs that they are equivalent.
In Rust, this function is also implemented differently (and often implicitly)
depending on the situation. For instance, in the shift instructions, it is writ-
ten as y % 32, while in the add instructions it is implicitly applied after
addition as x.overflowing_add(y).0.
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2. Sign extension: Given parameters W,n ∈ N, we define the sign extension
function as:

SignExtendW,n(z) =

{
(z mod 2W ) if zn−1 = 0

(z mod 2W ) +
∑W−1

i=n 2i if zn−1 = 1
(11)

In other words, we take the n-th bit of z to be the sign bit, and fill it in the
remaining bits from n to W − 1. If n > W , this simply truncates z to W
bits.
Similar to Truncate, this function can be implemented in several different
ways in both ACL2 and Rust; we assume that the semantics of the function
is clear whenever it is used.

3. Chunk: Given parameters m,C ∈ N, we define the chunking function as:

Chunkm,C(z) = [z0, z1, . . . , zC−1] ∈ ({0, 1}m)
C
. (12)

Here we write TruncateC·m(z) = z0‖z1‖ . . . ‖zC−1, with zi ∈ {0, 1}m for all i.
In ACL2, this function is often invoked with explicit values for m and C.
For instance, the chunking for the ADD instruction is implemented as

(z8-3 (part-select z :low 0 :width 16))
(z8-2 (part-select z :low 16 :width 16))
(z8-1 (part-select z :low 32 :width 16))
(z8-0 (part-select z :low 48 :width 16))

where z is the addition result (+ x y). Another example of chunking is in
the SLTU instruction Program 4.
In Rust, this function is implemented as:

1 pub fn chunk_operand(x: u64, C: usize, chunk_len: usize) -> Vec<u64> {
2 let bit_mask = (1 << chunk_len) - 1;
3 (0..C)
4 .map(|i| {
5 let shift = ((C - i - 1) * chunk_len) as u32;
6 x.checked_shr(shift).unwrap_or(0) & bit_mask
7 })
8 .collect()
9 }

4. Chunk & interleave: Given parameters m,C ∈ N, we define the chunk &
interleave function as:

ChunkInterleavem,C(x, y) = [x0‖y0, . . . , xC−1‖yC−1] ∈
(
{0, 1}2m

)C
, (13)

where Chunkm,C(x) = [x0, x1, . . . , xC−1] and Chunkm,C(y) = [y0, y1, . . . , yC−1].

In ACL2, this function is implicit in the arranging of input chunks for
lookups. In Program 4 for SLTU, for instance, we first apply Chunkm,C to
both operands, and then arrange the chunks in the desired order for the
tuple-lookup function.
In Rust, this function is implemented as:

31



1 pub fn chunk_and_concatenate_operands(x: u64, y: u64, C: usize, log_M: usize) ->
Vec<usize> {

2 let operand_bits: usize = log_M / 2;
3
4 #[cfg(test)]
5 {
6 let max_operand_bits = C * log_M / 2;
7 if max_operand_bits != 64 {
8 // if 64, handled by normal overflow checking
9 let max_operand: u64 = (1 << max_operand_bits) - 1;

10 assert!(x <= max_operand);
11 assert!(y <= max_operand);
12 }
13 }
14
15 let operand_bit_mask: usize = (1 << operand_bits) - 1;
16 (0..C)
17 .map(|i| {
18 let shift = ((C - i - 1) * operand_bits) as u32;
19 let left = x.checked_shr(shift).unwrap_or(0) as usize & operand_bit_mask;
20 let right = y.checked_shr(shift).unwrap_or(0) as usize & operand_bit_mask;
21 (left << operand_bits) | right
22 })
23 .collect()
24 }

5. Chunk for shift: Given parameters m,C ∈ N, we define the chunk for shift
function as:

ChunkForShiftm,C(x, y) = [x0‖yC−1, x1‖yC−1, . . . , xC−1‖yC−1] ∈
(
{0, 1}2m

)C
,

(14)

where Chunkm,C(x) = [x0, x1, . . . , xC−1] and Chunkm,C(y) = [y0, y1, . . . , yC−1].

