Amigo: Secure Group Mesh Messaging in
Realistic Protest Settings

David Inyangson'*, Sarah Radway?*,
Tushar M. Jois?, Nelly Fazio® and James Mickens?

! Johns Hopkins University
dinyangl@jhu.edu
2 Harvard University
sradway@g.harvard.edu, mickens@g.harvard.edu
3 City College of New York

tjois@ccny.cuny.edu, nfazio@ccny.cuny.edu

Abstract. In large-scale protests, a repressive government will often disable the
Internet to thwart communication between protesters. Smartphone mesh networks,
which route messages over short range, possibly ephemeral, radio connections between
nearby phones, allow protesters to communicate without relying on centralized Internet
infrastructure. Unfortunately, prior work on mesh networks does not efficiently
support cryptographically secure group messaging (a crucial requirement for protests);
prior networks were also evaluated in unrealistically benign network environments
which fail to accurately capture the link churn and physical spectrum contention found
in realistic protest environments. In this paper, we introduce Amigo, an anonymous
mesh messaging system which supports group communication through continuous key
agreement, and forwards messages using a novel routing protocol designed to handle
the challenges of ad-hoc routing scenarios. Our extensive simulations reveal the poor
scalability of prior approaches, the benefits of Amigo’s protest-specific optimizations,
and the challenges that still must be solved to scale secure mesh networks to protests
with thousands of participants.

Keywords: mesh messaging - censorship circumvention - continuous group key
agreement - mesh routing protocols - mobility modeling

1 Introduction

Protests are an important tool in the fight against authoritarian governments. By occupying
a physical space, ordinary citizens can express their grievances and bring visibility to their
concerns. In countries where political freedoms are curtailed, protests may be the only
mechanism for the public to express their grievances.

When protests become movements comprising thousands of people, communication
becomes vital for organizing protest actions and keeping participants safe. In a modern
protest, the demonstrators often rely on smartphone-based messaging platforms like
WhatsApp or Telegram to communicate; using these apps, protesters learn about rally
points and inform each other about the location of the police or the military [ABJM21a].
Authoritarian governments are thus highly motivated to intercept or alter the messages
that protesters exchange. Using intercepted messages, the government can identify protest
leaders and shift police deployments to disrupt nascent rally points; using altered messages,
the government can send spoofed messages, ostensibly from protest leaders, that direct

*These authors contributed equally to this work.

mailto:dinyang1@jhu.edu
mailto:sradway@g.harvard.edu
mailto:mickens@g.harvard.edu
mailto:tjois@ccny.cuny.edu
mailto:nfazio@ccny.cuny.edu

2 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

protesters towards harm. These concerns are not theoretical. For example, law enforcement —
even in relatively liberal governments — possess cell-site simulators which create fake
cellphone towers [Cell5]. By inducing protester phones to pair with a simulator, law
enforcement can launch of variety of attacks, e.g., downgrading the phone’s cellular
connection to the unencrypted 2G protocol, allowing the government to intercept messages
to and from that phone [Ele23].

A repressive government may also try to degrade or completely disrupt app-based
communication during a protest. For example, during the 2019 Hong Kong anti-ELAB
protests, the government (or its partisans) launched a denial-of-service attack against Tele-
gram servers [BeW19]. In 2019, Iran responded to protests involving economic discontent
by enacting such a large-scale Internet shutdown [Amn20]. Similarly, in Myanmar, Internet
shutdowns are frequently imposed to prevent civilians from documenting human rights
violations or accessing information about military operations [Acc24a]. Overall, there were
as many as 283 Internet shutdowns across 39 counties in 2023 alone — the worst year for
Internet shutdowns on record [Acc24b].

Given this situation, protesters need a robust way to exchange authenticated, encrypted
messages, even if the government has disabled Internet connectivity or tampered with
cellular routing infrastructure. A promising approach is for protesters to exchange encrypted
messages via an ad-hoc mesh network built from point-to-point radio links (e.g., Bluetooth
connections between smartphones). In a mesh network, there is no centralized routing
infrastructure; instead, user devices exchange messages over (potentially ephemeral) short-
range links created via physical proximity as users move in space. Multi-hop message
forwarding atop the point-to-point links enable information exchange between users too
far away to establish direct connections.

Because mesh networks do not rely on centralized infrastructure, there is no single point
of failure for a regime to attack. Unfortunately, classic mesh networking protocols [AW09,
AWWO05, ZLHO06] do not safeguard user privacy, revealing message senders and recipients
to even passive observers. These protocols are ill-suited for protest scenarios where users
wish to hide their identities from the government [ABJM21a].

The research community has introduced mesh networks that attempt to hide user activ-
ity [PJWT22, PSEB22, BRT23, RL08, RYLZ09, LQK09, Sen12, SS14, PAC14, HBDF*13].
However, previous systems cannot practically handle large-scale protests for two major
reasons. First, prior systems lack efficient (or any) support for private groups, despite
the widespread use of group-based messaging in protest settings [ABJM21a]. Second,
prior systems use routing protocols which are scalable in benign network conditions, but
often experience persistent congestion collapse for the mobility patterns and smartphone
radio technologies found in realistic protest settings; the result of the persistent network
congestion is a very low rate for application-level message delivery.

To address these challenges, we introduce Amigo, a new system for efficient, secure
mesh communication in protest settings. Amigo’s high-level novelty is that it is designed
as an end-to-end system which accounts for both security challenges at the cryptographic
layer and performance/reliability challenges at Layers 1 and 2 of the network stack. To
protect messages exchanged by protesters, Amigo leverages a new protocol for continuous
group key agreement (CGKA), efficiently providing security properties specifically required
by protesters (e.g., post-device-compromise security, and fast removal of a member from
a group). In tandem, Amigo introduces a new mesh routing protocol which, compared
to earlier protocols, enjoys higher delivery rates for mobility patterns often seen in real
protests. Our comprehensive simulation experiments, which leverage those realistic mobility
models and high-fidelity representations of low-level network phenomena like radio collisions
between nearby phones, demonstrate that Amigo’s protest-specific optimizations provide
secure, protester-desired functionality with better routing performance than earlier work.
However, our evaluation results also reveal fundamental scalability challenges for all known

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 3

approaches to secure mesh networking (including Amigo); a fundamental contribution
of the paper is illuminating those practical challenges (previously unknown due to the
lower-fidelity simulations of prior work), and suggesting several directions for future work.

Contributions: In summary, we contribute the following:

e We introduce a new protocol for decentralized group key agreement in mesh networks.
The protocol tolerates an unreliable mesh that may drop or reorder messages,
providing important security properties missing from prior key management schemes.
The protocol is efficient with respect to network consumption and CPU usage—a
critical feature for a protocol that runs atop resource-constrained phones.

e Amigo introduces a new routing approach, based on clique-level forwarding, which is
tailored to the vagaries of protest-based mobility patterns.

e To evaluate Amigo, we introduce new mobility models which capture how real-life
protesters organize in physical space, both during stable times and when external
shocks arise (e.g., the unexpected appearance of the police). Our evaluation experi-
ments also capture important Layer 1 and Layer 2 network phenomena that were
ignored in prior work on seucre mesh networking.

o We test Amigo’s performance when Amigo uses our clique-based routing approach
and routing approaches from prior work, demonstrating (1) the benefits of Amigo’s
protest-specific optimizations at the cryptographic layer and the routing layer,
and (2) the scalability and robustness challenges (previously unknown) that still
remain unsolved, given the challenging network environment created by protest-
based mobility patterns and the idiosyncrasies of real-life short-range communication
technologies. Our results suggest mesh routing protocols previously thought to
be practical will often function poorly in realistic protest environments due to a
self-reinforcing cycle of network congestion. We discuss the implications of our results
on future research into shutdown-resistant communication.

Once the paper is published, we will open-source all of our code and benchmarks, to spur
additional work on secure messaging systems for protest scenarios.

2 Motivation

A large-scale protest involves hundreds or thousands of people gathered in (and moving
throughout) a shared physical space. The success of a such a protest increasingly depends
on the ability of protesters to organize via smartphone-based communication [Shill, LA10,
ABJM21a, AG15]. Without the ability to effectively communicate, critical information
regarding group movement, law enforcement activity, and collective decision-making
propagates slowly among protesters. The consequences for the protesters are dire: physical
assault, imprisonment, or even death [CG18].

As a case study, consider the widespread 2019-2020 protests in Hong Kong. The
protests erupted in response to the government’s attempt to pass the Extradition Law
Amendment Bill (ELAB). The bill would have allowed Hong Kong citizens to be extradited
to China; many Hong Kong citizens feared that the bill would further erode Hong Kong’s
legal independence from China [Lee20, LYTC19]. Using smartphone apps like WhatsApp,
Telegram, and Signal, protesters decided where and when to hold demonstrations. Once
protesters arrived on site, these apps allowed protesters to respond in real time to events
like the arrival of police [ABJM21a].

The ability of citizens to efficiently organize during the protest itself was a marked
departure from static, pre-smartphone-era demonstration strategies. In the ELAB protests,
a column of marchers might quickly decide to split into groups, each taking a path down a
different street and abruptly changing directions in response to newly-placed barricades;
using apps like Telegram, the independent groups could synchronize their long-term
movement trajectories and later reform into a single human chain [BeW19].

4 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

2.1 Protester Needs

Albrecht et al. performed wide-ranging interviews with 11 anti-ELAB protestors from
Hong Kong [ABJM21a]. Below, we highlight the relevant findings from that study with
respect to how communication apps for protesters should be designed:

1. Protest communication occurs primarily in group chats: Groups can range
from a handful of members to tens of thousands of participants.

2. Groups must be able to securely add members as a protest unfolds. Some
protesters may hear about a demonstration offline, e.g., word-of-mouth. Upon
arrival, such a person may wish to join an online group for protest coordination. A
protest-focused messaging app requires the ability to add new members on-the-fly.

3. Groups must be able to remove members. Protesters are resigned to the
fact that law enforcement may be able to infiltrate groups (especially larger ones).
Protesters also understand that law enforcement may coerce a loyal group member
to nonetheless relinquish their device and their login credentials. Thus, revoking a
user’s group membership is critical functionality.

4. Communications should be possible during an Internet shutdown. Protest-
focused communication apps should still function if centralized Internet infrastructure
has been degraded. During the Telegram blackout in the ELAB protests, some
protesters attempted to use Bridgefy [Bri22], a mesh networking app, to exchange
messages. Unfortunately, Bridgefy failed to handle the load presented by the large
numbers of protesters [ABJM21a].

5. Communication should be anonymous. The threat of retaliation from law
enforcement requires participation in an online protest group to be anonymous.
An encrypted message should not reveal the real-life identity of the sender or the
receiver. The peer-to-peer nature of mesh networking does not automatically provide
anonymity. For example, security researchers have found that Bridgefy’s communica-
tion protocol protects neither message confidentiality nor message authenticity, and
allows outsiders to deanonymize users [ABJM21b).

In summary, protesters need an end-to-end encrypted messaging app that is designed for
group communication and supports group membership changes, does not rely on traditional
Internet infrastructure, and provides anonymity.

