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Abstract. White-box cryptography is a software implementation technique based on
lookup tables, with effective resistance against key extraction and code lifting attacks
being a primary focus of its research. Space hardness is a widely used property for
evaluating the resistance of white-box ciphers against code lifting attacks. However,
none of the existing ciphers can provide strong space hardness under adaptively
chosen-space attack model.
We propose a new scheme based on the lookup table pool and key guidance imple-
mentation as a more efficient approach to utilizing lookup tables to provide better
security and practicality. Specifically, we introduce a new white-box cipher, Rubik-
Stone, which offers a range of variants from tens of kilobytes to infinite size. For
the first time, we prove that all variants of RubikStone can provide strong space
hardness under an adaptively chosen-space attack model. Additionally, we present
a specific key guidance application for cloud-based DRM scenarios. Based on our
proposed RubikStone variants, the key guidance applications can achieve at least
overall (0.950T, 128)-space hardness.
Furthermore, we introduce a novel property, table consumption rate, for evaluating
the durability of a specific white-box cryptographic implementation. In our evalua-
tion, all the instantiations of RubikStone exhibit the lowest table consumption rate
in algorithms with equally sized lookup tables. Besides, we conduct a comprehensive
statistical analysis of the operations in all existing white-box ciphers. Our findings
indicate that RubikStone remains highly competitive in terms of computational effi-
ciency despite offering unprecedented levels of security.
Keywords: White-box cryptography · Space hardness · Lookup table pool · Key
guidance implementation · Balanced Feistel network.

1 Introduction
1.1 White-box Cryptography
In untrusted environments, especially on devices lacking sufficient hardware support, how
to securely execute cryptographic algorithms is a topic of widespread discussion. In 2002,
Chow et al. [CEJvO02a, CEJvO02b] differentiated this scenario and traditional ones by
white and black box contexts and pioneered a solution known as white-box cryptography.
The main idea of white-box cryptography is pre-storing intermediate values that keys may
participate in within lookup tables. These table entries are then utilized to substitute the
keys during cryptographic operations, effectively ensuring that they do not directly appear
in the implementation of cryptographic algorithms. To bolster the security of lookup table
entries, additional internal and external encoding, as well as masking methods, are also
widely employed. Compared to the computationally expensive fully homomorphic encryp-
tion [MOO+14] and the frequently vulnerable secure enclaves [BPS17, MIE17, BMW+18],
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white-box cryptography has been widely welcomed by industry and is even required for
use in some standards [Pay, BBF+20].

Black-box and White-box Contexts. According to Chow et al.’s initial perspective, in
the white-box context, the adversary is assumed to have “full access” to the implementa-
tion of cryptographic algorithms, enabling them to observe the dynamic execution process
of the algorithm and modify details at will. While in the traditional black-box context,
the adversary can only observe the input-output behavior of the algorithm as a whole and
conduct known-plaintext, chosen-plaintext, chosen-ciphertext, or even adaptively chosen-
ciphertext attacks based on that. In subsequent works, the notion of white-box context
has been further refined(see Section 2.1).

Key Extraction and Code Lifting [DLPR13]. Undoubtedly, the white-box adversary
possesses unprecedentedly powerful capabilities in the assumptions made by Chow et
al.. With such abilities, he can execute cryptographic algorithms and possess the same
privileges as a legitimate user. Sometimes, the white-box adversary is actually a legitimate
user, referred to as a malicious user. However, the “privileges” are often tied to a specific
device. The white-box adversary aims to transplant these privileges to other unauthorized
devices and profit from them. To achieve the goal, the white-box adversary typically has
two approaches:

◦ Key Extraction. The adversary analyses the information observed during the algo-
rithm execution process and recovers the key, which is the core secret for legitimate
users to obtain privileges. For an implementation that uses the key in plaintext
form, the white-box adversary can even directly obtain this key by observing the
intermediate processes of the algorithm execution without additional analysis.

◦ Code Lifting. In some algorithm implementations, such as the white-box imple-
mentation proposed by Chow et al., recovering keys remains a very difficult task for
the white-box adversary. In this case, the white-box adversary can simply isolate
the cryptographic code in the implementation and lift it as a whole to other devices.
In this process, the lifted cryptographic code can be considered as an inflated variant
of the original key.

How to effectively defend the two types of attacks in a white-box context has been the
focus of white-box cryptography research.

Related Works. In the early stages of white-box cryptography research, the primary
focus was on improving the implementation of some existing block ciphers, especially
AES [CEJvO02a, BCD06, Kar10, XL09, LLY14] and DES [CEJvO02b, LN05, WP05].
However, most of them have been explicitly broken [BGE04, GMQ07, JBF02, LRM+13,
MGH08, MRP12, MWP10, WMGP07]. Due to the significant challenge of designing a
white-box implementation for an existing cipher, these works and even some recent ones
[RP20, RVP22] only aimed at preventing key extraction attacks.

In order to better prevent both key extraction and code lifting attacks, several ded-
icated white-box ciphers [BI15, BIT16, FKKM16, CCD+17, KSHI20, KLLM20, KI21,
YZDZ23] were proposed later, which are more suitable for white-box application scenar-
ios. By generating a lookup table based on a well-studied block cipher, these ciphers
reduce the security against key extraction in a white-box context to that against key re-
covery in a black-box context. At the same time, by using lookup tables ranging from
several hundred kilobytes to tens of gigabytes, they mitigate code lifting attacks to some
extent. However, our work indicates that there is still significant room for improvement
in the security of current white box ciphers. Moreover, all existing white-box ciphers can
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only provide a few specific-sized variants and cannot provide more fine-grained variations
to adapt to diverse application scenarios, which will be well addressed in our white-box
scheme.

1.2 Application Scenarios
Digital Rights Management (DRM) is widely used to manage legal access to digital
content, which is also the initial and most important application scenario of white-box
cryptography. To reduce development and business costs for DRM developers and con-
tent service providers, while offering content consumers more flexible and diversified ser-
vices, current DRM services have transitioned to cloud-based content distribution systems
[LPSS16, Inc14].

Figure 1: Overview of cloud-based DRM

Figure 1 provides an overview of cloud-based DRM service. The digital content stored
on the cloud server is distributed to consumers’ devices after being encoded and encrypted.
When consumers want to decode the encrypted digital content, they need to interact with
the cloud server for rights verification. During the process, the client initiates a verification
request and sends identifying information about themselves, such as an ID and a signature.
Once legitimate users pass the verification, the cloud server will transmit the corresponding
authorization key to the client through a secure channel. Legitimate consumers can then
decode the encrypted digital content with the authorization key. If the authorization keys
are stored and utilized using conventional methods, the white-box adversary within client
devices can easily extract the keys and subsequently distribute them to other unauthorized
users. Hence, white-box cryptography holds significant applicability in cloud-based DRM
systems.

In addition to cloud-based DRM, white-box cryptography is also considered an effec-
tive software security measure in various scenarios such as Host Card Emulation (HCE) in
mobile payment services, and memory-leakage resilient software [BIT16]. Previous efforts
have aimed to investigate these scenarios collectively, attempting to design a white-box
cryptography algorithm capable of providing security assurance for all these scenarios
simultaneously. However, we believe that the resources available in different white-box
application scenarios vary, and the application methods of white-box cryptography can
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also be vastly different at times. Therefore, white-box cryptography, as a software security
solution that balances security assurance and existing resources, should be subject to spe-
cialized and meticulous research according to different application scenarios. Accordingly,
the focus of our work is primarily on the cloud-based DRM scenario, aiming to design a
secure and practical white-box scheme tailored to the specific context.

Compared to other white-box cryptography application scenarios, white-box cryptog-
raphy in cloud-based DRM system exhibits two characteristics:

◦ Broader Storage Adaptability. The devices receiving cloud-based DRM services
are diverse, with storage capacities available to the cryptographic modules ranging
from a few hundred kilobytes to several tens of gigabytes. This necessitates white-
box cryptography to possess broader storage adaptability, enabling it to fully lever-
age storage resources across different application scenarios to enhance the security
against code lifting.

◦ Interaction Based Computation. In the context of cloud-based DRM, the cryp-
tographic applications involve interactions between client devices and cloud servers.
Effectively utilizing the interaction process can offer additional security protections
for client devices. For instance, the key guidance application(see Section 4) exploits
this process to provide enhanced security measures.

1.3 Our Contribution
The implementation of white-box ciphers can be divided into the program part that ex-
ecutes the cryptographic algorithm and the lookup table part that contains the key in
a hidden form(Although the lookup tables are not generated based on a specific key in
a dedicated white-box cipher, the lookup tables are still an equivalent key). Due to the
fact that the white-box adversary has full access to the units that perform calculations,
the program part can be easily obtained by the white-box adversary through reverse en-
gineering, disassembly, and other means. Thus, the security of white-box implementation
largely relies on the adversary’s difficulty in accessing and retrieving lookup tables.

