
Notions of Quantum Reductions and
Impossibility of Statistical NIZK

Chuhan Lu and Nikhil Pappu

Portland State University
{chuhan,nikpappu}@pdx.edu

Abstract. Non-Interactive Zero-Knowledge Arguments (NIZKs) are cryp-
tographic protocols that enable a prover to demonstrate the validity of
an NP statement to a verifier with a single message, without revealing
any additional information. The soundness and zero-knowledge proper-
ties of a NIZK correspond to security against a malicious prover and a
malicious verifier respectively. Statistical NIZKs (S-NIZKs) are a variant
of NIZKs for which the zero-knowledge property is guaranteed to hold
information-theoretically. Previous works have shown that S-NIZKs sat-
isfying a weak version of soundness known as static soundness exist based
on standard assumptions. However, the work of Pass (TCC 2013) showed
that S-NIZKs with the stronger adaptive soundness property are inher-
ently challenging to obtain. The work proved that standard (black-box)
proof techniques are insufficient to prove the security of an S-NIZK based
on any standard (falsifiable) assumption. We extend this result to the
setting where parties can perform quantum computations and communi-
cate using quantum information, while the quantum security reduction
is restricted to query the adversary classically. To this end, we adapt the
well-known meta-reduction paradigm for showing impossibility results to
the quantum setting. Additionally, we reinterpret our result using a new
framework for studying quantum reductions, which we believe to be of
independent interest.

Keywords: Non-Interactive Zero-Knowledge · Quantum Reductions ·
Black-Box Impossibilities

1 Introduction

Quantum computing is reshaping cryptography remarkably. Fundamental
cryptosystems can be broken by efficient quantum algorithms (e.g., [Sho99]),
and post-quantum cryptography has risen as a major effort to secure clas-
sical cryptography against quantum attacks. On the other hand, quan-
tum computing can also be harnessed by honest users, and sometimes
outperform what is possible classically. Notable examples in quantum
cryptography range from unconditional key exchange to quantum money
and advanced copy-protection primitives [BB14, Aar09, BI20, BL19], all



of which are provably impossibly in classical cryptography. Using quan-
tum constructions, one can also sometimes bypass classical difficulties and
obtain improved efficiency [BKS23, ABKK23, GJMZ23] and weaker as-
sumptions [GLSV20, BCKM21, AQY22, CMS23]. Meanwhile, limitations
of quantum advantages have been discovered, where quantum does not
fare significantly better on various tasks [Lo97, CHS20, HY20, ABDS21,
CLM23].

Motivated by this situation, we study the plausibility of quantum com-
puting in bypassing a classical impossibility result related to an important
cryptographic primitive: Non-Interactive Zero-Knowledge (NIZK) argu-
ments [BFM88,DSDCO+01]. NIZKs form critical building blocks for var-
ious primitives, such as in signature schemes [BG89], CCA secure encryp-
tion [Sah99], and cryptocurrencies [SCG+14]. While many NIZKs have
been constructed over the years [BDSMP91,GO94,FLS99,GOS06,SW14,
CCH+19, PS19], the case of an important variant known as statistical
NIZK (S-NIZK) with adaptive (computational) soundness remains un-
satisfactory. The only known constructions rely on non-standard assump-
tions [AF07], and the work of Pass [Pas13] proved that in fact they cannot
be constructed from the natural and desirable assumptions formalized as
falsifiable assumptions [Nao03,GW11]. We hence pose the following ques-
tion:

Does the quantum setting provide an advantage for the construction of
adaptively sound S-NIZKs for NP-complete languages?

To effectively study the plausibility of the primitive, we need a finer
look at how the primitive utilizes the given assumption. For instance, in
constructing a signature from a NIZK system, we can differentiate if the
signature scheme runs the NIZK as a black-box, and whether a forger
is run as a black-box to break the NIZK system in the security reduc-
tion. In this regard, the result of Pass rules out reductions with black-box
access to the adversary from adaptively-sound S-NIZK to any falsifiable
assumption. Moreover, the underlying assumption may be used in a non-
black-box way, both by the reduction and the construction. Although
classical frameworks for classifying reductions [RTV04,BBF13] have been
studied systematically, this is largely missing in the quantum setting. We
hence aim to develop a framework suited for the quantum setting, which
is general enough to effectively capture reductions in both post-quantum
and quantum cryptography.
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1.1 Our Contributions

Impossibility of S-NIZK in the Quantum Setting. We give a nega-
tive answer to the aforementioned question by demonstrating that for any
S-NIZK protocol for an NP-complete language, its adaptive soundness
cannot be reduced to a falsifiable assumption using a quantum black-box
reduction. The result holds even if the protocol utilizes quantum computa-
tion and communication. We stress that there exist non-trivial languages
in NP for which S-NIZKs can be constructed (even classically) from such
assumptions [BR90, BFM88]. Moreover, it is possible that quantum S-
NIZK protocols exist for certain languages, for which classical S-NIZK
protocols do not exist. However, our result says that quantum protocols
do not help in regards to the hardest languages in NP. To show our result,
we require the existence of certain distributions. Specifically, the existence
of an efficiently sampleable distribution XL over statements in L and a
distribution X̃L over statements in {0, 1}⋆ \ L, that are indistinguishable
by QPT algorithms with quantum advice. Assuming the existence of post-
quantum one-way functions (w.r.t. quantum-advice), every NP-complete
language satisfies this property.

Our result builds upon the classical impossibility of Pass [Pas13] and
employs the meta-reduction paradigm [BV98], which has been used to es-
tablish cryptographic impossibility results [Cor02,DOP05,GW11,Wic13,
Pas13,BDSG+13,MP18,DLS22]. Along the way, we extend this paradigm
to the quantum setting. This extension proves to be subtle because quan-
tum algorithms derive randomness from entanglement, unlike classical al-
gorithms that use a random tape as input. Our result is stated as follows:

Theorem 1 (Informal). Let Π be a non-interactive quantum protocol
for an NP-complete language L, satisfying the statistical zero-knowledge
property. Let R be a quantum black-box reduction that has classical access
to A, such that for every attacker A that breaks the adaptive soundness of
Π, RA breaks some falsifiable assumption C. Then, assumption C is false,
assuming the existence of post-quantum one-way functions.

In the context of our impossibility result, we restrict our attention
to quantum reductions that access the attacker via classical queries. In
Section 4.3, we discuss some challenges in extending the impossibility to
reductions making superposition queries. Although classical queries to a
quantum attacker of a quantum protocol might seem overly restrictive, we
believe this restriction is meaningful in this context. This is because the
attacker only takes a Common Reference String (CRS) as input, in con-
trast to several (usually multi-round) quantum protocols where it expects
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a quantum input as part of the protocol [GLSV21,CMS23]. Consequently,
quantum NIZK protocols with a classical setup in the literature only in-
voke the prover classically [Shm21, BCKM21] in their soundness reduc-
tions. On a different note, examples where superposition access provides
an advantage seem to be contrived [Zha12,BZ13,AMRS20], unlike advan-
tages arising from the use of quantum communication [GLSV21,CMS23,
BCKM21].

While our work focuses on the CRS model, one could also consider the
designated verifier model, where the verifier possesses a secret verification
key in addition to the CRS. The result of Pass extends to this model, as
noted in the work of Campanelli et al. [CGKS23]. We note that it is also
relatively straightforward to extend our impossibility to this setting, even
for quantum secret keys.

Framework for Quantum Reductions. In cryptographic proofs, a re-
duction is typically employed to demonstrate that the security of some
construction of a primitive P can be achieved using an implementation of
another primitiveQ. This reduction, represented as P → Q (i.e. P reduces
to Q), consists of: (1) a construction G of P using an implementation f of
Q; and (2) a security reduction R that transforms any successful attack
on G into one on f . Thus, if f is secure, then so is G.

In the classical setting, the work of Baecher, Brzuska, and Fischlin [BBF13]
introduced a framework for categorizing various types of reductions based
on their black-box nature. Central to their framework is their so called
CAP notation. The notation employs three characters, each of which can
either be ‘B’ (black-box) or ‘N’ (non-black-box), indicating access cor-
responding to the construction (CAP), adversary (CAP) and primitive
(CAP) . For instance, a reduction from P to Q with black-box access for
all components is denoted as (P → Q)− BBB, and described as follows:

– BBB: the construction of P makes black-box use of an implementation
of Q;

– BBB: the security reduction R makes black-box use of an attacker A
that breaks the construction of P;

– BBB: the security reduction R makes black-box use of implementation
Q.

In this study, we introduce a quantum counterpart of this notation,
and refer to it as the Q-CAP system. This system aims to categorize vari-
ous combinations that arise when different entities, such as the reduction,
construction, or adversary, are implemented as quantum algorithms. Our
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system uses the three letter approach of the CAP notation, and incorpo-
rates the | ⟩ notation to indicate the quantum components. For example,
consider these variants of the classical BBB reduction:

– |||BBB⟩⟩⟩: both the construction and reduction are quantum;

– B|||BB⟩⟩⟩: only the reduction is quantum;

– |||B⟩⟩⟩BB: only the construction is quantum.