2.2 Related Work

Prior work has explored smartphone-based mesh networks as a communication substrate
for protesters without centralized Internet access. Mesh networks leverage short-range
radio technologies like Bluetooth or Wi-Fi Direct, routing messages between a sender
and a receiver across potentially ephemeral radio connections between mobile nodes. In
the protest context, end-to-end encryption of signed/authenticated messages ensures that
network eavesdroppers cannot inspect cleartext or alter messages without detection. An
ideal mesh network would also limit the power of an attacker who discovers the keys used by
protesters at time t. Forward secrecy ensures the attacker cannot break the confidentiality
of messages sent before t. Post-compromise security means that, after the key leakage at t,
the attacker cannot break the confidentiality of messages sent after t. Broadly, forward
and post-compromise security are implemented by having participants rotate their keys
periodically.

Moby [PJWT22] is a mesh network that supports pairwise messaging. Moby uses
Signal’s symmetric key ratchet protocol [Sig20] to provide end-to-end encryption and
forward secrecy. Each pair of communicating nodes shares a key; a node determines
whether a received message is destined for the local node by seeing whether any of the
node’s pairwise keys enables successful recreation of the message’s HMAC. Using this
HMAC validation trick, Moby avoids the need to embed cleartext sender or receiver IDs

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 5

Table 1: Related work comparison. E2E: end-to-end encryption; FS: forward secrecy;
PCS: post-compromise security; Anon: anonymity; Pair: pairwise communication.

Scheme E2E FS PCS Anon Pair Groups
Moby [PJWT22] v 4 4 v
ASMesh [BRT23] v v v v v
Rangzen [LFBD'16] N/A N/A /
Perry et al. [PSEB22] v v v
Amigo (this) v v v v/ 4 v

in messages, enabling anonymity. Moby’s routing protocol uses flooding, such that two
peers attempt to exchange all locally buffered messages upon encountering each other.
ASMesh [BRT23] is another network which augments Signal’s Double Ratchet algorithm
and routes messages using flooding.

The network of Perry et al. [PSEB22] uses flooding and provides both end-to-end
encryption and anonymity via a CPA-secure signcryption scheme; the signcryption scheme
supports group communication by having a group creator generate a single secret key and
share the key with each individual member of the group. Perry et al’s scheme does not
provide forward secrecy or post-compromise security.

Peers in a Rangzen mesh [LFBDT16] propagate messages via epidemic flooding. How-
ever, a user Alice’s phone gives preference (i.e., more local buffer space) to “trusted”
messages. Alice determines the trust of a message from Bob by examining how many
mutual friends Alice and Bob share in a social networking graph that is maintained
out-of-band with respect to Rangzen. Rangzen does not end-to-end encrypt messages
because Rangzen is intended to spread “micro-blogs” (akin to tweets) that are destined for
all users and are assumed to contain no private information.

As a mesh network grows, flooding-based routing approaches scale poorly, requiring
bandwidth that is quadratic in the number of nodes. Perry et al. [PSEB22| reduce the
bandwidth costs using Bloom filters. When two peers encounter each other, each one
generates and shares a summary of the messages that are stored locally; when a node
receives such a summary, the node consults its own summary and fetches only those
messages which have not already been downloaded. Perry et al. describe a further
optimization in which nodes are partitioned into cliques, such that when a node wants
to send a message to a peer outside the local clique, the node sends the message to a
“clique leader” node. Clique leaders form a communication backbone for the network,
forwarding cross-clique messages between leaders until a message reaches its destination
clique (at which point the message is broadcast to all clique members). Importantly, Perry
et al. evaluate their routing approaches using a custom simulator that does not capture
important phenomena in Layers 1 and 2 of the network stack. For example, their simulator
does not model Layer 1 collisions between simultaneously transmitting nodes. As we
demonstrate in Section 7, low-level network events can affect higher-level mesh routing
protocols in significant ways. Table 1 summarizes prior work and compares it to Amigo.

3 System Design

At a high level, Amigo’s goal is to provide a mesh network that is reliable, low-latency,
secure, and resource-efficient with respect to the consumption of CPU cycles, RAM, and
network bandwidth. Reliability means that Amigo successfully forwards the vast majority
of messages to their intended recipients, despite the stochastic nature of pairwise node
connectivity. Low-latency forwarding means that Amigo delivers messages as quickly as
possible, given the prevailing network conditions. Secure forwarding ensures that messages

6 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

are end-to-end encrypted, integrity-protected, and enjoy both forward security and post-
compromise security; additionally, key agreement among group members should not leak
cryptographic information to participants outside of the group. Resource efficiency is
important because Amigo targets smartphone deployments in which network bandwidth,
CPU cycles, memory space, and available power are limited compared to traditional
server-based environments. To the best of our knowledge, Amigo meets or outperforms
all prior work along these evaluation metrics. However and importantly, as we discuss in
Sections 7 and 8, our evaluation experiments illuminate fundamental performance and
robustness challenges for secure mesh networks—challenges that must be solved for these
systems to reliably scale to protests involving thousands of participants or more.

3.1 Architecture

Figure 1 depicts Amigo’s high-level architecture. Users interact with Amigo via the
application layer, creating and destroying groups, adding or removing members to
groups, and exchanging messages with group members. Users directly generate and read
text messages or picture messages; behind the scenes, those messages are protected with
keys negotiated by Amigo’s session layer. The session layer implements an efficient CGKA
scheme which we describe in detail in Section 4. Amigo focuses on small to medium-sized
groups with 10-200 members; such close-knit groups are perceived by protesters as more
trustworthy and less susceptible to infiltration by the government [ABJM21a].

The session layer sends and receives user-generated messages and CGKA-generated
messages via the routing layer. As we describe in Section 5, Amigo is compatible with
three schemes from prior work on mesh networking. Amigo also introduces a new approach,
dynamic clique routing, which is tailored for the unique connectivity challenges of protest
scenarios. As shown in Figure 1, the basic idea behind all of the routing schemes is that,
when two nodes wander into communication range, they exchange locally-buffered messages
that were generated locally or received from other peers in the past; the routing schemes
differ in which messages are exchanged with which peers.

At the bottom of the Amigo stack is the link layer. Similar to prior work on secure
meshes [LFBD*16, PJWT22, PSEB22], Amigo leverages off-the-shelf point-to-point radio
technologies like Bluetooth and Wi-Fi Direct. Using off-the-shelf hardware for Layers 1
and 2 of the network stack makes Amigo imminently deployable; however, as we discuss
in Sections 7 and 8, traditional short-range radio protocols lack understanding of end-to-
end congestion metrics, and therefore may unwittingly overload the network and trigger
precipitous declines in application-level delivery rates.

3.2 Threat Model

As explained by Albrecht et al. [ABJM21a], the core goals of an authoritarian regime
during a protest are to:

1. identify message senders and group members,

2. read the cleartext content of in-transit messages,

3. tamper with in-transit messages, and

4. compromise protester devices after a protest to decrypt logged messages from earlier

in time or inspect/tamper with messages that protesters will sends in the future.

We assume that the adversary has several vantage points on the network, but cannot view
all traffic emanating from all nodes. We also assume that the adversary, through malicious
or lawful means, can access a group member’s device [ZJG21]; after doing so, the adversary
gains access to the group messages and group key material of all groups associated with that
device. This knowledge allows the attacker to monitor group communication indefinitely
unless removed.

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 7
(Member Addition, Member Removal, Key Refresh)

Create Send Group
Group Message
4
I

A
v Encrypt W|th group egenerate CGKA grou +
) , ’ C symmetrlc key) C & sub-; group keys u ’é ,éGi ’éG
G fsG; 7sG..

Deliver

Receive CGKA
Message

Manage Group) (Receive Group
Message

APPLICATION

Update local

message to
Generate group, ’é ’é ’éG1 ’éG reciplent CGKA group,
sub-group

sub-group keys, and %

group metadata. N keys and grou
Message m ’ secrets with {neta dfta P
appropriate
g ’ group & sub-
= N P keys.
% Add to local Toup xeys
g node’s oG
message KA Message ¢ if CGKA
buffer A
€
I 1
R Lol
| | o | i | | | |
Try to decrypt
Message Send Buffer Message Recv Buffer using appropriate
keys
2 '
E g >
=) Buffer Exchange
o Protester 1 Protester 2
3
Flooding Based: Normal, Digest Routing Based: Static Clique, Dynamic Clique
~ P
~
¥ %)) & @ — v N€-----a
: ®) e o
= \

2. Message Exchange

1. Discovery Phase
Phase

Protester 1 Protester 2

Figure 1: An overview of Amigo and its layers.

Given such an adversary, Amigo’s goal is to provide messages with confidentiality and
integrity, including forward security and post-compromise security, as well as outsider
anonymity. We discuss these properties further in Section 4.1. Amigo does not try to
provide message deniability, e.g., Amigo does not prevent traffic analysis techniques that a
multi-vantage-point attacker can use to correlate message sends with messages receptions
and thereby unmask senders and receivers. Amigo also does not prevent denial of service
attacks in which malicious nodes refuse to forward packets or jam the physical spectrum.
Amigo is compatible, however, with prior work that augments message routing with a
trust layer that allows nodes to prioritize communicating with peers estimated to be
well-behaved [LFBD 16, PJWT22].

4 A CGKA Protocol for Mesh Messaging

We now discuss our security goals, the implementation of Amigo’s application and session
layer as shown in Figure 1, and the properties our CGKA protocol provides to enable
confidential and anonymous group communication.

4.1 Security Definitions

Protesters require confidentiality of their messages from outsiders, as well as a way to verify
message authenticity. Since adversaries may sometimes successfully compromise group

8 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

member’s devices and key material, protesters also require the properties of forward secrecy
and post-compromise security. Additionally, messages should be outsider-anonymous to
protect protesters from retaliation. We define these security requirements:

Message Confidentiality: A message m sent to subgroup w’ of a group w, should remain
confidential from both an adversary who has not achieved device compromise and members
of w who are not in w'.

Message Authentication: A recipient of a message m sent by a member in group w can
prove it was sent by another member in w and m was not tampered with.

Forward Secrecy: Applying a state operation m’ to a group state ; results in a new
group state €241, where a successful compromise of 2,41 does not allow an adversary to
decipher messages sent in group states 2; or prior.

Post-Compromise Security: Applying a state operation m’ to a group state §2; results
in a new group state €2, 1, where a successful compromise of {2; does not allow an adversary
to decipher messages sent in group states ;1 or later.

Outsider Anonymity: A message m intended for subgroup w’ C w leaks no information
about the identity of the recipients of the message to anyone who is not part of the
subgroup w’. Any member of w’, however, may learn who the other intended recipients
are. This relaxed notion of anonymity [FP12] is appropriate here since protesters vet other
members before inviting them into group communication and do not need to be anonymous
within their groups [ABJM21a).

4.2 Design

As opposed to pairwise approaches where duplicate messages are encrypted under different
keys, a CGKA protocol utilizing a ratchet tree results in a single message encrypted under
a shared key. Traditional CGKA protocols like TreeKEM [BBR18] utilize ratchet trees
to provide efficient key derivation and encrypted communication [KPPW*21, CCGT18,
CLM23]. A ratchet tree, displayed in Figure 2, is a binary tree where each node in the tree
contains asymmetric key material. Leaf nodes (Member 4, Member g, Memberc, Member)
represent the participants in the group communication.

