
Fast, Compact and Hardware-Friendly
Bootstrapping in less than 3ms Using Multiple

Instruction Multiple Ciphertext

Seunghwan Lee, Dohyuk Kim, and Dong-Joon Shin

Department of Electronic Engineering, Hanyang University,
Seoul, Korea

{kr3951,dohyuk1000,djshin}@hanyang.ac.kr

Abstract. This paper proposes a fast, compact key-size, and hardware-
friendly bootstrapping using only 16-bit integer arithmetic and fully ho-
momorphic encryption FHE16, which enables gate operations on cipher-
texts using only 16-bit integer arithmetic. The proposed bootstrapping
consists of unit operations on ciphertexts, such as (incomplete) num-
ber theoretic transform (NTT), inverse NTT, polynomial multiplication,
gadget decomposition, and automorphism, under a composite modulus
constructed from 16-bit primes. Since our bootstrapping does not use
any floating-point operations, extra floating-point errors do not occur so
that FHE16 can pack more message bits into a single ciphertext than
TFHE-rs which utilizes floating-point operations. Furthermore, we pro-
pose multiple instruction multiple ciphertext(MIMC) method to accel-
erate the simultaneous execution of different homomorphic operations
across multiple ciphertexts. Finally, experimental results show that the
bootstrapping operation completes in 2.89 milliseconds for ciphertext
dimension of 512.

Keywords: Lattice-based cryptography, fully homomorphic encryption,
gate bootstrapping, 16-bit integer arithmetic, multiple instruction mul-
tiple ciphertext.

1 Introduction

A cryptosystem capable of performing arithemetic operations or gate operations
on ciphertexts is referred to as fully homomorphic encryption (FHE) [20], and
it has established itself as a cryptographic primitive in modern cryptography. In
particular, FHE schemes that perform gate operations, such as TFHE/FHEW
[17, 12], have made remarkable advancements in homomorphic operation speed.
However, all current FHE schemes share a common problem: after performing
operations, the error within the ciphertexts accumulates, necessitating boot-
strapping to reduce the error before further computations are performed.

Gate-based FHE schemes are known to have significantly smaller key sizes
and faster bootstrapping time, compared to FHE schemes that approximate real
numbers or perform modular arithmetic. This makes them particularly suited for

applications such as oblivious pseudo-random functions [1] and multiparty FHE
[37]. Currently, several FHE libraries supporting these applications are available,
including OpenFHE [5], developed with support from the U.S. DARPA, and
TFHE-rs [40], released by ZAMA, which supports fully homomorphic Ethereum
Virtual Machine (fhEVM) applications.

Furthermore, it is noteworthy that current implementation of TFHE-rs is
reported to be approximately twice as fast as that of OpenFHE. This performance
difference is mainly attributed to the use of distinct polynomial multiplication
techniques: OpenFHE utilizes number theoretic transform (NTT), whereas TFHE-
rs employs fast Fourier transform (FFT).

However, two major issues have recently arisen due to the floating-point-
based FFT in TFHE-rs. The first issue pertains to the design of algorithms for
fast homomorphic integer arithmetic, which requires encryption up to 256 bits
for fhEVM implementations [8]. When FFT is performed, significant errors are
inevitably introduced, preventing use of a certain number of message bits in a
single ciphertext for homomorphic operations. This limitation becomes a draw-
back when designing homomorphic arithmetic for large-bit integers. Addition-
ally, controlling such FFT error requires a very large integer modulus, leading to
an increase in communication overhead.

The second issue involves the use of TFHE-rs in threshold FHE (tFHE) [37],
which extends FHE capabilities to multi-party computation (MPC) for evalu-
ating a function f . For example, n servers encrypt their respective input data
x1, ..., xn, individually compute the ciphertext of f(x1, ..., xn), and decrypt the
ciphertext by threshold decryption protocol [37] in tFHE. In order to decrypt
the ciphertext, an identical ciphertext for all parties should be shared among
during the homomorphic operation. However, since floating-point operations,
which induce FFT errors, do not satisfy the associative law, the nature of the
error varies depending on the implementation, compilation environment, and
machine, breaking the consensus among ciphertexts.

Meanwhile, with the introduction of FHE schemes based on the NTRU as-
sumption, more compact key sizes and faster homomorphic computations have
become feasible [10, 27], but these fast computations are only possible when the
message bits are small. When the integer modulus q of the ciphertext is in-
creased to pack many message bits into a ciphertext, the polynomial degree d
must also be increased. From the perspective of the NTRU assumption, d must
inevitably be increased beyond the ”fatigue point” at q ≈ 0.004d2.484, which
requires d = Ω(λ log(q)2) to grow to ensure safety against sublattice attacks.
In contrast, for LWE-based FHE, d = Ω(λ log(q)) suffices to be secure against
Block Korkin-Zolotarev (BKZ)-based attacks [18], hence LWE-based FHE is
more favorable to pack a lot of message bits compared to NTRU-based FHE.

”Can we design bootstrapping that supports fast gate homomorphic
computation, encrypts and computes over multiple bits, and remains

hardware-friendly while maintaining a compact key size?”

This paper proposes a solution to the above question in the form of a 16-bit
arithmetic-based bootstrapping.

2

1.1 Our Contributions

This paper proposes 16-bit arithmetic-based bootstrapping that performs homo-
morphic operations over ciphertexts using only 16-bit arithmetic and we call the
FHE scheme FHE16 which utilizes 16-bit arithmetic-based bootstrapping. This
approach offers several advantages in terms of bootstrapping speed, key size, and
hardware-level implementation:

Fast. FHE16 outperforms OpenFHE by a factor of 4.3x and TFHE-rs by a
factor of 1.4x for the same parameter settings. Furthermore, if the parameters are
optimized as proposed in this paper, FHE16 becomes 6.2x faster than OpenFHE,
4x faster than TFHE-rs, and even 1.1x faster than NTRU-based FHE schemes
[27].

Compact. With the proposed parameter optimization, we can make the
blind rotation key size of FHE16 (See Section 3.4) comparable to that of OpenFHE,
around 12 to 14 MiB, and 3.8x smaller than that of TFHE-rs.

Hardware Friendly. The study of improving the speed of FHE schemes has
evolved towards the use of GPUs or hardware accelerators designed by FPGA
and ASIC technologies. The 16-bit arithmetic-based bootstrapping offers two
main advantages in terms of hardware compatibility: First, all operations in
bootstrapping rely solely on multiple 16-bit additions and multiplications using
arithmetic logic units (ALU), and this makes it suitable for designing low-power,
high-density circuit acceleration chips. Second, while gate-based FHE schemes
are known to be difficult to parallelize, 16-bit arithmetic-based bootstrapping
offers several opportunities for parallelization within its algorithm. This allows
for more efficient use of streaming processors (SMs) when accelerated with multi-
core devices like GPUs (See Section 5.1).

1.2 Technical Overview

The key technical components of 16-bit arithmetic-based bootstrapping are as
follows.

16-bit-based polynomial unit operations: NTTw, INTTw, AUTw, and
Decom. Since FHE16 uses a product of n 16-bit primes q1, ..., qn as the integer
modulus q, traditional NTT operations cannot be applied. Therefore, we employ
incomplete NTT, denoted by NTTw>1 and its inverse, denoted by INTTw>1,
along with multiplication in the NTTw>1 domain based on Karatsuba multipli-
cation [15]. Also, we propose a 16-bit-based gadget decomposition algorithm and
a method for performing automorphism in the NTTw>1 domain.

Refining Bootstrapping Error Model with Two Types of Decom-
position. We integrate the bootstrapping error model in Zq [17, 26] with a
bootstrapping technique that improves speed by using two decomposition pa-
rameters in approximate torus Tq cryptosystems like TFHE-rs [7] (See Section
5.2). This combined model allows for further parameter minimization, reducing
key size and improving bootstrapping speed.

Multiple Instruction on Multiple Ciphertext (MIMC). We propose a
fast bootstrapping for performing multiple instruction on multiple ciphertexts in
GINX bootstrapping [12] via rearranging the operation order (See Section 5.1).

3

1.3 Related Works

Some previous works related to our works are introduced below.

Lightweight Bootstrapping Key. Kim et al. [24] propose a method to
reduce the bootstrapping key size to within 1MiB by using Galois automorphism,
although it is twice as slow as OpenFHE. Since our bootstrapping leverages 16-
bit Galois automorphism and is much faster than OpenFHE, by applying the
technique in [24], the bootstrapping key can also be made smaller than 1MiB.

SIMC for Gate Bootstrapping. It is an open question whether gate-based
FHE schemes like TFHE/FHEW can improve speed by simultaneously boot-
strapping multiple ciphertexts. Liu and Wang [28] propose a method to perform
functional bootstrapping within 7ms using BGV, and Bae et al. [6] introduce
a method to bootstrap at least 243 ciphertexts simultaneously using CKKS for
speed improvement. However, both methods require conversion to other FHE
ciphertexts, which significantly increases the bootstrapping key size. Moreover,
these methods are limited to applying the same operation to all ciphertexts.

Hardware Optimization. Seiler [36] shows that a 16-bit arithmetic-based
encryption system can be efficiently optimized on Intel/AMD CPUs by utiliz-
ing SIMD instructions provided by the CPU. Furthermore, lattice-based zero-
knowledge proofs benefit from using composite 16-bit primes as a modulus, that
improves both proof generation time and verification time [32].

2 Preliminaries

In this section, we present the terminology and the mathematical operations
necessary for this paper.

2.1 Notations

We define the torus as T ≜ R/Z, and the scaled torus as Tq ≜ T/q−1T ∼= q−1Z/Z.
We define Z∗

m be the multiplicative group whose elements are units in Zm. The
m-th cyclotomic polynomial Φm(X) ∈ Q[X] is defined as the unique irreducible
polynomial with integer coefficients whose roots are the primitive m-th roots of
unity. The degree of Φm(X) is denoted as d and we restrict m to powers of 2, for
which Φm(X) = Xm/2 + 1, implying m = 2d. A vector over Zq or Tq is denoted
as a⃗, and an element of Rq,d is denoted as a . A vector whose components are
polynomials is represented as a⃗ . Given a ∈ Zq, we say a is in canonical form if
−q/2 < a ≤ ⌊q/2⌋. Similarly, a vector a⃗ or a⃗ is in canonical form if all of its
components or coefficients ai are in canonical form. For a natural number n and
a unit ζ ∈ Zn, ordn(ζ) denotes the multiplicative order of ζ, meaning that ζ is a
primitive ordn(ζ)-th root of unity in Zn. Let ζm ∈ Zp be a primitive m-th root
of unity in the Zp, if it exists. The notations used in this paper are summarized
in Table 1.

4

Notation Description

KS, BL Key-switching key, blind rotation key
Rq,d Quotient ring Z[X]/⟨Xd + 1, q⟩, where d is a power of two

sk1, sk2 sk1: secret key for KS and ciphertext, sk2: secret key for BL
k1 Dimension of KS and LWE ciphertext
k2 Dimension of MLWE ciphertext in BL
d Degree of MLWE ciphertext in BL

BA
2 , B

B
2 Gadget decomposition bases for the a and b parts of BL

lA2 , l
B
2 Number of gadget decompositions for the a and b parts of BL

Bks Gadget decomposition basis for the a part of KS
lks Number of gadget decompositions for the a part of KS
q1, q2 q1: modulus for KS, q2: modulus for BL

σks, σbl, σAut Standard deviations for key KS, BL, and Aut respectively
w Degree of modulus polynomial after performing NTTw algorithm
Ut Support of secret keys where Ut = (−t/2, ⌊t/2⌋] ⊂ Z and |Ut| = t
v Window size of AP+ blind rotation
∆ Scaling factor for MLWE ciphertext
β Machine word size, e.g., 216, 232, 264

pi Special primes listed in Table 9 which size is less than 216.