Furthermore, we utilize superscripts to indicate query access power (c
for classical queries and q for quantum queries); and subscripts to spec-
ify whether the queried party is classically (c) or quantumly (q) imple-
mented. When the superscripts/subscripts represent “quantum”, they can
be omitted for brevity. We also consider reductions which obtain both
oracle access to a unitary U along with oracle access to the reverse im-
plementation U † as a separate case. We use the letter ‘S’ standing for
‘strong-black-box’ to denote such access. Although such access is com-
monly assumed in quantum cryptography literature, there is some debate
as to whether it should be considered black-box when compared with the
classical black-box definition [DLS22]. We illustrate the notation’s details
in Fig. 1.

| Xe
u Y h

v Zg
w ⟩

Adversary Primitive

Construction Reduction

Quantum Construction + Quantum
Reduction

Fig. 1. Q-CAP Notation for (P → Q): X,Y, Z ∈ {B, S,N} and e, h, g, u, v, w ∈ {c, q}
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Notation Meaning
B Black-Box access
S Non-Black-Box access
N Strong-Black-Box access (i.e. black-box access to both U and U †)
c Classical query/implementation
q Quantum query/implementation

C-A-P
X Construction of P makes B/N/S use of an implementation of Q
Y Reduction makes B/N/S use of an adversary breaking P
Z Reduction makes B/N/S use of primitive Q

Superscripts
e c/q-query access to implementation of Q by construction of P
h c/q-query access to an adversary breaking P by the reduction
g c/q-query access to implementation of Q by the reduction

Subscripts
u Construction works for c/q-implementation of Q
v Reduction works for c/q-adversary A
w Reduction works for c/q-implementation of Q

Our motivation in defining such a framework is to conveniently cap-
ture the quantum reductions demonstrated in the literature and to better
understand the relationships between different types of reductions. The
framework helps us identify the precise types of reductions that separa-
tion results rule out. For example, the work of Hosoyamada and Yamakawa
[HY20] demonstrates that collision-resistant hash functions (CRHFs) can-
not be reduced to one-way permutations (OWPs) using |BcBcBc⟩ reduc-
tions. In other words, even quantum constructions and security reductions
are ruled out, considering quantum superposition access to both the ad-
versary and the OWP.

To the best of our knowledge, there is currently no consistent frame-
work for studying quantum reductions. A unified framework would make
it easier to compare different results and identify avenues for improvement.
Compared to the categorizations of previous works on quantum separa-
tion results [HY20,CX21], we believe our notation presents more aspects
of the reduction in a succinct way, making it easier to parse. In Section 3,
we delve into the relations between the different reductions and illustrate
several use cases of the framework.
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1.2 Related Work

Pass’ Classical Black-Box Impossibility. Our work is most related to
the work of Pass [Pas13], since our main result is a generalization of the
classical impossibility shown in that work. The work showed that there
does not exist any S-NIZK protocol for any NP-complete language with
a corresponding black-box security reduction to a falsifiable assumption,
unless the assumption is false. Our impossibility differs in that it rules out
quantum S-NIZK protocols (for NP-complete languages) that may also
utilize quantum communication. Furthermore, we also consider quantum
black-box reductions and quantum falsifiable assumptions. However, we
restrict our attention to reductions that only make classical queries to
the attacker, and describe some challenges in making the extension to
quantum queries. Our proof follows the same template as that of Pass’
work and utilizes the meta-reduction technique. However, we observe that
even with classical queries, there are certain nuances posed by the fact
that the internal states of the reduction, attacker, and zero-knowledge
simulators are all quantum. These nuances arise due to the difficulty of
quantum rewinding and the lack of a quantum analogue for programming
a classical random tape.

S-NIZKs in the Quantum Setting. The work of Canetti et al.
[CCH+19] constructs a static sound S-NIZK based on circular-secure LWE,
which is a quantum secure assumption. The work of Peikert et al. [PS19]
improved on this to obtain an S-NIZK based on plain LWE. Their con-
struction was shown to be quantum-secure in the work of Coladangelo
et al. [CVZ20]. The work of Morimae and Yamakawa [MY23] studied
S-NIZKs for the complexity class QMA, which subsumes the class NP.
However, this protocol assumes a stronger quantum setup.

Black-Box Separations. In cryptography, there have been several
works demonstrating the impossibility of constructing a target crypto-
graphic primitive by making black-box use of a simpler primitive [IR89,
Sim98,GMR01,DOP05,GMMM18,RTV04,FS10]. Recently, several works
have shown such impossibility results in the quantum setting [AHY23,
CHS20,HY20,CX21,CLM23]. These impossibility results require that the
construction of the target primitive makes black box use of the under-
lying primitive. For instance, the work of Ananth et al. [AHY23] rules
out black-box constructions of public-key quantum money from CRHFs.
On the other hand, starting from the work of Boneh et al. [BV98], the
class of works employing the meta-reduction paradigm [Cor02, DOP05,
GW11,Wic13,Pas13,BDSG+13,MP18,DLS22] only require that the secu-
rity reduction makes black-box use of the attacker to break some crypto-
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graphic assumption. Consequently, these impossibility results apply even
to constructions that make non-black-box use of the underlying primitive.
Moreover, this technique has been utilized to show separations between
certain primitives and broad classes of assumptions, including concrete
assumptions such as RSA [RSA78] and DDH [DH22].

The meta-reduction paradigm has also been employed to establish
impossibilities in the quantum setting. The work of Jiang et al. [JZM21]
demonstrated an impossibility concerning CCA-secure KEMs in the quan-
tum setting by utilizing this technique. It is worth noting that their result
assumes that the security reduction invokes the adversary only once, which
is motivated by the difficulty of quantum rewinding. Hence, they do not
run into our subtlety specific to the quantum setting. The work of Dupuis
et al. [DLS22] also presented an impossibility in the quantum setting using
the meta-reduction approach. Specifically, they extended the classical im-
possibility result of Bitansky et al. [BDSG+13] concerning the soundness
of instantiations of the Fiat-Shamir paradigm to the quantum setting,
where the parties share quantum entanglement. The work of Dagdelen et
al. [DFG13] also presents an impossibility about soundness of the Fiat-
Shamir transform in the quantum random oracle model (QROM). These
impossibility results do not encounter the previously mentioned subtlety
due to relying on a stronger premise of statistical indistinguishability com-
pared to computational indistinguishability in our case. We shall elaborate
on this in Section 4.

2 Preliminaries

Notations. We let λ denote the security parameter, which will be pro-
vided as input to the considered cryptographic algorithms in unary. We
use poly(λ) to denote some polynomial in the security parameter. Many
of the quantities we consider will be polynomials in λ. We let negl(λ) de-
note any function f(λ) such that f(λ) = O(λ−c) for every constant c.
Likewise, we use non-negl(λ) to denote any function that doesn’t satisfy
the above property. Furthermore, all the cryptographic algorithms consid-
ered in this work will be non-uniform algorithms unless stated otherwise.
In other words, they are provided with some poly(λ)-size advice state as
input, which depends only on the security parameter. In general, we al-
low the advice to be a quantum state. We let RL(x) denote the set of all
witnesses for a statement x ∈ L, where L is a language in NP. We often
omit the prefix "quantum" when referring to protocols, assumptions, etc.,
when it is clear from the context. We let Adv[M] denote the advantage
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of algorithm M in some experiment, i.e., the absolute difference between
its probability of outputting 1 in two different cases. We use the acronym
PPT for polynomial-time algorithms (in λ) and the acronym QPT for
quantum polynomial-time algorithms. For two classical random variables
X and Y , we use the notation X ≈ Y to denote that X and Y are com-
putationally indistinguishable by non-uniform QPT distinguishers with
quantum advice.

Quantum Information. An m-qubit register X corresponds to a Hilbert
space C2m . A pure state on register X is a unit vector |ψ⟩X ∈ C2m . A
density matrix is a positive semi-definite Hermitian matrix ρX ∈ C2m×2m

with trace 1. Let Dens(C2m) denote the set of all such density matrices.
A probability distribution over pure states is captured by the notion of
a mixed quantum state, which is represented by a density matrix. The
evolution of a quantum state |ψ⟩X is captured using a unitary transfor-
mation U |ψ⟩X , where U is a matrix satisfying U †U = UU † = I2m . A
measurement performed on a quantum system is described by a positive
operator-valued measure (POVM), which is a set of matrices {Mi}i such
that

∑
iM

†
iMi = I. On performing the measurement on mixed state ρ,

the probability of obtaining outcome i is given by the trace Tr
(
MiρM

†
i

)
.

The corresponding post-measurement state is given by ρ′ =
MiρM

†
i

Tr(MiρM
†
i )

.

The trace distance between mixed states ρ and σ is denoted as TD(ρ, σ),
and is defined as follows:

TD(ρ, σ) =
1

2
||ρ− σ||1 =

1

2
Tr

[√
(ρ− σ)†(ρ− σ)

]
Intuitively, this quantity is a measure of the distinguishability between

states ρ and σ. The larger the trace distance, the more accurately the
states can be distinguished by an unbounded quantum algorithm.

2.1 Hard Languages

The impossibility result presented in this work holds for hard languages as
defined in this section. Moreover, assuming the existence of post-quantum
secure one-way functions (OWFs), every NP-complete language satisfies
this notion. Note however that these languages need not necessarily be
NP-complete. We describe this notion in the following definition:

Definition 1 (Hard Language). A language L ∈ NP is called a hard
language if it satisfies the following conditions:
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1. There exists an efficiently sampleable distribution ZL over statement-
witness tuples (x,w) where x ∈ L and w ∈ RL(x). Let XL denote the
corresponding marginal distribution over the statements.

2. There exists a possibly inefficient to sample distribution X̃L over state-
ments x̃ /∈ L.

3. The distributions XL and X̃L are indistinguishable by non-uniform
QPT algorithms with quantum advice.

It is easy to see that such languages exists based on the existence of
post-quantum OWFs w.r.t. non-uniform algorithms with quantum advice.
To see this, consider the distribution XL to correspond to the output of a
pseudo-random generator (PRG) on a random seed, and the distribution
X̃L to correspond to uniformly random values among the outputs that
are not in the range of the PRG. The indistinguishability then follows by
the security of a PRG.

2.2 Quantum Falsifiable Assumptions

Falsifiable assumptions [Nao03,GW11] categorize most cryptographic as-
sumptions and are considered more desirable than other types of assump-
tions. Intuitively, these assumptions involve an interactive game between
an efficient challenger, denoted as C, and an adversary, denoted as A. At
the conclusion of the game, the challenger determines whether the adver-
sary successfully broke the assumption. To break the assumption, A must
run in polynomial time and achieve a success probability significantly
greater than a given threshold, denoted as t. For decision assumptions,
t = 1/2, while for search assumptions, t = 0. The challenger C is a QPT
machine that is additionally allowed to obtain some non-uniform quantum
advice. This captures assumptions such as pseudo-random states [JLS18].