Importantly, group state changes using a ratchet tree are logarithmic in the size of
the group, rather than linear, as in pairwise approaches. In a traditional CGKA protocol
such as TreeKEM [BBR18], if Memberc in Figure 2 wishes to update the group state,
they will generate a new unique key pair (skg, pk(). They then iteratively hash sk;, to
generate secret keys for their ancestors: sk = H(sk(), skl = H(H(sk()). These new
secret keys are then encrypted under the corresponding ancestor’s current public key:
Encpr, (skb), Encprp (sk). Members of the group can then recover the new secrets; all
members can recover the new root skf;, but only Memberp can recover skj. The public
keys derived from the new secret keys pkj, pk’, are distributed to all members.

Each member only has the secret keys on their path to the root of the ratchet tree,
which allows for efficient (i.e., logarithmic) communication to subsets of the group. In
Figure 2, if Members wishes to message the whole group, they can encrypt using pkg.
But, if Memberc wants to send a message only to Member 4 and Member g, they may simply
encrypt using pk;. As descendants of Node, only Member , and Member g will have sk;
and can decrypt.

While these traditional protocols are efficient, they require all members to apply state
operation messages in the same sequence. Otherwise, member’s respective views of the
ratchet tree will be inconsistent. While a central server could provide ordered delivery of
messages, this can not be relied upon during an Internet shutdown.

As a result, Amigo requires a way for members to receive out-of-order state operation
messages and still reach a consistent state. To do this, we apply the idea proposed by
Causal TreeKEM [Weil9]; instead of state operations that use hashing to overwrite key

David Inyangson*, Sarah Radway*, Tushar M. Jois, Nelly Fazio and James Mickens 9

Root
(skg, pkg)
/\/ N~
Node, Node;
(sky, pk;) (sk,, pk,)
Member, Member, Member, Member,

~ ~ ~ ~
[\

(sk, pka) (skg, pkg) (ske, pke) (skp, pkp)

Figure 2: A ratchet tree for asymmetric key material, as in Amigo.

material held by nodes in the ratchet tree, state operations may combine existing and
newly generated material, an operation denoted by x. If two keypairs arrive at different
times, we can combine them together into a valid keypair, relaxing the need for ordered
message delivery: (skg,pky) * (sky, pky) = (Skzwy, Dkaxy). We maintain the same structure
as Figure 2, with group members only having access to the secret keys of their ancestors,
but when state changes occur, we combine instead of replace key material. We discuss
further in Section 4.3.

Our Amigo CGKA is built around elliptic curve Diffie-Hellman using Curve25519.
Elliptic curve public keys are derived by multiplying a (secret) scalar sk with the curve’s
generator point G. Thus, we can instantiate x as (skzuy = Sko+5ky, Dkowy = (Skz+sky)-G).
Note that the original Causal TreeKEM construction is not forward-secure within a group
state [WKHB21]; we extend our CGKA to use updateable public key encryption [ACDT19]
to provide this property.

Amigo’s CGKA will converge with eventual consistency, i.e., when a group’s state
messages eventually reach the specified user. But, due to the additive nature of our group
key agreement implementation (and the fact that it does not check for liveness of nodes),
group fragmentation may occur if certain nodes lack key material for the groups for which
they are a part. Affected nodes can query the group for this missing material via the
root node’s keys, however. Additionally, a group may choose to restructure, effectively
re-creating and re-adding live members.

We also note that an application-level mechanism for group healing may be viable. All
members can retain their prior ratchet tree state for a certain number of epochs — this
window can be decided at group creation. When a member who has failed to receive CGKA
state update messages transmits a message intended for the group, they will unknowingly
use material from a prior state. Any recipient of this message may successfully decrypt and
recognize this, as long as the relevant key material is within their window, and respond
with the Root node’s key material for the current epoch. This mechanism would provide
flexibility when participants may become disconnected from the rest of the mesh, at the
potential risk of weakening forward secrecy.

4.3 Amigo Operations

We now describe the application layer operations Amigo provides, and how our session
layer CGKA supports them.

Group Communication: Although nodes in a ratchet tree hold asymmetric key material,
we can optimize communication by using symmetric key encryption. To send messages
to the entire group a member derives the group symmetric key using the root node’s

10 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

Root
('skg, pkg)
— ~—
Node, Node,
(sk,, pk,)
Member, Member, Member, Member,

(sk, pk;) ¢ DKP(ps,)
(skg, pkg) € DKP(psy)
(sk, pka)

Figure 3: Creating a group in Amigo. Only Member 4 is in the group.

asymmetric key material. A hash of the concatenation of the secret and public keys of
Root H(skgr||pkr) is passed into a key derivation function to produce the group symmetric
key. A similar process can be used for in subgroup communication. A member passes
their message and this key into AES-GCM to produce the corresponding ciphertext for
transmission.

If a member wishes to send a message to a subgroup they are not a part of, they may
encrypt under the corresponding public key of that subgroup. Due to our updateable
scheme, this allows for notions of forward secrecy and post-compromise security within
group epochs, as encryption results in a new public key for the intended subgroup that
can be broadcast to everyone. Decryption results in the corresponding secret key for the
intended recipients.

Group Creation: In addition to the core messaging functionality, we must also consider
the lifecycle of groups in Amigo. Every group in Amigo has an associated group state,
consisting of public keys, secret keys, members, and the group structure. To create a
group, a user generates and stores a new, empty ratchet tree of a specified size. As seen
in Figure 3, the founding member Member 4 inserts themselves into the ratchet tree by
deriving separate, randomly sampled path secrets for each ancestor node along its direct
path to the root. The ancestor nodes of Member 4, Node; and Root, have derived keypairs
(DKP) associated with path secrets ps; and psg, respectively. Thus, initial group state Qg
contains only key material from the founding member.

Member Addition: If Member 4 in Figure 3, wishes to add NewUser as Member g, NewUser
needs the necessary group state for a correct ratchet tree. Thus, Member 4 sends a welcome
message encrypted to NewUser’s public key. This communication can be bootstrapped
via an in-person interaction (e.g., via a QR code), in line with how groups are formed on
the frontlines during protests [ABJM21a]. Using the notation of Figure 3, the welcome
message contains the group symmetric key skpr along with the information about members,
all known public keys pk 4, pk1, pkr within the ratchet tree, and all secrets that Member 4’s
shares with the leftmost open node ski, skgr. It is in this position that NewUser inserts
themselves into the tree — becoming Memberp in Figure 4 — and generates new path secrets
ps1, psg for each ancestor on its direct path to the root. If key material already exists for
a particular node in Memberg’s direct path to the root, the existing material is combined
with the newly derived material. In Figure 4, this means (sk1, pki) and (skgr,pkr) are
combined with (sk{,pk]) and (sk’, pk;), respectively. This results in a new epoch and
fresh group state €2 from Memberp’s perspective. For the rest of the group to derive this
fresh group state, Member zp must share the key material they previously generated and

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 11

Root
(skgksk’s, pkgkpk'y)
/\/ ~—
Node, Node;
(skyHksk’,, pk,kpk’;)

— —

Member, Member, Member, Member,

~ -~
[\

(ska, pks) (sk'y, pk'y) <
(sk'g, sk'p) «

(skg, pkg)

Figure 4: A new user is added as Member g by updating the ratchet tree.

applied. We send this update to the group using the Root symmetric key of the previous
epoch Q. The path secrets are additionally encrypted under the previous public key of
the corresponding ancestor node pk1, pkg.

As a result, each member only has the secret keys associated with their path to the root
of the ratchet tree. New public keys, however, are made available to the entire group. In
Figure 2, suppose Memberp has just joined the group by processing the welcome message.
After Memberp has sent their update message, Member 4 and Member g can decrypt the path
secret sent under Root’s current public key pkr to derive the new asymmetric material
sk, pk’p and combine it with the existing material: (skg, pkr)* (skz, pk). They will also
be able to combine the broadcasted public key for Node, with the existing key (pks * pkj)
but not secret keys associated with Nodes. Since Member knows the complete key material
held by Nodey and Root, however, they will be able to decrypt both sk and sk} and
combine it with the current secret keys.

Note that in our instantiation, member addition is most effective when members join
left-to-right, i.e., the most recently joined member adds the new user; upon joining they
have all the needed secrets (if they exist) for their ancestor nodes. If this order cannot be
enforced, at a minimum a newly joined member will have the group secret, which they
can use to communicate with the group and query nodes for the relevant secrets they are
missing, as mentioned above.

Member Removal: Essential to the protest setting is efficient removal from a group, as
mass arrests or police infiltration could compromise the keys of group members. In Amigo,
the member initiating removal recurses to find the minimum number of subgroups such
that everyone except the node being removed can receive new key material. The member
then generates and encrypts the same path secret using the public key corresponding
to each intended subgroup. Members decrypt the information sent to their respective
subgroup and apply this updating material to every node in the ratchet tree. They also
clear the state of the removed node in the ratchet tree, and initiate a new epoch under a
fresh group state.

As shown in Figure 5, if Membery is removing Memberp, the path secret generated
will be applied by Memberc and the children of Node;. Here our CGKA construction is
particularly effective. The number of subgroups for removal is logarithmic in the group
size, and our * operator enables members to update all appropriate key material using a
single path secret. Thus, our CGKA allows for a quick transition from a compromised to
secure state.

Key Refresh: Members can also refresh their key material. A member can generate new

12 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

Root
(skgksk’, pkgkpk’)
/_/ \—/—\
Node, Node-
(sk, Kksk’, pk,kpk”) (sk, % sk, pkykpk’)
Member, Member, Member, Member,

& ¢ @ X

('sk’, pk’) ¢ DKP(ps)
(skyksk’, pkyokpk’) (skgksk’,pkgihpk’) (sk Ksk’, pk.kpk’)

Figure 5: Memberc removes Memberp from the group.

path secrets for their leaf node as well as their direct path to the root, apply this material,
and send the updating material to the rest of the group. When the other members apply
this update, they can only decrypt path secrets for ancestors they are descendants of.
Like removal, the key refresh operation provides logarithmic efficiency. Afterwards, the
updating member and the entire group enter a new epoch with a fresh group state.

4.4 Security Analysis

We sketch how Amigo satisfies our security properties. Amigo achieves message confiden-
tiality and authentication through the use of AES-GCM with the group symmetric key.
These properties hold for both messages to the entire group and messages to subsets of
the group (i.e., removal); messages to subsets of the group are hybrid-encrypted with the
group symmetric key and the subset’s public key.

We achieve forward secrecy between group states when state operations (member
addition, removal, and key update) update secret keys throughout the ratchet tree; we
achieve the same within a group state based on the aforementioned updateable asymmetric
cryptosystem [ACDT19]. These continuous changes to secret keys ensure adversaries who
obtain key material at time ¢ cannot decipher messages sent previously.

We achieve post-compromise security through key refresh and member removal. In
situations where only key material at a non-root node has been compromised, a key refresh
operation is sufficient to provide post-compromise security; previous CGKA works take
this approach [KPPW™21, CCGT18, CLM23, BBR18]. After compelled decryption of a
mobile device, though, the adversary would hold all group cryptographic information,
including the group secret at the root of the ratchet tree. In this situation, the rest of an
Amigo group can recover by removing the compromised group member and continuing
communication. Removed members can not decrypt the update message that initiated
their removal. Thus, the new group state cannot be computed solely from data available
to the compromised node, and post-compromise security is achieved here as well.

