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Abstract. Authenticated encryption schemes guarantee that parties who
share a secret key can communicate confidentially and authentically. One
of the most popular and widely used authenticated encryption schemes
is GCM by McGrew and Viega (INDOCRYPT 2004). However, despite
its simplicity and efficiency, GCM also comes with its deficiencies, most
notably devastating insecurity against nonce-misuse and imperfect secu-
rity for short tags. Very recently, Campagna, Maximov, and Mattsson
presented GCM-SST (IETF Internet draft 2024), a variant of GCM that
uses a slightly more involved universal hash function composition, and
claimed that this construction achieves stronger security in case of tag
truncation. GCM-SST already received various interest from industries
(e.g., Amazon and Ericsson) and international organizations (e.g., IETF
and 3GPP) but it has not received any generic security analysis to date.
In this work, we fill this gap and perform a detailed security analysis
of GCM-SST. In particular, we prove that GCM-SST achieves security
in the nonce-misuse resilience model of Ashur et al. (CRYPTO 2017),
roughly guaranteeing that even if nonces are reused, evaluations of GCM-
SST for new nonces are secure. Our security bound also verified the de-
signers’ (informal) claim on tag truncation. Additionally, we investigate
and describe possibilities to optimize the hashing in GCM-SST further,
and we describe a universal forgery attack in a complexity of around
233.6, improving over an earlier attack of 240 complexity of Lindell, when
the tag is 32 bits.

Keywords: Authenticated encryption, GCM, GCM-SST, universal forgery,
nonce misuse.

1 Introduction

Authenticated encryption (AE) is a vital concept for the security of today’s digi-
tal environment. It allows for two parties sharing a symmetric cryptographic key
to achieve confidentiality as well as authenticity for the data they communicate.
In a bit more detail, an AE scheme gets as input a key, optionally associated
data, and plaintext, and it outputs a ciphertext and a tag. The corresponding
decryption scheme gets as input a key, optionally associated data, ciphertext,
and tag, and it outputs the message corresponding to the ciphertext if (and only



if) the tag verifies correctly. Whereas initial designs (such as IAPM in 2000 [37]
and OCB1 in 2001 [51]) and the well-known formalism of Bellare and Namprem-
pre [7,44] mostly saw AE as a version of encryption that additionally obtained
some level of authenticity, the current view is more holistic in the sense that AE
is a well-matured and maybe the most important building block of symmetric
cryptography.

Many AE schemes have been introduced since. Undoubtedly the most no-
table one of them is the Galois/Counter Mode (GCM) that McGrew and Viega
introduced in 2004 [41]. In a nutshell, GCM is a block cipher based AE mode
that operates by encrypting the plaintext using nonce-based counter mode, and
sequentially authenticating associated data and ciphertext using a Wegman-
Carter-Shoup [59,15,55] authenticator. Refer to Figure 1 for a visual representa-
tion. McGrew and Viega [41] performed an initial generic security analysis, that
got later fixed by Iwata et al. [35] and improved by Niwa et al. [46]. In detail,
GCM achieves security up to 2n/2 data blocks, under the assumption that the
underlying n-bit block cipher is PRP-secure. Presumably because of this secu-
rity result, as well as the simplicity and efficiency of the construction, GCM has
become one of the most widely used AE schemes, being standardized in NIST
SP 800 38D [23] and ISO/IEC 19772 [33] as well as being used in TLS [53],
IPSec [58], SSH [31], Wifi (WPA3) [60], NSA Suite B [47], and IEEE 802.1 [30].

However, over the years, the range of applications of AE has significantly
broadened, and so have the requirements imposed on these designs. For ex-
ample, use cases may range from lightweight applications to regular platforms,
whereas threat models may range from regular nonce-based security to secu-
rity against adversaries that may freely manipulate the nonce. These evolutions
have lead to two notable competitions, the CAESAR competition [16] running
from 2014 to 2019 and the NIST Lightweight Cryptography competition [45]
running from 2019 to 2023, that have both boosted the detailed research on
security models of AE [44,3,5] and have lead to a large amount of novel AE
schemes [51,50,38,4,43,12,2,34,6,29,20].

Despite these efforts, GCM is still omnipresent in our digital environment,
even though it does not achieve security in a wide arrange of models. To give a
few examples:

– GCM does not achieve security under nonce reuse as observed by Joux [36]. To
the contrary, an adversary misusing the nonce can obtain the subkey used for
authentication. This is a practical problem, as guaranteeing a unique nonce
is hard in some settings [14];

– The algorithm of GCM allows arbitrary nonce length [41,46], however 96-bit
nonce is often recommended for its efficiency and simplicity. The use of 96-bit
nonce could be problematic in multi-user attacks if an adversary has access
to many endpoints. This has lead to an ad-hoc solution for AES-GCM in TLS
1.3 [49,53] to introduce extra key material and use it to blind the nonce (an
approach that was later proven to be sound by Bellare and Tackmann [9] and
that was generalized in the context of duplex-based [12,42] AE by Dobraunig
and Mennink [21]);
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– GCM does not achieve security under release of unverified plaintext [3], where
an adversary may obtain plaintext coming from the decryption function
before the tag is verified. To salvage this, Ashur et al. [5] introduced a variant
GCM-RUP that achieves RUP-security with minor alteration;

– Finally, there is the issue with short tags, as already brought up by Fergu-
son in 2005 [27]. In a nutshell, shorter tags are easier to forge, and successful
forgeries make it easier for the adversary to recover the subkey used for au-
thentication. Nyberg et al. [48] highlighted the issue that forgeries are possi-
ble in a complexity of around 2t/ℓ, where t is the tag size and ℓ the message
block length (see also Theorem 2). This problem is particularly problematic
when short tags become relevant, e.g., when bandwidth is critical, such as
in low-power wireless communication and memory encryption.

In a very recent attempt, Campagna, Mattsson, and Maximov [17] tried to
address the issue of short tags in GCM. In detail, they presented GCM-SST, that
differs from GCM in the sense that in authentication, the universal hash function
is replaced by a cascade of two hash functions under different subkeys, follow-
ing the idea originally suggested by Nyberg et al. [48]. Overall, this is a minor
penalty in efficiency for a significant gain, and because of this, the scheme has
quickly gained attention. Currently, it is strongly supported by certain industries
(e.g., Amazon and Ericsson [18]), it is in the process of being standardized by
IETF [17], and ETSI SAGE has finalized the specifications of GCM-SST for 5G
communication [1,19,24,26,40]. Google also showed interest in GCM-SST for use
in their video conference applications.5

However, at the same time, there is no clarity about the actual security of the
proposal of Campagna et al.: to the contrary, GCM-SST was presented without
security proofs, and Lindell [39] even described a universal forgery attack with
complexity around 240 decryption queries when the scheme uses 32-bit tags
(which is a typical “short tag” that the designers suggest), that casts a shadow
over the scheme’s security [25].

1.1 Our Contributions

In this work, we perform an in-depth generic security analysis of GCM-SST.
First, in Section 4, we prove that GCM-SST is a provably secure AE mode.

Clearly, it will not achieve full nonce-misuse resistance, mostly as it is a one-pass
AE scheme, but instead we demonstrate that it is secure in the nonce-misuse
resilience model of Ashur et al. [5]: in a nutshell, this model guarantees security
for evaluations under fresh nonces even if earlier nonces may have been reused
in the past. This model is particular relevant, e.g., in use cases where the nonce
contains receiver addresses or time stamps, and various modes [5,11,10,32] have
been presented and analyzed in this model. In addition, by definition, security
in this model immediately implies security in the nonce-respecting setting up
5 https://datatracker.ietf.org/meeting/119/materials/

minutes-119-avtcore-202403182330-00
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to at least the same bound. Thus, we adopt this nonce-misuse resilience model,
and in this model we prove that GCM-SST achieves security up to a complexity
of around min{2n/2, 2t} data blocks, where n is the block size and t the tag size
(see also Theorems 3 and 4).