The focus of the paper is to explore a mechanism that better utilizes lookup tables to
enhance the security and practicality of white-box cryptography. We emphasize that the
security of white-box cryptography is closely related to its usage and the environment in
which it is applied. Therefore, the design of white-box schemes should be integrated with
specific application scenarios. In this paper, we focus on the primary application scenario
of white-box cryptography - the cloud-based DRM system - for the design of concrete
schemes. Specifically, the contributions of this paper are as follows:

Lookup Table Pool and Key Guidance Implementation. We propose the concept of a
lookup table pool as a description of the overall lookup table resource. The number of
lookup tables in the table pool can far exceed the quantity required for a single encryp-
tion or decryption operation. By uniformly and randomly accessing these lookup tables,
better security assurances can be provided for white-box cryptography. Meanwhile, the
utilization of a lookup table pool facilitates the diversification of algorithm implementa-
tions. Furthermore, we introduce the concept of guidance key implementation, wherein
a guidance key is uniquely associated with the specific implementation of an algorithm.
By combining the lookup table pool with guidance key implementation, we are able to
encrypt the program part of white-box cryptographic implementations.

Design of RubikStone. We propose a novel white-box cipher based on a balanced Feistel
structure, called RubikStone. By employing a lookup table pool, we can generate various
variants ranging from a few kilobytes to infinite sizes. Notably, the size discrepancy
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between these variants is minimal, allowing for nearly continuous scalability at the kilobyte
level. This feature lays a solid foundation for RubikStone’s application across diverse
storage capacities. We have conducted a comprehensive security analysis on RubikStone,
demonstrating that it serves as a white-box solution capable of resisting all current attack
methodologies. This comprehensive analysis underscores the robustness and resilience of
RubikStone against a wide array of adversarial techniques.

Key Guidance Application of Cloud-based DRM. Based on RubikStone, we further
design a key guidance application specifically tailored for Cloud-based DRM scenarios.
For each distinct digital content, there exists a uniquely bound guidance key that directs
the implementation of encryption and decryption. As proof of feasibility, we also open-
source a prototype implementation1 for reference.

Provable Bounds on Space Hardness. We give bounds on strong and weak space hard-
ness for RubikStone in known-, chosen- and adaptively chosen-space attack models. In
comparison to existing white-box ciphers, our proposed instantiations of RubikStone
achieve, for the first time, a strong (T/4,128)-space hardness under adaptively chosen-
space attacks. Additionally, we evaluate the overall space hardness of key guidance ap-
plications employing RubikStone. The results indicate that the key guidance application
implemented using the RubikStone instantiation provided in this paper has a minimum
overall space hardness of (0.891T , 128), while the scheme based on other instantiations
can achieve at least an impressive overall space hardness of (0.950T , 128).

Table Consumption Rate. We first propose a property for evaluating the durability of
white-box cryptographic implementations, called table consumption rate. A lower table
consumption rate indicates that the white-box cryptographic implementation has better
durability. In our evaluation of all existing white-box ciphers, RubikStone-(64,8,16,226)
has the lowest table consumption rate, implying that it is currently the cipher with the
longest security guarantee before updating the lookup tables among all ciphers. Addi-
tionally, RubikStone-(256,8,12,211) achieves a great balance between lookup table size
and table consumption rate - it has the lowest table consumption rate among all ciphers
within 10 megabytes.

Evaluation of Efficiency We measure the efficiency of RubikStone on a real-world ma-
chine. The results show that the smallest instantiation RubikStone-(128,8,16,25) exhibits
better efficiency than the plain implementation of AES-128. The efficiency of other ru-
bikStone instantiations is also comparable to the white-box implementation of AES-128.
Furthermore, for the first time, we conduct comprehensive statistics on the operations
of all existing dedicated white-box ciphers. These statistics reveal that RubikStone re-
mains highly competitive in terms of implementation efficiency when compared to other
dedicated white-box algorithms.

1.4 Organization
In Section 2, we introduce the models and security notions used in the paper. Then we
present the concepts of lookup table pool and key guidance implementation and provide
the specification for the white-box cipher RubikStone and several variants in Section
3. In Section 4, we propose a specific key guidance application tailored for cloud-based
DRM systems. Subsequently, in Section 5, we conduct a detailed analysis of the security
of RubikStone and the key guidance application, evaluating the bounds for their space
hardness. In Section 6, we evaluate the table consumption rate and operations of all

1https://anonymous.4open.science/r/RubikStone
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existing white-box ciphers and point out the distinctive features of RubikStone. At the
same time, we measure the efficiency of multiple instantiations of RubikStone in real-world
environments and compare it with AES-128. Section 7 is dedicated to further discussion
of this work. Finally, we offer concluding remarks on our research in Section 8.

2 Preliminaries
2.1 Models
In current white-box cryptographic implementations, the system is divided into a pro-
gram part responsible for executing computations and lookup tables that aid in these
computations. To better characterize the capabilities of the white-box adversary within
the framework, we partition it into a computation unit executing the cryptographic imple-
mentations and a storage unit containing lookup tables. As mentioned in [HITY22], the
two intuitive types of models depicted in Figure 2 have been widely employed in previous
works, namely the Only Computation Leakage(OCL) model and the Bounded Arbitrary
Leakage(BAL) model:

◦ In the OCL model, the adversary possesses full control over the computation unit,
but can only obtain leakage of the lookup tables by observing and intervening in
certain computation processes that involve table lookups.

◦ In the BAL model, the adversary not only accesses leakage through the computation
unit but can also obtain arbitrary leakage through an additional storage leakage
channel. However, the leakage channel is limited, with an upper bound on the
quantities of data leaked per unit of time.

(a) OCL model (b) BAL model

Figure 2: Models

Indeed, both models impose restrictions on the white-box adversary’s ability to access
lookup tables, which are also practical in real-world scenarios. On the one hand, even
for the white-box adversary, accessing storage is not a trivial task. On the other hand,
monitoring memory leaks allows for timely updates to lookup tables when a threshold is
reached.

It seems that the only limitation for the white-box adversary lies in the ability to access
lookup tables, and therefore all the security of white-box cryptography is predicated on
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the white-box adversary’s limited access to lookup tables. The determination of security
bounds for white-box cryptography under conditions of partial lookup table leakage is
crucial for quantifying the security capabilities of white-box cryptography. Three models
were proposed in [BIT16] to characterize the white-box adversary’s ability to access lookup
tables in a more refined way. Each model constrains the adversary to access only a subset
of input-output pairs of tables, differing in the selection methodology.

Definition 1. (Known-Space Attack(KSA) [BIT16].) The adversary obtains a cer-
tain number of input-output pairs of tables, where the inputs are randomly chosen.

Definition 2. (Chosen-Space Attack(CSA) [BIT16].) The adversary obtains a
certain number of input-output pairs of tables, where the inputs are preselected according
to the adversary’s will.

Definition 3. (Adaptively Chosen-Space Attack(ACSA) [BIT16].) The adversary
obtains a certain number of input-output pairs of tables, where each input is chosen
according to the adversary’s will, and he can choose the next input after obtaining the
outputs corresponding to the previous inputs.

2.2 Security Notions
Space Hardness. Biryukov et al. proposed the notion of weak white-box security in
[BBK14], which was also called incompressibility by De Mulder [Mul14]. The property uses
the minimum size of code that the white-box adversary needs to extract from the white-
box context for an equivalent key to evaluate the security of white-box ciphers. Based on
the property of weak white-box security, Bogdanov and Isobe proposed space hardness to
evaluate the difficulty of code lifting attacks in a more quantitative manner, which was
widely used in subsequent works [BIT16, FKKM16, CCD+17, KSHI20, KLLM20, KI21,
YZDZ23].

Definition 4. (Weak (M, Z)-space hardness [BI15].) An implementation of a block
cipher EK is weakly (M, Z)-space hard if it is computationally difficult to encrypt (de-
crypt) any randomly drawn plaintext (ciphertext) with probability of more than 2−Z given
any code (table) of size less than M bits.

Definition 5. (Strong (M, Z)-space hardness [BI15].) An implementation of a
block cipher EK is strongly (M, Z)-space hard if it is computationally difficult to obtain
a valid plaintext and ciphertext pair with probability of more than 2−Z given any code
(table) of size less than M bits.

Table Consumption Rate. White-box cryptography itself serves as a means to provide
security over a period of time, and updates are something that white-box cryptography
will inevitably need to address. After all, no cipher can provide everlasting security on an
untrusted device. Excessive frequency of updates is evidently impractical, and each update
may potentially introduce additional security risks to the system. In order to characterize
the resilience of white-box ciphers, we define the notion of “table consumption rate” in
Definition 6.

Definition 6. (Table consumption rate.) The table consumption rate for a white-box
cipher is computationally equal to the ratio of the lookup table size used for encryption
per byte to the total lookup table size.

In practical applications of white-box ciphers, more table lookups imply more potential
leakages to the adversary. As the adversary gathers sufficient computational leakage
information, the lookup tables require updating. Consequently, a lower table consumption
rate of white-box ciphers signifies better durability of the cipher.
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3 A New White-box Scheme Based on Lookup Table Pool
and Key Guidance Implementation

In this section, we will explain the basic idea of the lookup table pool and propose a
white-box block cipher called RubikStone based on it. In addition, we present the dy-
namic implementation concept of key guidance implementation that can uniquely bind
an algorithm’s implementation with a random number of a specific length. Finally, we
provide some specific instantiations of RubikStone.

