
1

Black-box Collision Attacks on the NeuralHash
Perceptual Hash Function

Diane Leblanc-Albarel, Bart Preneel
KU Leuven, Belgium

Abstract—Perceptual hash functions map multimedia con-
tent that is perceptually close to outputs strings that are
identical or similar. They are widely used for the identification
of protected copyright and illegal content in information sharing
services: a list of undesirable files is hashed with a perceptual
hash function and compared, server side, to the hash of the
content that is uploaded. Unlike cryptographic hash functions,
the design details of perceptual hash functions are typically kept
secret. Several governments envisage to extend this detection to
end-to-end encrypted services by using Client Side Scanning and
local matching against a hashed database. In August 2021, Apple
hash published a concrete design for Client Side Scanning based
on the NeuralHash perceptual hash function that uses deep
learning. There has been a wide criticism of Client Side Scanning
based on its disproportionate impact on human rights and risks
for function creep and abuse. In addition, several authors have
demonstrated that perceptual hash functions are vulnerable
to cryptanalysis: it is easy to create false positives and false
negatives once the design is known. This paper demonstrates
that these designs are vulnerable in a weaker black-box attack
model. It is demonstrated that the effective security level of
NeuralHash for a realistic set of images is 32 bits rather than
96 bits, implying that finding a collision requires 216 steps
rather than 248. As a consequence, the large scale deployment
of NeuralHash would lead to a huge number of false positives,
making the system unworkable. It is likely that most current
perceptual hash function designs exhibit similar vulnerabilities.

Index Terms—perceptual hashing, collisions, Client Side
Scanning, NeuralHash, CSAM detection

I. INTRODUCTION

The goal of perceptual hash functions is to identify per-
ceptually similar multimedia content such as images, videos,
or sounds. Unlike cryptographic hash functions, that produce
completely different outputs for even slight changes in input,
perceptual hash functions should ensure that visually or audi-
bly similar inputs produce close or identical hash values.

The primary applications of perceptual hash functions
include the identification of copyright violations [27], [48], the
detection of problematic content [31], such as Child Sexual
Abuse Material (CSAM) [2] or terrorist content [14], and
biometric authentication [30]. Comparing hash values is more
efficient and allows for comparison without access to the
illegal content itself.

The US National Center for Missing and Exploited Chil-
dren (NCMEC) has reported a significant increase of CSAM
detections in recent years [41]. Therefore NCMEC, along with
researchers such as Bursztein et al. [10] and Farid [23] have

urged the development of automated detection techniques,
such as perceptual hash functions, to combat the proliferation
of CSAM. In addition, centralized detection methods that were
used so far have been hampered by the increased deployment
of end-to-end encryption.

In response, the UK [53] and the European Union [21]
have launched regulatory proposals to mandate Client-Side
Scanning (CSS): CSS performs local detection of illegal
content. By scanning content directly on user devices before
it is encrypted, users can be reported and authorities can, in
principle, take actions before the content is shared [2], [35],
[36].

However, CSS has faced heavy criticism from a broad
range of groups including academics, industry and NGOs;
see Abelson et al. [1] for an overview. Experts have pointed
out that the mechanism is a highly intrusive tool for mass
surveillance that undermines the fundamental right to privacy,
while creating a chilling effect. Moreover, it opens the door
to abuse as it may be impossible to verify which content is
being detected: once such a system is deployed for CSAM
detection, it could be easily extended to other criminal content,
to identify whistleblowers or sources of journalists and to
detect critics of oppressive regimes. Moreover, it is unclear
whether it is effective because of the risk of false positives
and the ease by which the mechanism can be circumvented.
As governments kept pushing for legislation, members of the
EU Parliament [20] and experts have issued open letters and
public statements that have warned the public for these ethical
and privacy concerns [43], [45].

This paper addresses the need for an evaluation of percep-
tual hash functions for the detection of illegal content. One
of the key criticisms is that perceptual hash functions are
ineffective as it is easy to create false positives and negatives;
while designing a secure cryptographic hash function is known
to be difficult, designing a secure perceptual hash function is
much harder. The literature contains many designs but most
of them have serious weaknesses. Most deployed designs are
not published and rely instead on security by obscurity: by
violating Kerckhoffs’ principle, this approach impedes public
evaluation and makes it impossible to create trust.

This work focuses on a public construction for image
hashing developed by Apple to detect CSAM, called Neural-
Hash [2]. More in particular, it focuses on false positives, that
is two images that are perceptually different but with identical
hash values. While earlier work [49] has pointed out that it
is easy to deliberately create false positives by manipulating
images, this work considers a setting in which NeuralHash

2

would be deployed on a large scale and users who share
legitimate images would be falsely accused of sharing CSAM.
In its Q&A report [3] on NeuralHash, Apple addresses the
concern related to false positives, stating:

”Will CSAM detection in iCloud Photos falsely re-
port innocent people to law enforcement? No. The
system is designed to be very accurate, and the
likelihood that the system would incorrectly identify
any given account is less than one in one trillion
per year.”

Yet, to our knowledge, no rigorous evaluation of NeuralHash
has been conducted to confirm this statement.

In this paper, we analyze the efficiency and accuracy of
NeuralHash when used on a large scale. We aim to provide
insights into its effectiveness in real-world applications and to
highlight potential risks associated with its mass deployment.
Our main conclusion is that NeuralHash would lead to a
huge number of false positives even if users would not use
manipulated images. It is likely that the same conclusions
apply to most other current perceptual hash function designs.

Section II provides background information about percep-
tual hashing and NeuralHash and defines perceptually identical
content. Section III analyzes the properties of NeuralHash
properties and in particular the collision properties for different
types of images. Quantitative results and examples collisions
for each type of image are shown in Section IV. Section V
discusses the impact on the false positive rate if this function
is used at a large scale. Section VI presents the conclusions
for large-scale CSAM detection with the current databases.

Disclaimer.: Child sexual abuse and exploitation are
serious crimes that need to be addressed in the digital society.
We firmly condemn the creation and distribution of CSAM.
This paper intends to inform the discussion on the efficacy
and implications of using perceptual hashing and Client Side
Scanning on a large scale. Our analysis of NeuralHash is not
intended as a critique of Apple Inc. or any initiatives aimed
at mitigating the spread of CSAM, but it identifies the risk
associated with its large-scale deployment. NeuralHash serves
as a case study to highlight the critical need for accuracy
and robustness in these systems to prevent false positives.
We hope this work will encourage further investigation and
dialogue aimed at combating CSAM while ensuring a fair
balance between efficiency and user privacy.

II. BACKGROUND

This section defines the notion of perceptually identical
content and discusses the properties of perceptual hash func-
tions, and their typical building blocks. Next it reviews the
most important perceptual hash function designs and presents
NeuralHash.

A. Perceptually Identical Content

While content can consist of images, video, audio, 3D
objects or 3D-immersive environments, this paper limits itself
to the first category which is the target of NeuralHash.

Perceptually identical images are those that appear identical
or nearly identical for a human observer. From this human
perception, similarity between images can be characterized by
the following factors:

• Color Consistency: Images with minor differences in
brightness, contrast, or color balance but identical in
overall color composition and layout are considered per-
ceptually the same. For example, an image with slightly
adjusted brightness levels remains perceptually identical
to its original.

• Structural Similarity: Images that share the same
shapes, edges, and textures, even if subjected to minor
geometric transformations such as rotations, translations,
or small distortions, are considered perceptually similar.
For instance, an image and its slightly rotated version
would be perceptually identical.

• Content Preservation: Images that maintain the same
core content but differ in resolution or compression are
also perceptually similar. For example, a high-resolution
image and a compressed version with some loss of detail
are perceived as the same image.

• Noise Robustness: Images with minor noise additions,
such as random pixel variations or blurring, which do not
significantly alter the perceived content, are considered
perceptually the same. For instance, an original image
and one with a limited amount of Gaussian noise are
perceptually identical.