In ACL2, this function is implicit in the arranging of input chunks for
lookups. For the SLL instruction, the chunks are arranged as follows:

1 (x8-3 (part-select x :low 0 :width 8))
2 (x8-2 (part-select x :low 8 :width 8))
3 (x8-1 (part-select x :low 16 :width 8))
4 (x8-0 (part-select x :low 24 :width 8))
5 (y8-3 (part-select y :low 0 :width 8))
6 ;; perform lookups
7 (u8-3 (tuple-lookup x8-3 y8-3 slli-subtable-3))
8 (u8-2 (tuple-lookup x8-2 y8-3 slli-subtable-2))
9 (u8-1 (tuple-lookup x8-1 y8-3 slli-subtable-1))

10 (u8-0 (tuple-lookup x8-0 y8-3 slli-subtable-0))

In Rust, this function is implemented as:

1 pub fn chunk_and_concatenate_for_shift(x: u64, y: u64, C: usize, log_M: usize) ->
Vec<usize> {

2 let operand_bits: usize = log_M / 2;
3 let operand_bit_mask: usize = (1 << operand_bits) - 1;
4
5 let y_lowest_chunk: usize = y as usize & operand_bit_mask;
6
7 (0..C)
8 .map(|i| {
9 let shift = ((C - i - 1) * operand_bits) as u32;

10 let left = x.checked_shr(shift).unwrap_or(0) as usize & operand_bit_mask;
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11 (left << operand_bits) | y_lowest_chunk
12 })
13 .collect()
14 }
15

6. Concatenate: Given a sequence of words (x0, x1, . . . , xC−1) ∈ ({0, 1}m)
C ,

we define the concatenate function as:

Concatenatem,C(x0, x1, . . . , xC−1) =

C−1∑
i=0

xC−1−i · 2i·m (15)

= x0‖x1‖ . . . ‖xC−1 ∈ {0, 1}C·m.

ACL2: this depends on particular ‘m‘ and ‘C‘; an example from the AND
instructions is:

(merge-4-u16s z0 z1 z2 z3)

In Rust, this function is implemented as:

1 pub fn concatenate_lookups<F: JoltField>(vals: &[F], C: usize, operand_bits: usize) ->
F {

2 assert_eq!(vals.len(), C);
3
4 let mut sum = F::zero();
5 let mut weight = F::one();
6 let shift = F::from_u64(1u64 << operand_bits).unwrap();
7 for i in 0..C {
8 sum += weight * vals[C - i - 1];
9 weight *= shift;

10 }
11 sum
12 }
13

B.2 List of Instructions in the base (I) instruction set

We now list all Jolt instructions, roughly by increasing complexity. Unless oth-
erwise specified, all instructions have m = 8, W ∈ {32, 64}, and C = W/m ∈
{4, 8}.

Note that Jolt instructions are not in one-to-one correspondence with RISC-V
instructions; for instance, the ADD instruction in Jolt is used internally to prove
each of the ADD, ADDI, LUI, and AUIPC instructions in the RV32I instruction
set. All these RISC-V instructions have the same addition semantics, with the
only difference being which values are added together. The routing of these values
are handled by other parts of Jolt’s constraint system, which is out of scope for
this paper.

1. AND:

• Operands: x, y ∈ {0, 1}W
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• Expected Output: Bitwise AND of two unsigned W -bit integers:

x ∧ y ∈ {0, 1}W .

ACL2: (logand x y). Rust: x & y.
• Chunking:

ChunkAND(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesAND =
(
[(And, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineAND(Z0, . . . , ZC−1) = Concatenatem,C(Z0, . . . , ZC−1).

2. OR:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Bitwise OR of two unsigned W -bit integers:

x ∨ y ∈ {0, 1}W .

ACL2: (logior x y). Rust: x | y.
• Chunking:

ChunkOR(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesOR =
(
[(Or, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineOR(Z0, . . . , ZC−1) = Concatenatem,C(Z0, . . . , ZC−1).

3. XOR:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Bitwise XOR of two unsigned W -bit integers:

x⊕ y ∈ {0, 1}W .

ACL2: (logxor x y). Rust: x ^ y.
• Chunking:

ChunkXOR(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesXOR =
(
[(Xor, i)]C−1i=0

)
.

34



• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineXOR(Z0, . . . , ZC−1) = Concatenatem,C(Z0, . . . , ZC−1).

4. ADD:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Addition of two unsigned W -bit integers, truncated

to W bits:
TruncateW (x+ y) ∈ {0, 1}W .

ACL2: (loghead W (+ x y)). Rust: x.overflowing_add(y).0.