3.1 Lookup Table Pool
A lookup table stores a mapping relationship from input to output, achieving this by
traversing every possible input and storing its corresponding output to ensure that each
input can be mapped to the appropriate output. As mentioned in Section 2.1, the security
of white-box cryptographic implementation largely comes from lookup tables. Our fun-
damental goal is to better utilize lookup tables as a resource to enhance the security and
practicality of white-box cryptography applications. To this end, we propose the concept
of the lookup table pool as a description of the overall lookup table resource, while provid-
ing more possibilities for the use of lookup tables, such as key guidance implementation(see
Section 3.3).

The basic idea of the lookup table pool is to provide a significantly larger number of
lookup tables than required for single encryption, treating them collectively as a resource
pool. All the tables are uniformly and randomly accessed by the cryptographic implemen-
tation, ensuring that each lookup table contributes equally to the overall security of the
white-box cryptographic implementation.

Algorithm 1: AES-128 Based Lookup Table Pool Generation
Input: Input length of tables nin, output length of tables nout,

number of tables in the pool s.
Output: A lookup table pool P.

1 P = [ ];
2 for j ← 0 to s− 1 do
3 k

$← {0, 1}128;
4 for i← 0 to 2nin − 1 do
5 Tj [i] = Truncate(Ek(i∥0∗), nout);
6 // T runcate(x, m) means truncating the highest m-bit of x

7 P.append(Tj);
8 returnP

Lookup Table Pool Generation. Let T : {0, 1}nin → {0, 1}nout be a lookup table that
outputs nout-bit T (x) based on an nin-bit input x. Lookup tables are the primary source
of confidentiality in white-box cryptography, therefore the adversary should not be able
to infer x from T (x). As given in Algorithm 1, Ek is a well-studied cipher (AES-128
is used as an instantiation in Algorithm 1) with a randomly selected key. We can yield
the desired lookup table with the specific input and output lengths by padding the input
with an all-zero binary value to achieve length extension and truncating the output of Ek,
which is also the method used in [BI15].

3.2 RubikStone
Balanced Feistel Network. The Feistel [Fei73] network is a structure widely used in
block cipher designs [S+99, RRSY98, SKW+98]. According to whether the size of the
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two parts split from each round’s input is equal, it can be divided into two categories,
i.e. balanced Feistel network and unbalanced Feistel network. As shown in Figure 3, the
n-bit state in r-th round Xr is split into two equally sized parts Xr

a and Xr
b . Let Kr be a

k-bit key of the r-th round, and F : {0, 1}n/2 × {0, 1}k → {0, 1}n/2 be an F function. A
Kr-based F function is represented as FKr . The round function of the balanced Feistel
network can be formalized as the following equation:

Xr+1
a ∥Xr+1

b = (FKr
(Xr

b )⊕Xr
a)∥Xr

a (1)

Figure 3: The r-th round of the balanced Feistel network

Design of RubikStone. RubikStone, which is a white-box block cipher using only table
lookups and XOR calculations, employs a balanced Feistel network where the key-based
F function is replaced by several table lookups. As shown in Figure 4, a plaintext X
is encrypted to a ciphertext C by applying R-round transformations. Specifically, the
most significant n/2 bits of Xr is expressed as l(= (n/2)/nin) elements of nin bits, i.e.
Xr

a = {xr
0, xr

1, . . . , xr
l−1},xr

i ∈ {0, 1}nin for 1 ≤ r ≤ R, where R is the number of total
rounds of RubikStone. All the elements xr

i (1 ≤ r ≤ R, 0 ≤ i ≤ l−1) are then transformed
into 128-bit strings through table lookups and ultimately XOR with Xr

a . The lookup
table Tkj

corresponding to each element xr
i is selected from the lookup table pool based

on an index kj , 0 ≤ kj ≤ s− 1, where s is the number of total tables in the lookup table
pool. Here j, r, l and i satisfy the following equation:

j = (r − 1)× l + i (2)

Let RubikStone-(n,nin,R,s) denote the different variants of RubikStone with different
parameters. For each different guidance key satisfying Kguidance = {k0, k1, . . . , klR−1},
there is a different instantiation of RubikStone-(n,nin,R,s).

3.3 Key Guidance Implementation
In existing white-box ciphers, all the lookup tables are used during a single encryption
process and called in a fixed order. However, with the help of the lookup table pool,
the process can become more randomized to increase the difficulty of code lifting for the
white-box adversary.

In our approach, we assign a unique index to each table in the lookup table pool,
allowing the selection and invocation order of lookup tables to be uniquely determined by
a sequence of the indexes. Then we can uniquely determine a white-box cryptographic
implementation using a randomly generated sequence of specified length. We refer to the
randomly generated sequence, which is used to determine the cryptographic implemen-
tation, as the “guidance key”. Because the fact that only a small subset of tables are
used and all the tables are uniformly and randomly called, the white-box adversary not
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Figure 4: The RubikStone construction,where all the tables are called under the guidance
of a guidance key Kguidance = {k0, k1, . . . , klR−1} .

Figure 5: Key guidance tree

only needs to identify which tables from the lookup table pool are utilized during the
encryption process but also requires knowledge of the specific order in which these lookup
tables are called. The following theorem describes the complexity arising from the key
guidance implementation process, which precisely corresponds to the size of the space for
the guidance key.

Theorem 1. For an algorithm RubikStone-(n,nin,R,s) with a fixed lookup table pool, the
number of distinct algorithm instantiations obtainable using the key guidance implemen-
tation is denoted by s

n
2·nin

·R.

Proof. As shown in Figure 5, the process of key guidance implementation can be concep-
tualized as the growth of a multi-branch tree, where different implementations correspond
to paths from the root node to the leaf nodes. Each selection of a lookup table corresponds
to the random generation of an element in the guidance key. The algorithm RubikStone-
(n,nin,R,s) possesses s lookup tables, thus there are s possible selections for each lookup
table, indicating that each node in the multi-way tree has s child nodes. In total, n

2·nin
·R

lookup tables lead to the generation of s
n

2·nin
·R leaf nodes, which correspond to s

n
2·nin

·R

distinct algorithm instantiations.
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3.4 Instantiations
For concrete instantiations, by adjusting the specifications and quantities of lookup tables,
we can obtain a series of variants ranging from a few kilobytes to infinite sizes. Meanwhile,
the size gradient between different variants is very small, and it can almost continuously
increase at the KB level. This facilitates RubikStone’s adaptation across a wide range of
devices with varying storage capacities. We list several variants of different magnitudes
of lookup table sizes with the following specifications:

◦ RubikStone-(128,8,16,25): n = 128, l = 8, R = 16, T : {0, 1}8 → {0, 1}64, s = 25,
total table size= 25 × 28 × 64 bits = 64 KB, length of guidance key=80 Bytes;

◦ RubikStone-(256,8,12,211): n = 256, l = 16, R = 12, T : {0, 1}8 → {0, 1}128, s =
212, total table size= 211×28×128 bits = 8 MB, length of guidance key=264 Bytes;

◦ RubikStone-(256,16,24,211): n = 256, l = 8, R = 24, T : {0, 1}16 → {0, 1}128,
s = 211, total table size= 211×216×128 bits = 2 GB, length of guidance key=264 Bytes;

◦ RubikStone-(64,8,16,226): n = 64, l = 4, R = 16, T : {0, 1}8 → {0, 1}32, s = 226,
total table size= 226 × 28 × 32 bits = 64 GB, length of guidance key=208 Bytes.

4 Key Guidance Application of Cloud-based DRM
4.1 Design Rationale
In the context of key guidance implementation, it effectively binds the program part of
a white-box cryptographic implementation uniquely to a key. In a cloud-based DRM
scenario, the key, utilized for guiding algorithm implementation, may be transmitted
alongside the encrypted digital content from cloud servers to client devices.

However, for the white-box adversary in the client devices, the guidance key remains
easily accessible. He can extract the guidance key from the client devices and uniquely de-
termine the actual calling order of the lookup tables in the cryptographic implementation.
Consequently, the key transmitted to clients should not be the direct key guiding the final
implementation. In our research models, the advantage of legitimate users, relative to
the white-box adversary desiring to acquire an equivalent function of the cryptographic
algorithm, lies in the complete access for the lookup table pool. Therefore, it is natural
for us to consider protecting the guidance key using the lookup table pool.

4.2 Specification
Specifically, we propose the scheme shown in Figure 6. The meanings of all the notations
are as follows:

◦ Xp: The plaintext of the digital content requested by the client and needs to be
encrypted by the cloud server before distribution;

◦ Xc: The ciphertext of the digital content, obtained by encrypting Xp with EKg ;

◦ K0: A random number of equal length to the guidance key, generated by the cloud
server;

◦ Kg: The actual guidance key used for digital content encryption, obtained by en-
crypting K0 with EK0 ;

◦ EK0 : The encryption program utilizing K0 as the guidance key, generated by CE

with the input K0;



12 RubikStone: Strongly Space Hard White-Box Scheme

◦ EKg : The encryption program utilizing Kg as the guidance key, generated by CE

with the input Kg;

◦ DKg : The decryption program utilizing Kg as the guidance key, generated by CD

with the input Kg;

◦ CE : An compilation algorithm that takes a guidance key k as input and outputs
the encryption program Ek that utilizes k as the guidance key;

◦ CD: An compilation algorithm that takes a guidance key k as input and outputs
the decryption program Ek that utilizes k as the guidance key;

◦ CEE : A large compilation program containing two CE ’s, taking a guidance key
k as input, outputs an encryption program Ek′ , where k′ = Ek(k). In practical
applications, the cloud server implements a unified CEE rather than two separate
parts;

◦ CED: A large compilation program containing a CE and a CD, taking a guidance
key k as input, outputs a decryption program Dk′ , where k′ = Ek(k). In practical
applications, client devices implements a unified CED rather than two separate parts.