Mathematically, some of the perceptual similarity elements
mentioned above are typically formalized using metrics that
attempt to quantify human visual perception. Two widely
used metrics are the Structural Similarity Index Measure,
that measure the similarity between two images based on
luminance, contrast, and structure [9], [57] and the Peak
Signal-to-Noise Ratio, that measures the ratio between the
maximum possible pixel value of the image and the number
of corrupting pixel [12].

Even if widely used, these metrics cannot detect every
case of perceptually similar images. Hence in this paper the
perceptually similarity between images is evaluated taking
into account the four properties identified above. Section III
provides the exact definition used to classify images as similar.

B. Properties

While cryptographic hash functions and perceptual hash
functions share some similarities, they have different purposes
and thus different properties. Both hash functions efficiently
process large inputs and reduce these to short outputs in a
deterministic way.

The properties [19], [23] of perceptual hash functions in
the context of image hashing are:

• Pre-image resistance: Similar to cryptographic hash
functions, perceptual hash functions should be one-way,
meaning it should be computationally infeasible to recon-
struct an original input x from its hash value H(x).

• Second pre-image resistance: Given x1 and its hash
value H(x1), it should be computationally infeasible to

3

find x2 an input, perceptually different from x1 with
H(x1) = H(x2).

• Illegitimate-Collision Resistance: Perceptual hash func-
tions should ensure that perceptually different inputs
produce different or sufficiently different hash values.
More formally, it should be computationally infeasible
to find two perceptually different inputs x1 and x2 for
which H(x1) = H(x2).

• Accuracy: Perceptual hash functions should produce the
same (or similar) hash values for perceptually identical
or very similar inputs. This property ensures that minor
variations in the input (such as slight changes in bright-
ness or minor cropping in an image) do not result in
significantly different hash values.

C. Perceptual Hashing Process
A first generation perceptual hash functions does not in-

volve deep learning techniques. Examples include pHash [61]
and Microsoft’s PhotoDNA [48]. These designs typically rely
on hand-crafted features and transformations to generate hash
values that are robust to minor changes in input.

Deep perceptual hash functions [37], [38], on the other
hand, are based on a Machine Learning (ML) model. They
involve training deep neural networks to learn feature rep-
resentations that capture the perceptual similarity of inputs.
Deep perceptual hash functions are less used than non-deep
ones as they are more recent. Research on deep perceptual
hashing includes hashing for image retrieval [62], for label
prediction [58], and for CSAM detection [2].

Techniques such as Locality-Sensitive Hashing (LSH) and
Binary Reconstructive Embeddings (BRE) are also used in
various perceptual hashing functions. LSH maps similar input
items to the same hash bucket with high probability [25],
[29], while BRE creates compact binary values for similar
inputs [34].

Perceptual hash functions typically follow similar se-
quences of steps to generate hash values [19].

The first step is preprocessing, which prepares the input
image by normalizing it into a standardized format. This often
involves resizing the image to fixed dimensions, such as (360×
360) pixels, and normalizing pixel values to a specific range,
for example, [−1, 1]. Additional preprocessing techniques may
include computing image gradients or converting the image to
grayscale.

Deep perceptual hash functions extract features from the
preprocessed image using an ML model, This model is
typically trained using techniques such as contrastive learn-
ing [37], that helps the model differentiating between percep-
tually similar and dissimilar images.

The next step is hash value extraction, where specific
features of the image are extracted to form the hash result.
The features selected depend on the hash function application.
Common methods for hash extraction include computing the
average color of the image, its gradient, or using BRE or LSH.

Finally, the generated hash values are converted to binary
strings and possibly compared to another hash value using a
hash comparison technique. The Euclidean distance [19], [23],
[48] is the most common distance metric for comparisons.

D. Perceptual Hash Functions Designs

Perceptual hash functions have been developed and de-
ployed in various contexts since 2000 [19]. We mention below
some of the most notable designs and their applications.

One of the earliest implementations of perceptual hashing
for content identification was YouTube’s Content ID [27].
Content ID identifies copyrighted material to assist copyright
holders in managing their rights.

The 2010 thesis of Zauner [47], [61] provides a detailed
introduction to perceptual hash function and introduces the
open-source construction pHash, that inspired several other
designs.

PhotoDNA [13] was developed by Microsoft and Farid
in 2009. It is extensively used for content moderation [48]
and on platforms such as Gmail, Twitter, Facebook, Reddit,
and Discord for detecting illegal content, particularly CSAM.
Despite its widespread use, some successful attacks have been
reported (see Section II-F).

eGlyph [14], based on PhotoDNA, was implemented by
the Counter Extremism Project (CEP), a nonprofit international
policy organization combating extremist ideologies, with the
help of Farid. In particular in 2018, eGlyph was used to detect
extremist videos on YouTube.

In 2019, Facebook released PDQ and TMK+PDQF [22] as
open-source perceptual hash functions based on pHash [16].
These functions are designed to enhance the identification and
moderation of prohibited content, in particular CSAM content,
across Facebook’s platform and beyond. PDQ function is
designed for images while TMK+PDQF targets videos.

Apple introduced in 2021 NeuralHash [2], a perceptual
hash function specifically designed for CSAM detection.
NeuralHash uses a convolutional neural network (CNN) to
generate hash values from images, aiming to detect illegal
content.

E. NeuralHash

This section presents NeuralHash: it explains why it was
created, in which context it is supposed to work and describes
briefly the algorithm.

1) Context and Deployment: In August 2021, Apple an-
nounced NeuralHash as a key component of its new CSAM
detection system [2], [8]. This system was designed to identify
known CSAM images stored in iCloud Photos by comparing
on-device image hashes to a database of known CSAM hashes
provided by child safety organizations.

The deployment of NeuralHash involves integrating the
hashing algorithm directly into the iOS operating system.
When an image is uploaded to iCloud Photos, NeuralHash
generates a hash value representing the image. This hash value
is then compared to a database of known CSAM hash values.
If a match is found, the image is flagged and, if confirmed,
the user is reported to the authorities.

Apple’s approach to implementing NeuralHash raised sig-
nificant public debate and controversy [44]. As a consequence,
Apple has officially withdrawn the proposal and postponed
the large-scale deployment of NeuralHash; in spite of this,
NeuralHash has been added to all Apple devices.

4

2) Client-Side Scanning: NeuralHash was intended to
work conjointly with CSS. We briefly describe the process
presented in Figure 1.

User Device

S, I
hI ← h(I)

SI ← Derivate(hI , S)
KI , kI ← Derivate(hI , S)

Server/Database

If KI stored, obtain kI :
SI ← DeckI ({SI}kI)

{I}S ← DeckI ({{I}S}kI)
If have X {SI , SIr, . . . , SI(x)}:

S ← {SI , SIr, . . . , SI(x)}
I ← DecS({I}S)

(KI , {SI}kI , {{I}S}kI)

Fig. 1: Process designed by Apple to decrypt CSAM images
with CSS

First, the user device generates a long term secret key S,
that will be used for threshold secret sharing as explained
below. For an image I , the device computes the NeuralHash
value hI and derives KI and kI from hI . Using the key S
and the hash result hI , the device computes a secret sharing
key SI .

The client device then sends to the server the value KI , the
encrypted secret sharing key {SI}kI

, and the doubly encrypted
image {{I}S}kI

.
The server stores a database of pairs (KI , kI)

for every problematic image. When receiving the values
(KI , {SI}kI

, {{I}S}kI
), the server checks whether KI is in

its database; if so, it gets the corresponding kI . With kI , the
server decrypts {SI}kI

to obtain SI ; it also decrypts the first
layer of {{I}S}kI

and thus retrieves {I}S .
If the server collects at least X shares SI , it can reconstruct

the key S. Once S is known, the server can decrypt any image
having a hash value present in its database by using S to
decrypt {I}S .

The threshold X is defined by Apple, but its numerical
value is not disclosed. Apple claims [2] that X is chosen
to ensure “an extremely low probability (1 in 1 trillion) of
incorrectly flagging a given account.”

