
Access-Controlled Inner Product
Function-Revealing Encryption

Ojaswi Acharya1 , Weiqi Feng1 , Roman Langrehr2 , and Adam O’Neill1

1 Manning CICS, University of Massachusetts Amherst, USA
{oacharya,weiqifeng,adamoneill}@umass.edu

2 ETH Zurich, Switzerland
roman.langrehr@inf.ethz.ch

Abstract. We extend the concept of access control for functional en-
cryption, introduced by Abdalla et al. (ASIACRYPT 2020), to function-
revealing encryption (Joy and Passelègue, SCN 2018). Here “access control”
means that function evaluation is only possible when a specified access
policy is met. Specifically, we introduce access-controlled inner-product
function-revealing encryption (AC-IPFRE) and give two applications.

On the theoretical side, we use AC-IPFRE to show that function-
hiding inner-product functional encryption (FH-IPFE), introduced by
Bishop et al. (ASIACRYPT 2015), is equivalent to IPFRE. To show
this, we in particular generically construct AC-IPFRE from IPFRE for
the “non-zero inner-product” (NZIP) access policy. This result uses an
effective version of Lagrange’s Four Square Theorem. One consequence
of this result is that lower bounds by Ünal (EUROCRYPT 2020) suggest
that, as for FH-IPFE, bilinear pairings will be needed to build IPFRE.

On the practical side, we build an outsourced approximate nearest-
neighbor (ANN) search protocol and mitigate its leakage via AC-IPFRE.
For this, we construct a practical AC-IPFRE scheme in the generic
bilinear group model for a specific access policy for ANN search. To this
end, we show that techniques of Wee (TCC 2020) implicitly give the
most practical FH-IPFE scheme to date. We implement the resulting
outsourced ANN search protocol and report on its performance.

Of independent interest, we show AC-IPFRE for NZIP implies
attribute-hiding small-universe AC-IPFRE for arbitrary access policies.
Previous work on access control for FE did not achieve attribute hiding.
Overall, our results demonstrate that AC-IPFRE is of both theoretical
and practical interest and set the stage for future work in the area.

https://orcid.org/0009-0006-9864-6548
https://orcid.org/0009-0008-1898-2950
https://orcid.org/0000-0002-4083-8073
https://orcid.org/0009-0006-0233-6466

2 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

1 Introduction

FE and FRE. Traditional encryption is an all-or-nothing affair: either a receiver
has the decryption key and can recover m from its ciphertext ctm, or it does not,
and therefore learns nothing about m from ctm. To address this, in functional
encryption [19] different receivers have different “functional keys.” Namely, a
functional key skf associated to a function f allows the receiver to recover f(m)
from ctm. One can be extend to the multi-arity functions f accordingly [26].
Moreover, a functional encryption scheme is called function-hiding if skf hides
f . A related concept to FE is function-revealing encryption [33]. Here there are
no functional keys; rather, one builds a dedicated scheme for an n-ary g such
that from ciphertexts ctm1 , . . . ctmn

, anyone can recover f(m1, . . . ,mn). Here, for
n = 1 such a scheme is trivial, unless one constrains the length of a ciphertext.

Adding access control. A problem with deploying FE in practice is that
too much information about the messages can be leaked to the receivers. This
is because every functional key skf is “compatible” with every ciphertext ctm,
i.e. the receiver can always recover f(m). In many applications, it is desirable that
the sender have fine-grained control over which ciphertexts are compatible with a
given skf . Of course, this is trivially possible using FE for all efficient functions,
which follows from recent breakthroughs in indistinguishability obfuscation [25,30].
However, we are interested in more practical schemes for simple functionalities.

Access control for inner-product FE was previously addressed by Abdalla et
al. [2] and numerous follow-up works e.g. [38,4,5,23]. The idea is to associate
ciphertexts and keys to tags, i.e. ctx,s and sky,t for x,y ∈ Zd

p, which reveals ⟨x,y⟩
iff a(s, t) for an access policy a(·, ·) fixed by the scheme. Broadly, in this work
we extend their study to inner-product FRE (IPFRE). Moreover, even without
access control, IPFRE is new to this work.

1.1 Our New Notion: AC-IPFRE

Accordingly, we first introduce (private-key) inner-product function-revealing
encryption (IPFRE), an instance of the more general notion of function-revealing
encryption [33,27]. In IPFRE, there are no function keys, and a ciphertext ctx
encrypts a vector x ∈ Zd

m. Given ciphertexts ctx, cty encrypting x,y ∈ Zd
m

respectively, anyone can compute ⟨x,y⟩. Security, which we formulate using both
indistinguishability and simulation-based notions, requires nothing else is leaked.

As for IPFE, many applications do not need the inner-product for all pairs of
vectors. For example, we will see this is case below in an application to outsourcing
approximate nearest-neighbor search. To reduce leakage, we introduce access-
controlled IPFRE (AC-IPFRE), where there is an access policy a : T ×T → {0, 1}
such that a ciphertext cttag,x is associated with a tag3 tag ∈ T in addition to a
3 We use the term “tag” and not “attribute”, because here each ciphertext can only

have one tag. This is in contrast to attribute-based encryption, where a ciphertext
can have many attributes.

Access-Controlled Inner Product Function-Revealing Encryption 3

plaintext vector x ∈ Zd
m, and given two ciphertexts cttag,x, cttag′,x′ anyone can

learn ⟨x,x′⟩ iff a(tag, tag′) = 1. We are interested in two types of access policies.
The first one is the “non-zero inner product” access policy anzip where tags are
vectors in T = Zτ

m and a outputs 1 on tag, tag′ iff ⟨tag, tag′⟩ ̸= 0. We call this
non-zero inner-product AC-IPFRE (NZIP-AC-IPFRE). The second one is the
“small tag universe” access policy, where tags come from a polynomial-size set T
and the access policy a is an arbitrary predicate.

1.2 Equivalence of IPFRE and FH-IPFE

Our first application of AC-IPFRE is to show that IPFRE is in fact equivalent to
function-hiding IPFE (FH-IPFE). This result has implications for assumptions
that imply IPFRE, because FH-IPFE constructions are believed to require bilinear
maps; in particular, lattice-based constructions will be difficult [49].
From FH-IPFE to IPFRE. We first show that IPFRE can be constructed
generically from FH-IPFE, where an IPFRE ciphertext for the vector x consists
of an FH-IPFE ciphertext and an FH-IPFE functional key for the same vector x.
This idea goes back to [43,3].
From IPFRE to FH-IPFE. The other direction is more difficult. Here, we first
show that we can generically equip an IPFRE with the non-zero inner product
(NZIP) access policy. From a technical perspective, the construction exploits the
algebraic relation of tensor and inner product. If we further restrict the set of tags
T ⊆ Zτ

m such that it satisfies for all t, t′ ∈ T ⟨t, t′⟩ ∈ {0, 1}, our construction
also hides the tags. This might seem restrictive at first, but we show that even
with this restriction we can realize arbitrary small tag universe access policies,
by constructing a suitable vector v(tag) for each tag tag. Interestingly, a key
ingredient of this construction is Lagrange’s four square theorem.

In more detail, we can represent any access policy by an undirected graph
where the nodes are the tags and there is an edge between nodes tag1, tag2 if
a(tag1, tag2) = 1. For every non-loop edge e = {tag1, tag2} with tag1 ̸= tag2 we
add one dimension with index i to the tag vectors and set v(tag1)i = v(tag2)i = 1
and 0 for all other tags. These vectors already satisfies ⟨v(tag1),v(tag2)⟩ ∈ {0, 1}
and ⟨v(tag1),v(tag2)⟩ = 1 ⇐⇒ a(tag1, tag2) = 1, as desired. The challenging
part is to enforce ⟨v(tag1),v(tag1)⟩ ∈ {0, 1}, depending on the whether a loop
for tag1 exists in the access graph or not. To do this, let s := ⟨v(tag1),v(tag1)⟩
and s′ is −s or −s+ 1 (depending on whether a(tag1, tag1) = 1 or not). Our goal
is now to find a vector v′(tag1) ∈ Zℓ

q for some ℓ with ⟨v′(tag1),v′(tag1)⟩ = s′.
With such a vector we can add additionally ℓ dimensions to the tag vectors
and append v′(tag1) to v(tag1) and fill it with zeros in v(tag′) for all vectors
tag′ ̸= tag1. Performing this step for all tags, will give us vectors that encode the
access policies as needed for the NZIP access policy.

The problem of finding v′(tag1) with ⟨v′(tag1),v′(tag1)⟩ = s′ is equivalent
to writing s as a sum of squares s′ = a2

1 + a2
2 + · · ·+ a2

ℓ . A classical result due
to Lagrange guarantees us that a solutions with ℓ ≤ 4 exists and it can also be
computed efficiently [46,45].

4 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Finally, we can turn an AC-IPFRE (for small tag universe) into an FH-IPFE
by using two different tags tag1, tag2. An FH-IPFE ciphertexts consists of an
AC-IPFRE ciphertext with tag1 and an FH-IPFE functional key consists of an
AC-IPFRE ciphertext with tag2. The access policy is satisfied if exactly one of
the two tags is tag1.
Generalizations. All our results also apply to orthogonality revealing en-
cryption. In particular, we also obtain equivalence of orthogonality-revealing
encryption and function-hiding predicate-encryption for orthogonality. Moreover,
our results apply to schemes that only recover the inner product in the expo-
nent of a group element (as typical for pairing-based schemes). Formally, we
show our results for any scheme that only depends on the inner-product of the
two inputs. We call this an inner-product-based functionality. We then present
our formal results for inner-product-based functional encryption (IPBFE) and
inner-product-based function revealing encryption (IPBFRE).

1.3 Using AC-IPFRE for Inner-Product Similarity

Many applications, especially in machine learning, information retrieval, and
statistics rely on a notion of inner-product similarity between data vectors (which
can be defined in several ways). Privacy of the data vectors are a natural concern.
AC-IPFRE can be used to add privacy to such applications while protecting the
data vectors in a fine-grained manner. We give two concerete examples.
Outsourcing approximate nearest-neighbor search. A number of state-of-
the-art retrieval models for search engines, e.g., dense retrieval models [35,52,51],
use nearest neighbor search to retrieve documents in response to a search query
[40]. These models learn distributed representations (vectors) for queries and
documents using deep neural networks and compute their inner-product simi-
larity. As these applications deal with nearest neighbor search on massive data
collections, exact nearest neighbor search, which simply uses brute-force search,
is fundamentally impractical. They instead rely on approximate nearest-neighbor
(ANN) search that indexes the vectors in a data structure. Recent such protocols
can run efficiently even on billion scale collections, see [32]. Outsourcing storage
and ANN search on the vectors to a powerful server is also desirable.

For privacy-preserving outsourcing of exact nearest neighbor search, Kim
et al. [36] propose to use FH-IPFE. However, FH-IPFE only supports brute-
force search. Using IPFRE, ANN search on encrypted data can work in exactly
the same way as state-of-the-art algorithms for plaintext data (except for how
an inner-product between two encrypted vectors is computed). Namely, a user
encrypts its vectors under IPFRE, sends the resulting ciphertexts to the server
who, using IPFRE evaluation, indexes them into an ANN data structure. Later,
the user can encrypt a query vector and send this ciphertext to the server, who
using IPFRE evaluation can perform fast search.

Unfortunately, this protocol leaks all pairwise inner-product across data, query,
and update vectors. To mitigate the leakage, we can use AC-IPFRE with tag-
space {data, query, update} and access policy aann defined as aann(tag1, tag2) = 1

Access-Controlled Inner Product Function-Revealing Encryption 5

unless tag1 = tag2 = data or tag1 = tag2 = query. The idea is to split the
database into vectors in the initial dataset and those later added dynamically.
The user indexes its initial vectors in plaintext, then encrypts each one with tag
data, sending the resulting data structure to the server. To query, the user sends
an encryption of its query vector with tag query. To update the database, the
user sends the encryption of the update vector with tag update. This access policy
allows the server to learn only the inner-products necessary to maintain the data
structure and answer the queries. Note that the data-structure can leak some
information about the initial data vectors to the server. In the case of HSNW [41],
the inner-product comparison bits of the initial vectors are leaked, i.e., from
three such encrypted vectors x1,x2,x3, the server can tell if ⟨x1,x2⟩ ≥ ⟨x1,x3⟩.

We formalize the leakage profile of our AC-IPFRE based ANN search protocol
and show that any FH-IPFE can be upgraded to an AC-IPFRE for aann more
efficiently than going through our general transform to small tag universe AC-
IPFRE. We provide an an implementation and evaluation of our ANN search
protocol using the TinyFHIPFE scheme discussed below. We demonstrate that
for typical workloads query processing takes about 24s with 20ms of active client
time. In comparison, a prior protocol based on oblivious data structures [18]
involves many rounds of interaction between the client and server, lasting over 8
minutes. On the other hand, we do not hide access pattern.

Pearson’s correlation coefficients. In scenarios where we want to encrypt
datasets, but still reveal some statistics about these datasets, IPFRE is also
a useful tool. Consider for example a hospital that wants to protect personal
medical data through encryption, but reveal certain statistics about this data,
like the correlation of obesity with certain diseases, without computing each of
these statistics. The standard measure for correlation is Pearson’s correlation
coefficient rx,y and, if the data vectors x,y are normalized to have mean 0, it
can be expressed as a form of inner-product (aka. cosine) similarity, namely
rx,y = ⟨x,y⟩/

√
⟨x,x⟩⟨y,y⟩, and thus be computed from the inner products of

every pair of vectors, which is exactly what is revealed by IPFRE.
Moreover, it can be desirable to not reveal certain correlations coefficients,

e.g., to reduce leakage or because it is unethical. For example, revealing the
correlation between skin color and intelligence quotient can be seen as unethical.
This can be realized with AC-IPFRE. We leave a more in-depth treatment of
this application to future work.

1.4 TinyFHIPFE: An Efficient FH-IPFE Scheme

We show that part of an FE construction of Wee [50] can be adapted to give an
FH-IPFE that is asymptotically and concretely more efficient than existing FH-
IPFE schemes, which we call TinyFHIPFE. We note that Wee does not consider
FH-IPFE, and his FE scheme differs substantially from ours as it is public-key,
supports quadratic functions, and does not achieve function hiding. TinyFHIPFE
scheme is our starting point for the AC-IPFRE scheme we implement as part of
our ANN-ODB protocol above.

6 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

The intuition behind TinyFHIPFE is as follows. We work in prime-order groups
G1,G2,GT , generated by g1, g2, gT respectively, and equipped with a asymmetric
bilinear pairing. The master secret key will consist of matrices. Let us first
describe a partial version of the scheme, and then discuss how to complete it.
Here, the master secret key will be A←$ Z2×d

p . Moreover, a function key for a
vector x ∈ Zd

p will be computed as [AT s1 + x]g1 (using the notation [x]g := gx)
for s1←$ Z2

p. Then, a ciphertext is formed analogously but in the other source
group; namely, encryption of a vector y ∈ Zd

p will be computed as [AT s2 + y]g2

for random s2 ∈ Z2
p. Now, to evaluate inner-product, suppose we pair a function

key skx and ciphertext cty. Then we end up with

[⟨x,y⟩+ sT
1 Ay + xT AT s2 + sT

1 AAT s2]gT
.

Then, we observe that the sum of the last three terms can be computed as the
inner product of two 4-dimensional vectors: s1∥(Ax + AAT s1) and Ay∥s2. So,
to allow the evaluator to compute this sum, we augment the ciphertexts and
function keys with encryptions and function keys for these two vectors under a
“tiny” instance of the (less efficient) FH-IPFE scheme by Kim et al. [36]. Namely,
we include two 4× 4 matrices B←$ SL4(Zp),B∗ ← (B−1)T in the master secret
key and add B · (s1∥Ax + AAT s1) to a function key skx and B∗ · (Ay∥s2) to a
ciphertext cty. Inner product evaluation in our scheme now additionally pairs
these components as in the inner product evaluation for the scheme of [36] and
uses the result to obtain [⟨x,y⟩]gT

. Finally, assuming ⟨x,y⟩ is suitably bounded, it
can be recovered by taking discrete-log to the base gT . Details of our TinyFHIPFE
scheme are given in Section 5 and the security proof is given in Appendix B.

We assess the efficiency of TinyFHIPFE and compare it with the most efficient
FH-IPFE schemes in the table in Table 1. Specifically, we compare to the
FH-IPFE schemes of [36] (denoted KLM+) and of [37] (denoted KKS). In the
figure, d denotes the input dimension, multZp

denotes multiplications in Zp,
multG1 denotes multiplications in G1, and expG1 denotes exponentiations in G1.
Furthermore, ‘PP’ in the last column stands for preprocessing-friendly, that is,
discrete-log is computed with respect to a fixed base and hence can be made fast
using preprocessing. The size of a function key and the runtime of key-generation
(not shown) are comparable to the ciphertext size and runtime of encryption
respectively for all FH-IPFE schemes considered.

We can see that TinyFHIPFE has the shortest master secret key for d ≥ 8
while the sizes of its ciphertext and function keys are comparable to the shortest
ones. Similarly, the runtime of the encryption and key generation algorithms
are linear in the number of multiplication in Zp compared to quadratic number
of multiplication in Zp in KLM+ and a linear number of multiplications in the
group G1 and G2 in KKS. Note that multiplications in Zp are much faster than
multiplications in G1 and G2.

1.5 Discussion and Open Problems
Our work lends insight into the relationship between FE and FRE, which histori-
cally developed along different paths. Joye and Passelègue [33] cast FRE as a

Access-Controlled Inner Product Function-Revealing Encryption 7

Scheme msk size ct size Encryption runtime PP
KLM+ [36] (2d2)Zp

(d+ 1)G1 d2 ·multZp
+ (d+ 1) · expG1 X

KKS [37] (6d+ 4)Zp
(2d+ 8)G1 (2d+ 2) ·multG1 + (7d+ 12) · expG1 ✓

TinyFHIPFE (2d+ 32)Zp (d+ 4)G1 (4d+ 16) ·multZp + (d+ 4) · expG1 ✓

Table 1. Performance comparison for TinyFHIPFE.

weakening of multi-input FE (MIFE) [26]. That is, while MIFE supports decryp-
tion keys associated to multi-input functions chosen on-the-fly, FRE supports a
particular multi-input function fixed at setup.

We define AC-IPFRE with “ideal leakage,” meaning only the inner product
values are leaked. In such a case, despite the fact that our schemes are private-
key, even without function hiding public-key assumptions are necessary [28].
However, unlike FE, it is common in the literature for FRE constructions to
have less-than-ideal leakage. An interesting direction is to construct AC-IPFRE
with limited leakage that is more efficient or is based on weaker assumptions. A
particularly fascinating question is how much leakage one must tolerate to rely
on only symmetric-key primitives. Note that Fuchsbauer et al. [24] build distance-
comparison-preserving encryption for Euclidean distance based on symmetric-key
primitives; however, their scheme is only shown to resist specific attacks.

To further reduce the leakage in our outsourced ANN search protocol, an
open problem is to build FRE for inner-product comparison. Indeed, ANN search
only requires such comparison and does not need to learn the raw inner-products.
We also leave it for future work to analyze the quality of our protocol’s leakage
profile under recent frameworks such as [17]. Finally, access control may be useful
for other forms of FRE.

1.6 Other Related Work

Inner product functional encryption. IPFE (for inner-product recovered
in the exponent) was first introduced by Abdalla et al. [1], with the function
hiding case first considered by Bishop et al. [14]. Bishop et al. give a weakly
function-hiding scheme under SXDH. Other FH-IPFE schemes include a SIM-
secure scheme by Kim et al. [36] proven in the generic bilinear group model, and
IND-secure schemes under SXDH by Tomida et al. [48] and Datta et al. [22].
These schemes can be plugged into our generic transform to give AC-IPFRE. A
scheme from class groups [20] does not recover inner-product in the exponent
and hence supports unrestricted inner-product, but is not function hiding.
Function-revealing encryption. FRE grew out of work on deterministic
encryption [10], order-preserving encryption [16], and property-preserving en-
cryption [43]. FRE was first defined (independently) by Joye and Passelègue [33]
and Haagh et al. [27].4 Joye and Passelègue study FRE for orthogonality and
4 “Preserving” vs. “revealing” terminology reflects whether the evaluation operation on

ciphertexts is required to be the same as the evaluation operation on plaintexts.

8 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

cardinality of set intersection, while Haagh et al. study FRE for partial ordering
and its application to skyline queries. None of these works consider inner-product.