(a) Cloud server (b) Client devices

Figure 6: Key guidance application scheme

The calculations of cloud server and client devices are given in Algorithm 2 and Algo-
rithm 3 respectively. As proof of feasibility, we have open-sourced a prototype implemen-
tation2, which provides a comprehensive reference encompassing the generation algorithm
for the lookup table pool, an instantiation of the Rubikstone algorithm, as well as a
compilation algorithm tailored for generating a specific encryption implementation.

2https://anonymous.4open.science/r/RubikStone
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Algorithm 2: Encryption Calculations of Key Guidance Application
Input: Plaintext Xp.
Output: Cihertext Xc and a random number K0.

1 K0
$← {0, 1}len; // len denotes the length of the guidance key

2 EK0 ← CE(K0);
3 {state0, state1, . . . , statet} ← K0; // t = ⌊ len

n
⌋ − 1

4 for i← 0 to t do
5 gi = EK0(statei);
6 Kg ← {g0, g1, . . . , gt};
7 EKg

← CE(Kg);
8 Xc = EKg (Xp);
9 return Xc, K0;

Algorithm 3: Decryption Calculations of Key Guidance Application
Input: Cihertext Xc and the random number K0.
Output: Plaintext Xp.

1 EK0 ← CE(K0);
2 {state0, state1, . . . , statet} ← K0;
3 for i← 0 to t do
4 gi = EK0(statei);
5 Kg ← {g0, g1, . . . , gt};
6 DKg ← CD(Kg);
7 Xp = DKg (Xc);
8 return Xp;

4.3 Application
Practical application of the scheme can be divided into the following three stages:

Initialization:

1. The cloud server selects a specific instantiation of RubikStone and then utilizes
Algorithm 1 to generate the lookup table pool;

2. The cloud server informs the client devices of the selected RubikStone instantiation
and shares the lookup table pool with the client devices through a secure transmis-
sion channel;

3. The cloud server generates the encryption compilation program CE based on the
lookup table pool;

4. The client devices generate the encryption compilation program CE and the decryp-
tion compilation program CD based on the lookup table pool.

Encryption:

1. When encrypting digital content, the cloud server initially generates a random num-
ber K0 of the same length as the guidance key;

2. Taking K0 as the input for the encryption compilation program CE , the cloud server
obtains an encryption program EK0 with K0 serving as the corresponding guidance
key;
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3. Taking K0 as the input for the encryption program EK0 , then the cloud server
obtains the guidance key actually employed for encrypting the digital content-Kg;

4. Taking Kg as the input for the encryption compilation program CE , the cloud server
obtains the final encryption program EKg

that is truly used for digital content
encryption;

5. Taking the digital content plaintext Xp as the input for the encryption program
EKg

, the cloud server finally obtains the specific ciphertext Xc;

6. The cloud server sends the ciphertext Xc and the corresponding random number K0
together to client devices.

Decryption:

1. Client devices possessing the correct lookup table pool can utilize K0 and the en-
cryption compilation program CE to obtain the same guidance key Kg used in the
encryption process;

2. Taking Kg as the input for the decryption compilation program CD, the client devices
obtain the final decryption program DKg

which can perform a computation process
that is the inverse of the encryption program EKg

;

3. Taking the ciphertext Xc as the input for the decryption program DKg
, the client

devices finally obtain the true plaintext Xp.

It is noteworthy that in the practical implementation, the encryption procedure of the
cloud server is accomplished by a program as a whole, meaning that the ciphertext Xc can
be obtained merely by inputting a random number K0 and the corresponding plaintext
Xp. Similarly, the decryption process for client devices operates in the same manner,
where the plaintext Xp can be retrieved by inputting the random number K0 and the
ciphertext Xc into a program. The guidance key Kg merely serves as an intermediate
parameter during the program’s execution and is not output at any stage. Even if a
white-box adversary possesses the capability to control and debug this program, significant
effort would be required to obtain the guidance key. Furthermore, since the guidance key
is randomly generated for each unique plaintext during encryption, the reward for the
adversary stealing a single guidance key is low. For a white-box adversary with the
ability to control the decryption program, it is far easier to directly invoke the program
for decryption to obtain the plaintext than to debug the program to extract one of its
intermediate parameters - the guidance key. Thus, for adversaries aiming to transplant the
functionality of the decryption program, there exists no more straightforward approach
than lifting the entire program itself.

Through the scheme, the cloud server and client devices achieve secret transmission
of the decryption program using a randomly generated number K0, which implies the
guidance key Kg in a certain sense. Even if the white-box adversary intercepts K0, he
remains unable to reconstruct the decryption program without access to sufficient lookup
tables. This presents an unprecedented approach to mitigate code lifting attacks by using
lookup tables to protect the confidentiality of algorithm implementations.

5 Security
5.1 Security in Black-box Context
Here we analyze the security of RubikStone in the black-box context. Our results indicate
that RubikStone has good resistance to general purpose cryptographic attacks.
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5.1.1 Differential Cryptanalysis

For a function f(x) : {0, 1}nin → {0, 1}nout , the cardinality of a differential pair (a, b) is
defined as the number of input pairs (x1, x2) that satisfy the input difference equation
x1 ⊕ x2 = a and the output difference equation f(x1)⊕ f(x2) = b, denoted by N(a, b). It
has been proven in the Theorem 1 of [BI15] that for all non-trivial values of a and b, the
probability qB that N(a, b) is at most B can be lower-bounded by the inequality:

qB > (1− 2 · (2nin−nout−1)B+1

(B + 1)!
)2nin+nout (3)

Table 1 shows the lower bound on q1 for the functions used in all RubikStone instanti-
ations, which implies that the probability of these functions having a differential pair with
a maximum occurrence of 1 is very close to 1. Furthermore, we assume the maximum
differential probability of the functions used in RubikStone-(128,8,16,25), -(256,8,12,211),
-(256,16,24,211), -(64,8,16,226) to be 2−8, 2−8, 2−16, 2−8, respectively.

Table 1: Lower-bound on q1 for the functions used in RubikStone instantiations

Instantiations Functions Lower-bound on q1

RubikStone-(128,8,16,25) f : {0, 1}8 → {0, 1}64 1− 2−42

RubikStone-(256,8,12,211) f : {0, 1}8 → {0, 1}128 1− 2−106

RubikStone-(256,16,24,211) f : {0, 1}16 → {0, 1}128 1− 2−82

RubikStone-(64,8,16,226) f : {0, 1}8 → {0, 1}32 1− 2−10

Moreover, based on the lookup table pool generation algorithm in 1, each function is
essentially a black-box instance of the AES, which further reinforces our confidence that
the functions possess more uniform and randomized differential characteristics.

5.1.2 Linear Cryptanalysis

For a function f(x) : {0, 1}nin → {0, 1}nout , the correlation of a linear approximation (α, β)
is defined by the equation 4, where α ∈ {0, 1}nin is an input mask and β ∈ {0, 1}nout is
an output mask.

Cor = 2−nin ·(|{x ∈ {0, 1}nin |α·x⊕β ·f(x) = 0}|−|{x ∈ {0, 1}nin |α·x⊕β ·f(x) = 1}|) (4)

According to the Corollary 4.4 in [DR07], it can be assumed that the linear probability
LP of a non-trivial linear approximation over nin-bit to nout-bit functions has mean
µ(LP ) = 2−nin and variance σ2(LP ) ≈ 2 × 2−2nin when nin > 5. Thereforethe linear
probability LP of function f(x) is lower than 2−nin + 10σ with probability 1 − 2−148.
Then we assume the maximum linear probability of the functions used in RubikStone-
(128,8,16,25), -(256,8,12,211), -(256,16,24,211), -(64,8,16,226) to be 2−4, 2−4, 2−12, 2−4,
respectively.

5.2 Security against Key Extraction
In our white-box scheme, there are two specific keys involved: the underlying block cipher’s
key used to generate lookup tables and the guidance key used for secretly transmitting
the dynamical decryption program. As mentioned earlier, all the security of white-box
cryptography is based on the adversary’s limited access to lookup tables. Since our algo-
rithm for generating lookup table pools is public, if the adversary can extract the keys
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from the lookup tables, then the adversary no longer needs to exert effort to obtain the
lookup tables. They can simply use the original encryption algorithm to achieve the al-
gorithm’s functionality on any device. Similarly, we have employed an encrypted method
to transmit the guidance key, thereby secretly transmitting the specific implementation of
the algorithm. If the adversary can extract the guidance key, our encryption transmission
scheme for the program part will no longer hold. Therefore, in this section, we will analyze
the feasibility of the adversary successfully extracting these two types of keys.

5.2.1 Extracting the Keys from Tables

In the white-box context, the adversary can freely observe and intervene the execution
process in the computation unit. With such ability, the adversary can easily obtain a large
number of pairs of inputs and the corresponding outputs in lookup tables. This implies
that adversaries can conduct any form of black-box attack on the lookup tables.