Table 1: Parameters for the 16-bit arithmetic-based bootstapping

2.2 Signed Montgomery Reduction: SM

In this section, we describe the integer moduli q1 and q2 with the machine’s in-
teger word size β = 216 used in this paper. The modulus q1 is chosen as a power
of 2, and the modulus q2 is a composite number, determined by multiplying
small primes less than 16 bits in size, as listed in Table 9 of Supplementary Ma-
terial A. Our 16-bit arithmetic-based bootstrapping always computes modular
q2 computation by performing the Montgomery multiplication algorithm SM for
signed integers [36], as in Algorithm 1. Note that Line 5 in SM can be omitted
and then, the result r will satisfy −q ≤ r < q.

Algorithm 1 Signed Montgomery multiplication SM(a, b) with word size β [36]

Input: Odd q with 0 < q < β
2 , −β/4 < a ≤ ⌊β/2⌋, −q/4 < b ≤ ⌊q/2⌋

Output: r = β−1(ab) mod q, 0 ≤ r < q
1: Calculate a0 and a1 such that −β

2 ≤ ab = a1β+a0 <
β
2 q, where 0 ≤ a0 < β

2: m← a0q
−1 mod β ▷m is pre-calculated as in canonical form

3: t1 ← ⌊mq/β⌋
4: r ← a1 − t1
5: r ← r < 0 ? r + q : r ▷ Optional

6: return r

5

To use the output r of SM for modular multiplication over Zq, r must be
multiplied by β again. However, instead of the original input b, if we put b′ =
bβ mod q into SM, we obtain the right result ab mod q without the need to
multiply the output by β. Let us call the elements bβ mod q transformed from
b as elements in the Montgomery domain. Since all modular multiplications
occurring during the ciphertext operations in the proposed bootstrapping are
the multiplication of elements in the Montgomery domain, we can implement all
modular multiplications by using only SM.

Benefit of Implementing Algorithms 1 with β = 216 on the Intel
CPU. As observed in Lines 1 and Line 3 of Algorithm 1, these operations
involve multiplying two word-size numbers and then extracting the higher bits
from the result. If β is set to 232 or 264, there is no single instruction in Intel
CPUs to directly support the above operations, requiring multiple instructions
and registers for implementation. However, since β is set to 216 in this paper,
this operation can be obtained using the Intel-provided instruction vpmulhw,
allowing for implementation with a single instruction.

2.3 Fast Polynomial Multiplication Methods: NTTw, FFT, and
MULw

In this section, we introduce some fast polynomial multiplication methods: NTTw,
FFT, and MULw over the rings Rq,d and Tq[X]/⟨Xd + 1⟩.

Lemma 1 (Theorem 2.3 in [29]) Let m =
∏
peii with ei ≥ 1 and z =

∏
pfii

with 1 ≤ fi ≤ ei where pi’s are distinct primes. If q is a prime such that q = 1
mod z and ordm(q) = m/z, then the m-th cyclotomic polynomial Φm(X) factors
as

Φm(X) =
∏
j∈Z∗

z

(Xm/z − rj) mod q (1)

for distinct rj ∈ Z∗
q where Xm/z − rj are irreducible over Zq[X].

Now, consider Lemma 1 with m = 2d, where d is a power of 2, and z = 2d/w
such that q = 1 mod 2d/w and ord2d/w(q) = 1. By Lemma 1, Φ2d(X) factors
into d/w irreducible polynomials of degree w. Since all the roots of Φ2d(X) are
d primitive 2d-th roots of unity, all rj in Eq. (1) can be expressed as powers

of a primitive 2d/w-th root of unity ζ2d/w ∈ Zq, i.e., rj = ζj2d/w. Thus, by the

Chinese Remainder Theorem (CRT), the following isomorphic structure holds:

Zq[X]/⟨Xd + 1⟩ ∼=
⊕

i∈Z∗
2d/w

Zq[X]/⟨Xw − ζi2d/w⟩. (2)

The algorithm that transforms from the left-hand structure to the right-
hand structure in Eq. (2) is called NTTw, and the inverse transformation al-
gorithm is called INTTw

1. NTTw can be implemented using the Cooley-Tukey

1 In [15], NTT and INTT are used when w = 1, and the term ”Incomplete NTT” is
used when w > 1. In this paper, we characterize these transformations with w.

6

approach, while INTTw can use the Gentleman-Sande approach, both of which
require O(d log d) multiplications in Zq [36]. When w = 1 and Φ2d(X) ∈ Zq[X]
splits, the polynomial multiplication on the right-hand structure in Eq. (2) is
the component-wise multiplication in Zq, requiring only O(d) multiplications.
The space for the right-hand structure is referred to as the NTTw space, and
the algorithm that performs polynomial multiplication algorithm is denoted as
MULw.

If the modulus q = q1 · · · qn is a composite number of primes qi, the following
isomorphic structure in Eq. (3) holds:

Zq[X]/⟨Xd + 1⟩ ∼=
n⊕

i=1

Zqi [X]/⟨Xd + 1⟩. (3)

Thus, NTTw algorithm can be performed using n parallel paths.

Algebraic Description for Using FFT [33] in Tq[X]/⟨Xd + 1⟩. If w is
large or if the polynomial coefficients are in T232 or T264 , it is impossible to per-
form polynomial multiplication efficiently, and also the NTTw operation becomes
inefficient or infeasible. In such cases, the modulus q is ignored for the moment,
and the canonical-form coefficients are mapped to C[X]/⟨Xd + 1⟩, allowing for
polynomial multiplication using FFT and IFFT. In fact, FFT and IFFT are per-
formed using a primitive 2d-th root of unity in C numerically [33]. Although the
exact results can be obtained with infinite precision, in practice, floating-point
arithmetic introduces approximation errors, as discussed in Section 5.2.

2.4 Automorphisms on Rq,d and AUTw

An isomorphism from a field K to itself is called an automorphism, and the set
of such functions is denoted by Aut(K). Given towers of fields K over F , the
Galois group can be defined as follows:

Gal(K/F) ≜ {σ : K → K | σ ∈ Aut(K), σ(x) = x for all x ∈ F}. (4)

Let ωm ∈ C denote a primitive m-th root of unity in C. The number field
Km ≜ Q(ωm) is referred to as cyclotomic field. Furthermore, Gal(Km/Q) =
Aut(Km) sinceQ is a prime field (i.e., it has no nontrivial subfields). In this paper,
we only consider the Galois group Gal(Km/Q) which is Aut(Km). Moreover, for
any σ ∈ Aut(Km), we denote it as σi by using the index i ∈ Z∗

m. In particular,
when m is a power of 2, it is known that Z∗

m is isomorphic to the additive group
Z2×Zm/4 [16], which is used to describe the AP+ blind rotation in Section 3.4.

All polynomials in FHE16 are stored as the elements in the NTTw space.
Thus, we propose an algorithm of performing automorphisms in the NTTw space,
called AUTw, as discussed in Section 4.1.

7

2.5 Residue Number System, Mixed-Radix System, and Conversion
Algorithm Decom

For co-prime natural numbers q1, . . . , qn, the following isomorphic structure is
well known:

Zq=q1·····qn
∼= Zq1 × · · · × Zqn . (5)

Here, the Residue Number System (RNS) is a numerical system where an element
a ∈ Zq on the left-hand side of Eq. (5) is represented as a tuple (a∗1, . . . , a

∗
n) on

the right-hand side, and component-wise arithmetic operations are performed.
To implement the isomorphism from right to left in Eq. (5), we define a few
auxiliary variables:

q∗i ≜
n∏

j ̸=i

qj ∈ Zqi , q̂i ≜ (q∗i)
−1 ∈ Zqi , q̃i ≜

i∏
j=1

qj ∈ Z. (6)

If we can accurately compute the value v = ⌈
∑n

i=1 (a
∗
i q̂i mod qi) /qi⌋ , then

it is known that we can compute the inverse map in Eq. (7), and also express
the element in its canonical form in Zq [22]:

(a∗1, . . . , a
∗
n) 7→

(
n∑

i=1

[a∗i q̂i mod qi] · q∗i

)
− vq, for some v ∈ Z. (7)

On the other hand, for canonical-form a ∈ Zq and natural numbers q1, . . . , qn
(which are not necessarily coprime), there exists a canonical-form ã = (ã1, . . . , ãn)
that satisfies the following expression via signed division algorithm:

a = ã1q̃1 + ã2q̃2 + · · ·+ ãnq̃n, −qi/2 < ãi ≤ ⌊qi/2⌋ . (8)

We refer to ⃗̃q = (q̃1, . . . , q̃n) as a gadget, and the canonical-form (ã1, . . . , ãn) is

called the ⃗̃q-mixed radix system (MRS) number [19]. The gadgets used in this
paper are always of the form (D,DB, . . . ,DBl), where D and B are powers
of 2, and q̃i ≤ DBi. We denote this by (D,B, l)-gadget. In particular, when
D = 2⌈log2(q)⌉−log2(B)l, meaning the bit-length of q minus the top l log2(B)-
bits, we call it as the (B, l)-gadget. If we obtain the (D,B, l)-MRS number
(a0, a1, . . . , al) for a ∈ Zq , the following inequality holds:∣∣∣∣∣a−

l∑
i=1

aiB
i

∣∣∣∣∣ ≤ D

2
, |ai| ≤

B

2
. (9)

In this paper, an algorithm Decom is proposed in Section 4.2, which outputs
(a1, . . . , al) satisfying Eq. (9) for a given (D,B, l)-gadget, where a may not be
saved as canonical form. It is particularly important to obtain the MRS number
with respect to the (B, l)-gadget for a = (a∗1, . . . , a

∗
n) in RNS, which is discussed

in detail in Section 4.2.

8

3 (M)LWE Ciphertext and Bootstrapping

3.1 Introduction to (M)LWE Ciphertext and its Variants

In this section, we introduce the lattice-based cryptosystems considered in this
paper. Given a dimension k, the LWE ciphertext is defined as follows [34]:

LWEi[∆m] = (⃗a, b) =
(
a⃗,

k∑
j=1

ajsj + e
)t

+
(
0, . . . , 0︸ ︷︷ ︸

i−1

, ∆m︸︷︷︸
index i

, 0, . . . , 0︸ ︷︷ ︸
k−i+1

)t
∈ Z(k+1)×1

q ,

where ∆ is a scaling factor used to separate the message from the error. Each
element of a⃗ = (a1, . . . , ak) is chosen uniformly at random from Zq, while the
secret key s⃗ and the error e are sampled from specific distributions φs and φe,
respectively. The distribution φs is a uniform distribution over Ut ≜ {s ∈ Z |
s ∈ (−t/2, t/2]}, and φe is a discrete Gaussian distribution with variance σ2. If
i = k + 1, the index i is omitted.