1.7 Organization of the Paper

We start with preliminaries in Section 2. Then, in Section 3, we present the
definitions of our two new primitives: inner-product based function-revealing
encryption (IPBFRE) in Section 3.1 and access-controlled IPBFRE in Section 3.2,
as well as inner-product-based functional encryption in Section 3.3. In Section 4
we present generic constructions of AC-IPBFRE for the non-zero inner product
functionality in Section 4.1 and for small tag universes in Section 4.2. We present
TinyFHIPFE, our function-hiding inner-product functional encryption scheme in
Section 5. Finally, in Section 6 we present an AC-IPFRE for aann access policy in
Section 6.1 and our ANN-ODB protocol with its leakage profile in Section 6.2.

2 Preliminaries

Notation. If v is a vector then |v| is its length (the number of its coordinates)
and v[i] is its i-th coordinate. For vectors x,y ∈ Zd

m we use ⟨x,y⟩ := x⊤y
to denote the standard scalar product. For vectors x ∈ Zd

m,y ∈ Zτ
m we use

x⊗ y := vec(xy⊤) to denote the standard tensor product for vectors. Here, vec
is the vectorization operator takes a matrix and returns a vector obtained by
stacking all columns of the input matrix on top of each other. By x∥y we denote
the concatenation of vectors x,y length-wise.

Strings are identified with vectors over {0, 1}. By ϕ we denote the empty
string or vector. If S is a finite set, then |S| denotes it size. If X is a finite
set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated.
If A is an algorithm, we let y ← AO1,...(x1, . . . ;ω) denote running A on in-
puts x1, . . . and coins ω, with oracle access to O1, . . ., and assigning the out-
put to y. By y←$ AO1,...(x1, . . .) we denote picking ω at random and letting
y ← AO1,...(x1, . . . ;ω). We let Out(AO1,...(x1, . . .)) denote the set of all possible
outputs of A when run on inputs x1, . . . and with oracle access to O1, Running
time is worst case, which for an algorithm with access to oracles means across all
possible replies from the oracles. We use ⊥ (bot) as a special symbol to denote
rejection, and it is assumed to not be in {0, 1}∗.

A function ν: N→ N is negligible if for every positive polynomial p: N→ R
there is a λp ∈ N such that ν(λ) ≤ 1/p(λ) for all λ ≥ λp. “PT” stands for
“polynomial time,” whether randomized or deterministic. By 1λ we denote the
unary representation of the integer security parameter λ ∈ N.
Games. We use the code-based game-playing framework of BR [11]. By Pr[G⇒ y]
we denote the probability that the execution of game G results in the output
being y. In games, integer variables, set variables, boolean variables and string
variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and ⊥.

Access-Controlled Inner Product Function-Revealing Encryption 9

3 Definitions

We focus in this work on inner-product based functionalities.
Definition 1 (Inner-product based function) A function f : Zd

m×Zd
m → Y

(for an arbitrary codomain Y) is inner-product based if it can be expressed as
f(x,y) = g(⟨x,y⟩) for a function g : Zm → Y.
Some examples of inner-product based functions of interest are the function
computing the inner product, the inner product in the exponent (where g(x) = gx

T

for a group generator gT of the target group of a pairing) or the function testing
for orthogonality.

3.1 Inner-Product Based Function Revealing Encryption

Syntax. A (private-key) inner-product based function-revealing encryption (IPBFRE)
scheme for a functionality f(x,y) = g(⟨x,y⟩) is a tuple of PT algorithms
IPBFRE = (PPGen,Setup,Enc,Eval) that work as follows:

- PPGen(1λ): On input a unary encoding of the security parameter λ ∈ N,
the public parameters generation algorithm outputs public parameters pp
(in particular including a modulus m ∈ Z+), which is implicitly input to all
algorithms.

- Setup(1d): On input a unary encoding of the plaintext dimension d ∈ N, the
setup algorithm outputs a master secret key msk.

- Enc(msk,x): On inputs a master secret key msk, and an input vector x ∈ Zd
m,

the ecnryption algorithm outputs a ciphertext ct.
- Eval(ct1, ct2): On input two ciphertexts ct1, ct2, the evaluation algorithm

outputs a string y.

Remark 1. When the function computed is inner-product i.e.,f(x,y) = g(⟨x,y⟩) =
⟨x,y⟩, we call the scheme Inner-Product Function Revealing Encryption (IPFRE).

Correctness. We require evaluation correctness meaning that

Pr[Eval(Enc(msk,x1),Enc(msk,x2)) = g(⟨x1,x2⟩)] = 1

for all λ, d ∈ N, all pp ∈ Out(PPGen(1λ)) and all msk ∈ Out(Setup(pp, 1d)),
where x1,x2 ∈ Zd

m and probability is taken over the coins of the Enc algorithm.
Indistinguishability-based security. First, we define an indistinguishability-
based security definition for IPBFRE in Fig. 1. For an adversary A = (A1,A2),
define its IND-advantage for all λ ∈ N as:

Advind
IPBFRE,A(λ) = Pr[Gind-1

IPBFRE,A(λ)⇒ 1]− Pr[Gind-0
IPBFRE,A(λ)⇒ 1] .

We say that an IPBFRE scheme is IND-secure if Advind
IPBFRE,A(·) is negligible

for all PT adversaries A.

10 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Simulation security. Next, we give a simulation-based security definition for
IPBFRE in Fig. 1. For an adversary A = (A1,A2) and a simulator S = (S1,S2,S3),
we define the SIM-advantage of A,S for all λ ∈ N as follows:

Advsim
IPBFRE,A,S(λ) = Pr[Gsim-1

IPBFRE,A(λ)⇒ 1]− Pr[Gsim-0
IPBFRE,A,S(λ)⇒ 1] .

We say that an IPBFRE scheme is SIM-secure if for every PT adversary A
there exists a PT simulator S such that Advsim

IPBFRE,A,S(·) is negligible.

Game Gind-b
IPBFRE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d)
4 b′←$ A

EncO(·,·)
2 (st)

5 if ∃ j, k ≤ i : g(⟨xj
0, xk

0⟩) ̸=
g(⟨xj

1, xk
1⟩) then

6 return ⊥
7 else return (b = b′)

EncO(x0, x1):
8 i← i + 1
9 (xi

0, xi
1)← (x0, x1)

10 ct←$ Enc(msk, xb)
11 return ct

Game Gsim-1
IPBFRE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d)
4 b←$ A

EncO(·)
2 (st)

5 return b

EncO(x):
6 ct←$ Enc(msk, x)
7 return ct

Game Gsim-0
IPBFRE,A,S(λ)

Main:
1 Cip ← ∅; i← 0
2 (pp, stS)←$ S1(1λ)
3 (d, stA)←$ A1(1λ, pp)
4 stS←$ S2(1d, stS)
5 b←$ A

EncO(·)
2 (stA)

6 return b

EncO(x):
7 i← i + 1
8 xi ← x
9 for j ≤ i do

10 ci,j ← g(⟨x, xj⟩)
11 Cip ← Cip ∪ {((i, j), ci,j)}
12 (ct, stS)←$ S3(Cip, stS)
13 return ct

Fig. 1. Games defining IND-security (left) and SIM-security (middle and right) for
IPBFRE.

3.2 Access-Controlled IPBFRE

We introduce IPBFRE with access policies, following Abdalla et al. in the FE
setting [2]. An access policy is a PT function a : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ ×
{0, 1}∗ → {0, 1}. Here, the arguments in the access policy are public parame-
ters, auxiliary information5, the first tag, and the second tag respectively. We
assume access policies are symmetric in the the last two arguments meaning
a(pp, aux, x, y) = a(pp, aux, y, x) for all pp, aux, x, y ∈ {0, 1}∗. We introduce
access-controlled IPBFRE (AC-IPBFRE), which is defined like IPBFRE except

5 Looking ahead, the auxiliary information for non-zero inner product access policy
will be the dimension of tag vectors.

Access-Controlled Inner Product Function-Revealing Encryption 11

that ciphertexts are equipped with tags. The inner-product of the plaintexts is
revealed by the evaluation algorithm if and only if the tags of the two ciphertexts
combine to satisfy the given access policy.

Formally, an AC-IPBFRE for access policy a is a tuple of three algorithms
AC-IPBFRE[a] = (Setup,Enc,Eval).

- PPGen(1λ): On input a unary encoding of the security parameter λ, the
public parameters generation algorithm outputs the public parameters pp
(that in particular includes the modulus m ∈ Z+). The public parameters
are implicitly input to all other algorithms.

- Setup(1d, aux): On input a unary encoding of the plaintext dimension d and
some auxiliary information about the access policy aux, the setup algorithm
outputs a master secret key msk.

- Enc(msk, tag,x): On inputs a master secret key msk, a tag tag, and a message
vector x, the encryption algorithm outputs a ciphertext ct.

- Eval(ct1, ct2): On input two ciphertexts ct1, ct2, the evaluation algorithm
outputs a scalar y or ⊥.

Remark 2. When the function computed is inner-product i.e.,f(x,y) = g(⟨x,y⟩) =
⟨x,y⟩, we call the scheme Access-Controlled Inner-Product Function Revealing
Encryption (AC-IPFRE).

Correctness. We require evaluation correctness meaning that

Pr[Eval(Enc(msk, tag1,x1),Enc(msk, tag2,x2)) = g(⟨x1,x2⟩)] = 1

for all λ, d ∈ N, all aux ∈ {0, 1}∗, all pp ∈ Out(PPGen(1λ)), all msk ∈ Out(Setup(1λ, aux)),
all x1,x2 ∈ Zd

m and all tag1, tag2 ∈ {0, 1}∗ such that a(pp, aux, tag1, tag2) = 1,
where the probability is taken over the coins of the Enc algorithm.

Security Definitions Our security definitions guarantee that nothing about
the tags is leaked, except whether they satisfy the access policy, and nothing
about the message vectors is leaked, except the inner product for pairs of vectors
encrypted with tags satisfying the access policy.

We give an indistinguishability-based security definition for AC-IPBFRE in
Fig. 2. For an adversary A = (A1,A2), define its IND-advantage for all λ ∈ N as:

Advind
AC-IPBFRE,A(λ) = Pr[Gind-1

AC-IPBFRE,A(λ)⇒ 1]− Pr[Gind-0
AC-IPBFRE,A(λ)⇒ 1] .

We say that an AC-IPBFRE scheme is IND-secure if Advind
AC-IPBFRE,A(·) is neg-

ligible for all PT adversaries A.

Next, we give a simulation-based security definition for AC-IPBFRE in Fig. 3.
For an adversary A = (A1,A2) and a simulator S = (S1,S2,S3), we define the
SIM-advantage of A,S for all λ ∈ N as:

Advsim
AC-IPBFRE,A,S(λ) = Pr[Gsim-1

AC-IPBFRE,A(λ)⇒ 1]− Pr[Gsim-0
AC-IPBFRE,A,S(λ)⇒ 1] .

12 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Game Gind-b
AC-IPBFRE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, aux, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d, aux)
4 b′←$ A

EncO(·,·,·)
2 (st)

5 if ∃ j, k ≤ i : (a(pp, tagj
0, tagk

0) ̸= a(pp, tagj
1, tagk

1) ∨
(a(pp, tagj

0, tagk
0) = 1 ∧ g(⟨xj

0, xk
0⟩))) ̸= g(⟨xj

1, xk
1⟩) then

6 return ⊥
7 else return b = b′

EncO(x0, x1, tag0, tag1):
8 i← i + 1
9 (xi

0, xi
1, tagi

0, tagi
1)← (x0, x1, tag0, tag1)

10 ct←$ Enc(msk, (xb, tagb))
11 return ct

Fig. 2. Game defining IND-security for AC-IPBFRE.

We say that an AC-IPBFRE scheme is SIM-secure if for every PT adversary
A there exists a PT simulator S such that Advsim

AC-IPBFRE,A,S(·) is negligible.

3.3 Inner Product Based Functional Encryption

A private-key inner-product based functional encryption (IPBFE) scheme is a tuple
of algorithms IPBFE = (PPGen,Setup,KeyGen,Enc,Eval) that work as follows:

- PPGen(1λ): On input a unary encoding of the security parameter λ, the
public parameters generation algorithm outputs the public parameters pp
(that in particular includes the modulus m ∈ Z+). The public parameters
are implicitly input to all other algorithms.

- Setup(1d): On input a unary encoding of the plaintext dimension 1d, the
setup algorithm outputs the master secret key msk.

- KeyGen(msk,x): On input the master secret key msk and a vector x ∈ Zd
m,

the key generation algorithm outputs a function key skx.
- Enc(msk,y): On input the master secret key msk and a vector y ∈ Zd

m, the
encryption algorithm outputs a ciphertext cty.

- Eval(skx, cty): On input a secret key skx and a ciphertext cty, the decryption
algorithm outputs a string z.

Correctness. We require decryption correctness meaning that

Pr[Eval(pp,KeyGen(msk,x),Enc(msk,y)) = g(⟨x,y⟩)] = 1

for all λ, d ∈ N, all pp ∈ Out(PPGen(1λ)) and all msk ∈ Out(Setup(pp, 1d)),
where x,y ∈ Zd

m and probability is taken over the coins of the Enc and the
KeyGen algorithm.

Access-Controlled Inner Product Function-Revealing Encryption 13

Game Gsim-1
AC-IPBFRE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, aux, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d, aux)
4 b←$ A

EncO(·,·)
2 (st)

5 return b

EncO(x, tag):
6 (xi, tagi)← (x, tag)
7 ct←$ Enc(msk, x, tag)
8 return ct

Game Gsim-0
AC-IPBFRE,A,S(λ)

Main:
1 Cip ← ∅; i← 0
2 (pp, stS)←$ S1(1λ)
3 (d, aux, stA)←$ A1(1λ, pp)
4 stS←$ S2(1d, aux, stS)
5 b←$ A

EncO(·,·)
2 (stA)

6 return b

EncO(x, tag):
7 i← i + 1
8 (xi, tagi)← (x, tag)
9 for j ≤ i do

10 if a(pp, tagi, tagj) = 1 then
11 ci,j ← g(⟨x, xj⟩)
12 else
13 ci,j ← ⊥
14 Cip ← Cip ∪ {((i, j), ci,j)}
15 (ct, stS)←$ S3(Cip, stS)
16 return ct

Fig. 3. Games defining SIM-security for AC-IPBFRE.

Security Definitions Again, we consider both indistinguishability and simulation-
based definitions.
Indistinguishability-based Security. We give an indistinguishability-based
security definition for Function-Hiding IPBFE (FH-IPBFE) in Fig. 4. For an
adversary A = (A1,A2), define its IND-advantage for all λ ∈ N as:

Advind
FH-IPBFE,A(λ) = Pr[Gind-1

FH-IPBFE,A(λ)⇒ 1]− Pr[Gind-0
FH-IPBFE,A(λ)⇒ 1] .

We say that an FH-IPBFE scheme is IND-secure if Advind
FH-IPBFE,A(·) is negligi-

ble for all PT adversaries A.

Simulation Security. Next, we give a simulation-based security definition
for FH-IPBFE in Fig. 5. For an adversary A = (A1,A2) and a simulator S =
(S1,S2,S3,S4), we define the SIM-advantage of A,S for all λ ∈ N as:

Advsim
FH-IPBFE,A,S(λ) = Pr[Gsim-1

FH-IPBFE,A(λ)⇒ 1]− Pr[Gsim-0
FH-IPBFE,A,S(λ)⇒ 1] .

We say that an FH-IPBFE scheme is SIM-secure if for every PT adversary A
there exists a PT simulator S such that Advsim

FH-IPBFE,A,S(·) is negligible.

4 Generic Constructions of AC-IPBFRE

We show in this Section that non-zero inner product AC-IPBFRE (NZIP-AC-
IPBFRE), an AC-IPBFRE where tags are vectors and decryption is possible

14 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Game Gind-b
FH-IPBFE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d)
4 b′←$ A

EncO(·,·),KeyGenO(·,·)
2 (st)

5 if ∃ i′ ≤ i, j′ ≤ j : g(⟨xi′
0 , yj′

0 ⟩) ̸= g(⟨xi′
1 , yj′

1)⟩
then

6 return ⊥
7 else return (b = b′)

KeyGenO(x0, x1):
8 j ← j + 1
9 (xj

0, xj
1)← (x0, x1)

10 sk←$ KeyGen(msk, xb)
11 return sk

EncO(y0, y1):
12 i← i + 1
13 (yi

0, yi
1)← (y0, y1)

14 ct←$ Enc(msk, yb)
15 return ct

Fig. 4. Games defining IND-security for FH-IPBFE.

if their inner product is non-zero, and AC-IPBFRE for small tag universe and
arbitrary access policies can be generically constructed from IPBFRE.

4.1 From IPBFRE to NZIP-AC-IPBFRE

Here, we present a transformation that converts any FRE for an inner-product
based functionality f(x,y) = g(⟨x,y⟩) into an access-controlled FRE for the same
functionality where tags are vectors (possibly of a different dimension than the
message vectors, but over the same field as the message vectors) and evaluation
of two ciphertexts is possible if the inner-product of their tags is non-zero. A
similar transformation has been considered in [23]. Formally, the message space
is M = Zd

m. The tag space T can be set to any subset of Zτ
p that satisfies6

∀u,v ∈ T : ⟨u,v⟩ ∈ {0, 1}
6 For the inner-product, inner-product in the exponent and orthogonality functionality,

this requirement can be relaxed to ∀u, v ∈ T : ⟨u, v⟩ ∈ {0} ∪ Z∗
m. For the inner-

product and inner-product in the exponent functionality, this requires keeping track
of the tags and dividing the result (in the exponent) by the inner product of the
tags in Eval. Note that for all these functionalities g is multiplicatively homomorphic.
Such a scheme however does not hide the tags any more. The tags can be encrypted
with an IPFRE scheme to only leak the inner products between the tags. This variant
has been considered in [23].

Access-Controlled Inner Product Function-Revealing Encryption 15

Game Gsim-1
FH-IPBFE,A(λ)

Main:
1 pp←$ PPGen(1λ)
2 (d, st)←$ A1(1λ, pp)
3 msk←$ Setup(1d)
4 b←$ A

EncO(·),KeyGenO(·)
2 (st)

5 return b

KeyGenO(x):
6 sk←$ KeyGen(msk, x)
7 return sk
EncO(y):
8 ct←$ Enc(msk, y)
9 return ct

Game Gsim-0
FH-IPBFE,A,S(λ)

Main:
1 Cip ← ∅; i← 0
2 E, K ← ∅
3 (pp, stS)←$ S1(1λ)
4 (d, stA)←$ A1(1λ, pp)
5 stS←$ S2(1d, stS)
6 b←$ A

EncO(·),KeyGenO(·)
2 (stA)

7 return b

KeyGenO(x):
8 i← i + 1; K ← K ∪ {i}
9 xi ← x

10 for j ≤ i do
11 if j ∈ E: ci,j ← g(⟨x, yj⟩)
12 else : ci,j ← ⊥
13 Cip ← Cip ∪ {((i, j), ci,j)}
14 (sk, stS)←$ S4(Cip, stS)
15 return sk
EncO(y):
16 i← i + 1; E ← E ∪ {i}
17 yi ← y
18 for j ≤ i do
19 if j ∈ K: ci,j ← g(⟨xj , y⟩)
20 else : ci,j ← ⊥
21 Cip ← Cip ∪ {((i, j), ci,j)}
22 (ct, stS)←$ S3(Cip, stS)
23 return ct

Fig. 5. Games defining SIM-security for FH-IPBFE.

16 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

The auxiliary information for the access policy is τ ∈ N and a description of T
with access policy

anzip(pp, τ,u,v) :=
{

1 if u⊤v ̸= 0 and u ∈ T and v ∈ T
0 otherwise.

.

Let IPBFRE = (PPGen,Setup,Enc,Eval) be an FRE scheme with message-space
Zd

p for an inner-product based functionality f(x,y) = g(⟨x,y⟩). Define the associ-
ated NZIP-AC-IPBFRE scheme NZIP-AC-IPBFRE[IPBFRE] = (PPGen,Setup′,Enc′,Eval′)
with message-space Zd

p, tag-space Zτ
p , and access policy anzip as in Fig. 6.

Setup′(1λ, 1d, 1τ):

1 return msk←$ Setup(1λ, 1d·τ)

Enc′(msk, u ∈ Zτ
p , x ∈ Zd

p):

2 return Enc(msk, u⊗ x)

Eval′(ct1, ct2):
3 return Eval(ct1, ct2)

Fig. 6. Transform from FRE for an inner-product based functionality to NZIP-AC-FRE
for the same functionality.

Proposition 1. If IPBFRE is evaluation correct, then NZIP-AC-IPBFRE[IPBFRE]
is evaluation correct.