Second, in Section 5, we put the results in perspective, from three angles. We
start in Section 5.1 with drawing a comparison between the bounds of GCM and
GCM-SST, with a focus on authenticity and in particular the security guaran-
teed under shorter tag sizes, and demonstrate that GCM-SST has significantly
reduced the security degradation for short tags as the designers claimed without
a formal proof. Note that this observation is already suggested by the security
bounds, where the dominating authentication portion improves from 2t/ℓ to 2t.
Then, we discuss in Section 5.2 the possibility to minimize the masking in GCM-
SST, and observe that one masking block could be avoided if one would opt
for a slightly more expensive padding function. This variant generally improves
efficiency. Finally, in Section 5.3 we describe a universal forgery attack with
3 ·2t +4(n− t)+1 decryption queries for any t, that is based on the idea that for
a smart choice of forgery attempts, two successful attempts simply give t bits of
the multiplication of the two hashing subkeys, and the remaining (n−t) bits can
be obtained bit-by-bit by sliding through the multiplication in the universal hash
function. When t = 32-bit tag, our attack complexity is about 233.6, improving
the aforementioned Lindell’s attack with 240 queries.

1.2 Outline

We present preliminary material in Section 2. The GCM and GCM-SST modes
are specified in our terminology in Section 3. In Section 4 we present our security
analysis of GCM-SST, with nonce-misuse resilience privacy in Section 4.2 and
authenticity in Section 4.4. We conclude the work in Section 5, where we discuss
how GCM compares with GCM-SST (Section 5.1), where we investigate the pos-
sibilities to minimize the amount of masking material in GCM-SST (Section 5.2),
and where we describe a universal forgery attack against GCM-SST improving
the attack by Lindell [39] (Section 5.3).

2 Preliminaries

Let N denote the set of all non-negative integers, and N+ := N \ {0}. Let {0, 1}∗

denote the set of all binary strings of arbitrary length, including the empty
string ε. For any n ∈ N, {0, 1}n denotes the set of all n-bit strings, and [n]
denotes the set {1, . . . , n}. For any x, y ∈ {0, 1}∗, |x| denotes the bit-length6

(or simply length) of x, and x ∥ y denotes the concatenation of x and y. Let
|x|n := max{1, ⌈|x|/n⌉}. For any x ∈ {0, 1}∗ and any n ∈ N+, VxWn (resp.,
TxUn) denotes the leftmost (resp., rightmost) min{n, |x|} bits of x. For n ∈ N+

and x ∈ {0, 1}n, let x ≪ 1 be a one-bit left-shifted value of x; thus, x ≪ 1 =
6 The number of bits in the given string. For an empty string, it is zero.
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TxUn−1∥0. For any n, x ∈ N+, ⟨x⟩n denotes the canonical unsigned n-bit binary
representation of x. For any x ∈ {0, 1}∗,

padn(x) := x ∥ 0(n−|x| mod n).

Note that padn(·) is non-injective. By extending the notation, padn(x, y) :=
padn(x) ∥ padn(y) for any arbitrary tuple (x, y). For any x ∈ {0, 1}∗, we write
(x1, . . . , xm) ←n x to denote the n-bit parsing of x after the padding, where
x1 ∥x2 ∥ . . . ∥xm = padn(x), and |xi| = n for all i ∈ [m]. Here, m = |x|n, which
is called the block length of x (for the given n). If x = ε, we use the convention
that x1 ←n x and x1 = padn(x) = 0n.

For any m, n ∈ N+, Fm,n denotes the set of all functions f : {0, 1}m →
{0, 1}n, and Pn the set of all permutations of {0, 1}n. For any finite set X ,
X ↞ X denotes the uniform sampling of X from X .

We identify the Galois field of order 2n, denoted F2n , by {0, 1}n. In this
context, for any x, y ∈ {0, 1}n, the bitwise XOR of x and y, denoted x⊕y, corre-
sponds to the field addition operation. Additionally, we write x · y to denote the
multiplication of field elements x and y modulo some (implicitly) fixed primitive
polynomial.

Let A be an adversary that queries an oracle O in a game. We say that
A is a distinguisher if it outputs x ∈ {0, 1} as an outcome. If the outcome
is 1, we write AO = 1 to denote this event. It is a probabilistic event whose
randomness comes from that of A and O. The adversary A may choose queries
in an adaptive manner. If there are multiple oracles, O1,O2, . . . then AO1,O2,...

means the environment where A can query any accessible oracle in an arbitrary
order. We may impose additional conditions specified by the game environment.

2.1 Block Ciphers

Let K be a finite set and n ∈ N. A block cipher with key space K and message
space {0, 1}n is a keyed function E : K × {0, 1}n → {0, 1}n such that for any
K ∈ K, E(K, ·) = EK(·) is a permutation over {0, 1}n. The computational
security of block ciphers is defined as follows.
Definition 1 (Pseudorandom Permutation (PRP) Security). Let E :
K×{0, 1}n → {0, 1}n be a block cipher and let A be a distinguisher who queries
to the encryption routine of EK , i.e., performs a chosen-plaintext attack under
uniformly sampled key K ↞ K. The pseudorandom permutation (PRP) advan-
tage of E against A is defined as

Advprp
E (A) := |Pr[AEK = 1]− Pr[AP = 1]|, (1)

where P ↞ Pn.

2.2 Universal Hashing

Let KH be a finite set, X an arbitrary set, and n ∈ N. We will consider a hash
function H : KH ×X → {0, 1}n, and in particular how it behaves when the first
input is randomly sampled.
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Definition 2 (Almost Uniformity). A hash function H : KH ×X → {0, 1}n

is said to be ϵ-almost uniform, if for any X ∈ X and any Y ∈ {0, 1}n

Pr
KH↞KH

[HKH
(X) = Y ] ≤ ϵ (2)

holds for some ϵ ∈ [0, 1].

Definition 3 (Almost (XOR) Universality). A hash function H : KH ×
X → {0, 1}n is said to be ϵ-almost XOR universal (AXU), if for any X ̸= X ′ ∈ X
and any Y ∈ {0, 1}n,

Pr
KH↞KH

[HKH
(X)⊕HKH

(X ′) = Y ] ≤ ϵ (3)

holds for some ϵ ∈ [0, 1].
H is said to be ϵ-almost universal (AU) if (3) holds for Y = 0n.

The following proposition is a standard result in the theory of XOR universal
hash functions. See, e.g., [13].
Proposition 1. Let H : KH × X → {0, 1}n be an ϵ-AXU hash function. For
any t ≤ n, H ′ : KH × X → {0, 1}t defined as H ′(KH , X) = VH(KH , X)Wt is
(2n−t · ϵ)-AXU.

Polynomial Hashing. Let p(x) be an irreducible polynomial of F2n . For some
fixed ℓ ∈ N+, let X ⊆ F≤ℓ

2n and X+ ⊂ X be the set of all non-zero vectors
in X . A polynomial hash function with respect to p(x) is a function POLYp :
F2n ×X → F2n , is defined for each L ∈ F2n and (X1, . . . , Xk) ∈ X as follows:

POLYp
L(X1, . . . , Xk) = X1 · Lk ⊕ . . .⊕Xk · L, (4)

where the filed multiplications are done modulo p(x). A closely related function
UPOLYp : F2n ×X → F2n is defined as:

UPOLYp
L(X1, . . . , Xk) = POLYp

L(X1, . . . , Xk−1)⊕Xk. (5)

Whenever convenient, we drop p from the notation.
Both GCM and GCM-SST utilize variants of POLY and UPOLY with particu-

lar instances of p(x) and input encodings. GCM uses GHASH [41], while GCM-SST
employs POLYVAL, which was first introduced by Gueron and Lindell in [28] as
part of GCM-SIV. (See also Section 3.1.)

The set X is said to be suffix-free if for any X ̸= X ′ ∈ X , X is not a suffix
of X ′ and vice-versa. The following propositions on the uniformity and XOR
universality of POLY (and universality of UPOLY) are particularly useful in our
analysis. The proofs are well-known [57,41] and therefore omitted.
Proposition 2. The restriction of POLY on X+ is 2log2(ℓ)−n-almost uniform.

Proposition 3. For any suffix-free X , POLY is 2log2(ℓ)−n-AXU and UPOLY is
2log2(ℓ)−n-AU.

