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Abstract
We initiate the study of the black-box complexity of private-key func-

tional encryption (FE). Of central importance in the private-key setting is
the inner-product functionality, which is currently only known from assump-
tions that imply public-key encryption, such as Decisional Diffie-Hellman or
Learning-with-Errors. As our main result, we rule out black-box construc-
tions of private-key inner-product FE from random oracles. This implies
a black-box separation between private-key inner-product FE from all
symmetric-key primitives implied by random oracles (e.g., symmetric-key
encryption and collision-resistant hash functions).

Proving lower bounds for private-key functional encryption schemes
introduces challenges that were absent in prior works. In particular,
the combinatorial techniques developed by prior works for proving black-
box lower bounds are only useful in the public-key setting and predicate
encryption settings, which all fail for the private-key FE case. Our work
develops novel combinatorial techniques based on Fourier analysis to
overcome these barriers. We expect these techniques to be widely useful
in future research in this area.

Keywords: Black-box impossibility, Functional encryption

1 Introduction
1.1 Background and Main Question
A major goal in cryptography is to identify minimal assumptions sufficient for
realizing cryptographic primitives. Functional encryption (FE) [SW05, BSW11,
O’N10] is a vast generalization of standard encryption whereby secret key holders
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can decrypt a given ciphertext to various corresponding functions of its underlying
plaintext. In particular, secret keys are associated with functions, and a secret key
holder for a function f can learn f(x) from an encryption of x. Security notions
for FE capture the intuitive idea that secret keys for functions f1, . . . , fw should
reveal only what can already be learned from the outputs of these functions on
the underlying plaintexts.

For functional encryption, if the number of corruptions is a priori bounded
such that the size of the system parameters can depend on this bound, the
minimal complexity required is well-understood. In particular, one can build
public-key (resp., private-key) bounded-collusion FE for any function family
from the minimal assumption that CPA-secure public-key (resp., private-key)
encryption schemes exist [SS10, GVW12, AV19].

However, things are unclear in the unbounded collusion case, where an
adversary can obtain (a.k.a., corrupt) secret keys for many functions of her
choosing. It is known that functional encryption with unbounded collusions
for arbitrary polynomial-sized circuits implies Indistinguishability Obfuscation
(iO) [BV15, AJ15]. Therefore, it is unlikely that we can build unbounded
functional encryptions from plain CPA-secure encryption schemes. However, the
question remains if, for some less expressive families of functions, unbounded
functional encryptions can be built from minimal assumptions. Thus, much
research has been devoted to realizing and improving the efficiency of unbounded
FE for specific restrictive functionalities such as identity-based encryption [BF01],
attribute-based encryption [SW05], predicate encryption [KSW13], inner-product
FE [ABDP15], quadratic FE [BCFG17], and attribute-weighted sums [AGW20].

Private key vs public key: For most advanced encryption systems (e.g., key-
dependent message (KDM) security [BRS02, CL01], homomorphic encryption
[Gen09]) building private-key schemes appears to be as much challenging as
their public-key counterparts, and sometimes even in a provable way [Rot11].
For FE, the situation seems to be different. For example, consider identity-
based encryption (IBE) [BF01], which corresponds to point functions defined
as Fid(id′, m) = (id′, m) if id = id′, and Fid(id′, m) = (id′,⊥), otherwise.1 IBE
is so far only possible in a black-box way from pairings/LWE, and is known
to be black-box impossible from trapdoor permutations (TDPs) [BPR+08]
or generic groups [PRV12, SS21, Zha22]. On the other hand, FE for point
functions in the private-key setting can be trivially built from pseudorandom
functions (PRFs) [GGM84] as follows. Let the master secret key msk be a
PRF key, and let k[id′] := PRF(msk, id′) be a secret key for a point id′. Define
Enc(msk, (id′, m)) as Encpriv(k[id′], m), where k[id′] = PRF(msk, id′), and where
Encpriv is the encryption function of a CPA-secure private-key encryption scheme.

What makes the above private-key construction possible are two points:
(a) that a master secret key can implicitly generate exponentially many private
keys and (b) each ciphertext can be decrypted by exactly one secret key, the
same identity. In particular, the above observation readily generalizes to building
private-key FE for any function family F under which for any plaintext x, for all
but a polynomial number (in the security parameter κ) of keys f ∈ F , f(x) = ⊥.
For encrypting x, if f1, . . . , fpoly(κ) are the only functions for which fi(x) ̸= ⊥

1The standard security notion for IBE allows the ciphertext is allowed to leak id, that is why
we included it in the function output. IBEs that also hide the identity are called anonymous.
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for i ∈ [poly(κ)], then encrypt fi(x) for every i under PRF(msk, fi), the secret
key for fi. The size of the final ciphertext remains polynomial because at most
a polynomial number of fi(x) values are encrypted.

Thus, unlike in the public-key setting, for which we have lower bounds
on FE for certain function families (e.g., IBE) [BPR+08, KY09] and a better
understanding of the hierarchy between different functionalities (e.g., separations
between IBE and more expressive functionalities such as attribute-based and
predicate encryption [GKLM12]), our understanding of FE in the private-key
setting is lacking. In particular, the lower bounds in the public key setting fail
in the private setting, due to the positive result above and due to the more
technical reason that in the private-key setting, encryptions are made relative
to master secret keys, capable of generating exponentially many private keys.
But in the public-key setting, encryptions are made relative to master public
keys, which are bound to encode at most polynomially many public keys. We
will elaborate more on these later.

Motivated by the above discussion, a seemingly basic characterization of
what FE families can be built from OWFs in the private-key setting is missing.
Therefore, the research direction our work aims to make progress on is:

For what function families F is private-key FE for F
(im)possible from one-way functions?

In this work, we take the first step in this research direction. In particular,
we consider the inner product functionality [ABDP15], where for a modulus
q and dimension n, a function from the family is associated with y ∈ Zn

q and
is defined as fy(x) = ⟨x, y⟩ for all x ∈ Zn

q . Inner-product is a simple and
fundamental operation in both theory and practice, and there is a large body
of work on this functionality and variants/extensions, e.g. [ABDP15, BJK15,
ALS16, ALS16, AGRW17, BCFG17, ACF+18, CLT18, ABG19, Gay20, ACF+20,
ACGU20, ALMT20]. This functionality is especially attractive in the private-key
setting because it can be function-hiding [BJK15], namely, the key for fy can hide
y (to the extent possible given the inner products).2 However, the only known
constructions of private-key IPFE, even without function-hiding, are based on
algebraic assumptions (e.g., DDH/LWE), starting with the work of [ABDP15].3

While most positive results focus on IPFE for restricted inner-products (i.e.,
where there is a polynomial number of possible inner-products recovered by
decryption), we focus on the unrestricted setting. In particular, such a scheme is
known from class groups [CLT18]. The unrestricted setting is arguably more
natural, as the restricted setting came about as a result of limitations of the
proposed constructions, not any external desire for achieving it. This brings us
to the main question of this work:

Is private-key inner-product FE black-box possible from one-way functions?

We answer this question negatively in this work. The challenge we overcome
in answering the above question is that all existing ‘combinatorial’ techniques

2Note that the function-hiding property is unattainable in the public-key setting since one
can always recover y from sky by first invoking the publicly available encryption algorithm on
different x and then decrypting using sky to learn ⟨x, y⟩.