Proof. Let u,v ∈ Zτ
p with u⊤v = 1, x1,x2 ∈ Zd

p, ct1 ∈ Out(Enc(msk,u ⊗ x1)),
and ct2 ∈ Out(Enc(msk,v ⊗ x2)). Then, by evaluation correctness of IPBFRE,
Eval(ct1, ct2) outputs g((u⊗ x1)⊤(v⊗ x2)) = g(u⊤v · x⊤

1 x2) = g(x⊤
1 x2).

Theorem 1 (IND-security). If IPBFRE is IND-secure, then NZIP-AC-IPBFRE[IPBFRE]
is IND-secure. Concretely, for every adversary A against IND-security of NZIP-AC-IPBFRE[IPBFRE],
there exists an adversary B against IND-security of IPBFRE with roughly the
same runtime such that

Advind
NZIP-AC-IPBFRE[IPBFRE],A(λ) ≤ Advind

IPBFRE,B(λ) .

Proof. Let A be an adversary against IND-security of NZIP-AC-IPBFRE[IPBFRE].
We construct an adversary B against IND-security of IPBFRE in Fig. 7.

It is easy to see that when A plays the Gind-b
NZIP-AC-IPBFRE[IPBFRE],A(λ) game, it

perfectly simulates the game Gind-b
IPBFRE,B(λ) for B and outputs the same bit as B.

Access-Controlled Inner Product Function-Revealing Encryption 17

Adversary B = (B1,B2)

B1(1λ, pp):
1 (d, τ, st)←$ A1(1λ, pp)
2 return (d · τ, st)

B
EncO′(·,·)
2 (st):

3 b′←$ A
EncO(·,·,·)
2 (st)

4 return b′

EncO(x0, x1, u0, u1):
5 ct← EncO′(u0 ⊗ x0, u0 ⊗ x1)
6 return (u, ct)

Fig. 7. Adversary against IND-security of IPBFRE.

This shows

Pr[Gind-b
IPBFRE,B(λ)⇒ 1 | Gind-b

IPBFRE,B(λ) ̸⇒ ⊥]

= Pr[Gind-b
NZIP-AC-IPBFRE[IPBFRE],A(λ)⇒ 1 | Gind-b

NZIP-AC-IPBFRE[IPBFRE],A(λ) ̸⇒ ⊥] .
(1)

To show that the advantage of B is at least as high as the advantage of A, what
remains to show is that B causes the game to output ⊥ only when A does so.

Therefore, let zj
0, z

j
1,u

j
0,u

j
1 be the input of the j-th Enc oracle query of B2.

The IND game for IPBFRE returns ⊥ if there are indices j, k with g(⟨zj
0, zk

0⟩) ̸=
g(⟨zj

1, zk
1⟩). Using that zj

b = uj
b ⊗ xj

b, we get

g(⟨uj
0,uk

0⟩⟨x
j
0,xk

0⟩) = g(⟨uj
0 ⊗ xj

0,uk
0 ⊗ xk

0⟩) = g(⟨zj
0, zk

0⟩)

̸= g(⟨zj
1, zk

1⟩) = g(⟨uj
1 ⊗ xj

1,uk
1 ⊗ xk

1⟩) = g(⟨uj
1,uk

1⟩⟨x
j
1,xk

1⟩) (2)

which implies ⟨uj
0,uk

0⟩ ̸= 0 or ⟨uj
1,uk

1⟩ ̸= 0 and thus ⟨uj
0,uk

0⟩ ̸= ⟨uj
1,uk

1⟩
or ⟨uj

0,uk
0⟩ = ⟨uj

1,uk
1⟩ = 1. In the latter case, we must have g(⟨xj

0,xk
0⟩) ̸=

g(⟨xj
1,xk

1⟩) to satisfy inequality (2). This shows, that also the IND game for
NZIP-AC-IPBFRE[IPBFRE] outputs ⊥ here.

With this, we see

Pr[Gind-1
IPBFRE,B(λ)⇒ ⊥] ≤ Pr[Gind-1

NZIP-AC-IPBFRE[IPBFRE],A(λ)⇒ ⊥] . (3)

Combining equations (1) and (3) yields the result.

Theorem 2 (SIM-security). If IPBFRE is SIM-secure, then NZIP-AC-IPBFRE[IPBFRE]
is SIM-secure. Concretely, for every adversary A against SIM-security of NZIP-AC-IPBFRE[IPBFRE],
there exists an adversary B against SIM-security of IPBFRE with roughly the
same runtime as A, such that for every simulator SB there exists a simulator SA

with
Advsim

NZIP-AC-IPBFRE[IPBFRE],A,SA
(λ) ≤ Advsim

IPBFRE,B,SB
(λ) .

18 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Proof. Let A = (A1,A2) be an adversary against the SIM-security of NZIP-AC-IPBFRE[IPBFRE].
We first construct an adversary B = (B1,B2) against the SIM-security of IPBFRE
in Fig. 8. Next, by SIM-security of IPBFRE, for an adversary B there exists a simu-
lator SB = (SB,1, SB,2, SB,3). Then, consider the simulator SA = (SA,1, SA,2, SA,3)
for NZIP-AC-IPBFRE[IPBFRE] for an adversary A also given in Fig. 8.

Adversary B = (B1,B2)

B1(1λ, pp):
1 (d, τ, st)←$ A1(1λ, pp)
2 return (d · τ, st)

B
EncO′(·)
2 (st):

3 b←$ A
EncO(·)
2 (st)

4 return b

EncO(x, u):
5 ct← EncO′(x⊗ u)
6 return ct

Simulator SA = (SA,1, SA,2, SA,3)

SA,1(1λ):
1 (pp, st)←$ SB,1(1λ)
2 return (pp, st)

SA,2(1d, 1τ , st):
3 st←$ SB,2(1d·τ , st)
4 return st

SA,3(Cip, st):
5 C′

ip ← Cip ∪ {((i, j), g(0)) | j ≤ i ∧ ∄ci,j : ((i, j), ci,j) ∈
Cip}

6 (ct, st)←$ SB,3(C′
ip, st)

7 return (ct, st)

Fig. 8. Adversary against SIM-security of IPBFRE and simulator for SIM security of
NZIP-AC-IPBFRE[IPBFRE].

The simulator stage SA,3 gets a set Cip of all function evaluations where the
corresponding tag vectors satisfy the access policy and adds them to the new
set C′

ip. Additionally, for every pair of vectors that has no inner-product value
stored in C′

ip (i.e. pairs of vectors that did not satisfy the access policy), it stores
them together with g(0) as inner product value in C′

ip.7 Since for any vectors x,y
encrypted under tags u,v that do not satisfy the access policy

g(⟨x⊗ u,y⊗ v⟩) = g(⟨x,y⟩⟨u,v⟩) = g(⟨x,y⟩ · 0) = g(0)
storing the value g(0) in C′

ip provides the correct function evaluation for the
underlying IPBFRE.

With this, we see
Pr[Gsim-1

NZIP-AC-IPBFRE[IPBFRE],A(λ)⇒ 1] = Pr[Gsim-1
IPBFRE,B(λ)⇒ 1]

7 For the relaxed version where the inner product of tags can be in {0} ∪ Z∗
m and g is

multiplicatively homomorphic the simulator has to compute the set C′
ip as

C′
ip ← {((i, j), ci,j · g((ui)⊤uj)) | ((i, j), ci,j) ∈ Cip ∧ (i, ui) ∈ T ∧ (j, uj) ∈ T }

∪ {((i, j), g(0)) | ∄ci,j : ((i, j), ci,j) ∈ Cip},

where T contains all tuples of indices and tags, which is an additional input to the
simulator in the non-tag hiding variant of the SIM-security game.

Access-Controlled Inner Product Function-Revealing Encryption 19

and

Pr[Gsim-0
NZIP-AC-IPBFRE[IPBFRE],A,SA

(λ)⇒ 1] = Pr[Gsim-0
IPBFRE,B,SB

(λ)⇒ 1] .

Subtracting yields the result.

4.2 From NZIP-AC-IPBFRE to small universe AC-IPBFRE

We show here how an NZIP-AC-IPBFRE can be used to realize AC-IPFRE for
general acceess policies in the small tag-universe case. The construction relies on
the following effective version of Lagrange’s four square therorem.

Theorem 3. There exists a PT algorithm LagrangeSoS that inputs an arbitrary
natural number x ∈ N and outputs (a1, a2, a3, a4) such that a2

1 + a2
2 + a2

3 + a2
4 = x.

Proof. The existence of such a solution follows from Lagrange’s four square
theorem: Every positive integer is the sum of four squares. Several proofs of this
classical theorem can be found for example in [29, §20.5].

Now, Rabin and Shallit presented algorithms that can find such a1, . . . , a4 for
m with expected time O((logm)2) if the extended Riemann hypothesis is true or
O((logm)2 log logm) without relying on unproven conjectures [46]. Pollack and
Treviño improved the expected runtime to O((logm)2(log logm)−1) [45].8

AC-IPFRE for general access policies. We demonstrate how a NZIP-AC-
IPFRE can be used to realize any access policy with an a priori fixed, polynomial
number of different tags. Let G = (V,E) be an undirected graph (with loops)
expressing this access policy. That is, V is the set of tags and {u, v} ∈ E iff it
is possible to compute the inner product between ciphertexts with tag u and
ciphertexts with tag v with Eval. In particular, the node u has a loop ({u} ∈ E)
iff it is possible to compute the inner product between two ciphertexts both
associated with tag u.

We now construct vectors to realize this access policy with a NZIP-AC-IPFRE.
Therefore, let L := {e ∈ E | |e| = 1} be the set of loops and fix an ordering
{v1, . . . , vn} = V on the set of nodes and {e1, . . . , em} = E \ L on the set of
non-loop edges. The construction uses dimension τ := m+ 4n. We define the tag
vector ui as follows:

8 Technically, we require worst-case polynomial runtime, which can be obtained by
relaxing to a negligible correctness error.

20 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

ui :=



bi,1
...

bi,m

0
...
0
ai,1
ai,2
ai,3
ai,4
0
...
0



m

 4(i− 1)

 4(n− i)

where

bi,k :=
{

1 if vi ∈ ek

0 otherwise

µi :=
m∑

k=1
bi,k

bi :=
{

1 if {vi} ∈ E
0 otherwise

(ai,j)j∈[4]←$ LagrangeSoS(mq − µi + bi)

The summand mq in the argument of LagrangeSoS avoids a negative argument
and can be replaced by any mutliple of q that is sufficiently large.

The following theorem formalizes that these vectors, when used as tag vectors
for an NZIP-AC-IPFRE, realize the access structured represented by the graph
G.

Theorem 4. Let G = (V,E) be an undirected graph (with loops), V =: {v1, . . . , vn},
and (ui)i∈[n] constructed as described above. Then for all i, j ∈ [n]

{vi, vj} ∈ E ⇒ ⟨ui,uj⟩ = 1

{vi, vj} /∈ E ⇒ ⟨ui,uj⟩ = 0

Proof. We first focus on the non-loop edges.

Case 1: Assume {vi, vj} ∈ E and i ≠ j. Then there exists an index k ∈ [m] such
that ek = {vi, vj} and thus bi,k = bj,k = 1. For all k′ ∈ [m] with k ̸= k′ we have
bi,k′ = 0 or bj,k′ = 0, because ek′ ̸= {vi, vj}. This yields

⟨ui,uj⟩ =
〈 bi,1

...
bi,m

 ,

 bj,1
...

bj,m

〉
= 1 .

Case 2: Assume {vi, vj} /∈ E and i ̸= j. Then for all k ∈ [m] we have bi,k = 0 or
bj,k = 0, because ek ̸= {vi, vj}. This yields

⟨ui,uj⟩ =
〈 bi,1

...
bi,m

 ,

 bj,1
...

bj,m

〉
= 0 .

Access-Controlled Inner Product Function-Revealing Encryption 21

Next, we consider the loops. For this, note that

⟨ui,ui⟩ =
〈



bi,1
...

bi,m

0
...
0
ai,1
ai,2
ai,3
ai,4
0
...
0



,



bi,1
...

bi,m

0
...
0
ai,1
ai,2
ai,3
ai,4
0
...
0



〉
= µi + a2

1 + a2
2 + a2

3 + a2
4 = bi .

Case 3: Assume {vi} ∈ E. Then by definition bi = 1 and thus ⟨ui,ui⟩ = 1.

Case 4: Assume {vi} /∈ E. Then by definition bi = 0 and thus ⟨ui,ui⟩ = 0.

4.3 Equivalence of FH-IPBFE and IPBFRE

Our construction of general AC-IPBFRE from NZIP-AC-IPBFRE in Section 4.2
can be directly used as FH-IPBFE by using a universe with two tags. FH-IBPFE
ciphertexts are then AC-IPBFRE ciphertexts with one tag and FH-IPFRE
functional keys are AC-IPBFRE ciphertexts with the other tags. We given an
optimized variant of this idea in Section A.2

Next, we describe how an an FH-IPBFE can be generically transformed to an
IPBFRE. Our transformation simply includes both a ciphertext and function key
of the FH-IPBFE in an IPBFRE ciphertext and is provided in the Appendix A.1.

Thus, we have showen the following implications that give us the equivalence
between FH-IPBFRE, IPBFRE, NZIP-AC-IPBFRE and AC-IBFRE with small
tag universe:

FH-IPBFE IPBFRE

NZIP-AC-IPBFREsmall universe AC-IPBFRE

Sec. A.1

Sec. 4.2

Sec. 4.1trivial
Sec. A.2

22 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

5 The TinyFHIPFE Scheme

Here we give a construction of FH-IPFE that borrows some techniques of Wee [50]
in the context of (non-function-hiding) quadratic FE and is more efficient than
prior constructions.

Bilinear groups. We consider asymmetric bilinear groups. An asymmetric
bilinear-group generator G takes as input 1λ and outputs a tuple (p, g1, g2,G1,G2,GT , e).
Here, G1,G2,GT are groups of order p, where p is a prime of λ bits, and g1, g2 gener-
ate G1,G2, respectively. The mapping e : G1×G2 → GT is an efficiently computable,
non-degenerate bilinear map. In particular, it satisfies e(ga

1 , g
b
2) = e(g1, g2)ab for

all a, b ∈ Zp, and e(g1, g2) generates GT .
For a group G of order p generated by g, for x ∈ Zp we write gx as [x]g We

omit the subscript g when it is evident from the context. For brevity, we also
write

∏
i∈[d] e(a[i],b[i]) as e(a,b), where a ∈ Gd

1 and b ∈ Gd
2.

Bounded IPFE. To capture ours and prior FH-IPFE constructions where inner-
product is recovered in the exponent of the target group, we introduce the notion
of bounded IPFE. In bounded IPFE, the Eval algorithm takes an additional input
1B for a bound B ∈ N and uses an algorithm Rec that on input (1B ,GT , gT , [z]gT

)
outputs m ∈ Zp such that m = DLogGT ,gT

([z]gT
) if m ≤ B or ⊥. Evaluation

correctness requires that

Pr[Eval(1B ,KeyGen(msk,x),Enc(msk,y)) = ⟨x,y⟩] = 1

for all B, λ, d ∈ N, all pp ∈ Out(PPGen(1λ)) and all msk ∈ Out(Setup(pp, 1d)),
where x,y ∈ Zd

m is such that ⟨x,y⟩ ≤ B. The probability is taken over the coins
of the Enc algorithm.

5.1 Our Construction

Let Gasym be an asymmetric bilinear-group generator and SL4(Zp) be the special
linear group of degree 4 over Zp. We define our bounded FH-IPFE scheme
named TinyFHIPFE in Fig. 9. (Recall pp is implicitly input to the remaining
algorithms.) Note that, like previous FH-IPFE schemes, it recovers inner-product
in the exponent. We find bounded inner-product is sufficient for the datasets
considered in Appendix 7. TinyFHIPFE uses a short master secret key linear in
the input vector dimension and a uniform random vector is sampled during each
encryption. In order to reduce the size of the ciphertext, aside from the linear
components encoding the input vector, other components of the ciphertext are
carefully chosen to make the cross terms constant size.

Proposition 2. TinyFHIPFE is evaluation correct.

Proof. Let λ, d ∈ N. Let pp←$ TinyFHIPFE.PPGen(1λ), msk←$ TinyFHIPFE.Setup(1λ, 1d)
ct← TinyFHIPFE.Enc(msk,y) and sk ← TinyFHIPFE.KeyGen(msk,x) for x,y ∈

Access-Controlled Inner Product Function-Revealing Encryption 23

PPGen(1λ):

1 (p, g1, g2, gT , G1, G2, GT , e)←$ Gasym(1λ)
2 pp← (p, g1, g2, gt, G1, G2, GT , e)
3 return pp

Setup(1λ, 1d):
4 B←$ SL4(Zp)
5 B∗ ← (B−1)T

6 A←$ Z2×d
p

7 msk← (A, B, B∗)
8 return msk

KeyGen(msk, x):

9 s←$ Z2
p

10 (A, B, B∗)← msk
11 skx ← [AT s + x]g1

12 skk ← [B · (s∥Ax + AAT s)]g1

13 sk← (skx, skk)
14 return sk

Enc(msk, y):

15 s←$ Z2
p

16 (A, B, B∗)← msk
17 cty ← [AT s + y]g2

18 ctc ← [B∗ · (Ay∥s)]g2

19 ct← (cty, ctc)
20 return ct

Eval(1B , sk, ct):
21 (skx, skk)← sk
22 (cty, ctc)← ct
23 [z]gT ← e(skx, cty)/e(skk, ctc)
24 z ← Rec(1B , GT , gT , [z]gT)
25 return z

Fig. 9. The TinyFHIPFE Construction.

Zd
p, we have (cty, ctc)← ct and (skx, skk)← sk, then

e(skx, cty) = e(g1, g2)⟨AT s1+x,AT s2+y⟩

= [⟨AT s1 + x,AT s2 + y⟩]gT

= [⟨AT s1,AT s2⟩+ ⟨AT s1,y⟩+ ⟨x,AT s2⟩+ ⟨x,y⟩]gT

= [sT
1 AAT s2 + sT

1 Ay + xT AT s2 + ⟨x,y⟩]gT
.

Similarly, we have that:

e(skk, ctc) = [⟨B · (s1∥Ax + AAT s1), B∗ · (Ay∥s2)⟩]gT

= [(sT
1 Ay + xT AT s2 + sT

1 AAT s2)]gT
.

Thus, [z]gT
= e(skx, cty)/e(skk, ctc) = g

⟨x,y⟩
T . Finally, by definition of Rec,

Rec(1B ,GT , gT , [z]gT
) outputs ⟨x,y⟩ when ⟨x,y⟩ ≤ B.

Remark 3. We can also construct a similarly structured IPFRE scheme by letting
each ciphertext contain three components all in a symmetric group source:
ctx, skk, ctc. Correctness of the scheme would follow similar to the correctness of
TinyFHIPFE. Here each ciphertext has d+ 8 group elements.

Security. We show SIM-security of TinyFHIPFE in the generic bilinear group
model. Note that multi-message SIM-security, even for non-FH IPFE, is im-
possible [6], so our reliance on idealized models to show SIM-security, which is

24 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

the most meaningful security notion in practice, is essential here. Prior work
on FH-IPFE by Kim et al. [36] similarly analyze their FH-IPFE scheme in the
generic bilinear group model (but do not give an explicit advantage bound).

Theorem 5. TinyFHIPFE is simulation-secure in the generic bilinear group
model. In particular, for every adversary A that makes qt total queries to its
oracles, there exists a simulator S such that

Advsim-ggm
IPFRE,A,S(λ) ≤ (4qt(d+ 4))2

p
.

The description of the bilinear generic group model and the details of the
proof are provided in Appendix B.

6 Outsourced Database Protocols for ANN Search

In this Section, first we present a generic construction of an AC-IPFRE for the
access policy aann. Then, we present our ODB protocol for ANN that uses this
AC-IPFRE. The formal definitions of an ANN data structure and an outsourced
database protocol are in the Appendix C along with the security proofs of
AC-IPFRE[FH-IPFE] and ANN-ODB[AC-IPFRE].

6.1 The AC-IPFRE[FH-IPFE] scheme

We give a transform that lifts any IPFRE to an AC-IPFRE for the access policy
aann. This transform is tailored to aann and is more efficient than going through
the general transform from IPFRE to small tag universe AC-IPFRE in Section 4.
We discuss the choice of the access policy function in the introduction, so here
we directly present the function aann with tag-space {data, query, update}. (The
first two arguments of the function namely pp and aux are ignored.):

aann(tag1, tag2) =


0 if tag1 = tag2 = data,
0 if tag1 = tag2 = query,
1 otherwise.