In its technical report, Apple refers to the value we have
called KI as a “cryptographic header” derived from hI .
Apple does not provide any information on the size of KI nor
how it is obtained. It also does not specify in its report that the
property KI ̸= KJ , ∀ I ̸= J is guaranteed. If this property
is not guaranteed, then a legitimate image that does not have
a NeuralHash value flagged as problematic content can still
generate a KI known by the server and thus be flagged, even
if neither the image nor its hash value is flagged. Similarly, a
legitimate image with a hash value hI equal or close to one
in the database will lead to the use of a flagged pair (KI , SI)
and thus result in the flagging of a legitimate image.

3) NeuralHash Computation: The NeuralHash algorithm,
as deployed on user devices, consists of two primary compo-
nents: a CNN and a LSH step. The main steps of the hash
computation are described bellow.

The algorithm begins by the preprocessing stage that
resizes the image to dimensions (360 × 360 × 3) within a
normalized pixel range of [−1, 1]. The resized image is then
sent into the embedding CNN.

The CNN produces a vector z of 128 bits. The goal is that
for perceptually similar images the vectors z are close and that
for perceptually different images they lie far apart.

The LSH step multiplies the vector z of length 128 by
a (128 × 96) matrix B to obtain a real vector y of length
96: y = B · z. This step checks the position of the vector z
relative to each hyperplane of the matrix B. Each vector is
mapped to a specific bucket, with similar vectors (and thus
similar images) placed in the same or adjacent buckets.

The final output is a bitstring of length 96. If yi > 0, the
corresponding bit is set to 1, otherwise, it is set to 0.

For our experiments, we extracted the neural network as
well as the hashing matrix used by NeuralHash from an iPhone
with firmware version 16.2. We then used [60] to convert the
NeuralHash model into ONNX format, allowing us to run
NeuralHash in any script or device.

F. Related Work

Perceptual hashing have been studied in academic papers
for over two decades. A comprehensive introduction to percep-
tual hashing was provided by Farid in 2021 [23], detailing the
fundamental techniques and challenges. Additionally, a survey
of perceptual hashing techniques and their applications can be
found in [19].

Recent research in perceptual hashing has primarily fo-
cused on the creation of collisions and information leakage.
The creation of collisions involves modifying one of two
perceptually different image to produce the same hash value,
effectively creating false positives. Information leakage, on
the other hand, refers to the potential of inferring information
about the input from its hash value.

One prevalent method of attacking perceptual hash func-
tions is through gradient-based hash attacks. These attacks
involve imperceptibly altering pixels to achieve specific out-
puts [11], [15], [17], [50], [51]. Various optimization tech-
niques have been proposed to enhance the effectiveness of
these attacks [26], [40], [46]. These attacks generally follow
the same principles as classic image processing attacks, ma-
nipulating inputs to achieve specific outputs [7], [54], [55],
[59], [63].

Some papers have analyzed the resistance of perceptual
hash functions to image modifications and the potential to
recover original images from their hash values. This includes
research on the robustness of perceptual hash functions derived
from pHash [18], [31] and attempts to reconstruct original im-
ages using Binary Reconstructive Embeddings (BRE) instead
of Locality-Sensitive Hashing (LSH) [56].

Recent work has revealed a series of attacks that exploit
vulnerabilities in the internal structure of NeuralHash and
other perceptual hash functions. Notably, Struppek et al. [49]
showed how to create second pre-images for NeuralHash,
where input images were imperceptibly modified and pub-
lished a proof-of-concept implementation (other tools for
second pre-images can be found in [6], [33]). Struppek et al.
also described classification attacks, in which hash values are
used to categorize inputs, achieving a maximum success rate
of 52% in some categories. Similarly, attacks on pHash have

5

shown how images can be manipulated to produce specific
hash values [28]. Additionally, partial inversion of PhotoDNA
has been achieved using neural networks [5].

Despite this research on attacking perceptual hash func-
tions and NeuralHash in particular, there remains a significant
gap in the evaluation of these functions concerning real false
positive rates and their performance when approached as black
boxes. This gap underscores the necessity of our analysis,
which aims to evaluate the performance, accuracy, and false
positive rate of NeuralHash in the context of large-scale
CSAM detection.

III. ANALYSIS OF NEURALHASH

This section presents the dataset of images used in the
paper and analyses the NeuralHash output for several types of
images.

A. Image Sets
We use two different image datasets. The first dataset

is made from non-human images extracted from the PASS
dataset [4], while the second dataset consists of 202 599 real
celebrity face images from the CelebA dataset [39].

Our primary goal is to evaluate whether hashing face
images with NeuralHash yields different results compared to
non-human images. Specifically, we aim to analyze the number
of collisions and the statistical properties of the bits of the hash
values.

We selected face images for two main reasons: first, to
approximate a use case related to CSAM detection, as such
images often contain faces; second, because face images are
common on mobile devices, making this a realistic use case
scenario.

1) Image Types: The following six image types are used:
non-human images, human face images, and human face
images with varying levels of blurring (see Figure 7 provided
in appendix for examples); each set contains 202 599 images.
Throughout the paper, the abbreviation BF stands for blurred
faces. The six types of images are referred to as follows:

• Non-human: randomly selected images from the PASS [4]
dataset.

• Non BF: images from the CelebA dataset [39] without
any transformations.

• Light BF: CelebA images with light Gaussian blur ap-
plied to the entire image.

• Medium BF: CelebA images with medium Gaussian blur
applied to the entire image.

• High BF: CelebA images with high Gaussian blur applied
to the entire image.

• BF only: CelebA images with Gaussian blur applied only
to the face region.

2) Perceptually Identical Images: Among the 202 599 face
images in the CelebA dataset, we identified at least 1404
images that appear at least twice or have perceptually similar
duplicates, resulting in a total of at least 2823 images among
the 202 599 images that should, in theory, share their hash
with at least one other image. Examples of identical images
and different images that are perceptually similar are presented
in Figure 2.

(a) Perceptually identical
images (different filter)

(b) Perceptually identical
images (same person,

very close pose)

Fig. 2: Perceptually identical images

B. Statistical Properties of the Hash Values

This section presents experiments performed on the
datasets to assess the distribution of the NeuralHash values
and to test the independence of the hash value bits.

1) Distribution: We first analyse the distribution and in
particular the uniformity and variance of NeuralHash bits
values for different types of images.

a) Experiments.: As stated in Section II, the bit dis-
tribution of the output of a hash function must be uniform
with a small variance to prevent information leakage about
the input and to resist (2nd) pre-image and collision attacks.
A perceptual hash function is also expected to have a uniform
distribution to avoid leaking information about its input.

To compute the average distribution of Neuralhash bits for
each image type, we hashed 30 000 randomly selected images
from each set. For each image type, we count for each of
the 96 bits the number of times the bit is equal to 1 and 0
respectively. The results for the Non-human type and the Non-
blur face type are presented in Figure ??, where the percentage
of times each bit is equal to 1 is plotted. The expected result
is that each bit is equal to 1 approximately 50% of the time,
with a small variance.

For non-human images, the results meet expectations,
with the percentage of bits equal to 1 uniformly distributed
around 50%. In contrast, for non-blurred human face images,
a significant number of bits deviate from being equal to 1,
50% of the time. For non-human images, none of the bits of
the hash is less than 40% or more than 60% of the time equal
to 1. In contrast, for human face images, 44 bits fall outside
this range, with even 2 bits being less than 20% or more than
80% of the time equal to 1.

The results for the four remaining image types are pre-
sented in Figure ??. The resulting hash values are even less
uniformly distributed compared to the non-blurred face image
type. For lightly blurred images (orange dots), 56 bits fall
outside the 40%− 60% range. For images with only the face
blurred (green dots), 59 bits fall outside the range. For medium
blurred images (black dots), 67 bits fall outside the range, and
for highly blurred images, 70 bits out of the 96 final bits fall
outside the 40%− 60% range.