3Note [ABDP15] construct public-key schemes, which trivially imply private-key ones. Later
works starting with [BJK15] explicitly address the private-key setting.
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employed in all the black-box impossibility results in the public-key setting (e.g.,
for IBE [BPR+08, KY09] and ABE [GKLM12]) completely fail in the private-key
setting (see Sections 1.3 and 2 for further discussions.) Thus, our work departs
significantly from prior works and develops new combinatorial and other proof
techniques to answer the above question.

1.2 Our Results
We prove that building private-key FE for inner-product functions (IPFE) is
black-box impossible from OWFs, or more generally from any assumptions that
hold relative to a random oracle (RO) — e.g., collision-resistant hash functions
(CRHFs), KDM-secure private-key encryption. We stress that our result does
not require function-hiding for IPFE and holds relative to seemingly minimal
formulations of its security.

Technically, we prove our result by showing that private-key inner-product
FE (IPFE) cannot be constructed in the information-theoretic random oracle
model [IR89]. Central to our impossibility proofs is a combinatorial lemma such
that if proved for a function family, then we will have a black-box impossibility
for that function family from ROs. We show that the combinatorial lemma holds
for the inner-product functionality using techniques from Fourier analysis and
covering problems in linear subspaces. The characterization of this combinatorial
lemma and the proof of the lemma for inner products are the main novelties of
our work, and will hopefully pave the way for characterizing FE functionalities
provably impossible from ROs.

The main motivation behind the above question is to initiate the study of
the black-box complexity of private-key functional encryption. Moreover, our
work will facilitate future efforts to understand the black-box complexity of
variants of IPFE. For example, function-hiding IPFE is so far only known from
pairings [BJK15], and we have limited impossibility results for it from lattice
assumptions [Üna20, TÜ24]. However, we do not have any impossibility results
for it in the generic-group model (GGM) without pairings. Some of the challenges
that appear in ruling out function-hiding IPFE in the GGM also emerge in our
setting, so we are hopeful that our work will also be useful for proving such an
impossibility result.

1.3 Novelty, Comparison to Prior Work and Open Prob-
lems

As mentioned earlier, there are impossibility results for predicate encryption (PE)
schemes in the public-key setting [BPR+08, KY09, GKLM12]. But all these
results crucially make use of the public-key setting, and fail in the private-
key setting (c.f., the positive construction of private-key IBE from OWFs).
Second, our results concern FE schemes that are of fine-grained access (i.e.,
that each decryption reveals some partial information about the plaintext),
whereas previous impossibility results concern only PE schemes, which are of the
all-or-nothing nature.4 Ruling out fine-grained FE schemes present additional
challenges, as explained below. For example, for all we know IPFE might be
possible from CPA-secure encryption schemes because IPFE is not know to imply

4That is, decryption reveals either the entire plaintext or nothing about it.
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any PE schemes that are ruled out from CPA-secure schemes. For instance, we
know how to build IPFE from black-box DDH [ABDP15], but we have black-box
impossibility results for IBE from DDH [PRV12, SS21, Zha22]. This suggests that
building IPFE might be ‘easier’ than IBE, or than other related PE primitives.

Private-Key vs Public-Key. Let us illustrate why at a technical level the
PE impossibility results of [BPR+08, KY09, GKLM12] fail in the private-key
setting. In the public-key version for IBE, encryptions are made under mpk,
which can encode at most polynomially-many base public keys (call this Property
(*) below), while in the private-key version, encryptions are made under msk,
which can potentially encode exponentially-many secret keys. We mentioned
this point before. The above public-key impossibility results crucially rely on
(*), implying that at most polynomially-many public keys pk1, . . . , pkt can be
embedded into mpk. Specifically, if one corrupts q ≫ t identities and learns their
secret keys, one has learned enough trapdoors associated with pki to be able to
decrypt for an uncorrupted identity. But this intuition fails in the secret key
setting as exemplified earlier.

The results of [GKLM12] shows that threshold predicate encryption is black-
box impossible from IBE. This work gives an impossibility from IBE, a primitive
for which the master secret key can generate exponentially-many trapdoors. But
the main difference between [GKLM12] and ours is that in [GKLM12], too, they
crucially rely on the public-key setting, used to argue that a master public key
for the threshold FE can encode at most polynomially-many public-keys.

In light of the above, it is an open problem if, and to what extent, the PE
impossibility results of [BPR+08, KY09, GKLM12] generalize to the secret-key
setting. This tension between private-key and public-key concerns both the
predicate encryption and our impossibilities for FE.

Functional Encryption vs Predicate Encryption. As mentioned earlier,
the key difference between FE and PE is the partial decryption vs. full decryption
natures of these primitives. Consequently, the security game of FE puts more
restrictions on the set of keys that the adversary is allowed to corrupt during a
successful attack. Hence, the ‘combinatorial’ techniques employed in the black-
box impossibility result must be proven in a more stringent setting obeying such
restrictions. We explain the difference between our combinatorial lemma and
those of prior works in detail in Section 2.2.

Open Problems. The main problem left open by our work is to prove black-
box impossibilities in the private-key setting for other FE functionalities. One
concrete functionality that we were not able to handle is fuzzy FE [SW05].
Here plaintext and secret key vectors are all in Zn

2 and F (x, v) = 1 if the
Hamming distance between v and x is at least ηn (for some fixed η < 1), and
F (x, v) = 0, otherwise. Note that each decryption reveals some information
about the plaintext x (because the decryption either outputs zero or one). Just
like for our impossibility result, coming up with appropriate combinatorial
lemmas and proving them will be the main challenges here.

It would also be interesting to see if and how the black-box impossibility
results of [GKLM12] for PE extend to the private-key setting. In general,
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understanding the black-box complexity of PE primitives in the private-key
setting is a worthwhile goal.

Finally, as we mentioned, it is an intriguing open problem if we can extend
our results to rule out the existence of function-hiding private-key IPFE in the
GGM without pairings. Similarly, it would be interesting to extend our results
to rule out black-box constructions of restricted IPFE from OWFs.

2 Technical Overview
A private-key IPFE relative to a random oracle O for vectors in Zn

q is given by
EO := (KGenO, EncO, DecO), satisfying the following properties.5 Let w = w(κ)
be the length of a master-secret key, where κ is the security parameter. The
algorithm KGenO(msk, v) outputs a vector secret key sk[v]. One can use msk to
encrypt a plaintext vector x as C ← EncO(msk, x). Finally, decrypting C using
sk[v] as DecO(sk[v], C) returns ⟨v, x⟩.

We require the following weak notion of indistinguishability security (See
Definition 3.3 for more details.) An adversary submits (non-adaptively, at once) t
vectors v1, . . . , vt, where t = t(κ) can be an arbitrarily-large polynomial, as well
as a challenge secret-key vector v∗. It is required that v∗ /∈ Span (v1, . . . , vt),
where Span () denotes the linear span of the corresponding vectors. In response,
the adversary receives the secret keys {sk[vi]}i∈[t] for these t vectors, as well
as t ciphertexts C1, . . . , Ct of t random plaintexts x1, . . . , xt sampled by the
challenger, and m1, . . . , mt, formed as follows:

• If the challenge bit b = 0, mi = ⟨v∗, xi⟩ for i ∈ [t].