Definition 2 (Quantum Falsifiable Assumption). A quantum falsi-
fiable assumption (C, t) is defined by an interactive game between a non-
uniform QPT algorithm C and an algorithm A, where C outputs a bit at
the end of the interaction. The interaction may involve quantum commu-
nication. Let ⟨C,A⟩(1λ) denote the output of C. The assumption is said
to be true if for all non-uniform QPT algorithms A, the following holds:

Pr
[
⟨C,A⟩(1λ) = 1

]
≤ t+ negl(λ)

A possibly inefficient algorithm A breaks the assumption if there exists
some polynomial p(λ) such that the following holds for infinitely many
λ ∈ N:
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Pr
[
⟨C,A⟩(1λ) = 1

]
≥ t+ 1

p(λ)

2.3 Quantum Statistical Non-Interactive Zero Knowledge
Arguments (S-NIZKs)

We will now provide the definition of a Statistical Non-Interactive Zero
Knowledge Argument (S-NIZK) in the quantum setting. The definition is
similar to that of an S-NIZK in the classical setting, with some modifi-
cations to account for quantum capabilities. Specifically, the prover and
verifier are allowed to perform quantum computation, and the proof sent
by the prover can be a quantum state. Naturally, the zero-knowledge sim-
ulator is also allowed to be quantum. It is important to note that the
protocol is defined in the Common Reference String (CRS) model, similar
to the classical setting. In this model, both the prover and the verifier
are initialized with a common string that is drawn from some efficiently
sampleable distribution. This model is considered because NIZKs are im-
possible to obtain in the plain model for languages outside BQP, based
on an analogous classical result for BPP [GO94].

Definition 3 (Quantum S-NIZK). A quantum S-NIZK protocol Π
for a language L ∈ NP consists of three QPT algorithms (Setup,P,V)
corresponding to the CRS generator, prover, and verifier respectively. The
protocol must satisfy the following conditions:
Completeness: This property requires that for every true statement, the
verifier accepts the proof output by the prover with high probability. For-
mally, for every x ∈ L and w ∈ RL(x), the following condition must hold:

Pr

[
V
(
1λ, crs, x, |π⟩

)
= 1

∣∣∣∣ crs← Setup(1λ)
|π⟩ ← P(1λ, crs, x, w)

]
≥ 1− negl(λ)

Adaptive Soundness: This property requires that for every QPT mali-
cious prover that outputs a statement and a proof, the probability that the
statement is false and the verifier accepts is negligibly small. The adaptive
aspect of the definition allows the malicious prover to choose the statement
after seeing the CRS. Formally, for every QPT malicious prover P⋆, the
following must hold:

Pr

[
V
(
1λ, crs, x̃, |π̃⟩

)
= 1 ∧ x̃ /∈ L

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← P⋆(1λ, crs)

]
≤ negl(λ)
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A possibly inefficient adversary A breaks the adaptive soundness of Π
if there exists a polynomial p(λ) such that the following holds for infinitely
many λ ∈ N:

Pr

[
V
(
1λ, crs, x̃, |π̃⟩

)
= 1 ∧ x̃ /∈ L

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← A(1λ, crs)

]
≥ 1

p(λ)

Statistical Adaptive Zero Knowledge Consider an adaptive QPT ad-
versary A that picks a statement (and witness) for the prover to prove
after observing the CRS. Let D be an unbounded distinguisher that re-
ceives state st output by A, along with the proof output by the prover. The
adaptive zero-knowledge property requires that there exists a QPT simu-
lator that can produce a view for D that is statistically close to the one
above, without access to the witness. Intuitively, this captures that no ma-
licious verifier can learn additional information even in unbounded time,
even with the ability to choose arbitrary statements.

Without loss of generality, we can consider a two part simulator S =
(S1, S2) where S1 produces a simulated CRS, and S2 produces a simulated
proof for a given statement. Note that in all generality, S is a non-uniform
algorithm that may obtain some polynomial size quantum advice state |ϕ⟩
as input. However, the state must be well-defined and can be generated by
an unbounded algorithm. Furthermore, |ϕ⟩ may depend both on A and D.
Formally, we require that for every non-uniform QPT A and unbounded
D, the following condition holds:

crs← Setup(1λ) (crs′, |aux⟩)← S1(1
λ, |ϕ⟩)

(x,w, st)← A(1λ, crs) (x′, w′, st′)← A(1λ, crs′)
|π⟩ ← P(1λ, crs, x, w)

∣∣π′〉← S2(1
λ, x′, |aux⟩)∣∣∣Pr[D(st, |π⟩ ) = 1 ∧ (x,w) ∈ RL(x)

]
− Pr

[
D
(
st′,

∣∣π′〉 ) = 1 ∧ x′ ∈ L
]∣∣∣ ≤ negl(λ)

2.4 Quantum Oracle Algorithms

For the sake of our main theorem, our focus will be on QPT algorithms
that make black-box use of quantum adversaries. This means that the
algorithm relies solely on the input-output interface of the adversary and
does not depend on its internal workings. Since the adversaries considered
in this work are stateless, we can consider algorithms that simply obtain
oracle access to the adversary without loss of generality. It is important to
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note that, in general, algorithms may have the ability to utilize rewinding.
Furthermore, we do not consider quantum algorithms that may query
their oracles in superposition. Therefore, the quantum oracle algorithms
considered in this work will have the following form:

MO(1λ) =M◦
((
O ◦Mq

)
◦ · · · ◦

(
O ◦M1

)) ∣∣ψ0
〉

Here, M1 = {Mi}i be an arbitrary efficient POVM acting on initial
advice state

∣∣ψ0
〉

in order to produce outcome c1, and post-measurement
state Mc1

∣∣ψ0
〉
. c1 is then queried to oracle O to obtain response |ϕ1⟩. The

subsequent internal state if defined as follows:
∣∣ψ1

〉
= |ϕ1⟩⊗|c1⟩⊗Mc1

∣∣ψ0
〉
.

Then, another POVM M2 is adaptively chosen, and applied to
∣∣ψ1

〉
, in

order to generate the next oracle query c2. In a similar vein, after q queries
have been made, a binary POVMM is applied to the state |ψq⟩ to obtain
the output.

3 Framework for Quantum Cryptographic Reductions

A cryptographic reduction demonstrates that a target primitive P can
be constructed using another cryptographic primitive Q. Such a relation
between the primitives is referred to as “P reduces to Q”, and is denoted
by P → Q. For example, a foundational result shows that pseudo-random
generators (P) can be built using one-way functions (Q) (i.e. PRGs re-
duces to OWFs) [HILL99].

The primary objective of demonstraing such a reduction is to establish
the security of a construction G of P that utilizes an implementation f of
Q, assuming the hardness of Q. This is accomplished by developing a se-
curity reduction R that successfully breaks f of Q using any attack on G of
P as a building block. In the quantum setting, either or both of P and Q
may be quantum primitives. For example, private-key quantum money re-
duces to pseudo-random states (PRS) [JLS18], and zero-knowledge proofs
for QMA reduce to bit commitments [BJSW16]. Moreover, different com-
ponents of the construction and security reduction can be empowered
by quantum capabilities. Consequently, the variety of possible reductions
motivates further study.

In this regard, we will begin by defining some building blocks, before
describing the various kinds of quantum reductions. Firstly, we require
a notion of a primitive. The recent work of Coladangelo et al. [CM24]
defines primitives among other fundamental notions in the quantum set-
ting. They define a primitive as a set of quantum channels. However, we
believe this is not without loss of generality, especially when considering
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stateful primitives being accessed by other constructions. Consequently,
we will make use of the notion of a quantum strategy as introduced by
Gutoski and Watrous [GW07], and define a primitive using a set of quan-
tum strategies.

Remark 1. One might consider a quantum channel with an internal reg-
ister that maintains stateful information to be sufficient to capture these
cases. However, we believe this is not formal enough, and that the notion
of a quantum strategy precisely captures this intuition.

We will begin by recalling the notion of a quantum strategy.

Definition 4 (Quantum Strategy). A quantum strategy f with N
turns corresponding to input Hilbert spaces X1, . . . ,XN and output Hilbert
spaces Y1, . . . ,YN consists of the following:

1. Hilbert spaces Z1, . . . ,ZN called as memory spaces.
2. An N -tuple of quantum channels (f1, . . . , fN ) of the form:

f1 : L(X1) 7→ L(Y1 ⊗Z1)

fi : L(Xi ⊗Zi−1) 7→ L(Yi ⊗Zi) (2 ≤ i ≤ N)

Intuitively, theN quantum channels and theN memory spaces capture
a stateful machine. The i-th channel acts on a memory state output by
the (i − 1)-th channel along with an input state to produce a bipartite
output state over the i-th output and memory registers. We now define
a non-uniform quantum strategy which will be helpful in the context of
efficient quantum strategies.

Definition 5 (Non-Uniform Quantum Strategy). A non-uniform
quantum strategy g is defined by a tuple (σ, f), where σ is a quantum
advice state in some space Z0, and f is a quantum strategy as defined in
Definition 4, except that the channel f1 is defined as follows:

f1 : L(X1 ⊗Z0) 7→ L(Y1 ⊗Z1)

We now define the notion of a cryptographic primitive as a tuple where
the first element of the tuple captures the functionality of the primitive,
while the second element captures the security requirement.

Definition 6 (Cryptographic Primitive). A cryptographic primitive
P is defined by a tuple (FP ,RP) where FP is a set of non-uniform quan-
tum strategies and RP is a set of tuples of the form (f,A) such that
f ∈ FP and A is a non-uniform quantum strategy.
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Intuitively, the tuple (f,A) is included in RP if adversary A breaks
the security definition for primitive P for the instantiation f . Next, in
order to define what it means to realize a primitive, we provide the fol-
lowing definitions to capture the efficiency and security requirements of
an implementation.