Additionally, Figure 8 provided in appendix, shows a box-
plot of the distribution of bit values for each image type: except
the non-human images, the distribution deviates strongly from
the expected value.

b) Collision Probability with Independence Hypothe-
sis.: An illegitimate collision corresponds to the event where

6

Fig. 3: Bit distribution for each image type

the hash value of two perceptually different images are the
same. For regular hash functions, this event should be ex-
ceedingly rare. For an uniformly distributed 96-bit hash value,
where each bit is independent of the others, the birthday
paradox states that the average number of hash values to
compute before encountering an illegitimate collision is equal
to 248.

Assuming that all bits of the hash value are mutually
independent, and considering the observed distribution for
each dataset, Proposition 1 provides the probability that two
hash values are identical. Proposition 2 gives the expected
number of hash values required before encountering the first
illegitimate collision. To make this result more practical,
Proposition 3 provides a tight bound on the expected number
of hash values necessary before observing the first illegitimate
collision.

Proposition 1. Consider a hash value of n bits and a vector
p for which the i-th element pi denotes the probability that
the i-th bit of the hash value is equal to 1 (0 ⩽ pi ⩽ 1). If
En

p denotes the event that two hash values are equal, then

P(En
p) =

n∏
i=1

(p2i + (1− pi)
2) .

Proof. Let Hn
i,j denote the first j bits of the i-th hash value

of n bits, and let ani , bni be the first i bits of two given hash
values of size n. En

p is thus the event that the two strings ann
and bnn are equal.

We have:

P(En
p) =

∑
h=Hn

i,n

P(ann = h)P(bnn = h) =
∑

h=Hn
i,n

P(ann = h)2 .

Considering the sum in detail:

P(En
p) =

∑
h=Hn

i,n

P(ann = h | h(n) = 1)2

+
∑

h=Hn
i,n

P(ann = h | h(n) = 0)2

= (p2n + (1− pn)
2)

∑
h=Hn

i,n−1

P(ann−1 = h)2 .

The result follows by recurrence over the remaining n − 1
bits.

Proposition 2. Denote with P(En
p) the probability that two

n-bit hash values with distribution p are equal and define
M = 2n. The expected number of hash values to compute
before the first collision E(Dn

p) is equal to:

E(Dn
p) = 2 + (M + 1)× y

M(M+1)
2 +

M−1∑
x=1

y
x(x+1)

2

with
y = 1− P(En

p) .

Proof. P(En
p) denotes the probability of a collision between

two hash values, and Dn
p denotes the random variable rep-

resenting the number of hash evaluations required before
encountering the first collision. The probability that the first
collision occurs after x hash function evaluations is denoted
by P[Dn

p = x].
It is worth noting that P[Dn

p < 2] = 0 and P[Dn
p >

M + 1] = 0, as there are a maximum of M = 2n different
hash values.

By definition:

M+1∑
i=1

P[Dn
p = i] = 1 and: E(Dn

p) =

M+1∑
x=2

x× P[Dn
p = x] .

We first define P[Dn
p = n]. The probability P[Dn

p = 2] is the
probability that a collision occurs after 2 hash evaluations,
which is simply: P[Dn

p = 2] = P(En
p) . The probability

P[Dn
p = 3] is the probability that a collision occurs after

exactly 3 hash evaluations. This is the probability that the first
two hash values are different, multiplied by the probability that
the third hash value matches one of the first two. Therefore:

P[Dn
p = 3] = (1− P(En

p))× (1− (1− P(En
p))

2) .

Similarly, the probability P[Dn
p = 4] equals:

P[Dn
p = 4] = (1− P(En

p))
3 × (1− (1− P(En

p))
3) .

This approach generalizes to obtain P[Dn
p = n], the prob-

ability that a collision occurs after exactly n hashes with
(3 ≤ n ≤M + 1):

P[Dn
p = n] =

(
n−2∏
i=1

(1− P(En
p))

i

)
×(1−(1−P(En

p))
n−1) ,

which simplifies to:

P[Dn
p = n] = (1− P(En

p))
∑n−2

i=1 i × (1− (1− P(En
p))

n−1) .

Expanding the sums, we obtain:

P[Dn
p = n] = (1− P(En

p))
(n−2)(n−1)

2 − (1− P(En
p))

(n−1)n
2 .

The expected number of hash values to compute before
the first collision is given by E(Dn

p), which is expressed as:

E(Dn
p) =

N+1∑
x=2

x× P[Dn
p = x] ,

7

which is equivalent to:

E(Dn
p) = 2× P(En

p) +

N+1∑
x=3

x× P[Dn
p = x] .

Substituting the expression for P[Dn
p = x] and expanding the

sum, we obtain:

E(Dn
p) = 2×P(En

p)+
(
3× (1− P(En

p))− 3× (1− P(En
p))

3
)

+4
(
(1− P(En

p))
3 − (1− P(En

p))
6
)

+5
(
(1− P(En

p))
6 − (1− P(En

p))
10
)
+ . . .

+(M + 1)
(
(1− P(En

p))
(M−1)M

2 − (1− P(En
p))

M(M+1)
2

)
.

Reordering the terms, we then obtain:

E(Dn
p) = 2× P(En

p) + 2× (1− P(En
p)) + (1− P(En

p))

+(M + 1)× (1− P(En
p))

M(M+1)
2

+

M+1∑
x=4

(
1− P(En

p)
) (x−2)(x−1)

2 .

Simplifying the terms of the sum and shifting the bounds by
changing the variable x to x − 2, we include the term (1 −
P(En

p)) as the first term of the sum:

E(Dn
p) = 2+(M+1)(1−P(En

p))
M(M+1)

2 +

M−1∑
x=1

(1−P(En
p))

x(x+1)
2 .

With y = 1− P(En
p), we conclude that

E(Dn
p) = 2 + (M + 1)× y

M(M+1)
2 +

M−1∑
x=1

y
x(x+1)

2 .

The computation of the exact value of E(Dn
p) is infeasible

given the sum over M elements (in the NeuralHash case
M = 296). Proposition 3 provides a bound for E(Dn

p) that
is easy to compute.

Proposition 3. Denote with P(En
p) the probability that two

n-bit hash values with distribution p are equal and define
M = 2n. The expected number of hash values to compute
before the first collision E(Dn

p) is upper bounded by:

E(Dn
p) ≤ 1 + (M + 1)× y

M(M+1)
2 +

θ2(0; y
1
2)

2× y
1
8

,

with θ2(0; y
1
2) the Jacobi theta function θ2(z; q) with z = 0

and q = y
1
2 and with

y = 1− P(En
p) .

Proof. From Proposition 2 we have:

E(Dn
p) = 2 + (M + 1)× y

M(M+1)
2 +

M−1∑
x=1

y
x(x+1)

2 .

Note that
M−1∑
n=1

y
n(n+1)

2 =

M−1∑
n=0

y
n(n+1)

2 −1 . As
M−1∑
n=0

y
n(n+1)

2 ≤
∞∑

n=0

y
n(n+1)

2 we thus have:

M−1∑
n=1

y
n(n+1)

2 ≤ −1 +
∞∑

n=0

y
n(n+1)

2 . (1)

The Jacobi theta function θ2(z; q) is defined as follows:

θ2(z; q) = 2× q
1
4 ×

(∞∑
n=0

qn(n+1) cos((2n+ 1)z)

)
.

Using z = 0 and q = y
1
2 we obtain:

θ2(0; y
1
2) = 2× y

1
8 ×

(∞∑
n=0

y
n(n+1)

2

)
.

By introducing the Jacobi function in the right hand side of
Equation (1), we conclude that E(Dn

p) satisfies

E(Dn
p) ≤ 1 + (M + 1)× y

M(M+1)
2 +

θ2(0; y
1
2)

2× y
1
8

.

Table I is derived from Proposition 3 and the distributions
presented in Figure 3. It provides the expected number of
hash values to compute before reaching the first illegitimate
collision for each image type.