We note that the suffix-freeness of X is a necessary condition, as evident from
the attacks [54] on a plethora of hash-based constructions.
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2.3 Authenticated Encryption

A nonce-based AE (NAE) is defined as a tuple of algorithms, Π = (Π.Enc, Π.Dec).
The (deterministic) encryption algorithm Π.Enc takes a key K ∈ K and a tuple
(N, A, M) consisting of a nonce N ∈ N , an associated data (AD) A ∈ H,
and a plaintext M ∈ D as input, and returns a ciphertext C ∈ D and a tag
T ∈ T = {0, 1}t for a fixed t ∈ N. The (deterministic) decryption algorithm
Π.Dec takes K ∈ K and the tuple (N, A, C, T ) ∈ N × H × D × {0, 1}t and
returns M ∈ D or the reject symbol ⊥. We require any NAE scheme to be
sound: for any (K, N, A, M) ∈ K ×N ×H×D, if (C, T ) = Π.Enc(K, N, A, M),
Π.Dec(K, N, A, C, T ) = M must hold.

Security Notions. The traditional security notions for AE schemes are nonce-
respecting privacy (PRIV) and authenticity (AUTH), where the nonce can be
arbitrarily chosen by the adversary as long as all nonce values in encryption
queries are distinct (see e.g. [51]). Such an adversary is called nonce-respecting.

Rogaway and Shrimpton [52] proposed the concept of nonce-misuse resistance
(NMR) to capture the use cases where nonces may repeat, which can happen
due to, e.g., misconfiguration or poor randomness for nonce generation. Their
security notions give best-possible security guarantees, however, schemes fulfill-
ing this notion require somewhat heavier computation than nonce-respecting
secure AE schemes. Especially, the privacy notion under NMR must require the
encryption to be offline i.e., the first ciphertext bit can be output only after the
algorithm has processed the whole input (N, A, M).

To overcome the efficiency limitation for achieving NMR security, a relaxation
of the concept, called Nonce-Misuse resiLience (NML) was introduced by Ashur
et al. at CRYPTO 2017 [5]. Specifically, the privacy and authenticity notions
under NML divide encryption queries into challenge and non-challenge ones: in
a challenge query, the nonce is different from those used by earlier encryption
queries, whereas in a non-challenge query the nonce may be a repeated one. The
nonce-misuse in non-challenge queries should not break the challenge ciphertexts
(for privacy) or enable a forgery with the challenge nonce (for authenticity). We
take the privacy and authenticity notions under NML setting, NML-PRIV and
NML-AUTH, from [5,32]. A remarkable characteristic of NML notions is that it
could be fulfilled by schemes whose encryption and decryption are on-line, unlike
the case of NMR.

Definition 4 (Nonce-Misuse Resilience Privacy (NML-PRIV)). Let Π =
(Π.Enc, Π.Dec) be an NAE scheme and let A be a distinguisher against Π under
uniformly sampled key K ↞ K. The nonce-misuse resilience privacy (NML-
PRIV) advantage of Π against A is defined as

Advnml-priv
Π (A) :=

∣∣∣Pr
[
AΠ.EncK ,Π.EncK = 1

]
− Pr

[
A$,Π.EncK = 1

]∣∣∣,
where $ is an oracle that returns a random string of |M |+ t bits for any query
(N, A, M). A may re-use nonces with its right oracle O2, but it may not re-use
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nonces with its left oracle O1, nor may it use a nonce already queried to O2 for
an O1-query and vice versa.

We may call O1 the challenge oracle and O2 the non-challenge oracle.

Definition 5 (Nonce-Misuse Resilience Authenticity (NML-AUTH)).
Let Π = (Π.Enc, Π.Dec) be an NAE scheme and let A be an adversary against Π
under uniformly sampled key K ↞ K. The nonce-misuse resilience authenticity
(NML-AUTH) advantage of Π against A is defined as

Advnml-auth
Π (A) := Pr

[
AΠ.EncK ,Π.DecK forges

]
.

Here, (i) nonces in encryption queries may repeat, but (ii) any nonce value in
a decryption query must appear at most once in encryption queries. A trivial
forgery is not allowed, namely if A receives (C, T ) from an encryption query
(N, A, M), A should not make a decryption query (N, A, C, T ) after that query.
We say A forges if it receives M ̸= ⊥ from the decryption oracle under these
conditions.

The aforementioned (nonce-respecting) PRIV notion (Advpriv
Π (A)) is ob-

tained by removing the second oracle from the NML-PRIV game from Defini-
tion 4. Similarly, the (nonce-respecting) AUTH notion (Advauth

Π (A)) is obtained
from Definition 5 by imposing that nonce values in the encryption queries must
be distinct. As a consequence, NML-PRIV implies PRIV and NML-AUTH im-
plies AUTH.

Remark 1. In the context of the aforementioned games, for each encryption
(resp., decryption) input of the form (N, A, M) (resp., (N, A, C, T )), we will
refer to (A, M) (resp., (A, C)) as the input-data of the query.

3 Specifications of GCM and GCM-SST

Throughout this section we fix κ ≥ 128 as the key size, n = 128 as the block size,
s = 96 as the nonce size, and t ≤ 128 as the tag size. Let r = n− s = 32 denote
the counter size, and R = {0, 1}r denote the counter space. Fix K = {0, 1}κ,
N = {0, 1}s, H ⊆ {0, 1}∗, D ⊆ {0, 1}∗, and T = {0, 1}t.

3.1 Internal Components of GCM and GCM-SST

We describe the well-known cryptographic components used in GCM and GCM-
SST, tailored specifically to aid our description of these modes.

The CTR Mode. The counter or CTR mode [22] is a block cipher mode of oper-
ation, often employed as a nonce-based keystream generator.

Formally, the CTR mode can be viewed as a family of nonce-based keystream
generators, indexed by the counter size, r. For any key K ∈ K, any nonce N ∈ N ,
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any initial counter value i ∈ {0, . . . , 2n− 1}, and any output length m ∈ [2r], we
have:

CTRr(K, N, i, m) := EK(N∥ ⟨i⟩r) ∥ . . . ∥ EK(N∥ ⟨i + m− 1⟩r), (6)

where the addition is done modulo 2r.

The GHASH and POLYVAL Functions. As mentioned in Section 2.2, both GHASH
and POLYVAL can be seen as specific instances of the larger class of polynomial
hashing.

It is well-known that g(x) = x128 + x7 + x2 + x + 1 and p(x) = x128 + x127 +
x126 + x121 + 1 are two irreducible polynomials of F2n . The bit representation of
p is simply the bit-reversed representation of g.

For some ℓ ∈ N+, let X = F≤ℓ
2n . Using [23] and [28, Appendix A], one

can define GHASH, POLYVAL : F2n × X → F2n for any L ∈ F2n and any
(X1, . . . , Xk) ∈ X in terms of POLY as follows:

GHASHL(X1, . . . , Xk) := POLYg
L(X1, . . . , Xk), (7)

POLYVALL(X1, . . . , Xk) := POLYg

2·L
(X1, . . . , Xk), (8)

where Y denotes the byte-reversed copy of Y , i.e., Y := Y n
8
∥ . . . ∥Y1 for all Y =

Y1∥ . . . ∥Y n
8

. Thus, GHASH and POLYVAL are equivalent up to a byte-reversal
of the key, encoded input, and output. More importantly, they are equivalent to
POLY. Hence, Proposition 3 gives that both GHASH and POLYVAL are 2log2(ℓ)−n-
AXU as long as the input space X is suffix-free.

Additionally, using (5) and (8), we define:

UPOLYVALL(X1, . . . , Xk) := POLYg

2·L
(X1, . . . , Xk−1)⊕Xk. (9)

In this paper, GHASH and POLYVAL (or POLY, in general) are used to hash
inputs from H×D. Thus, we need to preprocess the inputs to encode them into
strings from ({0, 1}n)∗. A frequently used input encoding is the following:

ρ(A, C) = padn(A, C) ∥ ⟨|A|⟩n
2
∥ ⟨|C|⟩n

2
(10)

for (A, C) ∈ H×D. ForH×D ⊆
(
{0, 1}2

n
2

)2
, the set {ρ(A, C) : (A, C) ∈ H×D}

is suffix-free.

3.2 Galois Counter Mode (GCM)

We briefly describe GCM [41,23]. In [23], GCM is defined for arbitrary nonce
lengths; however, we focus only on the 96-bit case to ensure a fair comparison
with GCM-SST, which, as we will see, is defined for a fixed nonce size. A simplified
academic7 version of this mode is described in Algorithms 1 and 2.
7 This specification of GCM is inspired by the one given in [46] which in turn fol-

lows [35,41].