Amigo ciphertexts have no identifying metadata, and group members use trial decryp-
tion on each received message. If a member cannot decrypt a message with the keys in their
ratchet tree, all the member knows is that the message is not intended for them; they learn
nothing about to whom the message is destined, satisfying outsider anonymity. Intended
recipients may be able to learn who other recipients are, e.g., in Figure 2, Member knows
a message sent to Node, can also be read by Memberp; however, this is outside the scope
of outsider anonymity.

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 13

5 Routing

In Amigo routing, a message represents (1) a user-generated piece of text, or (2) cryp-
tographic material for the CGKA protocol. Each message is tagged with a time-to-live
(TTL) in seconds. A message’s destination is either a group or an individual user (a size-1
group).

Each Amigo node has a message buffer which stores a single copy of each unique
message the node has recently received. When a node wants to send a message, the node
inserts the message into the buffer, evicting the oldest message in the buffer if necessary
to make space; given the choice between a CGKA message and a non-CGKA message,
Amigo prefers to evict the latter, as CGKA messages are important in synchronizing group
states. A node periodically decrements the TTL field of all messages in the buffer, evicting
messages when their TTLs reach 0.

When two nodes discover each other through physical proximity, the nodes use a routing
protocol to determine whether and how to share their local message buffers. Amigo can
use four such routing protocols — three from prior work in mesh networking, and a fourth,
dynamic clique routing, which Amigo introduces, that is tailored to the mobility patterns
of protests. We now describe these four in detail.

Epidemic Flooding: In this approach, each node divides time into 60-second intervals,
transmitting a beacon at a random time within each interval to avoid Layer 2 collisions.
If a peer receives such a beacon, the peer establishes a Layer 2 channel with the beacon
originator, and the two nodes exchange their complete message buffers. Epidemic flooding
aggressively probes the network for routes between senders and receivers, but risks network
congestion due to the indiscriminate nature of message forwarding. Prior work has
used epidemic flooding as a baseline for evaluating more sophisticated mesh routing
protocols [PSEB22, PJW 22 LFBD' 16, BRT23].

Digest Flooding: To prevent two peers from exchanging messages that are already
present on both nodes, each peer can first exchange Bloom filters [Blo70] which summarize
the locally-buffered messages; a peer X only sends a particular message to peer Y if Y's
Bloom filter indicates that ¥ does not already store the message. Perry et al. [PSEB22]
first propose this optimization to epidemic flooding, referring to a Bloom filter as a message
digest. Details about Amigo’s Bloom filter implementation can be found in Appendix C.

Static Clique Routing: Perry et al. [PSEB22] sketched an optimized form of digest
routing based on cliques. The basic idea is that each node belongs to a clique, with one
node in each clique serving as the cligue leader. When node X wants to send a message
to node Y, X sends the message to X’s clique leader; the clique leader then exchanges
messages with other clique leaders via digest routing, with the hope that the message will
eventually reach Y’s clique leader (who will then transmit that message directly to Y).
Amigo implements clique-based routing by treating each Amigo group as a clique, with a
group’s administrator acting as the clique leader. A node’s leader is static because the
leader does not change in response to the spatial arrangement of nodes or other properties
of the mesh network.

Intuitively, static clique routing should decrease overall network pressure compared to
flooding, since only clique leaders perform bulk message exchanges. This approach might
result in worse end-to-end delivery rates, though, if clique leaders do not encounter each
other often, or if clique followers do not encounter their leaders often.

Dynamic Clique Routing: To decrease the likelihood of the problems mentioned in the
last paragraph, Amigo introduces dynamic clique routing. In this approach, both a node’s
clique and a node’s clique leader can change over time.

To determine a node’s dynamic clique, Amigo divides the 2D plane into adjacent grid
squares, of three meter width. A node uses GPS to identify its current grid square; all
members within the same grid reside in the same dynamic clique. To determine the leader

14 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

for that clique, Amigo divides time into epochs. The epoch length balances maximizing
channel utilization for message delivery and ensuring swift recovery when bootstrapping is
unsuccessful. For most mobility models, cliques remained largely stable over a five-minute
period; therefore, Amigo uses five minute epochs.

Epochs are divided into two segments. The first minute of an epoch is reserved for
electing clique leaders. The remaining segment is used to exchange messages.

Amigo’s leader elections are based upon the Android Group Owner implementation
[And24]. Nodes choose a “willingness" value (0-100), indicating their readiness to serve as a
clique leader. The node in each given region with the highest “willingness" value is elected
as the leader. Each node picks a random offset within the election period of the epoch,
and generates a beacon containing the node’s approximate location, the node’s Layer 2
identifier, and the leader “willingness" value; the random offset decreases the likelihood of
Layer 2 collisions.

A node also listens for beacons from other peers. At the end of the election period, a
node selects the beacon-generating peer with the highest leader willingness in their region
to be its clique leader. If a node hears no other beacons, the node becomes its own clique
leader.

Under perfect conditions, all nodes in a clique will appoint the same leader—the node
with the highest “willingness" value; however, if beacons are not consistently received,
nodes may not elect the correct node as a leader. If this is the case, the node sits out the
remainder of the epoch, and attempts to rejoin in the next iteration.

The “willingness" value is vulnerable to attack; malicious nodes could send high
“willingness" values to be elected clique leaders, and subsequently disrupt traffic. While we
do not address this problem in Amigo, we note that for added robustness, nodes could
instead include random values in beacons to determine the leader, using methods such as
distributed randomness beacons [CMB23].

Empirically, a protest may alternate between moments of tight, highly-ordered spatial
density (e.g., when protesters form a human chain), interspersed with less dense spatial
arrangements and/or more chaotic mobility patterns (e.g., when protesters randomly
scatter due to the sudden arrival of law enforcement). We expect dynamic clique routing
will better adapt to these patterns than static clique approaches.

We note our use of location as an oracle does not impact any security properties (§4.1);
it is used solely to organized cliques and is not communicated across the mesh.

6 Modeling Protester Dynamics

To rigorously evaluate the performance of a secure mesh network, we need realistic models
for user mobility, message traffic, and low-level network phenomena.

6.1 Mobility Models

A mobility model describes how protesters move through a physical space. The model
determines how the spatial density of protesters varies over time, and how long protesters
linger within the communication radii of each other’s short-range radios. Accurate mobility
models are crucial for evaluating mesh networks because different mobility models have
a dramatic impact on when (and whether) full or partial spanning trees for routing will
emerge.

Unfortunately, mobility models from prior work are not well-suited for analyzing protest
dynamics. For example, Perry et al. [PSEB22] considered spatial densities of one person
every 2.5-15 ft?, with each person located at the centroid of a grid square, and with a
communication radius of 10 m. selected communication radius would mean that each
protester could directly contact 400 peers. A protest’s high density area might have as

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 15

little as 0.2m? per protester, however; if protesters were arranged in a grid, then 1,600
protesters would be within the communication range of any particular individual [Stil9].
Furthermore, in a large-scale protest, multiple kinds of mobility patterns are likely to
occur through space and time, as different protesters responds to different stimuli (e.g.,
the arrival of police or more protesters) in different parts of the protest region.

To build more realistic mobility models, we draw insights from a crowd-sourced guide
to protesting, written in 2019 by Hong Kong anti-ELAB demonstrators [Ano23]. The
document provides practical advice about the planning and operational execution of a
protest, describing various spatial arrangements that protesters can use. Based on this
information, we create several mobility models rooted in protest scenarios, which we
describe below.

Marches: A march involves a group walking together in the same direction. In our march
mobility model, we assign a starting area for the march, randomly distribute nodes within
the starting area, and have all nodes move in the same direction at approximately the
same speed of 1.3m/s [MMAT21]. The spatial density is about 2m? per protester.

Human Chains: A human chain entails a line of stationary people who pass materials
from one end of the line to the other. Typically, the line begins in a storage area, and ends
in front of the protest [Ano23|. In comparison to a march, there is no mobility in a human
chain, and the spatial density is sparser, with nodes placed in a line about 2m apart.

In our human chain mobility model, we pick two points within the simulated space,
and generate a pathway between them. This pathway is not a direct line — instead, we add
randomness to account for obstructions between the two points and general stochastisity
in the locations of people along the line. We implement this randomness by selecting 0-10
additional random points between the two endpoints, and applying subtle curves to the
paths originally generated with linear interpolation. Finally, we assign each protester to a
location on the chain, spacing the protesters as above.

Gatherings: In the Hong Kong protest guide, the authors state that protests can also
take the form of “gatherings with a specific focus.” Examples of such gatherings are musical
performances and communal decoration of building walls [Ano23]. These kinds of protests
involve crowds in which individual participants generally stay within the congregation
area, but can migrate within that area at walking speeds.

In our gatherings mobility model, we assign an area (roughly a city block in size) where
an event will take place. We randomly assign nodes to occupy the space, and select a
subset of nodes to move within the space, using a random waypoint model [Joh96] to
simulate random movement.

Blockades: In a large-scale protest, a blockade occurs when protesters prevent entrance
to a given space. For example, Anti-ELAB protesters blockaded the Cross-Harbor Tunnel
to stop police from entering a university campus [PL19].

We implement two blockade-based mobility models. The first represents an “object
blockade” in which demonstrators place objects along the blockade frontier. For example,
protesters in the Hong Kong protests scattered road blocks, then set them ablaze. In our
object blockade mobility model, protesters move at roughly 1.4 m/s between areas where
materials are stored and the protest frontier. At each location, protesters briefly pause to
pick up or drop off material.

Our “human blockade” model captures a scenario is which protesters have gathered
near a blockade frontier, and are being monitored by law enforcement. In this model,
clumps of police officers move towards the frontier, as do the protesters. If a police officer
and a protester get within half a meter of each other for 30 seconds, one of them will retreat
to the nearest clump of like-minded individuals; this behavior represents a participant
being injured or physically overwhelmed by a member of the opposing group.

Static and random waypoint models: For comparison, we also implement two standard

16 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

mobility models from prior literature: a static model and a random waypoint mobility
model. For more details on these models, see Appendix B.

6.2 Physical Layer Simulations

Prior work [PSEB22, PJW 122, LFBD'16] uses custom network simulators to evaluate
mesh routing protocols. Unfortunately, these works do not model physical-layer events
like message collisions between two peers within communication range who transmit data
simultaneously. Because prior simulations did not capture these Layer 1 effects, they
overestimated the available bandwidth at Layers 2+.

To avoid this problem, we evaluate Amigo using ns-3, a discrete-event network simulator
which does model important low-level characteristics. We extended ns-3 to support Wi-Fi
Direct, a Layer 142 technology that, like Bluetooth, allows devices to communicate directly
in a peer-to-peer fashion. We built our Wi-Fi Direct implementation atop ns-3’s preexisting
support for ad-hoc Wi-Fi; implementation details are in Appendix A. Our implementation
uses 802.11ax/Wi-Fi 6, with a maximum data rate of 143.4 Mbps for advertising (MCS
Index 11), and 263.3 Mbps for data exchange (MCS Index 6). This network setup is
feasible on modern smartphones and representative of Wi-Fi Direct, which can provide up
to 250 Mbps [All]. We limit signal propagation to 10 m, as in previous work [PSEB22].

We found ns-3 hit scaling limits as we increased the simulated protest size. For example,
to complete a single run of a 250 node simulation using a static mobility model and
digest routing, we required ~10 GB of memory and one week of wall clock time, even on
a high-end cloud instance (GCP c3d-highmem-180). Nonetheless, as we demonstrate in
Section 7, even modestly-sized protests can trigger crippling network congestion in standard
approaches for secure mesh routing (and sometimes in the Amigo-specific dynamic clique
approach). These results suggest a variety of important areas for future work (Section 8).