Our construction. Our construction gives an AC-IPFRE for the access policy
aann defined based on any FH-IPFE scheme. In particular, to allow ciphertexts
whose tag is update, we include both the ciphertext and function key for the
input vector. Define an AC-IPFRE scheme AC-IPFRE[FH-IPFE] as in Fig. 10.

Correctness. Evaluation of inner product requires evaluating a skx component
from one ciphertext with a ctx component from another ciphertext respectively.
We can see by observing the cases in lines 18-21 that the inner product evaluation
is possible for each case where the access function allows it. Correctness of lines
14 and 16 follow from evaluation correctness of the underlying FH-IPFE scheme.

Access-Controlled Inner Product Function-Revealing Encryption 25

PPGen(1λ):

1 pp← FH-IPFE.PPGen(1λ)
2 return pp

Setup(1d, aux):

3 msk← FH-IPFE.Setup(1d)
4 return msk

Enc(msk, tag, x):
5 if tag = data :
6 ctx ← FH-IPFE.Enc(msk, x)
7 ct← (⊥, ctx)
8 if tag = query :
9 skx ← FH-IPFE.KeyGen(msk, x)

10 ct← (skx,⊥)
11 if tag = update :
12 skx ← FH-IPFE.KeyGen(msk, x)
13 ctx ← FH-IPFE.Enc(msk, x)
14 ct← (skx, ctx)
15 return ct

Eval(1B , ct1, ct2):
16 (skx1 , ctx1)← ct1
17 (skx2 , ctx2)← ct2
18 if skx1 ̸= ⊥ and ctx2 ̸= ⊥ :
19 return FH-IPFE.Eval(skx1 , ctx2)
20 if skx2 ̸= ⊥ and ctx1 ̸= ⊥ :
21 return FH-IPFE.Eval(skx2 , ctx1)
22 else return ⊥

Fig. 10. The AC-IPFRE[FH-IPFE] construction.

Remark 4. Alternatively, one can construct an IPFRE scheme as discussed in Re-
mark 3 and use it to construct an AC-IPFRE by omitting one of the components.
More precisely, an IPFRE ciphertext contains three components: ctx, ctc, ctk.
An AC-IPFRE ciphertext omits the components ctc and ctk for ciphertext with
tags data and query respectively and keeps the ciphertext as is for tag update.
While the ciphertexts have smaller size with respect to the number of group
elements, we do not present this construction due to the difference in performance
of symmetric and asymmetric groups for the same security parameter.

Security. Security of AC-IPFRE[FH-IPFE] follows generically from the security
of the underlying FH-IPFE. This security proof is given in the Appendix C.3.

6.2 Our ANN ODB Protocol

Here, we present our ANN ODB protocol that uses an AC-IPFRE for the access
policy aann. The communication flow of the protocol is given in Fig. 11 and the
algorithms of the protocol are given in Fig. 12. Note that the user and the server
use different version of the comparison oracles because of the difference in their
databases.
Security. First we give the leakage profile of the protocol ANN-ODB[AC-IPFRE]
in Fig. 13.

26 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Fig. 11. Communication flow of ANN ODB protocol.

ANN-ODB[AC-IPFRE] Protocol

Setup(1λ, 1d, 1n,Dinit):
1 pp←$ AC-IPFRE.PPGen(1λ)
2 msk← AC-IPFRE.Setup(1λ, 1d)
3 DSANN.Initialize(p, d, params)
4 D←$ Shuffle(Dinit)
5 {(xi, IDi)}i∈[n] ← D
6 for i ∈ [n] :
7 DSANN.InsertCompO(·,·,·)(IDi)
8 cti←$ AC-IPFRE.Enc(msk, data,D[IDi])
9 DS [IDi]← cti

10 return (DSANN,DS)
PreQuery(q, IDq):
11 ctq←$ AC-IPFRE.Enc(msk, query, q)
12 return (ctq, IDq)
Query(DSANN, (ctq, IDq)):
13 ID← DSANN.SearchCompO(·,·,·)(IDq)
14 return ID
PreUpdate(u, IDu):
15 ctu←$ AC-IPFRE.Enc(msk, update, u)
16 return (ctu, IDu)
Update(DSANN, (ctu, IDu)):
17 DSANN.InsertCompO(·,·,·)(IDu)
18 return ⊥

CompOU (ID1, ID2, ID3):
19 for i ∈ [3] :
20 xi ← D[IDi]
21 if ⟨x1, x2⟩ > ⟨x2, x3⟩: return 1
22 else : return 0
CompOS(ID1, ID2, ID3):
23 for i ∈ [3] :
24 cti ← DS [IDi]
25 ip1 ← AC-IPFRE.Eval(ct1, ct2)
26 ip2 ← AC-IPFRE.Eval(ct1, ct3)
27 if ip1 > ip2 : return 1
28 else : return 0

Shuffle(Dold):
29 Dnew ← ∅
30 n← length(Dold)
31 σ←$ Sn
32 for i ∈ [n] :
33 Dnew[IDi]← Dold[IDσ(i)]
34 return Dnew

Fig. 12. ANN-ODB[AC-IPFRE] protocol.

Access-Controlled Inner Product Function-Revealing Encryption 27

Leakage Profile LP
LSetup(D, insert-order):
1 for i, j, k ∈ [n] :
2 xi ← D[IDi]; xj ← D[IDj]; xk ← D[IDk]
3 if ⟨xi, xj⟩ > ⟨xi, xk⟩:
4 ip-comp[IDi][IDj][IDk]← 1
5 else :
6 ip-comp[IDi][IDj][IDk]← 0
7 if insert-order = ⊥ :
8 insert-order← {1, . . . , n}
9 ℓSetup ← ip-comp ∪ insert-order

10 return ℓSetup

LQuery(q,D,Q):
11 ((ID1, x1), . . . , (IDn, xn))← D
12 for i ∈ [n] :
13 ip-val[IDi]← ⟨q,D[IDi]⟩
14 ℓQuery ← ip-val
15 return ℓQuery

LUpdate(u,D,Q):
16 ((ID1, x1), . . . , (IDn, xn))← D
17 ((IDn+1, q1), . . . , (IDn+m, qm))← Q
18 for i ∈ [n] :
19 ip-val[IDi]← ⟨u, xi⟩
20 for i ∈ [m] :
21 ip-val[IDn+i]← ⟨u, qi⟩
22 ℓUpdate ← ip-val
23 return ℓUpdate

Fig. 13. Leakage Profile of ANN-ODB[AC-IPFRE].

Theorem 6. Our ANN-ODB protocol ANN-ODB[AC-IPFRE] is SIM-secure un-
der the leakage profile LP = (LSetup,LQuery,LUpdate) given in Fig. 13, given that
AC-IPFRE is a SIM-secure for access policy aann.

The proof follows easily from SIM-security of the underlying AC-IPFRE and
has been deferred to the Appendix C.4.

7 Experimental Evaluation

In this Section, we first evaluate the performance of the proposed TinyFHIPFE
scheme and compare it with prior schemes [36,37] to demonstrate its computa-
tional efficiency. We then implement the proposed ANN-ODB protocol, initiated
by AC-IPFRE[TinyFHIPFE], to illustrate its practicality. For simplicity, we denote
this protocol as Π in the following discussion.

28 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Implementation setup. For the implementation of the underlying bilinear
pairing group, we utilized the Relic library [8], and configured the Curve25519 [13].
Our experiments were conducted on a laptop equipped with an Intel I7-9750H
CPU and 16 GB of memory, running Ubuntu 22.04.

7.1 FH-IPFE Benchmarks
We benchmark the proposed TinyFHIPFE against FH-IPFE schemes proposed
in [36,37], denoted as KLM+ and KKS, respectively. We choose KLM+ as a com-
parison target due to its compact ciphertext length and efficient Eval algorithm.
However, its Setup algorithm is slow because it computes the inverse of a matrix
of size d× d, which takes time O(d3). KKS attempt to address this issue by using
O(d) master secret key but their ciphertexts and function keys are longer than
both KLM+ and TinyFHIPFE. As illustrated in Fig. 14, the proposed TinyFHIPFE
exhibits even better performance. Our Setup time is almost always negligible,
involving sampling of only 2d+ 16 random elements from Zp and a constant-time
operation of finding the inverse of a 4× 4 matrix.

Fig. 14. Benchmarking FH-IPFE schemes.

The proposed TinyIPFRE also outperforms in Enc and KeyGen operations.
While KLM+’s Enc and KeyGen involve d2 multiplications in Zp, which are
cheaper than group multiplication and exponentiation, their performance dimin-
ishes as plaintext length increases. For example, for plaintexts of length 500,
KLM+.Enc runs roughly 7.5x slower than TinyFHIPFE.Enc. KKS performs a linear
number of operations for both Enc and KeyGen, yet they have worse runtime
because they perform more expensive group exponentiation. Namely, on average,
KKS.Enc is 6.5x slower than TinyFHIPFE.Enc, and KKS.KeyGen is 2.6x slower
than TinyFHIPFE.KeyGen.

To benchmark performance of the Eval operation, we bound the resulting
inner-product by 10,000. The results presented here assume preprocessing, wherein

Access-Controlled Inner Product Function-Revealing Encryption 29

a lookup table is constructed for TinyFHIPFE and KKS that allows solving the
discrete logarithm to a fixed based in constant time. Notably, KLM+ does not
support such preprocessing because its evaluation algorithm does not solve discrete
logarithm with respect to a fixed base. In this case, KKS.Eval runs approximately
2x than TinyFHIPFE.Eval, with KLM+.Eval falling significantly further behind.
Overall, we fine that TinyFHIPFE exhibits significantly better performance than
prior schemes, particularly for long plaintexts.

7.2 ANN-ODB Evaluation

In the following evaluation, we conduct experiments using the following datasets:
SIFT [31], MNIST [39], NYTimes [42], and GloVe [44]. These datasets are
commonly used for benchmarking ANN algorithms [9] and their details are shown
in Table 2. The “max inner product” is the maximum value of all pairwise inner
products of vectors from the dataset. This value is useful later when we build
lookup tables for solving discrete log problem in constant time.

SIFT MNIST NYTimes GloVe
Dimension 128 784 256 100
Train Size 1,000,000 60,000 290,000 1,183,514
Distance Metric Euclidean Euclidean Angular Angular
Max Inner Product 24649 65025 74540 6326734

Table 2. Overview of datasets used in evaluation.

Choice of ANN data structure. Recall that we require the underlying ANN
data structure to be inner product based. Fortunately, this is the case for the
state-of-the-art Hierarchical Navigable Small Worlds (HNSW) algorithm [41,9].
In the evaluation below we use the following parameters to setup the HNSW
algorithm: M = 32, where M is the number of connections made for each new
vertex during construction, efConstruction = 30 where efConstruction is the
number of candidate neighbors explored during construction, and efSearch = 256,
where efSearch is the number of candidate neighbors explored during search.
Evaluation Results. We present the evaluation results of Π in Table 3. We
divide the setup oracle into three phases: the index phase, the encryption phase,
and the preprocessing phase. In the index phase, the user indexes the plaintext
data vectors using the HNSW algorithm, which is independent of the choice of
the underlying encryption scheme. The preprocessing time is time needed to
build the lookup table. The query time evaluation encompasses both the time
taken by the client U to encrypt the query and the time it takes for the server to
respond. Note that we omit network latency in this evaluation since there is only
one round of communication involved. To determine the query time, we index
the entire training set and then select 50 vectors from the testing set to query,

30 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

SIFT MNIST NYTimes GloVe

Setup
Index 315.2s 48.6s 144.7s 362.9s

Encryption 55m 4m 17m 68m
Preprocessing 8.1s 23.3s 25.7s 2111.2s
Query 8.5s 23.5s 11.4s 7.3s
Update 7.6s 22.2s 10.1s 6.6s

Table 3. Evaluation of our ANN-ODB protocol.

computing the average time of querying one vector. Similarly, the update protocol
evaluates the time taken by the client U to encrypt an update query and the time
it takes for the server to add it to the index. In this scenario, we index the first
90% of the training dataset and add 50 more vectors from the training set to the
index, calculating the average time of updating one datapoint. Notably, during
both the query and update phases, the client remains extremely lightweight,
with execution times of only 20ms and 38ms, respectively. Additionally, the vast
majority of the computational workload is handled on the server side.

Comparison to other systems. Boldyreva and Tang [18] present a protocol
that operates in the same setting as ours. They present a construction based on
locality-sensitive hashing, symmetric encryption, and an oblivious map, which
achieves strong security, in particular hiding access pattern. However, their scheme
significantly less practical than ours. In particular, running a search query on the
MNIST dataset involves an interactive phase between the client and the server,
where at least 11 calls to their most expensive component are made, lasting over
8 minutes in duration. Also note they achieve a 95% recall rate on SIFT, whereas
we always achieve the baseline recall rate, here 98.3%.

Acknowledgements

We thank Hamed Zamani for helpful conversations about recent applications of
approximate nearest-neighbor search.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz [34], pp. 733–751. https://doi.org/10.1007/
978-3-662-46447-2_33 7

2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryp-
tion with fine-grained access control. In: Moriai, S., Wang, H. (eds.) Advances in
Cryptology – ASIACRYPT 2020, Part III. Lecture Notes in Computer Science, vol.
12493, pp. 467–497. Springer, Cham, Switzerland, Daejeon, South Korea (Dec 7–11,
2020). https://doi.org/10.1007/978-3-030-64840-4_16 2, 10

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16

Access-Controlled Inner Product Function-Revealing Encryption 31

3. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: On the practical security of inner product functional encryp-
tion. In: Katz [34], pp. 777–798. https://doi.org/10.1007/978-3-662-46447-2_
35 3

4. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption from
pairings. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021,
Part IV. Lecture Notes in Computer Science, vol. 12828, pp. 208–238. Springer,
Cham, Switzerland, Virtual Event (Aug 16–20, 2021). https://doi.org/10.1007/
978-3-030-84259-8_8 2

5. Agrawal, S., Goyal, R., Tomida, J.: Multi-party functional encryption. In: Nissim,
K., Waters, B. (eds.) TCC 2021: 19th Theory of Cryptography Conference, Part II.
Lecture Notes in Computer Science, vol. 13043, pp. 224–255. Springer, Cham,
Switzerland, Raleigh, NC, USA (Nov 8–11, 2021). https://doi.org/10.1007/
978-3-030-90453-1_8 2

6. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for
inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020: 23rd International Conference on Theory and Practice
of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol.
12110, pp. 34–64. Springer, Cham, Switzerland, Edinburgh, UK (May 4–7, 2020).
https://doi.org/10.1007/978-3-030-45374-9_2 23

7. Aladow, N.S.: On the ditribution of quadratic residues and nonresidues of a prime
P in the series 1, 2, . . . , P − 1. Matematicheskii Sbornik 18(1), 61–75 (1896), http:
//mi.mathnet.ru/eng/msb/v18/i1/p61 39

8. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic
28

9. Aumüller, M., Bernhardsson, E., Faithfull, A.: Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms (2018) 29

10. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) Advances in Cryptology – CRYPTO 2007. Lecture
Notes in Computer Science, vol. 4622, pp. 535–552. Springer, Berlin, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2007). https://doi.org/10.1007/
978-3-540-74143-5_30 7

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) Advances in Cryptology –
EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 409–426.
Springer, Berlin, Heidelberg, Germany, St. Petersburg, Russia (May 28 – Jun 1,
2006). https://doi.org/10.1007/11761679_25 8

12. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of
Computation 24(111), 713–735 (1970), http://www.jstor.org/stable/2004849
39

13. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006: 9th International Conference
on Theory and Practice of Public Key Cryptography. Lecture Notes in Computer
Science, vol. 3958, pp. 207–228. Springer, Berlin, Heidelberg, Germany, New York,
NY, USA (Apr 24–26, 2006). https://doi.org/10.1007/11745853_14 28

14. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption.
In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASIACRYPT 2015,
Part I. Lecture Notes in Computer Science, vol. 9452, pp. 470–491. Springer,
Berlin, Heidelberg, Germany, Auckland, New Zealand (Nov 30 – Dec 3, 2015).
https://doi.org/10.1007/978-3-662-48797-6_20 7

https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-662-46447-2_35
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-030-90453-1_8
https://doi.org/10.1007/978-3-030-45374-9_2
https://doi.org/10.1007/978-3-030-45374-9_2
http://mi.mathnet.ru/eng/msb/v18/i1/p61
http://mi.mathnet.ru/eng/msb/v18/i1/p61
https://github.com/relic-toolkit/relic
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
http://www.jstor.org/stable/2004849
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-662-48797-6_20
https://doi.org/10.1007/978-3-662-48797-6_20

32 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

15. Bogatov, D., Kellaris, G., Kollios, G., Nissim, K., O’Neill, A.: ϵpsolute: Efficiently
querying databases while providing differential privacy. In: Vigna, G., Shi, E. (eds.)
ACM CCS 2021: 28th Conference on Computer and Communications Security.
pp. 2262–2276. ACM Press, Virtual Event, Republic of Korea (Nov 15–19, 2021).
https://doi.org/10.1145/3460120.3484786 59

16. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) Advances in Cryptology – EUROCRYPT 2009.
Lecture Notes in Computer Science, vol. 5479, pp. 224–241. Springer, Berlin,
Heidelberg, Germany, Cologne, Germany (Apr 26–30, 2009). https://doi.org/10.
1007/978-3-642-01001-9_13 7

17. Boldyreva, A., Gui, Z., Warinschi, B.: Understanding leakage in searchable en-
cryption: a quantitative approach. Cryptology ePrint Archive, Paper 2024/1558
(2024). https://doi.org/10.56553/popets-2024-0127, https://eprint.iacr.
org/2024/1558 7

18. Boldyreva, A., Tang, T.: Privacy-preserving approximate k-nearest-neighbors
search that hides access, query and volume patterns. Proceedings on Privacy
Enhancing Technologies 2021(4), 549–574 (Oct 2021). https://doi.org/10.2478/
popets-2021-0084 5, 30

19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011: 8th Theory of Cryptography Conference. Lecture
Notes in Computer Science, vol. 6597, pp. 253–273. Springer, Berlin, Heidelberg,
Germany, Providence, RI, USA (Mar 28–30, 2011). https://doi.org/10.1007/
978-3-642-19571-6_16 2

20. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner
product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) Ad-
vances in Cryptology – ASIACRYPT 2018, Part II. Lecture Notes in Computer Sci-
ence, vol. 11273, pp. 733–764. Springer, Cham, Switzerland, Brisbane, Queensland,
Australia (Dec 2–6, 2018). https://doi.org/10.1007/978-3-030-03329-3_25 7

21. Catalano, D., De Prisco, R. (eds.): SCN 18: 11th International Conference on
Security in Communication Networks, Lecture Notes in Computer Science, vol.
11035. Springer, Cham, Switzerland, Amalfi, Italy (Sep 5–7, 2018) 33

22. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang,
B.Y. (eds.) PKC 2016: 19th International Conference on Theory and Practice of
Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 9614, pp.
164–195. Springer, Berlin, Heidelberg, Germany, Taipei, Taiwan (Mar 6–9, 2016).
https://doi.org/10.1007/978-3-662-49384-7_7 7

23. Dowerah, U., Dutta, S., Mitrokotsa, A., Mukherjee, S., Pal, T.: Unbounded predicate
inner product functional encryption from pairings. Journal of Cryptology 36(3),
29 (Jul 2023). https://doi.org/10.1007/s00145-023-09458-2 2, 14

24. Fuchsbauer, G., Ghosal, R., Hauke, N., O’Neill, A.: Approximate distance-
comparison-preserving symmetric encryption. In: Galdi, C., Jarecki, S. (eds.) SCN
22: 13th International Conference on Security in Communication Networks. Lecture
Notes in Computer Science, vol. 13409, pp. 117–144. Springer, Cham, Switzerland,
Amalfi, Italy (Sep 12–14, 2022). https://doi.org/10.1007/978-3-031-14791-3_6
7

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits.
In: 54th Annual Symposium on Foundations of Computer Science. pp. 40–49.

https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.56553/popets-2024-0127
https://doi.org/10.56553/popets-2024-0127
https://eprint.iacr.org/2024/1558
https://eprint.iacr.org/2024/1558
https://doi.org/10.2478/popets-2021-0084
https://doi.org/10.2478/popets-2021-0084
https://doi.org/10.2478/popets-2021-0084
https://doi.org/10.2478/popets-2021-0084
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/978-3-031-14791-3_6
https://doi.org/10.1007/978-3-031-14791-3_6