9



M1

C1

EK EK

Mm−1

Cm−1 Cm

Mm

V·∥ . . . ∥·W|M |

inc inc

GHASHL

padn(A,C) ∥ ⟨|A|⟩n/2 ∥ ⟨|M |⟩n/2

EK

T

N ∥ ⟨1⟩r

Z1

EK

inc

Z1

V Wt

EK

L

0n

C

Fig. 1. GCM encryption process for 96-bit nonce. The inc box denotes increment in the
last r bits.

Algorithm 1 The encryption algorithm of Galois
Counter Mode (GCM).
1: function GCM.Enc(K, N , A, M)
2: L← EK(0n)
3: (M1, . . . , Mm)←n M
4: (Z1, . . . , Zm+1)←n CTRr(K, N, 1, m + 1)
5: for i = 1, . . . , m do
6: Ci ←Mi ⊕ Zi+1

7: C ← VC1∥ . . . ∥CmW|M|
8: D ← GHASHL (ρ(A, C))
9: T ← VZ1 ⊕DWt

10: return (C, T )

Algorithm 2 The decryption algorithm of Galois
Counter Mode (GCM).
1: function GCM.Dec(K, N , A, C, T )
2: L← EK(0n)
3: (C1, . . . , Cm)←n C
4: (Z1, . . . , Zm+1)←n CTRr(K, N, 1, m + 1)
5: D ← GHASHL (ρ(A, C))
6: if VZ1 ⊕DWt = T then
7: for i = 1, . . . , m do
8: Mi ← Ci ⊕ Zi+1

9: return M ← VM1∥ . . . ∥MmW|C|
10: else return M ← ⊥

Security of GCM. The following security bounds on GCM are adapted from the
more general bounds proven by Niwa et al. [46], tailored to the case of a 96-bit
nonce.
Theorem 1 (GCM Privacy [46]). For any PRIV adversary A that runs in
time θ makes q encryption queries, each having input-data of length at most ℓ
blocks and a total of at most σ blocks of input-data across all queries, there exists
a PRP adversary B that runs in time O(σθ) and makes (σ + q + 1) encryption
queries such that

Advpriv
GCM[E] (A) ≤ Advprp

E (B) + 0.5(σ + q + 1)2

2n
+ 2(σ + q)

2n
.

Theorem 2 (GCM Authenticity [46]). For any AUTH adversary A that runs
in time θ and makes q encryption and v decryption queries, each having input-
data of length at most ℓ blocks and a total of at most σ blocks of input-data
across all queries, there exists a PRP adversary B that runs in time O(σθ) and
makes (σ + q + v + 1) encryption queries such that

Advauth
GCM[E] (A) ≤ Advprp

E (B) + 0.5(σ + q + v + 1)2

2n
+ 2(σ + q + v)

2n
+ v(ℓ + 1)

2t
.

Note that the authentication bound degrades linearly in ℓ, which could be prob-
lematic when t is small. NIST [23] specifies t ∈ {96, 104, 112, 120, 128} for general
use and t = 64 or 32 with specific requirements and warnings.
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Fig. 2. GCM-SST encryption process. The inc box denotes increment in the last r bits.

3.3 Galois Counter Mode With Secure Short Tag (GCM-SST)

GCM-SST is an NAE mode that modifies GCM to generate shorter tags with
comparably better security. Based on the latest available Internet draft [17], the
GCM-SST algorithm differs from the GCM algorithm in the following points:

– The nonce is fixed to 96 bits;
– POLYVAL function from GCM-SIV [28] replaces the GHASH function;
– The CTR mode uses 0 as the initial counter value, unlike 1 in GCM;
– The associated data and ciphertext are hashed in two steps, unlike the single-

step hashing in GCM;
– The hash keys are nonce-dependent. Specifically, the first two blocks of the

keystream generated via CTR mode are used as the hash keys.

Algorithms 3 and 4 give a description of GCM-SST, using largely the same nota-
tions as used in case of GCM. See Figure 2 for an illustration of the encryption
process. In [17], the tag length is specified as t ∈ {32, 64, 80}. Maximum lengths
of associated data and message are slightly different from GCM.

Algorithm 3 The encryption algorithm of Galois
Counter Mode with Secure Short Tag (GCM-SST).
1: function GCM-SST.Enc(K, N , A, M)
2: (M1, . . . , Mm)←n M
3: (Z0, . . . , Zm+2)←n CTRr(K, N, 0, m + 3)
4: for i = 1, . . . , m do
5: Ci ←Mi ⊕ Zi+2

6: C ← VC1∥ . . . ∥CmW|M|
7: D′ ← UPOLYVALZ0 (ρ(A, C))
8: D ← POLYVALZ1 (D′)
9: T ← VZ2 ⊕DWt

10: return (C, T )

Algorithm 4 The decryption algorithm of Galois
Counter Mode with Secure Short Tag (GCM-SST).
1: function GCM-SST.Dec(K, N , A, C, T )
2: (C1, . . . , Cm)←n C
3: (Z0, . . . , Zm+2)←n CTRr(K, N, 0, m + 3)
4: D′ ← UPOLYVALZ0 (ρ(A, C))
5: D ← POLYVALZ1 (D′)
6: if VZ2 ⊕DWt = T then
7: for i = 1, . . . , m do
8: Mi ← Ci ⊕ Zi+2

9: return M ← VM1∥ . . . ∥MmW|C|
10: else return M ← ⊥

4 Security of GCM-SST

We prove the security of GCM-SST in the stronger security model of nonce-
misuse resilience. We first set notations and conventions in Section 4.1. Then,
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nonce-misuse resilience privacy is derived in Section 4.2. Nonce-misuse resilience
authenticity is derive in Section 4.4, and this result internally uses a core result on
the XOR universality of the hashing in GCM-SST, which we derive in Section 4.3.

4.1 Notations and Conventions

Recall from Section 2.3 that, in our setting, an NML-PRIV adversary has access
to two encryption oracles, namely the challenge oracle O1 and the non-challenge
oracle O2. It can make queries with repeated nonce values to O2, but the queries
to O1 must have distinct nonce values. In addition, the two sets of nonce values
(challenge and non-challenge) must be distinct at all times. In NML-AUTH
game, all nonce values used in decryption queries must appear at most once in
encryption queries.

Throughout this section we use the following notations in the context of the
ith adversarial query:

– the ith challenge (or nonce-respecting) query-response tuple is of the form
(N i, Ai, M i, Ci, T i), where N i, Ai, M i, Ci, and T i denote the nonce, as-
sociated data, plaintext, ciphertext and tag, respectively. Let ai = |Ai|n,
mi = |M i|n = |Ci|n;

– the ith non-challenge (or nonce-misusing) query-response tuple is of the form
(N i

, A
i
, M

i
, C

i
, T

i), where N
i, A

i, M
i, C

i, and T
i denote the nonce, asso-

ciated data, plaintext, ciphertext and tag, respectively. Let ai = |Ai|n and
mi = |M i|n = |Ci|n;

– the ith decryption query-response tuple is of the form (Ñ i, Ãi, C̃i, T̃ i, M̃ i),
where Ñ i, Ãi, C̃i, T̃ i and M̃ i denote the nonce, associated data, ciphertext,
tag and plaintext, respectively. Let ãi = |Ãi|n and m̃i = |C̃i|n.

Let ℓ = max{ai + mi, ãi + m̃i, ai + mi}. Additionally, we write Zi (resp., Z
i or

Z̃i) to denote the keystream generated in the real world for the ith challenge
(resp., non-challenge or decryption) query.

Remark 2. The CTR mode computes the keystream by encrypting the counter-
encoded nonce, where the counter is incremented by one for each new block.
Thus, the keystream starts repeating almost certainly once the counter value
becomes 2r. In addition, GCM-SST uses the first three blocks of the keystream
in authentication phase. So, in all the results that follow, we assume the plain-
text/ciphertext length to be at most 2r − 4 blocks.

4.2 NML Privacy of GCM-SST

Theorem 3. For any NML-PRIV adversary A that runs in time θ and makes
q encryption queries consisting of q1 challenge and q2 = q − q1 non-challenge
encryption queries, each having input-data of length at most ℓ blocks and a total
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of at most σ blocks of input-data across all queries, there exists a PRP adversary
B that runs in time O(σθ) and makes (σ + 3q) encryption queries such that

Advnml-priv
GCM-SST[E] (A) ≤ Advprp

E (B) + 0.5(σ + 3q)2

2n
.