6.3 Traffic Model

Our traffic model expresses the rate at which application-level behavior generates text
messages and CGKA messages (§4). For a given simulation that lasts an hour of simulated
time, we generate 20 CGKA messages total, with each one sent from a random group
member and sent at a random time in the first half of the simulation; the latter constraint
ensures the message has sufficient time to propagate to the other group members before the
simulation ends. This is roughly equivalent to each group adding one member, removing
one member, and performing one key refresh during a protest.

Non-CGKA traffic corresponds to standard text messages sent to a group. We implement
a basic traffic model for non-CGKA messages: each node in the simulation sends a message
every minute. We choose these values based upon the protester guide, which states chats
see an excess of 100 messages per minute during an event’s peak [Ano23].

To generate the senders and receivers for messages, we create group chats of 25 members,
based on nodes’ locations: we assume 0.8 of a clique is nearby the node, and select the
other 0.2 randomly. We imagine many members of a close-knit group chat may enter
the protest together, and a fraction may attend separately, or remain home or nearby to
perform wellness checks. Mobility models may cause group members to move physically
apart from one another during the simulation; for example, to carry supplies, talk to
someone new, etc. We assume people within a group chat send messages to each other.
Each message is 250 bytes large and has a TTL of 5,000 seconds—slightly less than the
length of an average action [Ano23].

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 17

Timing of CGKA Operations

—— Addition
501 Removal
—— Key Refresh

Time [ms]
w
o

-
25 50 75 100 125 150 175 200
Group Size

Figure 6: Timing measurement of Amigo state operations.

Table 2: Operation timings on representative message sizes.

Operation Size: 250 B Size: 2 MB Size: 10 MB

Encryption 78.45 s 57.517ms 311.24ms
Decryption 69.08 ps 23.677 ms 282.38 ms

7 Results

7.1 CGKA Microbenchmarks

Amigo is intended for deployment atop resource-constrained devices. To evaluate the
resource consumption of Amigo’s CGKA, we ran microbenchmarks on a Raspberry Pi 4
with a 1.8 GHz quad-core ARMv8 SoC and 8 GB RAM: similar specifications to those of
a low-end modern smartphone. It also provided a convenient environment for low-level
benchmarking. We used the Criterion [cri21] for the benchmarks, running each for a
minimum of 1000 iterations.

Are CGKA operations fast? As discussed in Section 2.1, key refreshing and the removal
of a group member have to be fast: when a group member is compromised, e.g., because
their phone is confiscated by authorities, all other group members are at risk. Figure 6
shows, in a 200 person group, Amigo can perform member removal and key refreshing
in under 15ms. Group addition is much slower, but adding a new member to a group
is not as critical as removing a compromised one; furthermore, we expect additions will
be infrequent. At a group size of 200, our test device could execute roughly 82 member
removals, 150 key refreshes, or 17 member additions in one minute. See Appendix D for
more detailed results.

What is the CGKA-induced network load? For non-CGKA messages, Amigo is more
efficient than pairwise group approaches [Sigl4] where the same message is sent encrypted
multiple times, once per each symmetric key negotiated with an individual group member.
For group management operations, Amigo generates one message for each member removal
or key refresh. Member addition requires two messages: a welcome message to bootstrap
in the new member, and an update message that brings the group into a new epoch with
updated group state. See Appendix D for more detailed results.

Is Amigo battery efficient? Appendix D contains a full discussion. For now, we note
Amigo’s energy consumption is reasonable and will not unduly drain a phone’s battery.

18 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

Table 3: Average packets sent of various type across various routing mechanisms; results
averaged across
3 runs of static mobility models for 5,000 KB buffer size. Packet delivery rate in parentheses.

Epidemic Flooding Digest Flooding Static Clique Routing Dynamic Clique Routing

Messages 422,623,852 (0.21) 411,590,675 (0.31) 2,030,682 (1.0) 13,522,625 (0.98)
Digests B 24,087,630 (0.95) 472,836 (1.0) 776,972 (1.0)
Willingness Beacons - - - 113,859
Message Beacons - - - 4,800

Link Layer Beacons 6,000 6,000 6,000 1,200
Probe Requests 575,236 (1.0) 574,816 (1.0) 11,258 (1.0) 114,359 (1.0)
Probe Responses 574,064 (1.0) 573,609 (1.0) 11,258 (1.0) 113,875 (1.0)
Total 493,779,152 436,832,727 2,532,033 14,647,688

Packets Sent and Received Across Various Buffer Sizes

le8

— 4{ — Epidemic Sent
o)
2 ---- Epidemic Recvd
\l; Digest Sent
T 31 Digest Recvd
¥ | — Static Sent
S 5] ---- Static Recvd
5 —— Dynamic Sent
= ---- Dynamic Recvd
[
1 .
E ,,,,,,,
s | L=
=2

o 4

103 104 10° 106

Buffer Size (bytes)

Figure 7: The total number of packets sent and received routing protocols, for 100 nodes
in a static mobility model; average of 3 runs.

7.2 Network Congestion and Stability

How does buffer size impact network saturation? Figure 7 shows the packet volume
generated by various buffer sizes, with all other aspects of the simulation held constant
(e.g., traffic model, mobility model, etc.). Table 3 provides a breakdown of the various
packet types sent, and their end-to-end delivery rates, given a 5,000 KB buffer.

As expected, flooding generates significantly more traffic than other approaches; as
buffer size increases, the difference grows (Figure 7). The bulk of the traffic arises from
messages and digests, not from Layer 2 management packets (i.e., beacons, probe requests,
and probe responses).

Notably, end-to-end delivery rates for epidemic routing and digest routing are very low
(e.g., ~30% for digest routing). The reason is that both schemes gradually congest the
network and then make no attempt to reduce their sending rate, even once message buffers
have become steady-state full. When buffers become full and sending rates do not back
off, new messages are constantly added to buffers, reducing the effectiveness of the digest
optimization. As a result, nodes often exchange complete or near-complete copies of their
local buffers, resulting in larger Layer 2 messages and more Layer 1 collisions (triggering
retransmissions of the associated Layer 2 messages). The net result is, as time progresses,
the expected delivery rate (Figure 8) for packets sent at time ¢ + 1 trend monotonically
lower than the expected delivery rate for packets sent at time t.

The relatively poor performance of digest routing is surprising, given previous work [PSEB22]
introduced digest-based routing as an optimization. However, by modeling realistic Layer
1 and Layer 2 effects, we see with epidemic routing, only message packets collide with

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 19

Delivery of Packets By Time Sent

1.04 ,ﬂv_‘\/_T _________________ s e <
AN
[0} \:‘
g 081 A\l
o A\V.\‘
> N
o \
Z 0.6 WS -) -
g \~\.\\v NN T SN TN
k9] I
S 04| —— Digest - 500000 Buffer
& Dynamic - 500000 Buffer
—-— Digest - 5000000 Buffer ""\,,,\'_\
021 —— Dynamic - 5000000 Buffer ~
0 500 1000 1500 2000 2500 3000

Time Packet Sent

Figure 8: Average delivery rates for packets sent at time ¢ for our digest routing and
dynamic routing, for 100 nodes in a static mobility model.

themselves, whereas with digest routing, message packets and digest packets collide, ex-
acerbating the effects of network saturation. Thus, as shown in Table 3, digest routing’s
performance is not superlatively better than that of vanilla epidemic routing.

Also note that the level of network saturation in Table 3 represents a scenario in which
each Layer 1 collision domain contains 100 protesters. A high-density protest could have as
little as 0.2m? per protester [Bre], meaning 1,600 protesters would be in a single collision
domain. Such large protests will suffer from even more intense congestion collapse.

How does buffer size impact end-to-end delivery rates? All of Amigo’s routing
schemes use per-node buffers to hold the messages nodes exchange with each other. Given
a fixed mobility pattern and traffic matrix, decreasing the buffer sizes will result in fewer
messages exchanged when nodes encounter each other, resulting in less network congestion;
however, due to contention for buffer space, older messages (i.e., messages with lower TTLs)
in a buffer will be evicted more aggressively to make room for new messages, potentially
reducing how often messages are shared (and thus potentially reducing end-to-end message
delivery rates). Conversely, increasing the buffer size will give messages more opportunities
to be transmitted, potentially increasing message delivery rates; however, the resulting
increase in traffic volume may induce network congestion that decreases end-to-end delivery
rates. The tensions between increased congestion and increased delivery rates materialize
in different ways for different protest environments.

Figure 9 is a time-series view of the number of messages evicted from node buffers
during simulations using the gather mobility model with dynamic routing or digest routing.
For 5,000 KB buffers, no evictions occur. For 500 KB, buffer evictions begin to increase at
approximately ¢ = 1200. Eviction rates remain high, with the exception of a brief hiatus
for dynamic routing during advertising periods.

This eviction behavior is relevant to Figure 10, which shows the delivery rates for
packets sent at various time intervals. Figure 10 shows that delivery rates are initially
high across all routing mechanisms for buffer sizes of 500 KB and 5,000 KB. However,
at approximately t = 1200, delivery rates become consistently poor. The reason is, once
buffer evictions start at ¢ = 1200, the effective number of transmission chances a message
gets will decrease, hurting the message’s likelihood of being end-to-end delivered. For the
simulation settings in Figure 10, the network has not become fully utilized before buffer
evictions start occurring; this means, for the gather mobility pattern examined in Figure 10,
a buffer size of 500 KB is unable to fully utilize the available network bandwidth, resulting
in unnecessary degradation of end-to-end delivery rates. The overall takeaway is that, even

20 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

Messages Dropped From Buffer By Time Sent

le6
16
—-~- Digest - 50000 Ak
] Dynamic - 50000 ~ ANy Al
1.4 AN AV AN
—-- Digest - 500000 [V A'RWAVAN
--- Dynamic - 500000 7

=
N
L
~

~-- Digest - 5000000 !
-—- Dynamic - 5000000 !

4 e =
o o o
L ‘ !
~.
/.
-
-

Messages Dropped From Buffers
o
=

VN T
0.2 A - (W]
[NV \" Vi \
[ARY) \ \ i H
00] —=sewmnamrmoTn e N e e T
T T T T T
0 500 1000 1500 2000 2500 3000

Time Packet Sent

Figure 9: Number of messages evicted in digest and dynamic mechanisms; 100 nodes in
gather mobility model, bucketed into 60 second intervals.

Table 4: Total message packets sent for all routing mechanisms and mobility models;
results averaged across 3 runs for 5,000 KB buffer size. Message delivery rate in parentheses.
Checkmarks if CGKA group maintained at the end of the simulation.

Epidemic Flooding Digest Flooding Static Clique Routing Dynamic Clique Routing

static 422,613,855 (1.000) v 411,579,195 (1.000) v 596,074 (0.705) 13,555,092 (1.000) v/
random 425,916,153 (1.000) v 420,206,611 (1.000) v 2,073,922 (0.980) 8,626,361 (0.963)
gather 416,506,046 (1.000) v 405,078,143 (1.000) v 1,964,185 (0.941) 12,956,503 (1.000) v/
chain 34,706,437 (1.000) v/ 34,732,147 (1.000) v 36,241 (0.017) 14,378,903 (0.999) v
march 50,609,963 (0.867) 50,325,119 (0.867) 29,145 (0.026) 6,208,141 (0.726)
blockadel 11,073,410 (0.271) 11,079,296 (0.271) 18,214 (0.008) 87,310 (0.025)
blockade2 435,542 (0.033) 434,633 (0.033) 8,286 (0.005) 12,380 (0.006)

for Amigo’s protest-optimized dynamic routing, the lack of on-the-fly adjustment to buffer
dynamics and network congestion leads to non-optimal routing performance. We discuss
this topic further in Section 8.