TABLE I: Expected number of hash operations before first
illegitimate collision

Type Non-human Non BF Light BF BF only Medium BF High BF

E(Dn
p) 247.8 243.5 241.1 238.9 237.5 234.1

c) Conclusion on Distribution.: From Table I, we
conclude that, except for the non-human images, the expected
number of hash values to compute before the first illegitimate
collision is significantly lower than the theoretical value 248.
For other image types, the expected number of hash values to
compute before an illegitimate collision varies between 243.5

(non-blurred face) and 234.1 (highly blurred face).
It is worth noting that these values assume each bit of the

hash is independent of the others. If this independence does
not hold, the expected number of hash values before reaching
an illegitimate collision decreases substantially.

2) Independence of Bits: In the previous section, we as-
sumed that the bits of the hash values are independent of each
other. In this section, we test this independence hypothesis. If
the bits are independent, the value of any bit j of a hash value
should not provide any information about the value of bit i
with j ̸= i.

a) Simple Matching Coefficient.: The simple matching
coefficient (SMC) is a statistic ranging from 0 to 1 used to
compare the similarity of symmetric binary sample sets. When
two samples are identical, the SMC is equal to 1. When two
samples have no common values (i.e., they are completely

8

different), the SMC is equal to 0. The expected SMC of two
independent samples is 0.5. It is worth noting that while the
SMC can be used to verify non-independence, it cannot be
used to confirm independence.

For two bits from the same hash value h, Definition 1 pro-
vides the value mi,j(h), corresponding to the simple matching
value of bits i and j denoted as h(i) and h(j) respectively.

Definition 1. For a hash value h, mi,j(h) is defined as:

mi,j(h) =

{
1 if h(i) = h(j)

0 if h(i) ̸= h(j) .

Using Definition 1, Definition 2 provides the SMC for two
bits i and j of a sample of N hash values of n bits.

Definition 2. Consider a set Dn
p of ℓ ordered hash values of

length n. Given hk, the k-th element of Dn
p , the SMC of bits

i and j is defined as:

SMCi,j(D
n
p) =

1

N
·

ℓ∑
k=1

mi,j(hk) .

By definition, ∀i, j, SMCi,j(D
n
p) = SMCj,i(D

n
p) and

SMCi,j(D
n
p) = 1 when i = j.

Using Definition 2, the simple matching matrix (SMM) of
a set Dn

p is built by computing the SMC for every pair of bits.
We thus use the SMM to compute the similarity between every
pair of bits of hash values from each of the six image types.

b) Bits Sample Similarity.: For each image type, the
SMM of the set is computed using Definition 2 and the hash
values of 30 000 random images per set. A color visualization
of the SMM for the Non-human and Non-blurred face sets is
presented in Figure 9 provided in appendix.

Table II summarizes, for each set, the values of the SMM
that fall within different ranges, from 0.0 − 0.1 (indicating
that the pair of bits almost always have opposite values) to
0.9− 1.0 (indicating that the pair of bits almost always have
equal values). For hash values with independent bits, 100% of
these values should fall within the 0.4− 0.6 ranges.

TABLE II: Similarity score, in percentage, for each image type
HHH

HSMC
Type

Non-Human Non BF Light BF BF Only Medium BF High BF

0− 0.1 0.0 0.0 0.0 0.0 0.0 0.2

0.1− 0.2 0.0 0.0 0.02 0.2 0.33 1.69
0.2− 0.3 0.0 0.29 1.1 2.7 3.53 6.67

0.3− 0.4 0.18 6.97 10.72 11.64 15.7 15.75
0.4− 0.5 48.6 43.05 38.62 33.93 31.47 26.45
0.5− 0.6 51.18 42.98 38.07 35.68 29.69 29.99

0.6− 0.7 0.04 6.56 10.48 12.7 14.76 13.64

0.7− 0.8 0.0 0.13 0.96 2.89 3.88 7.61
0.8− 0.9 0.0 0.02 0.02 0.26 0.64 2.08

0.9− 1 0.0 0.0 0.0 0.0 0.0 0.11

c) Conclusion on Independence.: Table II shows that
for the Non-human type image, only 0.22% of the values fall
outside the 0.4 − 0.6 range. This corresponds to 20 pairs of
bits over the 9120 possible pairs. These 20 values are all very

close to either 0.4 or 0.6. These values are not sufficient to
conclude that bits of non-human images are dependent.

However, for all other types of images, a significant
number of values fall outside the 0.4 − 0.6 range. For the
non-blurred face type, 13.97% of the pairs are out of range.
For the blurred face types, the percentages of values outside
the range goes from 23.3% for the lightly blurred face type to
47.75% for the highly blurred face type. For the blurred face
only type, 30.39% of the values are outside the range.

These results indicate that, except for the non-human
images, the bits of the hash value are not independent.
Consequently, Table I substantially overestimates the expected
number of hash values required to obtain an illegitimate
collision.

IV. COLLISION SEARCH

The results from Section III indicate that, for all types of
images except the non-human ones, the expected number of
hash evaluations before reaching a collision is significantly
lower than the theoretical value of 248.

Therefore, we hashed all 202 599 images of each set,
searching for illegitimate collisions between hash values. For
each identified collision, we classified it as legitimate when
the colliding hash values correspond to images identical or
perceptually similar, and illegitimate when the colliding hash
values correspond to images that are perceptually different. In
the few cases of colliding hash between images that cannot
clearly be identified as perceptually similar or not, we classi-
fied the collision as legitimate. Next we determined the number
of illegitimate collisions (false positives) and illegitimate non-
collisions (false negatives).

A. False Positives

The number of illegitimate collisions for each image type
and the number of hash evaluations before the first collision
are presented in Table III. Since some collisions involve more
than two images (multiple images sharing the same hash), we
count the number of illegitimate collisions as the number of
images sharing their hash values with at least one perceptually
different image.

Table III shows that out of the 202 599 hash values
computed for each image type, the non-human type is the
only one without any illegitimate collisions. All other image
types present several illegitimate collisions. The number of
these collisions, given the number of image hashed, is much
higher than expected. This number of false positive for sets
of only 202 599 images implies that the illegitimate collision
rate will be much higher when millions or billions of images
will be hashed. Section V presents estimates for the number
of illegitimate collisions for large-scale use.

Figure 4 presents an example of a collision obtained for
each image type. It is worth noting that for all blurred face
images (light, medium, and high), there are hash values shared
by three or more perceptually different images. An example
of three images sharing a hash value is given for the light
blurred type. For the light blurred face set, three images share

9

the same hash. For the medium blurred face set, eight different
hash values are shared by three different images each, and four
hash values are shared by four different images each. For the
highly blurred face set, instances where three images share the
same hash value are very frequent, and two hash values are
shared by five different images each.

TABLE III: False positives/negatives for each image type

PPPPPPType
Collisions # illegitimate

collisions
hash bef.
collission

Legitimate
collisions

False
negative

rate
Non-Human 0 − − −

Non BF 24 216.1 1559 44.8%
Light BF 25 215.2 1513 46.4%

BF only 12 216.1 1005 64.4%

Medium BF 260 212.6 1864 33.9%
High BF 588 211.6 2333 17.3%

B. False Negatives

As mentioned in Section III-A, at least 1404 distinct
images in the CelebA dataset are present at least twice, or have
perceptually identical duplicates. In total, at least 2823 images
out of the 202 599 should result in legitimate collisions. The
minimum false negative rate can thus be computed as follows:

Given m legitimate collisions, the false negative rate in %
is at least 100 · (2823−m)/2823.

The total number of legitimate collisions and the corre-
sponding false negative rate is provided in Table III.

It is worth noting that the 2823 images expected to
legitimately collide is a lower bound. For the medium and
highly blurred face sets, as the blur degrades the images,
some images that are not perceptually the same before blurring
become perceptually the same after blurring, thus increasing
the theoretical number of legitimate collisions. Despite this
higher number of theoretical legitimate collisions, a significant
number of images are still not detected as colliding images,
even though they should be.

For the non-blurred face, lightly blurred face, and blurred
face only image types, a significant number of perceptually
identical images do not have the same hash value. For the
blurred face only, this rate reaches 64.4%. These results
indicate that the function does not properly detect perceptually
identical images. This ratio should be considered alongside the
false positive rate. For the blurred face only set, for instance,
the number of illegitimate collisions is lower than in other
sets, but the number of legitimate collisions is also lower. This
indicates that the function is particularly inaccurate when only
faces are blurred.