• Chunking: Let z = x + y ∈ {0, 1}W+1 be the addition result without
truncation. Then

ChunkADD(x, y) = Chunk 2m,C(z).

• Subtables: Let k = C − W/(2m), which is 2 for W = 32 and 4 for
W = 64. Return

SubtablesADD =
(
[(TruncateOverflowW , i)]

k−1
i=0 , [(Identity, i)]C−1i=k

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineADD(Z0, . . . , ZC−1) = Concatenatem,C(Z0, . . . , ZC−1).

5. SUB:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Subtraction of two unsigned W -bit integers, with

the result taken modulo 2W :

TruncateW (x− y) ∈ {0, 1}W .

ACL2: (loghead W (- x y)). Rust: x.overflowing_sub(y).0.

• Chunking: Let z = x+(2W − y) ∈ {0, 1}W+1 be the two’s complement
subtraction result. Then

Chunk SUB(x, y) = Chunk2m,C(z).

• Subtables: Let k = C − W/(2m), which is 2 for W = 32 and 4 for
W = 64. Return

Subtables SUB =
(
[(TruncateOverflowW , i)]

k−1
i=0 , [(Identity, i)]C−1i=k

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

Combine SUB(Z0, . . . , ZC−1) = Concatenatem,C(Z0, . . . , ZC−1).
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6. BEQ:

• Operands: x, y ∈ {0, 1}W

• Expected Output:Whether two operands are equal: (x ?
= y) ∈ {0, 1}.13

ACL2: (if (= x y) 1 0). Rust: x == y.
• Chunking:

ChunkBEQ(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesBEQ =
(
[(Eq, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineBEQ(Z0, . . . , ZC−1) =

C−1∏
i=0

Zi.

7. BNE:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether two operands are not equal:

(x
?

6= y) ∈ {0, 1}.

ACL2: (if (= x y) 0 1). Rust: x != y.
• Chunking:

ChunkBNE(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesBNE =
(
[(Eq, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineBNE(Z0, . . . , ZC−1) = 1−
C−1∏
i=0

Zi.

8. SLTU:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether the first operand is less than the second

operand (both interpreted as unsigned W -bit numbers):14

(x
?
< y) ∈ {0, 1}.

ACL2: (if (< x y) 1 0). Rust: x < y.

13 The “branch” part of the instruction is handled via non-lookup Jolt constraints (such
as R1CS).

14 The “set” part of the instruction is handled via non-lookup Jolt constraints (such as
R1CS)
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• Chunking:

Chunk SLTU(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

Subtables SLTU =
(
[(Ltu, i)]C−1i=0 , [(Eq, i)]C−2i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1,W0, . . . ,WC−2) be the lookup
results. Then

Combine SLTU(Z0, . . . , ZC−1,W0, . . . ,WC−2) =

C−1∑
i=0

Zi ·
i−1∏
j=0

Wj .

ACL2, for 32-bit: (+ z0 (* z1 w0) (* z2 w0 w1) (* z3 w0 w1 w2)).
ACL2, for 64-bit:
( + z0 (* z1 w0) (* z2 w0 w1) (* z3 w0 w1 w2) (* z4 w0 w1 w2 w3)

(* z5 w0 w1 w2 w3 w4) (* z6 w0 w1 w2 w3 w4 w5)
(* z7 w0 w1 w2 w3 w4 w5 w6))

Rust:

1 fn combine_lookups<F: JoltField>(&self, vals: &[F], C: usize, M: usize) -> F {
2 let vals_by_subtable = self.slice_values(vals, C, M);
3 let ltu = vals_by_subtable[0];
4 let eq = vals_by_subtable[1];
5
6 let mut sum = F::zero();
7 let mut eq_prod = F::one();
8
9 for i in 0..C - 1 {

10 sum += ltu[i] * eq_prod;
11 eq_prod *= eq[i];
12 }
13 // Do not need to update ‘eq_prod‘ for the last iteration
14 sum + ltu[C - 1] * eq_prod
15 }

9. BGEU:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether the first operand is greater than or equal

to the second operand (both interpreted as unsigned W -bit numbers):

(x
?
≥ y) ∈ {0, 1}.

