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Abstract. In ASIACRYPT 2019, Andreeva et al. introduced a new
symmetric key primitive called the forkcipher, designed for lightweight
applications handling short messages. A forkcipher is a keyed function
with a public tweak, featuring fixed-length input and fixed-length (ex-
panding) output. They also proposed a specific forkcipher, ForkSkinny,
based on the tweakable block cipher SKINNY, and its security was evalu-
ated through cryptanalysis. Since then, several efficient AEAD and MAC
schemes based on forkciphers have been proposed, catering not only to
short messages but also to various purposes such as leakage resilience and
cloud security. While forkciphers have proven to be efficient solutions for
designing AEAD schemes, the area of forkcipher design remains unex-
plored, particularly the lack of provably secure forkcipher constructions.
In this work, we propose forkcipher design for various tweak lengths,
based on a block cipher as the underlying primitive. We provide proofs
of security for these constructions, assuming the underlying block cipher
behaves as an ideal block cipher. First, we present a forkcipher, F̃1, for
an n-bit tweak and prove its optimal (n-bit) security. Next, we propose

another construction, F̃2, for a 2n-bit tweak, also proving its optimal
(n-bit) security. Finally, we introduce a construction, F̃r, for a general
rn-bit tweak, achieving n-bit security.

1 Introduction

Forkcipher [4] was introduced as a keyed function with an optional public tweak,
taking an n-bit input and producing a 2n-bit output. The security of a tweakable
forkcipher is defined in terms of indistinguishability from two independently cho-
sen tweakable permutations on the same tweak space and input space {0, 1}n. For
the remainder of this work, we will focus on forkciphers with a tweak, i.e., tweak-
able forkciphers. At times, we will simply refer to them as forkciphers. In [4],
a concrete forkcipher called ForkSkinny, based on the tweakable block cipher
SKINNY, was proposed. This work also introduced three provably secure AEAD
schemes (PAEF, RPAEF, SAEF) for short messages, achieving better efficiency
than the best SKINNY-based AEAD modes. SAEF has also been shown to be
OAE [16] and INT-RUP [3] secure [2, 10]. In [1], a variant of forkcipher called
multi-forkcipher (MFC) was introduced for larger output lengths. This work also
presented a generic CTR mode of called GCTR, based on MFC, achieving bet-
ter efficiency than traditional CTR-based encryption schemes. In [11], the Eevee
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family of three AEAD schemes—Umbreon, Jolteon, and Espeon—was proposed
based on forkcipher. These schemes are highly parallelizable, suitable for IoT
devices, and efficient in MPC for distributed decryption. They achieved cost
improvements over SKINNY-based schemes by using ForkSkinny as the under-
lying primitive family. Additionally, in [6], a Forkcipher-Based Pseudo-Random
Number Generator called FCRNG was proposed, based on two forkcipher-based
CTR style modes: FCTR-c and FCTR-t. A wide range of pseudorandom func-
tion constructions based on forkcipher were proposed in [15]. In [14], an efficient
MAC scheme called LightFork, a forkcipher variant of LightMAC, was intro-
duced. Furthermore, in [13], a leakage-resilient two-pass AEAD scheme, called
FEDT, was proposed. This scheme demonstrated competitive performance rates
compared to those based on tweakable block ciphers. More recently, in [9], two
additional leakage-resilient AEAD schemes, ForkDTE1 and ForkDTE2, were in-
troduced, utilizing forkciphers. Notably, FEDT, ForkDTE1, and ForkDTE2 all
make use of forkciphers with a large tweak.

These recent works illustrate that, although forkcipher was originally intro-
duced for AEAD schemes targeting short messages, its utility extends beyond
that. Forkcipher has become an important primitive for various applications.

1.1 Design approach for Forkcipher

Although the forkcipher is becoming an important cryptographic primitive, the
design of secure and efficient forkciphers has not been thoroughly explored. Au-
thors of [4] have used the iterate-fork-iterate paradigm to realize a forkcipher.
In which the plain text is encrypted by r1 rounds of the cipher. Then the out-
put is “forked” along two parallel paths with r2 rounds. Half of the output is
considered as the cipher text, while the other half is considered authenticating
the message. To the best of our knowledge, there are two existing dedicated
forkcipher constructions: ForkAES [5] and ForkSkinny [4]. Both of these design
follows the iterate-fork-iterate paradigm. The security of both designs relies on
heuristic cryptanalytic results. ForkAES leverages the key schedule and round
function of AES-128. Furthermore, it operates as a tweakable block cipher by
integrating principles from KIASU-BC [17]. While the authors believe that the
security of ForkAES can be reduced to the security of the AES and KIASU
ciphers, [7] mounted some attacks on ForkAES. Subsequently, [8] presented an
improved attack on the full 10 rounds of ForkAES.

ForkSkinny processes a 128-bit plaintext x, a 64-bit tweak J , and a 128-bit
secret key k, and produces two 128-bit ciphertext blocks c0 and c1. The initial
21 rounds of ForkSkinny closely mirror those of Skinny, differing primarily in
the constant added to the internal state. After these rounds, the encryption
splits, with a branch constant XORed into the internal state to facilitate the
computation of the two n-bit outputs c0 and c1. Post-forking, two separate 27-
round iterations of Skinny are executed to derive the final 128-bit outputs (c0, c1).
The security of ForkSkinny is primarily argued from the security of SKINNY.
In [8], it was shown that the best attacks on SKINNY could be extended by one
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round for most ForkSkinny variants and up to three rounds for ForkSkinny-128-
256. While these attacks do not compromise the full-round ForkSkinny, they
indicate a security degradation between ForkSkinny and the underlying block
cipher.

While forkciphers are developed within the iterate-fork-iterate (IFI) frame-
work, the question of their provable security remains unexplored. The first prov-
ably secure forkcipher design was introduced by Kim et al. in [19]. They detailed
a method for constructing a forkcipher utilizing public permutations as core
elements. This method essentially applies the IFI paradigm to the tweakable
Even-Mansour cipher framework. They established that a (1, 1)-round FTEM
cipher (where a single-round TEM is first applied to the plaintext, followed by
two separate single-round TEM processes) achieved 2n/3-bit security in the con-
text of the ideal permutation model. However, their security bound is affected
by an imbalance between the number of ideal cipher queries and construction
queries. Specifically, to allow 2n ideal cipher queries, the number of construction
queries needs to be limited to around 2n/2. From a practical standpoint, this be-
comes problematic when the number of ideal cipher queries significantly exceeds
the number of construction queries.

Despite ForkSkinny’s efficiency and the lack of successful full-round attacks,
the observed security degradation raises an important question: can we design
an optimally (n-bit) secure forkcipher with a provable security? For a secure
tweakable forkcipher, for each key and tweak, the functions from the input (X)
to each half of the output (M → C0 and M → C1) should be a permutation, and
the corresponding family should be a secure tweakable block cipher (TBC). To
address this, we first examine the existing design approaches for TBCs. There
are three main approaches: the Dedicated Approach, the Standard Model, and
the Ideal-Cipher Model.

Designing TBCs from Block Ciphers in the Standard Model. In this approach,
TBCs are designed from underlying block ciphers, with security argued under the
assumption that the block cipher is a pseudorandom permutation. This method
was introduced by Liskov et al. in [22]. Over the years, several constructions
have been proposed, leading to improved security proofs [12,18,20,28].