Similarly, for dimension k, the MLWE ciphertext is defined as follows:

MLWEi[∆m] = (a⃗,b) =
(
a⃗,

k∑
j=1

ajsj + e
)t

+
(
0, . . . , 0︸ ︷︷ ︸

i−1

, ∆m︸︷︷︸
index i

, 0, . . . , 0︸ ︷︷ ︸
k−i+1

)t
∈ R(k+1)×1

q,n ,

where a⃗, si, e, and ∆ are similarly defined as the LWE ciphertext, and the index
i is omitted if i = k + 1. Lastly, we define the preMGSW ciphertext and the
MGSW ciphertext [21] necessary for defining the TFHE/FHEW. The preMGSW
ciphertext is defined in Eq. (10) using the (B, l)-gadget parameters and MLWE:

preMGSWi
B,l[m] =

[
MLWEi[Bm]

∣∣∣MLWEi[B2m]
∣∣∣ . . . ∣∣∣MLWEi[Blm]

]
. (10)

Then, given two distinct sets of gadget parameters (Ba, la) and (Bb, lb), the
MGSW ciphertext is defined as follows:

MGSW[m] =
[
preMGSW1

Ba,la [m]
∣∣∣ . . . ∣∣∣preMGSWk

Ba,la [m]
∣∣∣preMLWEk+1

Bb,lb
[m]
]
,

(11)

where MGSW[m] is an Rq,n-matrix of the size (k + 1)× (kla + lb)
2.

External Product. The external product between an MLWE ciphertext and
an MGSW ciphertext, denoted as MLWE⊡MGSW, is defined as in Fig. 1 3. The
external product is a critical unit operation for determining the bootstrapping
speed of the TFHE/FHEW. Therefore, reducing the number of external products
or improving its computation speed directly enhance the bootstrapping perfor-
mance. Furthermore, the size of errors generated during the external product

2 This definition adopts an optimization using two types of gadget parameters as
proposed in [7] to improve bootstrapping speed.

3 In this paper, all MGSW ciphertexts are assumed to be in the NTTw space.

9

1.Given MLWE[∆m1] = (a1, . . . ,ak, b), apply the Decom in
Section 4.2 to all coefficients to obtain the MRS number
c⃗ ∈ R(lak+lb)×1

q,d

2. Apply the NTTw in Section 4.3 to the all elements of c⃗
3. Using the MULw in Section 4.4, multiply the MGSW[m2] ∈
R

(k+1)×(lak+lb)
q,n by c⃗ ∈ R(lak+lb)×1

q,d to obtain d⃗ ∈ R(k+1)×1
q,d

4. Apply the INTTw in Section 4.3 to the k+1 elements of d⃗ to
obtain MLWE[∆m1m2]

Fig. 1: External product MLWE[∆m1m2] = MLWE[∆m1]⊡MGSW[m2].

affects the overall computation speed and the size of the BL. A detailed error
analysis is presented in Section 5.2.

How to Interprete Torus-based Ciphertexts. Even if the coefficients
of ciphertext are defined on Tq as in TFHE-rs, these coefficients can be viewed
as the elements of Zq without any transformation process. See Supplementary
Material D.

3.2 A Bootstrapping Example: Homomorphic NAND Operation

In this section, we examine an example of performing homomorphic NAND
gate operation using the previously introduced KeySwitching and blind rotation
techniques [12, 17, 26]. Note that bootstrapping consists of two main algorithms,
KeySwitching and blind rotation, which are explained in next Sections 3.3 and
3.4. The message m of every LWE ciphertext is either 0 or 1, and the scaling
factor is ∆ = ⌊q2/4⌋.

Fig. 2: Bootstrapping for evaluating NAND operation.

As in Fig. 2, after subtracting sum of two ciphertexts x⃗+ y⃗ from the (0, . . . , 0,
−5q2/8), the integer modulus is changed from q2 to q1, and the secret key sk2
is switched to sk1 using KeySwitching. The integer modulus is then converted
from q1 to 2d. Next, through blind rotation, the message of the MLWE ciphertext

10

becomes accX−m−e. Finally, using only the a part of the ciphertext and the
constant part of b, the ciphertext LWE[∆NAND(m1,m2) − q2/8] is constructed
and the NAND operation ends by adding q2/8 to the b part.

3.3 Key Switching and Automorphism

Key switching is the first step of bootstrapping, which changes the secret key of
the ciphertext while keeping the message 4. Given a ciphertext encrypted under
the secret key sk = (s1, . . . , sk), in order to switch sk to a new secret key sk′, the
key-switching key that encrypts sk under sk′ is required:

KSi = preMGSW[si], (12)

and the KeySwitching algorithm is performed (see Section 3 of [17]). Specifically,
for a automorphism σi ∈ Aut(Km), the automorphism key switching key from
σi(sk) to sk in Eq. (12) is referred to as AKi. This allows the message m of
ciphertextMLWE[∆m] encrypted under sk is changed to σi(m) as follows: (i) The
ciphertext is converted to MLWE[∆σi(m)] encrypted under σi(sk) by performing
AUTw to each polynomial in the ciphertext; (ii) the key σi(sk) is changed to sk
again via automorphism key-switching key AKi. Such operation is denoted as
Aut(MLWE[∆m],AKi) [26]. In Section 4.1, we propose an efficient method for
performing automorphisms in the NTTw>1 space.

Circular Security Assumption To perform bootstrapping in FHE, it is nec-
essary to have ciphertexts that encrypt the secret keys sk1 and sk2 using each
other, as shown below:

(Encsk1
(sk2),Encsk2

(sk1)) , (13)

where Enc refers to the encryption algorithm used in the cryptosystem. The
circular security assumption adopted in this paper assumes that the ciphertexts
in (13) are computationally indistinguishable from uniformly random sources
in the lattice-based cryptosystem introduced in Section 3.1, which is a critical
assumption of all FHE schemes [20].

3.4 Blind Rotation Implementation: GINX and AP+

In this section, we introduce two blind rotation, a crucial component of boot-
strapping, specifically the GINX method [12] and the improved AP+ method
[26], which is an enhancement of the AP method [17]. Consider the LWE ci-
phertext LWE[∆m] = (⃗a, b) = (a1, . . . , ak1 , b) and the secret key for encryption,
sk1 = (s1, . . . , sk1) ∈ U

k1
t . The ultimate goal of blind rotation is to produce the

following ciphertext:

MLWE[accX
∑n

i=1 aisi−b] (14)

4 We follow the KeySwitching method in [17].

11

where the accumulating polynomial acc ∈ Rq2,d includes a scaling factor ∆, and
it is well known that the coefficients of acc can be determined to program the
message after bootstrapping [17, 13].

GINX Blind Rotation. In order to define the GINX blind rotation, we
introduce the blind rotation key:

BLi,u =

{
MGSW[1] if si = u

MGSW[0] if si ̸= u
for 1 ≤ i ≤ k, u ∈ Ut, (15)

where the message in BLi,u is 1 if the i-th secret value si equals u, and 0 otherwise.
Using the blind rotation key in Eq. (15), the GINX blind rotation method for
generating the ciphertext in Eq. (14) is outlined in Algorithm 10, Supplementary
Material E [12].

AP+ Blind Rotation. We first introduce the mathematical background
before explaining AP+ blind rotation. Given the m-th cyclotomic field Km, from
the property Aut(Km) ∼= Z∗

2d
∼= (Z2 × Zd/2,+), we can always find g ̸= −1 such

that ord2d(g) = d/2. This means that for any a ∈ Z∗
2d, we can uniquely express

a = (−1)igj for 0 ≤ i ≤ 1 and 0 ≤ j < d/2. Therefore, for a = (−1)igj , we
define the functions ψ1(a) = i and ψ2(a) = j.

The AP+ blind rotation key consists of k1 MGSW ciphertexts BL and (v+1)k2
automorphism key-switching keys AK, defined as follows:

BLi ≜ MGSW[Xsi], for 1 ≤ i ≤ k1,
AKi,j ≜ preMGSW[σj(si)], for 1 ≤ i ≤ k2, j ∈ {g−1, g1, g2, . . . , gv}. (16)

In Supplementary Material F, Algorithm 11 is the AP+ blind rotation process
that generates the ciphertext in Eq. (14) using the keys defined in Eq. (16) [26].

It has been experimentally demonstrated that, among the KeySwitching and
blind rotation which constitute bootstrapping Fig. 2, the primary speed bottle-
neck is the blind rotation. Moreover, since the execution speed of blind rotation
is determined by the external product ⊡ in Fig. 1 and in order to accelerating
blind rotation, (i) accelerating the external product ⊡; (ii) reducing the num-
ber of external product operations. In the Section 4 we will introduce five core
operations NTTw, INTTw, MULw, AUTw, and Decom for accelerating external
product ⊡. Also in the Section 5.1, we propose GINX blind rotation capable of
performing MIMC operations and analysis bootstrapping error for reducing the
number of performing external product in blind rotation.

4 Core Homomorphic Algorithms on Rq,n When q is a
Product of 16-bit Primes

In this Section, we introduce 16-bit based five core operations for implementing
the external product ⊡.

12

4.1 Automorphism AUTw in the NTTw Domain

While automorphisms are not used in GINX blind rotation, the AP+ blind ro-
tation does rely on automorphisms. Since ciphertexts are stored as in NTTw

domain, we propose the AUTw algorithm, which allows the ciphertext in the
NTTw domain to undergo automorphism σi. Note that, AUTw is a critical al-
gorithm because it can be used as a unit operation to any lattice cryptosystem
using 16-bit integer operations.

Let primitive 2d/w-th root of unity ζ2d/w be given. From Eq. (2), the NTTw

domain can be expressed as
⊕

i∈Z∗
2d/w

Zq[X]/⟨Xw − ζi2d/w⟩. Then, Lemma 2

shows how the automorphism σi is applied in the NTTw domain.

Lemma 2 (Discussion in Section 2.2 of [4]) Let d be a power of two and let
σi ∈ Aut(Km) be an automorphism. Then for any i, j ∈ Z∗

2d with multiplicative
inverse i−1 ∈ Z∗

2d, the following isomorphism σ̂i is induced from σi:

σ̂i : Zp[X]/⟨Xw − ζj2d/w⟩ → Zp[X]/⟨Xw − ζji
−1

2d/w⟩ as a 7→ σi(a).

Algorithm 2 Proposed automorphism algorithm AUTw in the NTTw domain

Input: A ring element a saved on NTTw domain as NTTw(a) ∈⊕
j∈Z2d/w

Zq[X]/⟨Xw − ζj2d/w⟩, an automorphism σi for i ∈ Z∗
2d

Output: ř = NTTw(σi(a))
1: Calculate i−1 mod 2d/w
2: Set t⃗← (0, 0, ..., 0) ∈ Zw

p

3: for j ∈ Z∗
2d/w

4: j′ ← ji−1 mod 2d/w ▷ If i = 1 mod 2d/w, then j = j′

5: Set t⃗← aj ▷ Assign the coefficients of polynomial aj as a vector t⃗.

6: for k = 0 to w − 1
7: k′ ← ki mod w
8: z ← kj′ mod 2d/w
9: rj′k′ ← SM(tk, 2

βζz2d/w) ▷ rj′k′ refers to the k′-th coefficient of the j′-th

polynomial in ř

10: end for
11: end for
12: return ř

AUTw in Algorithm 2 utilizes Lemma 2 to perform the following steps: (i)
move aj stored in the j-th space of NTTw(a) (i.e., Zq[X]/⟨Xw − ζj2d/w⟩) to

the j′-th space (i.e., Zq[X]/⟨Xw − ζj
′

2d/w⟩), where j
′ is computed in Line 4; (ii)

In Line 7, compute the index k′ where the k-th coefficient of aj in the j′-th

13

space should be stored; (iii) In Line 8, compute ζ2d/w to the power of z to do
polynomial modulo operation and in Line 9, the k′-th coefficient is obtained by
multiplying the k-th coefficient tk by ζz2d/w.