ACL2: (if (< x y) 0 1). Rust: x >= y.
• Chunking:

ChunkBGEU(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesBGEU =
(
[(Ltu, i)]C−1i=0 , [(Eq, i)]C−2i=0

)
.
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• Lookup Combination: Let (Z0, . . . , ZC−1,W0, . . . ,WC−2) be the lookup
results. Then

CombineBGEU(Z0, . . . , ZC−1,W0, . . . ,WC−2)

= 1− Combine SLTU(Z0, . . . , ZC−1,W0, . . . ,WC−2).

10. SLT:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether the first operand is less than the second

operand (both interpreted as signed W -bit numbers):

(x
?
< y) ∈ {0, 1}.

ACL2: (if (< (logext 32 x) (logext 32 y)) 1 0).
Rust: (x as i32) < (y as i32).
The 64-bit version simply replaces 32 with 64.

• Chunking:

Chunk SLT(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

Subtables SLT =

(LeftMSB, 0), (RightMSB, 0),

[(Ltu, i)]C−1i=1 , [(Eq, i)]C−2i=1 ,

(LtAbs, 0), (EqAbs, 0)

 .

• Lookup Combination: Let (L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0)
be the lookup results. Then

Combine SLT(L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0)

= L · (1−R) + ((1− L) · (1−R) + L ·R) ·

C−1∑
i=0

Zi ·
i−1∏
j=0

Wj

 .

ACL2, for 32-bit:
(+ (* L (- 1 R))
(* (+ (* (- 1 L) (- 1 R)) (* L R))
(+ z0 (* z1 w0) (* z2 w0 w1) (* z3 w0 w1 w2))))

The 64-bit version is modified similarly to SLTU.
Rust:

1 fn combine_lookups<F: JoltField>(&self, vals: &[F], C: usize, M: usize) -> F {
2 let vals_by_subtable = self.slice_values(vals, C, M);
3
4 let left_msb = vals_by_subtable[0];
5 let right_msb = vals_by_subtable[1];
6 let ltu = vals_by_subtable[2];
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7 let eq = vals_by_subtable[3];
8 let lt_abs = vals_by_subtable[4];
9 let eq_abs = vals_by_subtable[5];

10
11 // Accumulator for LTU(x_{<s}, y_{<s})
12 let mut ltu_sum = lt_abs[0];
13 // Accumulator for EQ(x_{<s}, y_{<s})
14 let mut eq_prod = eq_abs[0];
15
16 for i in 0..C - 2 {
17 ltu_sum += ltu[i] * eq_prod;
18 eq_prod *= eq[i];
19 }
20 // Do not need to update ‘eq_prod‘ for the last iteration
21 ltu_sum += ltu[C - 2] * eq_prod;
22
23 // x_s * (1 - y_s) + EQ(x_s, y_s) * LTU(x_{<s}, y_{<s})
24 left_msb[0] * (F::one() - right_msb[0]) + (left_msb[0] * right_msb[0]
25 + (F::one() - left_msb[0]) * (F::one() - right_msb[0])) * ltu_sum
26 }

11. BGE:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether the first operand is greater than or equal

to the second operand (both interpreted as signed W -bit numbers):

(x
?
≥ y) ∈ {0, 1}.

ACL2: (if (>= (logext 32 x) (logext 32 y)) 1 0).
Rust: (x as i32) >= (y as i32).
The 64-bit version simply replaces 32 with 64.

• Chunking:

ChunkBGE(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesBGE =

(LeftMSB, 0), (RightMSB, 0),

[(Ltu, i)]C−1i=1 , [(Eq, i)]C−2i=1 ,

(LtAbs, 0), (EqAbs, 0)

 .

• Lookup Combination: Let (L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0)
be the lookup results. Then

CombineBGE(L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0)

= 1− Combine SLT(L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0).

12. LB:

• Operand: x ∈ {0, 1}W
• Expected Output: the lower 8 bits of x sign-extended to W bits:

SignExtendW (x mod 28) ∈ {0, 1}W .
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ACL2: (logextu 32 8 (logand x #xff)).
Rust: (x & 0xff) as i8 as i32.
The 64-bit version simply replaces 32 with 64.

• Chunking:
Chunk LB(x) = Chunkm,C(x).

• Subtables: Assume M ≥ 28. Then

Subtables LB =

(
(TruncateOverflow8, C − 1), (SignExtend8, C − 1),

[(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (Z, S, I0, . . . , IC−1) be the lookup results.
Then

Combine LB(Z, S, I0, . . . , IC−1) = Z +

C−1∑
i=1

28·i · S.