Definition 7 (Efficient Strategy). A non-uniform quantum strategy
(σ, f) as defined in Definition 5 is an efficient strategy if the following
conditions hold:

1. The advice state σ has poly(λ) qubits.
2. f is a strategy with N = poly(λ) turns.
3. For every channel fi, there exists a QPT algorithm that implements

fi.

Definition 8 (Secure Implementation of P). A non-uniform quan-
tum strategy G is a secure implementation of primitive P if G ∈ FP and
for every efficient strategy A, (G,A) /∈ RP .

Definition 9 (Efficient Implementation of P). A quantum strategy
G is an efficient implementation of a primitive P if it is a secure imple-
mentation of P and an efficient strategy.

We will now describe what it means to provide a strategy with black-
box quantum access to another strategy. This captures both the access
a construction gets to a primitive, as well as a reduction’s access to an
adversary. For this, we will utilize the co-strategy formalism of Gutoski
and Watrous [GW07], defined as follows:

Definition 10 (Co-Strategy). A quantum co-strategy G with N turns
corresponding to output Hilbert spaces X1, . . . ,XN and input Hilbert spaces
Y1, . . . ,YN consists of the following:

1. Hilbert spaces W0, . . . ,WN called as memory spaces.
2. An initial state ρ0 ∈ D(X1 ⊗W0)

3. An N -tuple of quantum channels (G1, . . . , GN ) of the form:

Gi : L(Yi ⊗Wi−1) 7→ L(Xi+1 ⊗Wi) (1 ≤ i ≤ N − 1)

GN : L(YN ⊗WN−1) 7→ L(WN )

Similar to a strategy, one can analogously define non-uniform and
efficient co-strategies.
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Definition 11 (Black-Box Access to Strategy). Let G be a quantum
co-strategy with black-box quantum access to a quantum strategy f , where
G and f are as defined in Definitions 10 and 4 respectively. Such access
is denoted by the notation G|f⟩. Then, the i-th query of G to f may be an
arbitrary quantum state on register Xi. f then produces an output state on
register Yi using its internal state Zi−1. Consequently, G uses this output
along with its internal state on register Wi−1 to produce the next query on
register Xi+1. Analogously, G has classical black-box access to f (denoted
by Gf ), if the input queries on registers Xi are classical, i.e., are diagonal
density matrices.

Remark 2. Although the above formalism restricts G to query f sequen-
tially, this is not without loss of generality as multiple simultaneous queries
(For e.g., to a OWF) can be captured by sequential queries to an appro-
priately defined stateful machine.

Next, we define non-black-box quantum and classical access. It is im-
portant to note that in the non-black-box case, G obtains black-box access
as well as the description of the strategy f . This is to ensure that even in
the case of inefficient implementations, such access remains more power-
ful than its black-box counterpart. Consequently, the quantum or classical
access refers solely to the nature of the black-box access.

Definition 12 (Non-Black-Box Access to Strategy). Let G be a
quantum co-strategy with non-black-box quantum access to a quantum strat-
egy f , where G and f are as defined in Definition 10 and Definition 4.
Then, G obtains black-box quantum access G|f⟩ as defined in Definition
11. In addition, G obtains the description of each of the finite number of
channels f1, · · · , fN . Analogously, G has classical non-black-box access to
f if the black-box access is classical as per Definition 11.

Note that for the purposes of this work, we do not distinguish between
an algorithm obtaining different kinds of descriptions of a quantum strat-
egy.

On Strong-Black-Box Access: We will now informally discuss a
notion we call strong-black-box access which works only for quantum
strategies where each of the channels is a unitary map. We refer to these
as unitary strategies. Moreover, access to the inverse of the strategy is
also provided. Intuitively, if the strategy is defined by the unitary se-
quence (U1, . . . ,UN ), the inverse strategy is defined by the unitary se-
quence (U†

N , . . . ,U
†
1). This is motivated by the fact that such access is
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commonly utilized in quantum cryptographic proofs, especially in the con-
text of rewinding [CMSZ22,LMS22]. However, since the classical black-box
notion does not allow such access, we choose to classify it separately, and
denote such access as G|f,†⟩.

Next, we shall recap the way classical reductions were categorized in
previous works, before discussing the quantum generalizations.

3.1 Recap: Classical CAP Notation

Previous works [RTV04,BBF13] have built frameworks that classify var-
ious kinds of classical reductions, with Baecher et al. [BBF13] introduc-
ing a convenient notation, CAP-notation, for this purpose. The notation
uses three characters, each representing either ‘B’ for black-box or ‘N’ for
non-black-box access 1 to the construction (CAP), adversary (CAP) and
primitive (CAP) respectively.

In this notation, a fully black-box reduction from P toQ is represented
as (P → Q) − BBB, where the first ‘B’ indicates that P is constructed
using an implementation of Q as a black-box; the second ‘B’ denotes that
the security reduction algorithm R makes black-box use of an attacker A
breaking the construction of P; the last ‘B’ represents that the security
reduction R is restricted to black-box access to the implementation of Q.
Note that the access of A to Q is not captured by the framework, and
needs to be specified separately.

Next, we will introduce our framework for the quantum setting by
building on the classical framework and utilizing the previously introduced
quantum definitions.

3.2 Quantum Reductions and a Quantum CAP system

A (contrived) Example In this work, we develop a quantum CAP
system aimed at unifying quantum reductions into a single framework.
We refer to this as the Q-CAP-notation. To better understand this new
system, we first consider the following (contrived) example (illustrated in
Fig. 2) for the sake of exposition:

(P → Q)− |Bc
cSN⟩

The above reduction is described by the following aspects:

1 Black-box access refers to using a component solely through its input-output inter-
face, while non-black-box access involves utilizing the component’s internal workings.
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Construction Security Reduction

P

x

y

Q
Q

R
∑
|x⟩∑
|y⟩
A,A†

Fig. 2. (P → Q)− |Bc
cSN⟩ Reduction: (1) the quantum construction of P has classical

query access to a classical implementation of Q; (2) the quantum reduction R has
quantum query access to the quantum adversary A and its reverse implementation
A†; (3) the reduction R is provided with the code of Q as non-black-box access. For
simplicity, we have not indicated black-box access to Q by R, nor that R also works for
quantum implementations Q, despite the construction only working for classical Q.

(1) Modes of access. In our new notation, in addition to ‘B’ (black-box)
and ‘N’ (non-black-box), we further introduce the letter ‘S’ to capture the
case where, in quantum settings, query access to the inverse of a unitary
is also provided. We refer to it as strong-black-box access. In the example
above, the ‘S’ specifically denotes that the reduction has access to both
the unitary equivalent U of an adversary, and its inverse U †. We note
that this is not without loss of generality, and that the strong-black-box
characterization is only appropriate for adversary’s that have a unitary
equivalent.

(2) Indication of quantum components. In this example, to indicate that
both the construction and reduction are quantum, we place |· · ·⟩ around all
three characters. Some other configurations are |B⟩SN (i.e. only construc-
tion is quantum) and B |SN⟩ (i.e only reduction is quantum). Note that
wrapping only the second or third character is disallowed (e.g. B |S⟩N
and BS |N⟩), as both are related to the reduction and must be quan-
tum/classical ‘together’.

(3) Superscripts and subscripts. Since the construction and reduction can
be quantum algorithms, they can potentially make superposition queries
to the adversary or the implementation of the assumption. To clarify this,
we introduce superscripts ‘q’ or ‘c’ for each character. On the other hand,
the queried party can be implemented either quantumly or classically, as
specified by a subscript ‘q’ or ‘c’ on each character. We emphasize that
there could be cases that a component doesn’t work properly when the
queried party is quantum, as the queried party can be rewound in the
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middle of a multi-round interaction. The subscript is useful for capturing
such quantum issues. In our example, the superscript in |Bc

cSN⟩ indicates
that the construction makes only classical queries to the implementation
of Q; while the subscript in |Bc

cSN⟩ shows that the implementation of Q
is a classical algorithm, as the construction might fail if the underlying
implementation were quantum. For simplicity, we set ‘quantum’ as the
default and omit the notation (i.e. |Bc

cS
q
qN

q
q⟩).

Remark 3. For the case of a classical construction B |BB⟩ or a classical
reduction |B⟩BB, we clearly do not need to specify classical or quantum
access corresponding to the classical parts. However, we still allow differ-
ent subscripts. This is because a classical construction may or may not
work based on whether its building block is implemented classically or
quantumly.

Remark 4. We do not consider potential issues regarding obtaining super-
position access of classical adversaries and implementations in this work,
and assume that the reductions and constructions are granted such su-
perposition access.

Formal definitions We will now present formal definitions of some quan-
tum reductions. Although this list is far from being exhaustive, we believe
it captures the essence of the framework and that the other definitions can
be inferred from these ones.

Definition 13 ((P → Q)−|NcBNc⟩Reduction). There exists an |NcBNc⟩
reduction from P to Q if for every f ∈ FQ, there exists an efficient quan-
tum co-strategy G s.t.:
Correctness: It holds that Gf ∈ FP .
Security: There exists an efficient quantum co-strategy R such that for
every strategy A, if (Gf ,A|f⟩) ∈ RP , then (f,R|A⟩,f ) ∈ RQ.

Note that in the above definition, note that the notation R|A⟩,f denotes
that R obtains quantum access to A and classical access to f .

Definition 14 ((P → Q)−B |BcBc⟩Reduction). There exists a B |BcBc⟩
reduction from P to Q if there exists an efficient classical co-strategy G
and an efficient quantum co-strategy R s.t.:
Correctness: For every f ∈ FQ, it holds that Gf ∈ FP .
Security: For every classical strategy f ∈ FQ and every classical strategy
A, if (Gf ,A|f⟩) ∈ RP , then (f,R|A,f⟩) ∈ RQ.
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In the above definition, the notation R|A,f⟩ denotes that R obtains
quantum access to both A and f .