Access-Controlled Inner Product Function-Revealing Encryption 33

IEEE Computer Society Press, Berkeley, CA, USA (Oct 26–29, 2013). https:
//doi.org/10.1109/FOCS.2013.13 2

26. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E.
(eds.) Advances in Cryptology – EUROCRYPT 2014. Lecture Notes in Computer
Science, vol. 8441, pp. 578–602. Springer, Berlin, Heidelberg, Germany, Copenhagen,
Denmark (May 11–15, 2014). https://doi.org/10.1007/978-3-642-55220-5_32
2, 7

27. Haagh, H., Ji, Y., Li, C., Orlandi, C., Song, Y.: Revealing encryption for partial
ordering. In: O’Neill, M. (ed.) Cryptography and Coding - 16th IMA International
Conference, IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings. Lecture
Notes in Computer Science, vol. 10655, pp. 3–22. Springer (2017) 2, 7

28. Hadjiabadi, M., Langrehr, R., O’Neill, A., Wang, M.: On the black-box complexity
of private-key inner-product functional encryption. In: TCC (2024), To appear. 7

29. Hardy, G., Wright, E., Heath-Brown, D., Silverman, J.: An Introduction to the
Theory of Numbers. Oxford mathematics, Oxford University Press, sixth edn. (2008)
19, 39

30. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Khuller, S., Williams, V.V. (eds.) 53rd Annual ACM Symposium
on Theory of Computing. pp. 60–73. ACM Press, Virtual Event, Italy (Jun 21–25,
2021). https://doi.org/10.1145/3406325.3451093 2

31. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence 33(1), 117–128
(2010) 29

32. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data 7(3), 535–547 (2019) 4

33. Joye, M., Passelègue, A.: Function-revealing encryption - definitions and construc-
tions. In: Catalano and De Prisco [21], pp. 527–543. https://doi.org/10.1007/
978-3-319-98113-0_28 2, 6, 7

34. Katz, J. (ed.): PKC 2015: 18th International Conference on Theory and Practice of
Public Key Cryptography, Lecture Notes in Computer Science, vol. 9020. Springer,
Berlin, Heidelberg, Germany, Gaithersburg, MD, USA (Mar 30 – Apr 1, 2015) 30,
31

35. Khattab, O., Zaharia, M.: Colbert: Efficient and effective passage search via con-
textualized late interaction over bert. In: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
p. 39–48. SIGIR ’20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3397271.3401075, https://doi.org/10.1145/
3397271.3401075 4

36. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding
inner product encryption is practical. In: Catalano and De Prisco [21], pp. 544–562.
https://doi.org/10.1007/978-3-319-98113-0_29 4, 6, 7, 24, 27, 28, 47

37. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private
inner product encryption. Theoretical Computer Science 783, 22–40 (2019).
https://doi.org/https://doi.org/10.1016/j.tcs.2019.03.016, https://www.
sciencedirect.com/science/article/pii/S0304397519301690 6, 7, 27, 28

38. Lai, Q., Liu, F.H., Wang, Z.: New lattice two-stage sampling technique and its
applications to functional encryption - stronger security and smaller ciphertexts. In:
Canteaut, A., Standaert, F.X. (eds.) Advances in Cryptology – EUROCRYPT 2021,
Part I. Lecture Notes in Computer Science, vol. 12696, pp. 498–527. Springer,

https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-319-98113-0_28
https://doi.org/10.1007/978-3-319-98113-0_28
https://doi.org/10.1007/978-3-319-98113-0_28
https://doi.org/10.1007/978-3-319-98113-0_28
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/https://doi.org/10.1016/j.tcs.2019.03.016
https://doi.org/https://doi.org/10.1016/j.tcs.2019.03.016
https://www.sciencedirect.com/science/article/pii/S0304397519301690
https://www.sciencedirect.com/science/article/pii/S0304397519301690

34 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Cham, Switzerland, Zagreb, Croatia (Oct 17–21, 2021). https://doi.org/10.1007/
978-3-030-77870-5_18 2

39. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010) 29

40. Lin, J., Nogueira, R.F., Yates, A.: Pretrained Transformers for Text Ranking:
BERT and Beyond. Synthesis Lectures on Human Language Technologies, Morgan
& Claypool Publishers (2021) 4

41. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell. 42(4), 824–836 (2020) 5, 29

42. Newman, D.: Bag of Words. UCI Machine Learning Repository (2008), DOI:
https://doi.org/10.24432/C5ZG6P 29

43. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT 2012.
Lecture Notes in Computer Science, vol. 7237, pp. 375–391. Springer, Berlin, Hei-
delberg, Germany, Cambridge, UK (Apr 15–19, 2012). https://doi.org/10.1007/
978-3-642-29011-4_23 3, 7, 36

44. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP). pp.
1532–1543 (2014), http://www.aclweb.org/anthology/D14-1162 29

45. Pollack, P., Treviño, E.: Finding the four squares in lagrange’s theorem. Integers:
Electronic Journal of Combinatorial Number Theory 18A (2018). https://doi.
org/10.5281/zenodo.10581444 3, 19

46. Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory.
Communications on Pure and Applied Mathematics 39(S1), S239–S256
(1986). https://doi.org/https://doi.org/10.1002/cpa.3160390713, https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713 3, 19

47. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) Advances in Cryptology – EUROCRYPT’97. Lecture Notes in Computer
Science, vol. 1233, pp. 256–266. Springer, Berlin, Heidelberg, Germany, Konstanz,
Germany (May 11–15, 1997). https://doi.org/10.1007/3-540-69053-0_18 47

48. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016:
19th International Conference on Information Security. Lecture Notes in Computer
Science, vol. 9866, pp. 408–425. Springer, Cham, Switzerland, Honolulu, HI, USA
(Sep 3–6, 2016). https://doi.org/10.1007/978-3-319-45871-7_24 7

49. Ünal, A.: Impossibility results for lattice-based functional encryption schemes.
In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology – EUROCRYPT 2020,
Part I. Lecture Notes in Computer Science, vol. 12105, pp. 169–199. Springer,
Cham, Switzerland, Zagreb, Croatia (May 10–14, 2020). https://doi.org/10.
1007/978-3-030-45721-1_7 3

50. Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptography Conference,
Part I. Lecture Notes in Computer Science, vol. 12550, pp. 210–228. Springer,
Cham, Switzerland, Durham, NC, USA (Nov 16–19, 2020). https://doi.org/10.
1007/978-3-030-64375-1_8 5, 22

51. Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P.N., Ahmed, J., Overwijk,
A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: International Conference on Learning Representations. ICLR ’21
(2021), https://openreview.net/forum?id=zeFrfgyZln 4

https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-030-77870-5_18
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.5281/zenodo.10581444
https://doi.org/10.5281/zenodo.10581444
https://doi.org/10.5281/zenodo.10581444
https://doi.org/10.5281/zenodo.10581444
https://doi.org/https://doi.org/10.1002/cpa.3160390713
https://doi.org/https://doi.org/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160390713
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-030-45721-1_7
https://doi.org/10.1007/978-3-030-45721-1_7
https://doi.org/10.1007/978-3-030-45721-1_7
https://doi.org/10.1007/978-3-030-45721-1_7
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://openreview.net/forum?id=zeFrfgyZln

Access-Controlled Inner Product Function-Revealing Encryption 35

52. Zeng, H., Zamani, H., Vinay, V.: Curriculum learning for dense retrieval distillation.
In: Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. p. 1979–1983. SIGIR ’22, Association for
Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3477495.3531791, https://doi.org/10.1145/3477495.3531791 4

https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791

36 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

A Equivalence of FH-IPBFE and IPBFRE

We show here the omitted steps for the equivalence of FH-IPBFE and IPBFRE
in detail.

A.1 From FH-IPBFE to IPBFRE

First, we give a transformation that takes an FH-IPBFE and constructs an
IPBFRE using the FH-IPBFE scheme. This transformation uses ideas from [43].
This transformation does not use any specifics about inner-product functionalities.
It can be generalized to turn FH-FE for any function class F into FRE for the
function g(x, yf) := f(x), where yf is a suitable encoding of f , if the function g
is symmetric.

Let FH-IPBFE = (PPGen,Setup,Enc,KeyGen,Dec) be an FH-IPBFE scheme
with message-space and key-space Zd

p for a prime p and dimension d ∈ N. Define
the associated IPBFRE scheme IPBFRE[FH-IPBFE] = (PPGen,Setup,Enc′,Eval′)
with message-space Zd

p where PPGen and Setup remain the same as FH-IPBFE
and the rest is given in Fig. 15.

Enc′(msk, x):
1 ctx←$ FH-IPBFE.Enc(msk, x)
2 skx←$ FH-IPBFE.KeyGen(msk, x)
3 ct′

x ← (ctx, skx)
4 return ct′

x

Eval′(ct′
x1 , ct′

x2):

5 (ctx1 , skx1) ← ct′
x1 ; (ctx2 , skx2) ←

ct′
x2

6 y←$ FH-IPBFE.Dec(skx1 , ctx2)
7 return y

Fig. 15. Transform from FH-IPBFE to IPBFRE.

Proposition 3. If FH-IPBFE is decryption correct, then IPBFRE[FH-IPBFE] is
evaluation correct.

Proof. Let pp ∈ Out(FH-IPBFE.PPGen(1λ)), msk ∈ Out(FH-IPBFE.Setup(pp, 1d))
for λ, d ∈ N. Next, let skx1 ∈ Out(FH-IPBFE.KeyGen(msk,x1)) and ctx2 ∈
Out(FH-IPBFE.Enc(msk,x2)). By decryption correctness of FH-IPBFE, we know
that FH-IPBFE.Dec(pp, skx1 , ctx2) = g(⟨x1,x2⟩). We have that

IPBFRE[FH-IPBFE].Eval(ct′
x1
, ct′

x2
) = FH-IPBFE.Dec(skx1 , ctx2).

Thus, evaluation correctness of IPBFRE[FH-IPBFE] is fulfilled.

Access-Controlled Inner Product Function-Revealing Encryption 37

Theorem 7 (IND-security). If FH-IPBFE is IND-secure, then IPBFRE[FH-IPBFE]
is IND-secure. Concretely, for every adversary A against the IND-security of
IPBFRE[FH-IPBFE], there exists an adversary B against the IND-security of
FH-IPBFE with roughly the same runtime as A such that for every λ ∈ N

Advind
FH-IPBFE,B(λ) = Advind

IPBFRE[FH-IPBFE],A(λ) .

Proof. Let A be an adversary against IND-security of IPBFRE[FH-IPBFE]. We
construct an adversary B against IND-security of FH-IPBFE in Figure 16.

Adversary B = (B1,B2)

B1(1λ, pp):
1 (d, st)←$ A1(1λ, pp)
2 return (d, st)

B
EncO′(·,·),KeyGenO′(·,·)
2 (st):

3 b′←$ A
EncO(·,·)
2 (st)

4 return b′

EncO(x0, x1):
5 ctx ← EncO′(x0, x1)
6 skx ← KeyGenO′(x0, x1)
7 ct← (ctx, skx)
8 return ct

Fig. 16. Adversary against IND-security of IPBFRE[FH-IPBFE].

It is easy to see that when A plays the Gind-b
IPBFRE[FH-IPBFE],A(λ) game, it perfectly

simulates the game Gind-b
FH-IPBFE,B(λ) for B and outputs the same bit as B. To show

that these adversaries have the same advantage, what remains to show is that A
causes the game to output ⊥ exactly when B does.

Assume A causes the game to output ⊥. Then A made Enc queries with
(xj

0,x
j
1) and (xk

0 ,xk
1) such that g(⟨xj

0,xk
0⟩) ̸= g(⟨xj

1,xk
1⟩). In order to simulate

these oracle queries, B made in particular an Enc′ query for (xj
0,x

j
1) and an

KeyGen′ query for (xk
0 ,xk

1). Thus also B causes its game to abort.
Next, assume B causes the game to abort. Then B made an Enc′ query for

(xi
0,xi

1) and an KeyGen′ query for (yj
0,y

j
1) such that g(⟨xi

0,y
j
0⟩) ̸= g(⟨xi

1,y
j
1)⟩.

These queries could only be cause by A making Enc queries for (xi
0,xi

1) and
(yj

0,y
j
1). Thus, A also made its game abort.

With this, we see

Pr[Gind-1
FH-IPBFE,B(λ)⇒ 1] = Pr[Gind-1

IPBFRE[FH-IPBFE],A(λ)⇒ 1]

and
Pr[Gind-0

FH-IPBFE,B(λ)⇒ 1] = Pr[Gind-0
IPBFRE[FH-IPBFE],A(λ)⇒ 1] .

Subtracting yields the result.

38 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Theorem 8 (SIM-security). If FH-IPBFE is SIM-secure, then IPBFRE[FH-IPBFE]
is SIM-secure. Concretely, for every adversary A against IPBFRE[FH-IPBFE],
there exists an adversary B against FH-IPBFE such that for every simulator SB

there exists a simulator SA where for all λ ∈ N

Advsim
IPBFRE[FH-IPBFE],A,SA

(λ) = Advsim
FH-IPBFE,B,SB

(λ).

Proof. Let A be an adversary against IPBFRE[FH-IPBFE]. We first construct an
adversary B against SIM-security of FH-IPBFE in Figure 17.

Next, by SIM-security of FH-IPBFE, for an adversary B there exists a simulator
SB = (SB,1,SB,2,SB,3,SB,4). Then, consider the simulator SA = (SA,1, SA,2, SA,3)
for IPBFRE[FH-IPBFE] for an adversary A also given in figure 17.

Adversary B = (B1,B2)

B1(1λ, pp):
1 (d, st)←$ A1(1λ, pp)
2 return (d, st)

B
EncO′(·),KeyGenO′(·)
2 (st):

3 b←$ A
EncO(·)
2 (st)

4 return b

EncO(x):
5 ctx ← EncO′(x)
6 skx ← KeyGenO′(x)
7 ct← (ctx, skx)
8 return ct

Simulator SA = (SA,1,SA,2,SA,3)

SA,1(1λ):
1 (pp, stB)←$ SB,1(1λ)
2 st ← stB
3 return (pp, st)

SA,2(1d, st):
4 i← 0; stB ← st
5 stB←$ SB,2(1d, stB)
6 st ← (stB, k)
7 return st
SA,3(C′

ip, st):
8 (stB, k)← st
9 i← i + 1

10 Cip ← {((j, k), cj,k) | ((j, k), cj,k) ∈ C′
ip

∧ (j ≤ i) ∧ (k < i)} ∪ {((k, j), cj,k) |
((j, k), cj,k) ∈ C′

ip ∧ (j ≤ i) ∧ (j < i)}
11 (cti, stB)← SB,3(Cip, stB)
12 Cip ← Cip ∪ {(j, i), cj,i) | ((j, i), cj,i) ∈ C′

ip
∧ (i > j)} ∪ {(i, j), cj,i) | ((j, i), cj,i) ∈

C′
ip ∧ (i > j)}

13 (ski, stB)← SB,4(Cip, stB)
14 ct← (cti, ski)
15 st ← (stB, k)
16 return (ct, st)

Fig. 17. Adversary against SIM-security of FH-IPBFE and simulator for SIM security
of IPBFRE[FH-IPBFE].

The simulator SA gets the set C′
ip that contains all pairwise inner products

of IPBFRE ciphertexts with each other using a global index to keep track of the

Access-Controlled Inner Product Function-Revealing Encryption 39

queries. The simulator turns this into a set Cip that is indexed by query-type (Enc
or KeyGen) specific indices, where the first index corresponds to the ciphertext
and the second one corresponds to the key. When adding new tuples to Cip, the
simulator must keep track of the indices and only add new values right before
running SB,3 or SB,4 with an updated Cip as given in simulator lines 9-13.

With this, we see

Pr[Gsim-1
IPBFRE[FH-IPBFE],A(λ)⇒ 1] = Pr[Gsim-1

FH-IPBFE,B(λ)⇒ 1]

and
Pr[Gsim-0

IPBFRE[FH-IPBFE],A,SA
(λ)⇒ 1] = Pr[Gsim-0

FH-IPBFE,B,SB
(λ)⇒ 1] .

Subtracting yields the result.

A.2 From NZIP-AC-IPBFRE to FH-IPBFE

In this Section we give an optimized version of the transformation from NZIP-
AC-IPBFRE to FH-IPBFE. In many IPBFE/IPBFRE constructions the modulus
m is a prime. In this case, the following theorem gives us a better solution than
Lagrange’s four square theorem.

Theorem 9. There exists a PT algorithm PrimeSoS that inputs a prime m and
outputs (a1, a2) such that 1 + a2

1 + a2
2 = 0 mod m.

Proof. We first proof the existence of a solution. The proof is taken from [29,
§6.7].

The statement is trivial for m = 2. Therefore, assume that m is odd in the
following.

The polynomial X2 − c, for c ∈ Zm, has at most two distinct solutions in Zm.
Thus, by squaring every a ∈ Zm we hit each quadratic residue at most twice and
thus there must be at least (m+ 1)/2 quadratic residue in Zm.

Using the above argument with the polynomial −X2 − c− 1, there must also
be (m+ 1)/2 integers of the form −a2 − 1 in Zm. By the pigeonhole principle,
there must be one c with −a2 − 1 = c = b2 mod m for some a, b ∈ Zm which
can be turned immediately into a solution of the above equation.

We next describe PrimeSoS, namely how to compute a1 and a2 efficiently. We
show how to proceed for primes of the form m = 4k + 3. For primes of the form
m = 4k + 1 one can proceed analogously (but we do not need that here, because
we will show below that for those prime a solution with ℓ = 1 can be found).

The first step is to find a number c ∈ Zm that satisfies the properties required
in the proof, i.e. such that X2 − c and −X2 − c− 1 have both solutions in Zm.
That is, c and −(c + 1) should be both quadratic residues. −1 is a quadratic
non-residue for primes of the form m = 4k+ 3, the second requirement is fulfilled
iff c + 1 is a quadratic non-residue (law of quadratic reciprocity and its first
supplement). There are (m + 1)/4 possible values for c satisfying this [7], we
can thus just compute one by trial and error. The values a1 and a2 can now be
computed by computing the roots of the polynomials X2 − c and −X2 − c− 1,
which can be done efficiently [12].

40 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

We now focus on further optimizing efficiency. For primes of the form m =
4k + 1, we can do even better and find a solution with ℓ = 2.

Theorem 10. There exists a PT algorithm Prime1Mod4SoS that inputs a prime
m of the form m = 4k + 1 for an k ∈ Z and outputs a1 such that 1 + a2

1 = 0
mod m.

Proof. The existence of such an a1 follows from the first supplement to the law of
quadratic reciprocity,

(−1
m

)
= 1 for primes m of the form m = 4k+1. This implies

that there exists a1 ∈ Zm with a2
1 = −1 mod m, which can be rearranged to the

equation in the theorem.
We proceed to describe Prime1Mod4SoS. We can find a1 from the above

theorem in expected time O(logm) as follows: By Euler’s criterion,
(

x
m

)
= x

m−1
2

mod m and thus for every quadratic non-residue x we have xm−1
2 = −1 mod m

and by setting a1 = x
m−1

4 we have a solution. Since every other (non-zero)
number in Zm is a quadratic non-residue, we can find one efficiently by trial and
error (again, converting the algorithm to worst-case polynomial-time in standard
ways).

Our Encoding Functions and Their Properties Given a sum of squares
decomposition of the modulus 1 + a2

1 + · · ·+ a2
ℓ = 0 mod m, the following two

tag vectors will be used in our transformation:

u(ai)1≤i≤ℓ
:=



1
a1
0
...
aℓ

0


∈ Z2ℓ+1

m v(ai)1≤i≤ℓ
:=



1
0
a1
...
0
aℓ


∈ Z2ℓ+1

m .

The following gives the crucial properties of the tag vectors, which are easy
to prove by inspection.

Lemma 1.

⟨v(ai)1≤i≤ℓ
,v(ai)1≤i≤ℓ

⟩ = 0 and ⟨u(ai)1≤i≤ℓ
,u(ai)1≤i≤ℓ

⟩ = 0 .

Lemma 2.
⟨v(ai)1≤i≤ℓ

,u(ai)1≤i≤ℓ
⟩ = a2

1 = 1 .

The Transformation Recall in Section 4.1 we showed how to construct NZIP-
AC-IPBRE generically from IPBFRE for the same inner-product based function-
ality f(x,y) = g(⟨x,y⟩). We now construct an FH-IPBFE generically from an
NZIP-AC-IPBFRE. This transformation can easily be generalized to constructing
FH-FE for any functionality form NZIP-AC-FRE for the same functionality. The
transformation is given in Fig. 18.