Therefore, the adversary can extract the secret keys from lookup tables in white-box
context as long as he can recover the secret key from the underlying cipher for the tables in
black-box context. As a corollary, we reduce the security of lookup tables against the key
extraction attack in the white-box context to the key recovery problem for the underlying
cipher in the black-box context, which is also the reduction method used in some existing
dedicated white-box ciphers [BI15, BIT16, FKKM16, CCD+17, KLLM20, KI21].

We utilize AES-128 as an instantiation of the underlying cipher in our lookup table
pool generation algorithm, for which no efficient key recovery attack has been proposed so
far. Furthermore, in our design of the lookup table pool generation algorithm, a different
random key is used for each lookup table generation. Even in the smallest instantiation
of RubikStone proposed in Section 3.4, there are 32 lookup tables. This means that the
adversary needs to crack at least 4096(= 32× 128)-bit AES keys in the black-box context
if he attempts to gain an advantage in transplanting the functionality of the decryption
program by extracting keys from the lookup tables, which is not easier than accumulating
all lookup table entries through computation leakage in the white-box context.

5.2.2 Extracting the Guidance Key

In our key guidance application in cloud-based DRM systems described in Section 4, the
real guidance key Kg is obtained by encrypting a random number K0. The encryption
algorithm is the same as the one used for encrypting digital content, i.e. the RubikStone
algorithm utilizing a lookup table pool. According to our previous analysis, it is not
feasible for the adversary to extract the inner keys from the lookup tables. As a corollary,
we reduce the security of the guidance key against key extraction attacks to the security of
RubikStone itself against code lifting attacks, which will be evaluated in the next section.

Additionally, in our scheme, each different digital content uses a unique guidance key.
In the event that the adversary manages to acquire a guidance key, his access is restricted
solely to the decryption program for a particular digital content item. Accessing the
decryption program for any additional digital content necessitates an equivalent level of
effort. This practical approach to digital rights management contributes to enhanced
security in real-world scenarios.

5.3 Security against Advanced Side Channel Attacks
5.3.1 Differential Computation Analysis

Differential Computation Analysis (DCA) attack was proposed by Bos et al. at CHES
2016 [BHMT16], serving as the software counterpart to differential power analysis (DPA)
[KJJ99] attacks employed by the cryptographic hardware community. The main idea
of DCA involves utilizing Dynamic Binary Instrumentation (DBI) frameworks such as
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Pin [LCM+05] and Valgrind [NS07] to acquire software traces. These traces encompass
information like the physical addresses corresponding to memory read/write operations,
and stack or register values during program execution, aiding attackers in determining
the approximate location of the encryption algorithm within the software implementation
and in conducting statistical analyses to extract the secret key. Employing this method,
Bos et al. successfully extracted keys from various public white-box AES and DES im-
plementations [CEJvO02a, CEJvO02b, LN05, Kar10, XL09] without knowledge of the
encodings applied to intermediate results or which cipher operations are implemented by
which lookup tables, and without resorting to reverse engineering of the binary files. This
establishes DCA as a significant threat to white-box cryptographic implementations.

However, DCA is fundamentally an attack aimed at recovering a specific key. It may
be highly effective against the white-box implementations of some existing block ciphers
[CEJvO02a, BCD06, Kar10, XL09, LLY14, CEJvO02b, LN05, WP05], but is still ineffec-
tive against many dedicated white-box ciphers [BI15, BIT16, FKKM16, CCD+17, KSHI20,
KLLM20, KI21, YZDZ23]. This is because these dedicated white-box ciphers are largely
based on lookup tables generated from the overall inputs and outputs of a well-studied
block cipher. Since the lookup tables are pre-generated, attackers cannot access any side-
channel information produced during their creation, limiting them to black-box analysis
of the tables. Therefore, when applying DCA to RubikStone, an attacker might recover
the guidance key, which could assist in determining the encryption method corresponding
to a particular ciphertext. However, without the ability to recover the underlying block
cipher keys on which the lookup tables rely, the attacker gains no additional advantage
over lifting the lookup tables for decrypting a specific ciphertext.

5.3.2 Algebraic Differential Computation Analysis

Linear decoding analysis (LDA) was first proposed by Goubin et al. in [GPRW20]. It was
also called algebraic DCA by Biryukov and Udovenko in [BU18], which gradually evolved
into an attack method that includes higher-order algebraic structures. This attack is
designed to breach masking protection schemes by identifying algebraic combinations of
some functions, thereby constructing a predictable sensitive function. With a sufficient
number of computational traces, it can effectively pinpoint the location of shares after
masking, thus circumventing the combinatorial explosion in complexity. In practical cases,
algebraic DCA achieved remarkable success in the WhibOx contest 2017/2019 [PCY+17,
GRW20]. On the basis of DCA, Algebraic DCA has improved its attack capability against
some mask protection schemes. But algebraic DCA is still an attack method aimed at
recovering a specific key, and therefore it cannot pose an effective threat to RubikStone.

5.3.3 Differential Fault Attack

Differential fault attack (DFA) targeting white-box ciphers was proposed by Sanfelix et
al. in [SMdH15]. It modifies some specific bits by injecting faults into the white-box
implementations and then conducts a differential analysis. This attack is also ineffective
against RubikStone. Attackers cannot inject faults into the pre-generated lookup tables,
and the internals of the underlying cipher are inaccessible. Therefore, all forms of attacks
targeting the lookup tables ultimately reduce to black-box attacks against the underlying
block cipher AES-128. If the adversary wishes to achieve the ultimate goaldecrypting a
randomly drawn ciphertext on any device, the best strategy would be to lift all the lookup
tables. The security of RubikStone against code lifting will be analyzed in Section 5.4.

As mentioned in [YZDZ23], side-channel analysis exploits the fact that each lookup
table relies only on a small portion of the key, which allows it to exhaustively enumerate
all possibilities in segments, compute the correlation of traces, and thus guess the key.
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However, in RubikStone, all the lookup tables contain the full 128-bit of the key. Therefore,
even if an attacker can fully monitor the memory access patterns of the target key-related
lookup tables, the amount of information the attacker must guess is 2128.

5.4 Security against Code Lifting
In our security model (see Section 2.1), the adversary has full observational and control
abilities over the computation unit. The only limitation hindering the adversary from
transplanting the decryption functionality is their lack of the whole lookup table pool. In
fact, under the condition of applying a lookup table pool, the number of lookup tables
significantly exceeds the quantity likely to be utilized in a single encryption (or decryption)
operation. The adversary must precisely determine the index of a lookup table where an
input-output pair resides to effectively apply a specific table entry for attack. This presents
an additional difficulty for the adversary in gathering lookup table entries compared to
existing white-box schemes. However, the adversary can still gather a significant number
of lookup table entries through multiple analyses of the computation unit’s execution
process, which is just the process known as code lifting. To quantify the resilience of
RubikStone against code lifting attacks, in this section, we will evaluate the space hardness
of RubikStone under known-, chosen- and adaptively chosen-space attacks, to delineate
the feasibility for the adversary to transplant decryption functionality under the condition
of acquiring partial lookup table entries.

5.4.1 Weak Space Hardness

According to the discussion in [BIT16], we can obtain the following two theorems.

Theorem 2. The probability that a randomly drawn plaintext (ciphertext) can be en-
crypted (decrypted) is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R given known or chosen space of

size M from RubikStone-(n,nin,R,s).

Proof. For a randomly drawn plaintext, it can be encrypted to the final ciphertext through
n

2·nin
·R table lookups. Because the inputs of tables are unpredictable in advance in both

known- and chosen-space attacks, the probability for the adversary with a space of size
M successfully locating the corresponding lookup table entry during each table lookup is
given by M

s·2nin · n
2

, where s · 2nin · n
2 is the total size of all the lookup tables. To calculate

the correct ciphertext, the adversary needs to possess exactly all the n
2·nin

· R relevant
table entries, so the probability is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R.

Theorem 3. Given adaptively chosen space of size M from RubikStone-(n,nin,R,s), the
probability that a randomly drawn plaintext (ciphertext) can be encrypted (decrypted) is
upper bounded by N

2n·s
( n

2·nin
·R) + (1− N

2n·s
( n

2·nin
·R) ) · ( M

s·2nin · n
2

)
n

2·nin
·R, where N satisfies the

equation N = ⌈(log( 2nin ·s−1
2nin ·s

)(1−
M

s·2nin · n
2

))/( n
2·nin

·R)⌉.

Proof. In the process of obtaining input-output pairs, the ACSA adversary can choose an
input after obtaining the outputs corresponding to the previous inputs. Exploiting the
advantage, the adversary can ensure that a number of plaintexts’ corresponding cipher-
texts can be obtained with a probability of 100%. In other words, each lookup table entry
required in the process of encrypting these plaintexts into the final ciphertexts is present
in the part controlled by the adversary. Assuming the number of these plaintexts is N ,
the following equation can be obtained, where 2nin · s is the number of all the entries in
the lookup table pool and n

2 is the size of each entry.