V. ESTIMATION FOR LARGE-SCALE APPLICATIONS

We use results presented in Sections III and IV to estimate
the implications of the use of functions such as NeuralHash
in the context of large scale CSAM detection. We also discuss
the impact of a 2023 NeuralHash design update.

A. Model

This section explains how we estimate the number of
illegitimate collisions when scaling up the number of images
hashed.

1) Approximation: To estimate the number of illegitimate
collisions when hashing a larger number of images than in our
current sets, we reduce the problem to a uniformly distributed
hash values with independent bits problem. This approach
provides a worst-case scenario, ensuring that our estimates are
conservative.

Given the birthday paradox for a uniform distribution with
independent bits, we can estimate the number of images that
share the same hash values. Let q denote the number of images
that illegitimately share their hash values with at least one
other image. For a set of uniformly distributed hash values,
where each bit is independent of the others, Equation (2),
derived from the birthday paradox, estimates q for a set of
N images:

q = N

(
1−

(
2n − 1

2n

)N−1
)

. (2)

To address the non-uniform distribution and interdepen-
dence of bits in NeuralHash case, we reduce the case of
NeuralHash to the case of an ‘ideal’ hash value of n′ < n = 96
bits, that are uniformly distributed and independent.

To obtain n′ from our experiments, we use Equation (2)
with q taken from Table III and N = 201 195 unique images1

in the set. By transforming Equation (2) into Equation (3), we
obtain an approximation for the value n′:

n′ ≈ − log2

(
1−

(
1− q

N

) 1
N−1

)
. (3)

Table IV provides the corresponding n′ for each set.

TABLE IV: Size of equivalent uniformly distributed and
independent hashes

Type Non BF Light BF BF only Medium BF High BF
Size of

equivalent hash
30.8 30.6 31.9 27.2 26.04

Given a hash size n′, we apply the usual birthday paradox
(Equation (2)), for any number N of hash values. This pro-
vides an approximation of the number of illegitimate collisions
for any number of hashes for each image type.

In the following sections, we test our approximation on
our set of images to verify that the approximation matches
the reality.

2) Verification on 56 Bits: For the medium blurred and
highly blurred types, the number of illegitimate collisions for
the entire 96-bit hash value is sufficiently high to verify that
the approximation given by Equation (3) fits our experiments.
For the other three sets, we randomly selected 56 bits of the
NeuralHash hash values and then computed the approximate

1To ensure a conservative estimate, since at least 1 404 images appear
more than once, we use 202 599−1 404 = 201 195 unique images instead
of the full set of 202 599.

10

(a) Non BF (b) Light BF (c) BF Only (d) Medium BF (e) High BF

Fig. 4: Collision examples for each image type

number of illegitimate collisions for these 56 bits using
Equation (3), with N = 201 195.

By varying N for n′ obtained from Equation (3) we
compute the number of observed illegitimate collisions (or-
ange curve) alongside the approximate number of illegitimate
collisions predicted by Equation (2) (blue curve). The number
of observed illegitimate collisions represent the number of
images in our non-blurred face, light blurred face, and blurred
face only sets that have a hash value with at least one
other image sharing the selected 56 bits. The results are
presented in Figure 5. The observed number of illegitimate
collisions closely matches the theoretical values when using
the approximation of a well-distributed and independent hash
value. Therefore, we apply this approximation to the entire
96-bit hash result and for every image type in the following
section.

(a) Non BF and Light BF (b) BF only

Fig. 5: Approximated and observed number of illegitimate
collisions on 56 bits

B. Estimation of False Positives
To estimate the potential for false positives in a large-scale

context, we extrapolated the number of illegitimate collisions
for each image type. Figure 6 shows the approximated (blue
curve) and observed (orange curve) number of collisions
for medium and highly blurred images. For both types, the
actual number of false positives observed in our set closely
matches the approximation. For other image types, the number
of false positives is lower, making the comparison on 96
bits between the approximation and observed collisions less
relevant. However, the approximation has been validated in
the previous section on 56 bits. We provide figure 10 in the
appendix comparing on 96 bits the approximation and the
observed collisions for the remain three image types.

The close alignment between the approximated and ob-
served false positives across image types supports the re-
liability of our method for estimating false positive rates,

even at larger scales. The approximation results, derived from
Equation (2) and the values of n for each image type (see
Table IV), are summarized in Table V, which shows the
theoretical percentage of collisions for 1 million and 10 million
images.

(a) Medium BF (b) High BF

Fig. 6: Approximated and observed number of illegitimate
collisions on 96 bits

TABLE V: Estimated number of false positive rate (in per-
centage)

Type Non BF light BF BF only medium BF high BF
Real 202 599 hashes 0.01 0.01 0.006 0.11 0.25
Extrapol. 1M hashes 0.05 0.06 0.03 0.54 1.2

Extrapol. 10M hashes 0.53 0.6 0.29 5.31 11.44

From Table V, we observe that the percentage of collisions
ranges from 0.03% to 1.2% for 1 million hash values. For 10
million hash values, the percentage of illegitimate collisions
increases significantly, ranging from 0.29% to 11.44% accord-
ing to the image type.

These findings suggest a concerning trend: as the number
of hash values increases, the likelihood of false positives also
rises substantially. This has significant implications for the
deployment of perceptual hash functions such as NeuralHash
in large-scale CSAM detection systems. The increasing rate of
false positives could lead to numerous legitimate users being
incorrectly flagged, thereby undermining the effectiveness and
reliability of the detection system. The impact of our results on
the realistic CSAM detection is provided in the next section.

C. Updated Model

The NeuralHash files deployed on macOS devices have
been updated around the end of 2023. The new model uses
seeds in fp16 and is trained with fp16 precision (instead of
fp32 for the previous model). Apple has not provided any

11

official communication regarding this change. This update
is surprising as Apple announced in December 2022 that it
canceled its plan to scan photos on Apple devices for CSAM.

Previous attacks on NeuralHash were conducted in a white-
box setting, meaning the attackers had full knowledge of the
model. With this new model, which has not yet been reverse-
engineered, it is currently impossible to fully understand or
manipulate the inner workings of the algorithm, especially the
CNN involved.

However, it is still possible to run NeuralHash using the
files present on a device through code available on the GitHub
project [32], without detailed knowledge of the internal pro-
cesses. We applied our collision attacks using this method, and
the results in Table VI are very similar to those obtained in
the previous section.

TABLE VI: False positives for each image type for the fp16
model of NeuralHash

Type Non BF Light BF BF only Medium BF High BF
illegitimate

collisions
12 50 90 > 500 > 1000

The results indicate that, except for non-blurred face
images where the rate of illegitimate collisions decreased,
all other types showed a significant increase in illegitimate
collision rates, particularly for medium and highly blurred face
images. Therefore, the use of this new model does not alter
the conclusions. On the contrary, it tends to exacerbate the
issues highlighted.

VI. COLLISION WITH CSAM DATABASES

This section applies our results to estimate the expected
number of false positives when CSAM content would be
detected at scale using the current CSAM databases.

a) CSAM Hash Database Scale.: According to the
NCMEC report [42], “As of December 31, 2023, NCMEC
has added 7,705,865 hashes to the Non-Governmental Appar-
ent Child Pornography Hash-Sharing Initiative. Other non-
governmental organizations have submitted an additional
9,802,435 hashes.” Furthermore, the report [52] from the
organization Torn states, “Safer, our all-in-one solution for
CSAM detection, uses hashing and matching as a core part of
its detection technology. With the largest database of verified
hashes (29 million hashes) to match against, Safer can cast
the widest net to detect known CSAM.”