Access-Controlled Inner Product Function-Revealing Encryption 41

Setup′(1λ, 1d):
1 Obtain modulus m from pp
2 if m is prime then
3 if m ≡ 1 mod 4 then
4 (ai)1≤i≤ℓ := (a1)←$ Prime1Mod4SoS(m)
5 else
6 (ai)1≤i≤ℓ := (a1, a2)←$ PrimeSoS(m)
7 else
8 (ai)1≤i≤ℓ := (a1, a2, a3, a4)←$ LagrangeSoS(m− 1)
9 msk← Setup(1λ, 1d, 12ℓ+1))

10 return msk′ := (msk, (ai)1≤i≤ℓ)

KeyGen(msk′ = (msk, (ai)1≤i≤ℓ), x):

11 return Enc(msk, u(ai)1≤i≤ℓ
, x))

Enc′(msk′ = (msk, (ai)1≤i≤ℓ), y):

12 return Enc(msk, v(ai)1≤i≤ℓ
, y)

Dec(pp, skx, cty):
13 return Eval(pp, skx, cty)

Fig. 18. Transform from NZIP-AC-IPBFRE = (PPGen, Setup, Enc, Eval) to
FH-IPBFE[NZIP-AC-IPBFRE] = (PPGen, Setup′, KeyGen, Enc′, Dec).

Proposition 4. If NZIP-AC-IPBFRE is evaluation correct, then FH-IPBFE[IPBFRE]
is decryption correct.

Proof. Let pp ∈ Out(PPGen(1λ)), msk ∈ Out(Setup(1λ, 1d)), x,y ∈ Zd
m, skx ∈

Out(KeyGen(msk,x)) and cty ∈ Out(Enc(msk,y)). Then by Lemma 2, the tags
of the NZIP-AC-IPBFRE ciphertexts skx and cty satisfy the access policy and by
evaluation correctness of NZIP-AC-IPBFRE Eval(pp, skx, cty) = g(⟨x,y⟩). Thus
decryption correctness of FH-IPBFE[IPBFRE] follows.

Theorem 11 (IND-security). If NZIP-AC-IPBFRE is IND-secure, then FH-IPBFE[NZIP-AC-IPBFRE]
is IND-secure. Concretely, for every adversary A against IND-security of FH-IPBFE[NZIP-AC-IPBFRE],
there exists an adversary B against IND-security of NZIP-AC-IPBFRE with roughly
the same runtime, such that for all λ ∈ N

Advind
FH-IPBFE[NZIP-AC-IPBFRE],A(λ) ≤ Advind

NZIP-AC-IPBFRE,B(λ) .

Proof. Assume there exists an adversary A = (A1,A2) against the IND-security
of FH-IPBFE[NZIP-AC-IPBFRE]. We then construct an adversary B = (B1,B2)
against the adaptive IND security of NZIP-AC-IPBFRE as follows:

It is easy to see that when A plays the Gind-b
FH-IPBFE[NZIP-AC-IPBFRE],A(λ) game,

it perfectly simulates the game Gind-b
NZIP-AC-IPBFRE,B(λ) for B and outputs the same

bit as B. To show that these adversaries have the same advantage, what remains
to show is that A causes the game to output ⊥ exactly when B does.

42 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Adversary B = (B1,B2)

B1(1λ, pp):
1 Obtain modulus m from pp
2 if m is prime then
3 if m ≡ 1 mod 4 then
4 (ai)1≤i≤ℓ := (a1)←$ Prime1Mod4SoS(m)
5 else
6 (ai)1≤i≤ℓ := (a1, a2)←$ PrimeSoS(m)
7 else
8 (ai)1≤i≤ℓ := (a1, a2, a3, a4)←$ LagrangeSoS(m− 1)
9 (d, st)←$ A1(1λ, pp)

10 return (d, 2ℓ− 1, st)

B
EncO′(·,·)
2 (st):

11 b′←$ A
EncO(·,·),KeyGenO(·,·)
2 (st)

12 return b′

EncO(x0, x1):
13 ct← EncO′(x0, x1, v(ai)1≤i≤ℓ

)
14 return ct

KeyGenO(y0, y1):
15 sk← EncO′(y0, y1, u(ai)1≤i≤ℓ

)
16 return sk

Fig. 19. Adversary against IND-security of NZIP-AC-IPBFRE.

Access-Controlled Inner Product Function-Revealing Encryption 43

Let xj
0,x

j
1 be the input to the j-th Enc oracle query of A2 and yk

0 ,yk
1 be

the input to the k-th KeyGen oracle query of A2. The IND-security game for
FH-IPBFE[NZIP-AC-IPBFRE] returns ⊥ if there exists indices j, k such that

g(⟨xj
0,yk

0⟩) ̸= g(⟨xj
1,yk

1⟩). (4)

To answer the j-th Enc oracle query of A2, B2 makes a Enc query for xj
0,x

j
1,v(ai)1≤i≤ℓ

and to answer the k-th KeyGen oracle query of A2, B2 makes a Enc query
for yk

0 ,yk
1 ,u(ai)1≤i≤ℓ

. From a(pp,v(ai)1≤i≤ℓ
,u(ai)1≤i≤ℓ

) = 1 (by Lemma 2) and
Eq. (4) it follows that B causes the IND-security game for NZIP-AC-IPBFRE to
return ⊥, too.

On the other hand, let zj
0, z

j
1,wj be the input of the j-th Enc query of B2.

The IND-security game for NZIP-AC-IPBFRE returns ⊥ if there exists indices j, k
such that a(pp,wj ,wk) = 1 and

g(⟨zj
0, zk

0⟩) ̸= g(⟨zj
1, zk

1⟩). (5)

The way we defined B2, wj ,wk ∈ {u(ai)1≤i≤ℓ
,v(ai)1≤i≤ℓ

} must hold. This shows
that the first condition can happen by Lemma 1 only if exactly one of wj ,wk

equals u(ai)1≤i≤ℓ
(and the other vector equals v(ai)1≤i≤ℓ

.) Without loss of gen-
erality let wj = v(ai)1≤i≤ℓ

and wk = u(ai)1≤i≤ℓ
. Then the j-th Enc query of B2

was cause by an Enc(zj
0, z

j
1) for A2 and the k-th Enc query of B2 was cause by

an KeyGen(zk
0 , zk

1) for A2. However, these two queries cause by Eq. (5) that
the IND-security game for FH-IPBFE[NZIP-AC-IPBFRE] returns ⊥, too.

With this, we see

Pr[Gind-1
NZIP-AC-IPBFRE,B(λ)⇒ 1] = Pr[Gind-1

FH-IPBFE[NZIP-AC-IPBFRE],A(λ)⇒ 1]

and

Pr[Gind-0
NZIP-AC-IPBFRE,B(λ)⇒ 1] = Pr[Gind-0

FH-IPBFE[NZIP-AC-IPBFRE],A(λ)⇒ 1] .

Subtracting yields the result.

Theorem 12 (SIM-security). If NZIP-AC-IPBFRE is SIM-secure, then FH-IPBFE[NZIP-AC-IPBFRE]
is SIM-secure. Concretely, for every adversary A against SIM-security of FH-IPBFE[NZIP-AC-IPBFRE],
there exists an adversary B against SIM-security of NZIP-AC-IPBFRE with roughly
the same runtime as A such that for every simulator SA there exists a simulator
SB where for all λ ∈ N

Advsim
FH-IPBFE[NZIP-AC-IPBFRE],A,SA

(λ) ≤ Advsim
NZIP-AC-IPBFRE,B,SB

(λ) .

Proof. First, consider an adversary A against simulation-based security of FH-IPBFE[NZIP-AC-IPBFRE].
If such an adversary exists, then we can use it to construct an adversary B against
simulation-based security of NZIP-AC-IPBFRE as given in Fig. 20.

Let SA = (SA,1, SA,2, SA,3) be the simulator for the SIM security of NZIP-AC-IPBFRE.
We first construct a simulator SB = (SB,1,SB,2,SB,3,SB,4) for the SIM security
of FH-IPBFE[NZIP-AC-IPBFRE] as described by Fig. 21.

44 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Adversary B = (B1,B2)

B1(1λ, pp):
1 Obtain modulus m from pp
2 if m is prime then
3 if m ≡ 1 mod 4 then
4 (ai)1≤i≤ℓ := (a1)←$ Prime1Mod4SoS(m)
5 else
6 (ai)1≤i≤ℓ := (a1, a2)←$ PrimeSoS(m)
7 else
8 (ai)1≤i≤ℓ := (a1, a2, a3, a4)←$ LagrangeSoS(m− 1)
9 (d, st)←$ A1(1λ, pp)

10 return (d, 2ℓ− 1, st)

B
EncO′(·)
2 (st):

11 b′←$ A
EncO(·),KeyGenO(·)
2 (st)

12 return b′

EncO(x):
13 ct← EncO′(x, v(ai)1≤i≤ℓ

)
14 return ct

KeyGenO(y):
15 sk← EncO′(y, u(ai)1≤i≤ℓ

)
16 return sk

Fig. 20. Adversary against SIM-security of NZIP-AC-IPBFRE.

Access-Controlled Inner Product Function-Revealing Encryption 45

Simulator SB = (SB,1,SB,2,SB,3,SB,4)

SB,1(1λ):
1 (pp, stSA)←$ SA,1(1λ)
2 return (pp, stSB ← (pp, stSA))

SB,2(1d, stSB = (pp, stSA)):
3 Obtain modulus m from pp
4 if m is prime then
5 if m ≡ 1 mod 4 then
6 (ai)1≤i≤ℓ := (a1)←$ Prime1Mod4SoS(m)
7 else
8 (ai)1≤i≤ℓ := (a1, a2)←$ PrimeSoS(m)
9 else

10 (ai)1≤i≤ℓ := (a1, a2, a3, a4)←$ LagrangeSoS(m− 1)
11 stSA ←$ SA,2(1d, 12ℓ−1stS,A)
12 i← 0; j ← 0; k ← 0; I ← ∅
13 stSB ← (stSA , (ai)1≤i≤ℓ, i, j, k, I)
14 return stSB
SB,3(C′

ip, stSB = (stSA , (ai)1≤i≤ℓ), i, j, k, I):
15 i← i + 1; k ← k + 1
16 I ← I ∪ {(i, k, Enc)}
17 T ← {(k, v(ai)1≤i≤ℓ

) | ∃i′ ∈ N : (i′, k, Enc) ∈ I}
∪ {(k, u(ai)1≤i≤ℓ

) | ∃j′ ∈ N : (j′, k, KeyGen) ∈ I}
18 Cip ← {((min{k′, k′′}, max{k′, k′′}), ci′,j′) | ∃i′, j′ ∈ N : (i′, k′, Enc) ∈
I

∧ (j′, k′′, KeyGen) ∈ I ∧ ((i′, j′), ci′,j′) ∈ C′
ip}

19 (ct, stSA)← SA,3(Cip, T , stS,A)
20 return (ct, stSB = (stSA , (ai)1≤i≤ℓ), i, j, k, I))

SB,4(C′
ip, stSB = (stSA , (ai)1≤i≤ℓ), i, j, k, I):

21 j ← j + 1; k ← k + 1
22 I ← I ∪ {(j, k, KeyGen)}
23 T ← {(k, v(ai)1≤i≤ℓ

) | ∃i′ ∈ N : (i′, k, Enc) ∈ I}
∪ {(k, u(ai)1≤i≤ℓ

) | ∃j′ ∈ N : (j′, k, KeyGen) ∈ I}
24 Cip ← {((min{k′, k′′}, max{k′, k′′}), ci′,j′) | ∃i′, j′ ∈ N : (i′, k′, Enc) ∈
I

∧ (j′, k′′, KeyGen) ∈ I ∧ ((i′, j′), ci′,j′) ∈ C′
ip}

25 (sk, stSA)← SA,3(Cip, T , stS,A)
26 return (sk, stSB = (stSA , (ai)1≤i≤ℓ), i, j, k, I))

Fig. 21. Simulator for SIM-security of FH-IPBFE[NZIP-AC-IPBFRE].

46 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

The simulator stores in I for each query the type (Enc or KeyGen query),
a global query index and a type-specific query index. From this, the simulator
can construct the set T of tag vectors for the underlying NZIP-AC-IPBFRE
scheme, since all Enc queries are answered with an NZIP-AC-IPBFRE ciphertext
with v(ai)1≤i≤ℓ

as tag vector and all KeyGen queries are answered with an
NZIP-AC-IPBFRE ciphertext with u(ai)1≤i≤ℓ

as tag vector. Furthermore, for all
pairs of vectors (x,y) where x was queried with Enc and y was queried with
KeyGen, the simulator gets in in C′

ip the function evaluation g(⟨x,y⟩). It stores
these in Cip, but switching from the query-type specific indexing used in the SIM
security game for FH-IPBFE to the global indexing used in the SIM security
game for NZIP-AC-IPBFRE. For pairs of vectors where both vectors are queried
in Enc or both are queried in KeyGen, the access policy is not satisfied by
Lemma 1 and therefore the simulator does not to add anything corresponding to
these pairs to Cip.

With this, we see

Pr[Gsim-1
FH-IPBFE[NZIP-AC-IPBFRE],A(λ)⇒ 1] = Pr[Gsim-1

NZIP-AC-IPBFRE,B(λ)⇒ 1]

and

Pr[Gsim-0
FH-IPBFE[NZIP-AC-IPBFRE],A,SA

(λ)⇒ 1] = Pr[Gsim-0
NZIP-AC-IPBFRE,B,SB

(λ)⇒ 1] .

Subtracting yields the result.

Access-Controlled Inner Product Function-Revealing Encryption 47

B TinyFHIPFE Security

Unlike Shoup’s original model [47], we adopt an equivalent variant of the generic
bilinear group model also previously used by Kim et al. [36]. In the generic
group model, access to group elements of the ciphertexts and function keys is
provided via “handles” representing them. Thus to facilitate group operations,
the adversary has access to generic bilinear group model oracles Op,Pair,ZT
which provide group operation, pairing operation, and zero testing respectively.
This is in addition to the encryption and key generation oracles EncO and
KeyGenO provided in the simulation security games.

We will prove security by first presenting the security games and then a simu-
lator in the generic bilinear group model. Then, we will argue that an adversary
cannot distinguish between the games given that our simulator is used in the
sim-0 game given in Fig. 23. To make this argument, we must analyze how the
simulator answers zero-test queries and bound the difference in the outputs by
using Schwartz-Zippel lemma.

In Fig. 22 and Fig. 23, we present the security games for simulation-based
security of TinyFHIPFE in the generic bilinear group model. In the security games,
L1, L2, Lt are lists of pairs, with operation append. For such a list L, we denote
by (x, y) ∈ L that (x, y) appears in L, and we denote by y ∈ L that there exists
x such that (x, y) ∈ L.
Before describing the security games, we introduce the formal variables used in
the security games and the simulator below.

Let q be the total number of encryption and keygen queries made by an
adversary A. Then, we define two sets of formal variables as follows.

T =
{
xi

k, y
i
k

}
i∈[q],k∈[d] ∪

{
si

1, s
i
2
}

i∈[q] ∪

{a1,k, a2,k}k∈[d] ∪
{
bi

m,n, b
∗i

m,n

}
m,n∈[4]

∪
{
vi

1, v
i
2, w

i
1, w

i
2
}

i∈[q]

R =
{
ϕi

k

}
i∈[q],k∈[d] ∪

{
γi

k

}
i∈[q],k∈[d] ∪

{
µi

m

}
i∈[q],m∈[4] ∪

{
ψi

m

}
i∈[q],m∈[4]

These variables model the following components of the scheme:

- xi
k: kth component of the ith query input vector xi when made to KeyGen.

- yi
k: kth component of the ith query input vector yi when made to Enc.

- si
1, s

i
2: components of the uniform random vector si sampled during Enc(yi)

or KeyGen(xi).
- a1,k, a2,k: components of the kth column of the secret key uniform random

matrix A sampled during Setup.
- bm,n, b

∗
m,n: (m,n)th components of the secret key matrices B,B∗ sampled

during Setup.
- vi

1, v
i
2: components of the vector Ayi calculated inside Enc(yi).

48 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

- wi
1, w

i
2: components of the vector Axi + AAT si calculated inside KeyGen(xi).

- ϕi
k: kth component of the vector AT si + xi calculated inside KeyGen(xi). ϕi

refers to the vector of ϕi
k for k ∈ [d].

- γi
k: kth component of the vector AT si +yi calculated inside Enc(yi). γi refers

to the vector of γi
k for k ∈ [d].

- µi
m: mth component of the vector B · (si∥Axi + AAT si) calculated inside

KeyGen(xi).
- ψi

m: mth component of the vector B∗ · (Ayi∥si) calculated inside Enc(yi).

Note: Given that B∗ = (B−1)T , b∗
m,n can be specified as follows:

b∗
m,n = (−1)(m+n) det(Bm,n)

Here, Bm,n is the 3 × 3 matrix formed by removing the mth row and nth

column of the matrix B. Next, the determinant of a 3× 3 matrix C is given by
the following formula:

det(C) =
∑

σ∈S3

ϵ(σ) · c1,σ(1) · c2,σ(2) · c3,σ(3)

Here, S3 is all permutations of {1, 2, 3}, ϵ(σ) gives the sign of the corresponding
term (1 if even permutation and −1 if odd permutation). Finally, b∗

m,n can be
written in terms of {bm,n}m,n∈[d] as follows:

b∗
m,n =

∑
σ∈S′

3

sgn(σ,m, n) · bm1,σ(m1) · bm2,σ(m2) · bm3,σ(m3)

Here, m1,m2,m3 ≠ m and ∈ [4] and S′
3 is all bijections from m1,m2,m3 to

m4,m5,m6 ̸= n and ∈ [4]. We collapse the sign of the monomial into a function
sgn for which the explicit specification will be not be necessary for the proof.

Theorem 13. TinyFHIPFE is simulation-secure in the generic bilinear group
model. In particular, for every adversary A that makes qt total queries to its
oracles, there exists a simulator S such that

Advsim-ggm
IPFRE,A,S(λ) ≤ (4qt(d+ 4))2

p
.

Now, we analyze the advantage of the adversary which is given by the following
equation:

Advsim-ggm
IPFE,A,S(λ) = Pr[Gsim-1

IPFE,A(λ)⇒ 1]− Pr[Gsim-0
IPFE,A,S(λ)⇒ 1] (6)

First, in Fig. 24, we provide a simulator for the game described above. Due
to space constraints in the figure, we describe part of one of the simulator’s
algorithm S6 in text below.

Access-Controlled Inner Product Function-Revealing Encryption 49

Game Gsim-1
IPFE,A(λ)

Main:
1 L1, L2, Lt ← ∅ // Initialize lists
2 H ← ∅
3 (p, g1, g2, gt, G1, G2, Gt, e)←$ Gasym(1λ)
4 h1, h2, ht←$ NewHandle(1λ)
5 L1.append(g1, h1)
6 L2.append(g2, h2)
7 Lt.append(gt, ht)
8 pp← (p, h1, h2, ht)
9 (d, stA)←$ A

Op(·,·,·),Pair(·,·),ZT(·,·)
1 (pp)

10 B←$ SL4(Zp)
11 B∗ ← (B−1)T

12 A←$ Z2×d
p

13 msk← (A, B, B∗)
14 b←$ A

EncO(·),KeyGenO(·),Op(·,·,·),Pair(·,·),ZT(·,·)
2 (stA)

15 return b

KeyGenO(x):
16 s←$ Z2

p

17 ct1 ← As + x
18 ct2 ← B · (s∥Ax + AAT s)
19 AddList(L1, s)
20 h1 ← AddList(L1, ct1)
21 h2 ← AddList(L1, ct2)
22 ctx ← (h1, h2)
23 return skx

EncO(y):
24 s←$ Z2

p

25 sk1 ← As + y
26 sk2 ← B∗ · (Ay∥s)
27 AddList(L2, s)
28 h1 ← AddList(L2, ct1)
29 h2 ← AddList(L2, ct2)
30 ctx ← (h1, h2)
31 return ctx

Op(h1, h2, b):
32 if b = 1 then L← L1
33 if b = 2 then L← L2
34 else L← Lt

35 Find x1 s.t. (x1, h1) ∈ L
36 Find x2 s.t. (x2, h2) ∈ L
37 x3 ← x1 + x2
38 h3←$ {0, 1}λ

39 L.append(x3, h3)
40 return (h3)

Pair(h1, h2):
41 Find x1 s.t. (x1, h1) ∈ L1
42 Find x2 s.t. (x2, h2) ∈ L2
43 x3 ← x1 · x2
44 h3←$ {0, 1}λ

45 Lt.append(x3, h3)
46 return (h3)

ZT(h, b):
47 if b = 1 then L← L1
48 if b = 2 then L← L2
49 else L← Lt

50 Find x s.t. (x, h) ∈ L
51 return (x = 0)
AddList(L, x):
52 k ← |x|
53 for i ∈ [k] do
54 hi←$ NewHandle(1λ)
55 L.append(x[i], h)
56 return (h1, . . . , hk)
NewHandle(1λ):
57 h←$ {0, 1}λ\H
58 H ← H ∪ {h}
59 return h

Fig. 22. Game defining simulation security of TinyFHIPFE in the generic group model.