7.3 Protester Mobility and Network Partitioning

How does protester mobility impact message delivery? Table 4 explores the
number of packets send and message delivery rates for the routing protocols and various
mobility patterns when using a 5,000 KB buffer. Simulations ran for 3,600 seconds, but
Table 4 only considers messages sent before ¢ = 3,000 to not mark as dropped a message
that was in-transit at the end of the simulation and would have eventually been delivered if
the simulation had continued. Table 4 does include the “warm-up” period at the beginning
of the simulation, because a warm-up phase would also occur at the beginning of a real
protest.

As shown in Table 4, static clique routing was the worst performing approach across all
mobility patterns. The reasons were that (1) a clique leader often had trouble encountering
its clique members or other clique leaders, and (2) peers had no way to attach to a
better-suited leader. Ignoring the blockade mobility patterns for a moment, epidemic
routing and digest routing outperformed dynamic clique routing because those algorithms
did not trigger congestion collapse for the mobility patterns and node counts explored in
the simulations; as a result, the more aggressive forwarding behavior of these algorithms

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 21

Delivery of Message By Time Sent

L T
/v\ﬁ/\,(._.-_,_,_v\’_v\’\/_\/-_\
\\\ ‘\/\‘
b \ ‘-~~r r
0.8 \ \/ \\\))
[\ (AR ASVA NS
-~ —— Epidemic - 50 KB M - L
& 06| Digest - 50 KB \ N
> —— Static - 50 KB NS
5 —— Dynamic - 50 KB Ay
> 0adl”T Epidemic - 500 KB \ i
= 1 i - (AN -~ N
2 Static - 500 K
() -—- Static - A
—== Dynamic - 500 KB LIV
0.24 —-- Epidemic - 5,000 KB
Digest - 5,000 KB
—-~ Static - 5,000 KB
0.0 4 —:- Dynamic - 5,000 KB

0 560 10'00 15'00 20'00 25'00 3000
Time Message Sent

Figure 10: Message delivery for the gather mobility model; initial send times for messages
on the x-axis, bucketed into 60 second intervals.

(compared to that of dynamic clique routing) led to better end-to-end delivery rates.

Static clique routing’s performance for the chain and march patterns were essentially
the same. For the other three routing protocols, the march model was more challenging
than the chain model; this is because while the chain model is static, the march model is
dynamic, making message transmission and clique dynamics harder to maintain.

Table 4 shows that all four routing protocols struggled with the blockade mobility
patterns. In blockadel, protesters retrieved materials to form a barrier made of physical
objects, whereas in blockade2, protesters generally approach a police line, and then spread
out due to police intimidation. Both models had low spatial density, with nodes often ten
meters apart or more, reducing chances for nodes to hear beacons (or exchange messages
more generally).

Overall, we note that our new dynamic clique routing protocol achieves 95% or higher
delivery rate on multiple mobility models (including some of the protester-oriented ones)
while sending far fewer messages over the course of the simulation. This differences ranges
from ~2x to ~50x, depending on the mobility model evaluated. In other words, our
simulations show that dynamic clique routing can achieve similar levels of message delivery
at a fraction of the messages sent — important for smartphones, which are constrained by
battery size and CPU capability, as well as for overall network stability, as discussed in
Section 7.2.

Can protester groups maintain key agreement? Amigo’s CGKA protocol offers
strong security in theory; however, those protections are moot in practice if Amigo nodes
struggle to maintain CGKA key state due to an unreliable routing layer. Amigo’s CGKA
protocol tolerates out-of-order messages (§4.2), but it does not tolerate a group member
never receiving a CGKA message—in this scenario, the member will be unable to continue
in the group. As discussed in Section 5, Amigo prioritizes the delivery of CGKA messages,
but is this policy sufficient to allow the CGKA protocol to succeed in practice?

Table 4 shows that dynamic clique routing achieves comparable message delivery rates
with far fewer messages, and achieves CGKA convergence for most of the same cases as
the flooding protocols. Unlike the flooding protocols, it does not do so for the random
mobility model. As noted in Section 4.2, Amigo’s CGKA assumes eventual consistency;
flooding protocols are highly redundant, so they are more likely to achieve this state
(i.e., perfect CGKA message delivery) with enough time. But, dynamic clique routing

22 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

still has a relatively high delivery rate, which provides the opportunity to apply the the
application-level healing mechanism described in Section 4.2. Even if a member node
misses some CGKA messages, any other member nodes available could help recover missing
group state. We believe decentralized CGKAs that are robust to low message delivery
rates is an interesting direction for future work.

8 Discussion

Secure communication protocols require participants to create and destroy cryptographic
keys. Messages associated with key management are exchanged over the same network
that handles regular message traffic. Thus, the reliability of the network impacts the
reliability of key management. In traditional (i.e., non-ad-hoc) networks, a Layer 4
secure messaging protocol like TLS can rely on the Layer 3 TCP protocol to provide
dependable, in-order message delivery and avoid network congestion. However, the
ephemeral, unpredictable nature of node connectivity in a mesh network makes it hard for
Layer 34 protocols to understand (and react to) network dynamics like congestion in real
time. Prior work on secure mesh routing has focused on the details of key management,
and made simplifying assumptions about the behavior of the network layer (§6.2). However,
our results in Section 7 demonstrate that low-level network behavior has a critical impact
on the performance and correctness of a secure mesh network. For example, Layer 1
phenomena like collisions and multi-path interference will frequently be triggered in real-
life protest situations involving densely-packed people and physical obstacles like buildings.
Furthermore, Layer 2 network partitions in the peer-to-peer spanning tree can also be
triggered by realistic movement patterns. For example, protesters may gather in one place
and then separate into groups with distant centroids; later, the members in a particular
group may scatter due to engagements with law enforcement. The limited channel count
of real-life peer-to-peer radio technologies like Wi-Fi Direct also limits the scalability of
network bandwidth, reducing the effectiveness of the mesh network. These factors suggest
secure mesh networking protocols which appear feasible when deployed atop well-behaved
networks may in fact perform badly in realistic scenarios. Optimizing cryptographic
protocols is not enough; we must also complement improved cryptographic schemes with
network-layer innovations.
Our results (§7) suggest important future research:
e congestion detection and avoidance for mesh networks,
e key management protocols more tolerant to packet loss,
o adaptive routing protocols which modify forwarding in response to dynamic estimates
of global properties, and
o user-facing feedback mechanisms that allow users to understand current network
dynamics and possibly adapt user-level behavior (e.g., by not sending video messages
when high network congestion is detected).
Properly evaluating these approaches for protests of larger size will also require fundamental
optimization work involving network simulators like ns-3. ns-3 is a discrete event simulator;
a priority queue holds network events (e.g., corresponding to packet transmission and
reception), such that the main simulation loop iteratively pops the event with the earliest
timestamp and executes the callback function associated with the event (possibly triggering
the insertion of new events into the priority queue). ns-3 currently uses standard C++
data structures for priority queues [321], but our experience is that stock data structures
prevent ns-3 from scaling to simulation protests beyond a few hundred nodes — ns-3 either
runs out of memory and crashes, or cannot finish a simulation despite running for days
of wall-clock time. Optimizing ns-3’s use of memory and compute, e.g., Devastator-style
techniques [BYJT24], is crucial for understanding how secure mesh networks behave in
practice.

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 23

9 Conclusion

We present Amigo, which combines continuous group key agreement and a new, clique-based
routing protocol to provide a novel mesh messaging system for protesters. We evaluate
Amigo using detailed simulations that consider realistic protester mobility models and
realistic low-level network phenomena. Our results demonstrate substantial improvements
over prior work, but suggest that further efforts are needed at lower layers in the protocol
stack to support strong privacy and efficient message routing.

Acknowledgments

This work is supported by National Science Foundation (NSF) award 1955172, an NSF
Graduate Research Fellowship, a Sui Foundation Academic Research Award, a PSC-CUNY
award, and a Google Cyber NYC award. This work also used Jetstream2 computing
resources through allocations from the Advanced Cyberinfrastructure Coordination Ecosys-
tem: Services & Support (ACCESS) program, which is supported by NSF awards 2138259,
2138286, 2138307, 2137603, and 2138296. The authors would also like to thank Rosario
Gennaro for contributing cloud computing resources.

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied,
of the sponsors. Any mention of specific companies or products does not imply any
endorsement by the authors, by their employers, or by the sponsors.

References

[321] ns 3. Events and Simulator. https://www.nsnam.org/docs/manual/html
/events.html#scheduler, 2021. Online; accessed 1 Sept 2024.

[ABJM21a] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Marekova.
Collective information security in large-scale urban protests: the case of hong
kong. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 3363-3380. USENIX Association, August 2021.

[ABJM21b] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Marekova.
Mesh messaging in large-scale protests: Breaking bridgefy. In Topics in
Cryptology — CT-RSA 2021: Cryptographers’ Track at the RSA Conference
2021, Virtual FEvent, May 17-20, 2021, Proceedings, page 375-398, Berlin,
Heidelberg, 2021. Springer-Verlag.

[Acc24a) Access Now. Myanmar’s iron curtain: internet shutdowns and repression
in 2023. https://www.accessnow.org/press-release/myanmar-keepi
ton-internet-shutdowns-2023-en/, May 2024. Online; accessed 1 Sept
2024.

[Acc24b) Access Now. Shrinking democracy, growing violence: Internet shutdowns in
2023. https://www.accessnow.org/wp-content/uploads/2024/05/202
3-KIO-Report.pdf, May 2024. Online; accessed 1 Sept 2024.

[ACDT19] Joél Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Se-
curity analysis and improvements for the IETF MLS standard for group
messaging. Cryptology ePrint Archive, Paper 2019/1189, 2019.

https://www.nsnam.org/docs/manual/html/events.html#scheduler
https://www.nsnam.org/docs/manual/html/events.html#scheduler
https://www.accessnow.org/press-release/myanmar-keepiton-internet-shutdowns-2023-en/
https://www.accessnow.org/press-release/myanmar-keepiton-internet-shutdowns-2023-en/
https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-Report.pdf
https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-Report.pdf

24

Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

[AG15]

[ALL

Al121]

[Amn20]

[And24]

[Ano23]

[AW09)

[AWWO05)

[BBR1S]

[BeW19]

[Blo70]

[Bre]

[Bri22]

[BRT23]

Nezar AlSayyad and Muna Guvenc. Virtual uprisings: On the interaction
of new social media, traditional media coverage and urban space during the
‘arab spring’ Urban Studies, 52(11):2018-2034, 2015.

Wi-Fi Alliance. Wi-fi direct.

Wi-Fi Alliance. Wi-Fi Direct Specification. https://www.wi-fi.org/file
/wi-fi-direct-specification, 2021. Online; accessed 1 Sept 2024.