Note that for all load and store instructions (such as LB, LH, SB, SH, and
SW), the identity subtables are not used for computing final result, but are
used to range-check the chunks (which is necessary for other parts of the
Jolt constraint system).

13. LH:

• Operand: x ∈ {0, 1}W
• Expected Output: the lower 16 bits of x sign-extended to W bits:

SignExtendW (x mod 216) ∈ {0, 1}W .

ACL2: (logextu 32 16 (logand x #xffff)).
Rust: (x & 0xffff) as i16 as i32.
The 64-bit version simply replaces 32 with 64.

• Chunking:
Chunk LH(x) = Chunkm,C(x).

• Subtables: Assume M ≥ 216. Then

Subtables LH =
(
(Identity, C − 1), (SignExtend, C − 1), [(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (Z, S, I0, . . . , IC−1) be the lookup results.
Then

Combine LH(Z, S, I0, . . . , IC−1) = Z +

C−1∑
i=0

216·i · S.

14. SB:

• Operand: x ∈ {0, 1}W

40



• Expected Output: The lower 8 bits of x zero-extended to W bits:

ZeroExtendW (x mod 28) ∈ {0, 1}W .

ACL2: (logand x #xff). Rust: (x & 0xff).
• Chunking:

Chunk SB(x) = Chunkm,C(x).

• Subtables: Assume M ≥ 28. Then

Subtables SB =
(
(TruncateOverflow8, C − 1), [(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (Z, I0, . . . , IC−1) be the lookup results.
Then

Combine SB(Z, I0, . . . , IC−1) = Z.

15. SH:

• Operand: x ∈ {0, 1}W
• Expected Output: The lower 16 bits of x zero-extended to W bits:

ZeroExtendW (x mod 216) ∈ {0, 1}W .

ACL2: (logand x #xffff). Rust: (x & 0xffff).
• Chunking:

Chunk SH(x) = Chunkm,C(x).

• Subtables: Assume M ≥ 216. Then

Subtables SH =
(
(Identity, C − 1), [(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (I0, . . . , IC−1) be the lookup results. Then

Combine SH(I0, . . . , IC−1) = I0.

16. SW:

• Operand: x ∈ {0, 1}W
• Expected Output: The lower 32 bits of x zero-extended to W bits:

ZeroExtendW (x mod 232) ∈ {0, 1}W .

ACL2: (logand x #xffffffff). Rust: (x & 0xffffffff).
• Chunking:

Chunk SW(x) = Chunkm,C(x).

• Subtables: Assume M = 216. Then

Subtables SW =
(
(Identity, C − 2), (Identity, C − 1)

)
.
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• Lookup Combination: Let (IC−2, IC−1) be the lookup results. Then

Combine SW(IC−2, IC−1) = Concatenatem,2(IC−2, IC−1).

17. SLL:

• Operands: x, y ∈ {0, 1}W
• Expected Output: The left shift of an unsigned W -bit integer x by
(y mod W ) bits, truncated to W bits:

TruncateW (x� (y mod W )) ∈ {0, 1}W .

ACL2: (loghead 32 (ash x (mod y 32))).
Rust: x.checked_shl(y % W as u32).unwrap_or().
The 64-bit version simply replaces 32 with 64.

• Chunking:

Chunk SLL(x, y) = ChunkForShiftm,C(x, y).

• Subtables:

Subtables SLL =
(
[(SllC−i,W , i)]

C−1
i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

Combine SLL(Z0, . . . , ZC−1) = Concatenate 2m,C(Z0, . . . , ZC−1).

18. SRL:

• Operands: x, y ∈ {0, 1}W
• Expected Output: The right shift of an unsigned W -bit integer x by
(y mod W ) bits, zero-extended to W bits:

TruncateW (x� (y mod W )) ∈ {0, 1}W .

ACL2: (ash x (- (mod y W))).
Rust: x.wrapping_shr(y % W as u32).

• Chunking:

Chunk SRL(x, y) = ChunkForShiftm,C(x, y).

• Subtables:

Subtables SRL =
(
[(SrlC−i,W , i)]

C−1
i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

Combine SRL(Z0, . . . , ZC−1) = Z0 + · · ·+ ZC−1.
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19. SRA:

• Operands: x, y ∈ {0, 1}W
• Expected Output: The right shift of a signed W -bit integer x by

(y mod W ) bits, sign-extended to W bits:

SignExtendW (SignExtendW (x)� (y mod W )) ∈ {0, 1}W .