The polynomial decomposition used by S6 is as follows:

p =
∑

i,j∈[q]

ci,j

 ∑
k∈[d]

ϕi
kγ

j
k −

∑
m∈[4]

µi
m ψj

m

− zi,j

 + f i,j

 (7)

50 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Game Gsim-0
IPFE,A(λ)

Main:
1 Cip ← ∅; i← 0
2 E, K ← ∅
3 (pp, stS)←$ S1(1λ)
4 (d, stA)←$ A

Op(·,·,·),Pair(·,·),ZT(·,·)
1 (1λ, pp)

5 stS←$ S2(1d, stS)
6 b←$ A

EncO(·),KeyGenO(·),Op(·,·,·),Pair(·,·),ZT(·,·)
2 (stA)

7 return b

KeyGenO(x):
8 i← i + 1; K ← K ∪ {i}
9 xi ← x

10 for j ≤ i do
11 if j ∈ E: ci,j ← g(⟨x, yj⟩)
12 else : ci,j ← ⊥
13 Cip ← Cip ∪ {((i, j), ci,j)}
14 (sk, stS)←$ S3(Cip, stS)
15 return sk

EncO(y):
16 i← i + 1; E ← E ∪ {i}
17 yi ← y
18 for j ≤ i do
19 if j ∈ K: ci,j ← g(⟨xj , y⟩)
20 else : ci,j ← ⊥
21 Cip ← Cip ∪ {((i, j), ci,j)}
22 (ct, stS)←$ S4(Cip, stS)
23 return ct
Op(h1, h2, b):
24 return S5(h1, h2, b)

Pair(h1, h2):
25 return S6(h1, h2)

ZT(h, b):
26 return S7(h, b)

Fig. 23. Game defining simulation security of TinyFHIPFE in the generic group model.

where zi,j is the inner product value ⟨xi,xj⟩, ci,j is the scalar coefficient of
the first term of µi

m ψj
m which is µi

1ψ
j
1 (ci,j could be 0), and f i,j consists of all

remaining terms in terms of {ϕi
k, γ

j
k, µ

i
m, ψ

j
m} for k ∈ [d],m ∈ [4].

1. If f i,j consists of any terms, then return "false".
2. Else return "true".

Lemma 3. If an adversary interacting with the two games Gsim-1
IPFE,A(λ) and

Gsim-0
IPFE,A,S(λ) is only provided access to EncO,KeyGenOOp,Pair oracles (and

Access-Controlled Inner Product Function-Revealing Encryption 51

Simulator Ssim-1
IPFE,A(λ)

S1:
1 Cip ← ∅ ; i← 0
2 L1, L2, Lt ← ∅
3 (p, g1, g2, gt, G1, G2, Gt, e)←$ Gasym(1λ)
4 g1, g2, gt←$ NewHandle(1λ)
5 pp← (g1, g2, gt, p)
6 stS ← (L1, L2, Lt, Cip)
7 Return (pp, stS)

S2(1d, stS):
8 Return stS

S3(Cip, stS): // Key Generation
9 i← i + 1

10 AddList(L1,ϕi)
11 AddList(L1,ψi)
12 skx ← (ϕi, µi)
13 return skx

S4(Cip, stS): // Encryption
14 i← i + 1
15 AddList(L2,γi)
16 AddList(L2,ψi)
17 cty ← (γi, ψi)
18 return cty

S5(h1, h2, b): // Group Operation
19 if b = 1 then L← L1
20 if b = 2 then L← L2
21 else L← Lt

22 Find x1 s.t. (x1, h1) ∈ L
23 Find x2 s.t. (x2, h2) ∈ L
24 x3 ← x1 + x2
25 h3←$ {0, 1}λ

26 L.append(x3, h3)
27 return (h3)

S6(h1, h2): // Pairing Operation
28 Find x1 s.t. (x1, h1) ∈ L1
29 Find x2 s.t. (x2, h2) ∈ L2
30 x3 ← x1 · x2
31 h3←$ {0, 1}λ

32 Lt.append(x3, h3)
33 return (h3)

S7(h, b): // Zero Test
34 if b = 1 or b = 2 then
35 Find x s.t. (x, h) ∈ Lb

36 if x = 0 then return true
37 else return false
38 if b = 0 then
39 Find x s.t. (x, h) ∈ Lt

40 if x = 0 then return true
41 else return // according to equa-

tion 7

AddList(L, x): // x is a vector of poly-
nomials
42 k ← |x|
43 for i ∈ [k] do
44 hi←$ NewHandle(1λ)
45 L.append(x[i], h)
46 return (h1, . . . , hk)
NewHandle(1λ):
47 h←$ {0, 1}λ\H
48 H ← H ∪ {h}
49 return h

Fig. 24. Simulator for simulation security of TinyFHIPFE in the generic group model.

not ZT), then it cannot distinguish between the two games. Formally, consider
the modified games G′sim-1

IPFE,A(λ) and G′sim-0
IPFE,A,S(λ) where the oracle ZT is omitted.

Then, for any PT adversary A and any PT simulator S, we have that

Advsim-ggm
IPFE,A,S(λ) = Pr[G

′sim-1
IPFE,A(λ)⇒ 1]− Pr[G

′sim-0
IPFE,A,S(λ)⇒ 1] = 0

Proof. By inspection of the oracles, we notice that the return value is a vec-
tor of appropriate size consisting of handles. Each of these handles is sampled
independently and uniformly randomly in both games. Thus, given information-

52 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

theoretically indistinguishable inputs, the adversary has exactly the same proba-
bility of returning 1 in each game. Thus, the probability of the game outputting
1 is also identical between the two games, and the advantage of the adversary is
equal to 0.

Now, it suffices to consider the difference in The rest of the proof refers to the
zero test oracle and analyzes return values in each game. In Gsim-1

IPFE,A(λ), the zero
test returns true when the value stored in zero. Thus, we analyze the polynomial
decomposition in equation (7) that corresponds to Gsim-0

IPFE,A(λ).

First, if the polynomial p is the identically zero polynomial, the simulator
correctly responds with "zero". Next, the handles received by A correspond to
ciphertexts which are stored in the lists L1, L2 with the following components
from the set R for each i ∈ [q]:

ϕi
1, . . . , ϕ

i
d, γ

i
1, . . . , γ

i
d, µ

i
1, µ

i
2, µ

i
3, µ

i
4, ψ

i
1, ψ

i
2, ψ

i
3, ψ

i
4

Lemma 4. For all i ∈ [q], each of vi
1, v

i
2, w

i
1, w

i
2 is not the identically zero

polynomial.

Proof. First, consider vi
1, v

i
2 which represent components of the vector Ayi. In

terms of formal variables, vi
1 =

∑
k∈[d] a1,k yi

k and vi
2 =

∑
k∈[d] a2,k yi

k. Here,
a1,k, a2,k are formal variables for all k ∈ [d]. Thus, vi

1, v
i
2 are not identically zero.

Next, we look at wi
1, w

i
2 which represent components of the vector Axi +

AAT si. In terms of formal variables,

wi
1 =

∑
k∈[d]

a1,k x
i
k +

 ∑
k∈[d]

(a1,k)2

 si
1 +

 ∑
k∈[d]

(a1,ka2,k)

 si
2

Here all of si
1, s

i
2, a1,k, a2,k are indeterminate formal variables, thus each of the

summation terms are not identically zero. Hence, the polynomial is not identically
zero.

Next, if the handle h belongs to one of the source groups, the polynomial
p must be some linear combination of variables in R. In particular, each of
ϕi

k, γ
i
k, µ

i
m, ψ

i
m for all i ∈ [q], k ∈ [d],m ∈ [4] consist of monomials which are a

product of either two indeterminates or an indeterminate and one of vi
1, v

i
2, w

i
1, w

i
2

which are not identically zero as given by Lemma 1. Thus, any linear combination
of these polynomials cannot be the identically zero polynomial. The simulator
correctly answers the zero-test query when the input handle is in the source group.

On the other hand, analysis of an input handle in the target group is more
involved. We consider all the possible pairing for the handles that A has access
to.

In the target group, we know that f i,j consists of a linear combination of all
possible pairings. First, we expand each of the pairing to show that they are not

Access-Controlled Inner Product Function-Revealing Encryption 53

the identically zero polynomial. Next, we show that any leftover combination in
f i,j can also not be identically zero.

ϕi
k · γ

j
ℓ =

(
a1,k s

i
1 + a2,k s

i
2 + xi

k

)
·
(
a1,ℓ s

j
1 + a2,ℓ s

j
2 + yj

ℓ

)
ϕi

k · ψj
n =

(
a1,k s

i
1 + a2,k s

i
2 + xi

k

)
·(

b∗
n,1 v

j
2 + b∗

n,2 v
j
2 + b∗

n,3 s
j
1 + b∗

n,4 s
j
2

)
µi

m · γ
j
ℓ =

(
bm,1 s

i
1 + bm,2 s

i
2 + bm,3 w

i
1 + bm,4 w

i
2
)
·(

a1,ℓ s
j
1 + a2,ℓ s

j
2 + yj

ℓ

)
µi

m · ψj
n =

(
bm,1 s

i
1 + bm,2 s

i
2 + bm,3 w

i
1 + bm,4 w

i
2
)
·(

b∗
n,1 v

j
1 + b∗

n,2 v
j
2 + b∗

n,3 s
j
1 + b∗

n,4 s
j
2

)

For further evaluation, we include the degree of all monomials in each handle
and subsequent pairings with respect to the formal variables {s, a, b} which can
be derived from the polynomial expressions above.

- ϕi
k: degree 2

- µi
m: degree 2 and degree 4

- γi
k: degree 2

- ψi
m: degree 4

- ϕi
k · γ

j
ℓ : degree 4

- ϕi
k · ψj

n: degree 6
- µi

m · γ
j
ℓ : degree 4 and 6

- µi
m · ψj

n: degree 6 and 8

Case I: f i,j consists of terms from a pairing of the form µi
mψ

j
n without loss of

generality in the indices i and j.

First, notice that the degree of monomials coming from this pairing have
degree either 6 or 8 in the formal variables, in particular all monomials have
degree 4 in variables {bm,n}m,n∈[4] since each monomial consists of the product
bm,n · b∗

m′,n′ for some indices m,n,m′, n′ ∈ [4]. However, in Case II we will see
that other monomials of degree 6 or 8 do not have degree 4 in {bm,n}m,n∈[4] and
thus cannot be combined with monomials in this pairing to form the identically
zero polynomial. Thus, it suffices to partition the cases into this one where there
are pairings of the µi

mψ
j
n (and potentially other pairings) in f i,j and case II with

no pairings of the µi
mψ

j
n.

Next, we analyze the monomials within the pairing and argue that they cannot be
combined to form the identically zero polynomial either. Crucial to this analysis is

54 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

the fact that f i,j does not include the pairings ψi
1µ

j
1 and ψj

1µ
i
1 since the first part

of the polynomial p includes all instances of them by factoring out its coefficient
ci,j . This fact leads to the argument that f i,j cannot include the entire sum γi,j

which would "cancel out" b and b∗ variables. Below, we show a detailed proof of
this argument.

Here, consider the expansion of µi
mψ

j
n. For simplicity let yi = (si

1, s
i
2, w

i
1, w

i
2)

and zj = (vj
1, v

j
2, s

j
1, s

j
2). We have:

µi
m ψj

n =

 ∑
k1∈[4]

bm,k1y
i
k1

  ∑
k2∈[4]

b∗
n,k2

zj
k2


=

∑
k1,k2∈[4]

(
bn,k2b

∗
m,k1

yi
k1
zj

k2

)
As given before, b∗

m,k1
can be written as follows:

b∗
m,k1

=
∑

σ∈S′
3

sgn(σ,m, k1) · bm1,σ(m1)bm2,σ(m2)bm3,σ(m3)

Here, S′
3 consists of bijections from m1,m2,m3 ∈ [4] and m1,m2,m3 ̸= m to

m4,m5,m6 ∈ [4] and m4,m5,m6 ̸= k1 and sgn(σ) gives the sign of the corre-
sponding term.

Sub-case (a): f i,j consists of terms from a pairing µi
mψ

j
n where m ̸= n.

In the expansion above, each monomial inside the sums consists of four b
variables, one from µi

n and the other 3 from the product given by the expansion
of b∗ variable in ψj

n. Note that the monomial does not consist of bm,k′ for any
k′ ∈ [4]. However, for every m′ ∈ [4],m′ ̸= m, the analogous monomial must
consist of bm,σ(m) in the inside product. Thus, these monomials cannot cancel
out any monomials from ψi

m′µj
n where m′ ̸= n.

Next, when m ̸= n, bn,σ(n) is part of b∗
m,k1

and thus the monomial consists
of two variables from the same row n, namely bn,k2 and bn,σ(n). On the other
hand, if m = n, each monomial consists of exactly one variable from each row of
the matrix. Thus, monomials from µi

mψ
j
n when m ̸= n cannot be canceled out

by monomials in the case m = n. Thus, in this case f i,j cannot be identically zero.

Sub-case (b): f i,j does not consist of terms from a pairing µi
mψ

j
n where m ̸= n.

First, recall that µi
mψ

j
n cannot be in f i,j by construction, thus we consider

µi
mψ

j
n where m ∈ {2, 3, 4}. Among all the monomials in the sum, there exists

a monomial that contains both bm,k2 and b1,k2 . However, there is no monomial
that contains both bm′,k2 and b1,k2 for any m′ ∈ [4],m′ ̸= m. Thus, each pairing
contains a monomial with both bm,k2 and b1,k2 in the product which cannot be can-
celed by any other pairing. Thus, f i,j cannot be identically zero in this case either.

Access-Controlled Inner Product Function-Revealing Encryption 55

Notice that the above argument does not apply when k1 = k2 since σ(r) ̸= k1.
In that case, each monomial consists of bm,k but cannot contain bm′,k for any
m′ ∈ [4],m′ ̸= m. This applies to all m ∈ [4] which means that monomials from
pairings m′ ̸= m contain bm′,k but not bm,k. Thus, these two types of monomials
cannot cancel each other out and thus f i,j is not identically zero.

Case II: f i,j does not consist of terms from a pairing of the form µi
mψ

j
n.

Here, it suffices to analyze the monomials that have the same degree since
monomials that have a different degree in the formal variables cannot cancel each
other out in any linear combinations to form the identically zero polynomial.

First, consider all monomials of degree 4. There are two sources for these
monomials: ϕi

k · γ
j
ℓ and µi

m · γj
n. Below in Table 4 for each pairing, we give an

example of monomial of degree 4 in the polynomial expansion. The other mono-
mials differ only in indices and we provide the total number of such monomials.

monomial origin deg(s) deg(a) deg(b) example
ϕi

k · γ
j
ℓ 2 2 0 a1,ks

i
1a1,ℓs

j
1

µi
m · γj

n 2 1 1 bm,1s
i
1a1,ℓs

j
1

µi
m · γj

n 1 2 1 bm,1w
i
1a1,ℓs

j
1

Table 4. Degree 4 monomials.

Similarly, consider monomials of degree 6. There are two sources for these
monomials: ϕi

k · ψj
m and µi

m · γj
n. Below in Table 5 for each pairing, we give

an example of monomial of degree 6 in the polynomial expansion. The other
monomials differ only in indices.

monomial origin deg(s) deg(a) deg(b) example
ϕi

k · ψj
m 1 2 3 a1,ks

i
1b

∗
m,1v

j
1

ϕi
k · ψj

m 2 1 3 a1,ks
i
1b

∗
m,1s

j
1

µi
m · γ

j
ℓ 2 3 1 bm,3w

i
1a1,ℓs

j
1

Table 5. Degree 6 monomials.

In all the cases above, we can see that even though the monomials are of
the same degree, the specific set of formal variables forming the polynomials
are different for each type of monomial. Thus, there can be no relationship
between these monomials and they cannot be combined to get the identically
zero polynomial.

56 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Finally, in Case II without pairings of the form ψi
mµ

j
n, the polynomial f i,j

cannot be the identically zero polynomial.

On the other hand, when f i,j is empty, we can simplify p as follows:

p =
∑

i,j∈[q]

ci,j

 ∑
k∈[d]

ϕi
kγ

j
k −

∑
m∈[4]

µi
m ψj

m

− zi,j


Then using the expansion of each polynomial above and the relationship

between B and B∗:

p =
∑

i,j∈[q]

ci,j

 ∑
k∈[d]

xi
ky

j
k

− zi,j


Now, the simulator knows that zi,j is the inner product of query vectors i

and j, thus:

p =
∑

i,j∈[q]

ci,j (zi,j − zi,j) = 0

Thus, the simulator answers correctly for an honest evaluation.

Lemma 5. Schwartz-Zippel Lemma: For a non-zero polynomial P ∈ R[x1, . . . , xn]
of total degree d ≥ 0 over an integral domain R. Let S be a finite subset of R and
let r1, . . . , rn be selected at random independently and uniformly from S. Then

Pr[P (r1, . . . , rn) = 0] ≤ d

|S|
.

Let qt be the total number of queries made by the adversary A = (A1,A2) to all
of its oracles. We can split q into number of queries made to various oracles as
follows:

1. Encryption Oracle EncO(·): qenc

2. Key Generation Oracle EncO(·): qkg

3. Group Operation Oracle Op(·, ·, ·): qop

– Group Operation Oracle in the first source group Op(·, ·, 1): qop,1
– Group Operation Oracle in the second source group Op(·, ·, 2): qop,2
– Group Operation Oracle in the target group Op(·, ·, 0): qop,t

4. Bilinear Pairing Oracle Pair(·, ·): qpair

5. Zero Test Oracle Op(·, ·, ·): qzt

– Zero Test Oracle in the first source groupZT(·, 1): qzt,1
– Zero Test Oracle in the second source groupZT(·, 2): qzt,2
– Zero Test Oracle in the target groupZT(·, 0): qzt,t

Access-Controlled Inner Product Function-Revealing Encryption 57

First, each Group Operation and Bilinear Pairing Oracle query returns one handle
while an Encryption and Key Generation Oracle query returns d+ 4 handles.
Now in each source group, we have the maximum possible degree of a polynomial
is 4. Thus, by the Schwartz-Zippel Lemma, for each Zero Test Oracle query A
makes, it has probability at most 4

p of the oracle returning true in sim-1 where it
would not in the sim-0 game.
Similarly, in order to test linear combinations of polynomials, A takes each handle
h and for every other handle hi also in the same source group, runs the following
queries: ZT(Op(h, hi, 1)) or ZT(Op(h, hi, 2)). Again, by Schwartz-Zippel Lemma,
there is probability 4

p of the oracle returning true in sim-1 game and false in
sim-0.
Then, we take union bound on the probabilities above to bound the probability
that at least one Zero Test Oracle query returns true as follows:

4
p

(
qzt,1 + qzt,2 +

(
qkg(d+ 4) + qop,1

2

)
+

(
qenc(d+ 4) + qop,2

2

))
.

Next, in the target group, we have the maximum possible degree of a poly-
nomial is 8. First, for each Zero Test Oracle query A makes, it has probability
at most 8

p of the oracle returning true in sim-1 where it would not in the sim-0
game.
In order to test linear combinations of polynomials, A again takes each handle h
and for every other handle hi also in the target group, runs the following queries:
ZT(Op(h, hi, 0)). Again, by Schwartz-Zippel Lemma, there is probability 8

p of
the oracle returning true in sim-1 game and false in sim-0.
Then, we take union bound on these probabilities:

8
p

(
qzt,t +

(
qop,t + qpair

2

))
.