Proof. Using the PRP-PRF switch [8], we have

Advnml-priv
GCM-SST[E] (A) ≤ Advprp

E (B) + (σ + 3q)2

2n+1 + Advnml-priv
GCM-SST[F ] (C) , (11)

where F denotes a uniform random function from Fn,n, and C is a computation-
ally unbounded and deterministic adversary making at most q1 challenge and q2
non-challenge encryption queries, each of length at most ℓ blocks and a total of
at most σ blocks across queries.

Next, observe that F (N ∥ ·) is independent of F (N ′ ∥ ·) for distinct N, N ′ ∈
{0, 1}s. Similarly, F (· ∥ i) is independent of F (· ∥ i′) for distinct i, i′ ∈ {0, 1}r.
Thus, the combined sequence

(Zi
j : i ∈ [q1], j ∈ {0, mi + 2}) ∪ (Zi′

j′ : i′ ∈ [q2], j′ ∈ {0, . . . , mi′ + 2})

is mutually independent, and each Zi
j is uniformly distributed. As a consequence,

the output distributions in the two worlds are identically distributed. Thus,
Advnml-priv

GCM-SST[F ] (C) = 0 in (11), which completes the proof. ⊓⊔

4.3 XOR Universality of the Two-Stage Hashing in GCM-SST

Specification of SST Hash. For any positive integer ℓ and a < ℓ, let m = ℓ− a.
For any fixed k ≤ n, define SSTk : F2

2n × {0, 1}≤an × {0, 1}≤mn → F2k , for all
(L0, L1) ∈ F2

2n and (A, C) ∈ {0, 1}≤an × {0, 1}≤mn, by the mapping

SSTk
L0,L1

(A, C) := VPOLYL1 ◦ UPOLYL0 ◦ ρ(A, C)Wk, (12)

where recall that ρ(A, C) = padn(A, C) ∥ ⟨|A|⟩n
2
∥ ⟨|C|⟩n

2
. The two-stage hash-

ing in GCM-SST is obtained by setting k = t and choosing POLYVAL as the
underlying polynomial hash function in the resulting SSTt hash function.

Core Result. The core result necessary for proving nonce-misuse resilience au-
thenticity of GCM-SST, in Section 4.4, is abstracted out in the following propo-
sition, first appearing in Stinson [56] and Bierbrauer et al. [13].

Proposition 4. For some ϵ1, ϵ2 ∈ [0, 1], let H : L×D → D′ and H ′ : L′×D′ →
R be ϵ1-AU and ϵ2-AXU hash functions, respectively. Then, the composition
H ′′ := H ′ ◦ H : L × L′ × D → R defined as H ′′

L,L′(X) = H ′
L′(HL(X)) is an

(ϵ1 + ϵ2)-almost XOR universal hash function.
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Proof. Let (L, L′) ↞ L×L′. Fix any arbitrary pair of distinct inputs X, X ′ ∈ D
and an arbitrary difference Y ∈ R. Consider the following three events from the
event space of (L, L′):

E1 : HL(X) = HL(X ′),
EL

2 : H ′
L′(HL(X))⊕H ′

L′(HL(X ′)) = Y,

E3 : H ′′
L,L′(X)⊕H ′′

L,L′(X ′) = Y.

Then, we have

Pr (E3) ≤ Pr (E1) + Pr (E3 ∧ ¬E1)

≤ ϵ1 +
∑
L∈L

HL(X )̸=HL(X′)

Pr
(
EL

2
)
× 1
|L|

≤ ϵ1 + ϵ2
∑
L∈L

HL(X) ̸=HL(X′)

1
|L|

≤ ϵ1 + ϵ2,

where the second and third inequality follows from the ϵ1-AU and ϵ2-AXU prop-
erties of H and H ′, respectively. The result now follows from the arbitrariness
of X, X ′, and Y . ⊓⊔

The following corollary is a direct implication of Propositions 1, 3, and 4.

Corollary 1. For all ℓ ≥ 0, SSTk is (2log2(ℓ)−n + 2−k)-AXU.

4.4 NML Authenticity of GCM-SST

Theorem 4. For any NML-AUTH adversary A that runs in time θ and makes
q encryption queries consisting of q1 nonce-respecting and q2 = q − q1 nonce-
misusing encryption queries, and v decryption queries, each having input-data
of length at most ℓ blocks and a total of at most σ blocks of input-data across
all queries, there exists a PRP adversary B that runs in time O(σθ) and makes
(σ + 3(q + v)) encryption queries such that

Advnml-auth
GCM-SST[E] (A) ≤ Advprp

E (B) + 0.5(σ + 3(q + v))2

2n
+ vℓ

2n
+ v

2t
.

Proof. First, using the PRP-PRF switch [8], we have

Advnml-auth
GCM-SST[E] (A) ≤ Advprp

E (B)+ (σ + 3(q + v)))2

2n+1 +Advnml-auth
GCM-SST[F ] (C) , (13)

where F denotes a uniform random function from Fn,n, and C is a computation-
ally unbounded and deterministic adversary making at most q1 nonce-respecting
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and q2 nonce-misusing encryption queries, and at most v decryption queries, each
of length at most ℓ blocks and a total of at most σ blocks across queries.

Using a similar argumentation as in the proof of Theorem 3, we have that the
combined sequence of nonce-respecting encryption and decryption keystreams

(Zi
j : i ∈ [q1], j ∈ {0, mi + 2}) ∪ (Z̃i′

j′ : i′ ∈ [v], j′ ∈ {0, . . . , m̃i′ + 2})

is independent of (Zi′′

j′′ : i′′ ∈ [q2], j′′ ∈ {0, . . . , mi′′ + 2}), the nonce-misusing
encryption keystream. In addition, Zi and Z̃i′ are uniformly distributed for all
i ∈ [q1] and i′ ∈ [v], and

– Zi is independent of Zj for all j ̸= i ∈ [q1];
– Z̃i′ is independent of Zi for all i ∈ [q1], such that Ñ i′ ̸= N i.

Thus, we can completely ignore the nonce-misusing encryption queries, whence
the game reduces to the usual nonce-respecting authentication game, albeit with
at most q1 nonce-respecting encryption queries and v decryption attempts. For
the rest of this proof, we consider this modified game.

Let T denote the set of all transcripts realizable by the interaction of C
with the encryption and decryption oracles, and TWIN ⊆ T denote the subset of
transcripts in which C succeeds in valid forgery. Recall that C stops as soon as it
finds a valid forgery or it runs out of queries. Therefore, each τ ∈ TWIN contains
at most q1 + v entries and must end with a valid decryption query. Moreover,
the actual output on the final decryption query is inconsequential as long as
it succeeds. Indeed, without loss of generality, we assume that any decryption
query output is either ⊥ or a fixed non-⊥ symbol.

For i ∈ [v], let TWINi
denote the set of transcripts where C succeeds on the

ith decryption attempt. To each transcript τ ∈ T , we associate a corresponding
encryption-only tuple, denoted τe, that consists of all the encryption queries in τ
and nothing else. Thus, the mapping τ 7→ τe is well defined. For each i ∈ [v], let
E(TWINi) := {τe : τ ∈ TWINi}. By extending notations, let E(T ) := {τe : τ ∈ T }. By
virtue of C’s deterministic nature, there is a one-to-one correspondence between
TWINi

and E(TWINi
) for each i ∈ [v].

Let X denote the transcript random variable generated by the interaction
of C with the encryption and decryption queries. Further, let Xe denote the
corresponding encryption-only tuple. Now, by definition, we have

Advnml-auth
GCM-SST[F ] (C) = Pr (X ∈ TWIN)

=
∑

τ∈TWIN

Pr (X = τ)

=
v∑

i=1

∑
τ∈TWINi

Pr (X = τ)

=
v∑

i=1

∑
τ∈TWINi

Pr (Xe = τe)× Pr (X = τ |Xe = τe) . (14)
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For i ∈ [v], let Ei denote the event that the ith decryption query succeeds, i.e.,
GCM-SST.Dec(Ñ i, Ãi, C̃i, T̃ i) ̸= ⊥. Then, for the conditional probability in (14),
we have

Pr (X = τ |Xe = τe) ≤ Pr (Ei |Xe = τe)

= Pr
(

GCM-SST.Dec(Ñ i, Ãi, C̃i, T̃ i) ̸= ⊥ |Xe = τe

)
.