To demonstrate the generality of the system, we define the contrived
example from Fig. 2 formally:

Definition 15 ((P → Q)− |Bc
cSN⟩ Reduction). There exists a |Bc

cSN⟩
reduction from P to Q if there exists an efficient quantum co-strategy G
such that:
Correctness: For every classical strategy f ∈ FQ, we have Gf ∈ FP .
Security: For every quantum strategy f ∈ FQ, there exists an efficient
quantum co-strategy R such that for every unitary strategy A, if (Gf ,A|f⟩) ∈
RP , then (f,R|A,†,f⟩) ∈ RQ.

The notation R|A,†,f⟩ denotes that R obtains quantum access to both
A and f , but also obtains inverse access to A.

Remark 5. Notice that in the above definition, there is no guarantee that
Gf ∈ FP for quantum f . But when this holds (and A is a valid attack),
R breaks f .

3.3 Relations

Let us consider reductions of the form |XYZ⟩, where both the construction
and reduction are quantum. We can categorize relations between such
reductions into two broad classes. The first comprises relations between
black-box and non-black-box variants; the second class includes relations
between the quantum versions and their classical counterparts.

1. We use the notation XYZ ≥ X̃ỸZ̃ to indicate that XYZ is greater than
or equal to X̃ỸZ̃ in each of the three positions, where B > N and B > S.
This convention is used as black-box reductions are more restricted
than non-black-box ones, and hence are considered to demonstrate a
“stronger” result. Notice that any reduction of the type |XYZ⟩ implies
a reduction of the type

∣∣∣X̃ỸZ̃
〉
, if XYZ ≥ X̃ỸZ̃. This holds regardless

of the ‘c’ superscripts and subscripts as long as they are the same for
both reductions. This is because of the fact that black-box reductions
are also non-black-box reductions but not the other way around.

Remark 6. In the context of strong-black-box reductions, we cannot
claim for example that a |BSB⟩ reduction implies a |BNB⟩ reduction.
This is because we require the reduction in the former to work only for
adversary’s with unitary equivalents, while the latter works for general
quantum strategies.
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2. Another basic relation is that any reduction of the type
∣∣XeYfZg

〉
implies a reduction of the type |XYZ⟩, where the e, f, g can be either
‘c’ (classical) or omitted (quantum). This is because classical black-box
access is more restricted than quantum access. On the other hand, a
reduction of the type |XYZ⟩ implies a reduction of the type |XuYvZw⟩,
where the u, v, w can either be ‘c’ (classical) or omitted (quantum).
This is because quantum implementations are potentially problematic
to work with due to issues like quantum rewinding. We can also observe
relations between reductions which are fully quantum and reductions
which are partly classical, in either the construction or the security
reduction. Thus, a reduction of the form X |YZ⟩ implies one of the
form |XYZ⟩ as a classical construction is more restricted.

A few consequences easily follow. A |BBcB⟩ reduction implies a |BNB⟩
reduction. On the other hand, a |BBcB⟩ reduction may not imply a |BBB⟩
reduction, and may not even imply a |BNB⟩ reduction. For instance,
the work of Lombardi et al. [LMQW22] constructs a PRF (among other
primitives) based on an interactive proof of quantumness by Brakerski
et al. [BCM+21]. The construction is classically-secure but quantumly-
insecure under the LWE assumption, due to the difficulty of quantum
rewinding. In general, it would be interesting to study such counterexam-
ples to prove these implications are strict. We now illustrate some relations
in Fig. 3.

|NBN⟩

|NNB⟩

|NcScB⟩

|NcNcBc⟩

|BBB⟩

|BcBcB⟩

|BcBcBc⟩

|B⟩BB B |BB⟩

Q
uantum

to
C

lassical

non-BB to BB

Fig. 3. Q-CAP Relations
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3.4 Categorizing Quantum Reductions using Q-CAP

Next we put the Q-CAP system in practice and showcase the relation-
ships between a host of cryptographic primitives in a quantum world (Cf.
summary in Fig. 4). By this effort, we can identify clearly the assump-
tions and qualifications of various results on a common scale, which as a
consequence reveals the possible routes of improving them, such as weak-
ening the assumptions or security reductions in feasibility results or ruling
out stronger forms of reductions in impossibility results. This also helps
gain insights about the strengths and limitations of quantum information
processing in cryptography.

Game-Based
Assumptions

Falsifiable

S-NIZK

NIZK

OT
2-Round

OT
Collap-Hash

CRHF

OWP
OWF PRG PRF

Succinct Argument

ComEverlasting-Hiding

Com

PRU

PRSS

PRFSPRS

EFI

NI-WOTRO

+

2-Round
Strong-WI +

Comq-insecure

Reduction
Separation

Uses Quantum

Combination

Construction

of Primitives
+

Fig. 4. Representative Reductions in a Quantum World

We consider security against superposition-query by default, e.g., for
pseudo-random functions (PRFs) [Zha12]. We denote primitives which
are only classically-secure with an underline as P. Before proceeding, we
informally review a few relatively new primitives depicted in Fig. 4.

– Weak One-Time Random Oracle (WOTRO) [DLS22]. A WOTRO is
a restricted version of a random oracle but remains sufficient for the
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Fiat-Shamir transform of Σ-protocols. It is shown in the shared EPR
pairs model that non-interactive WOTRO (NI-WOTRO) cannot be
based on any game-based cryptographic assumptions.

– Pseudo-Random State Scramblers (PRSS) [LQS+23]. A PRSS trans-
forms an arbitrary initial state into a pseudo-random state. Their
work constructs PRSS based on OWFs. PRSSs are implied by pseudo-
random unitaries (PRUs), and by the work of Kretschmer [Kre21], are
known to be oracle separated from OWFs.

– Commitments with certified everlasting hiding [BK23]. Such commit-
ments have the additional property that a receiver can provably delete
its committed information before receiving an opening. Bartusek et
al. [BK23] showed that such commitments could be obtained from
standard commitments with the help of quantum information.

– EFI pairs were introduced in the work of Brakerski et al. [BCQ23] as
a candidate for the minimal assumption required for computational
quantum cryptography. They show that many primitives in the quan-
tum setting imply EFI.

Quantum Security of Classical Primitives. Establishing security of
classical cryptographic constructions against quantum adversaries is an
important endeavor. We discuss two basic results.

i. (PRF → PRG)—B |BB⟩B |BB⟩B |BB⟩ (Zhandry [Zha12]). This reduction utilizes
the classical GGM construction [GGM86]. The security reduction needs
to simulate the responses for the superposition queries made by the
PRF adversary. Hence, it needs to evaluate the PRG on a superposi-
tion of different seeds.

ii. (Succinct Arguments → Collapsing Hash)—B |SB⟩B |SB⟩B |SB⟩ (Chiesa et
al. [CMSZ22]). This proves quantum security of Killian’s [Kil92] suc-
cinct arguments for NP based on collapsing hash functions. However,
due to quantum rewinding, the security reduction here uses strong-
black-box quantum access. Since the adversary evaluates the hash
function in superposition to break the collapsing property, the re-
duction needs quantum access to it as well. Classically Killian’s re-
sult establishes a BBB reduction from succinct arguments to CRHFs.
Hence the characterization here reveals an open question of making
the reduction fully black-box.

Quantum Advantages. The quantum capability can sometimes help
realize what is difficult or even impossible classically. The examples below
illustrate different flavors of harnessing the quantum power.
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i. (Succinct Arguments → OWF
)
—|BSB⟩|BSB⟩|BSB⟩(Gunn et al. [GJMZ23]).

This work builds succinct arguments for NP based on OWFs by utiliz-
ing quantum communication. Moreover, the protocol runs in three
rounds only, whereas the best known classical result requires four
rounds [Kil92,CMSZ22]. The protocol is built using a succinct quan-
tum commitment scheme. This succinct commitment involves perform-
ing a quantum pseudo-one-time-pad operation in superposition, and
hence needs quantum access to the PRG. Once again, strong-black-box
access to the adversary is utilized for rewinding.

ii. (OT → OWF)—|Nc
cBN

c
c⟩|Nc

cBN
c
c⟩|Nc

cBN
c
c⟩ (Grilo et al. [GLSV21]). The construc-

tion here is a protocol for oblivious transfer (OT) that requires quan-
tum communication. It makes non-black-box use of a bit commitment
scheme due to the use of zero-knowledge proofs specific to the scheme.
Since the ZK proof used is one for NP statements, the reduction only
works for classical implementations of the OWF. In contrast, in the
classical world, no construction of OT from OWFs is known. Moreover,
the work of Impagliazzo and Rudich [IR89] rules out BNN reductions
from OT to OWFs. We would like to mention that the work of Bartusek
et al. [BCKM21] shows a different reduction that makes black-box use
of a commitment scheme to obtain OT.

iii. (2-Round OT→NIZK + CRHF)—|NcBNc⟩|NcBNc⟩|NcBNc⟩ (Colisson et al. [CMS23]).
Here, a 2-round (round-optimal) quantum protocol for OT is shown
using NIZK and CRHFs (with an additional hiding property). Since
NIZK can be obtained in the random oracle (RO) model, this provides
a construction of OT from minicrypt primitives like the previous ex-
ample. The protocol makes non-black-box use of the hash function
for the NIZK proof, and also runs the hash function in superposition.
As mentioned in the work, such use of the CRHF is not desirable for
practical purposes, and it is open if this is necessary. The use of the
NIZK proof for NP implies that the reduction only works for classical
implementations of the hash function.