Now, let’s add the above probabilities together to calculate the probability of
distinguishing games sim-1 and sim-0 as follows:

4
p

(
qzt,1 + qzt,2 +

(
qkg(d+ 4) + qop,1

2

)
+

(
qenc(d+ 4) + qop,2

2

))
+ 8
p

(
qzt,t +

(
qop,t + qpair

2

))
= 1
p

(
4qzt,1 + 4qzt,2 + 4

(
qkg(d+ 4) + qop,1

2

)
+ 4

(
qenc(d+ 4) + qop,2

2

)
+ 8qzt,t + 8

(
qop,t + qpair

2

))
≤ 1
p

(
8qzt + 4((qop + qpair + (d+ 4)(qenc + qkg))2)

)
≤ (4qt(d+ 4))2

p

(
≤ O(q2

t)
p

)
.

58 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

This concludes the proof.

Access-Controlled Inner Product Function-Revealing Encryption 59

C Our Outsourced Database Protocol for ANN Search

In this Section, we first define ANN data structure and ANN outsourced database
protocol. We adopt the notion of outsourced database (ODB) system given
by [15]; however, we modify the formalism to cover ANN and dynamic databases.

C.1 ANN Data Structures

A database D is abstracted as a collection of n vectors x from Zd
p, each associated

with an unique identifier ID ∈ N. We say the database has a lookup operation
that on input of an identifier ID, returns the associated vector x. We denote this
operation as x ← D[ID]. We require the ANN data structure to use a distance
metric dist, which is black-box computable from inner-product (e.g. Euclidean).

A query is the defined as a vector q from Zd
p, which is associated with an

unique identifier IDq ∈ N. An ANN data structure DSANN consists of three
algorithms, namely DSANN = (Initialize, Insert,Search). In this work, we consider
ANN algorithms which only require inner product comparison in order to insert
and search the database. This can be formalized by providing the algorithms oracle
access to an inner product comparison operation named CompO(ID1, ID2, ID3)
which on input three identifiers outputs whether ⟨x1,x2⟩ > ⟨x1,x3⟩ where
xi ← D[IDi]. Thus, we rewrite the ANN data structure as follows:

Initialize(p, d, params) : On input a prime p, dimension d, and a set of parameters
params, the Initialize algorithm initializes the data structure DSANN.

InsertCompO(·,·,·)(ID) : On input a record identifier ID, the insert algorithm with
access to an inner-product comparison oracle CompO, inserts the record
identifier in the data structure DSANN. This algorithm does not have a return
value.

SearchCompO(·,·,·)(IDq) : On input a query identifier IDq, the search algorithm
with access to an inner-product comparison oracle CompO, outputs an ID
from the data structure DSANN.

Correctness. We require search correctness of the ANN data structure. The
ANN data structure is said to be (1− δ)-correct, if for all databases D of size
n ∈ N we have the following:

Pr[ID← SearchCompO(·,·,·)(IDq) : dist(q,xi) ≤ dist(q,xj) ∀j ∈ [n]] ≥ 1− δ

where DSANN ← Initialize(p, d, params); InsertCompO(·,·,·)(IDi)∀i ∈ [n] is run be-
fore the search and the probability is over the coins of the insertion algorithm.

C.2 ANN Outsourced Database Protocols

An ANN outsourced database protocol ANN-ODB for a databaseD = {(xi, IDi)i∈[n]},
where each xi ∈ Zd

p and IDi ∈ N consists of five algorithms ANN-ODB = (Setup,
PreQuery, Query, PreUpdate, Update):

60 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

– Setup(1λ, 1n,D): On input a unary encoding of the security parameter λ, the
size of the database n, and a database D = {(xi, IDi)i∈[n]}, the setup algo-
rithm outputs an ANN data structure DSANN and a database of ciphertexts
DS = {(cti, IDi)}i∈[n].

– PreQuery(q, IDq): On input a query vector q and its identifier IDq, the
preprocess query algorithm algorithm outputs a ciphertext of the query
vector ctq.

– Query(DSANN, (ctq, IDq)): On input an ANN data structure DSANN and a
tuple of query ciphertext and identifier (ctq, IDq), the query algorithm outputs
an identifier ID representing the nearest neighbor of the query vector.

– PreUpdate(u, IDu): On input an update vector u and its identifier IDu, the
preprocess update algorithm outputs a ciphertext of the update vector ctu.

– Update(DSANN, (ctu, IDu)): On input an ANN data structure DSANN and a
tuple of update ciphertext and identifier (ctu, IDu), the update algorithm has
no output; the data structure is updated internally.

Correctness. We define Query correctness and Update correctness respectively.

Query correctness: For all λ, n, IDq ∈ N, q ∈ Zd
p, and for any database D, we

say that the ANN-ODB satisfies query correctness if the following two outputs
are identical:

Query(DSANN, (ctq, IDq)), DSANN.SearchCompO(·,·,·)(IDq)

where (DSANN,DSS)←$ Setup(1λ, 1n,D) and ctq←$ PreQuery(q, IDq).
Update correctness: For all λ, n, IDu ∈ N, u ∈ Zd

p, and for any database D, we
say that the ANN-ODB satisfies query correctness if the DSANN is identical
after running either of the following:

Update(DSANN, (ctu, IDu)), DSANN.InsertCompO(·,·,·)(IDu)

where (DSANN,DSS)←$ Setup(1λ, 1n,D) and ctu←$ PreQuery(u, IDu).

Security. We give a simulation-based security definition for ANN-ODB. First, we
define a leakage profile LP. Let ANN-ODB = (Setup, PreQuery, Query, PreUpdate,
Update) be a dynamic ODB system for a database D with data and query vectors
from Zd

p. A leakage profile LP = (LSetup, LQuery, LUpdate) is a tuple of algorithms
such that:

Setup Leakage LSetup: On input a database of records D = {(xi, IDi)}i∈[n] and
an insertion order insert-order, it outputs a string ℓSetup.

Query Leakage LQuery: On input a database D = {(xi, IDi)}i∈[n] and a set of
previous queries Q = {(qi, IDi)i∈[m]}, it outputs a string ℓQuery.

Update Leakage LUpdate: On input a database D = {(xi, IDi)}i∈[n], a set of
previous queries Q = {(qi, IDi)i∈[m]}, and a record (x, ID), it outputs a string
ℓUpdate.

Access-Controlled Inner Product Function-Revealing Encryption 61

The advantage of an adversary A = (A1,A2) interacting with the games
given in Fig. 25 for λ ∈ N with respect to a simulator S = (SimSetup, SimQuery,
SimUpdate) and a leakage profile LP = (LSetup, LQuery, LUpdate) is as follows:

Advsim
ANN-ODB,A,S,LP(λ) = Pr[Gsim-1

ANN-ODB,A(λ)⇒ 1]− Pr[Gsim-0
ANN-ODB,A,S,LP(λ)⇒ 1] .

We say that an ANN-ODB scheme is SIM-secure under a leakage profile
LP = (LSetup,LQuery,LUpdate) if for every PT adversary A = (A1,A2) and for all
λ ∈ N, there exists a PT simulator S = (SimSetup, SimQuery, SimUpdate) such
that Advsim

ANN-ODB,A,S,LP(λ) is negligible.

Game Gsim-1
ANN-ODB,A(λ)

Main:
1 b← ⊥
2 (D, st)←$ A1(1λ, 1n)
3 (DSANN,DS)←$ Setup(1λ, 1n,D)
4 (op, optype, st)←$ A2(DS,DS , st)
5 while optype ̸= terminate :
6 if optype = Query :
7 (q, ID)← op
8 (ctq, ID)← PreQuery(q, ID)
9 (op, optype, st)←$ A2(ctq, ID, st)

10 if optype = Update :
11 (u, ID)← op
12 (ctu, ID)← PreUpdate(u, ID)
13 (op, optype, st)←$ A2(ctu, ID, st)
14 if optype = terminate : b← op
15 return b

Game Gsim-0
ANN-ODB,A,S(λ)

Main:
1 b← ⊥
2 Q ← ∅
3 (D, stA)←$ A1(1λ, 1n)
4 ℓSetup ← LSetup(D)
5 (DSANN,DS , stS)←$ S.SimSetup(ℓSetup)
6 (op, optype, stA)←$ A2(DS,DS , stA)
7 while optype ̸= terminate :
8 if optype = Query :
9 (q, ID)← op

10 ℓQuery ← LQuery(D,Q, (q, ID))
11 (ctq, stS)← S.SimQuery(ℓQuery, stS)
12 Q ← Q∪ {(q, ID)}
13 (op, optype, stA)←$ A2(ctq, ID, stA)
14 if optype = Update :
15 (u, ID)← op
16 ℓUpdate ← LUpdate(D,Q, (u, ID))
17 (ctu, stS)← S.SimUpdate(ℓUpdate, stS)
18 D ← D ∪ {(u, ID)}
19 (op, optype, st)←$ A2(ctu, ID, stA)
20 if optype = terminate : b← op
21 return b

Fig. 25. Games defining SIM-security for ANN-ODB.

C.3 AC-IPFRE[FH-IPFE] Security

Theorem 14. Our AC-IPFRE[FH-IPFE] scheme satisfies SIM-security, assuming
that the underlying FH-IPFE satisfies SIM-security.

Proof. Let A be an adversary against AC-IPFRE[FH-IPFE]. We first construct an
adversary B against SIM-security of FH-IPFE in Fig. 26.

62 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Next, by SIM-security of FH-IPBFE, for an adversary B there exists a simulator
SB = (SB,1,SB,2,SB,3,SB,4). Then, consider the simulator SA = (SA,1, SA,2, SA,3)
for AC-IPFRE[FH-IPFE] for an adversary A also given in Fig. 26.

The simulator SA,3 gets the collection C′
ip that contains ‘accessible’ inner

products of AC-IPFRE[FH-IPFE] ciphertexts with each other using a global index
to keep track of the queries and T that contains the tags of each ciphertext. The
simulator turns this into Mip that still uses a global index but keeps track of
(Enc or KeyGen) queries. Since a ciphertext with tag C uses both a ciphertext
and function key, the simulator uses an offset δ to keep track of the indices. When
adding new tuples to Cip, the simulator must keep track of ciphertexts of tag C
separately and only add new values right before running SB,3 or SB,4 with an
updated Cip as given in simulator lines 15-30.

With this, we see

Pr[Gsim-1
AC-IPFRE[FH-IPFE],A(λ)⇒ 1] = Pr[Gsim-1

FH-IPFE,B(λ)⇒ 1]

and
Pr[Gsim-0

AC-IPFRE[FH-IPFE],A,SA
(λ)⇒ 1] = Pr[Gsim-0

FH-IPFE,B,SB
(λ)⇒ 1] .

Subtracting yields the result.

C.4 ANN-ODB Security Proof

Theorem 15. Our ANN ODB protocol ANN-ODB[AC-IPFRE] is SIM-secure un-
der the leakage profile LPANN-ODB = (LSetup,LQuery,LUpdate) given in Fig. 13,
assuming that AC-IPFRE is a SIM-secure ACIPFRE for access policy aann.

Consider the games given in Fig. 27.

Now, we consider an adversary B = (B1,B2) interacting with the games given
in Fig. 3 using an adversary A = (A1,A2) against the games given in Fig. 27.
This adversary is given in Fig. 28.
We also consider a simulator S = (SimPPGen,SimSetup,SimQuery,SimUpdate)
interacting with the game given in Fig. 27 (right) that uses an AC-IPFRE simu-
lator SAC-IPFRE = (SimPPGen,SimSetup,SimEnc) for the access policy aann. This
simulator is given in Fig. 29.

We can see that when the adversary B is the sim-1 AC-IPFRE game, it perfectly
simulates the sim-1 ANN-ODB[AC-IPFRE] game for the adversary A. On the other
hand, when the adversary B is in the sim-0 AC-IPFRE game with a simulator
SAC-IPFRE, it simulates the sim-0 ANN-ODB[AC-IPFRE] game for the adversary
A with the simulator S given in Fig. 29 (right). Thus, ANN-ODB[AC-IPFRE] is
persistent simulation secure under the given leakage profile.

Access-Controlled Inner Product Function-Revealing Encryption 63

Adversary B = (B1,B2)

B1(1λ, pp):
1 (d, st)←$ A1(1λ, pp)
2 return (d, st)

B
EncO′(·),KeyGenO′(·)
2 (st):

3 b←$ A
EncO(·,·)
2 (st)

4 return b

EncO(x, tag):
5 if tag = data :
6 ctx ← EncO′(x)
7 ct← (⊥, ctx)
8 if tag = query :
9 skx ← KeyGenO′(x)

10 ct← (skx,⊥)
11 if tag = update :
12 skx ← KeyGenO′(x)
13 ctx ← EncO′(x)
14 ct← (skx, ctx)
15 return ct

Simulator SA = (SA,1,SA,2,SA,3)

SA,1(1λ):
1 (pp, stB)←$ SB,1(1λ)
2 st ← stB
3 return (pp, st)

SA,2(1d, st):
4 i← 0; E, K ← ∅
5 δ ← 0
6 stB ← st
7 stB←$ SB,2(1d, stB)
8 st ← (stB, k)
9 return st
SA,3(C′

ip, T , st):
10 (stB, k)← st
11 i← i + 1; sk, ct← ⊥
12 tag← T [i]
13 if tag = data or tag = update :
14 then E ← E ∪ {i}
15 if tag = query or tag = update :
16 then K ← K ∪ {i}
17 if tag = data :
18 for j ∈ K :
19 Cip[i + δ][j], Cip[j][i + δ]← C′

ip[i][j]
20 (ct, stB)← SB,4(Cip, stB)
21 if tag = query :
22 for j ∈ E :
23 Cip[i + δ][j], Cip[j][i + δ]← C′

ip[i][j]
24 (sk, stB)← SB,3(Cip, stB)
25 if tag = update :
26 for j ∈ E :
27 Cip[i + δ][j], Cip[j][i + δ]← C′

ip[i][j]
28 (sk, stB)← SB,3(Cip, stB)
29 δ ← δ + 1
30 for j ∈ K :
31 Cip[i + δ][j], Cip[j][i + δ]← C′

ip[i][j]
32 (ct, stB)← SB,4(Cip, stB)
33 st ← (stB, k)
34 return ((sk, ct), st)

Fig. 26. Adversary against SIM-security of FH-IPFE and simulator for SIM security of
AC-IPFRE[FH-IPFE].

64 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Game Gsim-1
ANN-ODB[AC-IPFRE],A(λ)

Main:
1 pp←$ AC-IPFRE.PPGen(1λ)
2 (Dinit, st)←$ A1(1λ, 1n, 1d, pp)
3 msk← AC-IPFRE.Setup(1λ, 1d)
4 D ← Shuffle(Dinit)
5 for i ∈ [n] :
6 DSANN.InsertCompO(·,·,·)(IDi)
7 cti←$ AC-IPFRE.Enc(msk, data,D[IDi])
8 DS [IDi]← cti

9 (op, optype, st)←$ A2
(
DSANN, (cti)i∈[n], st

)
10 while optype ̸= terminate :
11 if optype = Query :
12 (q, ID)← op
13 ctq←$ AC-IPFRE.Enc(msk, query, q)
14 (op, optype, st)←$ A3((ctq, ID), st)
15 if optype = Update :
16 (u, ID)← op
17 ctu←$ AC-IPFRE.Enc(msk, update, u)
18 (op, optype, st)←$ A4((ctu, ID), st)
19 if optype = terminate : b← op
20 return b

Shuffle(Dold):
21 Dnew ← ∅
22 n← length(Dold)
23 σ←$ Sn
24 for i ∈ [n] :
25 Dnew[IDi]← Dold[IDσ(i)]
26 return Dnew

CompO(IDi, IDj , IDk):
27 xi ← D[IDi]; xj ← D[IDj]; xk ← D[IDk]
28 if ⟨xi, xj⟩ > ⟨xi, xk⟩:
29 return 1
30 else :
31 return 0

Game Gsim-0
ANN-ODB[AC-IPFRE],A,S(λ)

Main:
1 (pp, stS)←$ S.SimPPGen(1λ)
2 (Dinit, stA)←$ A1(1λ, 1n, 1d, pp)
3 D ← Shuffle(Dinit)
4 ℓSetup ← LSetup(D,⊥)
5 (DSANN,DS) ←$ S.SimSetup(ℓSetup, stS)
6 (op, optype, stA)←$ A2 (DSANN,DS , stA)
7 while optype ̸= terminate :
8 if optype = Query :
9 (q, ID)← op; Q[ID]← q

10 ℓQuery ← LQuery((q, ID),D)
11 (ctq, stS)← S.SimQuery(ℓQuery, stS)
12 (op, optype, stA)←$ A3((ctq, ID), stA)
13 if optype = Update :
14 (u, ID)← op; D[ID]← u
15 ℓUpdate ← LUpdate((u, ID),D,Q)
16 (ctu, stS) ←

S.SimUpdate(ℓUpdate, stS)
17 (op, optype, stA)←$ A4((ctu, ID), stA)
18 if optype = terminate : b← op
19 return b

Shuffle(Dold):
20 Dnew ← ∅
21 n← length(Dold)
22 σ←$ Sn
23 for i ∈ [n] :
24 Dnew[IDi]← Dold[IDσ(i)]
25 return Dnew

Fig. 27. ANN-ODB[FH-IPFE] Security.

Access-Controlled Inner Product Function-Revealing Encryption 65

Adversary B

B1(1λ, pp):
1 (Dinit, st)←$ A1(1λ, 1n, 1d, pp)
2 st←$Dinit
3 return (d, aann, st)
BEncO

2 (st):
4 Dinit ← st
5 D ← Shuffle(Dinit)
6 for i ∈ [n] :
7 DSANN.InsertCompO(·,·,·)(IDi)
8 cti←$ EncO(D[IDi], data)
9 DS [IDi]← cti

10 (op, optype, st)←$ A2
(
DSANN, (cti)i∈[n], st

)
11 while optype ̸= terminate :
12 if optype = Query :
13 (q, ID)← op
14 ctq←$ EncO(q, query)
15 (op, optype, st)←$ A3((ctq, ID), st)
16 if optype = Update :
17 (u, ID)← op
18 ctu←$ EncO(u, update)
19 (op, optype, st)←$ A4((ctu, ID), st)
20 if optype = terminate : b← op
21 return b

Shuffle(Dold):
22 Dnew ← ∅
23 n← length(Dold)
24 σ←$ Sn
25 for i ∈ [n] :
26 Dnew[IDi]← Dold[IDσ(i)]
27 return Dnew

CompO(IDi, IDj , IDk):
28 xi ← D[IDi]; xj ← D[IDj]; xk ← D[IDk]
29 if ⟨xi, xj⟩ > ⟨xi, xk⟩:
30 return 1
31 else :
32 return 0

Fig. 28. Adversary for ANN-ODB[AC-IPFRE] simulation security.

66 O. Acharya, W. Feng, R. Langrehr, A. O’Neill

Simulator S

S.SimPPGen(1λ):
1 (pp, st)←$ SAC-IPFRE.SimPPGen(1λ)
2 return (pp, st)
S.SimSetup(ℓSetup, st):
3 DSANN.Initialize(d, p, params)
4 (ip-comp, insert-order)← ℓSetup
5 Cip, T ← ∅; i← 0
6 st←$ SAC-IPFRE.SimSetup(1d,⊥, st)
7 for j ∈ insert-order :
8 DSANN.InsertCompO(·,·,·)(IDj)
9 for k ∈ insert-order :

10 Cip[j][k], Cip[k][j]← ⊥
11 i← i + 1; T [i]← data
12 (cti, st)←$ SAC-IPFRE.SimEnc(Cip, T , st)
13 DS ← {(ctj , IDj)}j∈[n]; DQ ← ∅
14 stS ← (st, Cip, T)
15 return (DSANN,DS , stS)
S.SimQuery(ℓQuery, stS):
16 δ ← 0
17 (st, Cip, T)← stS
18 i← i + 1; T [i]← query
19 ip-val← ℓQuery
20 for j ∈ [i] :
21 if T [j] = query:
22 Cip[i][j], Cip[j][i]← ⊥; δ ← δ + 1
23 else : Cip[i][j], Cip[j][i]← ip-val[j + δ]
24 (ctq, st)←$ SAC-IPFRE.SimEnc(Cip, T , st)
25 stS ← (st, Cip, T)
26 return (ctq, stS)
S.SimUpdate(ℓUpdate, stS):
27 (st, Cip, T)← stS
28 i← i + 1; T [i]← update
29 ip-val← ℓUpdate
30 for j ∈ [i] :
31 Cip[i][j], Cip[j][i]← ip-val[j]
32 (ctu, st)←$ SAC-IPFRE.SimEnc(Cip, T , st)
33 return (ctu, stS)
CompO(IDi, IDj , IDk):
34 return ip-comp[IDi][IDj][IDk]

Fig. 29. Simulator for ANN-ODB[AC-IPFRE] simulation security.

	Access-Controlled Inner Product Function-Revealing Encryption