• If b = 1, mi ← Zq for all i ∈ [t].

The adversary should be able to guess the value of b only with a probability
negligibly greater than 1/2. Note that the adversary is not given the underlying
plaintexts x1, . . . , xt.

Breaking EO relative to ROs. Let EO := (KGenO, EncO, DecO) be a can-
didate IPFE. Here we describe an adversary BrkO that makes a polynomial
number of queries to O, and then analyze its advantage. The attack is based on
a polynomial t(κ), instantiated later.

The adversary BrkO chooses the challenge secret key vector v∗ uniformly
at random from Zn

q , chooses a random (n − 1)-dimensional subspace S sub-
ject to v∗ /∈ S and chooses v1, . . . , vt uniformly at random from S. Let
({sk[vi]}i∈[t], {Ci}i∈[t], {mi}i∈[t]) be the variables returned to BrkO, as per the
description of the game above. Also, suppose xi is the underlying plaintext
vector for Ci. The adversary should determine if mi’s are totally random values,
or are the inner products of xi with v∗.

Simple case: Enc makes no O queries. To lay out our main techniques
and to point out the challenges, let us make an overly simplifying assumption
that Enc makes no queries. This is not a reasonable assumption, but we start

5There is also an additional SetupO algorithm, that generates a master secret key msk.
But we can remove this algorithm because an msk can be a uniformly random string from an
appropriate space {0, 1}w, for some w = w(κ).
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with this assumption to describe our main techniques — later, we show how to
remove this assumption using our combinatorial lemmas. Equipped with this
assumption, we show how to design Brk to break the IPFE scheme by making
a polynomial number of queries, and by making some other computation that
takes exponential time but involves no queries. This will be sufficient for a
black-box impossibility proof because ROs are OWFs against any adversary that
can run in exponential time but which can make at most a polynomial number
of queries. In particular, it shows that the adversary Brk, which breaks the IPFE
scheme, cannot be used as a black-box to break the one-wayness of the oracle O.

Let Sg be the set of the query-answer (Q-A) pairs made to generate the chal-
lenge secret key sk[v∗]← KGen(msk, v∗) and ρ the bit-length of the description
of such a set for any vector secret key. Moreover, let µ be the length of a vector
secret key. The adversary BrkO attacks the scheme as follows.

(i) If there exists a secret key sk ∈ {0, 1}µ and Sg ∈ {0, 1}ρ such that the
following condition holds, return 0; otherwise, return 1:

(a) DecO′
(sk, Ch) = mh for all h ∈ [t], where O′ is defined as follows.

If the query appears in the set Sg, respond to it accordingly, else,
respond with a random value.

Note that Brk makes no queries to the oracle O at all — simulating the query
responses based on Sg and random values, without invoking O itself. (The fact
that Brk makes no queries is because of the above two simplifying assumptions.)
Let us analyze the advantage of Brk.

Challenge bit b = 0: Suppose E is (1 − α)-correct, meaning that for any
oracle O, and for any secret-key vector v, the following holds. If we generate
msk, sk[v] (a secret key for v) and C (a ciphertext for a random plaintext vector
x) all at random, the probability that ⟨v, x⟩ = DecO(sk[v], C) is at least 1− α.
(See Definition 3.2.) We show when b = 0, Brk outputs 0 with probability at
least (1−α). To see this, we argue that Condition (i)a will hold with probability
at least (1−α) when sk is set to sk[v∗]. The non-triviality of this lies in the fact
that decryption is performed relative to O′, and not relative to O itself. But
since Enc makes no queries at all, and since we try all possible Sg — the set
of Q-A pairs made to build sk[v∗]← KGenO(msk; r) — had we run everything
relative to O′ instead (under the same randomness), we would have gotten the
same sk[v∗] and C, and hence DecO′

(sk, Ci) should output mi with the same
probability.

Challenge bit b = 1: We argue that in this case BrkO outputs 1 with all
but negligible probability. Fix a secret key sk and a set Sg. Since b = 1, all
mi’s are chosen at random, and so the probability that DecO′

(sk, Ch) = mh for
all h ∈ [t] is at most 1

qt . By the union bound over all sk, the probability that
Brk mistakenly outputs 0 is at most 2µ+ρ

qt . By choosing t large enough, this
probability will become negligible.

EncO making O queries. We now show how to lift the assumption, that EncO

makes no O queries. Let us re-run the previous description of Brk (Step (i)a)
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to see where it fails when Enc makes O queries. Our analysis for b = 0 fails:
because a query made during DecO′

(sk[v∗], Ch) might be one that was asked
before when generating Ch ← EncO(msk, xh), and if O′ replies to it randomly,
we will have an inconsistency (i.e., we cannot argue the simulated decryption
DecO′

(sk[v∗], Ch) outputs mh when b = 0). Letting Qh be the set Q-A pairs
made during the generation of Ch ← EncO(msk, xi), we should somehow learn
all those Q-A pairs in Qh that also appear during DecO(sk[v∗], Ch). Fix the
index h below. Consider the following strategy for decrypting the hth ciphertext.

1. For all i ∈ [t], run DecO(sk[vi], Ch), and record all Q-A pairs in the set Sg.

2. Perform Step (i) from before.

The intuition is that if t is large enough and if a query is to appear dur-
ing DecO(sk[v∗], Ch), then it should have also appeared during one of the
DecO(sk[vi], Ch) executions in Step 1, except with small probability. However,
proving this leads to the following challenge: the vector v∗ is sampled from
the entire space Zn

q , while vi vectors are sampled from an (n− 1)-dimensional
subspace, leading to sk[v∗] having a different distribution from sk[vi]. The above
statement would have been easy to prove if all of vi’s were picked from the entire
space Zn

q , but that is not the case here.
The above challenge is about a covering problem. Suppose ℓ queries are made

during C ← EncO(msk, x). (We replace Ch with C for better readability.) Let
us number these queries as 1, . . . , ℓ. Consider a function F : Zn

q → 2[ℓ], where
j ∈ F (y) if Query j appears during the decryption of DecO(sk[y], C), where
sk[y]← KGenO(msk, y). Here 2[ℓ] denotes the set of subsets of [ℓ]. We would like
to prove that with high probability F (v∗) ⊆ ∪iF (vi), where v∗ is the challenge
secret key vector, and vi’s are the vectors from the (n− 1)-dimensional subspace,
whose secret keys are given to Brk.

We abstract out the above problem as a combinatorial lemma.

Lemma 2.1 (Combinatorial Lemma). Let n = n(κ) ⩾ 3 be such that 1
qn is

negligible. Let ℓ = ℓ(κ) be an arbitrary polynomial. Let F : Zn
q → 2[ℓ] be an

arbitrary function, assigning a subset of [ℓ] to every vector. Then, for all large
enough polynomial values of t = t(κ), with overwhelming probability

F (y∗) ⊆
t⋃

i=1
F (yi), (1)

where y∗ ← Zn
q , and y1, . . . , yt are sampled as follow: sample an (n − 1)-

dimensional subspace V ⊆ Zn
q uniformly at random conditioned on y∗ /∈ V and

then sample y1, . . . , yt uniformly at random from V .