From these reports, we can deduce that at least these two
organizations have access to databases containing 17.5 million
and 29 million hash values, respectively. This indicates that
CSAM hash databases contain between 224 and 224.8 hash
values; in order to be on the safe size, we will use the value 224

in our estimates. Unfortunately, it can be expected that these
databases will become larger in the future. For our research,
we did not have access to this database of highly sensitive
data. Table IV shows that for images containing human faces,
the maximum effective size of a NeuralHash string, assuming
uniformly distributed and independent bits, is reached for the

blurred face only type. Therefore, to remain conservative,
we will assume that images with only the face blurred are
representative of the images in these databases.

b) Probability of Collision with CSAM Databases.:
Let p denote the probability that the hash value of a given
image matches one of the stored CSAM hash values. Given
that we consider the maximum effective size of a NeuralHash
string (32 bits), we have p < 224

232 .
Under the assumption that N images are “independent”

(which is not completely realistic as many users take several
variants of the same image), the probability P(X = k) of
exactly k collisions between user images and the CSAM
database follows a binomial distribution:

P(X = k) =

(
N

k

)
pk(1− p)N−k .

The EU Council draft proposal of July 2024 [21] and
Apple’s reports [2], [8] suggest increasing the number of
required flagged images to 2-3 before reporting a user.
Given this, the probability of illegitimately reporting a user
based on k required flagged images can be expressed as
1−

∑k
i=0P(X = i).

In 2019, European citizens took an average of N = 597
selfies per year [24]. Table VII provides an estimate of the
number of EU citizens that would be illegitimately reported in
the first year of using NeuralHash, based on k, the number of
flagged images required before reporting a user. It is important
to note that these estimates account only for selfies and apply
only to the first year. As users generally accumulate more
images over time, the number of flagged citizens would rise
significantly in subsequent years.

TABLE VII: Number of EU citizens illegitimately reported

images to flag
before reporting

1 2 3 5 8 10

reported EU citizens 406M 304M 185M 39M 1.2M 69K

M stands for million K stands for thousand

Our results suggest that the number of false positives in
the context of face image hashing is very high. The rate of
false positives and the expected number of matches are so
high that the proposition of increasing the required number of
flagged images to 2 or 3, will not effectively prevent legitimate
users from being reported as CSAM owners. Even with this
threshold, hundreds of millions of EU citizens would still be
falsely reported. Increasing the hash size to 128 bits is also
insufficient to reduce the probability to an acceptable level.

c) Conclusion.: Using NeuralHash as an example
proposed for a real-world use case, our work demonstrated
significant flaws in the application of perceptual hashing for
CSAM detection. Specifically, we found that the applying
NeuralHash to human faces (blurred or not) results in a
very high false positive rate. Given that CSAM content often
contains faces, we expect the false positive rate in this context
to be similarly high, leading to many users being incorrectly
flagged as CSAM owners. Furthermore, NeuralHash was also
found to be inaccurate in detecting the same image of a face,
exhibiting a very high false negative rate, even for images

12

without any blurring. These false negatives rate suggest that
NeuralHash is not reliable for its intended purpose either.

Our work lead us to conclude that using current perceptual
hash function designs similar to NeuralHash for CSAM detec-
tion using large-scale Client Side Scanning, as implied by the
EU draft proposal for CSAM detection, will result in a huge
number of citizens being illegitimately flagged. The current
design of NeuralHash is vulnerable to black-box attacks and
does not provide the necessary accuracy and reliability to be
deployed on a large scale for such a sensitive task.

Therefore, we strongly recommend against using Neural-
Hash or a similar perceptual hash function in the context
of Client Side Scanning for CSAM detection. The potential
for harm and the infringement on privacy far outweigh the
intended benefits of such systems.

It remains an open problem whether new perceptual hash
functions with longer hash values can be designed that provide
a better distribution of outputs for relevant inputs such that
they resist black-box attacks. The design of perceptual hash
functions that can resist white-box attacks is a much harder
problem, in particular because Client Side Scanning means
that the design cannot be kept secret.

Even if the accurate and reliable perceptual hash functions
would be available, the use of Client Side Scanning remains
highly problematic due to the risk of function creep and abuse.

REFERENCES

[1] Harold Abelson, Ross J. Anderson, Steven M. Bellovin, Josh Be-
naloh, Matt Blaze, Jon Callas, Whitfield Diffie, Susan Landau, Pe-
ter G. Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce Schneier,
Vanessa Teague, and Carmela Troncoso. Bugs in our pockets: the
risks of client-side scanning. J. Cybersecur., 10(1), 2024.

[2] Apple. CSAM Detection – Technical Summary 2021. Technical
report, Apple, 2021. accessed on July 8, 2024.

[3] Apple. Expanded protections for children, frequently asked questions,
2021. accessed: July 8, 2024.

[4] Yuki M. Asano, Christian Rupprecht, Andrew Zisserman, and An-
drea Vedaldi. PASS: An ImageNet replacement for self-supervised
pretraining without humans. NeurIPS Track on Datasets and Bench-
marks, 2021.

[5] Anish Athalye. Inverting PhotoDNA. https://www.anishathalye.com/
2021/12/20/inverting-photodna/, December 2021.

[6] Anish Athalye. NeuralHash Collider, 2021. accessed: July 7, 2024.
[7] Jiawang Bai, Bin Chen, Yiming Li, Dongxian Wu, Weiwei Guo,

Shu-Tao Xia, and En-Hui Yang. Targeted attack for deep hashing
based retrieval. In Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, Proceedings, Part I, volume 12346 of
Lecture Notes in Computer Science, pages 618–634. Springer, 2020.

[8] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and
Karl Tarbe. The Apple PSI System. Technical report, Apple, Inc.,
July 29, 2021.

[9] Dominique Brunet, Edward R. Vrscay, and Zhou Wang. On the
mathematical properties of the structural similarity index. IEEE
Trans. Image Process., 21(4):1488–1499, 2012.

[10] Elie Bursztein, Einat Clarke, Michelle DeLaune, David M. Elifff,
Nick Hsu, Lindsey Olson, John Shehan, Madhukar Thakur, Kurt
Thomas, and Travis Bright. Rethinking the Detection of Child Sexual
Abuse Imagery on the Internet. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages 2601–
2607. ACM, 2019.

[11] Nicholas Carlini and David A. Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
39–57. IEEE Computer Society, 2017.

[12] Damon M. Chandler and Sheila S. Hemami. VSNR: A wavelet-based
visual signal-to-noise ratio for natural images. IEEE Trans. Image
Process., 16(9):2284–2298, 2007.

[13] Microsoft Corporation. New technology fights child porn by tracking
its “PhotoDNA”’, December 15, 2009. accessed: July 8, 2024.

[14] Counter Extremism Project. How CEP’s eGLYPH Technology
Works, Dec 08, 2016. accessed: July 8, 2024.

[15] Francesco Croce and Matthias Hein. Minimally distorted adversarial
examples with a fast adaptive boundary attack. In Proceedings of the
37th International Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 2196–2205. PMLR, 2020.

[16] Janis Dalins, Campbell Wilson, and Douglas Boudry. PDQ & TMK +
PDQF - A test Drive of Facebook’s Perceptual Hashing Algorithms.
CoRR, abs/1912.07745, 2019.

[17] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu,
Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks with
momentum. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 9185–9193. Computer Vision Foundation / IEEE
Computer Society, 2018.

[18] Andrea Drmic, Marin Silic, Goran Delac, Klemo Vladimir, and
Adrian Satja Kurdija. Evaluating robustness of perceptual image
hashing algorithms. In 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics,
MIPRO, Opatija, Croatia, pages 995–1000. IEEE, 2017.

[19] Ling Du, Anthony T. S. Ho, and Runmin Cong. Perceptual hashing
for image authentication: A survey. Signal Process. Image Commun.,
81, 2020.

[20] Cross-Party Letter of Members of the European Parliament Against
General Monitoring, 2021. Patrick Breyer, Alviina Alametsä, Rosa
D’Amato, Pernando Barrena, Saskia Bricmont, Antoni Comı́n, Gwen-
doline Delbos-Corfield, Francesca Donato, Cornelia Ernst, Claudia
Gamon, Markéta Gregorová, Francisco Guerreiro, Svenja Hahn, Irena
Joveva, Petra Kammerevert, Marcel Kolaja, Moritz Körner, Karen
Melchior, Clara Ponsatı́, and Mikuláš Peksa.