Designing TBCs from Block Ciphers in the Ideal-Cipher Model. In this approach,
TBCs are designed from block ciphers, assuming the underlying block ciphers
function as ideal ciphers. Mennink [24] first formally addressed this by proposing
two TBC constructions from a block cipher with n-bit tweak, n-bit key, and n-bit
data, called F̃ [1] and F̃ [2], claiming 2n/3 bit security and optimal security, re-

spectively. Later, Wang et al. [30] pointed out a birthday attack on F̃ [2]. Later,
Mennink prevents this attack by a constant multiplication of the key in [25].
Wang et al. [30] also proposed 32 efficient TBC constructions with n-bit tweak,
n-bit key, and n-bit data, achieving optimal security with two block cipher calls.
They also mentioned 24 other schemes that achieve optimal security. Addition-
ally, they noted that these schemes are similar to some of the 32 schemes that
involve pre-computing a subkey. The F̃ [2] construction from [25] corresponds
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to one of the 24 schemes in the framework for the specific parameter values:
a11 = 1, a12 = 0, b11 = 0, b12 = 1, a22 = 1, a21 = 2, a23 = 0, b24 = 1, b21 = 0,
b31 = 0, b34 = 1. Shen and Standaert [29] extended this research by studying
TBCs with 2n-bit tweaks, n-bit key, and n-bit data. They demonstrated that
achieving beyond birthday bound security for 2n-bit tweaks requires more than
two block cipher calls and proposed an optimally secure construction using three
calls. They conjectured that to build an n-bit secure TBC with tn-bit tweaks
where t > 2, at least (t+ 1) block cipher calls are needed.

In this work, we will focus on the question that Can we design optimally
(n-bit) secure Tweakable Forkcipher from ideal block cipher?

1.2 Contributions

In this work, we propose the first provable secure forkcipher designs with optimal
(n-bit) security based on ideal block ciphers whose inputs and outputs are of size
n bits.

– Forkcipher with n-bit Tweak (F̃1):
• We introduce a forkcipher design with an n-bit tweak, denoted as F̃1.
• F̃1 employs three block ciphers: the first block cipher uses the master key

to process the tweak, and the final two parallel block ciphers use derived
subkeys to produce a 2n-bit output.

• We have proved that F̃1 achieves optimal security of n-bits.
– Forkcipher with 2n-bit Tweak (F̃2):
• We propose another forkcipher design with a 2n-bit tweak, denoted as

F̃2.
• F̃2 uses four block ciphers: the first two block ciphers use different keys

derived from the master key to process the tweak, and the final two
parallel block ciphers use derived subkeys to produce a 2n-bit output.

• We have also demonstrated that F̃2 achieves optimal security of n-bits.
– Forkcipher with Arbitrary Length Tweak (rn-bit) (F̃r):
• For an arbitrary length tweak of rn-bits, we propose a design using (r+2)

block ciphers, denoted as F̃r.
• In F̃r, the first r parallel block ciphers process the tweak, and the final two

parallel block ciphers, using derived subkeys, produce a 2n-bit output.
• F̃r also achieves optimal security of n-bits.

It is important to note that for n-bit and 2n-bit tweaks, our constructions
require only one more block cipher than the optimal secure tweakable block ci-
pher (TBC) constructions. Additionally, previous works [24, 29, 30] have shown
that these TBC designs are minimal in terms of block cipher usage. Although no
optimal secure TBC designs exist for large tweaks (rn), where r ≥ 3, [29] con-
jectures that a minimum of r+1 block ciphers is necessary for an optimal secure
TBC with an rn-bit tweak. Our design requires only r + 2 block ciphers for an
rn-bit tweak forkcipher, and the extra block cipher is parallelizable. Moreover,
our designs exhibit a similar level of parallelization as TBC designs, demonstrat-
ing that our forkciphers are more efficient than two TBCs with the same length
tweak.
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Table 1: Comparison of TBC/TFC construction from ideal Block Cipher.
TBC/TFC = tweakable block cipher/tweakable forkcipher. TDK = Tweak de-
pendent key

Tweak length Security Block Cipher TDK

F̃ [2] [24] n n-bit 2 1

Ẽ1, · · · , Ẽ32 [30] n n-bit 2 1

F̃1 [This work] n n-bit 3 2

G̃2 [29] 2n n-bit 3 1

F̃2 [This work] 2n n-bit 4 2

2 Preliminaries

Notation: An adversary A is an algorithm. The notation y ← A(x1, x2, . . . , xi)
means that A runs on inputs x1, . . . , xi and produces output y. For a set X,

the notation X
∪←− x means that x is added to X. For bit strings x and y,

x∥y denotes their concatenation. The notation [X]x represents the encoding of
a non-negative integer X < 2x as its x-bit binary representation. For any set X,

x
$←− X denotes that x is chosen uniformly random from X.
When an adversary A interacts with an oracle O, the output is written as

AO. After this interaction, it returns a bit b ∈ {0, 1}. We write AO → b to
indicate that A outputs b after interacting with O. The time complexity of the
adversary is defined using the standard RAM (random-access machine) model
of computation (see, e.g., [26]).

P(M) denote the set of all permuatation overM. And let P̃(T ,M) denote

the family of all functions f̃ : T × M → M such that for each J ∈ T , the
function f̃(J, ·) is a permutation onM. P(n) and P̃(T , n) denote the case where
M = {0, 1}n.

Block Cipher: A block cipher E is a keyed function E : K × {0, 1}n → {0, 1}n.
The key space is K, and both the domain and range are {0, 1}n. For each key

k ∈ K, Ek
∆
= E(k, .) gives a unique permutation over {0, 1}n.

We define the PRP security of E based on indistinguishability from a random

permutation P
$←− P(n). The block cipher E is called a (q, t, ϵ)-secure pseudo-

random permutation(PRP) if any adversary with running time at most t cannot

distinguish Ek (for k
$←− K) from a random permutation P after making at most

q queries. The probability of the adversary distinguishing them is at most ϵ.
Formally, for any adversary A, the PRP-advantage of A is defined as:

AdvE
PRP(A)

∆
=

∣∣∣Pr[k $←− K : AEk(·) → 1]− Pr[P
$←− P(n) : AP → 1]

∣∣∣
Similarly, strong pseudo-random permutation (SPRP) security is defined by

its indistinguishability from a random permutation P when the adversary also
has access to the inverse oracle (E−1

k or P−1) along with the forward oracle(Ek or
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P). The block cipher E is called a (q, t, ϵ)-secure SPRP if any adversary with run-

ning time at most t cannot distinguish (Ek,E
−1
k ) (for k

$←− K) from (P,P−1) after
making at most q queries, with a probability of success exceeding ϵ. Formally,
for any adversary A, the SPRP-advantage of A is defined as:

AdvE
SPRP(A)

∆
=

∣∣∣Pr[k $←− K : AEk(·),E−1
k (·) → 1]− Pr[P

$←− P(n) : AP(·),P−1(·) → 1]
∣∣∣ .

We denote BC(K, n) as the set of all possible SPRP secure block ciphers with
keyspace K and {0, 1}n as the input space.

2.1 Forkciphers

A tweakable forkcipher (TFC) [4] F̃ : K × T × {0, 1}n → {0, 1}2n is a family of
tweakable keyed functions with key space K and tweak space T . It comprises a
pair of deterministic algorithms (F̃+, F̃−), defined as follows:

The encryption algorithm

F̃+ : K × T × {0, 1}n × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

takes a key k ∈ K, a tweak J ∈ T , a message m ∈ {0, 1}n, and a selector bit
s ∈ {0, 1, 2} as inputs. It outputs:

F̃+(k, J,m, s) =


c0, if s = 0

c1, if s = 1

(c0, c1), if s = 2

where the ciphertext is c = (c0, c1). Here, c0 represents the left ciphertext block,
and c1 represents the right ciphertext block.