2.1 Proof of the Combinatorial Lemma
In this overview we will focus on the case q = 2. In the main part of the paper,
we will prove the same result for any prime q with slightly looser bounds.
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A simpler problem. Before describing how to prove this result, we focus
on a related but simpler problem: We show that there is no polynomial ℓ that
satisfies the above condition is violated in a worst-case sense. In other words,
there exists no polynomial ℓ and F : Zn

2 → 2[ℓ] such that for every y∗ and every
(n− 1)-dimensional subspace V with y∗ /∈ V we have

F (y∗) ̸⊆
⋃

y∈V

F (y). (2)

We will refer in the following to the set [ℓ] as colors and to F as a coloring of
the vectors in Zn

q . A simple coloring strategy that satisfies Condition (2) is to
set ℓ = 2n − 1 and assign each non-zero vector one individual color. Another
simple strategy is to also use ℓ = 2n − 1 and pick for every (n− 1)-dimensional
subspace one new individual color and add it to the colorings of each vector not
contained in the subspace.

We show that using ℓ ⩾ 2n − 1 colors is necessary to satisfy Condition (2) by
a double-counting argument on the vectors y∗ and (n−1)-dimensional subspaces
V with y∗ /∈ V .

For a vector y∗ and an (n− 1)-dimensional subspace V we say the color cl is
useful for (y∗, V ) if y∗ /∈ V , cl ∈ F (y∗) and cl /∈

⋃
y∈V F (y). Condition (2) says

for every combination of y∗ and V we need at least one useful color.
In Zn

2 , each (n− 1)-dimensional subspace is uniquely defined by a non-zero
vector; i.e., the subspace that is orthogonal to the underlying non-zero vector.
Thus, we have 2n − 1 different (n− 1)-dimensional subspaces. Each subpsace V
has 2n−1 different vectors y∗ not contained in V . Thus, the number of triples
(V, y∗, cl) where cl is useful for (y∗, V ) is at least (2n − 1)2n−1. We now use
another way of counting to argue the number of such triples is at most ℓ2n−1,
implying ℓ ⩾ 2n − 1.

Fix a color cl. We argue that the color cl is useful for at most 2n−1 different
combinations (y∗, V ), implying the number of such triples as above is at most
ℓ2n−1. Let S be the set of all the (n − 1)-dimensional subspaces V such that
there exists at least one y⋆ with cl being useful for (y∗, V ). Then, no vector in
U :=

⋃
V ∈S V has the color cl and, in the worst case, every vector in Zn

2 \ U has
the color cl. Each of the subspaces V ∈ S can be described by one linear equation,
i.e. for each V ∈ S we can pick a vector xi such that V = {v | ⟨xi, v⟩ = 0},
because V is (n− 1)-dimensional. When we have t := |S| subspaces, we get at
least d ⩾ ⌈log2(t)⌉ linear independent equations. Let x1, . . . , xd be the vectors
representing these linear independent equations. In order for a vector y∗ to be
in Zn

2 \ U , it is necessary that
⟨y∗, x1⟩ ≠ 0 ∧ · · · ∧ ⟨y∗, xd⟩ ≠ 0.

Since we are working over Z2, this is equivalent to
⟨y∗, x1⟩ = 1 ∧ · · · ∧ ⟨y∗, xd⟩ = 1.

This version shows us that Zn
2 \ U is contained in an (n − d)-dimensional

affine subspace of Zn
2 and thus there can be at most 2n−d vectors in Zn

2 \ U .
Thus the number of combinations for which a color can be useful is at most
t · 2n−d ⩽ 2d · 2n−d = 2n. Since we need for each of the combination at least one
useful color, we need at least

ℓ ⩾
(2n − 1)2n−1

2n
= (2n − 1)

2 colors.
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In the main body we enhance this argument and observe that not every
combination of x1, . . . , xt is allowed. Concretely, we show that they must be
a sum-free set. This can be used to improve the bound on the dimension to
d ⩾ ⌈log2(t)⌉+ 1, which then implies ℓ ⩾ 2n − 1.

We present a formal proof for the case Z2 in Section A.1. A formal proof for
Zq is given in Section 4.

The Combinatorial Lemma over Z2. Next, we sketch how to generalize
the worst-case arguments to the average case, as required by Lemma 2.1. In this
setting we are restricted to use ℓ = poly(κ) different colors and we have to argue
that we will hit with noticeable probability a vector y∗ and an (n−1)-dimensional
subspace V /∋ y∗ such that every color that appears in y∗ also appears in many
vectors in V . The latter condition will ensure that if we sample y1, . . . , yt from
V (for a large enough polynomial t), they will satisfy Condition (1) with high
probability.

We assume here that every color in F (y∗) is used often in the whole space
Z2 (concretely, in at least 2n−1/ℓ vectors). With noticeable probability (here: at
least 1/2), this is satisfied when picking y∗ uniformly at random.

We then prove that a color that appears that often in the whole space must
also appear often (concretely in 2n−3/ℓ vectors) in all but negligible many (n−1)-
dimensional subspaces. The argument for this is a generalization of the simpler
problem we described above and uses the Fourier transform for hypercubes.

We present a formal proof for the Combinatorial Lemma over Z2 in Sec-
tion A.2.

On generalizing to any prime modulus q. Generalizing our results to
arbitrary prime moduli q is non-trivial. This can be best seen when focusing on
the simpler problem we described in the beginning. Recall that there we needed
to count the number of vectors that are non-orthogonal to every vector in a fixed
set of vectors. We used there that

⟨y∗, x1⟩ ≠ 0 ∧ · · · ∧ ⟨y∗, xd⟩ ≠ 0

is equivalent to
⟨y∗, x1⟩ = 1 ∧ · · · ∧ ⟨y∗, xd⟩ = 1

and thus the solutions are an (n− d)-dimensional subspace. Over Zq, it seems
that this problem does not have a nice algebraic structure. Of course, we could
use

⟨y∗, x1⟩ ∈ Z∗
q ∧ · · · ∧ ⟨y∗, xd⟩ ∈ Z∗

q (3)

instead. However, this makes the resulting bound worse by a factor of (q − 1)d

and the result is no longer useful. The reason the (almost) tight bound from
before becomes here very loose is that many of the vectors satisfying Eq. (3) will
in fact be orthogonal to one of the linear combinations of x1, . . . , xd.6 We prove
results for Zq that are similar to Z2, but use different techniques. The main
technique is to use the Cauchy-Schwartz inequality to get a lower bound on the
“overlap” of many (n− 1)-dimensional subspaces, which then again allows us to

6This also happens with q = 2 for sums of x1, . . . , xd with an even number of summands.
However, this costs us there only a factor of 2 and we manage to get ride of this factor by
using that x1, . . . , xt has to be sum-free.
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argue that if many vectors are colored in the whole subspace Zn
q , in almost all

(n− 1)-dimensional subspaces many vectors are colored.
We present a formal proof for the Combinatorial Lemma over Zq in Section 4.

2.2 Comparison with Prior Combinatorial Lemmas
Katz and Yerukhimovich [KY09] generalize the results of Boneh et al. [BPR+08]
to rule out a broader class of PE primitives from trapdoor permutations. Here
is a simplified version of the combinatorial lemma of [KY09, Lemma 1].