(1− (2nin · s− 1
2nin · s

)N · n
2·nin

·R) · 2nin · n

2
· s = M (5)
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Namely, the adversary can confidently know the ciphertexts corresponding to N(=
⌈(log( 2nin ·s−1

2nin ·s
)(1−

M
s·2nin · n

2
))/( n

2·nin
·R)⌉) plaintexts with adaptively chosen space of size

M . For a randomly drawn plaintext and a randomly drawn guidance key, the probability
that it is included in these N plaintexts is N

2n·s
( n

2·nin
·R) , where 2n is the number of all the

plaintexts and s
( n

2·nin
·R) is the number of all the guidance keys. Otherwise, the probability

that the adversary can successfully calculate the corresponding ciphertexts given space of
size M is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R from Theorem 2. The result in Theorem 3

can be obtained by adding the probabilities of the two parts.

Thus, we obtain weak KSA/CSA-(M,−log2(( M
s·2nin · n

2
)

n
2·nin

·R))-space hardness and
weak ACSA-(M,−log2( N

2n·s
( n

2·nin
·R) +(1− N

2n·s
( n

2·nin
·R) ) ·( M

s·2nin · n
2

)
n

2·nin
·R))-space hardness

for RubikStone-(n,nin,R,s) from Theorem 2 and Theorem 3 respectively.

5.4.2 Strong Space Hardness

The notion of strong space hardness requires that the adversary cannot obtain a valid
plaintext-ciphertext pair, which is obviously more strict than weak space hardness where
the adversary is not allowed to encrypt(decrypt) a randomly drawn plaintext(ciphertext).
According to Theorem 2, a randomly-drawn plaintext or ciphertext can be computed
with the probability ( M

s·2nin · n
2

)
n

2·nin
·R or less given known or chosen space of size M . Then

for 2n plaintexts, the expected number of the computable pairs is upper bounded by
2n · ( M

s·2nin · n
2

)
n

2·nin
·R.

For strong space hardness in ACSA settings, we obtain the following theorem.

Theorem 4. Given adaptively chosen space of size M , the probability that the ACSA
adversary can obtain a valid plaintext-ciphertext pair is upper bounded by N

s
( n

2·nin
·R) + 2n ·

( M
s·2nin · n

2
)

n
2·nin

·R.

Proof. As mentioned in the proof of Theorem 3, the ACSA adversary can ensure that a
number of plaintexts can be computed with a 100% probability to obtain the final cipher-
texts by adaptively accessing the lookup table entries. The number of these plaintexts
is N = ⌈(log( 2nin ·s−1

2nin ·s
)(1 −

M
s·2nin · n

2
))/( n

2·nin
·R)⌉, where M is the size of the given space.

For a randomly drawn guidance key, the probability that the computation process for at
least one plaintext exactly matches a randomly drawn guidance key is upper bounded
by N

s
( n

2·nin
·R) , where s

( n
2·nin

·R) is the number of all the guidance keys. Otherwise, the
probability for an adversary to compute a plaintext-ciphertext pair is the same as in the
KSA/CSA settings, which is also 2n · ( M

s·2nin · n
2

)
n

2·nin
·R. The probability that the ACSA

adversary successfully obtains a plaintext-ciphertext pair can be obtained by adding the
two parts.

As a corollary, we obtain strong KSA/CSA-(M,−log2(2n · ( M
s·2nin · n

2
)

n
2·nin

·R))-space
hardness and strong ACSA-(M,−log2( N

s
( n

2·nin
·R) + 2n · ( M

s·2nin · n
2

)
n

2·nin
·R))-space hardness

for RubikStone-(n,nin,R,s).
Let T denote the total size of all the lookup tables, i.e. T = s · 2nin · n

2 . The space
hardness of M = T/4 has received considerable attention from previous works [BI15,
BIT16, CCD+17, KLLM20, KI21]. Based on the evaluation of strong/weak space hardness
for RubikStone-(n,nin,R,s), we have derived the results shown in Table 2.
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Table 2: Space hardness of RubikStone instantiations

Instantiations
Weak Space Hardness Strong Space Hardness

KSA/CSA ACSA KSA/CSA ACSA

RubikStone-(128,8,16,25) (T/4, 256) (T/4, 256) (T/4, 128) (T/4, 128)
RubikStone-(256,8,12,211) (T/4, 384) (T/4, 384) (T/4, 128) (T/4, 128)
RubikStone-(256,16,24,211) (T/4, 384) (T/4, 384) (T/4, 128) (T/4, 128)
RubikStone-(64,8,16,226) (T/4, 128) (T/4, 128) (T/8, 128) (T/8, 128)

We can see that the ACSA-space hardness of RubikStone is comparable to its KSA/CSA-
space hardness. Compared to previous works [BI15, BIT16] where the ACSA-space hard-
ness is significantly lower than the KSA/CSA-space hardness, this represents a substantial
improvement in security. The improvement is made possible by the sufficiently large guid-
ance key space. For any adversary based on past lookup table accumulation, the specific
calculations required for encrypting a randomly drawn plaintext are unknown, which ef-
fectively reduces the advantages of ACSA adversaries in obtaining plaintext-ciphertext
pairs through adaptively accessing lookup table entries.

5.4.3 Overall Space Hardness

In this section, we will evaluate the overall security against code lifting of the key guid-
ance application proposed in Section 4. We have reduced the security of the guidance
key against key extraction attacks to the space hardness of RubikStone in Section 5.2.
Moreover, the guidance key is uniquely bound to a specific decryption program. To eval-
uate the security of the decryption program against code lifting attacks, we obtain the
following theorem.

Theorem 5. The probability that a randomly drawn guidance key can be computed is upper
bounded by ( M

s·2nin · n
2

)⌊ log2s
2·nin

·R⌋· n
2·nin

·R given space of size M from RubikStone-(n,nin,R,s).

Proof. For a pool with s lookup tables, a log2s-bit number is needed to represent the index
of each table. The number of table lookups required for each encryption or decryption
process is n

2·nin
· R, hence the length of the guidance key of RubikStone-(n,nin,R,s) is

log2s · n
2·nin

·R. Furthermore, in order to compute this guidance key, ⌊ log2s
2·nin

·R⌋ · n
2·nin

·R
table lookups are required. Given space of size M , the probability that the adversary
successfully computes each entry is upper bounded by M

s·2nin · n
2

. Thus, the probability to

compute a randomly drawn guidance key is upper bounded by ( M
s·2nin · n

2
)⌊ log2s

2·nin
·R⌋· n

2·nin
·R.

Based on the evaluation in the previous subsection, the advantage of the ACSA adver-
sary over the KSA/CSA adversary is significantly diminished to a negligible level due
to the application of the key guidance implementation mechanism. Then we obtain
KSA/CSA/ACSA-(M,−log2(( M

s·2nin · n
2

)⌊ log2s
2·nin

·R⌋· n
2·nin

·R)-space hardness for the decryption
program in the key guidance application.

Furthermore, due to the fact that the adversary can only decrypt a specific ciphertext
with the correct decryption program, the probability that the adversary can successfully
decrypt a randomly drawn ciphertext is upper bounded by ( M

s·2nin · n
2

)⌊ log2s
2·nin

·R⌋· n
2·nin

·R ·
( M

s·2nin · n
2

)
n

2·nin
·R given a randomly drawn guidance key. Thus, we obtain the overall

(M,−log2(( M
s·2nin · n

2
)(⌊ log2s

2·nin
·R⌋+1)· n

2·nin
·R)-space hardness for the key guidance application.



Yipeng Shi 21

We further evaluate the overall space hardness of the key guidance application uti-
lizing different instantiations of RubikStone. It can be seen from Table 3 that the key
guidance application based on each variant of RubikStone exhibits a high degree of overall
space hardness. More surprisingly, the key guidance applications based on RubikStone-
(256,8,12,211), RubikStone-(256,16,24,211) and RubikStone-(64,8,16,226) all achieve at
least overall (0.950T, 128)-space hardness, implying that even if the adversary obtains
95% of the lookup table entries, they still cannot decrypt a randomly drawn ciphertext
with a probability exceeding 2−128. This provides sufficiently reliable security for cloud-
based DRM.

Table 3: Overall space hardness of key guidance application

Instantiations Overall Space Hardness

RubikStone-(128,8,16,25) (0.891T, 128)
RubikStone-(256,8,12,211) (0.955T, 128)
RubikStone-(256,16,24,211) (0.955T, 128)
RubikStone-(64,8,16,226) (0.950T, 128)

6 Performance

6.1 Table Consumption Rate
As mentioned in Section 2.2, the table consumption rate is an effective property for char-
acterizing the resilience of white-box ciphers. A lower table consumption rate means that
a table-based white-block cipher has better durability. Table 4 lists all existing white-
box ciphers and the relevant parameters based on the table consumption rate ascending
sequence. The four instantiations of rubikStone proposed in Section 3.4 all exhibit the
lowest table consumption rate for the equal size.

Based on this observation, RubikStone-(64,8,16,226) exhibits the lowest table consump-
tion rate among all existing white-box ciphers, implying it possesses the highest durability
among them. Meanwhile, RubikStone-(64,8,16,226) has the largest size among all ciphers,
which helps to improve the security, but also limits its application scope. In comparison,
RubikStone-(256,8,12,211) achieves a balance here - it has the smallest table consumption
rate among the ciphers within 10 megabytes, which can be applied to many memory-
limited devices and provides the best durability among existing lightweight white-box
ciphers.