The decryption algorithm

F̃− : K × T × {0, 1}n × {0, 1} × {0, 1, 2} −→ {0, 1}n ∪ ({0, 1}n × {0, 1}n)

accepts a key k ∈ K, a tweak J ∈ T , a ciphertext block cb, and a bit b ∈ {0,
1} indicating whether cb is the left or the right ciphertext block, along with a
selector bit s ∈ {0, 1, 2}. It outputs:

F̃−(k, J, cb, b, s) =


m if s = 0

c1−b, if s = 1

(m, c1−b), if s = 2

where m denotes the plaintext block.
The correctness of a forkcipher asserts that for any key k ∈ K, tweak J ∈ T ,

plaintext m ∈ {0, 1}n, and bit b ∈ {0, 1}, the following conditions must hold:

1. F̃−(k, J, F̃+(k, J,m, b), b, 0) = m,
2. F̃−(k, J, F̃+(k, J,m, b), b, 1) = F̃+(k, J,m, 1− b),
3. F̃−(k, J, x, b, 2) = (F̃−(k, J, x, b, 0), F̃−(k, J, x, b, 1)), and
4. F̃+(k, J, x, 2) = (F̃+(k, J, x, 0), F̃+(k, J, x, 1)).

For nonempty sets K, T , and B, we define TFC(K, T ,B) as the set of all tweakable
forkciphers with key space K, tweak space T , and input space B.
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Algorithm 1 STFP Game.

Real world

function Initialize
k

$←− K

function Oracle F̃+
k (J, x, s)

return F̃+(k, J, x, s)

function Oracle F̃−
k (J, x, b, s))

return F̃−(k, J, x, b, s)

Ideal world

function Initialize
P0,P1

$←− P̃(T , n)

function Oracle $+(J, x, s)

return


P0(J, x) if s = 0

P1(J, x) if s = 1

(P0(J, x),P1(J, x)) if s = 2

function Oracle $−(J, y, b, s)

return


P−1
b (J, y) if s = 0

P1⊕b(J,P
−1
b (J, y)) if s = 1

((P−1
b (J, y),P1⊕b(J,P

−1
b (J, y)) if s = 2

STFP Security of Forkciphers: The security of a Tweakable Forkcipher (TFC)
is defined by the traditional notion of indistinguishability between a real oracle
(TFC) and an ideal oracle (tweakable forked permutation). A tweakable forked

permutation $
∆
= {$+(P0,P1), $

−(P0,P1)} is constructed of two independent

permutations P0,P1
$←− P̃(T , n) as described in algorithm 1. A formal description

of STFP security of a TFC is in algorithm 1.

STFP Security of forkciphers in Ideal cipher model: This work will focus on
modular designs of TFC F̃ using a block cipher E as the only underlying primitive.
For the security of these designs, we will consider the distinguisher having access
to either (F̃+, F̃−) in real oracle or ($+(P0,P1), $

−(P0,P1)) in ideal oracle along
with access to the underline block cipher E for both the real and ideal oracle,

where P0,P1
$←− P̃(T , n) and tries to distinguish between real and ideal oracle.

Moreover, we will consider that these distinguishers have limited resources, such
as a maximum q many queries. Finally, for any such distinguisher D, we define
the STFP advantage of D against TFC F̃ as follows:

AdvF̃
STFP(D)

∆
=

∣∣∣Pr[DF̃+
k ,F̃−

k ,E±
→ 1]− Pr[D$+(P0,P1),$

−(P0,P1),E
±
→ 1]

∣∣∣ (1)

where the probabilities are taken over the random choices of k
$←− K, E $←− BC(K,

n), and P0,P1
$←− P̃(T , n). We say that F̃ is (q, ϵ)-secure STFP, if the maximum

STFP advantage of F̃ is ϵ, where the maximum is taken over all distinguisher
that makes at most q many queries.

H-Coefficient technique: Consider a computationally unbounded deterministic
distinguisher D that interacts with either the real-world oracle Ore or the ideal-
world oracle Oid. The set of all queries made by D and the respective responses
received form the transcript τ . In some scenarios, additional internal information
might be revealed to D after completing all its interactions with the oracle
but before making its final decision. Let Xre and Xid denote random variables
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representing the probability distributions of the transcripts τ generated by the
real and ideal oracles, respectively. The probability of observing a particular
transcript τ under the ideal oracle, denoted by Pr[Xid = τ ], is called the ideal
interpolation probability. Similarly, the real interpolation probability is defined
for the real oracle. A transcript τ is considered attainable byD if Pr[Xid = τ ] > 0.
We denote the set of all attainable transcripts by τ.

The main theorem of the H-coefficient technique, as detailed in [27], is pre-
sented below:

Theorem 1. Let D be a deterministic distinguisher with access to either the real
oracle Ore or the ideal oracle Oid. Let τ = τg⊔τb (disjoint union) be a partition
of the set of all attainable transcripts of D. Assume there exists ϵgood ≥ 0 such
that for any τ ∈ τg,

Pr[Xre = τ ]

Pr[Xid = τ ]
≥ 1− ϵgood,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ τb] ≤ ϵbad. Then,

AdvOid

Ore
(A) := |Pr[AOre = 1]− Pr[AOid = 1]| ≤ ϵgood + ϵbad.

2.2 Birthday Attack on F̃1 from [23]

EJ

k

u

Ex ⊕

u

2k ⊕ J

y⊕

u

Ex ⊕

u

2k ⊕ J ⊕ 1

z⊕

u

Fig. 1: F̃1 [23] : n-bit tweak TFC from 3 BC

Reviewers of ArcticCrypt 2025 identified a birthday distinguishing attack on

F̃1 from [23], depicted in Figure 1. The attack exploits the fact that the key
used in the final block cipher for producing the most significant n-bit output
with a tweak J , i.e., 2k ⊕ J , matches with the key used for producing the least
significant n-bit output for the tweak J ′ = J ⊕ 1, which is 2k ⊕ J ′ ⊕ 1.
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By making 2
n
2 queries with messages under both tweaks J and J ′, we can

expect a collision between the (key, input) pairs of two such queries. This leads to
a distinguishing attack with birthday queries. Essentially, the original analysis
did not account for the possibility that the distinguisher may make multiple
queries with each tweak when analyzing the probabilities of Bad7 and Bad8. The
concrete attack algorithm is shown below.

Attack Algorithm:

1. Choose any J ∈ {0, 1}n.
2. Fix 2

n
2 distinct messages:

xi = [i]n
2
∥0n

2 , ∀i ∈ [1, 2
n
2 ].

3. Make construction queries with tweak J and messages xi for i = 1, 2,
. . . , 2

n
2 . Let the responses be yi∥zi.

4. Fix another set of 2
n
2 distinct messages:

x′
i = 0

n
2 ∥[i]n

2
, ∀i ∈ [1, 2

n
2 ].

5. Make construction queries with tweak J ⊕ 1 and messages x′
i for i = 1,

2, . . . , 2
n
2 . Let the responses be y′i∥z′i.

6. Find indices i1, i2 such that:

yi1 = z′i2 .

7. Make a construction query with tweak J and message xi1 ⊕ 1. Let the
response be y∥z.

8. Make a construction query with tweak J ⊕ 1 and message x′
i2
⊕ 1. Let

the response be y′∥z′.
9. Return 1 if:

y = z′.

In this revised draft, we address this issue by modifying the key used for the block
cipher producing the least significant n-bit output. Instead of using 2k ⊕ J ⊕ 1,
we use 4k⊕J ⊕ 1. This modification restores the claim of optimal n-bit security
with a negligible loss of:

4qcqp
22n

+
4q2c
22n

+
1

2n
.