Now, for the ith decryption query, we compute this conditional probability in
two mutually exclusive cases:

– Case A: Ñ i does not appear in any encryption queries. Thus, Z̃i
2 is uniform

at random and independent of all the keystream blocks appearing in the
encryption queries, whence the aforementioned probability is exactly 1/2t;

– Case B: Ñ i appears in an encryption query. Let (N j , Aj , M j , Cj , T j) de-
note the unique encryption query-response tuple such that N j = Ñ i. Then,
using Corollary 1 appropriately, the probability is bounded by

Pr
(

SSTt

Z̃i
0,Z̃i

1
(Ãi, C̃i)⊕ SSTt

Zj
0 ,Zj

1
(Aj , Cj) = T̃ i ⊕ T j | Xe = τe

)
≤ ℓ

2n
+ 1

2t
.

For a fixed query, one of the aforementioned two cases holds with certainty. So,
we can substitute the maximum of the two probabilities in (14):

Advnml-auth
GCM-SST[F ] (C) ≤

v∑
i=1

(
ℓ

2n
+ 1

2t

) ∑
τ∈TWINi

Pr (Xe = τe)

=
v∑

i=1

(
ℓ

2n
+ 1

2t

) ∑
τe∈E(TWINi

)

Pr (Xe = τe)

≤
v∑

i=1

(
ℓ

2n
+ 1

2t

) ∑
τe∈E(T )

Pr (Xe = τe)

≤ vℓ

2n
+ v

2t
, (15)

where the equality follows from the one-to-one correspondence between TWINi

and E(TWINi), the second inequality follows from E(TWINi) ⊆ E(T ), and the final
inequality follows from the fact that Xe is an E(T )-valued random variable. The
result then follows from (13) and (15). ⊓⊔

5 Discussions

We perform a comparison between GCM and GCM-SST, mostly focusing on au-
thenticity (as the whole point of GCM-SST is to guarantee some level of security
in case of shorter tags), in Section 5.1. A discussion on the possibility to min-
imize the amount of mask material in GCM-SST is given in Section 5.2. Our
improved universal forgery attack is described in Section 5.3.
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Fig. 3. The number of forgery attempts in the log scale required to break GCM and
GCM-SST for each tag size, with ℓ = 216 (left) and ℓ = 232 (right).

5.1 Comparison of GCM and GCM-SST

We reemphasize that the results of Section 4 are also applicable in the special
case of nonce-respecting security games. As a consequence, when we compare
the bound in Theorem 4 for GCM-SST with the bound in Theorem 2 for GCM,
the gains are significant. The primary point in comparison is authenticity degra-
dation with respect to the tag length and the maximum input length: for GCM
it is vℓ/2t (Theorem 2), while we proved it is vℓ/2n + v/2t in the stronger se-
curity model (Theorem 4). This verifies the claim of the designers of GCM-SST
in the provable security framework. For instance, consider tag size t = 32 and a
moderate input length of ℓ = 216 blocks. In this scenario, GCM-SST guarantees
security up to 232 forgery attempts, whereas GCM can guarantee security only
up to 216 forgery attempts. As evident from Figure 3, this gap further widens
as we increase the message length or decrease the tag size.

5.2 Mask Minimization

We will investigate the possibilities to improve GCM-SST by removing the mask-
ing of Z2 in Algorithm 3. We denote by GCM-SST the AE Algorithm 3 but with
Z2 removed (thus CTRr generates one less blocks than the original one). As the
hashing subkeys Z0 and Z1 in GCM-SST are nonce-dependent, it sounds intu-
itive that the resulting mode should at least guarantee privacy, and the AXU
property of the hash function should also guarantee some level of authenticity.

All-zero Message Attacks on GCM-SST. However, it turns out that this intuition
is wrong. Let N be a nonce and (Z0, Z1) the corresponding nonce-based hashing
subkeys. Then, the SST hash function as defined in Section 4.3, and as used in
GCM-SST, is defined as follows:

SSTt
Z0,Z1

(A, C) = VPOLYVALZ1(POLYVALZ0(padn(A, C))⊕ len(A, C))Wt,

where len(A, C) := ⟨|A|⟩n
2
∥ ⟨|C|⟩n

2
. This is also precisely the tag value corre-

sponding to any (N, A, M) such that (C, T ) = GCM-SST(K, N, A, M), noting
that we dropped the masking by Z2.
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Using this observation, one can attack GCM-SST in two ways:

1. The simplest and most extreme case is when one takes empty associated
data and empty plaintext. In this case, the tag output is guaranteed to be
0t, which gives an obvious privacy attack;

2. More generally, set the associated data to be a non-empty zero string, i.e.,
0a for some non-zero a, and take an empty plaintext. In this case, the re-
sulting tag will be T = VZ1 · δaWt, where δa := ⟨a⟩n

2
∥ 0 n

2 . This tag leaks
approximately t bits of Z1. In particular, the set of valid choices for Z1 is
reduced to the set L := {Y = (T ∥ x)/δa | x ∈ F2n−t}. Thus, the number
of valid choices of Z1 is reduced to at most 2n−t. For a sufficiently large tag
size t, the adversary can proceed to exhibit a forgery by making decryption
queries of the form (N, 0a′

, ε, T ′), where a′ ̸= a and T ′ := VY · δa′Wt for all
Y ∈ L. In particular, for t = n, the construction is completely broken.

A Secure Variant of GCM-SST. The crux behind above attacks is that the
adversary can render the inner hashing subkey Z0 completely moot by choosing
an arbitrary length all-zero input, and that this leaks the outer hash key Z1.
This issue is caused by the fact that GCM-SST employs a simple non-injective
zero-padding, i.e., padn(·) of Section 2. It turns out that if we would replace this
padding with any injective non-zero padding, e.g., pad1n(x) := padn(x ∥ 1), the
above attacks no longer work. We write pad1n(x, y) := padn(x) ∥ pad1n(y) for
any tuple of strings (x, y). Denote by GCM-SST∗ the GCM-SST construction, but
with padn(A, C) replaced by pad1n(A, C) for any A ∈ H and C ∈ D. With this
padding, GCM-SST∗ improves over GCM-SST in terms of the number of block
cipher calls.8

A formal proof of the security of GCM-SST∗ would in fact be very similar
to the proofs of Theorems 3 and 4. We will nevertheless add a brief argument
below. In this reasoning, we already perform the PRP-PRF switch [8] and focus
on the security of GCM-SST∗[F ] for F ↞ Fn,n against an adversary C.

– NML-PRIV Security of GCM-SST∗. Looking back at the proof of Theorem 3,
we observe that it is sufficient to show that the tag output for each challenge
encryption query is close to a uniformly random t-bit string. For any i ∈ [q1],
consider the following two events from the event space of (Zi

0, Zi
1):

E1 : VPOLYVALZi
1
(POLYVALZi

0
(pad1n(Ai, Ci))⊕ len(Ai, Ci))W

t
= T i,

E2 : POLYVALZi
0
(pad1n(Ai, Ci)) = len(Ai, Ci).

Then, one has

(1− Pr (E2)) Pr (E1 | ¬E2) ≤ Pr (E1) ≤ Pr (E2) + Pr (E1 | ¬E2)(
1− ai + mi + 2

2n

)
1
2t
≤ Pr (E1) ≤ ai + mi + 2

2n
+ 1

2t
. (16)

8 More precisely, if |pad1n(A, C)|n = |padn(A, C)|n, GCM-SST∗ reduces the number
of calls by one; otherwise both need the identical number of calls.
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where Proposition 2 gives Pr (E2) ≤ (ai+mi+2)/2n, and Pr (E1 | ¬E2) = 1/2t

follows from the uniformity of Z1 and 2n−t-regularity9 of V·Wt. Noticing that
any pair of queries has independent and uniformly distributed hash keys, we
infer that (16) implies that the statistical distance is bounded by (σ+2q)/2n,
whence for any adversary C we now have

Advnml-priv
GCM-SST∗[F ] (C) ≤ σ + 2q

2n
; (17)

– NML-AUTH Security of GCM-SST∗. The NML-AUTH security analysis is
identical to the one for GCM-SST of Theorem 4, up to an additional factor
of (σ +2q)/2n on account of the drop in privacy of tag output. In particular,
for any adversary C, we now have

Advnml-auth
GCM-SST∗[F ] (C) ≤ σ + 2q

2n
+ vℓ

2n
+ v

2t
. (18)

The final bounds will be obtained by adding the terms resulting from the PRP-
PRF switch and the PRP-security of E to (17) and (18), showing that the bounds
are effectively equivalent to the original ones.