6.2 Implementation
In order to measure the efficiency of RubikStone in a real-world environment, we con-
ducted all the experiments with a machine that has Intel(R) Core(TM) i5-9500 CPU @
3.00GHz and 16GB DDR4 RAM. The processor on the machine has 384KB L1 cache,
1.5MB L2 cache, and 9MB L3 cache, respectively. All code was implemented using the C
programming language. To more accurately measure the number of CPU clock cycles, we
utilized GCC’s inline assembly syntax to invoke the “rdpmc” instruction in the following,
which directly reads the Performance Monitoring Counters (PMCs).

1 __asm__ volatile ("rdpmc ; shlq $32 ,%% rdx; orq %%rdx ,%% rax"
2 : "=a" ( result ) : "c" (ecx) : "rdx");
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Table 4: Table consumption rate and relevant parameters of all white-box ciphers

Ciphers Parameters

n T (Bytes)i R Tr
ii piii

RubikStone-(64,8,16,226) 64 226 × 28 × 32 = 64G 16 4× 1× 32 2−31

WhiteBlock 32 [FKKM16] 128 2× 232 × 64 = 64G 34 2× 1× 64 2−30.91

SPNbox-32 [BIT16] 128 1× 232 × 32 = 17.2G 10 1× 4× 32 2−30.68

Yoroi-32 [KI21]iv 128 3× 232 × 32 = 48G 16 1× 4× 32 2−30.19

Galaxy-32 [KSHI20] 128 1× 232 × 32 = 16G 32 1× 2× 32 2−30

SPACE-(32,128) [BI15] 128 1× 232 × 96 = 48G 128 1× 1× 96 2−29

WhiteBlock 28 [FKKM16] 128 2× 228 × 64 = 4G 34 2× 1× 64 2−26.91

RubikStone-(256,16,24,211) 256 216 × 211 × 128 = 2G 24 8× 1× 128 2−24.41

FPL-(128,20,12,17) [KLLM20] 128 204× 220 × 64 = 1.59G 17 12× 1× 64 2−24

FPL-(128,20,12,33) [KLLM20] 128 396× 220 × 64 = 3.09G 33 12× 1× 64 2−24

WhiteBlock 24 [FKKM16] 128 2× 224 × 64 = 256M 34 2× 1× 64 2−22.91

SPNbox-24 [BIT16] 120 1× 224 × 24 = 50.3M 10 1× 5× 24 2−22.26

SPACE-(24,128) [BI15] 128 1× 224 × 104 = 208M 128 1× 1× 104 2−21

FPL-(128,16,16,17) [KLLM20] 128 272× 216 × 64 = 136M 17 16× 1× 64 2−20

FPL-(128,16,16,33) [KLLM20] 128 528× 216 × 64 = 264M 33 16× 1× 64 2−20

WEM-128 [CCD+17]v 128 104× 216 × 16 = 13M 12 8× 1× 16 2−20

WhiteBlock 20 [FKKM16] 128 3× 220 × 64 = 24M 23 3× 1× 64 2−19.48

FPL-(64,16,8,17) [KLLM20] 64 136× 216 × 32 = 34M 17 8× 1× 32 2−19

FPL-(64,16,8,33) [KLLM20] 64 264× 216 × 32 = 66M 33 8× 1× 32 2−19

FPL-(64,16,16,17) [KLLM20] 64 272× 216 × 32 = 68M 17 16× 1× 32 2−19

RubikStone-(256,8,12,211) 256 211 × 28 × 128 = 8M 12 16×1×128 2−16.42

FPL-(128,12,20,17) [KLLM20] 128 340×212×64 = 10.63M 17 20× 1× 64 2−16

FPL-(128,12,20,33) [KLLM20] 128 660×212×64 = 20.63M 33 20× 1× 64 2−16

WhiteBlock 16 [FKKM16] 128 4× 216 × 64 = 2M 18 4× 1× 64 2−15.83

Yoroi-16 [KI21] 128 3× 216 × 16 = 384K 8 1× 8× 16 2−14.41

SPNbox-16 [BIT16] 128 1× 216 × 16 = 132K 10 1× 8× 16 2−13.7

WAS [YZDZ23] 128 1× 216 × 16 = 128K 10 1× 8× 16 2−13.68

SPACE-(16,128) [BI15] 128 1× 216× 112 = 896.5K 128 1× 1× 112 2−13

Galaxy-16 [KSHI20] 128 1× 216 × 16 = 128K 40 1× 4× 16 2−12.68

FPL-(64,8,16,9) [KLLM20] 64 144× 28 × 32 = 144K 9 16× 1× 32 2−11

FPL-(64,8,16,17) [KLLM20] 64 272× 28 × 32 = 272K 17 16× 1× 32 2−11

FPL-(64,8,16,33) [KLLM20] 64 528× 28 × 32 = 528K 33 16× 1× 32 2−11

RubikStone-(128,8,16,25) 128 25 × 28 × 64 = 64K 16 8× 1× 64 2−10

SPNbox-8 [BIT16] 128 1× 28 × 8 = 256 10 1× 16× 8 2−4.68

Galaxy-8 [KSHI20] 128 1× 28 × 8 = 256 25 1× 8× 8 2−4.36

SPACE-(8,300) [BI15] 128 1× 28 × 120 = 3.75K 300 1× 1× 120 2−3.77

i T denotes the total size of all the lookup tables, which was presented in the form of n×e×b,
where n is the number of tables, e is the number of entries of a table, b is the length of an
entry.

ii Tr denotes the size of the entries used in one round,which was presented in the form of
m× e× b, where m is the number of tables involved in a round, e is the number of entries
got from a table, b is the length of an entry.

iii p denotes the able consumption rate of each cipher.
iv Yoroi’s tables are not uniformly used.
v WEM-128 has another table lookup after 12 rounds.
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Table 5: Evaluation of encryption efficiency which is given in cycle per byte

Algorithm Table Size Efficiency (cycle/byte)

AES-128(Black-box) - 539
AES-128(CEJO)[CEJvO02a] 752 KB 4027

RubikStone-(128,8,16,25) 64 KB 469
RubikStone-(256,8,12,211) 8 MB 2786
RubikStone-(256,16,24,211) 2 GB 5751
RubikStone-(64,8,16,226) 64 GB 7312*

* To better focus on the performance of the algorithm itself, the value was
obtained after subtracting the overhead of HDD reads.

The experiment results are shown in Table 5. For comparison, we measured the effi-
ciency of AES-128 and the white-box implementation of AES-128 using the CEJO archi-
tecture [CEJvO02a] under the same conditions. RubikStone-(128,8,16,25) even exhibits
better efficiency than the plain implementation of AES-128. The efficiency of other Ru-
bikStone instantiations is also comparable to the CEJO white-box implementation of
AES-128, despite their lookup tables being orders of magnitude larger.

It is worth noting that our measurement results appear to be significantly larger than
those reported in [KSHI20, KI21]. In fact, despite using the same efficiency evaluation
metrics, they cannot be directly compared. This is not only due to performance differences
between the devices used, but also because both articles aim for better implementation
efficiency and have made numerous optimizations to achieve this, such as programming
with instruction sets like AES-NI and SSE. However, this paper focuses on discussing the
algorithm itself and the security guarantees during its use. The limits of implementation
efficiency are not within our concern, so our implementations are measured without opti-
mization. Nevertheless, by comparing implementation efficiency with AES black-box and
white-box implementations under the same conditions, the potential of RubikStone for
efficient implementation can still be demonstrated.

Since several other dedicated white-box ciphers do not have open-source code, we
did not directly compare our implementation with them. However, we have conducted
a detailed statistical analysis of the operations used in all existing dedicated white-box
cryptographic schemes and discussed them in the following subsection.

6.3 Statistical Analysis of the Operations
The security of white-box cryptographic implementation based on lookup tables is mainly
guaranteed from two aspects. On the one hand, the size of the lookup tables should be
as large as possible to slow down the adversary’s time to acquire sufficient table entries,
providing security for a period of time. On the other hand, the program part should make
enough calls to the lookup tables during execution to ensure that even if the adversary
obtains part of the lookup tables, he cannot effectively complete the algorithm’s function
with a high probability. The two aspects inevitably lead to an increase in storage require-
ments and performance consumption. Therefore, making a reasonable trade-off between
security and these two factors is also a focus of white-box cryptography research.

Table 6 lists the number of different operations required to encrypt each byte for all
existing white-box ciphers. From it, we can see that RubikStone uses fewer operations
compared to most other ciphers. It means that RubikStone is still competitive in terms of
execution efficiency despite providing stronger security - strong space hardness under the
ACSA model. While RubikStone employs the key guidance application scheme to ensure
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this security, the initial computations used to calculate the guidance key and generate
the decryption program are one-time operations. As the length of the message increases,
the computational overhead of this portion becomes negligible. Furthermore, the simpler
arithmetic operations involved also hold promise for RubikStone to potentially achieve
better software and hardware implementation efficiency compared to other ciphers.

Meanwhile, table 6 also suggests an important issue to us: among different instantia-
tions of the same white-box scheme, the computational operations required to encrypt one
byte do not actually vary significantly. The reason why their implementation efficiencies
can differ a lot is that larger lookup tables lead to a significant decrease in the cache hit
rate, which is inevitable. This indicates that system cache management will be a signif-
icant bottleneck for algorithms such as dedicated white-box cryptographic schemes that
rely on large-scale lookup tables. However, the lookup table pool strategy proposed in
this paper does not further deteriorate the cache hit rate during specific implementation.
This is because the so-called multiple different lookup tables are merely a logical organi-
zational relationship. A well-designed algorithm should invoke all lookup table entries as
evenly and randomly as possible. Therefore, whether it is a single lookup table or a pool
of multiple lookup tables, the primary factors affecting the cache hit rate are their overall
size and the total number of lookup table entries.