3 Designing TFC with n-bit tweak using three Block
Cipher

This section presents a modular design approach for a tweakable forkcipher

(TFC) using an ideal block cipher E. We propose a construction called F̃1, which
takes an n-bit key k, an n-bit tweak J , and an n-bit input x, producing a 2n-bit
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EJ

k

u

Ex ⊕

u

2k ⊕ J

y⊕

u

Ex ⊕

u

4k ⊕ J ⊕ 1

z⊕

u

Fig. 2: F̃1 : n-bit tweak TFC from 3 BC

output y∥z. This construction follows a similar design approach as the construc-

tion F̃ [2] of [25].
The construction uses a block cipher with the master key as the key and the

tweak as input to obtain an internal value. This internal value is then used to
derive the keys for two parallel block ciphers, producing the final 2n-bit output

together. Formally, we define the construction F̃1 as follows:

F̃1(k, J, x)
∆
= {E(2k ⊕ J, x⊕ E(k, J))⊕ E(k, J)}∥{E(4k ⊕ J ⊕ 1, x⊕ E(k, J))⊕ E(k, J)}.

This function is illustrated in Figure 2. The following theorem demonstrates that
this construction achieves n-bit security.

Theorem 2. Let D be a distinguisher making at most qc construction queries
and qp ideal cipher queries. Then,

AdvF̃1
STFP(D) ≤

2qc
2n

+
qp
2n

+
8qcqp
22n

+
4q2c
22n

+
1

2n
. (2)

Proof. Let k
$←− {0, 1}n, E $←− BC({0, 1}n, n), and P0,P1

$←− P̃({0, 1}n, n). Let D
be a distinguisher with access to one of the following oracles: (F̃1,E) in the real
world and ($(P0,P1),E) in the ideal world. Note that $(P0,P1) behaves exactly
as described in algorithm 1. Moreover, D can make both forward and backward

queries. The distinguisher D makes at most qc construction queries to Oc ∈ {F̃1,
$(P0,P1)}. We assume the adversary receives a 2n-bit output regardless of the
distinguisher’s choice of selector bit s during the query. This implies that the
distinguisher will receive an extra n-bit value along with the desired part, which
can only increase the distinguisher’s success probability.

We store these construction queries in a transcript as follows:

τc = {(J1, x1, y1∥z1), (J2, x2, y2∥z2), . . . , (Jqc , xqc , yqc∥zqc)},
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where either F̃1(k, Ji, xi) = yi∥zi or P0(Ji, xi) = yi and P1(Ji, xi) = zi for all
i = 1, 2, . . . , qc.

We also consider D making qp queries to the ideal cipher oracle Op = E. We
store these queries in a transcript as

τp = {(l1, a1, b1), (l2, a2, b2), . . . , (lqp , aqp , bqp)},

where E(li, ai) = bi for all i = 1, 2, . . . , qp.
After completing all queries to Oc and Op, before the decision bit, we reveal

the master key k (a randomly chosen fake key k for the ideal world). We also
release a tuple (k, J, u) corresponding to each construction query. We store them
as

τint = {(k, J1, u1), (k, J2, u2), . . . , (k, Jq′c , uq′c
)},

where E(k, Ji) = ui for all i = 1, 2, . . . , q′c. Here, q′c is the number of distinct
tweaks in τc, and thus q′c ≤ qc. Note that this additional information can only
increase the advantage of the distinguisher. Thus, the complete transcript is

τ = {k, τc, τp, τint}.

Bad transcript: Definition and Bounds: Next, we will define some bad transcripts
that allow the distinguisher to easily distinguish between the real and ideal
worlds. The conditions are as follows:

– Collision with the master key
• Bad1: ∃ (Ji, xi, yi∥zi) ∈ τc such that 2k⊕Ji = k or 4k⊕Ji⊕ 1 = k. This

condition occurs when, for some query, any one of the derived keys of
the final two block ciphers matches with the master key.

• Bad2: ∃ (li, ai, bi) ∈ τp such that li = k. This condition occurs when
the distinguisher queries the ideal cipher with the master key, i.e., the
distinguisher can successfully guess the master key k.

– Collision with ideal cipher query
• Bad3: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that
2k ⊕ Ji = lj ∧ xi ⊕ ui = aj . This condition occurs when the (key, input)
pair of a certain ideal cipher query matches the (key, input) pair of the
final block cipher, producing the first n bits of the output for a particular
construction query.

• Bad4: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that
4k ⊕ Ji ⊕ 1 = lj ∧ xi ⊕ ui = aj . This condition occurs when the (key,
input) pair of a certain ideal cipher query matches the (key, input) pair
of the final block cipher, producing the second n bits of the output for
a particular construction query.

• Bad5: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that
2k⊕Ji = lj ∧ yi⊕ui = bj . This condition occurs when the (key, output)
pair of a certain ideal cipher query matches the (key, output) pair of the
final block cipher, producing the first n bits of the output for a particular
construction query.
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• Bad6: ∃ (Ji, xi, yi∥zi) ∈ τc, (lj , aj , bj) ∈ τp, (k, Ji, ui) ∈ τint such that
4k ⊕ Ji ⊕ 1 = lj ∧ zi ⊕ ui = bj . This condition occurs when the (key,
output) pair of a certain ideal cipher query matches the (key, output)
pair of the final block cipher, producing the second n bits of the output
for a particular construction query.

– Collision between internal block ciphers
• Bad7: ∃ (Ji, xi, yi∥zi), (Jj , xj , yj∥zj) ∈ τc and (k, Ji, ui), (k, Jj , uj) ∈ τint
such that 2k⊕Ji = 4k⊕Jj⊕1∧xi⊕ui = xj⊕uj . This condition occurs
when the (key, input) pair of the final block cipher, producing the first
n bits of the output for one construction query, matches the (key, input)
pair of the final block cipher, producing the second n bits of the output
for another construction query.

• Bad8: ∃ (Ji, xi, yi∥zi), (Jj , xj , yj∥zj) ∈ τc and (k, Ji, ui), (k, Jj , uj) ∈ τint
such that 2k ⊕ Ji = 4k ⊕ Jj ⊕ 1 ∧ yi ⊕ ui = zj ⊕ uj . This condition
occurs when the (key, output) pair of the final block cipher, producing
the first n bits of the output for one construction query, matches the
(key, output) pair of the final block cipher, producing the second n bits
of the output for another construction query.

• Bad9 ∃ (Ji, xi, yi∥zi) ∈ τc and (k, Ji, ui) ∈ τint such that 2k ⊕ Ji =
4k ⊕ Ji ⊕ 1. This occurs when two keys of the final pair of block cipher
collides for some construction query.

We will call a transcript ”Bad” if it satisfies any of the above nine conditions.
Let τb denote the set of all Bad transcripts. In the following lemma, we will show
that the probability of these Bad conditions occurring in the ideal world is low.

Lemma 1. Let τb denote the set of all bad transcripts and Xid denotes the
random variable of transcript τ induced in the ideal world. Then, we have the
following:

Pr[Xid ∈ τb] ≤
2qc
2n

+
qp
2n

+
8qcqp
22n

+
4q2c
22n

+
1

2n
. (3)

Proof. Let us denote the event Bad =
∨9

i=1 Badi. To bound the probability of
the event Bad, we will first individually bound each Badi conditioned on the
complement of all the previous Badj’s. Then, we will apply the union bound for
the final result.