Note on Algorithm 2. In Line 9, modular exponentiation is performed
with respect to ζ2d/w using z. However, since the exponentiation result can

be pre-calculated and stored in the form of 2βζz2d/w, which is an element in
the Montgomery domain, the exponentiation is not required during algorithm
execution and modular multiplication can be performed using SM. Therefore,
AUTw can be implemented with only O(d) additions and multiplications.

4.2 Gadget Decomposition Decom without Floating-point
Arithmetic

Since all the elements in MLWE ciphertext are stored in the RNS form, it is
necessary to convert these elements into the canonical form of the gadget ba-
sis to perform the external product ⊡. Specifically, in order to implement Eq.
(7), two methods have been proposed: one using floating-point arithmetic [22]
and another taking an explicit CRT approach [9]. The former requires heuristic
assumptions for the correctness due to its floating-point arithmetic, while the
latter uses fixed-point arithmetic and needs additional conditions for ensuring
correctness. In Algorithm 3, we introduce both algorithms and propose a mod-
ified version of the method in [9], which replaces fixed-point operations with
integer arithmetic. Here, q̂i is the dummy variable defined in Eq. (6).

Algorithm 3 Existing gadget decompositions [22] and [9], and proposed de-
composition

Input: 16-bit numbers q1, ..., qn with q = q1 · · · qn, a ∈ Zq with RNS form
(a∗1, ..., a

∗
n) ∈

∏n
i=1 Zqi , L = ⌈log2(q)− β⌉ , s such that 2s ≥ 2n, and s̄ such

that 2−s̄nmaxi qi < 1/2
Output: An (0, 2β , L)-MRS number (c̃1, ..., c̃l) of a
1: for i← 1 : L

2: v ←

(int16)⌊

∑n
i=1(float)(a

∗
i q̂i mod qi)/qi⌉ , (i) method in [22]⌊

3/4 + 2−s
∑n

i=1⌊2s(a∗i q̂i mod qi)/qi⌋
⌋

, (ii) method in [9]⌊
2−s̄

∑n
i=1(a

∗
i q̂i mod qi)⌊2s̄/qi⌋

⌉
, (iii) proposed method

3: ui ←
(∑n

i=1[a
∗
i q̂i mod qi] · q∗i

)
− vq mod 2β ▷ Output

4: (a∗1, ..., a
∗
n)← ((a∗1 − ui)2−β , ..., (a∗j − ui)2−β) mod 2β

5: end for
6: return (u1, ..., uL)

Correctness of Line 2-(i) and (ii) in Algorithm 3 when single pre-
cision is used. The correctness Line 2-(i) and (ii) are well analyzed in [22, 9],
or see Supplementary Material G.

14

Correctness of Line 2-(iii) in Algorithm 3. We now prove the following
technical lemmas to show the correctness.

Lemma 3 For given reals a, b and an integer s > 0, ab− 2−sa
⌊
2sb
⌋
< 2−sa.

Proof. For any real b, we know b − 1 < ⌊b⌋ ≤ b. Therefore, ab = 2−sa2sb ≥
2−sa⌊2sb⌋ > 2−sa(2sb− 1) = ab− 2−sa. ⊓⊔

Lemma 4 Let q1, ..., qn be positive integers, a1, ..., an be integers such that 0 ≤
ai < qi, q = max(q1, ..., qn), 0 < ϵ < 1/2, s be an integer such that 2−snq < ϵ/2,
and v = ⌊

∑n
i=1 ai/qi⌉. If

∣∣v−∑n
i=1 ai/qi

∣∣ < ϵ/2, then v =
⌊
2−s

∑n
i=1

⌊
2s/qi

⌋
ai
⌉
.

The proof is included in Supplementary Material H.

Theorem 5 If |a| < q/4,the output of Algorithm 3 run with the proposed
method in Line 2-(iii) is an MRS number.

The proof is included in Supplementary Material H. However the elements of
ciphertexts in FHE cannot be guaranteed to be smaller than q/4, which is the
reason why Algorithm 4 is proposed as an alternative to Algorithm 3.

Algorithm 4 Gadget decomposition Decom without floating-point arithmetic

Input: 16-bit numbers q1, ..., qn with q = q1 · · · qn such that q1 < ... < qn,
gadget parameter (D,B, l) such that D,B < q1, a ∈ Zq with the RNS form
(a∗1, ..., a

∗
n) ∈

∏n
i=1 Zqi , l = ⌈log2(q/D)/ log2(B)⌉

Output: An (D,B, l)-MRS number (u1, ..., ul) of a
1: n̂← n
2: for i← 0 : l − 1
3: Calculate the MRS number (ã1, ..., ãn̂) from (a∗1, ..., a

∗
n̂) [19]

4: ui ←

{∑n̂
k=1 ãkq1 · · · qk mod D, |ui| ≤ D/2 , if i = 0∑n̂
k=1 ãkq1 · · · qk mod B, |ui| ≤ B/2 , otherwise

▷ Output

5: n̂← argminn̂{q1 · · · qn̂DBi > q}

6: (a∗1, ..., a
∗
n̂)←

{(
(a∗1 − ui)D−1, ..., (a∗n̂ − ui)D−1

)
, if i = 0(

(a∗1 − ui)B−1, ..., (a∗n̂ − ui)B−1
)
, otherwise

7: end for
8: return (u1, ..., ul = a∗n̂) ▷ Note that u0 is discarded

Correctness of Algorithm 4. Let i = 0 at Line 2. Since Line 3 produces
an MRS number, it satisfies the following:

0 ≤ a = ã1 + ã2q1 + ã3q1q2 + · · ·+ ãn̂q1 · · · · · qn̂−1 < q. (17)

15

Line 4 performs a modular reduction of the right-hand side of Eq. (17) by D
or B, yielding the least significant log2D bits or log2B bits of ui, respectively.
Then, in Line 6, we compute a− u ∈ Zq, which is divisible by D or B, division
by D or B can be replaced by multiplication by D−1 or B−1. Finally, the output
(u1, ..., ul) clearly satisfies the following:

a = u0 +

l∑
i=1

uiDB
i−1. (18)

The output (u1, . . . , ul−1) of Algorithm 4 and the discarded value u0 are in
canonical form so that |u0| ≤ D/2 and |u1|, . . . , |ul−1| ≤ B/2. However, since
the last output element ul is a

∗
n̂, we cannot directly see that |ul| ≤ B/2. The

following Lemma 6 shows that by adjusting D, it is possible to ensure that
|ul| ≤ B/2.

Lemma 6 Suppose that q and the gadget parameter (D,B, l) satisfy q ≤ DBl(ϵ−
0.5/B). Then, the output (u1, . . . , ul) of Algorithm 4 and discarded value u0 sat-
isfies |u0| ≤ D/2, |ui| ≤ B/2 for i = 1, . . . , l − 1 and 0 ≤ ul < ϵB.

The proof is included in Supplementary Material H.

Using Lemma 6, set ϵ = 0.5 to achieve ul ≤ B/2. For a sufficiently large B,
ϵ − 0.5/B ≈ ϵ and so approximately q ≤ 0.5DBl is sufficient. That is, for D′

and B satisfying ⌈log2(q)⌉ = D′Bl, if D = 2D′, one additional bit ensures that
the last bit falls within B/2. Additionally, as will be confirmed in Section 5.2,
setting D larger than B reduces the error after bootstrapping.

4.3 NTTw and INTTw

If a single prime factor qi of q = q1 · · · qn does not satisfy 2d2 | qi−1, then NTT1

cannot be performed. In such case, we employ NTTw and INTTw in Algorithms 6
and 7 of Supplementary Material B, which are modified from the implementation
methods in [36].

4.4 MULw from Karatsuba Algorithms in the Montgomery Domain

After applying the NTTw to a polynomial, the output is in the domain
⊕

i∈Z∗
2d/w

Zq[X]/⟨Xw − ζi2d/w⟩. Therefore, in order to multiply two polynomials, one must

perform d/w multiplications of two polynomials of degree at most w−1, and then
obtain the remainder from dividing each result by the corresponding Xw−ζi2d/w.
We use, Karatsuba polynomial multiplication is used as described in Algorithms
8 and 9 of Supplementary Material C.

16

5 MIMC-enabled Blind Rotation, Analysis of
Bootstrapping Error, and Parameter Optimization

In this section, we propose a blind rotation for FHE16 based on NTTw, INTTw,
Mulw, and Decom. Specifically, the proposed blind rotation achieves performance
gain when simultaneously rotating multiple ciphertexts and also enables MIMC
operations that allow for different computation on each ciphertext.

5.1 MIMC-enabled Blind Rotation

In this section, we modify the existing GINX blind rotation in Algorithm 10 of
Supplementary Material E as given in Algorithm 5, while demonstrating how
MIMC operation is performed.

Algorithm 5 Proposed parallel bootstrapping of GINX blind rotation

Input: MLWE integer modulus q = q1 · · ·qn where q′is are distinct primes, secret
key alphabet Ut, L LWE ciphertexts cti = (ai1, ..., aik1

, bi), i = 1, ..., L, en-
crypted by the secret key sk = (s1, ..., sk1

) ∈ Uk1
t , accumulating polynomials

acc1,...,accL, and a GINX bootstrapping key BL
Output: L MLWE ciphertexts MLWE[acciX

∑
j aijsj−bi], i = 1, ..., L

1: CT←
[
ct1|...|ctL

]
such that cti ← (0, .., 0, acci(X)X−bi)

2: for i← 0; i < n; i← i+ 1

3: CT′ ← Decom(CT) ∈ RL×(lak2+lb)
q,d ▷ CT′ = (CT1, ...,CTn) are saved as

CRT representation

4: for r = 1 : n
5: for j = 1; j ≤ L; j = j + 1 ▷ Following lines are operated in Zqr

6: CT′
r ← NTTw(CT

′
r) ▷ Point 1

7: for all u ∈ Ut

8: CTr ← MULw(MULw(CT
′
r, (BLi,u)r), X

aiju − 1) ▷ Point 2
9: end for

10: CTr ← INTTw(CTr) ∈ RL×(k2+1)
qr,d

▷ Point 3
11: end for
12: end for ▷ Sync point so that CT = (CT1, ...,CTn)

13: end for
14: return CT

Algorithm 5 performs blind rotation using L LWE ciphertexts cti and their
corresponding accumulating polynomials acci. The external products ⊡ is made
up of NTTw, INTTw, MULw, and Decom corresponding to Lines 3-12. While the
existing Algorithm 10 performs blind rotation separately for each ciphertext cti,
Algorithm 5 reorders the for-loop so that all ciphertexts are multiplied by the
same BLi,u in Line 8. This reordering does not change the number of operations
but, from a hardware perspective, BLi,u is loaded into cache memory and reused

17

repeatedly, reducing memory access frequency and improving the speed of blind
rotation.

Furthermore, Line 4 shows that the for-loop over the integer modulus q =
q1 · · · qn splits the computations across n factor, qi. The GINX blind rotation in
Algorithm 10 performs parallel processing by dividing unit operations at Points
1, 2, and 3, which is the only GPU acceleration strategy for blind rotation
[38]. However, Algorithm 5 performs all computations using only Zqr opera-
tions, within the for-loop at Line 4, allowing independent computations across
different Zqr . As long as the sync point at Line 12 aligns when the operations
over each Zqr are completed, the correct results are obtained, which enables bet-
ter acceleration on GPUs, utilizing multiple streaming multiprocessors to further
speedup. In the next section, we derive accurate model for the errors that arise
after bootstrapping and propose parameter optimization techniques that reduce
key size while improving the bootstrapping speed.