If there exists predicates f1, . . . , fq together with attributes A1, . . . , Aq such
that for all i: fi(Ai) = 1 but fi+1(Ai) = . . . = fq(Ai) = 0, then they show an
impossibility. The idea is to corrupt all they keys for (i + 1, . . . , q) and use the
info to decrypt for Ai. And [KY09] shows that certain predicates (e.g., IBE,
broadcast encryption) satisfy this property, using the Pigeonhole principle. The
above property can be established also for zero inner-product encryption (where
the predicate is satisfied iff the inner product is zero). Let fi = (idi, 1) and
let Ai = (−1, idi), allowing one to rule out public-key inner-product predicate
encryption from PKE.

However, for FE, the combinatorial lemma becomes much more complicated,
both in terms of its description and also establishing it for a functionality. The
main reason is: under PE, only certain decryptions reveal information about the
plaintext (an all-or-nothing property), whereas under FE, all decryptions do. For
instance, extending the above combinatorics, established for zero inner-product
encryption as above, to IPFE faces the following challenge: the vector Ai will
be the whole plaintext vector, and we must make sure for all i, the vector fi is
not in the span of (fi+1, . . . , fq). This will limit how large q can become, while
being able to make q arbitrarily large was crucial in the arguments of [KY09].
Thus, we need to come up with a more specialized combinatorial lemma. And we
cannot establish the resulting combinatorial lemma using simple combinatorial
techniques anymore (e.g., the pigeonhole principle as in [BPR+08, KY09]) and
need more advanced tools.

3 Preliminaries
Notation. We use κ to denote the security parameter. We use [n] := {1, . . . , n}
for n ∈ N and 2S to denote the power set of S.

Lemma 3.1 Let X1, . . . , Xt+1 be independent, Bernoulli random variables,
where Pr[Xi = 1] = p, for all i ⩽ t + 1. Then

Pr[X1 = 0 ∧ · · · ∧Xt = 0 ∧Xt+1 = 1] ⩽ 1
t

.

We give the definitions for private-key IPFE schemes relative to an oracle.
As we mentioned, we consider unrestricted IPFE where there is no restriction
on the number of possible inner-products recovered by decryption. We do not
explicitly mention this point in the remainder of the paper.

A private-key IPFE scheme EO = (KGenO, EncO, DecO) is given by three
algorithms. We assume without loss of generality that a master secret key is
chosen uniformly at random from {0, 1}w, for some w := w(κ). Moreover, we
assume Zq is the underlying field.

11



• KGenO(msk, v): On input a master secret key msk and a vector v, the key
generation algorithm outputs a secret key sk[v].

• EncO(msk, x): On input a master secret key msk and a vector x, the
encryption algorithm outputs a ciphertext C.

• DecO(sk[v], C): On input a secret key sk[v] and a ciphertext C, the
decryption algorithm outputs y ∈ Zq.

We require the following properties.

Definition 3.2 (IPFE Correctness). Fix an oracle O. We say an oracle-aided
IPFE (KGenO, EncO, DecO) is ν-correct for dimension n relative to O, if for any
key vector v ∈ Zn

q , the following experiment outputs one with probability at
least ν. Sample msk uniformly at random, sk[v]← KGenO(msk, v), x← Zn

q and
C ← EncO(msk, x). The experiment outputs one if ⟨v, x⟩ = DecO(sk[v], C).

Next, we give a definition for selective-security for a private-key IPFE below.

Definition 3.3 (IPFE Security). We work with a selective-security definition for
IPFE. Fix a dimension n. The adversary designates a challenge secret-key vector
v∗ (sent to the challenger) and the adversary can make two types of queries, as
follows, but all the adversary’s queries should be made non-adaptively at once.
The challenger starts by sampling a master secret key msk and a challenge bit
b← {0, 1} uniformly at random.

• Key Queries: The adversary submits a vector v and receives a secret key
for v ← KGen(msk, v).

• Inner-Product Queries: Upon calling this oracle, the challenger samples
w ← Zn

q and returns (Enc(msk, w), m∗) to the adversary, where m∗ =
⟨w, v∗⟩ if b = 0, and m∗ is chosen freshly for each query if b = 1.

We say an adversary A is admissible if A makes all its queries non-adaptively
at once, and if v∗ /∈ Span (v1, . . . , vt), where v1, . . . , vt are all the adversary’s
key queries. We say a private-key IPFE is selectively secure if any admissible
PPT adversary A has at most 1/2 + negl(κ) advantage in guessing the value of
b.

Our IPFE definition is strictly weaker than standard ones [ABDP15], making
our impossibility result stronger. Specifically, ours requires security only for
random plaintext vectors, while the standard ones concern all vectors. Our
definition is implied by the standard definitions via a simple hybrid argument.
To see why it is strictly weaker, change a given scheme E = (KGen, Enc, Dec)
meeting the standard definitions into a scheme E ′ = (KGen′, Enc′, Dec′) so that
Enc′(msk, e1) outputs Enc(msk, e1)∥e1, where e1 is the first unit vector, and
Dec′ is defined accordingly. The rest of the scheme remains the same. The new
scheme satisfies our notion but not the standard ones. Intuitively, it satisfies
ours because we only need security with respect to random plaintext vectors.
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4 The Combinatorial Problem over Zq

Lemma 4.1 Fix n = n(κ) and suppose q−n ∈ negl(κ) and n ⩾ 3. Let ℓ =
poly(κ), q be a prime number and F : Zn

q → 2[ℓ]. Fix a constant c. Then, there
exists a polynomial t = t(κ) such that with probability at least 1− κ−c

F (y∗) ⊆
t⋃

i=1
F (yi),

where y∗ ← Zn
q , and we sample a random (n−1)-dimensional subspace V subject

to y∗ /∈ V and we sample y1, . . . , yt all uniformly at random from V .

The following theorem is the key tool in proving the above Lemma.

Theorem 4.2 For any subset S ⊆ Zn
q with |S| = p · qn, there exists at most

4q/p2 (n− 1)-dimensional subspaces h of Zn
q with

|S ∩ h| ⩽ |S|2q
= p

2qn−1.

of Lemma 4.1 using Theorem 4.2. Fix a mapping F : Zn
q → 2[ℓ]. We will refer

to the set [ℓ] as the set of colors and say that F colors each vector of Zn
q .

For a color cl, let F −1(cl) = {y | cl ∈ F (y)}. We say that a color cl is
p-heavy if

∣∣F −1(cl)
∣∣ ⩾ p · qn. For V ⊆ Zn

q , we say that cl is p-heavy in V if∣∣F −1(cl) ∩ V
∣∣ ⩾ p · |V |. We use the heaviness threshold

p = 1
2ℓκc

.

For uniformly random y∗ the probability that F (y∗) contains a non-p-heavy
color is less than

ℓ · 1
2ℓκc

= 1
2κc

.