Remark 7. Even when a construction or reduction obtains the code
of a primitive, we view direct executions of the primitive as black-box
access. Hence, the absence of a superscript on the third ‘N’ denotes
that this black-box access is quantum.

iv. (2-Round Strong-WI → OT + Comq-insecure)—B |Bc
cB

c⟩B |Bc
cB

c⟩B |Bc
cB

c⟩
(
Kalai

and Khurana [KK19]). This work demonstrates a novel quantum ad-
vantage in the context of complexity leveraging, which enables con-
structing classically secure primitives by quantum reductions. It shows
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a classically-secure 2-Round Strong Witness Indistinguishable (Strong-
WI) Argument based on quantum-secure OT and classical-secure yet
quantum-insecure commitments. The construction is classical, but the
security reduction is quantum, and exploits the ability to break the
quantum-insecure commitment scheme. In contrast, classical NBN re-
ductions are ruled out [Kiy21].

Quantum Black-Box Separations.

i. (OWP ↛ OWF
)
—Bc |BcBc⟩Bc |BcBc⟩Bc |BcBc⟩(Cao and Xue [CX21]): This separation

result rules out reductions comprising of a classical construction and
a quantum security reduction. The reduction may obtain quantum ac-
cess to the adversary and the OWP. In another work by Chung et
al. [CLM23], a conditional separation also ruled out quantum con-
structions, and hence |BcBcBc⟩ reductions.

ii. (CRHF ↛ OWP)—|BcBcBc⟩|BcBcBc⟩|BcBcBc⟩ (Hosoyamada and Yamakawa [HY20]):
This result rules out fully-black-box reductions of the kind |BcBcBc⟩
from CRHFs to OWPs. Although their work considers quantum se-
curity, it is easy to see that their result also rules out classically-
secure CRHFs using quantum reductions. Intuitively, this is because
the breaking oracle need only be accessed classically to break the
CRHF. In the classical world however, a stronger BNN separation
is known [Sim98].

Both examples allude to the possibility of stronger separations, and it
is interesting to settle down whether that can be achieved.

Quantum Primitives. We now turn to studying some relations involv-
ing quantum primitives.

i. (OWF ↛ PRU)—|BNN⟩|BNN⟩|BNN⟩ (Kretschmer [Kre21]). The work of Kretschmer
[Kre21] shows a quantum oracle relative to which PRUs exist but
OWFs do not. As such, it rules out relativizing reductions from OWFs
to PRUs. In the work of Reingold et al. [RTV04], it was shown that
ruling out relativizing reductions also rules out BNN reductions. It is
not hard to see that an analogous claim extends to the quantum case,
which in-turn rules out |BNN⟩ reductions.

ii. (PRFS → PRS)—|BcBBc⟩|BcBBc⟩|BcBBc⟩ (Ananth et al. [AQY22]). This construc-
tion of pseudorandom function-like states involves classical black-box
access to the PRS, and is an example of a reduction between two quan-
tum primitives. The security reduction uses classical black-box access
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to the PRS and obtains its quantum state outputs. It then performs
a measurement on these states and evaluates the PRFS adversary on
the post-measurement state.

iii. (Com → PRFS)—|ScBSc⟩|ScBSc⟩|ScBSc⟩ (Ananth et al. [AQY22]). This is an ex-
ample of a reduction between a classical and a quantum primitive.
The bit commitment scheme shown in this work utilizes a procedure
to verify the validity of a PRFS output. The verification procedure re-
lies on both the generator of the PRFS and its inverse, i.e., it requires
strong-black-box access.

4 Impossibility of S-NIZK in the Quantum Setting

In this section, we will prove our impossibility result that corresponds to a
setting where the parties can compute and communicate quantumly. The
result shows that quantum black-box reductions cannot be used to prove
the security of an S-NIZK protocol for an NP-complete language based
on any falsifiable assumption. More specifically, we require the language
to satisfy the hard language definition (Definition 1), which holds for any
NP-complete language assuming the existence of post-quantum OWFs.
Essentially, the result shows that if such a black-box reduction were to
exist, then the falsifiable assumption must be false. However, if the falsi-
fiable assumption is false, then a security reduction for the S-NIZK based
on the assumption being true is meaningless. The security reduction we
refer to here corresponds to security against a malicious prover, i.e., adap-
tive soundness (Definition 3).

On Adaptive Soundness and Zero-Knowledge: As in the work of
Pass, we consider adaptive notions of both soundness and zero-knowledge.
In the case of non-adaptive soundness, the malicious prover is restricted to
choose a statement before the CRS is initialized. Previous works have con-
structed non-adaptive sound S-NIZKs based on variants of LWE [CCH+19,
PS19], and are also known to satisfy post-quantum security [CVZ20].
Interestingly, there are two important variants of adaptive soundness,
namely the penalizing variant and the weaker exclusive one. The one con-
sidered in the work of Pass and ours is the penalizing one. The exclusive
one is weaker in that the malicious prover is guaranteed to choose false
statements, i.e., provers that may sometimes output true statements are
not considered in the definition. In the work of Fischlin et al. [FR21],
these notions are explored in detail. Their work also mentions that the
aforementioned non-adaptive S-NIZK protocols are adaptively sound by
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the exclusive definition. Later, we will discuss why the proof breaks down
for the exclusive definition.

Notice the impossibility also requires the S-ZK property to be adap-
tive. We will elaborate later that the two-part simulator is important for
the impossibility. However, this could be an artifact of the proof tech-
nique as no adaptive sound and non-adaptive S-ZK NIZK is known. We
now state the main theorem:

Theorem 2. Let Π be a non-interactive quantum protocol satisfying the
completeness and adaptive statistical zero-knowledge properties for an NP-
complete language L. Let B be a quantum black-box reduction such that,
for every attacker A that breaks the adaptive soundness of Π, BA breaks
some quantum falsifiable assumption (C, t). Then, the assumption (C, t)
is false, assuming the existence of post-quantum secure one-way functions
with respect to quantum advice.

Proof Overview. Our strategy follows along the lines of the classical
proof by Pass, which follows the meta-reduction paradigm. This involves
showing the existence of an (inefficient) attackerA that breaks the security
of the construction, along with an entity called the emulator E . Unlike A,
E is efficient but does not break the security of the construction. However,
E “mimics” A so that no QPT algorithm can tell them apart. Consider
a black-box reduction that transforms A into an attack on a falsifiable
assumption. When we replace A with E , the new combination efficiently
breaks the assumption. If not, the reduction, in conjunction with the chal-
lenger, would be able to distinguish between A and E , a contradiction.
Consequently, our proof can be broken down into two sub-parts:

1. Existence of A and E . At a high level, the emulator E runs the hon-
est prover’s algorithm of the S-NIZK, on a true statement of a hard
language. The corresponding attacker A makes use of the two-part
zero-knowledge simulator (S1,S2), and crucially relies on the statis-
tical zero-knowledge property to generate accepting proofs for false
statements. We observe that similar constructions of A and E as that
of previous work suffice for the quantum setting. More precisely, these
two algorithms are shown to be computationally indistinguishable by
a reduction making a single CRS query.

2. Indistinguishability of A and E with (multi-query) oracle ac-
cess. To prove this, the work of Pass reduces oracle indistinguisha-
bility to single-query indistinguishability, a method also employed in
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other classical meta reduction impossibility results [GW11,CLMP12,
BDSG+13]. However, the reduction argument does not directly extend
to the quantum setting. This is because the classical argument involves
programming the random tape of a classical algorithm, which does not
have a quantum analogue. To circumvent this issue, we provide an al-
ternate argument, elaborated below.

Classically, the reduction executes an oracle distinguisher which ex-
pects responses from an inefficient oracle. Since the inefficient oracle can-
not be efficiently simulated by the reduction, it is provided with some
optimal random coins as advice. More precisely, these random coins in-
clude the optimal random tape of the distinguisher, and the corresponding
optimal responses of the inefficient oracle. The challenge in the quantum
setting is that the distinguisher cannot be forced to run on a specific
“random tape”, which would determine the queries it makes. However, we
realize that it is not necessary to explicitly force the distinguisher to out-
put specific queries and then simulate the responses. Instead, we utilize
quantum advice to provide the reduction with an optimal internal quan-
tum state that aligns with the best measurement outcomes and responses
from the inefficient oracle. The reduction can then straightforwardly exe-
cute the oracle distinguisher in a non-black-box way.

4.1 Proof of Theorem 2

Constructions of the Attacker and the Emulator. As noted previ-
ously, we first provide the constructions of the attackerA and the emulator
E . Given a crs as input, the emulator runs as follows:

Emulator E(1λ, crs):
1. (x,w)← ZL, where ZL is defined as in Definition 1.
2. |π⟩ ← P(1λ, crs, x, w)
3. Output (x, |π⟩)

It is easy to see that E is efficient, as it samples from the efficiently
sampleable distribution ZL, and executes the honest prover of the S-NIZK
protocol Π. However, it is clearly not a valid attack against the adaptive
soundness of Π, as it only outputs accepting proofs of true statements.

We now turn to describing the corresponding inefficient attacker that
E is supposed to emulate:

Attacker A(1λ, crs):
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1. If corner-case(crs) = 1, output (x, |π⟩)← E(1λ, crs);
Else, proceed to the next step.

2. While crs′ ̸= crs:
– Generate non-uniform advice |ϕ⟩.
– Run (crs′, |aux⟩)← S1(1

λ, |ϕ⟩).
– If unsuccessful after 22

λ attempts, output ⊥.
3. x̃← X̃L, where X̃L is defined as in Definition 1.
4. |π̃⟩ ← S2(1

λ, |aux⟩ , x̃)
5. Output (x̃, |π̃⟩)

where corner-case is defined as follows:

corner-case(crs) =

{
1, when TD

(
A′

0(1
λ, crs), E(1λ, crs)

)
= non-negl(λ)

0, otherwise

}

where A′
0 is an algorithm defined as follows:

Algorithm A′
0(1

λ, crs):

1. While crs′ ̸= crs:
– Generate non-uniform advice |ϕ⟩.
– Run (crs′, |aux⟩)← S1(1

λ, |ϕ⟩).
– If unsuccessful after 22

λ iterations, output ⊥.
2. (x,w)← ZL, where ZL is defined as in Definition 1.
3. |π̃⟩ ← S2(1

λ, |aux⟩ , x)
4. Output (x, |π̃⟩)

Remark 8. In the exclusive variant of adaptive soundness, A cannot exe-
cute E on “bad” crs, as it is forced to always output false statements.