[21] Proposal for a Regulation of the European Parliament and of the
Council laying down rules to prevent and combat child sexual abuse,
2024. accessed on July 6, 2024.

[22] Facebook. The TMK+PDQF video-hashing algorithm and the PDQ
image-hashing algorithm, 2020. accessed: July 8, 2024.

[23] Hany Farid. An Overview of Perceptual Hashing. Journal of Online
Trust and Safety, 1(1), Oct. 2021.

[24] GingerComms for HONOR, December 9, 2019. Research carried out
by GingerComms on behalf of HONOR on 2,053 UK adults and 750
adults in France, Germany, Spain, Italy and the Netherlands between
14 – 18 November 2019.

[25] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search
in high dimensions via hashing. In VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 518–529. Morgan Kaufmann,
1999.

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[27] Google Inc. How Content ID works, 2007. accessed: July 8, 2024.
[28] Qingying Hao, Licheng Luo, Steve T. K. Jan, and Gang Wang.

It’s not what it looks like: Manipulating perceptual hashing based
applications. In CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, pages 69–85. ACM, 2021.

13

[29] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of
the Thirtieth Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, May 23-26, 1998, pages 604–613. ACM, 1998.

[30] Shubham Jain, Ana-Maria Cretu, Antoine Cully, and Yves-Alexandre
de Montjoye. Deep perceptual hashing algorithms with hidden dual
purpose: When client-side scanning does facial recognition. In 44th
IEEE Symposium on Security and Privacy, SP 2023, San Francisco,
CA, USA, May 21-25, 2023, pages 234–252. IEEE, 2023.

[31] Shubham Jain, Ana-Maria Cretu, and Yves-Alexandre de Montjoye.
Adversarial detection avoidance attacks: Evaluating the robustness
of perceptual hashing-based client-side scanning. In 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 2317–2334. USENIX Association, 2022.

[32] Malcolm Hall Khaos Tian. nhcalc, 2021. accessed: July 23, 2024.
[33] Yannic Kilcher. Neural hash collision creator, 2021. accessed: July

7, 2024.
[34] Brian Kulis and Trevor Darrell. Learning to hash with binary

reconstructive embeddings. In Advances in Neural Information Pro-
cessing Systems 22: 23rd Annual Conference on Neural Information
Processing Systems 2009. Vancouver, British Columbia, Canada,
pages 1042–1050. Curran Associates, Inc., 2009.

[35] Anunay Kulshrestha and Jonathan R. Mayer. Identifying Harm-
ful Media in End-to-End Encrypted Communication: Efficient Pri-
vate Membership Computation. In 30th USENIX Security Sympo-
sium, USENIX Security 2021, August 11-13, 2021, pages 893–910.
USENIX Association, 2021.

[36] Ian Levy and Crispin Robinson. Thoughts on child safety on
commodity platforms, 2022.

[37] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie
Zhou. Deep hashing for compact binary codes learning. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 2475–2483. IEEE
Computer Society, 2015.

[38] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep
supervised hashing for fast image retrieval. Int. J. Comput. Vis.,
127(9):1217–1234, 2019.

[39] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[41] NCMEC. NCMEC’s statement regarding end-to-end encryption.
Technical report, National Center for Missing and Exploited Children,
2019.

[42] NCMEC. OJJDP-NCMEC-Transparency-CY-2023-Report. Technical
report, NCMEC, 2024. accessed: July 22, 2024.

[43] Joint statement of scientists and researchers on EU’s proposed Child
Sexual Abuse Regulation, 4 July 2023. accessed: July 7, 2024.

[44] An open letter against Apple’s privacy-invasive content scanning
technology, 2021. accessed: July 23, 2024.

[45] Joint statement of scientists and researchers on EU’s new proposal
for the Child Sexual Abuse Regulation, 2nd May 2024. accessed:
July 7, 2024.

[46] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. The limitations of deep
learning in adversarial settings. In IEEE European Symposium on
Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March
21-24, 2016, pages 372–387. IEEE, 2016.

[47] Evan Klinger & David Starkweather. pHash. The open source
perceptual hash library, 2010. accessed on July 22, 2024.

[48] Martin Steinebach. An Analysis of PhotoDNA. In Proceedings
of the 18th International Conference on Availability, Reliability and
Security, ARES 2023, Benevento, Italy, 29 August 2023- 1 September
2023, pages 44:1–44:8. ACM, 2023.

[49] Lukas Struppek, Dominik Hintersdorf, Daniel Neider, and Kristian
Kersting. Learning to Break Deep Perceptual Hashing: The Use
Case NeuralHash. In FAccT ’22: 2022 ACM Conference on Fairness,
Accountability, and Transparency, Seoul, Republic of Korea, June 21
- 24, 2022, pages 58–69. ACM, 2022.

[50] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One
pixel attack for fooling deep neural networks. IEEE Trans. Evol.
Comput., 23(5):828–841, 2019.

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014.

[52] Torn. How hashing and matching can help prevent revictimization,
2023. accessed: July 22, 2024.

[53] UK Department for Science, Innovation & Technology. Online Safety
Act: explainer, 8 May 2024.

[54] Xunguang Wang, Zheng Zhang, Guangming Lu, and Yong Xu.
Targeted attack and defense for deep hashing. In SIGIR ’21: The 44th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, pages 2298–2302.
ACM, 2021.

[55] Xunguang Wang, Zheng Zhang, Baoyuan Wu, Fumin Shen, and
Guangming Lu. Prototype-supervised adversarial network for tar-
geted attack of deep hashing. In IEEE CVPR, pages 16357–16366.
Computer Vision Foundation / IEEE, 2021.

[56] Yongwei Wang, Hamid Palangi, Z. Jane Wang, and Haoqian Wang.
Revhashnet: Perceptually de-hashing real-valued image hashes for
similarity retrieval. Signal Process. Image Commun., 68:68–75, 2018.

[57] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simon-
celli. Image quality assessment: from error visibility to structural
similarity. IEEE Trans. Image Process., 13(4):600–612, 2004.

[58] Dayan Wu, Zheng Lin, Bo Li, Mingzhen Ye, and Weiping Wang.
Deep supervised hashing for multi-label and large-scale image re-
trieval. In Proceedings of the 2017 ACM on International Conference
on Multimedia Retrieval, ICMR 2017, Bucharest, Romania, June 6-9,
2017, pages 150–158. ACM, 2017.

[59] Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao. Ad-
versarial examples for hamming space search. IEEE Trans. Cybern.,
50(4):1473–1484, 2020.

[60] Asuhariet Ygvar. AppleNeuralHash2ONNX, August 2021. accessed:
July 12, 2024.

[61] Christoph Zauner. Implementation and benchmarking of perceptual
image hash functions, MsC Thesis, University of Applied Sciences,
Hagenberg, Austria, 2010.

[62] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep
semantic ranking based hashing for multi-label image retrieval. In
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1556–1564.
IEEE Computer Society, 2015.

[63] Mingkang Zhu, Tianlong Chen, and Zhangyang Wang. Sparse
and imperceptible adversarial attack via a homotopy algorithm. In
Proceedings of the 38th International Conference on Machine Learn-
ing, ICML, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12868–12877. PMLR, 2021.

14

APPENDIX

Examples of each type of image

(a) Non-Human (b) Non BF (c) Light BF

(d) Medium BF (e) High BF (f) BF only

Fig. 7: Example of the 6 types of images used

Distribution of Bit Values

Fig. 8: Disparity of bit values for each type of image

SMM Color Visualization

(a) Non-human (b) Non BF

Fig. 9: SMM for Non-human and Non BF type

Approximation on 96 bits

(a) Non BF

(b) Light BF

(c) BF Only

Fig. 10: Approximated and observed number of illegitimate
collisions on 96 bits