The rest of the proof assumes all colors in F (y∗) are p-heavy.
Now, for a uniformly random subspace V ∗ conditioned on y∗ /∈ V ∗ we can

claim that, with overwhelming probability, all colors cl ∈ F (y∗) are also (p/2)-
heavy in V ∗. This is because applying Theorem 4.2 with S := F −1(cl) shows
that if cl is p-heavy in the entire space, there exist at most 4q

p2 (n − 1)-dim
subspaces where cl is not p/2-heavy in those subspaces. Here we are using the
fact that an (n− 1)-dim subspace has qn−1 elements. Applying the union bound
for all colors in F (y∗) shows that the number of (n− 1)-dimensional subspaces
S where at least one color of F (y∗) is not (p/2)-heavy in S (“bad subspaces”) is
at most

|F (y∗)|4q

p2 ⩽
4ℓq

p2 = 16ℓ3qκ2c.

The number of (n− 1)-dimensional subspaces containing y∗ is qn−1−1
q−1 , because

each such subspace can be identified with an n− 2-dimensional subspace in the
n− 1-dimensional quotient space (Zn

q )/⟨y∗⟩. Thus, the total number of (n− 1)-
dimensional subspaces not containing y∗ is qn−qn−1

q−1 . Hence, by sampling one of
these subspaces uniformly at random, we hit a bad subspace with probability

16ℓ3qκ2c(q − 1)
qn − qn−1 = 16ℓ3κ2c(q − 1)

qn−1 − qn−2 ,
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which is negligible in κ since n ⩾ 3 and q−n is negligible.
We now analyze the probability of F (y∗) ⊆

⋃t
i=1 F (yi) when setting t =

⌈2κ/p⌉. In the following, the probability is taken over the choice of y∗, y1, . . . , yt.

Pr[∀cl ∈ F (y∗) ∃i ∈ [t] : cl ∈ F (yi)] = 1− Pr[∃cl ∈ F (y∗)∀i ∈ [t] : cl /∈ F (yi)]
⩾ 1− ℓ max

cl∈F (y∗)
Pr[∀i ∈ [t] : cl /∈ F (yi)]

⩾ 1− ℓ
(

1− p

2

)t

⩾ 1− ℓe−t· p
2 = 1− ℓe−κ.

The last inequality follows from 1 − p
2 ⩽ e− p

2 (the Bernoulli inequality) and
taking both sides to the t-th power.

of Theorem 4.2. Bennett proved an existence-only version of Theorem 4.2 [Ben18,
Lemma 4.1]. The following proof follows Bennett’s ideas.

Let H be the set of (n− 1)-dimensional subspaces h of Zn
q with

|S ∩ h| ⩽ |S|2q
.

Fix a bijection ϕ : [qn]→ Zn
q and define the vectors u, v ∈ R(qn) via

ui =
{

1 if ϕ(i) /∈ S

0 otherwise
and vi = |{h ∈ H | ϕ(i) ∈ h}|.

For a set Y ⊆ Zn
q we use χY to denote the characteristic function of Y .

We get

⟨u, u⟩ =
∑
x/∈S

12 = qn − |S| = qn(1− p)

⟨v, v⟩ =
∑

x∈Zn
q

(∑
h∈H

χh(x)
)2

=
∑

h1,h2∈H

∑
x∈Zn

q

χh1(x)χh2(x) ⩽ qn−1|H|+ qn−2|H|2.

In the last inequality we use that
∑

x∈Zn
q

χh(x)χh(x) = qn−1 and for h1 ̸= h2

we have
∑

x∈Zn
q

χh1(x)χh2(x) ⩽ qn−2.
Each h ∈ H has by definition |S ∩ h| ⩽ |S|

2q and thus |(Zn
q \ S) ∩ h| =

qn−1 − |S ∩ h| ⩾ qn−1 − |S|
2q which gives us

⟨u, v⟩ =
∑

x/∈S,h∈H

χh(x) ⩾ |H|
(

qn−1 − |S|2q

)
= |H|qn−1

(
1− p

2

)
.

Applying the Cauchy-Schwartz inequality to the vectors u and v gives us
⟨u, v⟩2 ⩽ ⟨u, u⟩ · ⟨v, v⟩. Plugging in the bounds from above leads to the following
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inequality

|H|2q2n−2
(

1− p

2

)2
⩽ qn(1− p)(qn−1|H|+ qn−2|H|2)

⇐⇒ (1− p)
qn−2

(
1− p

2
)2 ⩾

|H|2

(qn−1|H|+ qn−2|H|2) = |H|
qn−2(q + |H|)

⇐⇒ (1− p)(
1− p

2
)2 ⩾

|H|
(q + |H|)

⇐⇒ 1− (1− p)(
1− p

2
)2 ⩽ 1− |H|

(q + |H|) = q

(q + |H|) ⩽
q

|H|

⇐⇒ |H| ⩽ q

1− (1−p)
(1− p

2 )2

=
q
(
1− p

2
)2(

1− p
2
)2 − (1− p)

=
4q
(
1− p

2
)2

p2

⇐⇒ |H| ⩽ 4q

p2 .

5 Separating IPFE from OWFs
The definition below gives a procedure that allows one to sample a random
vector v∗ together with t random vectors from a random (n− 1)-dimensional
subspace of Zn

q which does not span v∗.

Definition 5.1 (Sampling Spanning Vectors). The procedure (v1, . . . , vt, v∗)←
SubSpcSamp(Zn

q , t) works as follows. Sample a random vector v∗ ← Zn
q , and

sample a random (n−1)-dimensional subspace S of Zn
q subject to v∗ /∈ S. Sample

v1, . . . , vt uniformly at random from S. The sampling procedure of SubSpcSamp
can be performed in poly(n, t, log q) time.

Description of the Attack. Let EO := (KGenO, EncO, DecO) be a candidate
IPFE construction for vectors in Zn

q . Assume without loss of generality that
EO is (1− 1

2κ )-correct.7 Our goal is to remove O queries from the decryption
algorithm DecO, while impacting correctness and security only minimally. In
order to do this, if one knows the set Qs of all the Q-A pairs asked during the
generation of a secret key sk[v] and the set Qe of all the Q-A pairs formed to
generate a ciphertext C, then one can remove O queries from Dec(sk[v], C) as
follows: if an issued query appears in Qs ∪Qe, reply to it accordingly; else, reply
with a random response, without calling O. In fact, this argument still holds if
we just know the subset Qe ∩Qd, where Qd is the set of Q-A pairs that appear
during Dec(sk[v], C).

The adversary will then decrypt all the ciphertexts obtained via the inner-
product queries with all secret keys it received and store all Q-A pairs that
appeared during this process in a set L. The combinatorial Lemma from the
previous section guarantees that with high probability Qe∩Qd ⊆ L, if the number
of keys and ciphertexts is large enough.

7If the scheme is 1/2+ 1
poly(κ) correct, we can boost its correctness all the way up to (1− 1

2κ )
by encrypting the vector many times and taking the majority during decryption.
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Finally, the adversary makes a brute-force search over sk[v∗] and the set Qs

and check each candidate by decrypting all challenge ciphertexts without asking
any queries.

The attack in detail.

Attack 5.2 Let EO := (Setup, KGenO, EncO, DecO) be an IPFE. We give a
polynomial query adversary BrkO which breaks the security of EO.

Parameters. The adversary’s algorithm is based on integers t and η, instan-
tiated later. Also, let µ := µ(κ, n) be the bit size of a secret key, generated by
KGenO(msk, ∗) and ρ := ρ(κ, n) the bit size of a the Q-A pairs of all queries
made during secret key generation.8

Phase 1: Corrupting Keys and Setting Up the Challenge.