ACL2: (ashu 32 x (- (mod y 32))).
Rust: (x as i32).wrapping_shr(y % 32 as u32) as u32.
The 64-bit version simply replaces 32 with 64 (except for as u32 right
after %).

• Chunking:

Chunk SRA(x, y) = ChunkForShiftm,C(x, y).

• Subtables:

Subtables SRA =
(
[(SrlC−i,W , i)]

C−1
i=0 , (SraSignW , 0)

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1, S) be the lookup results.
Then

Combine SRA(Z0, . . . , ZC−1, S) = Z0 + · · ·+ ZC−1 + S.

B.3 List of Instructions in the M-extension

1. MUL:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Multiplication of two signed W -bit integers, trun-

cated to W bits:
TruncateW (x · y) ∈ {0, 1}W .

ACL2: (loghead W (* (logext W x) (logext W y))).
Rust: (x as i32).wrapping_mul(y as i32) as u32 as u64 for 32-bit
words, and
(x as i64).wrapping_mul(y as i64) as u64 for 64-bit words.

• Chunking: Let z = x ·y ∈ {0, 1}2W be the multiplication result without
truncation. Then

ChunkMUL(x, y) = Chunk2m,C(z).

• Subtables: Let k = C −W/(2m). Return

SubtablesMUL =
(
[(TruncateOverflowW , i)]

k−1
i=0 , [(Identity, i)]C−1i=k

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineMUL(Z0, . . . , ZC−1) = Concatenate 2m,C(Z0, . . . , ZC−1).
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2. MULU:

• Operands: x, y ∈ {0, 1}W
• Expected Output: TruncateW (x · y) ∈ {0, 1}W , as multiplication of

two unsigned W -bit integers, truncated to W bits.
ACL2: (loghead W (* x y)).
Rust: x.wrapping_mul(y) as u32 as u64 for 32-bit words, and
x.wrapping_mul(y) for 64-bit words.

• Chunking: Let z = x ·y ∈ {0, 1}2W be the multiplication result without
truncation. Then

ChunkMULU(x, y) = Chunk2m,C(z).

• Subtables: Let k = C −W/(2m). Return

SubtablesMULU =
(
[(TruncateOverflowW , i)]

k−1
i=0 , [(Identity, i)]C−1i=k

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineMULU(Z0, . . . , ZC−1) = Concatenate 2m,C(Z0, . . . , ZC−1).

3. MULHU:

• Operands: x, y ∈ {0, 1}W
• Expected Output: TruncateW ((x · y)�W ) ∈ {0, 1}W , as high W -bit

half of the multiplication of two unsigned W -bit integers.
ACL2: (logtail W (* x y)).
Rust: x.wrapping_mul(y) >> 32 for 32-bit words, and
((x as u128).wrapping_mul(y as u128) >> 64) as u64 for 64-bit words.

• Chunking: Let z = x · y ∈ {0, 1}2W be the multiplication result. Then

ChunkMULHU(x, y) = Chunk2m,C(z).

• Subtables:

SubtablesMULHU =
(
[(Identity, i)]C/2−1

i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC/2−1) be the lookup results.
Then

CombineMULHU(Z0, . . . , ZC/2−1) = Concatenate 2m,C/2(Z0, . . . , ZC/2−1).

4. ADVICE:

• Operands: x ∈ {0, 1}W
• Expected Output: x.15

15 The ADVICE instruction is used to range-check an advice value x which may be
an arbitrary field element. Since range-checking is only important for other parts of
Jolt’s constraint system (such as memory-checking), we will idealize this aspect in
our work, and assume that x is already a W -bit unsigned integer.
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• Chunking: ChunkADVICE(x) = Chunk2m,C(x).
• Subtables: Let k = C −W/(2m). Return

SubtablesADVICE =
(
[(TruncateOverflowW , i)]

k−1
i=0 , [(Identity, i)]C−1i=k

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineADVICE(Z0, . . . , ZC−1) = Concatenate 2m,C(Z0, . . . , ZC−1).

5. ASSERTLTE:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Whether the first operand is less than or equal to

the second operand (both interpreted as unsigned W -bit numbers):

(x
?
≤ y) ∈ {0, 1}.

ACL2: (if (<= x y) 1 0).
Rust: x <= y.