5.2 Bootstrapping Error Analysis

In this section, we calculate the size of the error e obtained after bootstrapping
and the size of the BL key required for bootstrapping. First, we introduce the er-
ror model from [17, 26] and provide accurate calculation results when two gadget
parameters (BA

2 , l
A
2) and (BB

2 , l
B
2) are used for the MGSW ciphertext. Finally,

we derive the parameters for the experiments in Section 6.
To begin with an error model in [17, 26], we assume Heuristic 1 for the ex-

ternal product ⊡.

Heuristic 1 The result of Decom performed on an MLWE ciphertext is inde-
pendent and uniformly random.

Under Heuristic 1, the variance of each Decom output is B2/12, leading to the
following error variance:

lA2 k2d

(
(BA

2)
2

12

)
σbl, (19)

where Eq. (19) is derived under the condition that DA
2 = DB

2 = BA
2 = BB

2 . Now,
we recalculate the error variance when DA

2 , D
B
2 , BA

2 , and B
B
2 are all different.

Let the internal error in MLWE[∆m1] be denoted as e ∈ Rq,d, and the internal

error in MGSW[m2] be denoted as (f⃗
(1)
, f⃗

(2)
) ∈ RlA2 k2

q,d ×R
lb
q,d. After performing

the external product, the resulting error variance is known as follows [25].

lA2 k2∑
i=1

ua
i f

(1)
i +

lb∑
i=1

ub
if

(2)
i +

k2∑
i=1

va
i ski + v b +m2e . (20)

In Eq. (20), ua
i and ub

i are the Decom outputs for a i and b parts ofMLWE[∆m1],
respectively, which are bounded by BA

2 /2 and BB
2 /2. v

a
i and v b are the discarded

18

elements from a i and b parts of Decom outputs, which are bounded by DA
2 /2

and DB
2 /2, respectively. Thus, when m2 is a zero polynomial and Heuristic 1 is

applied to Eq. (20), the variance in Eq. (20) becomes as follows 5.

σ2
⊡ =

[
k2d

12

(
lA2 (B

A
2)

2σ2
bl +DA

2 σ
2
sk2

)
+

1

12

(
lB2 d(B

B
2)2σ2

bl +DB
2

)]
. (21)

It is known that the variance of the error after performing the GINX blind
rotation is σ2

acc,GINX = k1σ
2
⊡ [26]. For the AP+ blind rotation, since automorphism

keyswitching is performed d(1− (1− v−1) exp(−k1/d)) times [26], the following
additional term is added:

σ2
acc,AP+ = k1σ

2
⊡ + k1d

(
1− (1− v−1) exp(−k1/d)

)
σ2
aut,

where σ2
aut is the variance of the error in the automorphism key AK. Therefore,

the error variance σ2
acc varies depending on the blind rotation method.

Let us consider two terms lA2 (B
A
2)

2σ2
bl and D

A
2 σ

2
sk2

) in Eq. (21). Then, since

we select lA2 ≥ 2 and σ2
bl ≥ σsk2 , the impact of BA

2 on σ2
⊡ is greater than that of

DA
2 . Therefore, if we choose the parameters such that DA

2 + lA2 B
A
2 ≈ log2(q2),

the error can be reduced by setting DA
2 slightly larger than or equal to BA

2 . This
effect stand out even more for DB

2 and BB
2 . In practice, we select the parameters

such that d ≥ 29 and DB
2 + lB2 B

B
2 ≈ log2(q), making significant increase of

DB
2 so that the b part of the MLWE ciphertext can be approximated with a

small number of bits while experiencing minimal error amplification. Thus, the
proposed error model in Eq. (21) allows for more precise and compact parameter
tuning than the previous model in Eq. (19).

Finally, the total error variance model after bootstrapping is as follows [26]6.

σ2
tot =

(2d)2

q22
· 2σ2

acc +
(2d)2

q21
(σ2

ks1 + σ2
ms1) + σ2

ms2. (22)

Here, σ2
acc is either from σ2

acc,GINX or σ2
acc,AP+ depending on the blind rotation,

σ2
ks1 = σ2

ksk2d2lks is the variance of the error from the KeySwitching 7, and σ2
ms1 =

||sk2||22+1
12 and σ2

ms2 =
||sk1||22+1

12 are the errors when the integer modulus changes
from q2 to q1 and from q1 to 2d, respectively, as in Fig. 2. ||sk1||2 and ||sk2||2 are
assumed to be

√
k2d/2 and

√
k1/2 for binary or ternary support, and

√
k2dσ2

and
√
k1σ2 for discrete Gaussian distribution with variance σ2 [26].

Suppose that a t-bit message representing one of 2t symbols is encrypted
in an LWE ciphertext with modulus 2d. If we set the symbol distances to their
maximum, 2t messages are mapped to 0d/2t, 2d/2t, 4d/2t, ..., (2t−1)2d/2t, and
hence the size of error in the ciphertext must be smaller than half the distance

5 If the support size t = |Ut| of sk1 is not 2, the variance increases by a factor of
4(|Ut| − 1) [25, 26].

6 In [26], the modulus switching parameter is changed from q1 to q, but for simplicity,
we fix q = 2d in this paper.

7 In TFHE-rs, the error increases by σ2
ks1B

2
ks, but the key size is reduced by 1/Bks [12].

19

between symbols, i.e. d/2t. The probability of bootstrapping failure, calculated
based on this, is as follows [17, 26]:

pfail = erfc

(
d

2t
√
2σtot

)
, (23)

where erfc is the complementary error function.
Note on FFT-based GINX blind rotation. On the other hand, when

performing polynomial multiplication using double-precision FFT, approxima-
tion errors arise. Since the precision is 53 bits for double precision, using an
integer modulus 264 inevitably leads to the loss of 64 − 53 = 11 bits of infor-
mation. In [8], the variance of the error from FFT is experimentally obtained as
follows.

σ2
acc = k12

2(64−53)−2.6lA2 (B
A
2)

2d2(k2 + 1), (24)

where the exponent 2.6 is an empirically selected compensation factor. Since the
gadget parameters lA2 and BA

2 , which control the error magnitude, are positive
integers, Eq. (24) shows a minimum error floor of k1k22

19.4d2 when both values
are set to 1. In Section 6.3, we explain the reason why Eq. (24) is a primary
reason that multiple message cannot be packed into a single ciphertext with
TFHE-rs contrary to FHE16.

5.3 Parameter Optimization Strategy: OPENFHE, TFHE-rs, and
FHE16

In this section, we examine how the FHE parameters in Table 1 are related to the
bootstrapping speed, key size, and security level. We also compare the parameter
selection strategies of OpenFHE and TFHE-rs with the criteria for selecting the
parameters of FHE16.

Given cryptographic parameters (k1, q1) and (k2, d, q2) that satisfy the (com-
putational) security level λ bits, the blind rotation speed is proportional to the
number of NTTw operations in the external product, that is k1(l

A
2 k2+l

B
2). There-

fore, optimization of (k1, q1) and (k2, d, q2) involves minimizing lA2 and lB2 , while
meeting the minimum requirement of pfail in Eq. (23).

On the other hand, the blind rotation key size (bits) for GINX and AP+ is
calculated from parameters as follows.

SIZEBL−GINX =k1⌈log(q2)⌉d(k2 + 1)(lA2 k2 + lB2)

SIZEBL−AP+ =SIZEBL−GINX + (v + 1)⌈log(q2)⌉d(k2 + 1)(lA2 k2). (25)

Table 2 lists the parameter values of OpenFHE v1.2 and TFHE-rs v0.8, alongside
the proposed parameter values for FHE16. Note that the parameters in Table 2
are also used for experiments in Section 6.

The security parameter λ is obtained by using the LWE estimator [2], assum-
ing the BKZ, which is currently the fastest known method to attack lattice-based
cryptography. The Gram-Schmidt norm of the reduced basis in BKZ is assumed

20

-
LWE MLWE

sk1 k1 q1 B1 l1 σks sk2 d k2 q2 B
A
2 BB

2 lA2 lB2 σbl λ(bits)

pOpen
G T 503 14 25 3 3.19 T 1024 1 27 29 29 2 2 3.19 120.9

pOpen
A 3.19 447 14 25 3 3.19 3.19 1024 1 28 210 210 2 2 3.19 126.5

pTFHEG B 811 32 23 5 214.47 B 512 3 32 210 210 2 2 4.0 132.0
pFHE16G B 585 14 25 3 3.19 Q 512 2 28 29 210 2 1 3.59 128.2
pFHE16A 2.19 472 14 25 3 3.19 1.15 512 2 28 29 210 2 1 3.19 128.4

Table 2: FHE parameters of OpenFHE, TFHE-rs, and FHE16. B,T, and Q stands
for binary, ternary, and quinary supports, respectively, and real numbers in sk
stands for standard deviation of discrete Gaussian distribution

to follow the geometric series assumption (GSA) [35], and the cost of BKZ algo-
rithm is computed either using the Core-SVP model [3] or the list-decoding en-
hanced enumeration-based cost [30] 8. Note that in this paper, we use the latter,
more recent method, and determine the parameter values to ensure pfail < 2−32,
which is adapted for bootstrapping speed competition in many FHEs [27, 39].

In Table 2, pOpen
G and pOpen

A refer to the parameters of OpenFHE for GINX
and AP+, respectively, while pTFHEG refers to the GINX parameters of TFHE-rs. In
FHE16, pFHE16G stands for GINX, and pFHE16A stands for AP+. The modulus q2 in
FHE16 is set as p14p25 from Table 9 in Supplementary Material A, which allows
NTT1 operations with d = 512 while ensuring that 4p14, 4p25 < 216, preventing
overflow even after four additions. Thus, q2 = p14p25 is used as a default, unless
stated otherwise.

OpenFHE minimizes key size by reducing q1 and q2, but only considers lA2 =
lB2 , k2 = 1, and the same support for both sk1 and sk2. In contrast, TFHE-rs fixes
q1 and q2 to machine-friendly values of 232 or 264, which leads to an increase of
k2 in order to meet the security level λ, resulting in larger key sizes.

FHE16, by setting different supports for sk1 and sk2, can achieve a security
level of at least 128 bits, while keeping sk1 binary under the GINX blind rotation
to improve the computational speed. Also, by choosing lA2 > lB2 and reducing
lB2 , the number of external product operations is reduced, which improves the
bootstrapping speed and reduces the BL key size.

In the next section, we conduct various experiments and comparison of the
bootstrapping performance of FHE schemes.

6 Experiments

In this section, we experimentally analyze the bootstrapping speeds of OpenFHE,
TFHE-rs, and FHE16. Table 3 lists the specifications of the machines used for
experiments.

8 In the LWE estimator, the former can be computed using Estimate.rough(), while
the latter uses Estimate().

21

Index CPU frequency L1 L2 L3 Memory BW

computer1 3.2GHz 32KiB 1MiB 30.25MiB(shared) 7.6GB/s
computer2 1.1GHz 32KiB 256KiB 6MiB(shared) 12.2GB/s

Table 3: Machine specification

computer1 is a server computer equipped with Intel(R) Xeon(R) Gold 6240R
CPU @ 2.40GHz, and computer2 is a laptop equipped with Intel(R) i5-8260U
CPU (1.6GHz). The CPU frequency, cache size, and memory bandwidth were
measured directly. The average of CPU frequency was measured by running the
turbo mode using the Linux program Stress under load. computer1 supports both
AVX2 and AVX512, whereas computer2 supports only AVX2. By using these
two machines, we can assess the impact of machine performance on algorithm
efficiency.