7 Further Discussion
On Black-box Implementation. In some previous works [BI15, BIT16, KI21], there was
simultaneous discussion of the black-box implementations of the white-box ciphers they
proposed. However, in this paper, our focus is on the better security of white-box imple-
mentations brought by an effective scheme of using lookup tables, and thus we do not
delve deeper into black-box implementations. It can be anticipated that when white-box
implementations employ a lookup table pool, corresponding black-box implementations
would need to manage the keys contained within each lookup table in the pool simultane-
ously, resulting in a significant increase in the overall key length. This, while increasing
computational overhead, also substantially enhances the security of the black-box imple-
mentation.

On Lookup Table Pool Updating. In the key guidance application of cloud-based DRM,
due to its inherent high overall space hardness, there is no need to update all lookup ta-
bles in the pool at once. For instance, the key guidance application based on RubikStone-
(64,8,16,226) can offer an overall (0.950T, 128)-space hardness, requiring only periodic
updates about 5% of the lookup tables to maintain the security of the white-box crypto-
graphic implementation within a reliable range. Such a lookup table updating mechanism
can effectively enhance the practicality of white-box cryptographic implementations.

On Lookup Table Utilization Scheme. In this paper, the strong space hardness and
the wide range of instantiation sizes we present are closely related to the scheme of using
a lookup table pool and key guidance implementation. A possible consideration holds
that the scheme could potentially be realized without resorting to lookup table pools.
It seems that in scenarios where tables are employed for single encryption, by altering
the tables in each round under the guidance of a key, the viability of this approach
remains intact. However, as previously mentioned, a pivotal source of security in white-
box cryptography designs stems from the utilization of large lookup tables to mitigate code
lifting. Should the guidance key be employed to dynamically direct the update of lookup
tables, an attacker would only need to acquire this guidance key to fully transplant the
code, given that the methodology for updating lookup tables must inherently be public.
Consequently, the integration of the key guidance implementation and lookup table pool
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Table 6: Operations of all white-box ciphers

Ciphers Calculations(per byte)

Li XORii M iii Aiv F v

SPACE-(8,300) [BI15] 18.75 2250 - - -
SPACE-(16,128) [BI15] 8 896 - - -
SPACE-(24,128) [BI15] 8 832 - - -
SPACE-(32,128) [BI15] 8 768 - - -

SPNbox-8 [BIT16] 10 80 0.63(M16×16) - -
SPNbox-16 [BIT16] 5 80 0.63(M8×8) - -
SPNbox-24 [BIT16] 3.33 80 0.67(M5×5) - -
SPNbox-32 [BIT16] 2.50 80 0.63(M4×4) - -

WhiteBlock 16[FKKM16] 4.50 288 - 1.13 -
WhiteBlock 20 [FKKM16] 4.31 276 - 1.44 -
WhiteBlock 24 [FKKM16] 4.25 272 - 2.13 -
WhiteBlock 28 [FKKM16] 4.25 272 - 2.13 -
WhiteBlock 32 [FKKM16] 4.25 272 - 2.13 -

WEM-128 [CCD+17] 7.5 - - 0.38 -
Galaxy-8 [KSHI20] 12.50 100 - - -
Galaxy-16 [KSHI20] 5 80 - - -
Galaxy-32 [KSHI20] 4 128 - - -

FPL-(128,12,20,17) [KLLM20] 21.25 1360 - - 1.06 (F64→240)
FPL-(128,12,20,33) [KLLM20] 41.25 2640 - - 2.06 (F64→240)
FPL-(128,16,16,17) [KLLM20] 17 1088 - - 1.06 (F64→256)
FPL-(128,16,16,33) [KLLM20] 33 2112 - - 2.06 (F64→256)
FPL-(128,20,12,17) [KLLM20] 12.75 816 - - 1.06 (F64→240)
FPL-(128,20,12,33) [KLLM20] 24.75 1584 - 2.06 (F64→240)

FPL-(64,8,16,9) [KLLM20] 18 576 - - 1.13 (F32→128)
FPL-(64,8,16,17) [KLLM20] 34 1088 - - 2.13 (F32→128)
FPL-(64,8,16,33) [KLLM20] 66 2112 - - 4.13 (F32→128)
FPL-(64,16,8,17) [KLLM20] 34 544 - - 2.13 (F32→128)
FPL-(64,16,8,33) [KLLM20] 66 1056 - - 4.13 (F32→128)
FPL-(64,16,16,17) [KLLM20] 34 1088 - - 2.13 (F32→256)

Yoroi-16 [KI21] 4 14 1(M8×8) 0.06 -
Yoroi-32 [KI21] 4 30 1(M4×4) 0.06 -
WAS [YZDZ23] 5 80 0.63(M8×8) - -

RubikStone-(128,8,16,25) 8 512 - - -
RubikStone-(256,8,12,211) 6 768 - - -
RubikStone-(256,16,24,211) 6 768 - - -
RubikStone-(64,8,16,226) 8 256 - - -

i L represents a table lookup.
ii XOR represents a bit XOR.
iii Mm×m represents a multiplication operation with a m×m MDS matrix.
iv A represents a 10-round AES.
v Fnin→nout

represents a probe function.
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strategies outlined in this paper is highly rational and indispensable. At the same time, the
scheme can also be broadly applied in other table-based white-box structures. It provides
a new direction for white-box cryptography research, namely, enhancing the security and
practicality of white-box cryptography through the design of an efficient lookup table
utilization scheme. Subsequent work could continue researching in this direction.

On the Instantiations of RubikStone. There are four instantiations of RubikStone pre-
sented in the paper and we provide a detailed demonstration of the processes involved in
analyzing their security and efficiency. According to the specification of RubikStone, users
can modify the parameters of RubikStone to create implementations with varying levels
of security capabilities and different sizes of lookup table pools, to suit diverse application
scenarios.

On the Distribution of the Lookup Table Pool and the Guidance Key. In our key
guidance application, both the lookup table pool and the guidance key are indispensable
for decrypting specific digital content. Therefore, how to securely and integrally transmit
them is a crucial issue. This issue was not specifically discussed in the previous scheme, but
the following analysis can illustrate the rationality of our scheme in practical application.

◦ The lookup table pool is transmitted once and reused. In practical applications,
whether through hardware copying or a special secure channel, one-time secure
transmission can always be guaranteed. The reason why this transmission channel is
generally not used for data transmission is that its cost is relatively high. Essentially,
the one-time transmission of the lookup table pool effectively endows legitimate users
with the ability to distinguish themselves from others. Relying on such an ability,
legitimate users can transmit data inexpensively without relying on other secure
channels.

◦ Each guidance key for different digital content is unique, which is also one of the
important security guarantees of the key guidance application. In our scheme, we
reduce the security of the guidance key to the difficulty of adversaries obtaining
a large number of lookup table entries, ensuring that obtaining the true guidance
key used for plaintext encryption is quite difficult for adversaries. Besides, even
if an adversary compromises the integrity of the guidance key during transmission,
the worst outcome is that legitimate users cannot obtain valid messages in that
particular transmission, but it will not lead to the leakage of the message itself. The
cloud server can simply resend once to address this issue.

8 Conclusion
In this paper, we explore a novel white-box scheme leveraging a combination of the lookup
table pool and key guidance implementation. This scheme forms the basis for RubikStone,
a new white-box cipher capable of generating a diverse range of variants ranging from tens
of kilobytes to infinite size. We establish that all RubikStone variants provide robust space
hardness against adaptively chosen-space attacks. Furthermore, we present a specialized
key guidance application tailored for cloud-based DRM scenarios, achieving at least overall
(0.950T, 128)-space hardness based on our proposed RubikStone variants. Additionally,
we introduce the concept of table consumption rate as a novel property for evaluating
the durability of white-box cryptographic implementations. Our evaluation reveals that
RubikStone-(64,8,16,226) exhibits the lowest table consumption rate among existing ci-
phers, while RubikStone-(256,8,12,211) achieves the lowest rate among ciphers within a
10-megabyte range. Finally, we conduct a comprehensive analysis of the computational
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components of all existing white-box ciphers, demonstrating that despite offering unprece-
dented security levels, RubikStone remains highly competitive in terms of computational
efficiency compared to other ciphers.

In fact, the paper primarily explores the feasibility of dynamically implementing white-
box cryptography and employs lookup tables to ensure its security. Cloud-based DRM
represents the initial and most prevalent application scenario for white-box cryptogra-
phy, and in response, the paper presents a dedicated application scheme. Essentially, the
presence of the guidance key heightens the dependency of encryption and decryption ap-
plications on the entire lookup table pool, resulting in more frequent and unpredictable
calls to table entries. Consequently, attackers are compelled to lift the entire lookup table
pool. Similarly, grounded in the utilization of lookup tables, our proposed scheme intro-
duces new possibilities for more secure white-box cryptography applications. However, it
is crucial to recognize that no cryptographic scheme can be deemed permanently secure.
When conditions permit, it is imperative to implement as many protective measures as
necessary to safeguard data security.
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