Remark 9. Since |ϕ⟩ is a non-uniform advice state, there exists a quantum
circuit for every security parameter λ that generates it. Consequently, an
inefficient algorithm like A or A′

0 can compute such a state uniformly.

We will first describe A while ignoring the details of the corner-case
function. The attackerA first brute-forces through S1, i.e., repeatedly runs
it until its output crs′ matches the input crs. This is done so that S2 can
later produce a proof consistent with crs using the corresponding auxiliary
state |aux⟩. Notice that such a search is inefficient as double-exponentially
many steps are necessary for locating a particular crs with high probability.
Moreover, its initial advice state |ϕ⟩ may also be inefficient to produce.
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The rest of the steps are straightforward. It samples a false statement
from X̃L and then utilizes S2 to generate a proof.

The corner-case function outputs 1 on “bad” crs strings, for which the
S-ZK property does not hold when conditioned on the crs. This is in-
directly captured by the trace-distance between E and A′

0, where A′
0 is

similar to A except the corner-case check and that it samples true state-
ments instead of false ones. Since the reduction does not have to sample
crs from Setup, it can query its oracle on such a “bad” crs to distinguish
A from E . Consequently, the attacker A switches to executing the emu-
lator E when queried on such a crs. In order to do this, A estimates the
value TD

(
A′

0(1
λ, crs), E(1λ, crs)

)
for each crs string by running A′

0 and
E several times and executing a tomography procedure. This is possible
in unbounded but finite time as there are a bounded number of possible
crs strings. Later on, we will argue that for a crs sampled from Setup, the
probability that it is “bad” is negligibly small, which follows from the S-
ZK property. Hence, A still chooses false statements with high probability
and breaks adaptive soundness.

Indistinguishability of A and E: We first show the single query case
– no QPT algorithm M making one query, crs, to A and E can distinguish
between them. This will in-turn be used to establish that A breaks adap-
tive soundness, and later to show the multi-query indistinguishability.

Lemma 1 (Single-query Indistinguishability). Let M be a QPT al-
gorithm that makes a single query to its oracle. Then, M cannot distinguish
between the oracles A and E except with negligible probability, i.e.,∣∣∣∣Pr [MA(1λ) = 1

]
− Pr

[
ME(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

Proof. We will construct a hybrid algorithm A′ that works similar to the
attacker A. Unlike A which chooses false statements from the hard lan-
guage, A′ picks true instances, as the emulator E does.

Hybrid Attacker A′(1λ, crs):

1. If corner-case(crs) = 1, output (x, |π⟩)← E(1λ, crs);
Else, proceed to the next step.

2. Run Algorithm A′
0(1

λ, crs).
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First, we show that A′ and E are indistinguishable to M. This holds
because A′ runs E when corner-case outputs 1, and runs A′

0 otherwise. In
the latter case, it is guaranteed that the output of A′

0 is indistinguishable
from that of E by the definition of corner-case. Consequently, we have the
following:

∣∣∣∣Pr [MA′
(1λ) = 1

]
− Pr

[
ME(1λ) = 1

]∣∣∣∣ ≤ negl(λ) (1)

It is now left to show that A and A′ are also indistinguishable to
M. The sole distinction between these two is that one operates on false
statements while the other on true instances. Suppose that M distinguishes
between them with non-negl(λ) advantage. We will now construct a non-
uniform QPT distinguisher D that makes use of M in a non-black-box way
to break the language hardness property.

Remark 10. The constructed distinguisher D will run the zero-knowledge
simulator S2 in order to break the hardness assumption. Consequently,
the impossibility does not hold for unbounded simulators.

Consider M to consist of two parts: (1) Make one query crs to the oracle
A′ or A; (2) Output a bit b upon receiving the response (xcrs, |π⟩crs).

Let |ψ⟩ be an optimal internal state of M after part (1). Let M′ denote
a QPT algorithm that takes the response (xcrs, |π⟩crs) along with |ψ⟩ and
outputs b, winning with the same probability as M.

Let y be a statement sampled from XL or X̃L with probability 1/2
each. To preserve the efficiency of D, we allow D to have the state |aux⟩
(the internal state output by S1 along with crs) and |ψ⟩ as non-uniform
quantum advice that corresponds to the crs query made by M.

Language Distinguisher D(1λ, y, crs, |aux⟩ , |ψ⟩)

1. Execute |πy⟩ ← S2(1
λ, |aux⟩ , y)

2. Run M′ on the response (y, |πy⟩) using the initial state |ψ⟩;
and receive a bit b.

3. Output b.

Observe that D simulates the response of either A′ or A based on
whether y is in L or not. Thus, it wins the distinguishing game with
non-negligible advantage, contradicting the language hardness property.
Hence, we have that:
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∣∣∣∣Pr [MA′
(1λ) = 1

]
− Pr

[
MA(1λ) = 1

]∣∣∣∣ ≤ negl(λ) (2)

Remark 11. In the case of non-adaptive ZK, there exists a single-part
simulator S that takes an input x and outputs (crs, |π⟩). Consequently,
the string crs may depend on the input x, which is why it cannot be
provided as advice to D.

From Equations (1) and (2), we have that:

∣∣∣∣Pr [MA(1λ) = 1
]
− Pr

[
ME(1λ) = 1

]∣∣∣∣ ≤ negl(λ) (3)

⊓⊔

Now, in order to prove that A breaks adaptive soundness, we first
need the following lemma, which shows corner-case outputs 1 with negl(λ)
probability for a randomly chosen crs.

Lemma 2 (Corner Case).

Pr
[
corner-case(crs) = 1

∣∣∣ crs← Setup(1λ)
]
≤ negl(λ)

Proof. For the sake of contradiction, suppose that TD(A′
0(1

λ, crs), E(1λ, crs)) >
1

p(λ) with probability 1
p(λ) , for some polynomial p and infinitely many λ.

Then, the trace distance between the following distributions is at least
( 1
p(λ))

2:

{
(crs, x, |π⟩)

∣∣∣ crs← Setup(1λ); (x,w)← ZL; |π⟩ ← P(1λ, x, w, crs)
}

{
(crs, x, |π⟩)

∣∣∣ crs← Setup(1λ); (x, |π⟩)← A′
0(1

λ, crs)
}

By the statistical zero-knowledge property, the latter distribution is
statistically-close to the following:

{
(crs, x, |π⟩)

∣∣∣ (crs, |aux⟩)← S1(1
λ); (x, |π⟩)← A′

0(1
λ, crs)

}
As A′

0 runs S1 doubly-exponentially many times in order to output
the same crs, this is in-turn statistically-close to the following:
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{
(crs, x, |π⟩)

∣∣∣ (crs, |aux⟩)← S1(1
λ); (x,w)← ZL; |π⟩ ← S2(1

λ, |aux⟩ , x)
}

This contradicts the statistical zero-knowledge property, proving the
claim. ⊓⊔

We will now use Lemmas 1 and 2 to show A is indeed a valid attack,
i.e., that it successfully breaks the adaptive soundness of the S-NIZK
protocol Π.

Lemma 3 (Valid Attack). The algorithm A breaks the adaptive sound-
ness of the protocol Π, i.e., it satisfies the following for some polynomial
p(λ) and infinitely many λ ∈ N.

Pr

[
V
(
1λ, crs, x̃, |π̃⟩

)
= 1 ∧ x̃ /∈ L

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← A(1λ, crs)

]
≥ 1

p(λ)

Proof. From the completeness property of Π, we have the following:

Pr

[
V
(
1λ, crs, x, |π⟩

)
= 1

∣∣∣∣ crs← Setup(1λ)
(x, |π⟩)← E(1λ, crs)

]
≥ 1− negl(λ)

This is because E samples a true statement x and runs the honest
prover algorithm P to generate the proof |π⟩. Consider now the following:

Pr

[
V
(
1λ, crs, x̃, |π̃⟩

)
= 1 ∧ x̃ /∈ L

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← A(1λ, crs)

]

= Pr

[
V
(
1λ, crs, x̃, |π̃⟩

)
= 1 ∧ corner-case(crs) = 0

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← A(1λ, crs)

]

= Pr

V
(
1λ, crs, x̃, |π̃⟩

)
= 1

∣∣∣∣ crs← Setup(1λ)
(x̃, |π̃⟩)← A(1λ, crs)
corner-case(crs) = 0


×Pr

[
corner-case(crs) = 0

∣∣∣crs← Setup(1λ)
]

= (
1

q(λ)
) · (1− negl(λ)) ≥ 1

p(λ)
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where q(λ) and p(λ) are some polynomials. The 1
q(λ) part follows

from Equation 4.1, Lemma 1 and Lemma 2. This is because if V were
to succeed in distinguishing A and E (conditioned on the high probabil-
ity event corner-case(crs) = 0), then it can be used to break Lemma 1.
The (1 − negl(λ)) part follows directly from Lemma 2. Hence, A must
break adaptive soundness with at least 1

p(λ) probability, which satisfies
the breach of soundness requirement. ⊓⊔

Finally, we will prove by contradiction that no QPT algorithm M can
distinguish between A and E when granted oracle access, meaning it is
allowed to make polynomial number of queries. Specifically, if there is a
QPT M succeeding in this setting, it also leads to an efficient quantum
distinguisher D that succeeds in the single-query case, thereby violating
Lemma 1. Formally, we will show:

Lemma 4 (Emulatable Attack). Let M be a QPT algorithm. Then,
M cannot distinguish between oracles A and E, except with negligible prob-
ability, i.e.: ∣∣∣∣Pr [MA(1λ) = 1