6.1 FHE16 vs OpenFHE

The bootstrapping speeds of OpenFHE using the parameters pOpen
G and pOpen

A

are presented in Table 4. Also, the bootstrapping speeds of FHE16 using the
same parameters pOpen

G and pOpen
A are presented with the only difference of using

q2 = p14p25 from Supplementary Material A, Table 9.

(millisecond) AVX2 (computer1,computer2) AVX512 (computer1)

OpenFHE GINX (35, 66) 23
FHE16 GINX (7.65, 8.85) 5.3

OpenFHE AP+ (34, 72) 20
FHE16 AP+ (7.54, 9.68) 5.08

Table 4: Comparison of bootstrapping time: FHE16 and OpenFHE with pOpen
G

and pOpen
A

Table 4 shows that AP+ is generally slightly faster than GINX method, which
aligns with the experimental results in [26], where the GINX method was slower
when using a ternary secret key for LWE ciphertexts. Table 4 also shows that
even when using the same parameters as OpenFHE, FHE16 achieves bootstrap-
ping speed up to 4 times faster than OpenFHE. A notable observation is that,
compared to OpenFHE whose performance highly depends on CPU speed and
cache memory size, FHE16 shows a little degradation across different machines.

22

6.2 FHE16 vs TFHE-rs when q2 = 232

Table 5 compares the bootstrapping times between TFHE-rs and FHE16 using
the same parameter pTFHEG , except q2 = p14p25 is used for FHE16. From Table
5, we can see that FHE16 is 1.4 times faster with AVX512 and up to 1.18 times
faster with AVX2, compared to TFHE-rs.

(millisecond) AVX2 (computer1,computer2) AVX512 (computer1)

TFHE-rs (16.6, 17) 14
FHE16 (14, 15.1) 10

Table 5: Comparison of bootstrapping time: FHE16 and TFHE-rs with pTFHEG

Comparison of bootstrapping time between FHE16 vs TFHE-rs: when
d2 is higher than 512. In order to perform encryption on multiple messages,
both TFHE-rs and FHE16 should increase d2, which is crucial for implementing
homomorphic integer arithmetic with large message bits. Therefore, to compare
the bootstrapping time between TFHE-rs and FHE16 for various d2, we conducted
experiments using the same parameter pTFHEG , while adjusting d2. To minimize
w in NTTw, we selected q2 = p24p25 from Table 9 in Supplementary Material A.

(millisecond) d2 = 1024 d2 = 2048 d2 = 4096

TFHE-rs 30 65 131
FHE16 22 57 131

Table 6: Comparison of bootstrapping time comparison: FHE16 and TFHE-rs
for various d2

In Table 6, the bootstrapping time of TFHE-rs increases approximately lin-
early with d2

9. However, FHE16 shows steeper increase since NTT2 is performed
for d2 = 2048 and NTT4 is performed for d2 = 4096. Note that, if d ≤ 4096
FHE16 is not slower than TFHE-rs for two primes i.e., n = 2.

Bootstrapping time comparison model between FHE16 and TFHE-
rs. In the next section, we discuss the bootstrapping speed between FHE16 and
TFHE-rs when q2 is approximately 64 bits. Before the next section, we propose
a metric for the speed ratio between FHE16 and TFHE-rs based on changes in
q2 and d2, and aim to measure the performance of both FHE when parameters

9 Although the complexity of FFT operations is O(d2 log d2), the impact of log d2
appears minimal up to d2 = 4096.

23

are increased.[
d2(l

A
2 k2 + lB2) using TFHE-rs values

]−1 × d2(lA2 k2 + lB2)
n

2
using FHE16 values

]
.

(26)

The Eq. (26) is based on the following three experimental justification: (i) When
the number of primes comprising q2 is 2, the results in Table 6 show that FHE16
is not slower than TFHE-rs for d2 ≤ 4096. Since TFHE-rs uses double-precision
FFT, the number of external product operations does not increase, whereas in
FHE16, the number of external products increases linearly with the number of
primes n. Therefore, we expect that FHE16 would be n/2 times slower than
TFHE-rs hence when n = 2, FHE16 is not slower than TFHE-rs; (ii) In Table 6,
the impact of d2 is linear until d2 ≤ 4096; (iii) The number of NTTw operations
is (lA2 k2 + lB2), which is the most time-consuming operation in bootstrapping.

6.3 FHE16 vs TFHE-rs with q2 ≈ 264

In this section, we compare FHE16 and TFHE-rs with q2 ≈ 264, in terms of
implementing high-precision integer homomorphic operation [14]. When imple-
menting integer homomorphic operations, it is crucial to choose a modulus large
enough to support ciphertext multiplication. It is known that the error after
multiplication is given by Eq. (27) [14] 10.

σ2
mul = Ω

(
22tq−2

2 dσ4
tot + k2d

222tσ2
tot

)
. (27)

Hence, the Eq. (27) is used for ensuring the correctness of multiplying t-bits

message homomorphically, by using the following equation erfc

(
q2

2t+1
√
2σmul

)
<

2−32.
To compare FHE16 and TFHE-rs, we select parameters message4carry4pbs16

used in TFHE-rs and Propose1-Propose8 used in FHE16 as in Table 7. Here, t is
the message bits being multiplied.

For Propose1, the execution time is similar to that of TFHE-rs, but the number
of message bits t for multiplication of FHE16 is one bit less. For Propose2, t is
the same as TFHE-rs, but the execution time is expected to be 1.2 times longer.
However, like Propose3 and 4, FHE16 can adjust parameters to increase value of
t, whereas TFHE-rs cannot select t > 7 due to the error floor caused by FFT.

Furthermore, FHE16 can encrypt more message bits than TFHE-rs by adjust-
ing both d2 and k2 as seen in Propose5 through Propose8. Such flexible parameter
choices of FHE16 are critical to FHE. For example, in the case of 16-bit integer
homomorphic multiplication, the TFHE-rs requires splitting the 16-bit integer

10 We calculate only the order of worst-case errors from Eq. (1) of Theorem 1 in [14].
Although the number of message bits t is conservatively estimated, it is sufficient
for performance comparison.

24

param idx sk2 q2 BA
2 BB

2 lA2 lB2 σbl t S BLsize λ

message4carry4pbs16 B 264 29 29 4 4 211.9 7 - - 123.9
Propose1 Q 255.36 214 216 2 2 7.4 6 1.00x 0.43x 128.0
Propose2 Q 255.36 214 212 3 3 7.4 7 1.50x 0.65x 128.0
Propose3 Q 255.36 211 212 4 3 7.4 8 1.75x 0.76x 128.0
Propose4 Q 255.36 29 210 5 4 7.4 9 2.25x 0.98x 128.0

Propose5(d = 210, k2 = 3) 6.9 284.25 221 221 2 1 9.8 11 1.31x 2.32x 128.6
Propose6(d = 210, k2 = 3) 6.9 284.25 221 221 2 2 9.8 14 1.50x 2.65x 128.6
Propose7(d = 210, k2 = 3) 6.9 284.25 221 221 3 2 9.8 16 2.06x 3.65x 128.6

Propose8(d = 29, k2 = 3) Q 241.85 29 210 5 4 6.39 5 0.89x 3.1x 128.2

Table 7: Comparison of bootstrapping time: ProposeX for FHE16 and
message4carry4pbs16 for TFHE-rs when q2 ≫ 232. t is the number of valid mes-
sage bits after blind rotation and multiplication [14]. S is a calculated ratio of
expected execution time in Eq. (26). BLsize is the relative key size via Eq. (25).
d = 211 and k2 = 1 except Propose6 and Propose7. q2 is chosen p20p21p24p25,
p20p21p22, and p20p21p22p23p24p25 for Propose1-5, Propose6-8, and Propose9 , re-
spectively.

into three ciphertexts, each of which holding a 7-bit message and hence to im-
plement a 16-bit multiplier can be implemented using three 7-bit multipliers.
In contrast, Propose7 can directly handle a 16-bit integer in a single ciphertext,
enabling immediate 16-bit multiplication. Thus, FHE16, which avoids FFT er-
rors, allows for more efficient implementation of homomorphic integer arithmetic
across various precision level.

FHE16 vs NTRU-based FHE. We also compare FHE16 and NTRU-based
FHE based on experimental results listed in Supplementary Material I.

6.4 Parameter-Optimized FHE16: MIMC and Multi-threading

We compare the bootstrapping time and bootstrapping key BL size using pOpen
G

and pOpen
A for OpenFHE, pFHE16

G for TFHE- rs, and pFHE16G and pFHE16A for FHE16.

Table 8 shows that FHE16 is 3.3 times faster than OpenFHE when using AP+

method, 6.5 times faster than OpenFHE and 4 times faster than TFHE-rs when
using GINX method is used. The reason why FHE16 outperforms OpenFHE using
GINX method is that the parameters have been optimized to allow sk1 to have
binary support.

The GINX BL key size of FHE16 is almost half that of OpenFHE because
OpenFHE uses ternary support for sk1, while FHE16 uses binary support. When
using AP+ method, the BL key size of FHE16 is slightly smaller than that of
OpenFHE because FHE16 uses gadget parameters lA2 > lB2 , which results in a
smaller bootstrapping key. Finally, the BL key size of TFHE-rs is 3.8 times larger

25

- OpenFHE TFHE-rs FHE16

Time (GINX, ms) 23 14 3.5
Time (AP+, ms) 20 - 6.0

- OpenFHE TFHE-rs FHE16

BL Key size (GINX, MiB) 26.4 55 14.4
BL Key size (AP, MiB) 12.3 - 11.8

Table 8: Comparision of boostrapping time using computer1 and BL key size.

than that of FHE16 because TFHE-rs sets the integer modulus q2 to the word
size 232.

MIMC Performance. Fig. 3 shows the average amortized execution time
for performing bootstrapping on 100L ciphertexts for averaging amortized time
simultaneously using the proposed blind rotation in Algorithm 5 with MIMC
parameter L.

Fig. 3: Amortized bootstrapping time with L MIMC. AVX512 is used with
computer1 and AVX2 is used with computer2.

In Fig. 3, the amortized the execution time for L= 29 ∼ 30 is 1.14x-1.2x
faster than L= 1. Since the size of cache memory of computer2 is smaller than
computer1, the AVX2 amortized execution time of MIMC does not converge well
even after averaging over many ciphertexts. Nevertheless, it demonstrates that
MIMC can improve the bootstrapping speed by up to a factor of 1.14x even if
the cache size is small.

26

7 Conclusions and Future Works

Conclusion. This paper proposed FHE16, an FHE system using only 16-bit
arithmetic operations. We showed that FHE16 outperforms current gate-based
FHE, OpenFHE and TFHE-rs. Also, we confirmed that FHE16 is not only faster
in gate operations but also capable of encrypting more messages than TFHE-
rs. Moreover, the blind rotation key size of FHE16 is small due to parameter
optimization. Future Work 1. Implementing Homomorphic Integer Op-
erations. Since FHE16 can handle more messages than TFHE-rs, fewer boot-
strappings are possible when implementing homomorphic integer arithmetic with
various precision. Therefore, the development of optimized homomorphic integer
operations based on FHE16 will be crucial as future research.

Future Work 2. GPU and Hardware Acceleration. The proposed blind
rotation in Algorithm 5 uses a composite modulus q2 = q1 · · · qn, allowing
parallelization across Zqi operations in NTTw, MULw, and INTTw. This opens
up opportunities for optimized GPU implementations, where threads can be
grouped by qi, with each thread performing the corresponding Zqi operations,
similar to the optimization strategies in [38]. Furthermore, since FHE16 avoids
floating-point operations such as FFT and relies entirely on 16-bit arithmetic,
it is well-suited for hardware implementations on ASICs or FPGAs. Therefore,
high-density designs with multiple 16-bit ALUs are promissing areas, low power
consumption and small area.