1. Sample (v1, . . . , vt, v∗)← SubSpcSamp(Zn
q , t). The vector v∗ will be the

challenge secret-key vector.

2. For all i ∈ [t], make a key query vi to receive sk[vi].

3. For all i ∈ [η] make an inner-product query to receive (Ci, mi), where recall
that mi ∈ Zq.

Phase 2: Learning Important Decryption Queries.

1. Let L := ∅. For all i ∈ [t] and all j ∈ [η], execute DecO(sk[vi], Cj) and add
all the Q-A pairs to the set L.

Phase 3: Leveraging the Set of Learned Q-A Pairs to Decrypt. In
this phase, Brk uses the set L to break the security game. In this phase, Brk
does not make any queries to O.

1. If there exists sk ∈ {0, 1}µ and a set of Q-A pairs Qs ∈ {0, 1}ρ such that
for all h ∈ [η], DecO′

(sk, Ci) = mi, where O′ is a random oracle sampled
uniformly at random on-the-fly subject to being consistent with L and Qs,
return 0; else, return 1.

We now show how to set the parameters, and then discuss the effectiveness
of the attack.

Parameters 5.3 (Setting the parameters.). Set the parameters as follows.

• Set η such that η ⩾ κ + µ + ρ.

• Let ℓ be the number of queries made by EncO(msk, ·); i.e., the number of
queries made to generate each of C1, . . . , Cη in the attack above. Choose
a constant c such that κc ⩾ 2ηκ. Choose t based on ℓ and κ−c as per
Lemma 4.1.

8The assumption that the length of a secret key and and the Q-A pairs is a fixed function
of κ and n is without loss of generality.
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Lemma 5.4 Let BrkO be as in Attack 5.2, and let b′ be the output of BrkO.
Suppose n ⩾ 3 and qn ∈ ω(poly(κ)). We have Pr[b′ = 0 | b = 0] ⩾ 1− 1

κ .

Proof. First, recall that EO has correctness 1− 1
2κ (c.f. the footnote of Page 15).

Let sk[v∗] be the secret key for v∗ relative to the real oracle O, namely sk[v∗]←
KGenO(msk, v∗). By correctness of EO, for each h ∈ [η], with probability at
least 1− 1

2κ , DecO(sk[v∗], Ch) = mh. We claim that performing the decryption
relative to O′ (as opposed to the real oracle O) does not impact the decryption
result much. In particular, for any h ∈ [η],

Pr[DecO′
(sk[v∗], Ch) = mh] ⩾ 1− 1

2κ
− κ−c. (4)

Thus, the probability that Brk mistakenly outputs one when b = 0 is at
most η( 1

2κ + κ−c). This is because Brk goes through all choices of vector secret
keys and Q-A pairs, hitting sk[v∗] and Qs at some point. The reason that the
multiplicative factor η appears is that we require for all h ∈ [η], the decryption
result be mh. (Line 1 of Phase 3 of Brk’s procedure.) Since by Parameters 5.3,
κc ⩾ 2ηκ

Pr[b′ = 1 | b = 0] ⩽ η

(
1
2κ

+ κ−c

)
⩽ η

(
1
2κ

+ 1
2ηκ

)
⩽

1
κ

, (5)

for all large enough κ.
To argue about Equation 4, fix h ∈ [η]. Let S0 and S1 be the set of Q-

A pairs made during the generation of sk[v∗] and during the generation of
Ch ← EncO(msk, xh). Define the event Bad as follows.

• Bad: the event that a query in S1 \ L is asked during the decryption of
DecO(sk[v∗], Ch), where recall that the set L is defined in Step 1 of Phase
2 of Brk’s procedure.

If Qs = S0 and Bad holds, then the decryption execution of DecO′
(sk[v∗], Ch)

proceeds identically to that of DecO(sk[v∗], Ch). Thus, we show Pr[Bad] ⩽ κ−c,
which implies

Pr[DecO′
(sk[v∗], Ch) = mh] ⩾ Pr[DecO(sk[v∗], Ch) = mh]− κ−c

⩾ 1− 2−κ − κ−c,

as desired.
By Lemma 4.1 we obtain Pr[Bad] ⩽ κ−c. To see this, set ℓ to be the

number of queries in S1. (Parameters 5.3.) Name these queries as 1, . . . , ℓ. Let
F : Zn

q → 2[ℓ] be a function, where F (y) contains those queries in [ℓ] that appear
during the decryption of DecO(sk[y], Ch), where sk[y]← KGenO(msk, y). Now
by Lemma 4.1 the set L contains all the queries in ∪i∈[t]F (vi), except with
probability at most 1

κc . The proof is now complete.

Lemma 5.5 Let BrkO be as in Attack 5.2, and let b′ be the output of BrkO. Then,
Pr[b′ = 1 | b = 1] ⩾ 1− 2µ+ρ−η. By setting the parameters as in Parameters 5.3
(specifically that η ⩾ κ + µ + ρ), Pr[b′ = 1 | b = 1] ⩾ 1− 2κ.
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Proof. Fix a vector secret key sk ∈ {0, 1}µ and a set of Q-A pairs Qs ∈ {0, 1}ρ.
For any i ∈ [η], the probability that DecO′

(sk, Ci) = mi is at most 1/2 because
the righthand side is completely independent of the lefthand side (because b = 1;
see Definition 3.3). Thus, the probability that for all i ∈ [η], DecO′

(sk, Ci) = mi

is at most 1
2η . Doing a union bound over all vector secret keys sk ∈ {0, 1}µ

and all Q-A pairs Qs ∈ {0, 1}ρ, the probability that Brk outputs zero is at most
2µ+ρ−η. The proof is now complete.

Putting together the above lemmas, we achieve the final impossibility result.

Theorem 5.6 Suppose n ⩾ 3 and qn is super-polynomial in the security pa-
rameter. There exists no black-box construction of IPFE for dimension n and
modulus q from any primitive that exists relative to a random oracle.

The condition of qn being super-polynomial in κ in the above theorem is
necessary. For example, there exists trivial black-box IPFE constructions for Zn

2
from OWFs, where n = log κ, as follows. Let the master secret key be a PRF
key, and let the secret key for a vector be the PRF output for that vector. When
encrypting a plaintext vector x under msk, encrypt the result of ⟨x, v⟩ under
the corresponding secret key for v, for all v. The size of the ciphertext remains
polynomial.
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A The Combinatorial Problem over Z2

Proving the combinatorial problem over Z2 is significantly easier than over Zq

for any prime q. Thus, we present it separately for Z2.
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A.1 Existential version
As a warm-up, we prove a weaker statement that just establishes the existence
of vectors y∗, y1, . . . yt with the desired properties.

Lemma A.1 Fix n = n(κ) ∈ ω(log κ). For ℓ = poly(κ) and any map F : Zn
2 →

2[ℓ] there exists t = poly′(κ), y1, . . . , yt, y∗ ∈ Zn
2 with

y∗ /∈ Span (y1, . . . , yt) and F (y∗) ⊆
t⋃

i=1
F (yi)

when κ is sufficiently large.

The proof uses the following result of [Yap69] on the maximal size of sum-free
sets in finite groups. A subset S of a finite group is sum free, if there exist no
a, b, c ∈ S with a + b = c.