– Bounding Bad1: This occurs if, for some i ∈ [1, qc], Ji = 2k ⊕ k or Ji =
4k ⊕ k ⊕ 1. The probability of choosing such a tweak for any i is at most
1/2n due to the randomness of the key k. Hence, for at most qc choices of i,
we have:

Pr[Bad1] ≤ 2qc
2n

. (4)

– Bounding Bad2: This occurs if the distinguisher D can guess the master
key k among all the ideal cipher queries. Given the randomness of the key
and at most qp ideal cipher queries, we have:

Pr[Bad2] ≤ qp
2n

. (5)
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– Bounding Bad3 | (Bad1 ∧ Bad2): This occurs if there exist i ∈ [1, qc] and
j ∈ [1, qp] such that:

E1 : 2k = Ji ⊕ lj

E2 : ui = xi ⊕ aj

From Bad1, each ui is independent of all y∥z values. From Bad2, the ui’s are
independent of all ideal cipher query outputs. So, ui’s are chosen uniformly
randomly from a set of at least 2n− qc many elements. Hence, from at most
qcqp choices of (i, j) and the randomness of k and ui, we have:

Pr[Bad3 | (Bad1 ∧ Bad2)] ≤ qcqp
2n(2n − qc)

≤ 2qcqp
22n

. (6)

– Bounding Badi | (Bad1∧ Bad2) for i = 4, 5, 6: Following a similar argument
as the previous case, we have for i = 4, 5, 6:

Pr[Badi | (Bad1 ∧ Bad2)] ≤ 2qcqp
22n

. (7)

– Bounding Pr[Bad7 | (Bad1 ∧ Bad2)]: The event Bad7 occurs if:

1) 2k ⊕ Ji = 4k ⊕ Jj ⊕ 1,

2) xi ⊕ ui = xj ⊕ uj .

We analyze this in two cases:

• Case 1: Ji = Jj .
In this case, we have Ek(Ji) = ui = uj = Ek(Jj). Additionally, xi ̸=
xj (as otherwise, the two queries would be identical). Thus, we have
xi ⊕ ui ̸= xj ⊕ uj , implying:

Pr[Bad7 | (Bad1 ∧ Bad2 ∧ Case 1)] = 0.

• Case 2: Ji ̸= Jj .
Here, we have ui ̸= uj . Using the randomness of k for the first equation
and the randomness of ui due to Bad1 ∧ Bad2 for the second equation,
we get:

Pr[Bad7 | (Bad1 ∧ Bad2 ∧ Case 2)] ≤ q2c
2n(2n − qc)

≤ 2q2c
22n

.

Combining both cases, we obtain

Pr[Bad7 | (Bad1 ∧ Bad2)] ≤ q2c
2n(2n − qc)

≤ 2q2c
22n

. (8)

– Bounding Bad8 | (Bad1∧ Bad2): Following a similar argument as the previ-
ous case, we have:

Pr[Bad8 | (Bad1 ∧ Bad2)] ≤ 2q2c
22n

. (9)
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– Bounding Bad9: This occurs if, for some i ∈ [qc], we have

2k ⊕ Ji = 4k ⊕ Ji ⊕ 1 =⇒ 2k ⊕ 4k = 1.

Thus, by the randomness of k, we obtain

Pr[Bad9] ≤ 1

2n
. (10)

Now, from the union bound and using equations (4) to (10), we have:

Pr[Bad] ≤ 2qc
2n

+
qp
2n

+
8qcqp
22n

+
4q2c
22n

+
1

2n
. (11)

Good Transcript analysis: We will denote all the transcripts that are not ”Bad”
as ”Good” and let τg be the set of all Good transcripts. Let Yre denote the
random variable of transcript τ induced in the real world. In this section, we
will compute Pr[Yre ∈ τg]/Pr[Xid ∈ τg]. Now, we will group all the transcripts
based on distinct tweaks and keys as follows. For J ∈ [0, 2n−1] and l ∈ [0, 2n−1],
we have

αJ = |{(J ′, x′, y′∥z′) ∈ τc | J ′ = J}| , ∀J ∈ [0, 2n − 1]

βl = |{(l′, a′, b′) ∈ τp ⊔ τint | l′ = l}| , ∀l ∈ [0, 2n − 1]

Note that due to Bad2, τp∩τint = ϕ. We use the notation βl to denote the number
of block cipher calls with key l, and αJ to denote the number of construction
queries with tweak J . Note that, any construction query with tweak 2k ⊕ l′

corresponds to two unique (due to Bad) block cipher computations with key l′

and l′ ⊕ 1. Now, let γl = α2k⊕l + α2k⊕l⊕1 + βl. Clearly, γl gives the number of
total block cipher calls with key l in real-world.

First, we will compute Pr[Yre ∈ τg]:

Pr[Yre ∈ τg] =
|CompY|
|AllY|

,

where CompY is the set of possible transcripts from the real-world oracle com-
patible with τg, and AllY is the set of all possible transcripts from the real-world
oracle. Note that, |AllY| is equal to the number of all possible choices of key k
and corresponding ideal cipher block cipher. Hence, |AllY| = 2n× (2n!)2

n

, where
the first 2n represents the choice of key and the second term represents the num-
ber of all possible block ciphers. So, we have the total number of block ciphers

compatible with τg in the real world, |CompY| =
∏2n−1

l=0 (2n − γl)!. Hence,

Pr[Yre ∈ τg] =
|CompY|
|AllY|

=

∏2n−1
l=0 (2n − γl)!

2n × (2n!)2n
(12)

Similarly, for the ideal world we will compute |AllX| and |CompX|. For the ideal
world, we have to compute possible choices for P0,P1, and E. Clearly, |AllX| =
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2n×(2n!)2n×(2n!)2n×(2n!)2n . Here, the first 2n corresponds to possible choice of
key and the rest each (2n!)2

n

terms correspond to the choice of P0,P1, and E. For
CompX, we will have already decided αJ (input, output) pair of P0 corresponding
to construction queries with tweak J . Moreover, each αJ (input, output) pair

is distinct. So, the possible choice of P0 compatible to τg is
∏2n−1

J=0 (2n − αJ)!.
Following a similar argument, we have a possible choice of P1 compatible to τg

is
∏2n−1

J=0 (2n−αJ)!. Also, following a similar argument and βl be the number of
block cipher queries with key l, we have the number of possible choices for the

underlying block cipher E is
∏2n−1

l=0 (2n − βl)!. So, combining all these we have:

|CompX| =
2n−1∏
J=0

(2n − αJ)! ·
2n−1∏
J=0

(2n − αJ)! ·
2n−1∏
l=0

(2n − βl)!

=

2n−1∏
J=0

(2n − α2k⊕J)! ·
2n−1∏
J=0

(2n − α2k⊕J⊕1)! ·
2n−1∏
l=0

(2n − βl)!

=

2n−1∏
l=0

(2n − α2k⊕l)! · (2n − α2k⊕l⊕1)! ·
2n−1∏
l=0

(2n − βl)!

[1]

≤
2n−1∏
l=0

2n! · (2n − α2k⊕l − α2k⊕l⊕1)! ·
2n−1∏
l=0

(2n − βl)!

= (2n!)2
n

2n−1∏
l=0

(2n − α2k⊕l − α2k⊕l⊕1)! · (2n − βl)!

[2]

≤ (2n!)2
n

× (2n!)2
n

2n−1∏
l=0

(2n − α2k⊕l − α2k⊕l⊕1 − βl)!

= (2n!)2
n

× (2n!)2
n

2n−1∏
l=0

(2n − γl)!

[1] and [2] follows from the fact: (2n − δ)!× (2n − µ)! ≤ (2n − δ − µ)!× 2n!. So
we have

Pr[Xid ∈ τg] ≤
|CompX|
|AllX|

=
(2n!)2

n × (2n!)2
n ∏2n−1

l=0 (2n − γl)!