5.3 Universal Forgery

Given the security results of Section 4, it also makes sense to investigate the
insecurity of GCM-SST. In fact, Lindell [39] recently briefly described a universal
forgery against GCM-SST with t = 32-bit tags (recall t = 32 is specified by
the designers [18]). This attack recovers the subkeys Z0 and Z1 in around 240

decryption queries, and then creates a forgery for any freely chosen (N, A, M)
(hence a universal forgery attack). We present a general, improved universal
forgery attack applicable to any t. When t = 32, our attack makes around
233.6 decryption queries to recover Z0 and Z1. In general, our attack costs 3 ·
2t + 4(n − t) + 1 decryption queries. For simplicity, we will not describe the
attack for the actual GCM-SST with POLYVAL, but rather for a simplified POLY
that encodes an n-bit string X = (a0a1 . . . an−1) for ai ∈ {0, 1} to an F2n -
element, a0xn−1 +a1xn−2 +an−2x+an−1, where F2n = F2[x]/(p(x)). The attack
straightforwardly generalizes to the case one uses POLYVAL, but with some extra
administration and bit manipulation, and it depends on whether t is a multiple
of 8. This version of the attack is included in Appendix A for completeness.

1. Let (N, A, M) be a target tuple of a universal forgery attack, and fix any
n-bit A1 and any n-bit C1. Denote S = ⟨|A1|⟩n

2
∥ ⟨|C1|⟩n

2
. Find a forgery by

making decryption queries (N, A1, C1, T1) for varying T1. We can write

T1 = VZ2 ⊕ Z1(Z2
0 A1 ⊕ Z0C1 ⊕ S)Wt.

The complexity of this step is at most 2t decryption queries;
9 A surjective f : D → R is k-regular if and only if for each y ∈ R, |f−1(y)| = k.
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2. Set C2 = C1⊕0n−11. Find a forgery by making decryption queries (N, A1, C2, T2)
for varying T2. The complexity of this step is also 2t decryption queries;

3. Define V = T1 ⊕ T2. Note that

V = VZ1Z0(C1 ⊕ C2)Wt = VZ1Z0Wt.

The following steps will target the recovery of the entire value Z1Z0;
4. We start with the (t + 1)th bit of Z1Z0. Set C3 = C1 ⊕ 0n−210. The valid

tag T3 corresponding to (N, A1, C3) would satisfy

T3 = VZ2 ⊕ Z1(Z2
0 A1 ⊕ Z0(C1 ⊕ 0n−210)⊕ S)Wt

= VZ2 ⊕ Z1(Z2
0 A1 ⊕ Z0C1 ⊕ S)⊕ 2Z1Z0Wt = T1 ⊕ V2Z1Z0Wt.

From this equation and from step 3 of the attack, we learn that
– If VV W1 = 0, then T3 = T1 ⊕ (V(V ≪ 1)Wt−1∥b) for b ∈ {0, 1};
– If VV W1 = 1, then T3 = T1 ⊕ (V(V ≪ 1)Wt−1∥b) ⊕ V1104101201Wt for

b ∈ {0, 1}.
Find a forgery by making decryption queries (N, A1, C3, T3) for b ∈ {0, 1}.
The correct value of b is then equal to the (t + 1)th bit of Z1Z0. The com-
plexity of this step is 2 decryption queries;

5. Step 4 is repeated to recover the rest of Z1Z0, bit by bit. In detail, for
s ∈ {3, 4, . . . , n−t+1}, assume that we have already recovered VZ1Z0Wt+s−2
and V2s−2Z1Z0Wt. Denote V ∗ = V2s−2Z1Z0Wt, and set C∗ = C1⊕0n−s10s−1.
As before, the valid tag T ∗ corresponding to (N, A1, C∗) would satisfy T ∗ =
T1 ⊕ V2s−1Z1Z0Wt, and we learn that

– If VV ∗W1 = 0, then T ∗ = T1 ⊕ (V(V ∗ ≪ 1)Wt−1∥b∗) for b∗ ∈ {0, 1};
– If VV ∗W1 = 1, then T ∗ = T1 ⊕ (V(V ∗ ≪ 1)Wt−1∥b∗) ⊕ V1104101201Wt for

b∗ ∈ {0, 1}.
Find a forgery by making decryption queries (N, A1, C∗, T ∗) for b∗ ∈ {0, 1}.
The correct value of b∗ is then equal to the (t + 1)th bit of 2s−2Z1Z0, and
then we can recover the (t + s − 1)th bit of Z1Z0. The complexity of this
step is 2 decryption queries, for each of s ∈ {3, 4, . . . , n− t + 1}. In total, the
complexity of this step is 2(n− t− 1) decryption queries;

6. Recover Z1Z2
0 in the same manner as in steps 2–5, but now with keeping C1

constant and varying A2. In total, the complexity of this step is 2t + 2(n− t)
decryption queries;

7. Recover (Z1, Z0) by division: Z1Z2
0 /Z1Z0 = Z0 (note that Z0Z1 = 0 only

holds with a negligible probability). Once this tuple is obtained, VZ2Wt is
determined for free from any earlier valid forgery, such as (N, A1, C1, T1)
from step 1;

8. When |M | ≤ |C1|, a forgery for the target tuple (N, A, M) can be obtained
without any new query, which becomes (N, A, M ⊕ Z⋆, T ), where Z⋆ is a
keystream of CTR for N obtained by the forgery in step 1, and T is a valid tag
for (N, A, M ⊕Z⋆) that can be computed offline using the subkeys obtained
in step 7. When |M | > |C1|, one additional decryption query is required to
recover the corresponding keystream. First, take a dummy ciphertext C⋆ of
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the same size as M . Compute the tag T ⋆ corresponding to (N, A, C⋆) offline
and make a valid forgery (N, A, C⋆, T ⋆) to obtain the message M⋆ and thus
the keystream Z⋆ coming from CTR mode. The forgery for the target tuple
(N, A, M) can then be easily obtained as (N, A, M ⊕ Z⋆, T ), where T is a
valid tag for (N, A, M ⊕ Z⋆).

Note that, in total, the attack indeed requires 3 · 2t + 4(n − t) + 1 decryption
queries. For t = 32, this value is approximately 233.6, which improves over the
complexity of 240 of [39]. We also mention that step 1 can be substituted by a
single encryption query, in which case the attack costs a total of 1 encryption
query and approximately 233.0 decryption queries.
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A Universal forgery against the original GCM-SST

We show a complete description of a universal forgery attack against GCM-SST
with POLYVAL, i.e., the original version. The strategy of the attack is the same
as that in Section 5.3; after obtaining t bits of the product of Z0 and Z1 using
2t+1 decryption queries, we can recover the unknown n − t bits of it bit by
bit using shifting. The attack complexity does not change; 3 · 2t + 4(n − t) + 1
decryption queries and around 233.6 when t = 32.

Before going into the details of the attack, we describe how POLYVAL encodes
an n-bit string because it affects how the attack actually works. For an n-bit
string X = (a0a1 . . . an−1) for ai ∈ {0, 1}, POLYVAL encodes X to an F2n -
element

(a0x7 + a1x6 + a2x5 + · · ·+ a6x + a7)
+ (a8x15 + a9x14 + a10x13 + · · ·+ a14x9 + a15x8) + · · ·
+ (an−7xn−1 + an−6xn−2 + an−5xn−2 + · · ·+ an−2xn−6 + an−1xn−7),

where F2n = F2[x]/(p(x)). Thus, recalling that X denotes the byte-reversed copy
of X, then we can write

2X =
{

X ≪ 1 (VXW1 = an−7 = 0),
X ≪ 1⊕ 1104101201 (VXW1 = an−7 = 1).

A.1 Attack procedure (when t = 0 mod 8)

We show how the attack operates. For simplicity, we assume t = 0 mod 8. The
other case is similar and shown in Appendix A.2.