• Chunking:

ChunkASSERTLTE(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesASSERTLTE =
(
[(Ltu, i)]C−1i=0 , [(Eq, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1,W0, . . . ,WC−1) be the lookup
results. Then

CombineASSERTLTE(Z0, . . . , ZC−1,W0, . . . ,WC−1)

= Combine SLTU(Z0, . . . , ZC−1,W0, . . . ,WC−2)

+ CombineBEQ(W0, . . . ,WC−1)

=

C−1∑
i=0

Zi ·
i−1∏
j=0

Wj +

C−1∏
i=0

Wi.

6. AssertValidDiv0:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Return 1 if either the first operand (considered

as the divisor) is non-zero, or the first operand is zero and the second
operand (considered as the quotient) is 11 . . . 1 (interpreted as an un-
signed W -bit number); otherwise return 0:

(¬(x ?
= 0) ∨ (y

?
= 2W − 1)) ∈ {0, 1}.

ACL2: (if (or (not (= x 0)) (= y (1- (expt 2 W)))) 1 0).
In Rust, the function is implemented as follows:
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1 fn lookup_entry(&self) -> u64 {
2 let divisor = self.0; // ‘x‘ operand
3 let quotient = self.1; // ‘y‘ operand
4 if divisor == 0 {
5 match WORD_SIZE {
6 32 => (quotient == u32::MAX as u64).into(),
7 64 => (quotient == u64::MAX).into(),
8 _ => panic!("Unsupported WORD_SIZE: {}", WORD_SIZE),
9 }

10 } else {
11 1
12 }
13 }

• Chunking:

ChunkAssertValidDiv0(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesAssertValidDiv0 =
(
[(LeftIsZero, i)]C−1i=0 , [(DivByZero, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1,W0, . . . ,WC−1) be the lookup
results. Then

CombineAssertValidDiv0(Z0, . . . , ZC−1,W0, . . . ,WC−1) = 1−
C−1∏
i=0

Zi +

C−1∏
i=0

Wi.

7. AssertValidSignedRemainder:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Interpret the operands as signed W -bit numbers,

with the first operand being the remainder and the second being the
divisor. Return 1 if either the remainder or the divisor is zero, or the
sign of the remainder is equal to the sign of the divisor and also that
the absolute value of the remainder is less than the absolute value of the
divisor; otherwise return 0:

(x
?
= 0) ∨ (y

?
= 0) ∨ ((x0

?
= y0) ∧ (|x[1:W−1]|

?
< |y[1:W−1]|)) ∈ {0, 1}.

In ACL2, the function is implemented as follows:
(if (or (= x 0) (= y 0)

(and (= (logbit (1- W) x) (logbit (1- W) y))
(< (abs (logext W x)) (abs (logext W y)))))

1 0)

In Rust, the function is implemented as follows:
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1 fn lookup_entry(&self) -> u64 {
2 match WORD_SIZE {
3 32 => {
4 let remainder = self.0 as u32 as i32;
5 let divisor = self.1 as u32 as i32;
6 let is_remainder_zero = remainder == 0;
7 let is_divisor_zero = divisor == 0;
8

9 if is_remainder_zero || is_divisor_zero {
10 1
11 } else {
12 let remainder_sign = remainder >> 31;
13 let divisor_sign = divisor >> 31;
14 (remainder.abs() < divisor.abs() &&

remainder_sign == divisor_sign).into()
15 }
16 }
17 64 => {
18 let remainder = self.0 as i64;
19 let divisor = self.1 as i64;
20 let is_remainder_zero = remainder == 0;
21 let is_divisor_zero = divisor == 0;
22

23 if is_remainder_zero || is_divisor_zero {
24 1
25 } else {
26 let remainder_sign = remainder >> 63;
27 let divisor_sign = divisor >> 63;
28 (remainder.abs() < divisor.abs() &&

remainder_sign == divisor_sign).into()
29 }
30 }
31 _ => panic!("Unsupported WORD_SIZE: {}", WORD_SIZE),
32 }
33 }

• Chunking:

ChunkAssertValidSignedRemainder(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesAssertValidSignedRemainder =



(LeftMSB, 0), (RightMSB, 0),

[(Eq, i)]C−1i=1 , [(Ltu, i)]C−1i=1 ,

(EqAbs, 0), (LtAbs, 0),

[(LeftIsZero, i)]C−1i=0 ,

[(RightIsZero, i)]C−1i=0


.
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• Lookup Combination: Let the lookup results be

(L,R,Z1, . . . , ZC−1,W1, . . . ,WC−2, Z0,W0, L
′
0, . . . , L

′
C−1, R

′
0, . . . , R

′
C−1).