2n × (2n!)2n × (2n!)2n × (2n!)2n
(13)

Then combining 12 and 13 we have,

Pr[Yre ∈ τg]

Pr[Xid ∈ τg]
=
|AllX| × |CompY|
|AllY| × |CompX|

≥
2n × (2n!)2

n × (2n!)2
n × (2n!)2

n ×
∏2n−1

l=0 (2n − γl)!

2n × (2n!)2n × (2n!)2n × (2n!)2n ×
∏2n−1

l=0 (2n − γl)!
≥ 1(14)

Finally, applying theorem 1, lemma 1 and 14 we have the theorem 2.
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4 Designing TFC with 2n-bit tweak using four Block
Cipher

EJ1

k

u1

EJ2

2k

u2

Ex ⊕

u1

k ⊕ J1 ⊕ u2

y⊕

u1

Ex ⊕

u2

2k ⊕ J2 ⊕ u1

z⊕

u2

Fig. 3: F̃2 : 2n-bit tweak TFC from 4 BC

This section presents a construction called F̃2, which takes an n-bit key k,
an 2n-bit tweak J = J1∥J2, and an n-bit input x, producing a 2n-bit output
y∥z. The construction first uses two block ciphers with key k, and 2k respec-
tively, taking input J1, and J2 respectively. Then, the output of these two ideal
block ciphers is used to derive the input and key of the final two block ciphers
outputting the final 2n-bit output. This design follows a similar approach as the

construction G̃2 of [29]. Formally, we define the construction F̃2 as follows:

F̃2(k, J1∥J2, x)
∆
= E(k ⊕ J1 ⊕ E(2k, J2), x⊕ E(k, J1))⊕ E(k, J1) ∥

E(2k ⊕ J2 ⊕ E(k, J1), x⊕ E(2k, J2))⊕ E(2k, J2).

This function is illustrated in Figure 3. The following theorem demonstrates that
this construction achieves n-bit security.

Theorem 3. Let D be a distinguisher making at most qc construction queries
and qp ideal cipher queries. Then,

AdvF̃2
STFP(D) ≤

10qc
2n

+
2qp
2n

+
24q2c
22n

+
8qcqp
22n

.

Where qc ≤ 2n−1.

Proof. Let k
$←− {0, 1}n, E $←− BC({0, 1}n, n), and P0,P1

$←− P̃({0, 1}2n, n). Let D
be a distinguisher with access to one of the following oracles: (F̃2,E) in the real
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world and ($(P0,P1),E) in the ideal world. Note that $(P0,P1) behaves exactly
as described in algorithm 1. Moreover, D can make both forward and backward
queries. The distinguisher D makes at most qc construction queries to Oc ∈
{F̃2, $(P0,P1)}. We assume the adversary receives a 2n-bit output regardless of
the distinguisher’s choice of selector bit s during the query. This implies that
the distinguisher will receive an extra n-bit value along with the desired part,
which can only increase the distinguisher’s success probability. We store these
construction queries in a transcript as follows:

τc = {(J1
1∥J1

2 , x1, y1∥z1), (J2
1∥J2

2 , x2, y2∥z2), . . . , (Jqc
1 ∥J

qc
2 , xqc , yqc∥zqc)},

where either F̃2(k, J i
1∥J i

2, xi) = yi∥zi or P0(J
i
1∥J i

2, xi) = yi and P1(J
i
1∥J i

2, xi) =
zi for all i = 1, 2, . . . , qc.

We also consider D making qp queries to the ideal cipher oracle Op = E. We
store these queries in a transcript as

τp = {(l1, a1, b1), (l2, a2, b2), . . . , (lqp , aqp , bqp)},

where E(li, ai) = bi for all i = 1, 2, . . . , qp. After completing all queries to Oc and
Op, and before making the decision, we reveal the master key k (or a randomly
chosen fake key k in the ideal world). Additionally, we release two tuples (k,
J1, u1) and (2k, J2, u2) corresponding to each construction query with tweak
J = J1∥J2. We store them as:

τ1int = {(k, J1
1 , u

1
1), (k, J

2
1 , u

2
1), . . . , (k, J

q′c
1 , u

q′c
1 )},

τ2int = {(2k, J1
2 , u

1
2), (2k, J

2
2 , u

2
2), . . . , (2k, J

q′′c
2 , u

q′′c
2 )},

where E(k, J i
1) = ui

1 for all i = 1, 2, . . . , q′c and E(2k, Jj
2 ) = uj

2 for all j = 1, 2,
. . . , q′′c . Here, q′c and q′′c are the numbers of tweaks with distinct values in the
left and right n-bits of τc, respectively, and both satisfy q′c, q

′′
c ≤ qc. Note that

this additional information can only increase the advantage of the distinguisher.
Thus, the complete transcript is

τ = {k, τc, τp, τ1int, τ2int}.

Bad transcript: Definition and Bounds: Next, we will define some bad transcripts
that enable the distinguisher to differentiate between the real and ideal worlds
easily. The conditions are as follows:

– Collision with ideal cipher query
• Bad1: There exists (li, ∗, ∗) ∈ τp such that li is equal to k or 2k. This

occurs when the distinguisher correctly guesses the master key for an
ideal cipher query.

• Bad2: There exist (J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J
i
1, u

i
1) ∈ τ1int, and (2k, J i

2,
ui
2) ∈ τ2int, as well as an entry (lj , aj , bj) ∈ τp, such that k⊕ J i

1⊕ ui
2 = lj

and xi⊕ui
1 = aj . This arises when the (key, input) of internal block cipher

generating the first n bits of the final output during a construction query
matches that of an ideal cipher query.
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• Bad3: There exist (J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J
i
1, u

i
1) ∈ τ1int, (2k, J

i
2, u

i
2) ∈

τ2int, and (lj , aj , bj) ∈ τp such that k ⊕ J i
1 ⊕ ui

2 = lj ∧ yi ⊕ ui
1 = bj . This

arises when the (key, output) of internal block cipher generating the first
n bits of the final output during a construction query matches that of
an ideal cipher query.
• Bad4: There exists (J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J

i
1, u

i
1) ∈ τ1int, (2k, J

i
2, u

i
2) ∈

τ2int, and (lj , aj , bj) ∈ τp such that 2k ⊕ J i
2 ⊕ ui

1 = lj and xi ⊕ ui
2 = aj .

This arises when the (key, input) pair of internal block cipher generating
the second n bits of the final output during a construction query matches
that of an ideal cipher query.
• Bad5: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, u
i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int, and

(lj , aj , bj) ∈ τp such that 2k⊕J i
2⊕ui

1 = lj∧zi⊕ui
2 = bj . This arises when

the (key, output) pair of internal block cipher generating the second n
bits of the final output during a construction query matches that of an
ideal cipher query.

– Collision between master key and internal key
• Bad6: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, u
i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int such

that k ⊕ J i
1 ⊕ ui

2 = k or 2k ⊕ J i
2 ⊕ ui

1 = k. This happens if, for some
construction query, one of the two derived subkeys collides with the
master key.
• Bad7: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, u
i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int such

that k ⊕ J i
1 ⊕ ui

2 = 2k or 2k ⊕ J i
2 ⊕ ui

1 = 2k. This happens if, for some
construction query, one of the two derived subkeys collides with 2k.

– Collision between keys of final two block cipher(same construction
query)
• Bad8: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, u
i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int such

that k ⊕ J i
1 ⊕ ui

2 = 2k ⊕ J i
2 ⊕ ui

1. This occurs if two keys correspond to
the final two block ciphers producing the output of a construction query,
resulting in a collision.