1. Let (N, A, M) be a target tuple of a universal forgery attack, and fix any
n-bit A1 and any n-bit C1. Denote S = ⟨|A1|⟩n

2
∥ ⟨|C1|⟩n

2
. Find a forgery by

making decryption queries (N, A1, C1, T1) for varying T1. Using the definition
of POLYVAL in [28], we can write

T1 = VZ2 ⊕ (Z1 ⊙ Z0 ⊙ Z0 ⊙A1)⊕ (Z1 ⊙ Z0 ⊙ C1)⊕ (Z1 ⊙ S)Wt,

where Z1 ⊙ Z0 := 2−nZ1Z0. The complexity of this step is at most 2t de-
cryption queries;

2. Set C2 = C1⊕1. Find a forgery by making decryption queries (N, A1, C2, T2)
for varying T2. The complexity of this step is at most 2t decryption queries;

3. Define V = T1 ⊕ T2. Note that

V = VZ1 ⊙ Z0 ⊙ (C1 ⊕ C2)Wt = V(Z1 ⊙ Z0)⊙ 1Wt = V2−n(Z1 ⊙ Z0)Wt.

The following steps will recover 2−n(Z1 ⊙ Z0) denoted by W ;
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4. We start with the first bit of W . Set C3 = C1 ⊕ 2. The valid tag T3 corre-
sponding to (N, A1, C3) would satisfy

T3 = VZ2 ⊕ (Z1 ⊙ Z0 ⊙ Z0 ⊙A1)⊕ (Z1 ⊙ Z0 ⊙ C1)⊕ (Z1 ⊙ S)⊕ (2⊙ Z1 ⊙ Z0)Wt

= T1 ⊕ V2⊙ (Z1 ⊙ Z0)Wt = T1 ⊕ V2WWt.

Because t is a multiple of 8, we obtain

VW ≪ 1Wt = V(V ∥0n−t)≪ 1Wt. (19)

The right side of the above equation is known from step 3. From these
equations and from step 3 of the attack, we learn that

– If VWW1 = 0, then T3 = T1 ⊕ V(V ∥0n−t)≪ 1Wt;
– If VWW1 = 1, then T3 = T1 ⊕ V(V ∥0n−t)≪ 1Wt ⊕ V1104101201Wt.

Find a forgery by making two decryption queries (N, A1, C3, T3) varying T3
as above. The correct value of T3 reveals the unknown VWW1. The complexity
of this step is 2 decryption queries;

5. Step 4 is repeated to recover the rest of W , bit by bit. In detail, for s ∈
{3, 4, . . . , n−t+1}, assume that we have already recovered V2s−2WWt. Denote
V ∗ = V2s−2WWt, and set C∗ = C1 ⊕ 2s−1. As before, the valid tag T ∗

corresponding to (N, A1, C∗) would satisfy

T ∗ = T1 ⊕ V2s−1WWt,

and we learn that
– If V2s−2WW1 = 0, then T ∗ = T1 ⊕ V(V ∗∥0n−t)≪ 1Wt;
– If V2s−2WW1 = 1, then T ∗ = T1 ⊕ V(V ∗∥0n−t)≪ 1Wt ⊕ V1104101201Wt.

Find a forgery by making decryption queries (N, A1, C∗, T ∗) varying T ∗

as above. The correct value of T ∗ reveals unknown V2s−2WW1, and then
we can recover the corresponding bit of W . The complexity of this step
is 2 decryption queries, for each of s ∈ {3, 4, . . . , n − t + 1}. In total, the
complexity of this step is 2(n− t− 1) decryption queries;

6. Recover W ′ = 2−n(Z1 ⊙ Z0 ⊙ Z0) in the same manner as in steps 2–5, but
now with keeping C1 constant and varying A2. In total, the complexity of
this step is 2t + 2(n− t) decryption queries;

7. Recover (Z1, Z0) by division:

W ′/W = (2−n(Z1 ⊙ Z0 ⊙ Z0))/(2−n(Z1 ⊙ Z0)) = 2−nZ0

(note that 2−n(Z1 ⊙ Z0) only with negligible probability). Once (Z1, Z0) is
obtained, VZ2Wt can be obtained for free from any earlier valid forgery, such
as (N, A1, C1, T1) from step 1;

8. When |M | ≤ |C1|, a forgery for the target tuple (N, A, M) can be ob-
tained without any new query. It becomes (N, A, M ⊕Z⋆, T ), where Z⋆ is a
keystream of CTR for N obtained by the forgery in step 1, and T is a valid tag
for (N, A, M ⊕Z⋆) that can be computed offline using the subkeys obtained
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in step 7. When |M | > |C1|, one additional decryption query is required to
recover the corresponding keystream. First, take a dummy ciphertext C⋆ of
the same size as M . Compute the tag T ⋆ corresponding to (N, A, C⋆) offline
and make a valid forgery (N, A, C⋆, T ⋆) to obtain the message M⋆ and thus
the keystream Z⋆ coming from CTR mode. The forgery for the target tuple
(N, A, M) can then be easily obtained as (N, A, M ⊕ Z⋆, T ), where T is a
valid tag for (N, A, M ⊕ Z⋆).

As in the attack in Section 5.3, we can substitute step 1 with a single encryption
query, which leads to the attack complexity of 1 encryption query and around
233.0 decryption queries when t = 32.

A.2 Attack procedure (when t ̸= 0 mod 8)

In step 4 in Appendix A.1, (19) does not hold when t ̸= 0 mod 8. Thus, we have
to take a slightly different procedure for the attack. In the following, we only
show the attack steps that differ from the one in Appendix A.1.

4. Set C3 = C1⊕2. The valid tag T3 corresponding to (N, A1, C3) would satisfy

T3 = T1 ⊕ V2⊙ (Z1 ⊙ Z0)Wt = T1 ⊕ V2WWt.

Because t ̸= 0 mod 8, we obtain

VW ≪ 1Wt = V(V ∥b∥0n−t−1)≪ 1Wt,

for an unknown b ∈ {0, 1}, which corresponds to (t + 1)th bit of W . Then
we learn that

– If VWW1 = 0, then T3 = T1 ⊕ V(V ∥b∥0n−t−1)≪ 1Wt for b ∈ {0, 1};
– If VWW1 = 1, then T3 = T1 ⊕ V(V ∥b∥0n−t−1)≪ 1Wt ⊕ V1104101201Wt for

b ∈ {0, 1}.
Find a forgery by making four decryption queries (N, A1, C3, T3) varying T3
as above for b. The correct value of T3 reveals VWW1 and (t + 1)th bit of W .
The complexity of this step is 4 decryption queries;

5. Step 4 is repeated to recover the rest of W . Let t = u(̸= 0) mod 8. This
step has two substeps.
(a) For s ∈ {3, . . . , 8 − u + 1}, assume that we have already recovered

VWWt+s−2 and V2s−2WWt. Denote V ∗ = V2s−2WWt, and set C∗ =
C1 ⊕ 2s−1. As before, the valid tag T ∗ corresponding to (N, A1, C∗)
would satisfy

T ∗ = T1 ⊕ V2s−1WWt,

and we learn that
– If V2s−2WW1 = 0, then T ∗ = T1 ⊕ V(V ∗∥b∗∥0n−t−1)≪ 1Wt for b ∈
{0, 1};

– If V2s−2WW1 = 1, then T ∗ = T1⊕V(V ∗∥b∗∥0n−t−1)≪ 1Wt⊕V1104101201Wt

for b ∈ {0, 1}.
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Find a forgery by making decryption queries (N, A1, C∗, T ∗) varying
T ∗ as above for b ∈ {0, 1}. The correct value of T ∗ reveals unknown
V2s−2WW1 and (t + s − 1)th bit of W . Finishing this loop of s means
that we recovered VWW(t+8−u)/8 and the leftmost 8 − u bits of the last
byte.

(b) For s ∈ {8 − u + 2, . . . , n − t − (8 − u) + 1}, assume that we have
already recovered VWWt+s−2 and V2s−2WWt. The attack procedure of
this substep is totally the same as step 5 in Appendix A.1. This is because

V2s−2W ≪ 1Wt = V(V ∗∥0n−t)≪ 1Wt

always holds, where V ∗ = V2s−2WWt.
The complexity of this step is 4 decryption queries for each of s in substep (a),
and 2 decryption queries for each of s in substep (b). In total, the complexity
of this step is 4(7−u) + 2(n− t + 2u− 16) = 2(n− t− 2) decryption queries;

The total complexity of the above steps 4 and 5 is 2(n − t), which is the same
as the one in Appendix A.1. Thus, the attack complexity is 3 · 2t + 4(n− t) + 1
decryption queries for any t.
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