Then

CombineAssertValidSignedRemainder(Z0, . . . , ZC−1,W0, . . . ,WC−1)

= (1− L−R) · Combine SLTU(Z0, . . . , ZC−1,W0, . . . ,WC−2)

+ L ·R · (1− CombineBEQ(W0, . . . ,WC−1))

+ (1− L) ·R ·
C−1∏
i=0

L′i +

C−1∏
i=0

R′i

8. AssertValidUnsignedRemainder:

• Operands: x, y ∈ {0, 1}W
• Expected Output: Interpret the operands as unsigned W -bit num-

bers, with the first operand being the remainder and the second being
the divisor. Return 1 if either the divisor is zero, or the remainder is less
than the divisor; otherwise return 0:

(y
?
= 0) ∨ (x

?
< y) ∈ {0, 1}.

ACL2: (if (or (= y 0) (< x y)) 1 0).
Rust: (y == 0 || x < y).

• Chunking:

ChunkAssertValidUnsignedRemainder(x, y) = ChunkInterleavem,C(x, y).

• Subtables:

SubtablesAssertValidUnsignedRemainder =

(
[(Ltu, i)]C−1i=0 , [(Eq, i)]C−2i=0 ,

[(RightIsZero, i)]C−1i=0

)
.

• Lookup Combination: Let the lookup results be

(Z0, . . . , ZC−1,W0, . . . ,WC−2, R0, . . . , RC−1).

Then

CombineAssertValidUnsignedRemainder(Z0, . . . , ZC−1,W0, . . . ,WC−2, R0, . . . , RC−1)

= Combine SLTU(Z0, . . . , ZC−1,W0, . . . ,WC−2) +

C−1∏
i=0

Ri.

9. MOVE:

• Operands: x ∈ {0, 1}W
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• Expected Output: x.16
• Chunking: ChunkMOVE(x) = Chunk2m,C(x).
• Subtables: Return

SubtablesMOVE =
(
[(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (Z0, . . . , ZC−1) be the lookup results. Then

CombineMOVE(Z0, . . . , ZC−1) = Concatenate 2m,C(Z0, . . . , ZC−1).

10. MOVSIGN:

• Operands: x ∈ {0, 1}W
• Expected Output: Interpret x as a signed W -bit number, and return

an unsigned W -bit number with the sign bit of x extended to all bits of
the result:17

x0 · (2W − 1), where x0 is the sign bit of x.

ACL2: (* (logbit 31 x) (1- (expt 2 32))).
In Rust, the function is implemented as follows:

1 const ALL_ONES_32: u64 = 0xFFFF_FFFF;
2 const ALL_ONES_64: u64 = 0xFFFF_FFFF_FFFF_FFFF;
3 const SIGN_BIT_32: u64 = 0x8000_0000;
4 const SIGN_BIT_64: u64 = 0x8000_0000_0000_0000;
5

6 fn lookup_entry(&self) -> u64 {
7 match WORD_SIZE {
8 32 => {
9 if self.0 & SIGN_BIT_32 != 0 {

10 ALL_ONES_32
11 } else {
12 0
13 }
14 }
15 64 => {
16 if self.0 & SIGN_BIT_64 != 0 {
17 ALL_ONES_64
18 } else {
19 0
20 }
21 }
22 _ => panic!("only implemented for u32 / u64"),
23 }
24 }

16 The MOVE instruction is used to move an operand from one operand to another,
but otherwise does not change the operand’s value. Since the moving part is handled
by other parts of Jolt’s constraint system, and thus is out of scope for our work.

17 Similar to the MOVE instruction, we do not model the moving aspect of the instruc-
tion.
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• Chunking: ChunkMOVSIGN(x) = Chunk2m,C(x).
• Subtables: Let k = C −W/(2m). Return

SubtablesMOVSIGN =
(
[(SignExtend16, k)] , [(Identity, i)]C−1i=0

)
.

• Lookup Combination: Let (S,Z0, . . . , ZW/(2m)−1) be the lookup re-
sults. Then

CombineMOVSIGN(S,Z0, . . . , ZW/(2m)−1)

= Concatenate 2m,W/(2m)(S, S, . . . , S).
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