Amnesty International. Iran: Internet deliberately shut down during Novem-
ber 2019 killings — new investigation. https://www.amnesty.org/en/lates
t/press-release/2020/11/iran-internet-deliberately-shut-down-d
uring-november-2019-killings-new-investigation/, November 2020.
Online; accessed 1 Dec 2023.

Android Developers. WifiP2pConfig. https://developer.android.com/re
ference/android/net/wifi/p2p/WifiP2pConfig, 2024. Online; accessed
Oct 2024.

Anonymous Authors. The HK19 Manual - Part 2B: How Tos. https:
//docs.google.com/document/d/1UROUN37 _gUqrDd4FYDFYXQAmYuXtsBAf
aDLo47Im-Kk/edit#heading=h.9n9f9eiq3xhs, 2023. Online; accessed 1
Dec 2023.

Tan F Akyildiz and Xudong Wang. Wireless mesh networks. John Wiley &
Sons, 2009.

Ian F Akyildiz, Xudong Wang, and Weilin Wang. Wireless mesh networks:
a survey. Computer networks, 47(4):445-487, 2005.

Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups
A protocol proposal for Messaging Layer Security (MLS). Research report,
Inria Paris, May 2018.

Bewater:seven tactics that are winning hong kong’s democracy revolution.
https://www.newstatesman.com/politics/2019/08/be-water-seven
-tactics-that-are-winning-hong-kongs-democracy-revolution-2,
2019.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

Robert M. Brecht. Festival and Concert Production: Crowd Safety. https:
//tseentertainment.com/festival-and-concert-production-crowd-s
afety/. Online; accessed 1 Sept 2024.

Bridgefy. Bridgefy Messaging App - Offline Messaging. https://bridgefy
.me, 2022. Online; accessed 1 Dec 2023.

Alexander Bienstock, Paul Rosler, and Yi Tang. ASMesh: Anonymous
and secure messaging in mesh networks using stronger, anonymous double
ratchet. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, ACM CCS 2023, pages 1-15. ACM Press, November
2023.

https://www.wi-fi.org/file/wi-fi-direct-specification
https://www.wi-fi.org/file/wi-fi-direct-specification
https://www.amnesty.org/en/latest/press-release/2020/11/iran-internet-deliberately-shut-down-during-november-2019-killings-new-investigation/
https://www.amnesty.org/en/latest/press-release/2020/11/iran-internet-deliberately-shut-down-during-november-2019-killings-new-investigation/
https://www.amnesty.org/en/latest/press-release/2020/11/iran-internet-deliberately-shut-down-during-november-2019-killings-new-investigation/
https://developer.android.com/reference/android/net/wifi/p2p/WifiP2pConfig
https://developer.android.com/reference/android/net/wifi/p2p/WifiP2pConfig
https://docs.google.com/document/d/1UROUN37_gUqrDd4FYDFYXQAmYuXtsBAfaDLo47Im-Kk/edit#heading=h.9n9f9eiq3xhs
https://docs.google.com/document/d/1UROUN37_gUqrDd4FYDFYXQAmYuXtsBAfaDLo47Im-Kk/edit#heading=h.9n9f9eiq3xhs
https://docs.google.com/document/d/1UROUN37_gUqrDd4FYDFYXQAmYuXtsBAfaDLo47Im-Kk/edit#heading=h.9n9f9eiq3xhs
https://www.newstatesman.com/politics/2019/08/be-water-seven-tactics-that-are-winning-hong-kongs-democracy-revolution-2
https://www.newstatesman.com/politics/2019/08/be-water-seven-tactics-that-are-winning-hong-kongs-democracy-revolution-2
https://tseentertainment.com/festival-and-concert-production-crowd-safety/
https://tseentertainment.com/festival-and-concert-production-crowd-safety/
https://tseentertainment.com/festival-and-concert-production-crowd-safety/
https://bridgefy.me
https://bridgefy.me

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 25

[BS16]

[BYJ+24]

[CCG+18]

[Cell5]

[CG18]

[CLM23]

[CMB23]

[cri2l]

[Ele23]

[FP12]

[HBDF+13]

[Joh96]

[KPPW*21]

Girish Bekaroo and Aditya Santokhee. Power consumption of the raspberry pi:
A comparative analysis. In 2016 IEEE International Conference on Emerging
Technologies and Innovative Business Practices for the Transformation of
Societies (EmergiTech), pages 361-366, 2016.

John Bachan, Jianlan Ye, Xuan Jiang, Tan Nguyen, Mahesh Natarajan,
Maximilian Bremer, and Cy Chan. Devastator: A scalable parallel discrete
event simulation framework for modern c++. In Proceedings of the 38th
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
pages 3546, 2024.

Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. On ends-to-ends encryption: Asynchronous group messaging with
strong security guarantees. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1802—-1819.
ACM Press, October 2018.

Department of justice policy guidance: Use of cell-site simulator technology.
https://www.justice.gov/opa/file/767321/d1, 2015.

Darin Christensen and Francisco Garfias. Can you hear me now? how
communication technology affects protest and repression. Quarterly journal
of political science, 13(1):89, 2018.

Céline Chevalier, Guirec Lebrun, and Ange Martinelli. Quarantined-
TreeKEM: a continuous group key agreement for MLS, secure in pres-
ence of inactive users. Cryptology ePrint Archive, Paper 2023/1903, 2023.
https://eprint.iacr.org/2023/1903.

Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed random-
ness beacons. In 2023 IEEE Symposium on Security and Privacy (SP), pages
75-92. IEEE, 2023.

Criterion.rs documentation. https://bheisler.github.io/criterion.r
s/book/criterion_rs.html, 2021.

Electronic Frontier Foundation. CELL-SITE SIMULATORS/ IMSI CATCH-
ERS. https://sls.eff.org/technologies/cell-site-simulators-ims
i-catchers, March 2023. Online; accessed 1 Sept 2024.

N. Fazio and I.M. Perera. Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In JACR Public Key Cryptography—PKC ’12, pages
225-242. Heidelberg, 2012. Springer. LNCS 7293.

Shaddi Hasan, Yahel Ben-David, Giulia Fanti, Eric Brewer, and Scott Shenker.
Building dissent networks: Towards effective countermeasures against {Large-
Scale} communications blackouts. In 8rd USENIX Workshop on Free and
Open Communications on the Internet (FOCI 13), 2013.

D Johnson. Dynamic source routing in ad hoc wireless networks. Mobile
Computing/Kluwer Academic Publishers, 1996.

Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath,
Margarita Capretto, Miguel Cueto, Ilia Markov, Michelle Yeo, Joél Alwen,
and Krzysztof Pietrzak. Keep the dirt: Tainted treekem, adaptively and
actively secure continuous group key agreement. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 268-284, 2021.

https://www.justice.gov/opa/file/767321/dl
https://eprint.iacr.org/2023/1903
https://bheisler.github.io/criterion.rs/book/criterion_rs.html
https://bheisler.github.io/criterion.rs/book/criterion_rs.html
https://sls.eff.org/technologies/cell-site-simulators-imsi-catchers
https://sls.eff.org/technologies/cell-site-simulators-imsi-catchers

26

Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

[LA10]

[Lee20]

[LFBD™16]

[LQK09]

[LYTC19]

[Mas23]

[MMA*21]

[PAC14]

[PIWT22]

[PL19]

[Pon24]

[PSEB22]

[RLOS]

[RYLZ09]

Jeroen Van Laer and Peter Van Aelst. Internet and social movement action
repertoires. Information, Communication & Society, 13(8):1146-1171, 2010.

Francis L. F. Lee. Solidarity in the anti-extradition bill movement in hong
kong. Critical Asian Studies, 52:18 — 32, 2020.

Ada Lerner, Giulia C. Fanti, Yahel Ben-David, Jesus Garcia, Paul Schmitt,
and Barath Raghavan. Rangzen: Anonymously getting the word out in a
blackout. ArXiv, abs/1612.03371, 2016.

Xiangfang Li, Lijun Qian, and Joseph Kamto. Secure anonymous routing
in wireless mesh networks. In 2009 International Conference on E-Business
and Information System Security, pages 1-5. IEEE, 2009.

Francis Lee, Samson Yuen, Gary Tang, and Edmund Cheng. Hong kong’s
summer of uprising: From anti-extradition to anti-authoritarian protests.

China Review, 19:1-32, 11 2019.
Stephen Mash. What is wifi direct and its benefits, January 2023.

Elaine M Murtagh, Jacqueline L. Mair, Elroy Aguiar, Catrine Tudor-Locke,
and Marie H Murphy. Outdoor walking speeds of apparently healthy adults:
A systematic review and meta-analysis. Sports Medicine, 51:125-141, 2021.

Abhinav Prakash, Dharma P Agrawa, and Yunli Chen. Network coding
combined with onion routing for anonymous and secure communication in

a wireless mesh network. International journal of Computer Networks €
Communications (IJCNC), 6(6):1-14, 2014.

Amogh Pradeep, Hira Javaid, Ryan Williams, Antoine Rault, David Choffnes,
Stevens Le Blond, and Bryan Alexander Ford. Moby: A blackout-resistant
anonymity network for mobile devices. Proceedings on Privacy Enhancing
Technologies, 2022(3):247-267, 2022.

Jessie Pang and Kate Lamb. Highway blockade reveals splits in Hong Kong
protest movement. https://www.reuters.com/article/world/highwa
y-blockade-reveals-splits-in-hong-kong-protest-movement-idUSK
BN1XP06R/, November 2019. Online; accessed 1 Dec 2023.

Poniie pn2000 plug-in kilowatt electricity usage monitor electrical power
consumption watt meter w/ extension cord. https://www.poniie.com/pro
ducts/6, 2024.

Neil Perry, Bruce Spang, Saba Eskandarian, and Dan Boneh. Strong
anonymity for mesh messaging. arXiv preprint arXiv:2207.04145, 2022.

Kui Ren and Wenjing Lou. A sophisticated privacy-enhanced yet accountable
security framework for metropolitan wireless mesh networks. In 2008 The
28th International Conference on Distributed Computing Systems, pages
286-294. IEEE, 2008.

Kui Ren, Shucheng Yu, Wenjing Lou, and Yanchao Zhang. Peace: A novel
privacy-enhanced yet accountable security framework for metropolitan wire-
less mesh networks. IEEE Transactions on Parallel and Distributed Systems,
21(2):203-215, 2009.

https://www.reuters.com/article/world/highway-blockade-reveals-splits-in-hong-kong-protest-movement-idUSKBN1XP06R/
https://www.reuters.com/article/world/highway-blockade-reveals-splits-in-hong-kong-protest-movement-idUSKBN1XP06R/
https://www.reuters.com/article/world/highway-blockade-reveals-splits-in-hong-kong-protest-movement-idUSKBN1XP06R/
https://www.poniie.com/products/6
https://www.poniie.com/products/6

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 27

[Sen12] Jaydip Sen. Secure and privacy-preserving authentication protocols for
wireless mesh networks. In Applied Cryptography and Network Security,
pages 3-34. IntechOpen, 2012.

[Shill] Clay Shirky. The political power of social media: Technology, the public
sphere, and political change. Foreign Affairs, 90:28-41, 2011.

[Sigl4] Signal: Private group messaging. https://signal.org/blog/private-gro
ups/, 2014.

[Sig20] The double ratchet algorithm. https://signal.org/docs/specificatio

ns/doubleratchet/#symmetric-key-ratchet, 2020.