References

1. Albrecht, M.R., Davidson, A., Deo, A., Gardham, D.: Crypto dark matter on the
torus: Oblivious prfs from shallow prfs and tfhe. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 447–476.
Springer (2024)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key ex-
change—a new hope. In: 25th USENIX Security Symposium (USENIX Security
16). pp. 327–343 (2016)

4. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Annual International Cryptology Conference. pp. 470–499. Springer
(2020)

5. Badawi, A.A., Alexandru, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli,
S., Genise, N., Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D.,
Pascoe, C., Polyakov, Y., Quah, I., R.V., S., Rohloff, K., Saylor, J., Suponitsky,
D., Triplett, M., Vaikuntanathan, V., Zucca, V.: OpenFHE: Open-source fully ho-
momorphic encryption library. Cryptology ePrint Archive, Paper 2022/915 (2022),
https://eprint.iacr.org/2022/915, https://eprint.iacr.org/2022/915

6. Bae, Y., Cheon, J.H., Kim, J., Stehlé, D.: Bootstrapping bits with ckks. In: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 94–123. Springer (2024)

27

7. Belorgey, M.G., Carpov, S., Gama, N., Guasch, S., Jetchev, D.: Revisiting key
decomposition techniques for fhe: Simpler, faster and more generic. Cryptology
ePrint Archive (2023)

8. Bergerat, L., Boudi, A., Bourgerie, Q., Chillotti, I., Ligier, D., Orfila, J.B., Tap,
S.: Parameter optimization and larger precision for (t) fhe. Journal of Cryptology
36(3), 28 (2023)

9. Bernstein, D., Sorenson, J.: Modular exponentiation via the explicit chinese re-
mainder theorem. Mathematics of Computation 76(257), 443–454 (2007)

10. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V., Smart, N.P.: Final: faster fhe
instantiated with ntru and lwe. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 188–215. Springer (2022)

11. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes. Journal of Mathematical Cryptology
14(1), 316–338 (2020)

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

13. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium. pp. 1–19. Springer (2021)

14. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping
with larger precision and efficient arithmetic circuits for tfhe. In: Advances in
Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory and
Application of Cryptology and Information Security. pp. 670–699. Springer (2021)

15. Chung, C.M.M., Hwang, V., Kannwischer, M.J., Seiler, G., Shih, C.J., Yang, B.Y.:
Ntt multiplication for ntt-unfriendly rings: New speed records for saber and ntru
on cortex-m4 and avx2. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems pp. 159–188 (2021)

16. Conrad, K.: Cyclotomic extensions. Preprint (2015)
17. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less

than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015)

18. Ducas, L., van Woerden, W.: Ntru fatigue: how stretched is overstretched? In:
Advances in Cryptology–ASIACRYPT 2021: 27th International Conference on the
Theory and Application of Cryptology and Information Security. pp. 3–32. Springer
(2021)

19. Gbolagade, K.A., Cotofana, S.D.: An o (n) residue number system to mixed radix
conversion technique. In: 2009 IEEE International Symposium on Circuits and
Systems. pp. 521–524. IEEE (2009)

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference. pp. 75–92.
Springer (2013)

22. Halevi, S., Polyakov, Y., Shoup, V.: An improved rns variant of the bfv homomor-
phic encryption scheme. In: Topics in Cryptology–CT-RSA 2019: The Cryptogra-
phers’ Track at the RSA Conference 2019, San Francisco, CA, USA, March 4–8,
2019, Proceedings. pp. 83–105. Springer (2019)

23. Higham, N.J.: The accuracy of floating point summation. SIAM Journal on Scien-
tific Computing 14(4), 783–799 (1993)

28

24. Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: Lfhe: fully homomorphic encryp-
tion with bootstrapping key size less than a megabyte. Cryptology ePrint Archive
(2023)

25. Lee, S., Shin, D.J.: Overflow-detectable floating-point fully homomorphic encryp-
tion. IEEE Access (2024)

26. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient fhew bootstrapping with small evaluation keys, and applications to threshold
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 227–256. Springer (2023)

27. Li, Z., Lu, X., Wang, Z., Wang, R., Liu, Y., Zheng, Y., Zhao, L., Wang, K., Hou,
R.: Faster ntru-based bootstrapping in less than 4 ms. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2024(3), 418–451 (2024)

28. Liu, Z., Wang, Y.: Amortized functional bootstrapping in less than 7ms, with Õ(1)
polynomial multiplications. Cryptology ePrint Archive (2023)

29. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cy-
clotomic rings and applications to lattice-based zero-knowledge proofs. In: Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. pp. 204–224. Springer (2018)

30. MATZOV: Report on the security of lwe: Improved dual lattice attack. Tech. rep.,
The Center of Encryption and Information Securiy (2022)

31. Muller, J.M., Brisebarre, N., De Dinechin, F., Jeannerod, C.P., Lefevre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S., et al.: Handbook of floating-point
arithmetic, vol. 1. Springer (2018)

32. Nguyen, N.K., Seiler, G.: Greyhound: Fast polynomial commitments from lattices.
In: Annual International Cryptology Conference. pp. 243–275. Springer (2024)

33. Nussbaumer, H.J., Nussbaumer, H.J.: The fast Fourier transform. Springer (1982)
34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)
35. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:

STACS 2003: 20th Annual Symposium on Theoretical Aspects of Computer Sci-
ence. pp. 145–156. Springer (2003)

36. Seiler, G.: Faster avx2 optimized ntt multiplication for ring-lwe lattice cryptogra-
phy. Cryptology ePrint Archive (2018)

37. Smart, N.P.: Practical and efficient fhe-based mpc. In: IMA International Confer-
ence on Cryptography and Coding. pp. 263–283. Springer (2023)

38. Wei, D., Gizem, S.C., Bogdan, O., Kitsu: Cuda-accelerated fully homomorphic
encryption library (2019), https://github.com/username/repository

39. Xiang, B., Zhang, J., Deng, Y., Dai, Y., Feng, D.: Fast blind rotation for boot-
strapping fhes. In: Annual International Cryptology Conference. pp. 3–36. Springer
(2023)

40. Zama: TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean
and Integer Arithmetics Over Encrypted Data (2022), https://github.com/zama-
ai/tfhe-rs

29

Supplementary Material

A List of primes whose values are less than 216

idx p m θ ⌈log2(p)⌉ idx p m θ ⌈log2(p)⌉ idx p m θ ⌈log2(p)⌉
p1 257 8 1 9bit p10 26881 8 105 15bit p19 32257 9 63 15bit
p2 769 8 3 10bit p11 30977 8 121 15bit p20 13313 10 13 14bit
p3 3329 8 13 12bit p12 31489 8 123 15bit p21 15361 10 15 14bit
p4 7937 8 31 13bit p13 7681 9 15 13bit p22 19457 10 19 15bit
p5 9473 8 37 14bit p14 10753 9 21 14bit p23 25601 10 25 15bit
p6 14081 8 55 14bit p15 11777 9 23 14bit p24 18433 11 9 15bit
p7 14593 8 57 14bit p16 17921 9 35 15bit p25 12289 12 3 14bit
p8 22273 8 87 15bit p17 23041 9 45 15bit
p9 23297 8 91 15bit p18 26113 9 51 15bit

Table 9: Primes in the form of p = θ2m + 1 with m ≥ 8

Table 9 lists the primes used to construct q2, where each prime pi satisfies
2m | (p − 1) for the largest possible m. This condition guarantees the existence
of a ∈ Zp such that ordp(a) = 2m. Specifically, the prime p is expressed in the
form p = θ2m + 1, where we only consider the case of m ≥ 8, and the primes
are listed in ascending order of m. Note that if m < 8, the polynomial modulus
degree w will increase when performing multiplication in the NTTw space using
the multiplication algorithm MULw, leading to slower computation.

B NTTw and INTTw

Note on Implementation of NTTw and INTTw. In Line 5 of Algorithm 6, and
Line 8 of Algorithm 7 k̄ refers to the value obtained by applying the bit-reversal
permutation to k [33]. All ζi2d/w values are pre-multiplied by 2β as input to SM

and stored. Note that the output of INTTw in Algorithm 7 is scaled by 2d/w,
meaning that INTTw(NTTw(a)) ̸= a . However, this multiplicative difference is
pre-multiplied to the blind rotation key BL, and hence these discrepancies are
compensated during the MULw operation.

C MULw

Note on implementation. Since the output of multiplication between a and b
in Algorithm 8 is 2−βab, a scaling of 2−β arises from signed Montgomery reduc-
tion SM and needs to be compensated along with the scaling factor 2d/w from

30

Algorithm 6 NTTw

Input: a = (a0, ..., ad−1) ∈ Rq,d

Output: ǎ = (a mod Xw−ζi2d/w)i∈Z∗
2d/w

1: k ← 1
2: for l← d/2; l > w/2; l← l/2
3: for s← 0; s < d; s← s+ 2l
4: for j ← s; j < s+ l; j ← j + l
5: t← SM(2βζ k̄2d/w, aj+l)
6: aj+l ← aj − t
7: aj ← aj + t
8: end for
9: k ← k + 1
10: end for
11: end for
12: return ǎ = (a0, ..., ad−1)

Algorithm 7 INTTw

Input: ǎ = (a0, ..., ad−1) ∈⊕
i∈Z∗

2d/w
Zq[X]/⟨Xw − ζi2d/w⟩

Output: a where NTTw(a) = 2d/wǎ
1: k ← 1
2: for l← 1; l < d/w; l← 2l
3: for s← 0; s < d; s← s+ 2l
4: for j ← s; j < s+ l; j ← j + l
5: t← aj

6: aj ← t+ aj+l

7: aj+l ← t− aj+l

8: aj+l ← SM(2βζ k̄2d/w, aj+l)
9: end for
10: k ← k + 1
11: end for
12: end for
13: return a = (a0, ..., ad−1)

Algorithm 8 Recursive Karatsuba RK(a , b, l)

Input: a natural power of two l, two polynomials a , b ∈ Zq[X] with degree
≤ l − 1

Output: r = 2−βab ∈ Zq[X]
1: if l = 1
2: return r = SM(a0, b0)
3: else
4: a = a0 + a1X

l/2, b = b0 + b1X
l/2

5: r0, r1, r2 ← RK(a0, b0, l/2),RK(a0 + a1, b0 + b1, l/2),RK(a1, b1, l/2)
6: r1 ← r1 − r0 − r2

7: return r ← r0 + r1X
l/2 + r2X

l

8: end if

Algorithm 9 Karatsuba point-wise multiplication MULw

Input: two polynomials a , b ∈ Zq[X]/⟨Xw − ζ⟩, and c = 2β−(d/w)

Output: r = cab ∈ Zq[X]/⟨Xw − ζ⟩
1: b ← cb ▷ This line is precomputed

2: r ← RK(a , b, w) ▷ r = r0 +Xwr1.

3: r ← r0 + SM(2βζ, r1)
4: return r

the result of INTTw. Both scaling factors are compensated in Line 1 of Algo-
rithm 9. The compensation factor 2β−d/w is pre-multiplied to the blind rotation

31

key BL and stored, and hence no compensation is required during bootstrap-
ping. Furthermore, to perform the Line 3 of Algorithm 9, the constant ζ of the
irreducible polynomial Xw − ζ is expressed as a power of the primitive element
ζ2d/w according to Lemma 1. Since this constant values are pre-multiplied by 2β

and stored when implementing NTTw and INTTw, no additional computation is
needed.