Lemma A.2 [Yap69] The maximal size of a sum-free subset S ⊆ Zn
2 , n ⩾ 1 is

2n−1.

Yap [Yap69] proves a bound for arbitrary finite abelian groups. We use this
to prove the following theorem, which is the existence-only analog of Thm. A.5.

Theorem A.3 For every non-empty subset S ⊆ Zn
2 , n ⩾ 1, there are at most

2n−1/|S| subspaces V ⊆ Zn
2 of dimension n− 1 with V ∩ S = ∅.

Proof. Let t be the number of subspaces of dimension (n−1) that do not contain
any of the vectors in S. Each such subspace V can be described by a vector v
as follows: V = {v | ⟨x, v⟩ = 0}. So let x1, . . . , xt be the vectors describing all
the subspaces V with V ∩ S = ∅. No subset of 3 of these vectors can be colinear:
Assume there exists indices i, j, k ∈ [t] with xi + xj = xk. Then for every vector
v ∈ Zn

2 we have ⟨xi, v⟩ = 0 or ⟨xj , v⟩ = 0 or (⟨xi, v⟩ = 1 and ⟨xj , v⟩ = 1). In the
last case ⟨xk, v⟩ = ⟨(xi + xj), v⟩ = 0. This means every vector v is contained
in the subspace associated to xi, xj or xk and thus S would have to be empty.
This is a contradiction.

Lemma A.2 implies that the vectors x1, . . . , xt must contain at least d :=
⌈log(t + 1)⌉ linear independent vectors. Let this be without loss of generality
x1, . . . , xd. Clearly, every vector v ∈ S must satisfy ⟨xi, v⟩ = 1. At most
2n−d ⩽ 2n−(log(t)+1) = 2n−1/t can satisfy this equation. Thus |S| ⩽ 2n−1/t
which can be rearranged to t ⩽ 2n−1/|S|.

The proof uses two facts that are specific to Z2:

1. The union of three subspaces, where each one is orthogonal to one of the
three vectors xi, xj , xk with xi + xj = xk, is all of Z2.

2. For fixed vectors x1, . . . , xt the set

{v | ∀i ∈ [t] : ⟨v, xk⟩ ≠ 0}

is an affine subspace of Zn
2 .

In particular that the set is in the second point seems to be algebraically much
more complicated over Zq.

We next give a proof of Thm. A.1 using Thm. A.3. This part can be easily
generalized to Zq.
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Proof of Thm. A.1. First of all, note that the requirement that t is polynomial
is not necessary here: If there exists y∗ and an (n− 1)-dimensional subspace V ∗

with y∗ /∈ V ∗ and F (y∗) ⊆
⋃t

i=1 F (yi), we can set t := |F (y∗)| ⩽ m and pick
for each color cl ∈ F (y∗) a vector yi.

We prove the Lemma with the double counting technique.
We count the number triples (cl, y∗, V ) ∈ [ℓ]× Zn

q × 2Zn
q such that

1. y∗ /∈ V ,

2. V is an (n− 1)-dimensional subspace,

3. cl ∈ F (y∗), and cl /∈
⋃

y∈V F (y).

We say that a triple is valid, if it satisfies all of the above conditions. To satisfy
the condition in the lemma, for every y∗ and V that satisfy 1 and 2, there must
be at least one valid triple. We have 2n − 1 choices for a non-zero vector y∗ and
then 2n−1 choices for V such that 1 and 2 are satisfied. Thus there must be at
least (2n − 1) · 2n−1 valid triples.

On the other hand, if a color is used for s vectors, by Thm. A.3 there are at
most 2n−1/s (n − 1)-dimensional subspaces not containing any vector having
this color. Thus, for a fixed color there can be at most 2n−1 contributions.

This leads to the following inequality

ℓ2n−1 ⩾ (2n − 1) · 2n−1 ⇐⇒ ℓ ⩾ (2n − 1).

Since ℓ grows only polynomial in κ but 2n grows exponential in κ, this inequality
can not hold for sufficiently large κ.

A.2 Probabilistic version
We now give the proof for the probabilistic version over Zn

2 . The proof uses
Fourier transforms, but the techniques do not seem to extend beyond q > 2.

To prove our impossibility result, we need to strengthen the theorem in two
ways:

1. The vector y∗ needs to be uniformly random.

2. The vectors y1, . . . , yt have to be efficiently sampleable without knowing
F .

This is formalized by the following lemma:

Lemma A.4 Fix n = n(κ) ∈ ω(log κ). Let ℓ = poly(κ). Fix a constant c. Then,
there exists a polynomial t = t(κ) such that with probability at least 1− n−c

F (y∗) ⊆
t⋃

i=1
F (yi),

where y∗ ← Zn
2 , and we sample a random (n−1)-dimensional subspace V subject

to v∗ /∈ S and we sample y1, . . . , yt all uniformly at random from V .

This lemma can be proven as Thm. 4.1, but we can replace Thm. 4.2 (that
is used for the proof) with the following version that has an easier proof and
gives a slightly better bound at the cost of being specific for Z2.
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Theorem A.5 For any subset S ⊆ Zn
2 , there exist at most 2n+2

|S| linear subspaces
V of dimension n− 1 such that

|S ∩ V | ⩽ 1
2 ·
|S|
2 .

To prove Theorem A.5 we recall the Fourier transform for Boolean hypercubes.

Definition A.6 (Fourier Transform). For any function f : Zn
2 → R, its Fourier

coefficient f̂(u) for any u ∈ Zn
2 is defined as

f̂(u) = 1
2n
·
∑

x∈Zn
2

(−1)⟨x,u⟩ · f(x).

Theorem A.7 (Parseval’s Identity).∑
x∈Zn

2

f(x)2 = 2n ·
∑

u∈Zn
2

f̂(u)2.

of Theorem A.7.

∑
u∈Zn

2

f̂(u)2 =
∑

u∈Zn
2

 1
2n
·
∑

x∈Zn
2

(−1)⟨x,u⟩ · f(x)

2

= 1
22n

∑
u,x,y∈Zn

2

(−1)⟨x,u⟩ · (−1)⟨y,u⟩ · f(x) · f(y)

= 1
22n

∑
x,y∈Zn

2

f(x) · f(y) ·
∑

u∈Zn
2

(−1)⟨x+y,u⟩

= 1
22n

∑
x∈Zn

2

f(x)2 · 2n = 1
2n

∑
x∈Zn

2

f(x)2

We are now ready for the proof.

of Theorem A.5. Let f be the indicator function for S. We know∑
x∈Zn

2

f(x)2 = |S|.

By Theorem A.7, ∑
u∈Zn

2

f̂(u)2 = |S|2n
.

Observe that, ∑
u̸=0n

f̂(u)2 = |S|2n
−
(
|S|
2n

)2
⩽
|S|
2n

.

For every non-zero u, let Vu denote the subspace orthogonal to u. Observe that,

f̂(u) = |S ∩ Vu| − |S \ Vu|
2n

= 2 · |S ∩ Vu| − |S|
2n

.
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Hence,

|S ∩ Vu| ⩽
1
2 ·
|S|
2 =⇒ f̂(u)2 ⩾

(
|S|

2n+1

)2
.

The number of such u can be upper bounded by

2n+2

|S|
.
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