]
− Pr

[
ME(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

Proof. Let M make q = poly(λ) queries to its oracle O, which can be ei-
ther A or E . We will now consider q+1 hybrid oracles H0, . . . ,Hq defined
as follows:

Hybrid Oracle Hi(1
λ, crs):

1. Answer the first i queries with the output of E .
2. Answer the next q − i queries with the output of A.

Notice that the oracle H0 is the same as A, and the oracle Hq is the
same as E . We will now demonstrate that for an arbitrary j ∈ {0, . . . , q},
oracle access to Hj is indistinguishable from oracle access to Hj+1. Using
a standard hybrid argument, it then follows that oracle access to A is in-
distinguishable from oracle access to E . First, we assume that M is a QPT
algorithm that distinguishes Hj from Hj+1 with non-negligible advantage,
i.e.,

Adv[M] =

∣∣∣∣Pr [MHj (1λ) = 1
]
− Pr

[
MHj+1(1λ) = 1

]∣∣∣∣ ≥ non-negl(λ)
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We will now construct an efficient D that distinguishes between A and
E with only one query, by using M as a subroutine. In order for D to
use M, it must simulate the oracle responses from Hj (or Hj+1) for the q
queries made by M. All the responses for queries to E are straightforward
to simulate by simply executing E itself. However, in the case of queries
directed to A, D cannot simulate the correct responses, as A is inefficient
to execute. As for the (j + 1)-th query made by M, D simply forwards it
to its single-query oracle. Now, in order for D to be able to simulate the
responses ofA, it must be provided some advice state. In previous classical
works [GW11,CLMP12,Pas13,BDSG+13], D is provided with an optimal
random tape of M, along with the corresponding optimal responses of
A. Consequently, D can run M on this random tape and then provide it
with the correct responses of A. However, this argument doesn’t extend
to the quantum setting, as it is unclear how to program the random tape
of a quantum algorithm. To circumvent this issue, we provide D with an
optimal internal state of M as quantum advice. We now proceed to explain
this formally:

Recall that without loss of generality, the QPT algorithm M is of the
form:

MO(1λ) =M◦
((
O ◦Mq

)
◦ · · · ◦

(
O ◦M1

)) ∣∣ψ0
〉

Let MO
j (1

λ) be an algorithm that acts on the internal state
∣∣ψj

〉
as

follows:

MO
j (1

λ) =M◦
((
O ◦Mq

)
◦ · · · ◦

(
O ◦Mj+1

)) ∣∣ψj
〉

Notice that by an averaging argument, there must exist an optimal
quantum state

∣∣∣ψj
⋆

〉
corresponding to the best measurement outcomes,

such that the algorithm MO
j (1

λ) retains advantage Adv[M]. Furthermore,∣∣∣ψj
⋆

〉
does not depend on the single-query oracle that the distinguisher

D interacts with, as this oracle is not queried until the (j + 1)-th query.
Consequently, this state depends only on A and M (and the advice

∣∣ψ0
〉
),

and is thus a function of the security parameter. Moreover, as it is poly-
nomially large, it can be provided as non-uniform quantum advice to D.
Note that Lemma 1 holds against distinguishers with quantum advice.
Hence, D simply runs the algorithm Mj instead of M. This is efficient be-
cause the (j + 1)-th oracle query is answered by forwarding the response
obtained by the single-query oracle of D, while the remaining responses
corresponding to E are efficiently simulated. This gives us a distinguisher
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for the single-query case (Lemma 1) with non-negligible advantage, which
is a contradiction. ⊓⊔

We note that the aforementioned issue about simulating the inefficient
oracle A does not arise in previous works [DLS22,DFG13]. This is because
their single-query premise satisfies the stronger notion of statistical indis-
tinguishability. This allows the multi-query reduction D to be inefficient,
allowing it to run A by itself.

Finishing the Proof of Theorem 2. Finally, after having demon-
strated how to construct A and E , as well as their indistinguishability
with oracle access, we conclude the proof. Recall that ⟨C,B⟩(1λ) denotes
the output of the challenger C upon interaction with reduction B. As a
direct consequence of Lemma 3 and the fact that B is a reduction for the
assumption (C, t), we have that for some polynomial p(λ) and infinitely
many λ ∈ N:

Pr
[
⟨C,BA⟩(1λ) = 1

]
≥ t+ 1

p(λ)

From Lemma 4 and considering M to consist of both C and B, we have:∣∣∣Pr [⟨C,BA⟩(1λ) = 1
]
− Pr

[
⟨C,BE⟩(1λ) = 1

]∣∣∣ ≤ negl(λ)

Now, we have that for some polynomial q(λ) and infinitely many λ ∈
N:

Pr
[
⟨C,BE⟩(1λ) = 1

]
≥ t+ 1

p(λ)
− negl(λ) ≥ t+ 1

q(λ)

Since B and E are both QPT algorithms, we have that BE is an efficient
algorithm that breaks the assumption (C, t), which is a contradiction. ⊓⊔

4.2 Viewing the Impossibility via the Black-Box Framework

Consider the primitive S-NIZK, which denotes an S-NIZK proof system
for all of NP. Theorem 2 implies that there are no reductions of the type
|NBcN⟩, |NcB

cN⟩, |NBcNc⟩ or |NcB
cNc⟩ from S-NIZK to any cryptographic

primitive Q that has a falsifiable security game. The primitive Q may also
be quantum (in which case only the first type of reductions exist anyway).
This means that we consider quantum S-NIZK protocols (including com-
munication) and restrict the quantum security reduction to classical black-
box access to the quantum adversary. Notice that there is no restriction

36



on how the primitive is used, either by the construction or the reduction.
Inspired by the meta-reduction definitions of Baecher et al. [BBF13], we
show that our result exhibits an ((S-NIZK→ Q)− |NcB

cNc⟩)→ Q meta-
reduction, where Q is any primitive with a falsifiable security game. We
now define this formally:

Definition 16 (((P → Q)− |NcB
cNc⟩)→ Q Meta-Reduction).

For every classical implementation g ∈ FQ, there exists a classical imple-
mentation f ∈ FQ such that the following holds:
For every efficient construction (co-strategy) G and every efficient reduc-
tion (co-strategy) R, there exists an adversarial strategy A and an efficient
meta-reduction co-strategy M such that:

((
G|f⟩,A|f⟩) ∈ RP =⇒ RA,|f⟩ ∈ RQ

)
=⇒

(
g,M|g⟩) ∈ RQ

Notice that this only shows that every classical implementation of
Q is broken when the reduction only works for classical implementations.
However, this criterion is sufficient to rule out such reductions. Now, based
on the above definition, we have the following as a corollary of Theorem 2.
Here, the security reduction of the S-NIZK refers to the adaptive-soundness
reduction.

Corollary 1. There exists an ((S-NIZK → Q) − |NcB
cNc⟩) → Q Meta-

Reduction for every primitive Q that has a falsifiable security game. As a
consequence, if the primitive Q exists, then there is no |NcB

cNc⟩ reduction
from S-NIZK to Q.

We note that similar meta-reductions can be defined for the other
types of reductions |NBcN⟩, |NBcNc⟩ and |NcB

cN⟩. Moreover, it is not
hard to see that Theorem 2 implies such meta-reductions as well. This is
because the technique used is oblivious to the workings of the construc-
tion. Likewise, no part of the proof relies on the reduction’s use of the
implementation.

4.3 On Reductions Making Quantum Queries

We will now highlight some challenges in lifting the impossibility result for
reductions making quantum queries to the attacker. First, notice that the
current attacker A expects a classical input crs. Then, it repeatedly exe-
cutes S1 until it outputs the same crs. Let us assume that the reduction R
makes a quantum query |q⟩ =

∑
i |crsi⟩, and in the case of the emulator E ,
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obtains the superposition response
∑

i |crsi⟩ |πi⟩, where |πi⟩ = E(1λ, crs).
In this case, if A observes/measures the query |q⟩, it may destroy the
superposition, making it easy to distinguish from E . Consequently, we
now provide an informal description of a new attacker, before discussing
another problem.

The initial goal of the new inefficient attacker is to map |q⟩ =
∑

i |crsi⟩
to a state

∑
i |crsi⟩ |auxi⟩, such that every (crsi, auxi) is a valid output of

S1. In order to do this, A repeatedly runs S1 until it obtains each possible
output crsi sufficiently many (perhaps exponentially many) times. Then,
it performs a tomography procedure to learn the corresponding quantum
state |aux⟩i (which could be a mixed state in general). This way, A obtains
a possibly inefficient channel that performs the desired mapping. It then
executes S2 on the state

∑
i |crsi⟩ |auxi⟩ to obtain

∑
i |crsi⟩ |π̃i⟩, where

|π̃i⟩ = S2(|aux⟩i , x̃) for some false statement x̃. Likewise, consider the
state

∑
i |crsi⟩ |π′i⟩ where |π′i⟩ = S2(|aux⟩i , x) for some true statement x,

corresponding to the intermediate attacker A′.
This brings us to the next challenge. What is the guarantee that the

states
∑

i |crsi⟩ |πi⟩ and
∑

i |crsi⟩ |π′i⟩ are indistinguishable from one an-
other? The statistical zero-knowledge property only guarantees that this
indistinguishability holds for classical crs queries, and it is not clear if the
quantum case can be reduced to the classical one. It might be possible
that there exists some possibly contrived protocol (Setup,P,V) for which
the classical indistinguishability holds but not the quantum one. In the
recent work of Abdolmaleki et al. [ACE+23], a quantum notion of zero-
knowledge is explored where the distinguisher obtains superposition access
to the simulator. However, the superposition is over statements, and not
common reference strings. Moreover, it is not clear if a stronger notion
of ZK that allows such superposition access with respect to the CRS is a
meaningful one. We leave open the study of this notion for future work.
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