D Conversion of Torus-based ciphertext into MLWE
ciphertext

If the coefficients of ciphertext in lattice-based cryptosystem are taken from Tq,
a torus-based cryptosystem is constructed [12]. Moreover, conversions between
Tq-based ciphertexts and standard MLWE ciphertexts have been studied [11],
and it is known that Tq is isomorphic to Zq as Z-module 11.

To make a direct comparison between Zq-based and Tq-based lattice cryp-
tosystems, this section introduces conversion from torus-based ciphertexts to
MLWE ciphertexts, as done in TFHE-rs. Since this conversion is essentially an
identity map in practice, it shows that elements of TFHE-rs can be viewed as
elements of Zq. In other words, the difference between TFHE-rs and OpenFHE
lies only in how they implement polynomial multiplication. Henceforth, all Tq-
based ciphertexts are converted into Zq-based MLWE ciphertexts according to
the method outlined below.

The Z-module isomorphism is as follows:

Tq → Zq, x/q + q−1Z 7→ x+ Zq. (28)

If sampling is performed from a discrete Gaussian distribution with variance σ2

in Tq, the standard deviation changes as follows when the samples are mapped
to Zq space:

σ in Tq 7→ qσ in Zq. (29)

Based on this equivalence, when storing the structure of Tq in a machine, we
store x ∈ Tq as x ∈ Zq, so no additional steps are required when switching from
Tq space to Zq space in a program.

Fig. 4 confirms the validity of conversion Tq → Zq by comparing the error
variance in each number space. The circles ◦ in Fig. 4 represent empirically mea-
sured variance of errors after decrypting T232-based LWE ciphertexts (left) and
T232-based MLWE ciphertexts (right) in the TFHE-rs program where decrypting
operations are performed over Z232 . The standard deviation on Tq is σ. The
solid lines represent the predicted variance q2σ2, calculated by Eq. (29). Since
these two types of variances match exactly, it confirms that TFHE-rs can be
treated as a program implemented on Z232 . Therefore, parameters of TFHE-rs

11 Furthermore, Zq multiplication can be pulled back to Tq, and from this perspective,
Zq and Tq are isomorphic as rings [14].

32

Fig. 4: Comparison of the predicted error variance q2σ2 after decryption with
Zq operations given a standard deviation σ on Tq

can be equally compared with those of FHE16 in Zq. Therefore, in this paper,
we describe the algorithms using Zq instead of Tq and the standard deviation
and variance will be described based on the transformation in Eq. (29).

E GINX blind rotation

Algorithm 10 GINX blind rotation [12]

Input: A secret key alphabet Ut, an LWE ciphertext (a1, ..., ak1
, b) encrypted

by sk1 = (s1, ..., sk1
) ∈ Uk1

t , an accumulating polynomial acc ∈ Rq2,d, a
GINX-type bootstrapping key BLi,j

Output: MLWE[accX
∑

i aisi−b]

1: ct← (0, ..., 0, accX−b) ∈ R(k2+1)×1
q2,d

2: for i = 0; i < n; i = i+ 1
3: for all u ∈ Ut

4: if t = 2
5: ct← acc+ ((Xaiu − 1)ct)⊡ BLi,u
6: else
7: ct← acc+ (Xaiu − 1)(ct⊡ BLi,u)
8: end if
9: end for

10: end for
11: return ct

If sk1 is a binary random vector (i.e., |Ut| = 2), the ciphertext ct is multipliled
by the polynomial Xaiu

i − 1 and then the external product is performed, as in
Line 5. The error generated in Line 5 has a variance reduced by a factor of 2

33

compared to the error in Line 7 12. If t > 2, the computation in Line 7 results
in an error variance that is also twice as large as that of Line 5, but has the
advantage of reducing the number of NTTw operations, thus speeding up the
bootstrapping.

F AP+ blind rotation

Algorithm 11 AP+ blind rotation [26]

Input: A secret key alphabet Ut, an LWE ciphertext (a1, ..., ak1
, b) encrypted

by sk1 = (s1, ..., sk1) ∈ Uk1
t , an accumulating polynomial acc ∈ Rq2,d, an

AP+-type bootstrapping key BL, automorphism key AK, an window size v
Output: MLWE[accX

∑
i aisi−b]

1: z ← 0 and ct← (0, ..., 0, σ−g(accX
b)) ∈ R(k2+1)×1

q2,d

2: for v ∈ {1,−1}
3: for k ← N/2− 1; k > 0; k ← k − 1
4: for j such that ψ1(aj) = v and ψ2(aj) = k
5: ct← ct⊡ BLj
6: end for
7: z ← z + 1
8: if { ∃j such that ψ1(aj) = v and ψ2(aj) = k} ∨ {z = v} ∨ {k = 1}
9: ct← Aut(ct,AKgz) ▷ See Section 3.3

10: z = 0
11: end if
12: end for
13: for j such that ψ1(aj) = v and ψ2(aj) = 0
14: ct← ct⊡ BLj
15: end for
16: if v = 1
17: acc← Aut(acc,AKg−1)
18: end if
19: end for
20: return ct

The window size v is a parameter that provides a trade-off between the size
of the automorphism keys and the computation speed. Experimentally, it has
been shown that setting v = 10 strikes a balance between these factors.

12 Line 5 refers to the original GINX method [12], while Line 7 refers to a modified
version proposed by the authors [25].

34

G Correctness of Line 2-(i) and Line 2-(ii) in Algorithm
3

Correctness of Line 2-(i) in Algorithm 3 when single precision is used.
Let η denote the floating-point precision and let ϵ represent the error that occurs
after performing an arbitrary arithmetic operation op on floating-point elements
x and y. It is known that this error satisfies the bound |ϵ| ≤ |(x op y)|21−η [31].
Now, we analyze the error magnitude resulting from the computation in Line
2-(i). Let xi denote the true value after the floating division (a∗i q̂i mod qi)/qi,
and let ϵi represent the error during this operation. Since |xi| ≤ 1, the computed
floating-point value x̃i = xi + ϵi satisfies |x̃i| ≤ (1 + 21−η).

Finally, the error from the sum
∑n

i=1 x̃i is known to be (n−1)2−η
∑n

i=1 |x̃i|+
O(2−2η) [23], and hence an upper bound of the total error can be computed as
follows.

(n− 1)21−η
n∑

i=1

|(xi + ϵi)|+O(2−2η)

≤n(n− 1)21−η(1 + 2−η−1) +O(2−2η) = n(n− 1)21−η +O(n22−2η). (30)

Since we consider up to 25 candidates for 16-bit primes as listed in Supplemen-
tary Material A, Table 9, we use up to 25 16-bit primes with single precision
η = 23, and hence the error in Eq. (30) is bounded by 2−19.35. Therefore, the
computation in Line 2-(i) will output a correct result under the heuristic as-
sumption of 16-bit precision.

Correctness of Line 2-(ii) in Algorithm 3. If the input satisfies |a| < q/4,
Line 2-(ii) can be computed exactly [9]. However, a drawback of Line 2-(ii) is that
it requires fixed-point division for the internal flooring operation. Therefore, the
method in Line 2-(iii) is proposed, which replaces the division with precomputed
values, and performs only integer addition and multiplication.

H Proofs

This section provides the proofs omitted in the main text.
Proof of Lemma 4 By Lemma 3,

n∑
i=1

ai/qi − 2−s
n∑

i=1

⌊
2s/qi

⌋
ai =

n∑
i=1

[
ai/qi − 2−s

⌊
2s/qi

⌋
ai

]
< 2−s

n∑
i=1

ai < ϵ/2.

Therefore, ∣∣∣v − 2−s
n∑

i=1

⌊
2s/qi

⌋
ai

∣∣∣
≤
∣∣∣v − n∑

i=1

ai/qi

∣∣∣+ ∣∣∣ n∑
i=1

ai/qi − 2−s
n∑

i=1

⌊
2s/qi

⌋
ai

∣∣∣ < ϵ < 1/2.

35

Hence, v =
⌊
2−s

∑n
i=1

⌊
2s/qi

⌋
ai
⌉
. ⊓⊔

Proof of Lemma 6All u′is in Eq. (18) satisfy |u0| ≤ D/2 and |u1|, . . . , |ul−1| ≤
B/2 from Line 4 of Algorithm 4. From Eq. (18), we have ulDB

l−1 = a − u0 −∑l−1
i=1 uiDB

i−1 ≥ 0, and hence ul is always non-negative. An upper bound of ul
is derived as follows.

ulDB
l−1 = a− u0 −

l−1∑
i=1

uiDB
i−1 < a+ |u0|+

∣∣∣ l−1∑
i=1

ulDB
i−1
∣∣∣

≤ q + 1

2

l−1∑
i=0

DBi ≤ D(Bl − 1)(ϵ− 1

2B
) +

D

2

(Bl − 1)

(B − 1)

≤ DBl(ϵ− 1

2B
) +

1

2
DBl−1 = ϵDBl,

thus, ul < ϵB. ⊓⊔
Proof of Theorem 5 Dividing both sides of Eq. (7) by q and taking the

absolute value yields

|a/q| =

∣∣∣∣∣
n∑

i=1

(a∗i q̂i mod qi)/qi − ⌊
n∑

i=1

(a∗i q̂i mod qi)/qi⌉

∣∣∣∣∣ < 1/4.

Thus, by Lemma 4, with ϵ = 1/4, Line 2-(iii) of Algorithm 3 gives the correct
result. After performing Line 4, a is updated to ⌊a2−β⌋. Since the updated a
still satisfies |a| < q/4, Algorithm 3 returns the correct MRS number. ⊓⊔

I FHE16 vs NTRU-based FHE

In this section, we compare the bootstrapping times of FHE16 and the NTRU-
based FHE [27]. Specifically, we compare the AVX2 and AVX512 execution times
of NTRU-based FHE presented in [27] with the GINX bootstrapping times of
FHE16 using pFHE16G in Table 2. In [27], the secret key sk1 is a binary with
k1 = 512. For a fair comparison, we set k1 = 512 and measured the execution
time. Note that the benchmark performance of computer1 used in this paper is
slightly worse than the machine used in the experiments for NTRU-based FHE
in [27], and hence our comparision is more conservative.

(millisecond) AVX2 AVX512

NTRU-based FHE [27] 5.5 3.8
FHE16 with pFHE16G 4.9 3.3

Table 10: Comparision of bootstrapping time: [27] and FHE16 with pFHE16G

Table 10 shows that FHE16 achieves an overall speed improvement of 1.1x.
Therefore, it is concluded that the speed of LWE-based FHE is now as fast as
the fastest NTRU-based FHE.

36

J Multi-threading performance of FHE16

Fig. 5 shows the amortized bootstrapping time for dividing 100L data into L
multi-threaded operations.

Fig. 5: Amortized bootstrapping time using L multi-threads. AVX512 is used
with computer1 and AVX2 is used with computer2

Although computer1 has 48 cores, the speed does not increase proportionally
with the number of threads due to potential bottlenecks, such as inconsistencies
in the L3 cache line when multiple threads access the same memory address
(e.g., where BL is stored). Nevertheless, FHE16 achieves an amortized execution
time of 0.11ms for k1 = 585 at L = 96 and 0.09ms for k1 = 512 at L = 100,
31x and 38x, faster than the single-threaded bootstrapping of 3.5ms execution
time presented in Table 8. Since the number of core of computer2 is 4, amortized
bootstrapping times are slower than computer1, but computer2 also shows 2.5x
performance enhancement.

37