– Collision between key, input, output of final two block cipher(different
construction query)
• Bad9: ∃(J i

1∥J i
2, xi, yi∥zi) ∈ τc, (k, J i

1, u
i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(k⊕J i
1⊕ui

2 = k⊕Jj
1 ⊕uj

2)∧ (xi⊕ui
1 = xj ⊕uj

1). This occurs if the (key,
input) pair of the block cipher producing the first n-bits of the output
correspond to two construction query matches.

• Bad10: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, u

i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(k⊕J i
1⊕ui

2 = k⊕Jj
1 ⊕uj

2)∧ (yi⊕ui
1 = yj ⊕uj

1). This occurs if the (key,
output) pair of the block cipher producing the first n-bits of the output
correspond to two construction query matches.

• Bad11: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, u

i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(2k ⊕ J i
2 ⊕ ui

1 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (xi ⊕ ui
2 = xj ⊕ uj

2). This occurs if the
(key, input) pair of the block cipher producing the second n-bits of the
output correspond to two construction query matches.
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• Bad12: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, u

i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(2k ⊕ J i
2 ⊕ ui

1 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (zi ⊕ ui
2 = zj ⊕ uj

2). This occurs if the
(key, output) pair of the block cipher producing the second n-bits of the
output correspond to two construction query matches.

• Bad13: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, u

i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(k ⊕ J i
1 ⊕ ui

2 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (xi ⊕ ui
1 = xj ⊕ uj

2). This occurs if the
(key, input) pair of the block cipher producing the first n-bits of the
final output in one construction query collides with the (key, input) pair
of the block cipher producing the second n-bits of the final output in
another construction query.

• Bad14: ∃(J i
1∥J i

2, xi, yi∥zi) ∈ τc, (k, J i
1, u

i
1) ∈ τ1int, (2k, J i

2, u
i
2) ∈ τ2int and

∃(Jj
1∥J

j
2 , xj , yj∥zj) ∈ τc, (k, Jj

1 , u
j
1) ∈ τ1int, (2k, Jj

2 , u
j
2) ∈ τ2int such that

(k ⊕ J i
1 ⊕ ui

2 = 2k ⊕ Jj
2 ⊕ uj

1) ∧ (yi ⊕ ui
1 = zj ⊕ uj

2). This occurs if the
(key, output) pair of the block cipher producing the first n-bits of the
final output in one construction query collides with the (key, output)
pair of the block cipher producing the second n-bits of the final output
in another construction query.

Similar to the proof of F̃1, we define a transcript as ”Bad” if it satisfies any of the
14 conditions mentioned above. Let τb denote the set of all Bad transcripts. In the
following lemma, we will demonstrate that the probability of these Bad conditions
occurring in the ideal world is low.

Lemma 2. Let τb denote the set of all bad transcripts and Xid denotes the
random variable of transcript τ induced in the ideal world. Then, we have the
following:

Pr[Xid ∈ τb] ≤
9qc
2n

+
2qp
2n

+
20q2c
22n

+
8qcqp
22n

,

where qc ≤ 2n−1.

Proof. Let us denote the event Bad =
∨14

i=1 Badi. To bound the probability of
the event Bad, we will first individually bound each Badi conditioned on the
complement of Bad1. Then, we will apply the union bound to obtain the final
result.

– Bounding Bad1: This occurs if the distinguisher can guess either the key k
or 2k. Hence, considering the randomness of the master key k and at most
qp ideal cipher queries, we have:

Pr[Bad1] ≤ 2qp
2n

. (15)

– Bounding Bad2 | Bad1: Note that Bad1 ensures that each ui
1 is chosen

uniformly from a set of at least 2n − qc elements. Moreover, there are at
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most qc · qp pairs (i, j). Therefore, considering the randomness of k and ui
1,

we have:

Pr[Bad2 | Bad1] ≤ qc · qp
2n(2n − qc)

≤ 2qc · qp
22n

. (16)

– Bounding Badl | Bad1 for l = 3, 4, 5: Following a similar argument as the
previous case, we have

Pr

[
5∨

l=3

(Badl | Bad1)

]
≤ 6qc · qp

22n
. (17)

– Bounding Bad6 | Bad1: This occurs if the distinguisher can find a tweak
Ji = J i

1∥J i
2 such that either (1) J i

1 ⊕ ui
2 = 0n or (2) J i

2 ⊕ ui
1 = k ⊕ 2k .

Moreover, due to Bad1, each ui
1 is chosen uniformly from a set of at least

2n − qc elements, and the same applies to ui
2. Thus, for at most qc choices

of i, we have:

Pr[Bad6 | Bad1] ≤ 2qc
2n − qc

≤ 4qc
2n

. (18)

– Bounding Bad7 | Bad1: Following a similar argument as the previous case
for Bad6, we have:

Pr[Bad7 | Bad1] ≤ 4qc
2n

. (19)

– Bounding Bad8 | Bad1: This occurs if the adversary can find a tweak value
J = J i

1∥J i
2 satisfying J i

1 ⊕ ui
2 ⊕ J i

2 ⊕ ui
1 = k ⊕ 2k. So, from the randomness

of key k, we have:

Pr[Bad8 | Bad1] ≤ qc
2n

. (20)

– Bounding Bad9 | Bad1: This occurs if the distinguisher can find two con-
struction queries (Ji = J i

1∥J i
2, xi) and (Jj = Jj

1∥J
j
2 , xj) such that: 1) J i

1 ⊕
ui
2 = Jj

1 ⊕ uj
2, and 2) xi ⊕ ui

1 = xj ⊕ uj
1.

If J i
1 = Jj

1 , J
i
2 = Jj

2 , or xi = xj , the probability of this event is 0. Otherwise,
from a similar argument as before, considering the randomness of ui

2 and ui
1,

we have:

Pr[Bad9 | Bad1] ≤ q2c
(2n − qc)(2n − qc)

≤ 4q2c
22n

. (21)

– Bounding Badl | Bad1 for l = 10, 11, 12: Following a similar argument as
the previous case, we have

Pr

[
12∨

l=10

Badl | Bad1

]
≤ 12q2c

22n
. (22)

– Bounding Bad13 | Bad1: This occurs if: E1 : J i
1 ⊕ ui

2 ⊕ Jj
2 ⊕ uj

1 = k ⊕ 2k,

and E2 : xi ⊕ xj = ui
1 ⊕ uj

2. Note that ui
1 is independently chosen from ui

2

and uj
2, as u1 and u2 values are outputs of E with two different keys k and
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2k respectively. Moreover, due to Bad1, we have the randomness of ui
1, u

i
2

and k. Therefore, we have:

Pr[Bad13 | Bad1] ≤ q2c
2n(2n − qc)

≤ 2q2c
22n

. (23)

– Bounding Bad14 | Bad1: Following a similar argument as the previous case,
we have:

Pr[Bad14 | Bad1] ≤ 2q2c
22n

. (24)

Now, from the union bound and using equations (15) to (24), we have:

Pr[Bad] ≤ 9qc
2n

+
2qp
2n

+
20q2c
22n

+
8qcqp
22n

. (25)

Good Transcript analysis: We will denote all the transcripts that are not ”Bad”
as ”Good” and let τg be the set of all Good transcripts. Let Yre denote the random
variable of transcript τ induced in the real world. In this section, we will compute
Pr[Yre ∈ τg]/Pr[Xid ∈ τg]. For this, we will first define some set for partitioning
all the query responses depending on keys and tweaks as follows:

– For the master key k, let S1(k) denote the set of all revealed ideal cipher
(input, output) pairs corresponding to the key k. Formally, we define S1(k) =
τ1int.

– For the master key k, let S2(2k) denote the set of all revealed ideal ci-
pher (input, output) pairs corresponding to the key 2k. Formally, we define
S2(2k) = τ2int.