[SS14] Nazatul Haque Sultan and Nityananda Sarma. Papar: Pairing based authen-
tication protocol with anonymous roaming for wireless mesh networks. In
2014 International Conference on Information Technology, pages 155-160.
IEEE, 2014.

[Stil9] G. Keith Still. Standing Crowd Density. https://www.gkstill.com/Su
pport/crowd-density/CrowdDensity-1.html, February 2019. Online;
accessed 1 Oct 2024.

[Weil9] Matthew Weidner. Group messaging for secure asynchronous collaboration.
Master’s thesis, University of Cambridge, 2019.

[WKHB21] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R.
Beresford. Key agreement for decentralized secure group messaging with
strong security guarantees. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 21, page 2024—2045,
New York, NY, USA, 2021. Association for Computing Machinery.

[ZJG21] Maximilian Zinkus, Tushar M. Jois, and Matthew Green. Sok: Cryptographic
confidentiality of data on mobile devices. Proceedings on Privacy Enhancing
Technologies, 2022:586 — 607, 2021.

[ZLHO6] Yan Zhang, Jijun Luo, and Honglin Hu. Wireless mesh networking: architec-
tures, protocols and standards. CRC Press, 2006.

A Simulation Details

Changes to simulate Wi-Fi Direct: In order to implement more than one channel in
ns-3 on each device under Ad Hoc Wi-Fi, we create a network interface for each channel
on each given node (representing an individual’s device). This means that nodes have
more than one identifier (i.e. IP address), as they have an identifier for each interface.
However, this means that we need to bind an IP address to the node’s MAC address in
our simulations. We therefore implement an “address discovery" period prior to simulation
start. During this time, each node sends a message on each channel to each other node.
This allows for the nodes to exchange ARP packets, and learn each others” MAC addresses.
We modify the ARP cache expiration values to last the entire duration of the simulation;
in this way, we account for any potential discrepancies arising from our implementation.

Wi-Fi Direct Protocol Structure: At a high level, the Wi-Fi Direct protocol entails
two phases: the discovery phase and the data exchange phase.

In the discovery phase, devices exchange information on advertisement channels about
how to proceed with data exchange. In line with the WiFi Direct [Mas23|, we use the

https://signal.org/blog/private-groups/
https://signal.org/blog/private-groups/
https://signal.org/docs/specifications/doubleratchet/#symmetric-key-ratchet
https://signal.org/docs/specifications/doubleratchet/#symmetric-key-ratchet
https://www.gkstill.com/Support/crowd-density/CrowdDensity-1.html
https://www.gkstill.com/Support/crowd-density/CrowdDensity-1.html

28 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

2.4 GHz band for the advertisement channels, with a channel width of 20 MHz. We
implement three advertising channels, the standard number of non-overlapping channels
for this scenario (channels 1,6, and 11).

We simulate the discovery phase, through sending advertising-related packets; we
select reasonably representative packet sizes through examining the Wi-Fi and Wi-Fi
Direct specifications [All21], and determining which conditional parameters would likely
be included for a basic case. While we predetermine the parameters associated with
communication for our simulations, in true Wi-Fi Direct, the information in these packets
allows for communication channels and rates, SSIDs, and network parameters to be
negotiated. Nodes advertise by sending beacon packets (of size 155 bytes) on these
channels at random offsets every minute. When a node receives a beacon packet, it sends
a probe request packet (of size 124 bytes) to the original sender. Then, the original
sender sends a probe response packet (of size 199 bytes). In this process, various set up
procedures are established, for example, a channel for future data exchange communication
is negotiated.

Then, the data exchange phase may begin. In the data exchange phase, devices
exchange data on a selected channel (in our case, exchanging messages from their message
buffers). Data exchange could occur in either the 2.4 GHz band or the 5GHz band. We
choose to implement it in the 5 GHz band, with a channel width of 80 MHz. We implement
three data exchange channels; nodes select a channel to exchange data on randomly,
determined during the probe request/response process.

B Standard Mobility Models

Though they standard mobility models are in network evaluation space, we provide some
context surrounding static and random waypoint mobility models.

The static model entails placing nodes a set distance apart in a grid, where they remain
for the duration of the simulation. This is the system used in previous work [PSEB22].
We use this model to represent a baseline, to help us understand the impact of movement.
In our simulation runs, we place protesters 1m apart.

In the random waypoint model, each node first pauses for selected amount of time, then
selects a random location, and a random speed at which to move to that location. Once
the node has reached the selected location, it again pauses, before repeating the process.
We use this model to represent a baseline for movement (i.e., when no protest events are
occurring).

There are two parameters we must set: (1) the range of possible node speeds and (2)
the node pause lengths. For our simulation, we set the range of node speeds to resemble
the general range of human mobility from a very slow walk (1.5 km/h) to a quick run (13.5
km/h). We distribute these speeds skewing towards lower speeds, following log-normal
distribution, centered at 1.3m/s (average walking speed). For the node pause length, we
set a range of 0-50 seconds.

C Bloom Filters

Our Bloom filters are formatted as bit arrays. The size of our Bloom filters are determined
by the size of the buffer it represents; we maintain a consistent hash count (n=17) and
false positive rate (0.00001). For example, a 50 KB message buffer has a .4KB Bloom filter
digest, a 5,000 KB message buffer has a 479 KB Bloom filter digest.

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 29

Table 5: Microbenchmarks of state operations.

Size Addition Removal Key Refresh
Time (ms) | CS (kB) | Time (ms) | CS (KB) | Time (ms) | CS (KB)

10 13.652 21.721 3.634 3.046 3.060 3.517
25 18.565 47.147 5.193 3.805 3.711 3.988
50 24.173 89.281 6.316 4.565 4.405 4.471
75 31.578 131.612 | 7.816 5.331 5.174 4.933
100 | 35.339 173.581 | 7.971 5.307 5.263 4.933
125 | 42.494 215.304 | 8.163 5.331 0.347 5.331
150 | 48.743 257.453 | 11.570 6.078 6.475 5.356
175 | 55.178 299.696 | 12.146 6.094 6.605 5.344
200 | 58.334 341.517 | 12.119 6.042 6.664 5.402

Table 6: Power consumption (measured in Watts) and energy consumption (measured in
Joules) of Amigo state operations.

Baseline Addition Removal Refresh
PC EC PC EC PC EC PC EC
Idle 2.39 | 143.40 | 4.05 | 243.00 | 4.22 | 253.20 | 4.33 | 259.80
Video 3.97 | 238.20 | 4.88 | 292.80 | 5.00 | 300.00 | 4.83 | 289.80
Browsing | 4.56 | 273.60 | 5.13 | 307.80 | 5.18 | 310.80 | 5.40 | 324.00

D Additional CGKA Microbenchmarks

Timing benchmarks: In Table 5, we display each state operation (addition, removal,
key refresh), and the corresponding time measurements in milliseconds, ciphertext sizes in
kilobytes. The number of messages required be sent over the network for addition, removal,
and key refresh are two, one, and one respectively.

Power and energy benchmarks: Smartphones have limited battery life, so Amigo
should also be power efficient. In practice, smartphones run several processes in parallel,
so we measure the additional energy consumed when running Amigo alongside other tasks.
Taking inspiration from prior work [BS16], we choose the following tasks: idling, web
browsing (we use Reddit.com), and watching a video (we use a 480p YouTube video).

Our measurement setup consisted of the Raspberry Pi attached to a display via
(micro-)HDMI and a mouse and keyboard connected via USB. Power consumption was
measured every second using the Poniee PN2000 wattmeter [Pon24]. We note that, since
the Raspberry Pi is not optimized for battery usage, our measurements reflect an upper
bound.

First, we performed each task for 1 minute to determine baseline power consumption.
Afterwards, we used Criterion to run Amigo operations for a group size of 200 members
alongside each task. We measured the power consumption every second, and calculated the
combined energy consumed in Joules. We then calculated the average energy consumed by
Amigo operations by by subtracting the combined measurement from the baseline, and
then dividing by the number of Amigo operations executed in the time frame. Our results
are in Tables 6 and 7.

Under idle conditions, Amigo expectedly contributes the most to the Raspberry Pi’s
energy consumption. When idle, the Raspberry Pi’s power management mechanisms
ensure the CPU and other components are in low power states, resulting in higher energy
spikes when woken. When already under load, we can see Amigo’s contributions decrease.

30 Amigo: Secure Group Mesh Messaging in Realistic Protest Settings

Table 7: Additional energy consumed by a single Amigo operation alongside each task.

Task Addition Removal Key Refresh
Idle 5.859J 1.340J 0.776 J
Video 3.211J 0.754J 0.344J
Browsing 2.012J 0.454J 0.336J

Ciphertext Size Measurements For State Operations

3501
—— Addition
Removal

—— Key Refresh

300

2501

Ciphertext Size [KB]
= [N
8 & 8

w
o
L

o
L

25 50 75 100 125 150 175 200
Group Size

Figure 11: Ciphertext size measurements of Amigo state operations.

Amigo’s most frequent state operations, removal and key refresh, should be the most energy
efficient. As we can see in Table 7, the removal and key refresh operations in each task are
at least 4 times more energy efficient than addition. While the device is already under
load (during the video and browsing tasks), a single removal or key refresh requires less
than 1 additional Joule of energy be consumed by the device. Our results are promising
as protesters will be able to use Amigo alongside other applications without significant
degradation in battery life.

Network load benchmarks: As groups increase in size, state operation message sizes
also see an increase. Highlighted in Figure 11, member addition incurs the largest message
sizes with 341.517 kilobytes of data needing to be propagated through the network for a
group size of 200. As noted previously, however, member additions are not particularly
frequent. Other state operations likely to occur more frequently, member removal and
key refresh, incur significantly less message sizes which is beneficial to maximizing the
performance of the mesh backbone.

E Latency

Figure 12 shows the latency for our mechanisms across our routing protocols. We note
end-to-end message latency is mostly consistent over time across all mechanisms. We see
that, as expected, flooding protocols tend to incur less end-to-end message latency, as they
do not have to adhere to an epoch system, nor route messages through a leader; both of
which limit message delivery. Dynamic clique routing looks ‘spikey’ because of the epoch
structure; the fact that messages are not exchanged during the election period causes some
messages to go unsent for longer periods of time.

David Inyangson*, Sarah Radway™, Tushar M. Jois, Nelly Fazio and James Mickens 31

Latency of Delivered Messages By Time Sent

200 1 —— Epidemic - 500000
—— Digest - 500000
175 9 —— static - 500000
—— Dynamic - 500000
150 | === Epidemic - 5000000
——- Digest - 5000000
125 9 —-- static - 5000000
> === Dynamic - 5000000
EJ 100 ~
3

T T T T T
0 500 1000 1500 2000 2500 3000
Time Message Sent

Figure 12: Latency over time for the gather mobility model.

	Introduction
	Motivation
	Protester Needs
	Related Work

	System Design
	Architecture
	Threat Model

	A CGKA Protocol for Mesh Messaging
	Security Definitions
	Design
	Amigo Operations
	Security Analysis

	Routing
	Modeling Protester Dynamics
	Mobility Models
	Physical Layer Simulations
	Traffic Model

	Results
	CGKA Microbenchmarks
	Network Congestion and Stability
	Protester Mobility and Network Partitioning

	Discussion
	Conclusion
	Simulation Details
	Standard Mobility Models
	Bloom Filters
	Additional CGKA Microbenchmarks
	Latency