– Let S3(K) denote the set of all ideal cipher queries with key K. Formally,
we define S3(K) = {(l, ∗, ∗) ∈ τp | l = K} for any K ∈ {0, 1}n.

– Let S4(J) denote the set of all construction queries with the tweak J . For-
mally, we define S4(J) = {(J, ∗, ∗∥∗) ∈ τc}, for all J ∈ {0, 1}2n.

– Let S5(K) denote the set of all tuples corresponding to the final two blocks
that produce the final output with the key K. Formally, we define

S5(K) = {(k ⊕ J1 ⊕ u2, x⊕ u1, y ⊕ u1) : (J1∥J2, x, y∥z) ∈ τc ∧K = k ⊕ J1 ⊕ u2} ∪
{(2k ⊕ J2 ⊕ u1, x⊕ u2, z ⊕ u2) : (J1∥J2, x, y∥z) ∈ τc ∧K = 2k ⊕ J2 ⊕ u1} .

Due to Bad1, we have the following for all K ∈ {0, 1}n:

S1(k) ∩ S3(K) = ∅
S2(2k) ∩ S3(K) = ∅

Similarly, due to Bad6 and Bad7, we have for any K ∈ {0, 1}n:

S1(k) ∩ S5(K) = ∅
S2(2k) ∩ S5(K) = ∅

21



Additionally, due to Bad2− Bad5, we have for any K ∈ {0, 1}n:
S3(K) ∩ S5(K) = ∅

Moreover, due to Bad8− Bad14, S5(K) has no duplicate elements. This implies

that each construction query contributes exactly two elements to
⋃2n−1

K=0 S5(K).
Therefore, we have:

2n−1∑
K=0

|S5(K)| =
22n−1∑
J=0

(|S4(J)|+ |S4(J)|) .

In the real world, we have a total of |S3(K)|+|S5(K)| (input, output) pairs of the
ideal cipher corresponding to the keyK, whereK ̸= k andK ̸= 2k. Additionally,
we have |S1(k)| (input, output) pairs of the ideal cipher corresponding to the
key k and |S2(2k)| (input, output) pairs of the ideal cipher corresponding to the
key 2k. Therefore, we have:

Pr[Yre ∈ τg] =
1

2n
·
|S1(k)|−1∏

i=0

1

2n − i
·
|S2(k)|−1∏

j=0

1

2n − j
·
2n−1∏
K=0

|S3(K)|+|S5(K)|−1∏
l=0

1

2n − l
.(26)

Now in the ideal world, we have a total of |S3(K)| (input, output) pairs of the
ideal cipher corresponding to the keyK, whereK ̸= k andK ̸= 2k. Additionally,
we have |S1(k)| (input, output) pairs of the ideal cipher corresponding to the
key k and |S2(2k)| (input, output) pairs of the ideal cipher corresponding to the
key 2k. Moreover, there is S4(J) many (input, output) pair correspond to both
P0 and P1 for any tweak J ∈ {0, 1}2n. Hence,

Pr[Xid ∈ τg] =
1

2n
·
|S1(k)|−1∏

i=0

1

2n − i
·
|S2(k)|−1∏

j=0

1

2n − j
·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1

2n − l
·

22n−1∏
J=0

|S4(J)|−1∏
s=0

1

2n − s
·
22n−1∏
J=0

|S4(J)|−1∏
r=0

1

2n − r

[1]

≤ 1

2n
·
|S1(k)|−1∏

i=0

1

2n − i
·
|S2(k)|−1∏

j=0

1

2n − j
·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1

2n − l
·

22n−1∏
J=0

|S4(J)|+|S4(J)|−1∏
s=0

1

2n − s

[2]

≤ 1

2n
·
|S1(k)|−1∏

i=0

1

2n − i
·
|S2(k)|−1∏

j=0

1

2n − j
·
2n−1∏
K=0

|S3(K)|−1∏
l=0

1

2n − l
·

2n−1∏
K=0

|S5(K)|−1∏
s=0

1

2n − s

[3]

≤ 1

2n
·
|S1(k)|−1∏

i=0

1

2n − i
·
|S2(k)|−1∏

j=0

1

2n − j
·
2n−1∏
K=0

|S3(K)|+|S5(K)|−1∏
l=0

1

2n − l
.(27)
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Here, inequalities [1], [2], and [3] follow from the facts 1, 2, and 3, respectively.

1.
∏22n−1

J=0

∏|S4(J)|−1
s=0

1
2n−s ·

∏22n−1
J=0

∏|S4(J)|−1
r=0

1
2n−r ≤

∏22n−1
J=0

∏|S4(J)|+|S4(J)|−1
s=0

1
2n−s .

2.
∏22n−1

J=0

∏|S4(J)|+|S4(J)|−1
s=0

1
2n−s ≤

∏2n−1
K=0

∏|S5(K)|−1
s=0

1
2n−s .

3.
∏|S3(K)|−1

l=0
1

2n−l ·
∏2n−1

K=0

∏|S5(K)|−1
s=0

1
2n−s ≤

∏2n−1
K=0

∏|S3(K)|+|S5(K)|−1
l=0

1
2n−l .

So, from 26 and 27 we have

Pr[Yre ∈ τg]

Pr[Xid ∈ τg]
≥ 1.

5 Designing TFC with rn-bit tweak using (r+2) Block
Cipher

Let E
$←− BC({0, 1}n, n) be an n-bit block cipher. The tweakable forkcipher F̃r :

0, 1n × 0, 1rn × 0, 1n → 0, 12n, with an rn-bit tweak and using (r + 2) block
cipher calls, is constructed as follows: First, r block cipher calls are invoked in
parallel to produce r masks u1, u2, . . . , ur from the tweaks J1, J2, . . . , Jr and the
master key k. By using

∑r
i=1 ui to mask the input and output, and

∑r
i=1 2

i−1ui

to provide variety in the sub-key, another block cipher call is made to encrypt
the plaintext x into the left n-bit ciphertext y. Similarly, by using

∑r
i=1 2

i−1ui

to mask the input and output, and
∑r

i=1 ui to provide variety in the sub-key,
another parallel block cipher call is made to encrypt the plaintext x into the
right n-bit ciphertext z. A pictorial illustration of the construction F̃r is given in
Fig. 4.

The optimal (n-bit) security of this F̃r construction is similar to Theorem 3

for the F̃2 construction with a 2n-bit tweak. Therefore, we omit the proof.

6 Conclusion

In this work, we study the problem of building tweakable forkciphers from an

n-bit block cipher. We begin by proposing a design, F̃1, for an n-bit tweak and

proving its n-bit security. Next, we propose another design, F̃2, for a 2n-bit tweak
and prove its n-bit security. Finally, we propose a F̃r design for an rn-bit tweak,
achieving n-bit security. To the best of our knowledge, this is the first design
proposal for building tweakable forkciphers from block ciphers. We have proved
the security of all these constructions by assuming the underlying block cipher
is an ideal cipher.

An interesting direction for future work is to consider designing efficient fork-
ciphers from block ciphers in the standard model. Another promising approach is
to design forkciphers based on other primitives, using block ciphers in hash-based
designs such as LRW2 [21,22].
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EJ1
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u1

EJ2

2k

u2

EJr

2r−1k

ur

Ex ⊕

∑r
i=1 ui

k ⊕
∑r

i=1 2
i−1ui

y⊕

∑r
i=1 ui

Ex ⊕

∑r
i=1 2

i−1ui

k ⊕
∑r

i=1 ui

z⊕

∑r
i=1 2

i−1ui

Fig. 4: F̃r : rn-bit tweak TFC from (r+2) BC
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